

Mastering Nim

 A complete guide to the programming

 language

Andreas Rumpf

Mastering Nim 2.0

2nd edition, August 2023

(c) 2023 by Andreas Rumpf

This book is dedicated to Angelika, the love of my life.

1

2

Table of Contents

Colophon . 1

Acknowledgments . 11

Preface. 13

History and theory behind Nim . 14

Who is this for . 15

Structure of the book . 15

Part I: Introduction to Nim via graphics . 17

1. Introduction . 19

2. Drawing a line . 21

2.1. Drawing horizontal and vertical lines . 21

2.1.1. Drawing a line using one point, length, direction 22

2.1.2. Drawing a line by specifying start and end 24

3. Rendering Text. 25

4. Sequences . 27

5. Parameter passing and mutability . 29

6. Let vs Var. 31

7. Iterators . 33

7.1. Yield . 33

8. Generics . 35

9. Templates . 39

10. Macros . 43

Part II: Nim language specification . 45

11. Basic terms . 47

12. Lexical analysis . 49

12.1. Notation used in this chapter. 49

12.2. Indentation. 50

3

12.3. Comments. 51

12.4. Multiline comments . 52

12.5. Identifiers & Keywords . 52

12.6. Identifier equality. 53

12.7. String literals . 54

12.8. Triple quoted string literals . 55

12.9. Raw string literals. 55

12.10. Generalized raw string literals . 56

12.11. Character literals . 56

12.12. Numeric Literals . 58

12.12.1. Custom Numeric Literals . 60

12.13. Operators . 61

12.14. Other tokens. 62

12.15. Unicode Operators . 62

13. Syntax . 63

13.1. Associativity . 63

13.1.1. Precedence. 63

13.2. Dot-like operators . 65

14. Declarations and scope rules . 67

15. Modules . 69

15.1. Export marker . 69

15.2. Module processing . 69

15.3. Import statement . 70

15.4. Include statement . 71

15.5. Module names in imports. 71

15.6. Collective imports from a directory . 72

15.7. Pseudo import/include paths . 72

15.8. From import statement . 73

15.9. Export statement. 73

15.10. Scope rules . 74

15.10.1. Block scope . 74

15.10.2. Tuple or object scope. 74

15.10.3. Module scope . 74

16. Type system . 77

16.1. Ordinal types . 77

4

16.2. Pre-defined integer types . 78

16.3. Integer literals . 79

16.4. Subrange types . 80

16.5. Pre-defined floating-point types . 80

16.5.1. Nan and Inf checks . 81

16.6. Boolean type . 82

16.7. Character type . 83

16.8. Enumeration types . 83

16.9. Overloadable enum field names . 85

16.10. String type . 86

16.11. cstring type. 87

16.12. Structured types . 88

16.13. Array and sequence types . 88

16.14. Open arrays . 90

16.15. Varargs . 90

16.16. Unchecked arrays . 91

16.17. Tuples and object types. 92

16.18. fields and fieldPairs iterators . 94

16.19. Object construction . 95

16.20. Object variants . 95

16.21. cast uncheckedAssign . 98

16.22. Set type . 98

16.22.1. Bit fields . 100

16.23. Reference and pointer types . 100

16.24. Nil. 102

16.25. Procedural type. 103

16.26. Calling conventions . 103

16.27. Distinct type. 105

16.27.1. borrow annotation. 106

16.28. Auto type . 106

16.29. static[T] . 107

16.30. typedesc[T]. 108

16.31. typeof. 110

17. Type relations . 113

17.1. Type equality . 113

5

17.2. Subtype relation . 113

17.3. Convertible relation . 114

17.4. Assignment compatibility. 116

18. Constant expressions . 117

19. Overload resolution . 119

19.1. Overloading based on 'var T' . 122

19.2. Lazy type resolution for untyped . 122

19.3. Varargs matching . 123

19.4. Overload disambiguation . 123

20. Statements and expressions . 125

20.1. Statement list expression . 125

20.2. Discard statement. 125

20.3. Void context . 126

20.4. Var statement . 127

20.5. Let statement . 129

20.6. Tuple unpacking . 129

20.7. Const statement. 130

20.8. Type section . 130

20.9. Static statement/expression . 132

20.10. If statement . 133

20.11. Case statement . 134

20.12. When statement . 135

20.13. Return statement . 136

20.14. Yield statement . 137

20.15. Block statement . 137

20.16. Break statement . 137

20.17. While statement . 138

20.18. Continue statement . 138

20.19. Using statement . 139

20.20. If expression . 139

20.21. When expression . 140

20.22. Case expression. 140

20.23. Block expression. 141

20.24. Table constructor . 141

20.25. Type conversions . 142

6

20.26. Type casts . 142

20.27. The addr operator . 143

20.28. The unsafeAddr operator . 143

21. Procedures . 145

21.1. Method call syntax . 147

21.2. Properties . 148

21.3. Indexing . 149

21.4. Command invocation syntax . 149

21.5. Closures. 150

21.5.1. Creating closures in loops . 150

21.6. Anonymous procs. 151

21.7. Func . 151

21.8. Non-overloadable built-ins . 152

21.9. Var parameters . 152

21.10. Var return type . 153

22. Methods. 155

22.1. Static method calls via procCall . 156

23. Iterators and the for statement . 157

23.1. Implicit items/pairs invocations . 158

23.2. First-class iterators. 159

24. User definable conversions . 163

24.1. Converters . 163

25. Exception handling. 165

25.1. Try statement . 165

25.2. Try expression. 166

25.3. Except clauses . 167

25.4. Defer statement. 167

25.5. Exception hierarchy. 169

25.6. Raise statement . 169

26. Effect system . 171

26.1. Exception tracking . 171

26.2. EffectsOf annotation . 173

26.3. Tag tracking . 174

26.4. Side effects . 175

26.5. GC safety effect . 175

7

27. Generics. 177

27.1. Is operator . 178

27.2. Type Classes . 178

27.3. Implicit generics . 180

27.4. Generic inference restrictions. 182

27.5. Symbol lookup in generics . 183

27.5.1. Open and Closed symbols . 183

27.6. Mixin statement . 183

27.7. Bind statement . 184

27.8. Delegating bind statements . 184

27.9. Templates . 185

27.10. Typed vs untyped parameters. 186

27.11. Passing a code block to a template. 186

27.12. Varargs of untyped. 188

27.13. Symbol binding in templates. 188

27.14. Identifier construction . 189

27.15. Template parameter lookup rules . 189

27.16. Hygiene in templates. 190

27.16.1. Inject and gensym . 191

27.17. Method call syntax limitations . 192

28. Macros . 193

28.1. Macros API . 193

28.2. BindSym . 195

28.3. For loop macros . 196

29. Lifetime-tracking hooks . 199

29.1. =destroy hook . 199

29.2. =wasMoved hook. 200

29.3. =sink hook . 200

29.4. =copy hook . 201

29.5. =dup hook . 201

29.6. =trace hook . 202

29.7. Move semantics. 203

29.8. Swap . 203

29.9. Sink parameters . 204

29.10. Rewrite rules . 205

8

29.11. Object and array construction . 206

29.12. Destructor removal . 206

29.13. Self assignments . 206

29.14. Lent type. 208

29.15. The .cursor annotation . 208

29.16. Cursor inference / copy elision . 209

29.17. Hook lifting . 210

29.18. Hook generation . 210

29.19. nodestroy pragma . 211

29.20. Copy on write . 211

29.21. Practice . 212

30. Strict funcs . 217

31. View types. 219

31.1. Path expressions . 221

31.2. Start of a borrow. 223

31.3. End of a borrow . 223

31.4. Reborrows . 223

Part III: Mastering Macros . 225

32. Introduction . 227

33. AST introspection . 229

33.1. Typed vs untyped ASTs . 230

34. AST creation . 233

35. Collect macro . 235

36. strformat . 239

37. strscans . 243

38. HTML trees . 247

39. Advice . 251

Part IV: Mastering Parallelism. 253

40. Introduction . 255

41. Threading . 257

41.1. createThread . 257

41.2. Single worker, single channel . 258

41.3. Multiple workers, single channel . 260

42. spawn . 261

42.1. Return values. 262

9

42.2. Sharing memory . 264

43. Isolated data . 267

44. Smart pointers . 271

45. Parallel for each and reduce . 273

45.1. parMap. 274

45.2. parReduce. 276

45.3. parFind. 278

46. Final advice . 281

46.1. What to avoid . 281

46.2. What to use . 281

Appendix A: Grammar . 283

Appendix B: Nim standard library cheat sheet . 289

B.1. Integers . 290

B.2. Strings. 291

B.3. Sequences . 292

B.4. Bit sets . 293

B.5. Hashes . 294

B.6. Hash sets . 295

B.7. Hash tables . 297

B.8. Optionals . 299

B.9. String formatting . 300

B.10. Algorithms. 301

B.11. OS . 303

B.12. JSON . 305

B.13. Unicode . 306

Index . 307

10

Acknowledgments

Parts of the book are based on Nim’s manual [https://nim-lang.org/docs/

manual.html] which is the work of many people over many years. I would like to thank everybody who made valuable contributions, such as proof-reading, catching spelling mistakes or pointing out mistakes or omissions in the

documentation:

Ivan Bobev, Juan Carlos, Federico Ceratto, Neelesh Chandola, Timothee Cour, Huy Doan, Ico Doornekamp, Andrea Ferretti, Jasper Jenkins, James Johnson, Zahary Karadjov, Avahe Kellenberger, Lorenz Krakau, Andrey Makarov,

Chris McIntyre, Kaushal Modi, Peter Munch-Ellingsen, Oscar Nihlgård, Rory O’Kane, Dominik Picheta, Andrey Riabushenko, Jacek Sieka, Mathias Stearn, Deansher Thompson, Miran Tuhtan, Elliot Waite, Brian Wignall, Zeshen Xing, Danil Yarantsev, Yanis Zafirópulos.

Special thanks go to Andre von Houck and Miran Tuhtan for reviewing this book. This book would not be as good as it is without your help.

I apologize to anybody that I have left out by accident.

11

12

Preface

Compiled languages are on the rise again. It’s clear why, they generally produce programs that have better performance over interpreted languages and those programs are of higher quality due to static type checking. Nim goes a step beyond this new wave of compiled languages, by also giving you a powerful macro system to express complex problems.

Nim does not depend on any virtual machine, instead producing a binary

that runs directly on the CPU — either with the help of an operating system or even without one. Every drop of performance can be squeezed out of your code should the need arise.

Nim’s easy to use static type system catches mistakes early. The type system helps you ensure that a small typo will not break production and a big

refactor is no longer scary. You don’t even type that much, type inference is everywhere and generics make it very comfortable to use. Unlike in dynamic languages, every type is known at compile time and is properly optimized for both run time speed and memory space.

Meta programming and macros are really powerful and set Nim apart from

other static compiled languages. Nim allows you to design deep and

composable domain-specific languages with its powerful templates and

macros.

Nim offers a “pluggable” memory management system called ARC giving you

the required control for low latency, hard real-time systems without having to write “low level” programs. It is good for game and embedded

development. ARC also integrates well with custom memory management.

Nim is a cross-platform language not tied to any operating system. It feels right at home on Linux, Mac and Windows, and can also be used to make

mobile iOS and Android apps. Even on the web it can be used either as

13

compiled to JavaScript or through WASM.

For embedded programming, the size of the produced machine code is

important — Nim also shines in this aspect. The Nim compiler prunes unused code thanks to its focus on static binding needing no runtime introspection features. Where required, Nim’s macro system can be used to provide the

required introspection capabilities.

Productivity is also improved thanks to a well designed standard library and a large number of third party packages. The standard library covers topics such as hash tables, common algorithms like sorting or computing the edit distance, powerful collections, wrappers around operating systems, string parsing, unicode and time handling, implementations for the most common

internet protocols, math and cryptography algorithms and much more.

Software becomes ever more complex and a modern programming language

needs to reflect that to some extent. It cannot be “simple” anymore. Many features are taken for granted these days, and rightly so. They enable the construction of complex software much like sophisticated materials and tools enable the construction of skyscrapers. It follows that learning a language is a huge time investment. Nim rewards you with a single coherent language

that can be used for everything and it works well on everything: It runs on web browsers, on virtually every operating system as well as on tiny

embedded devices and even on GPUs. Nim’s complexity is still very

manageable, this book tries to cover Nim completely in about 300 pages.

Some describe Nim as a “better Python with types, macros and C’s speed”.

The code you write is easy to understand by feeling like running pseudocode, thanks to its indentation-based syntax, short type names, and type inference.

It makes people fall in love with programming again by presenting fast

compile times, fast run times, minimal boilerplate and a comfortable

language. But now enough of the praise, please dive in and be the judge!

History and theory behind Nim

Nim is a general-purpose language most inspired by Ada, Modula-3, C++,

Python and Lisp. Its most important features are type and resource safety, meta programming and combining readability with syntactic convenience.

While Nim’s primary focus is “imperative programming”, it does support:

14

• Functional programming: Functions are first class entities and mutability can be restricted.

• Object oriented programming: Inheritance and dynamic binding are

supported.

• Generic programming: Custom container types can be implemented

easily and efficiently.

• Asynchronous programming: Leverage lightweight threads to support a

large number of clients without blocking.

• Meta programming: Reflection over a program’s structure is supported

so powerful program transformations are possible. The transformations

are carefully restricted to what can be done at compile-time. The

restrictions also enforce that local reasoning about a program remains to be possible: The macro construct that enables the most powerful

transformations cannot transform unrelated sections of the code.

This is the 2nd edition of “Mastering Nim”. It describes version 2.0 of the Nim programming language, first released in 2023-08-01.

Who is this for

This book for people who can already program but wish to be able to

program in Nim.

This book aims to give the reader a deep understanding of how Nim is

layered and structured. It covers how the standard library APIs work and how they were implemented.

Structure of the book

This book is structured as follows: Part I is an introduction to Nim via simple algorithms based on graphical programming.

Part II is the largest part, it covers Nim in detail and in a formal language. It tries to convey how Nim really works and ideally you know the language

inside out after reading it. This part originally evolved from Nim’s official manual but please do not think that you know it all already! It contains plenty of unique and novel content. Sometimes examples show how the

features are supposed to be used or why they exist, sometimes personal

advice is provided of what to watch out for or to avoid.

15

Part III focuses on Nim’s macro system. Examples are explained in detail and the examples were chosen to be representative of tasks where macros are an effective tool to improve the readability and the level of abstraction of your code.

Part IV covers Nim’s multi-threading capabilities and memory model.

Essential parts of Nim’s standard library are covered in the form of “cheat sheets”. This might seem rather superfluous in the age of the Internet but the online documentation does not provide the information in this concise form.

The parts are loosely coupled and can be read independently from each

other and in whatever order you choose.

16

Part I: Introduction to Nim via

graphics

17

18

Chapter 1. Introduction

In this chapter we will show the basics of Nim language (types, for loops, if and case statements, procedures, etc.) while using basic graphic primitives to create shapes.

The premise is that the putPixel proc exists and we can use it, not worrying about its implementation details. All we need to know is: that proc takes the x and y coordinate of a point and its Color (default: white), and places a pixel of that color at those coordinates for us. This is how to use it:

import pixels ①

putPixel(5, 9) ②

putPixel(11, 18, Red) ③

① We import pixels so we can use the putPixel proc.

② Puts a white (that is the default color) pixel at the (5, 9) coordinate.

③ Puts a red pixel at the (11, 18) coordinate.

Your Nim installation ships with a package manager called Nimble. Nimble can install additional packages. You can install the pixels library via: nimble install pixels

19

20

Chapter 2. Drawing a line

A line is a series of adjacent points. We will limit ourselves to two types of lines:

Horizontal and vertical lines

When drawing these lines point by point, just one coordinate changes,

while the other stays constant.

A point is an object consisting of x and y coordinates, and we define it and use it like this:

import pixels

type

Point = object ①

x: int ②

y: int

var p = Point(x: 5, y: 7) ③

putPixel(p.x, p.y) ④

① Defining a Point as an object.

② Coordinates x and y are integers.

③ Variable p is an instance of a Point with coordinates (5, 7).

④ We can access fields of an object with a dot. In this case, we access the x and y coordinates of the point p with p.x and p.y.

2.1. Drawing horizontal and vertical lines

A line can be defined by a starting and an ending point, or by a starting point 21

and its length and a direction. We’ll show both approaches.

2.1.1. Drawing a line using one point, length, direction

We can define a line by its starting point, its length, and its direction. Having these two information, we can then draw a line pixel by pixel.

A line length is a positive integer (a zero would be just a point, not a line; a negative value for the length is physically impossible). A direction can be either horizontal or vertical.

This means that we will limit ourselves to always create lines from left to right (we specify the leftmost point of a line and then increase the x

coordinate) or top to bottom (we increase the y coordinate).

We can start by creating two similar procs: one for drawing horizontal lines, and one for drawing vertical lines.

import pixels

type

Point = object

x: int

y: int

proc drawHorizontalLine(start: Point; length: Positive) = ①

for delta in 0 .. length: ②

putPixel(start.x + delta, start.y) ③

proc drawVerticalLine(start: Point; length: Positive) =

for delta in 0 .. length:

putPixel(start.x, start.y + delta) ④

let a = Point(x: 60, y: 40)

drawHorizontalLine(a, 50) ⑤

drawVerticalLine(a, 30) ⑥

① The length is defined as Nim’s built-in Positive type, which is a subtype of int, containing just positive numbers.

② The p..q is an (inline) iterator, which iterates from p to q (both ends are inclusive) in the ascending order, i.e. p must be smaller than q for the iteration to happen. In this case we’re iterating from zero to length.

22

③ For a horizontal line, the y coordinate remains constant, and in each iteration step we draw a pixel one pixel to the right from the previous

step.

④ Similarly, for a vertical line, the x coordinate stays constant, and we increase the y coordinate to draw a new pixel.

⑤ This will draw a horizontal line from (60, 40) to (110, 40).

⑥ This will draw a vertical line from (60, 40) to (60, 70).

We can have one proc, drawLine, which will draw both horizontal and vertical lines, depending on the provided user’s parameter.

To model a set of a limited amount of values, we use the enum type. The

benefits of this choice will be visible later, when we will see one of the features of Nim: exhaustiveness checking.

We can now extend the previous example with these lines:

type

Direction = enum ①

Horizontal ②

Vertical

proc drawLine(start: Point; length: Positive; direction: Direction) = ③

case direction ④

of Horizontal:

drawHorizontalLine(start, length) ⑤

of Vertical:

drawVerticalLine(start, length)

drawLine(a, 50, Horizontal) ⑥

drawLine(a, 30, Vertical)

① A Direction is an enumeration (enum) with two possible values.

② The values of a Direction are: Horizontal and Vertical.

③ We now have an extra parameter of the Direction type.

④ This is a case statement. It is similar to if statement, but more powerful.

Not only we get separate branches for each case, we also have

exhaustiveness checking: we cannot by accident leave out some cases.

Concretely, we must account for all the enum values.

⑤ We delegate the task of drawing lines to the previously defined procs.

23

⑥ This will draw the same lines as in the example before.

2.1.2. Drawing a line by specifying start and end

If we use two points to define a line, we don’t have to know (or calculate) the line length, and the direction can be inferred from the relation of these two points: if they have the same y coordinate, we are drawing a horizontal line, and a vertical line between two points with the same x coordinate.

We will always iterate from a point with a smaller value of the changing coordinate, but we will allow our users to specify the points in any order. We can achieve this with recursion.

proc drawHorizontalLine(a, b: Point) = ①

if b.x < a.x:

drawHorizontalLine(b, a) ②

else:

for x in a.x .. b.x:

putPixel(x, a.y) ③

proc drawVerticalLine(a, b: Point) =

if b.y < a.y:

drawVerticalLine(b, a)

else:

for y in a.y .. b.y:

putPixel(a.x, y)

let

p = Point(x: 20, y: 20)

q = Point(x: 50, y: 20)

r = Point(x: 20, y: -10)

drawHorizontalLine(p, q) ④

drawVerticalLine(p, r) ⑤

① Even though we already have a proc of the same name, there is no

overriding: they are different procs because they have different

parameters.

② Notice the reversed order of the arguments.

③ The x is a changing variable, while the y remains constant.

④ Draws a horizontal line between (20, 20) and (50, 20).

⑤ Since r.y is smaller than p.y, this will in turn call drawVerticalLine(r, p) and draw a vertical line between (20, -10) and (20, 20).

24

Chapter 3. Rendering Text

The pixels library can do slightly more than just putPixel: it also offers a minimal drawText proc, to put letters and words on the screen. Its declaration looks like this:

proc drawText(x, y: int; text: string; size: int; color: Color) We pass the following parameters to it:

x and y

The coordinates of a bottom-left corner of the text we want to draw

text

The text we want to render. It is of type string. We will look at strings in more depth in the next chapter, for now it is enough to know that string is a builtin type that is roughly a sequence of char, and a string literal can be written in double quotes, for example "like this".

size

This is a height of the text in pixels.

color

Similarly to the putPixel proc, we can define the color of the text we’re drawing.

The simplest way to call this proc is like this:

drawText 30, 40, "Welcome to Nim!" , 10, Yellow

Notice that we didn’t use the parentheses after the name of the function to 25

enclose the list of arguments. This is equivalent to drawText(10, 10, "Welcome to Nim!", Yellow), either style can be used.

For the next more interesting example we need the dollar operator $ which can turn many types into its string representation, and the concatenation operator & which combines (“concatenates”) two strings into one: $12 == "12" # convert an integer into a string

 "abc" & "def" == "abcdef" # concatenate two strings into one The following example produces 3 lines of text:

for i in 1..3:

let texttodraw = "welcome to nim for the " & $i & "th time!" ①

drawtext 10, i*10, texttodraw, 8, Yellow ②

① Creates a string (concatenated from three separate strings) and assigns it to the local variable textToDraw.

② Renders the text at position (10, i*10) where i is in one of the numbers in the 1..3 range, for each loop iteration.

26

Chapter 4. Sequences

We have said that a string is a sequence of characters. Nim also supports sequences, called seq, of an arbitrary type. For example, a sequence of

integers is written with the notation seq[int], and a sequence of Point is seq[Point].

We want to be able to draw more than a single pixel. putPixels accomplishes that:

proc putPixels(points: seq[Point]; col: Color) = ①

for p in items(points): ②

pixels.putPixel p.x, p.y, col ③

putPixels(@[Point(x: 2, y: 3), Point(x: 5, y: 10)], Gold) ④

① putPixels takes a list of Points.

② The items iterator allows us to iterate over the points parameter.

③ Every pixel we draw uses the same color col. We call the putPixel proc from the pixels module. As you can see, you can qualify an identifier

with the module it was declared in. Sometimes this can improve the

readability of your code.

④ We call our newly introduced putPixels proc with the seq @[Point(x: 2, y: 3), Point(x: 5, y: 10)].

You can construct a sequence via @[…]. The empty sequence is @[].

Sequences offer random access, the i'ith element can be accessed via s[i].

The indexing starts from 0. The same notation is available for string.

27

28

Chapter 5. Parameter passing and

mutability

Every parameter in Nim is immutable unless it is declared as a var parameter.

This means that the following code does not compile:

proc resetPointsToOrigin(points: seq[Point]) =

for i in 0 ..< points.len: ①

points[i] = Point(x: 0, y: 0) ②

① We iterate over every index of points via an iterator that uses an operator symbol ..<. The ..< symbol indicates that the upper bound is exclusive which is exactly what we need since the indexing starts at 0.

② We then try to mutate points[i] and set its new value to the point (x: 0, y: 0). But the compiler rejects this statement!

The compiler rejects the code because points is a parameter that can only be used for read accesses. This restriction helps us to write code that is easier to understand and scales better to larger programs and at the same time it

helps the compiler to produce better machine code.

In order to be allowed to mutate points we need a var parameter:

proc resetPointsToOrigin(points: var seq[Point]) = ①

for i in 0 ..< points.len:

points[i] = Point(x: 0, y: 0) ②

① The points parameter is a var seq

② so the mutation is allowed.

29

If we now try to call resetPointsToOrigin with a seq constructor the compiler once again rejects our code:

resetPointsToOrigin @[Point(x: 2, y: 4)]

The reason is that a sequence constructed via @[] is not mutable. A variable is mutable, so the following is valid:

var points = @[Point(x: 2, y: 4)]

resetPointsToOrigin points

30

Chapter 6. Let vs Var

A variable can not only be introduced via var but also via let:

let points = @[Point(x: 2, y: 4)]

resetPointsToOrigin points

Such a let variable cannot be changed after its initialization so

resetPointsToOrigin points is rejected too.

As programs grow larger, the enforced discipline about what can be mutated helps both compilers and human programmers to reason about the code. At

the same time, the rules are not overly restrictive and don’t prevent the development of classical or novel algorithms.

31

32

Chapter 7. Iterators

An iterator is a resumable proc. Iterators are usually invoked in for loops.

We have already seen the built-in iterators items and ..<. If they were not built-in we could easily define them ourselves:

iterator `..<`(a, b: int): int = ①

var i = a

while i < b:

yield i ②

inc i ③

iterator items(s: seq[Point]): Point =

for i in 0 ..< s.len: ④

yield s[i]

① An iterator is declared much like a proc. The ..< operator takes two integers and produces an integer.

② We do not return a value, we yield it. The for loop that calls the iterator

..< calls ..< again and again, each time the control flow resumes where the iterator left off until the iterator’s while loop finishes. (When i >= b.) ③ inc i means to increment the integer i by 1. It can be also be written as i

= i + 1 or i += 1.

④ The items iterator calls the ..< iterator. Iterators are called in for loops.

7.1. Yield

A yield statement can be easily understood as a variation of a return

statement: A return statement returns the control flow to the caller,

potentially producing a value that the caller can receive:

33

proc find(haystack: string; needle: char): int =

for i in 0 ..< haystack.len:

if haystack[i] == needle: return i ①

return -1 ②

let index = find("abcabc" , 'c') ③

① Return the value of i to the caller and do not continue with the execution of find. This implies that the for loop is left too.

② Return the value -1 to indicate that needle did not occur in haystack.

③ We assign the value that find returns to a variable called index.

find returns the index of the first occurrence of needle inside haystack. It is not possible to resume its execution in order to retrieve the possible other occurrences of needle. An iterator like findAll can do that, thanks to the yield keyword:

iterator findAll(haystack: string; needle: char): int =

for i in 0 ..< haystack.len:

if haystack[i] == needle: yield i ①

②

for index in findAll("abcabc" , 'c'): discard ③

① Return the value of i to the caller and continue with the execution of findAll later.

② Notice the absence of a yield -1 statement. If the iterator does not yield more values, the calling for loop will stop.

③ We iterate over all values that are produced by findAll and bind the

current value to index.

34

Chapter 8. Generics

The items iterator that we have just seen only works on seq[Point]. However, the code does not use any features of Point, it doesn’t access point.x, for example. We really want to iterate over every seq[T] where T can be any

type.

Nim supports such type variables via generics:

iterator items[T](s: seq[T]): T = ①

for i in 0 ..< s.len:

yield s[i]

for x in items(@[1, 2, 3]): discard ②

for x in items(@["1" , "2" , "3"]): discard ③

① The items iterator works for any type seq[T]. It produces values of type T.

② @[1, 2, 3] has type seq[int]. When items is called its type variable T is inferred to be int.

③ @["1", "2", "3"] has type seq[string]. When items is called its type variable T is inferred to be string.

Nim uses specialization for its generics. Every new concrete type like int or string produces specialized code, there is no runtime overhead.

Not only procs and iterators but also types can be generic:

type

Point[T] = object ①

x, y: T ②

var p: Point[float] ③

p = Point[float](x: 1.0, y: 3.0) ④

35

① The Point type is parametrized by a type variable T.

② T is used to declare the fields x and y.

③ A variable of name p is declared that is of type Point[float]

④ Object construction of Point also requires an explicit type; in this case float.

Unfortunately type inference does not work for object construction, Point(x: 1.0, y: 3.0) is not allowed. This restriction will probably be removed in the future.

If a type is parametrized by a type variable T operations on it usually have to be parametrized too. For example, our drawHorizontalLine proc would

become:

proc drawHorizontalLine[T](a, b: Point[T]) =

if b.x < a.x:

drawHorizontalLine(b, a)

else:

for x in a.x .. b.x:

putPixel(x, a.y)

drawHorizontalLine takes two parameters of the same type Point[T]. In other words, a call like drawHorizontalLine(Point[float](x: 2.0, y: 3.0),

Point[int](x: 2, y: 3)) would be rejected because one T cannot be both

float and int at the same time.

We can use different type variables to allow for

drawHorizontalLine(Point[float](x: 2.0, y: 3.0), Point[int](x: 2, y: 3)): proc drawHorizontalLine[T, U](a: Point[T]; b: Point[U]) =

if b.x < a.x:

drawHorizontalLine(b, a)

else:

for x in a.x .. b.x:

putPixel(x, a.y)

This assumes that we have an iterator .. that can handle mixed types. We could provide such an iterator like this:

36

iterator `..`[T, U](a: T, b: U): U = ①

var i = U(a) ②

while i <= b: ③

yield i

inc i ④

① Somewhat arbitrarily we have decided that the produced values are of

type U and not of T.

② Via U(a) we convert the starting value a to type U. In Nim a type

 conversion looks like a function call.

③ We assume here that type U offers an operator <=. This assumption is not written down — generics in Nim can be under-specified.

④ We assume here that type U offers a suitable operation inc.

A type variable T is usually left under-specified in Nim; the requirements are only implicit and generic code is only type checked when the generic is

instantiated:

for x in "a" .. "b" : ... # invalid for x in 0 .. 3: ... # valid

for x in 0 .. 3.0: ... # invalid because float does not have ìnc`

37

38

Chapter 9. Templates

What happens when we call putPixel on coordinates that lie outside the

screen’s boundaries? That depends on the implementation of our pixels

library but three outcomes are conceivable:

1. Nothing.

2. An exception is raised.

3. The program crashes.

In order to do “nothing” early returns can be a handy mechanism:

const

ScreenWidth = 1024 ①

ScreenHeight = 768

proc safePutPixel(x, y: int; col: Color) =

if x < 0 or x >= ScreenWidth or

y < 0 or y >= ScreenHeight:

return ②

putPixel(x, y, col) ③

① For simplicity, we assume a screen resolution of 1024x768 here. With

const you can declare constants. A constant is comparable to a variable

but its value cannot be changed and must be set at compile-time. The

benefits of these restrictions will be explained later.

② If the coordinates are not within bounds return.

③ Else call the putPixel proc.

A program fragment like if not inBounds(…): return is common in graphics programming and so one can desire to move it into a helper proc.

Unfortunately, a return statement leaves the current proc and so code like the following has not the desired effect:

39

proc boundsCheck(x, y: int) =

if x < 0 or x >= ScreenWidth or

y < 0 or y >= ScreenHeight:

return ①

proc safePutPixel(x, y: int; col: Color) =

boundsCheck(x, y)

putPixel(x, y, col)

① The return statements leaves boundsCheck but not safePutPixel!

Nim offers a construct which has the “inlining” semantics that we need: A template is syntactically much like a proc, but an invocation to a template means to expand the template's body at the call site:

template boundsCheck(a, b: int) = ①

if a < 0 or a >= ScreenWidth or

b < 0 or b >= ScreenHeight:

return ②

proc safePutPixel(x, y: int; col: Color) =

boundsCheck(x, y) ③

putPixel(x, y, col)

① A template of name boundsCheck with parameters named a and b of type

int is declared.

② return inside a template means to return from thètemplate’s caller.

③ A template can be invoked just like a proc.

Even though boundsCheck(x, y) looks like a call, it’s not called, instead boundsCheck's body is inserted directly into safePutPixel. This insertion also does parameter substitutions; in our example the template parameter a is replaced by the procs parameter x and likewise is b replaced by y.

A template is a simple form of a macro, it is most commonly used for control flow abstractions and one can pass multiple statements to a template easily: 40

template wrap(body: untyped) = ①

drawText 0, 10, "Before Body" , 8, Yellow ②

body ③

wrap: ④

for i in 1..3:

let textToDraw = "Welcome to Nim for the " & $i & "th time!"

drawText 10, i*10, textToDraw, 8, Yellow

① The wrap templates takes a list of statements called body. The type untyped will be explained later.

② The drawText call runs

③ before the statements that are passed via body are run.

④ Via the syntax wrap: (note the colon) followed by the indented for loop we pass the for loop to the wrap template.

Even though templates are based on a conceptually quite simple substitution mechanism that is completely performed at compile-time, their power is

surprising. With some experience they enable a programming style that lets us abstract away many details leading to shorter programs without

negatively impacting the readability.

As an example we introduce a withColor environment. Inside this

environment putPixel and drawText should use a specified color implicitly so that we don’t have to repeat the color argument again and again. We declare variants of putPixel and drawText as templates that use an undeclared colorContext variable:

template putPixel(x, y: int) = putPixel(x, y, colorContext) ①

template drawText(x, y: int; s: string) = drawText(x, y, s, colorContext) ②

① The putPixel template which does not take a color delegates its work to the existing putPixel proc using the still undeclared colorContext color.

② Likewise does drawText.

Even though putPixel and drawText are already in our scope, it is valid to use the same names again for different (but in this case related) operations. The compiler performs a mechanism that is called overload resolution in order to disambiguate the invocations. In our case the disambiguation is simple: A call putPixel(x, y, color) resolves to pixels.putPixel(x, y, color), whereas a call without a color parameter resolves to the newly introduced template of 41

this name. The same applies for drawText.

Templates can easily refer to undeclared entities because only a template expansion implies that the result is checked for semantics.

The colorContext variable is declared inside the withColor environment. It is marked with inject so that it is visible inside the body:

template withColor(col: Color; body: untyped) = ①

let colorContext {.inject.} = col ②

body

withColor Blue: ③

putPixel 3, 4 ④

drawText 10, 10, "abc" , 12

① withColor is a template that takes both a color and a body of code.

② colorContext is injected into body. Without the .inject annotation,

putPixel and drawText would not be able to see the colorContext variable.

③ blue is passed to col and the code section putPixel … drawText … to body via the colon syntax.

④ The putPixel and drawText templates are invoked.

After all templates are expanded the complete example looks like:

let colorContext = Blue

putPixel(3, 4, colorContext)

drawText(10, 10, "abc" , colorContext)

42

Chapter 10. Macros

As we have seen templates can be used for tasks where ordinary procs fail.

In some sense a template is more powerful than a proc. A macro is even

more powerful than a template because a macro can inspect a body of code that is passed to it.

The first macro can be very hard to understand because you don’t write the pattern that is expanded where the macro is invoked as you would for a

template. Instead you write the instructions on how to create the pattern that is the code that is inserted where the macro is invoked.

In other words the code is rather imperative and low level.

The following example is a macro that turns the body of code that it receives into an empty list of statements (newStmtList()). This means that the body of code is ignored by the compiler:

import std / macros ①

macro disable(body: untyped): untyped = ②

result = newStmtList() ③

disable: ④

drawText(10, 10, "Disabled piece of code!" , Blue)

① To work with macros an API is required, this API is in std/macros.

② The macro declaration looks like the template declaration except that the keyword template was replaced by macro.

③ The result of the macro is a syntax tree that is an empty list of statements.

④ To invoke a macro, the same syntax is used as for procs and templates.

43

Many more examples for macros can be found throughout the book but the better examples are too advanced for this introduction.

And with this our first tour through Nim ends. Time to dive into the foxhole!

44

Part II: Nim language specification

45

46

Chapter 11. Basic terms

Nim code specifies a computation that acts on a memory consisting of

separate cells, called locations. A variable is basically a name for a location.

Each variable and location is of a certain type. The variable’s type is called static type, the location’s type is called dynamic type. If the static type is not the same as the dynamic type, it is a super-type or subtype of the dynamic type.

An identifier is a symbol declared as a name for a variable, type, procedure, etc. The region of the program over which a declaration applies is called the scope of the declaration. Scopes can be nested. The meaning of an identifier is determined by the smallest enclosing scope in which the identifier is declared unless overloading resolution rules suggest otherwise.

An expression specifies a computation that produces a value or location.

Expressions that produce locations are called l-values. An l-value can denote either a location or the value the location contains, depending on the context.

A literal is part of a Nim program that specifies an atomic part of a computation that is not a location, for example: the number 3 or the string

"abc" are literals. Literals cannot be modified, a snippet like 12 = 4 (assign the value 4 to the value 12) is invalid.

A Nim program consists of one or more text source files containing Nim code.

A Nim processor is a tool that can analyze and optionally transform Nim programs. One type of processor is called a compiler. A Nim compiler transforms Nim code into a format suitable for execution on a particular target machine.

These definitions were inspired by the specification ("report")

 of Modula 3. The term l-value was taken from the specifications of C and C++.

47

48

Chapter 12. Lexical analysis

 Lexical analysis describes how letters and other characters form the “words”

of a programming language in general. These “words” are technically called tokens and the rest of the compiler’s transformation pipeline works on tokens and not on single characters. The transformation pipeline is usually called phases of translation.

A Nim compiler uses the following phases of translation:

1. Lexing: Turn a stream of characters into a stream of tokens.

2. Parsing: Turn a stream of tokens into an abstract syntax tree (AST).

3. Semantic analysis: Turn an AST to an annotated AST. The annotations are primarily type annotations as Nim is a statically typed language every

expression needs to have a type.

This chapter describes in detail the first phase, lexing.

12.1. Notation used in this chapter

The language constructs are explained using an extended Backus–Naur form (EBNF), in which a* means 0 or more a's, a+ means 1 or more a's, and a?

means an optional a (either no a or one a). Parentheses may be used to group elements.

& is the lookahead operator; &a means that an a is expected but not consumed.

The |, / symbols are used to mark alternatives and have the lowest

precedence. / is the ordered choice that requires the parser to try the

alternatives in the given order. / is often used to ensure that the grammar is not ambiguous.

49

Non-terminals start with a lowercase letter, abstract terminal symbols are in UPPERCASE. Verbatim terminal symbols (including keywords) are quoted

with '. An example:

ifStmt = 'if' expr ':' stmts ('elif' expr ':' stmts)* ('else' stmts)?

The binary ^* operator is used as a shorthand for 0 or more occurrences

separated by its second argument; likewise ^`` means 1 or more occurrences:

`à ^ b is short for a (b a)* and a ^* b is short for (a (b a)*)?. For example: arrayConstructor = '[' expr ^* ',' ']'

A Nim program consists of one or more text source files containing Nim code.

The text has to be encoded in UTF-8. Nim’s grammar is not defined directly on the Unicode input text. Instead, it is defined on a list of separate, non-overlapping tokens. A token can be classified to be one of the following:

• A comment.

• An identifier.

• A keyword like if or type.

• A (character, string, integer, floating-point number) literal.

• An operator.

• A delimiter like (, ,,). (It covers the semicolon, the comma and the

different types of brackets.)

12.2. Indentation

Nim’s standard grammar describes an indentation sensitive language. This means that all the control structures are recognized by indentation.

Indentation consists only of spaces; tabulators are not allowed.

The "use tabs for indentation, spaces for alignment" rule never works sufficiently well in larger code-bases and even if it does

 work, it adds yet another source of friction for developers.

Things are easier without such a rule. Since Nim uses an

indentation based syntax and only allows spaces, the source

code layout is portable across editors.

50

The indentation handling is implemented as follows: The lexer annotates the following token with the preceding number of spaces; indentation is not a separate token. This trick allows parsing of Nim with only one token of

lookahead.

The parser uses a stack of indentation levels: the stack consists of integers counting the spaces. The indentation information is queried at strategic places in the parser but ignored otherwise: The pseudo-terminal IND{>}

denotes an indentation that consists of more spaces than the entry at the top of the stack; IND{=} an indentation that has the same number of spaces. DED is another pseudo-terminal that describes the action of popping a value from the stack, IND{>} then implies to push onto the stack.

With this notation we can now define the core of the grammar: A block of statements (simplified example):

ifStmt = 'if' expr ':' stmt

(IND{=} 'elif' expr ':' stmt)*

(IND{=} 'else' ':' stmt)?

simpleStmt = ifStmt / ...

stmt = IND{>} stmt ^+ IND{=} DED # list of statements

/ simpleStmt # or a simple statement

12.3. Comments

Comments start anywhere outside a string or character literal with the hash character (#). Comments consist of a concatenation of comment pieces. A comment piece starts with # and runs until the end of the line. The end of line characters belong to the piece. If the next line only consists of a comment piece with no other tokens between it and the preceding one, it does not start a new comment:

i = 0 # This is a single comment over multiple lines.

 # The scanner merges these pieces.

 # The same comment continues here.

 Documentation comments are comments that start with two hash characters (##). Documentation comments are tokens; they are only allowed at certain places in the input file as they belong to the syntax tree.

51

12.4. Multiline comments

A multiline comment starts with #[and ends with]#:

 #[Comment here that can

span

multiple lines.] #

Multiline comments can be nested:

 #[#[Multiline comment in already

commented out code.] #

proc p[T](x: T) = discard

] #

Multiline documentation comments exist and support nesting too:

proc foo =

 ##[Long documentation comment

here.

] ##

12.5. Identifiers & Keywords

Identifiers in Nim can be any string of letters, digits and underscores, with the following restrictions:

• It has to begin with a letter.

• It is not allowed to end with an underscore _.

• Two successive underscores __ are not allowed:

letter ::= 'A'..'Z' | 'a'..'z' | '\x80'..'\xff'

digit ::= '0'..'9'

IDENTIFIER ::= letter (['_'] (letter | digit))*

Unicode characters with an ordinal value higher than 127 (non-ASCII) can be either classified as a letter or as operator. The details of this classification are not covered here as they might still change in the future.

52

The following keywords are reserved and cannot be used as identifiers: addr and as asm

bind block break

case cast concept const continue converter

defer discard distinct div do

elif else end enum except export

finally for from func

if import in include interface is isnot iterator

let

macro method mixin mod

nil not notin

object of or out

proc ptr

raise ref return

shl shr static

template try tuple type

using

var

when while

xor

yield

Some keywords are currently unused; they are reserved for future

developments of the language.

12.6. Identifier equality

Two identifiers are considered equal if the following algorithm returns true: proc sameIdentifier(a, b: string): bool =

a[0] == b[0] and

a.replace("_" , "").toLowerAscii == b.replace("_" , "").toLowerAscii That means only the first letters are compared in a case-sensitive manner.

Other letters are compared case-insensitively within the ASCII range and underscores are ignored.

This rule also applies to keywords, meaning that notin is the same as notIn and not_in.

The eccentric rules with respect to identifier equality try to

 ensure more sensible naming practices where different things

have different names rather than only different spellings.

53

Compare const ROOT = root(Root) to const RootUser =

rootof(RootDir) to appreciate the benefits. Differences in

spelling cannot be pronounced easily; as soon as two or more

developers need to talk about their code-base the benefits of

clearly distinctive names become apparent.

12.7. String literals

Terminal symbol in the grammar: STR_LIT.

String literals can be delimited by matching double quotes, and can contain the following escape sequences :

 Table 1. Escape sequences for string literals

Escape sequence Meaning

\p

platform specific newline: CRLF on Windows, LF on

Unix

\r, \c

carriage return

\n, \l

line feed (often called newline)

\f

form feed

\t

tabulator

\v

vertical tabulator

\\

backslash

\"

quotation mark

\'

apostrophe

\'0'..'9'+

character with decimal value d; all decimal digits

directly following are used for the character

\a

alert

\b

backspace

\e

escape [ESC]

\xHH

character with hex value HH; exactly two hex digits are

allowed

54

Escape sequence Meaning

\uHHHH

unicode codepoint with hex value HHHH; exactly four

hex digits are allowed

\u{H+}

unicode codepoint; all hex digits enclosed in {} are used

for the codepoint

Strings in Nim may contain any 8-bit value, even embedded zeros.

12.8. Triple quoted string literals

Terminal symbol in the grammar: TRIPLESTR_LIT.

String literals can also be delimited by three double quotes """ … """. Literals in this form may run for several lines, may contain " and do not interpret any escape sequences. For convenience, when the opening """ is followed by a newline (there may be whitespace between the opening """ and the newline), the newline (and the preceding whitespace) is not included in the string. The ending of the string literal is defined by the pattern """[^"].

In other words, this:

 """"long string within quotes""""

Produces:

"long string within quotes"

12.9. Raw string literals

Terminal symbol in the grammar: RSTR_LIT.

There are also raw string literals that are preceded with the letter r (or R) and are delimited by matching double quotes (just like ordinary string literals) and do not interpret the escape sequences. This is especially convenient for regular expressions or Windows paths:

var f = openFile(r"C:\texts\text.txt") # a raw string, sò`\t`ìs no tab 55

To produce a single " within a raw string literal, it has to be doubled: r"a"" b"

Produces:

a"b

r"""" is not possible with this notation, because the three leading quotes introduce a triple quoted string literal. r""" is the same as """ since triple quoted string literals do not interpret escape sequences either.

12.10. Generalized raw string literals

Terminal symbols in the grammar: GENERALIZED_STR_LIT,

GENERALIZED_TRIPLESTR_LIT.

The construct identifier"string literal" (without whitespace between the identifier and the opening quotation mark) is a generalized raw string literal.

It is a shortcut for the construct identifier(r"string literal"), so it denotes a routine call with a raw string literal as its only argument. Generalized raw string literals are especially convenient for embedding mini languages

directly into Nim (for example regular expressions).

The construct identifier"""string literal""" exists too. It is a shortcut for identifier("""string literal""").

12.11. Character literals

Character literals are enclosed in single quotes '' and can contain the same escape sequences as strings - with one exception: the platform dependent newline (\p) is not allowed as it may be wider than one character (it can be the pair CR/LF). Here are the valid escape sequences for character literals: 56

 Table 2. Escape sequences for character literals

Escape sequence Meaning

\r, \c

carriage return

\n, \l

line feed

\f

form feed

\t

tabulator

\v

vertical tabulator

\\

backslash

\"

quotation mark

\'

apostrophe

\'0'..'9'+

character with decimal value d; all decimal digits

directly following are used for the character

\a

alert

\b

backspace

\e

escape [ESC]

\xHH

character with hex value HH; exactly two hex digits are

allowed

A char is not a Unicode character but a single byte.

A character literal that does not end in ' is interpreted as ' if there is a preceding backtick token. There must be no whitespace between the

preceding backtick token and the character literal. This special case ensures that a declaration like proc ’'customLiteral`(s: string) is valid. proc

’'customLiteral`(s: string) is the same as proc ’'\''customLiteral`(s:

string).

See also Section 12.12.1, “Custom Numeric Literals” .

57

12.12. Numeric Literals

Numeric literals have the form:

hexdigit = digit | 'A'..'F' | 'a'..'f'

octdigit = '0'..'7'

bindigit = '0'..'1'

unary_minus = '-' # See the section about unary minus

HEX_LIT = unary_minus? '0' ('x' | 'X') hexdigit (['_'] hexdigit)*

DEC_LIT = unary_minus? digit (['_'] digit)*

OCT_LIT = unary_minus? '0' 'o' octdigit (['_'] octdigit)*

BIN_LIT = unary_minus? '0' ('b' | 'B') bindigit (['_'] bindigit)*

INT_LIT = HEX_LIT

| DEC_LIT

| OCT_LIT

| BIN_LIT

INT8_LIT = INT_LIT ['\''] ('i' | 'I') '8'

INT16_LIT = INT_LIT ['\''] ('i' | 'I') '16'

INT32_LIT = INT_LIT ['\''] ('i' | 'I') '32'

INT64_LIT = INT_LIT ['\''] ('i' | 'I') '64'

UINT_LIT = INT_LIT ['\''] ('u' | 'U')

UINT8_LIT = INT_LIT ['\''] ('u' | 'U') '8'

UINT16_LIT = INT_LIT ['\''] ('u' | 'U') '16'

UINT32_LIT = INT_LIT ['\''] ('u' | 'U') '32'

UINT64_LIT = INT_LIT ['\''] ('u' | 'U') '64'

exponent = ('e' | 'E') ['+' | '-'] digit (['_'] digit)*

FLOAT_LIT = unary_minus? digit (['_'] digit)* (('.' digit (['_'] digit)*

[exponent]) |exponent)

FLOAT32_SUFFIX = ('f' | 'F') ['32']

FLOAT32_LIT = HEX_LIT '\'' FLOAT32_SUFFIX

| (FLOAT_LIT | DEC_LIT | OCT_LIT | BIN_LIT) ['\'']

FLOAT32_SUFFIX

FLOAT64_SUFFIX = (('f' | 'F') '64') | 'd' | 'D'

FLOAT64_LIT = HEX_LIT '\'' FLOAT64_SUFFIX

| (FLOAT_LIT | DEC_LIT | OCT_LIT | BIN_LIT) ['\'']

FLOAT64_SUFFIX

CUSTOM_NUMERIC_LIT = (FLOAT_LIT | INT_LIT) '\'' CUSTOM_NUMERIC_SUFFIX

CUSTOM_NUMERIC_SUFFIX is any Nim identifier that is not

a pre-defined type suffix.

As can be seen in the productions, numeric literals can contain underscores for readability. Integer and floating-point literals may be given in decimal (no 58

prefix), binary (prefix 0b), octal (prefix 0o), and hexadecimal (prefix 0x) notation.

The fact that the unary minus - in a number literal like -1 is considered to be part of the literal is a late addition to the language. The rationale is that an expression -128'i8 should be valid and without this special case, this would be impossible — 128 is not a valid int8 value, only -128 is.

For the unary_minus rule there are further restrictions that are not covered in the formal grammar. For - to be part of the number literal, its immediately preceding character has to be in the set {' ', '\t', '\n', '\r', ',', ';',

'(', '[', '{'}.

In the following examples, -1 is a single token:

echo -1

echo(-1)

echo [-1]

echo 3,-1

 "abc" ;-1

In the following examples, -1 is parsed as two separate tokens (as - and 1): echo x-1

echo (int)-1

echo [a]-1

 "abc" -1

The suffix starting with an apostrophe (') is called a type suffix. Literals without a type suffix are of an integer type unless the literal contains a dot or E|e in which case it is of type float. This integer type is int if the literal is in the range low(int32)..high(int32), otherwise it is int64. For notational convenience, the apostrophe of a type suffix is optional if it is not ambiguous (only hexadecimal floating-point literals with a type suffix can be

ambiguous).

59

The pre-defined type suffixes are:

 Table 3. Pre-defined type

 suffixes

Type

Resulting type of

Suffix

literal

'i8

int8

'i16

int16

'i32

int32

'i64

int64

'u

uint

'u8

uint8

'u16

uint16

'u32

uint32

'u64

uint64

'f

float32

'd

float64

'f32

float32

'f64

float64

Literals must match the datatype, for example, 333'i8 is an invalid literal.

Non-base-10 literals are used mainly for flags and bit pattern

representations, therefore the checking is done on bit width and not on value range. Hence: 0b10000000'u8 == 0x80'u8 == 128, but: 0b10000000'i8 ==

0x80'i8 == -1, instead of causing an overflow error.

12.12.1. Custom Numeric Literals

If the suffix is not predefined, then the suffix is assumed to be a call to a proc, template, macro or other callable identifier that is passed the string

containing the literal. The callable identifier needs to be declared with a special ' prefix:

60

import strutils

type u4 = distinct uint8 # a 4-bit unsigned integer aka "nibble"

proc `'u4`(n: string): u4 =

 # The leading ' is required.

result = (parseInt(n) and 0x0F).u4

var x = 5 'u4

More formally, a custom numeric literal 123'custom is transformed to

r"123".'custom in the parsing step. There is no AST node kind that corresponds to this transformation. The transformation naturally handles the case that additional parameters are passed to the callee:

import strutils

type u4 = distinct uint8 # a 4-bit unsigned integer aka "nibble"

proc `'u4`(n: string; moreData: int): u4 =

result = (parseInt(n) and 0x0F).u4

var x = 5 'u4(123)

Custom numeric literals are covered by the grammar rule named

CUSTOM_NUMERIC_LIT. A custom numeric literal is a single token.

12.13. Operators

Nim allows user-defined operators, in fact, Nim does not distinguish between user-defined and builtin operators. When one writes 1 + 2 it is a call to a plus operator ``(1, 2)`` which is subject to overload resolution. Thèsystem`

module is automatically imported in every Nim program and offers ``func

\``(a, b: int): int so the call will be resolved to system.`+`(1, 2).

An operator is any combination of the following characters:

= + - * / < >

@ $ ~ & % |

! ? ^ . : \

(The grammar uses the terminal OPR to refer to operator symbols as defined here.)

These keywords are also operators: and or not xor shl shr div mod in notin is isnot of as from.

61

., =, :, :: are not available as general operators; they are used for other notational purposes.

*: is as a special case treated as the two tokens * and : (to support var v*: T).

The not keyword is always a unary operator, a not b is parsed as a(not b), not as (a) not (b).

12.14. Other tokens

The following strings denote other tokens:

` () { } [] , ; [. .] {. .} (. .) [: The slice operator .. takes precedence over other tokens that contain a dot:

{..} are the three tokens: { and .. and }, and not the two tokens: {. and .}.

12.15. Unicode Operators

These Unicode operators are also parsed as operators:

∙ ∘ × ★ ⊗ ⊘ ⊙ ⊛ ⊠ ⊡ ∩ ∧ # same priority as * (multiplication)

± ⊕ ⊖ ⊞ ⊟ ∪ ∨ # same priority as + (addition)

Unicode operators can be combined with non-Unicode operator symbols. The usual precedence extensions then apply, for example, ×= is an assignment like operator just like *= is.

No Unicode normalization step is performed.

62

Chapter 13. Syntax

This chapter describes in detail the second phase of the translation process called parsing.

How the parser handles the indentation is described in Chapter 12, Lexical

 analysis.

Nim allows user-definable operators. Binary operators have 11 different

levels of precedence.

13.1. Associativity

Binary operators whose first character is ^ are right-associative, all other binary operators are left-associative.

proc `^/`(x, y: float): float =

 # a right-associative division operator

result = x / y

echo 12 ^/ 4 ^/ 8 # 24.0 (4 / 8 = 0.5, then 12 / 0.5 = 24.0)

echo 12 / 4 / 8 # 0.375 (12 / 4 = 3.0, then 3 / 8 = 0.375)

13.1.1. Precedence

Unary operators always bind stronger than any binary operator: $a + b is ($a) + b and not $(a + b).

If a unary operator’s first character is @, it is a sigil-like operator which binds stronger than a primarySuffix: @x.abc is parsed as (@x).abc whereas $x.abc is parsed as $(x.abc).

For binary operators that are not keywords, the precedence is determined by 63

the following rules:

Operators ending in either →, ~> or => are called arrow-like, and have the lowest precedence of all operators.

If the operator ends with = and its first character is none of <, >, !, =, ~, ?, it is an assignment operator which has the second-lowest precedence.

Otherwise, precedence is determined by the first character.

 Table 4. Precedence levels

Precedence

Operators

First

Terminal

level

character

symbol

10 (highest)

$ ^

OP10

9

* / div mod shl shr %

* % \ /

OP9

8

+ -

+ - ~ |

OP8

7

&

&

OP7

6

..

.

OP6

5

== <= < >= > != in notin is = < > !

OP5

isnot not of as from

4

and

OP4

3

or xor

OP3

2

@ : ?

OP2

1

 assignment operator (like +=,

OP1

*=)

0 (lowest)

 arrow-like operator (like ->,

OP0

=>)

Whether an operator is used as a prefix operator is also affected by

preceding whitespace:

echo $foo

 # is parsed as

echo($foo)

64

Spacing also determines whether (a, b) is parsed as an

argument list of a call or whether it is parsed as a tuple

constructor:



echo(1, 2) # pass 1 and 2 to echo

echo (1, 2) # pass the tuple (1, 2) to echo

13.2. Dot-like operators

Terminal symbol in the grammar: DOTLIKEOP.

 Dot-like operators are operators starting with ., but not with .., for example

.?. Dot-like operators have the same precedence as ., so that a.?b.c is parsed as (a.?b).c instead of a.?(b.c).

The rules of operator precedence were designed to be as

“intuitive” as possible and so that you can avoid many

parenthesis in practice. However, you are not supposed to

 learn the rules by heart, if in doubt use parenthesis explicitly:

(a and b) or c # is more readable than

a and b or c

Other syntax rules are described in the following sections along the

semantics of described construct like an if statement. The complete and

formal grammar can found in Appendix A, Grammar.

65

66

Chapter 14. Declarations and scope rules

An identifier is a symbol declared as a name for a variable, type, procedure, etc. The region of the program over which a declaration applies is called the scope of the declaration. Scopes can be nested. The meaning of an identifier is determined by the smallest enclosing scope in which the identifier is declared unless overloading resolution rules suggest otherwise.

Symbols in Nim can be one of the following kind:

• proc, func, iterator, converter, template, macro, method: These are called routines. Routines can be called and perform computations.

• var: A variable that can be re-assigned.

• let: A variable that cannot be re-assigned.

• const: A symbol bound to a constant value. The value must be

computable at compile-time.

• type: A name for a type.

• parameter: A name for a routine’s formal parameter.

• result: A variable that represents a routine’s return value.

• enum field: A value that belongs to an enum type.

• object field: A field inside an object declaration.

Symbols of kind “routine” or “enum field” can be overloaded. Multiple entries of an overloaded symbol can be accessible in a single scope. Overload resolution determines how these entries are resolved, ambiguous symbols produce a compile-time error. Non-overloaded symbols must be uniquely

declared within a scope. Some examples:

67

block: # introduces a new scope

var x = 0 # valid

let x = "abc" # invalid as an 'x' was already declared echo x # invalid: access of 'x' outside of its scope

proc p(x: int) = echo "int"

proc p(x: string) = echo "string" # valid, `pìs overloaded p "abc" # valid invocation; overload resolution picks `proc p(x: string)`

Overloaded symbols can be accessed even though the symbols might be

shadowed by a non-overloadable symbol:

proc len[T](a: openArray[T]): int = 1 #1

proc len(a: string): int = 2 #2

proc main =

let len = 3 # local variable 'len' shadows #1 and #2

echo len("xyz") # yet overload resolution selects #2 regardless Only certain syntactic contexts such as routine calls trigger overload resolution. In other contexts overload disambiguation is performed. The corresponding sections Chapter 19, Overload resolution and Section 19.4,

“Overload disambiguation” contain the details.

68

Chapter 15. Modules

A Nim program can be split into different pieces called modules. Each module needs to be in its own file and has its own scope. Modules enable information hiding and separate compilation. A module may gain access to symbols of another module by the import statement. Recursive module dependencies are allowed, but are slightly subtle. Only top-level symbols that are marked with an asterisk (*) are exported. A valid module name can only be a valid Nim identifier (and thus its filename is identifier.nim).

15.1. Export marker

If a declared symbol is marked with an asterisk (*) it is exported from the current module:

proc exportedEcho*(s: string) = echo s

proc `*`*(a: string; b: int): string =

result = newStringOfCap(a.len * b)

for i in 1..b: result.add a

var exportedVar*: int

const exportedConst* = 78

type

ExportedType* = object

exportedField*: int

15.2. Module processing

The algorithm for compiling modules is:

• Compile the whole module as usual, following import statements

recursively.

69

• If there is a cycle, only import the already parsed symbols (that are exported); unknown identifiers cause a compile-time error.

This is best illustrated by an example:

 # Module A

type

T1* = int # Module A exports the typèT1`

import B # the compiler starts parsing B

proc main() =

var i = p(3) # works because B was parsed completely here

main()

 # Module B

import A # A is not parsed here! Only the already known symbols

 # of A are imported.

proc p*(x: A.T1): A.T1 =

 # this works because T1 has already been

 # added to A's interface symbol table

result = x + 1

15.3. Import statement

After the import statement, a list of module names can follow or a single module name followed by an except list to prevent some symbols from being imported:

import std/strutils except `%`, toUpperAscii

 # doesn't work then:

echo " $1 " % "abc" .toUpperAscii It is not checked that the except list is really exported from the module. This feature allows us to compile against an older version of the module that does not export these identifiers.

An import statement must be a top level statement, but it can be used within a when statement:

70

when defined(posix):

import posix

else:

import windows

15.4. Include statement

The include statement inserts the contents of a Nim source code file at the position where the include statement is placed. Note that include is

fundamentally different from import.

The include statement is useful to split up a large module into several files: include fileA, fileB, fileC

The include statement can be used outside of the top level, as such:

 # Module A

echo "Hello World!"

 # Module B

proc main() =

include A

main() # => Hello World!

15.5. Module names in imports

A module alias can be introduced via the as keyword:

import std/strutils as su, std/sequtils as qu

echo su.format(" $1 " , "lalelu") The original module name is then not accessible. The notations

path/to/module or "path/to/module" can be used to refer to a module in subdirectories:

import lib/pure/os, "lib/pure/times"

71

Note that the module name is still strutils and not lib/pure/strutils and so one cannot do:

import lib/pure/strutils

echo lib/pure/strutils.toUpperAscii("abc")

Likewise, the following is invalid as the name is strutils already:

import lib/pure/strutils as strutils

15.6. Collective imports from a directory

The syntax import dir / [moduleA, moduleB] can be used to import multiple modules from the same directory.

Path names are syntactically either Nim identifiers or string literals. If the path name is not a valid Nim identifier it needs to be a string literal: import "gfx/3d/somemodule" # in quotes because '3d' is not a valid Nim identifier

15.7. Pseudo import/include paths

A directory can also be a so-called “pseudo directory”. They can be used to avoid ambiguity when there are multiple modules with the same path.

There are two pseudo directories:

1. std: The std pseudo directory is the abstract location of Nim’s standard library. For example, the syntax import std / strutils is used to

unambiguously refer to the standard library’s strutils module.

2. pkg: The pkg pseudo directory is used to unambiguously refer to a Nimble package. However, for technical details that lie outside the scope of this document, its semantics are: Use the search path to look for module name but ignore the standard library locations. In other words, it is the opposite of std.

72

15.8. From import statement

After the from statement, a module name follows followed by an import to list the symbols one likes to use without explicit full qualification:

from std/strutils import `%ècho " $1 " % "abc"

 # always possible: full qualification:

echo strutils.replace("abc" , "a" , "z") It’s also possible to use from module import nil if one wants to import the module but wants to enforce fully qualified access to every symbol in module.

15.9. Export statement

An export statement can be used for symbol forwarding so that client

modules don’t need to import a module’s dependencies:

 # module B

type MyObject* = object

 # module A

import B

export B.MyObject

proc `$`*(x: MyObject): string = "my object"

 # module C

import A

 # B.MyObject was imported implicitly here:

var x: MyObject

echo $x

When the exported symbol is another module, all of its definitions will be forwarded. One can use an except list to exclude some of the symbols.

Notice that when exporting, one needs to specify only the module name:

73

import foo/bar/baz

export baz

15.10. Scope rules

Identifiers are valid from the point of their declaration until the end of the block in which the declaration occurred. The range where the identifier is known is the scope of the identifier. The exact scope of an identifier depends on the way it was declared.

15.10.1. Block scope

The scope of a variable declared in the declaration part of a block is valid from the point of declaration until the end of the block. If a block contains a second block, in which the identifier is re-declared, then inside this block, the second declaration will be valid. Upon leaving the inner block, the first declaration is valid again. An identifier cannot be redefined in the same block, except if valid for overloading purposes.

15.10.2. Tuple or object scope

The field identifiers inside a tuple or object definition are valid in the following places:

• To the end of the tuple/object definition.

• Field designators of a variable of the given tuple/object type.

• In all descendant types of the object type.

15.10.3. Module scope

All identifiers of a module are valid from the point of declaration until the end of the module. Identifiers from indirectly dependent modules are not available. The system module is automatically imported in every module.

If a module imports an identifier by two different modules, each occurrence of the identifier has to be qualified unless it is an overloaded procedure or iterator in which case the overloading resolution takes place:

74

 # Module A

var x*: string

 # Module B

var x*: int

 # Module C

import A, B

write(stdout, x) # error: x is ambiguous

write(stdout, A.x) # no error: qualifier used

var x = 4

write(stdout, x) # not ambiguous: uses the module C's x

75

76

Chapter 16. Type system

All expressions have a type that is known during semantic analysis. Nim is statically typed. One can declare new types, which is, in essence, defining an identifier that can be used to denote this custom type.

These are the major type classes:

• ordinal types: consist of integer, bool, character, enumeration (and

subranges thereof) types

• floating-point types

• string type

• structured types

• reference (pointer) type

• procedural type

• generic type

16.1. Ordinal types

Ordinal types have the following characteristics:

• Ordinal types are countable and ordered. This property allows the

operation of functions such as inc, ord, and dec on ordinal types to be

defined.

• Ordinal types have a smallest possible value, accessible with low(type).

Trying to count further down than the smallest value produces a panic

or a static error.

• Ordinal types have a largest possible value, accessible with high(type).

Trying to count further up than the largest value produces a panic or a

77

static error.

Integers, bool, characters, and enumeration types (and subranges of these types) belong to ordinal types.

A distinct type is an ordinal type if its base type is an ordinal type.

16.2. Pre-defined integer types

These integer types are pre-defined:

int

The generic signed integer type; its size is platform-dependent and has

the same size as a pointer. This type should be used in general. An integer literal that has no type suffix is of this type if it is in the range

low(int32)..high(int32) otherwise the literal’s type is int64.

intN

Additional signed integer types of N bits use this naming scheme

(example: int16 is a 16-bit wide integer). The current implementation

supports int8, int16, int32, int64. Literals of these types have the suffix

'iN.

uint

The generic unsigned integer type; its size is platform-dependent and has the same size as a pointer. An integer literal with the type suffix 'u is of this type.

uintN

Additional unsigned integer types of N bits use this naming scheme

(example: uint16ìs a 16-bit wide unsigned integer). The current

implementation supports uint8, uint16, uint32, uint64. Literals of these types have the suffix 'uN. Unsigned operations all wrap around; they

cannot lead to over- or underflow errors.

 Automatic type conversions are performed in expressions where different kinds of integer types are used: the smaller type is converted to the larger.

A narrowing type conversion converts a larger to a smaller type (for example int32 → int16). A widening type conversion converts a smaller type to a larger type (for example int16 → int32). In Nim only widening type conversions are 78

 implicit:

var myInt16 = 5'i16

var myInt: int

echo myInt16 + 34'i8 # of type ìnt16`

echo myInt16 + myInt # of type ìnt`

echo myInt16 + 2'i32 # of type ìnt32`

For further details, see Section 17.3, “Convertible relation” .

 Table 5. Integer operations

Operation

Meaning

+

Integer addition

-

Integer subtraction

*

Integer multiplication

inc

Increment an integer / an ordinal type

dec

Decrement an integer / an ordinal type

div

Integer division

mod

Integer modulo (remainder)

shl

Shift left

shr

Shift right

ashr

Arithmetic shift right

and

Bitwise and

or

Bitwise or

xor

Bitwise xor

not

Bitwise not (complement)

16.3. Integer literals

int literals are implicitly convertible to a smaller integer type if the literal’s value fits this smaller type and such a conversion is less expensive than other implicit conversions, so myInt16 + 34 produces an int16 result.

79

16.4. Subrange types

A subrange type is a range of values from an ordinal or floating-point type (the base type). To define a subrange type, one must specify its limiting values — the lowest and highest value of the type. For example:

type

Subrange = range[0..5]

PositiveFloat = range[0.0..Inf]

Positive* = range[1..high(int)] # as defined in `system`

Subrange is a subrange of an integer which can only hold the values 0 to 5.

PositiveFloat defines a subrange of all positive floating-point values. NaN

does not belong to any subrange of floating-point types. Assigning any other value to a variable of type Subrange is a panic (or a static error if it can be determined during semantic analysis). Assignments from the base type to

one of its subrange types (and vice versa) are allowed.

A subrange type has the same size as its base type (int in the Subrange

example).

16.5. Pre-defined floating-point types

The following floating-point types are pre-defined:

float

The generic floating-point type; its size used to be platform-dependent, but now it is always mapped to float64. This type should be used in

general.

floatN

Nim defines floating-point types of N bits using this naming scheme

(example: float64 is a 64-bit wide float). The current implementation

supports float32 and float64. Literals of these types have the suffix 'fN.

Automatic type conversion in expressions with different kinds of floating-point types is performed: See Section 17.3, “Convertible relation” for further details. Arithmetic performed on floating-point types follows the IEEE

standard. Integer types are not converted to floating-point types

automatically and vice versa.

80

The IEEE standard defines five types of floating-point exceptions:

• Invalid: operations with mathematically invalid operands, for example: 0.0/0.0, sqrt(-1.0), and log(-37.8).

• Division by zero: divisor is zero and dividend is a finite nonzero number, for example 1.0/0.0.

• Overflow: operation produces a result that exceeds the range of the

exponent, for example MAXDOUBLE+0.0000000000001e308.

• Underflow: operation produces a result that is too small to be

represented as a normal number, for example: MINDOUBLE * MINDOUBLE.

• Inexact: operation produces a result that cannot be represented with

infinite precision, for example: 2.0 / 3.0, log(1.1) and 0.1 in input.

The IEEE exceptions are either ignored during execution or mapped to the Nim exceptions: FloatInvalidOpDefect, FloatDivByZeroDefect,

FloatOverflowDefect, FloatUnderflowDefect, and FloatInexactDefect. These exceptions inherit from the FloatingPointDefect base class.

 Table 6. Float operations

Operation

Meaning

+

Float addition

-

Float subtraction

*

Float multiplication

/

Float division

16.5.1. Nan and Inf checks

The Nim compiler provides the pragmas nanChecks and infChecks to control whether the IEEE exceptions are ignored or trap a Nim exception:

{.nanChecks: on, infChecks: on.}

var a = 1.0

var b = 0.0

echo b / b # raises FloatInvalidOpDefect

echo a / b # raises FloatOverflowDefect

In the current implementation FloatDivByZeroDefect and FloatInexactDefect 81

are never raised. FloatOverflowDefect is raised instead of FloatDivByZeroDefect. There is also a floatChecks pragma that is a short-cut for the combination of nanChecks and infChecks pragmas. floatChecks are

turned off as default.

The only operations that are affected by the floatChecks pragma are the +, -,

*, / operators for floating-point types.

The Nim compiler uses the maximum precision available to evaluate

floating-point values during semantic analysis; this means expressions like 0.09'f32 + 0.01'f32 == 0.09'f64 + 0.01'f64 that are evaluating during

constant folding are true.

16.6. Boolean type

The boolean type is named bool in Nim and can be one of the two pre-defined values true and false. Conditions in while, if, elif, when statements need to be of type bool.

This condition holds:

ord(false) == 0 and ord(true) == 1

The operators not, and, or, xor, <, <=, >, >=, !=, == are defined for the bool type. The and and or operators perform short-cut evaluation. Example: while p != nil and p.name != "xyz" :

 # p.name is not evaluated if p == nil

p = p.next

The size of the bool type is one byte.

82

It can be a good idea to use a custom enum type instead of bool even if the enum has only two possible values. Compare:

proc deleteFile(f: string): bool

 To:

type

Status = enum

Failure,

Success

proc deleteFile(f: string): Status

16.7. Character type

The character type is named char in Nim. Its size is one byte. Thus it cannot represent a UTF-8 character, but a part of it.

The standard library offers a Rune type, that can represent any Unicode

character, in its unicode module.

16.8. Enumeration types

Enumeration types define a new type whose values consist of the ones

specified. The values are ordered. Example:

type

Direction = enum

north, east, south, west

assert ord(north) == 0

assert ord(east) == 1

assert ord(south) == 2

assert ord(west) == 3

 # Also allowed:

assert ord(Direction.west) == 3

The implied order is: north < east < south < west. The comparison operators can be used with enumeration types. Instead of north etc, the enum value can 83

also be qualified with the enum type that it resides in, Direction.north.

For better interfacing to other programming languages, the fields of enum types can be assigned an explicit ordinal value. However, the ordinal values have to be in ascending order. A field whose ordinal value is not explicitly given is assigned the value of the previous field + 1.

Idiomatic Nim code makes heavy use of enum types. If you use

an enum in a case statement, the compiler enforces that every

possible enum value is handled explicitly (unless an else

section is present). The value of thinking about every possible

case can hardly be overstated, it makes for more robust

 software that is easy to maintain: If a new state is added, all the

places in a codebase that need to be considered are listed by

the compiler’s error messages. This is far preferable to a more

object oriented approach where the dispatching is distributed

over multiple files and there is no enforcement if classes do

override a virtual method.

An explicit ordered enum can have holes:

type

TokenType = enum

a = 2, b = 4, c = 89 # holes are valid

However, it is then not ordinal anymore, so it is impossible to use these enums as an index type for arrays. The procedures inc, dec, succ and pred are not available for them either.

An enum value can be turned into its string representation via the built-in stringify operator $. The stringify’s result can be controlled by explicitly giving the string values to use:

type

MyEnum = enum

valueA = (0, "my value A"),

valueB = "value B" ,

valueC = 2,

valueD = (3, "abc")

As can be seen from the example, it is possible to both specify a field’s ordinal value and its string value by using a tuple. It is also possible to only 84

specify one of them.

An enum can be marked with the pure pragma so that its fields are added to a special module-specific hidden scope that is only queried as the last attempt.

Only non-ambiguous symbols are added to this scope. But one can always

access these via type qualification written as MyEnum.value:

type

MyEnum {.pure.} = enum

valueA, valueB, valueC, valueD, amb

OtherEnum {.pure.} = enum

valueX, valueY, valueZ, amb

echo valueA # MyEnum.valueA

echo amb # Error: Unclear whether it's MyEnum.amb or OtherEnum.amb echo MyEnum.amb # OK.

16.9. Overloadable enum field names

Enum field names are overloadable much like routines. When an overloaded enum field is used, it produces a closed sym choice construct, here written as (E|E). During overload resolution the right E is picked, if possible. For (array/object…) constructors the right E is picked, comparable to how

[byte(1), 2, 3] works, one needs to use [T.E, E2, E3]. Ambiguous enum

fields produce a static error:

type

E1 = enum

value1, value2

E2 = enum

value1, value2 = 4

const

lookupTable = [

E1.value1: "1" ,

value2: "2"]

proc p(e: E1) =

 # disambiguation in 'case' statements:

case e

of value1: echo "A"

of value2: echo "B"

85

16.10. String type

All string literals are of the type string. A string in Nim is very similar to a sequence of characters. However, strings in Nim are both zero-terminated and have a length field. One can retrieve the length with the builtin len procedure; the length never counts the terminating zero.

The terminating zero cannot be accessed unless the string is converted to the cstring type first. The terminating zero assures that this conversion can be done in O(1) and without any allocations.

The assignment operator for strings always copies the string. The & operator concatenates strings.

Most native Nim types support conversion to strings with the special $ proc.

When calling the echo proc, for example, the built-in stringify operation for the parameter is called:

echo 3 # calls `$` for ìnt`

Whenever a user creates a specialized object, implementation of this

procedure provides for string representation.

type

Person = object

name: string

age: int

proc `$`(p: Person): string = # `$àlways returns a string

result = p.name & " is " &

$p.age & # we _need_ thè$ìn front of p.age which

 # is natively an integer to convert it to

 # a string

 " years old."

While $p.name can also be used, the $ operation on a string does nothing. Note that we cannot rely on automatic conversion from an int to a string like we can for the echo proc.

Strings are compared by their lexicographical order. All comparison

operators are available. Strings can be indexed like arrays (lower bound is 0).

Unlike arrays, they can be used in case statements:

86

case paramStr(i)

of "-v" : incl(options, optVerbose)

of "-h" , "-?" : incl(options, optHelp) else: write(stdout, "invalid command line option! \n ") Per convention, all strings are UTF-8 strings, but this is not enforced. For example, when reading strings from binary files, they are merely a sequence of bytes. The index operation s[i] means the i-th char of s, not the i-th code point.

 In the modern programming world, strings are overused

heavily. Section 16.27, “Distinct type” contains further advice.

A reference with the most used operations on strings is available in the appendix, under Section B.2, “Strings”.

16.11. cstring type

The cstring type meaning compatible string is the native representation of a string for the compilation backend. For the C backend the cstring type

represents a pointer to a zero-terminated char array compatible with the type char* in ANSI C. Its primary purpose lies in easy interfacing with C. The index operation s[i] means the i-th char of s; however no bounds checking for cstring is performed making the index operation unsafe.

A Nim string is implicitly convertible to cstring for convenience. If a Nim string is passed to a C-style variadic proc, it is implicitly converted to cstring too:

proc printf(formatstr: cstring) {.importc: "printf" , varargs, header: "<stdio.h>" .}

printf("This works %s" , "as expected") Even though the conversion is implicit, it is not safe: The garbage collector does not consider a cstring to be a root and may collect the underlying

memory.

A $ proc is defined for cstrings that returns a string. Thus to get a Nim string from a cstring:

87

var str: string = "Hello!"

var cstr: cstring = str

var newstr: string = $cstr

16.12. Structured types

A variable of a structured type can hold multiple values at the same time.

Structured types can be nested to unlimited levels. Arrays, sequences, tuples, objects, and sets belong to the structured types.

16.13. Array and sequence types

Arrays are a homogeneous type, meaning that each element in the array has the same type. Arrays always have a fixed length specified as a constant expression (except for open arrays). They can be indexed by any ordinal

type. A parameter A may be an open array, in which case it is indexed by integers from 0 to len(A)-1. An array expression may be constructed by the array constructor []. The element type of this array expression is inferred from the type of the first element. All other elements need to be implicitly convertible to this type.

An array type can be defined using the array[size, T] syntax, or using

array[lo..hi, T] for arrays that start at an index other than zero.

Sequences are similar to arrays but of dynamic length which may change

during runtime (like strings). Sequences are implemented as growable

arrays, allocating pieces of memory as items are added. A sequence S is

always indexed by integers from 0 to len(S)-1 and its bounds are checked.

Sequences can be constructed by the array constructor [] in conjunction with the array to sequence operator @. Another way to allocate space for a

sequence is to call the built-in newSeq procedure.

A sequence may be passed to a parameter that is of type open array.

Example:

type

IntArray = array[0..5, int] # an array that is indexed with 0..5

IntSeq = seq[int] # a sequence of integers

var

x: IntArray

88

 y: IntSeq

x = [1, 2, 3, 4, 5, 6] # [] is the array constructor

y = @[1, 2, 3, 4, 5, 6] # the @ turns the array into a sequence

let z = [1.0, 2, 3, 4] # the type of z is array[0..3, float]

The lower bound of an array or sequence may be received by the built-in

proc low(), the higher bound by high(). The length may be received by len().

low() for a sequence or an open array always returns 0, as this is the first valid index. One can append elements to a sequence with the add() proc or the & operator, and remove (and get) the last element of a sequence with the pop() proc.

The notation x[i] can be used to access the i-th element of x.

Arrays accesses are bounds checked (statically or at runtime). These checks can be disabled via a pragma .push boundChecks:off.

An array constructor can have explicit indexes for readability:

type

Values = enum

valA, valB, valC

const

lookupTable = [

valA: "A" ,

valB: "B" ,

valC: "C"

]

If an index is left out, succ(lastIndex) is used as the index value:

type

Values = enum

valA, valB, valC, valD, valE

const

lookupTable = [

valA: "A" ,

 "B" ,

valC: "C" ,

 "D" , "e"

]

89

A reference with the most used operations on sequences is available in the appendix, under Section B.3, “Sequences” .

16.14. Open arrays

Often fixed size arrays turn out to be too inflexible; routines should be able to deal with arrays of different sizes. The openarray type allows this; it can only be used for parameters. Openarrays are always indexed with an int

starting at position 0. The len, low and high operations are available for open arrays too. Any array with a compatible base type can be passed to an

openarray parameter, the index type does not matter. In addition to arrays, sequences can also be passed to an open array parameter.

The openarray type cannot be nested: multidimensional openarrays are not supported because this is seldom needed and cannot be done efficiently.

proc testOpenArray(x: openArray[int]) = echo repr(x)

testOpenArray([1,2,3]) # array[]

testOpenArray(@[1,2,3]) # seq[]

16.15. Varargs

A varargs parameter is an openarray parameter that additionally allows to pass a variable number of arguments to a procedure. The compiler converts the list of arguments to an array implicitly:

proc myWriteLn(f: File, a: varargs[string]) =

for s in items(a):

write(f, s)

write(f, " \n ")

myWriteLn(stdout, "abc" , "def" , "xyz")

 # is transformed to:

myWriteLn(stdout, ["abc" , "def" , "xyz"]) This transformation is only done if the varargs parameter is the last

parameter in the procedure header. It is also possible to perform type

conversions in this context:

90

proc myWriteLn(f: File, a: varargs[string, `$`]) =

for s in items(a):

write(f, s)

write(f, " \n ")

myWriteLn(stdout, 123, "abc" , 4.0)

 # is transformed to:

myWriteLn(stdout, [$123, $ "def" , $4.0])

In this example $ is applied to any argument that is passed to the parameter a. (Note that $ applied to strings is a nop.)

Note that an explicit array constructor passed to a varargs parameter is not wrapped in another implicit array construction:

proc takeV[T](a: varargs[T]) = discard

takeV([123, 2, 1]) # takeV's T is "int", not "array of int"

varargs[typed] is treated specially: It matches a variable list of arguments of arbitrary type but always constructs an implicit array. This is required so that the builtin echo proc does what is expected:

proc echo*(x: varargs[typed, `$`]) {...}

echo @[1, 2, 3]

 # prints "@[1, 2, 3]" and not "123"

16.16. Unchecked arrays

The UncheckedArray[T] type is a special kind of array where its bounds are not checked. This is often useful to implement customized flexibly sized arrays.

Additionally, an unchecked array is translated into a C array of undetermined size:

type

MySeq = object

len, cap: int

data: UncheckedArray[int]

Produces roughly this C code:

91

 typedef struct {

NI len;

NI cap;

NI data[];

} MySeq;

The base type of the unchecked array may not contain any GC’ed memory

but this is currently not checked.

16.17. Tuples and object types

A variable of a tuple or object type is a heterogeneous storage container. A tuple or object defines various named fields of a type. A tuple also defines a lexicographic order of the fields. Tuples are meant to be heterogeneous storage types with few abstractions. The () syntax can be used to construct tuples. The order of the fields in the constructor must match the order of the tuple’s definition. Different tuple-types are equivalent if they specify the same fields of the same type in the same order. The names of the fields also have to be the same.

The assignment operator for tuples copies each component. The default

assignment operator for objects copies each component. Overloading of the assignment operator is described in Chapter 29, Lifetime-tracking hooks.

type

Person = tuple[name: string, age: int] # type representing a person:

 # it consists of a name and an

 age.

var person: Person

person = (name: "Peter" , age: 30)

assert person.name == "Peter"

 # the same, but less readable:

person = ("Peter" , 30)

assert person[0] == "Peter"

assert Person is (string, int)

assert (string, int) is Person

assert Person isnot tuple[other: string, age: int] # òtherìs a different identifier

A tuple with one unnamed field can be constructed with the parentheses and a trailing comma:

92

proc echoUnaryTuple(a: (int,)) =

echo a[0]

echoUnaryTuple (1,)

In fact, a trailing comma is allowed for every tuple construction.

The implementation aligns the fields for the best access performance. The alignment is compatible with the way a C compiler does it.

For consistency with object declarations, tuples in a type section can also be defined with indentation instead of []:

type

Person = tuple # type representing a person

name: string # a person consists of a name

age: Natural # and an age

Objects provide many features that tuples do not. Objects provide

inheritance and the ability to hide fields from other modules. Objects with inheritance enabled have information about their type at runtime so that the of operator can be used to determine the object’s type. The of operator is similar to the instanceof operator in Java.

type

Person = object of RootObj

name*: string # the * means that `nameìs accessible

 # from other modules

age: int # no * means that the field is hidden

Student = ref object of Person # a student is a person id: int # with an id field

var

student: Student

person: Person

assert(student of Student) # is true

assert(student of Person) # also true

Object fields that should be visible from outside the defining module have to be marked by *. In contrast to tuples, different object types are never

 equivalent, they are nominal types whereas tuples are structural. Objects that have no ancestor are implicitly final and thus have no hidden type

93

information. One can use the inheritable pragma to introduce new object roots apart from system.RootObj.

type

Person = object # example of a final object

name*: string

age: int

Student = ref object of Person # Error: inheritance only

 # works with non-final objects

id: int

16.18. fields and fieldPairs iterators

Nim’s system module provides iterators that can be used to iterate over every field of an object or a tuple. fieldPairs yields (key, val) pairs, fields only yields the fields' values:

proc `$`[T: object](x: T): string = ①

result = ""

for name, val in fieldPairs(x): ②

result.add name

result.add ": "

result.add $val ③

result.add " \n "

① Possible implementation for how to generically generate the string

representation of an object.

② Iterate over all fields of x.

③ Assume that the type of every field provides a $ operation.

These iterators do allow for field mutations:

proc fromJ[T: object](t: typedesc[T]; j: JsonNode): T = ①

result = T()

for name, loc in fieldPairs(result):

loc = fromJ(typeof(loc), j[name]) ②

① fromJ loads an object from a JSON tree named j.

② Store to result.<field>.

As outlined in the example, fieldPairs and fields can be used as a

94

foundation for a serialization library.

Both fieldPairs and fields can be used to iterate over two objects in tandem: proc `==`[T: object](x, y: T): bool = ①

for a, b in fields(x, y):

if not (a == b): return false ②

return true

① A possible implementation of an equality operator for two objects of the same type.

② Assuming that the type of every field provides a == operation.

16.19. Object construction

Objects can also be created with an object construction expression that has the syntax T(fieldA: valueA, fieldB: valueB, …) where T is an object type or a ref object type:

type

Student = object

name: string

age: int

PStudent = ref Student

var a1 = Student(name: "Anton" , age: 5)

var a2 = PStudent(name: "Anton" , age: 5)

 # this also works directly:

var a3 = (ref Student)(name: "Anton" , age: 5)

 # not all fields need to be mentioned,

 # and they can be mentioned out of order:

var a4 = Student(age: 5)

Note that, unlike tuples, objects require the field names along with their values. For a ref object type system.new is invoked implicitly.

16.20. Object variants

Object variants are tagged unions discriminated via an enumerated type

used for runtime type flexibility, mirroring the concepts of sum types and algebraic data types (ADTs) as found in other programming languages.

An example:

95

 # This is an example of how an abstract syntax tree could be modelled in Nim type

NodeKind = enum # the different node types

nkInt, # a leaf with an integer value

nkFloat, # a leaf with a float value

nkString, # a leaf with a string value

nkAdd, # an addition

nkSub, # a subtraction

nkIf # an if statement

Node = ref NodeObj

NodeObj = object

case kind: NodeKind # thèkind` field is the discriminator

of nkInt: intVal: int

of nkFloat: floatVal: float

of nkString: strVal: string

of nkAdd, nkSub:

leftOp, rightOp: Node

of nkIf:

condition, thenPart, elsePart: Node

 # create a new case object:

var n = Node(kind: nkIf, condition: nil)

 # accessing n.thenPart is valid because thènkIf` branch is active:

n.thenPart = Node(kind: nkFloat, floatVal: 2.0)

 # the following statement raises an `FieldDefectèxception, because

 # n.kind's value does not fit and thènkString` branch is not active: n.strVal = ""

 # invalid: would change the active object branch:

n.kind = nkInt

var x = Node(kind: nkAdd, leftOp: Node(kind: nkInt, intVal: 4),

rightOp: Node(kind: nkInt, intVal: 2))

 # valid: does not change the active object branch:

x.kind = nkSub

As can be seen from the example, an advantage to an object hierarchy is that no casting between different object types is needed. Yet, access to invalid object fields raises an exception.

The syntax of case in an object declaration follows closely the syntax of the case statement: The branches in a case section may be indented too.

In the example, the kind field is called the discriminator: For safety, its address cannot be taken and assignments to it are restricted: The new value must not lead to a change of the active object branch. Also, when the fields of 96

a particular branch are specified during object construction, the corresponding discriminator value must be specified as a constant

expression.

Instead of changing the active object branch, replace the old object in

memory with a new one completely:

var x = Node(kind: nkAdd, leftOp: Node(kind: nkInt, intVal: 4),

rightOp: Node(kind: nkInt, intVal: 2))

 # change the node's contents:

x[] = NodeObj(kind: nkString, strVal: "abc")

Starting with version 0.20 system.reset cannot be used anymore to support object branch changes as this never was completely memory safe.

As a special rule, the discriminator kind can also be bounded using a case statement. If possible values of the discriminator variable in a case statement branch are a subset of discriminator values for the selected object branch, the initialization is considered valid. This analysis only works for immutable discriminators of an ordinal type and disregards elif branches. For

discriminator values with a range type, the Nim compiler checks if the entire range of possible values for the discriminator value is valid for the chosen object branch.

A small example:

let unknownKind = nkSub

 # invalid: unsafe initialization because

 # the kind field is not statically known:

var y = Node(kind: unknownKind, strVal: "y")

var z = Node()

case unknownKind

of nkAdd, nkSub:

 # valid: possible values of this branch are a subset of the

 # nkAdd/nkSub object branch:

z = Node(kind: unknownKind, leftOp: Node(), rightOp: Node())

else:

echo "ignoring: " , unknownKind

 # also valid, since unknownKindBounded can only contain

 # the values nkAdd or nkSub

let unknownKindBounded = range[nkAdd..nkSub](unknownKind)

z = Node(kind: unknownKindBounded, leftOp: Node(), rightOp: Node())

97

16.21. cast uncheckedAssign

Via a {.cast(uncheckedAssign).} section some restrictions for case objects can be disabled:

type

TokenKind* = enum

strLit, intLit

Token = object

case kind*: TokenKind

of strLit:

s*: string

of intLit:

i*: int64

proc passToVar(x: var TokenKind) = discard

var t = Token(kind: strLit, s: "abc")

{. cast(uncheckedAssign).}:

 # inside the 'cast' section it is allowed to pass 't.kind'

 # to a 'var T' parameter:

passToVar(t.kind)

 # inside the 'cast' section it is allowed to set field 's' even though the

 # constructed 'kind' field has an unknown value:

t = Token(kind: t.kind, s: "abc")

 # inside the 'cast' section it is allowed to assign to the

 # 't.kind' field directly:

t.kind = intLit

16.22. Set type

The set type models the mathematical notion of a set. The set’s base type can only be an ordinal type of a certain size, namely:

• int8-int16

• uint8/byte-uint16

• char

• enum

or equivalent. For signed integers the set’s base type is defined to be in the 98

range 0 .. MaxSetElements-1 where MaxSetElements is currently always 2^16.

The reason is that sets are implemented as high performance bit vectors.

Attempting to declare a set with a larger type will result in an error:

var s: set[int64] # Error: set is too large

 Nim also offers hash sets (which you need to import with

import sets), which have no such restrictions.

Sets can be constructed via the set constructor: {} is the empty set. The empty set is type compatible with any concrete set type. The constructor can also be used to include elements (and ranges of elements):

type

CharSet = set[char]

var

x: CharSet

x = { 'a' .. 'z' , '0' .. '9' } # This constructs a set that contains the

 # letters from 'a' to 'z' and the digits

 # from '0' to '9'

These operations are supported by sets:

 Table 7. Set operations

Operation

Meaning

A + B

union of two sets

A * B

intersection of two sets

A - B

difference of two sets (A without B’s elements)

A == B

set equality

A <= B

subset relation (A is subset of B or equal to B)

A < B

strict subset relation (A is a proper subset of B)

e in A

set membership (A contains element e)

e notin A

A does not contain element e

contains(A, e)

A contains element e

card(A)

the cardinality of A (number of elements in A)

99

Operation

Meaning

incl(A, elem)

same as A = A + {elem}

excl(A, elem)

same as A = A - {elem}

16.22.1. Bit fields

Sets are often used to define a type for the flags of a procedure. This is a cleaner (and type safe) solution than defining integer constants that have to be or'ed together.

Enum, sets and casting can be used together as in:

type

MyFlag* {.size: sizeof(cint).} = enum

A

B

C

D

MyFlags = set[MyFlag]

proc toNum(f: MyFlags): int = cast[cint](f)

proc toFlags(v: int): MyFlags = cast[MyFlags](v)

assert toNum({}) == 0

assert toNum({A}) == 1

assert toNum({D}) == 8

assert toNum({A, C}) == 5

assert toFlags(0) == {}

assert toFlags(7) == {A, B, C}

Note how the set turns enum values into powers of 2.

If using enums and sets with C, use distinct cint.

For interoperability with C there is also the bitsize pragma.

16.23. Reference and pointer types

References (similar to pointers in other programming languages) are a way to introduce many-to-one relationships. This means different references can point to and modify the same location in memory (also called aliasing).

100

Nim distinguishes between traced and untraced references. Untraced references are also called pointers. Traced references point to objects of a garbage-collected heap, untraced references point to manually allocated

objects or objects somewhere else in memory. Thus untraced references are unsafe. However, for certain low-level operations (accessing the hardware) untraced references are unavoidable.

Traced references are declared with the ref keyword, untraced references are declared with the ptr keyword. In general, a ptr T is implicitly

convertible to the pointer type.

An empty subscript [] notation can be used to de-refer a reference, the addr procedure returns the address of an item. An address is always an untraced reference. Thus the usage of addr is an unsafe feature.

The . (access a tuple/object field operator) and [] (array/string/sequence index operator) operators perform implicit dereferencing operations for

reference types:

type

Node = ref NodeObj

NodeObj = object

le, ri: Node

data: int

var

n: Node

new(n)

n.data = 9

 # no need to write n[].data; in fact n[].data is highly discouraged!

In order to simplify structural type checking, recursive tuples are not valid:

 # invalid recursion

type MyTuple = tuple[a: ref MyTuple]

Likewise T = ref T is an invalid type.

As a syntactical extension, object types can be anonymous if declared in a type section via the ref object or ptr object notations. This feature is useful if an object should only gain reference semantics:

101

type

Node = ref object

le, ri: Node

data: int

To allocate a new traced object, the built-in procedure system.new can be used.

To deal with untraced memory, non-built-in procs like system.alloc,

system.dealloc and system.realloc can be used. But these procs are beyond the scope of this document.

16.24. Nil

If a reference points to nothing, it has the value nil. nil is the default value for all ref and ptr types.

Dereferencing nil is an unrecoverable fatal runtime error (and not a panic).

Apart from that, nil is a value like any other - it can be used in assignments and comparisons.

A successful dereferencing operation p[] implies that p is not nil. This can be exploited by the implementation to optimize code like:

p[].field = 3

if p != nil:

 # if p were nil, `p[]` would have caused a crash already,

 # so we know `pìs always not nil here.

action()

Into:

p[].field = 3

action()

 This is not comparable to C’s “undefined behavior” for

dereferencing NULL pointers.

102

16.25. Procedural type

A procedural type is internally a pointer to a procedure. nil is an allowed value for a variable of a procedural type.

Examples:

proc printItem(x: int) = ...

proc forEach(c: proc (x: int) {.cdecl.}) =

...

forEach(printItem) # this will NOT compile because

 # calling conventions differ

type

OnMouseMove = proc (x, y: int) {.closure.}

proc onMouseMove(mouseX, mouseY: int) =

 # has default calling convention

echo "x: " , mouseX, " y: " , mouseY

proc setOnMouseMove(mouseMoveEvent: OnMouseMove) = discard

 # ok, 'onMouseMove' has the default calling convention, which is compatible

 # to 'closure':

setOnMouseMove(onMouseMove)

16.26. Calling conventions

A subtle issue with procedural types is that the calling convention of the procedure influences the type compatibility: procedural types are only

compatible if they have the same calling convention. As a special extension, a procedure of the calling convention nimcall can be passed to a parameter that expects a proc of the calling convention closure.

The reference implementation supports these calling conventions: nimcall

is the default convention used for a Nim proc. It is the same as fastcall, but only for C compilers that support fastcall.

103

closure

is the default calling convention for a procedural type that lacks any pragma annotations. It indicates that the procedure has a hidden implicit parameter (an environment). Proc vars that have the calling convention closure take up two machine words: One for the proc pointer and another

one for the pointer to implicitly passed environment.

stdcall

This is the stdcall convention as specified by Microsoft. The generated C

procedure is declared with the __stdcall keyword.

cdecl

The cdecl convention means that a procedure shall use the same

convention as the C compiler. Under Windows the generated C procedure

is declared with the __cdecl keyword.

safecall

This is the safecall convention as specified by Microsoft. The generated C

procedure is declared with the _safecall keyword. The word _safe refers to the fact that all hardware registers shall be pushed to the hardware

stack.

inline

The inline convention means the caller should not call the procedure, but inline its code directly. Note that Nim does not inline, but leaves this to the C compiler; it generates __inline procedures. This is only a hint for a Nim implementation: it may completely ignore it and it may inline

procedures that are not marked as inline.

fastcall

Fastcall means different things to different C compilers. One gets

whatever the C __fastcall means.

thiscall

This is the thiscall calling convention as specified by Microsoft, used on C++ class member functions on the x86 architecture.

syscall

The syscall convention is the same as __syscall:c: in C. It is used for

interrupts.

104

noconv

The generated C code will not have any explicit calling convention and

thus use the C compiler’s default calling convention. This is needed

because Nim’s default calling convention for procedures is fastcall to

improve speed.

Most calling conventions exist only for the Windows 32-bit platform.

The default calling convention is nimcall, unless it is an inner proc (a proc inside of a proc). For an inner proc an analysis is performed whether it accesses its environment. If it does so, it has the calling convention closure, otherwise it has the calling convention nimcall.

16.27. Distinct type

A distinct type is a new type derived from a base type that is incompatible with its base type. In particular, it is an essential property of a distinct type that it does not imply a subtype relation between it and its base type. Explicit type conversions from a distinct type to its base type and vice versa are allowed.

In the modern programming world strings are overused heavily: The mere

fact that JSON, XML, SQL, regular expressions, file paths, etc. have a string representation does not imply that you should use string for these things!

Type safety is compromised when everything is a string. Instead you should use different types for different things. As a first step this usually means to use a distinct type. The following snippet was extracted from Nim’s standard library (db_common.nim):

type

SqlQuery* = distinct string

template sql*(query: string): SqlQuery =

SqlQuery(query)

iterator rows*(db: DbConn, query: SqlQuery,

args: varargs[string, `$`]): Row

 # usage:

for row in rows(sql"SELECT id FROM user WHERE name = ?" , "abc"): ...

 # impossible, prevented at compile-time:

for row in rows(sql"SELECT id FROM user WHERE name = ?" & "abc"): ... ①

105

① Since the SqlQuery is a distinct string there is no & operator for it available.

16.27.1. borrow annotation

A borrow annotation can be used in order to borrow an operation from a type T to its distinct T equivalent:

type

Id = distinct int

proc `==`(a, b: Id): bool {.borrow.}

 # Ids can be compared, but have no order sò<=ànd `<àre not borrowed.

16.28. Auto type

The auto type can only be used for return types and parameters. For return types it causes the inference of the type from the routine body:

proc returnsInt(): auto = 1984

For parameters it currently creates implicitly generic routines:

proc foo(a, b: auto) = discard

Is the same as:

proc foo[T1, T2](a: T1, b: T2) = discard

However, later versions of the language might change this to mean "infer the parameters' types from the body". Then the above foo would be rejected as the parameters' types can not be inferred from an empty discard statement.

Usage of auto is discouraged as it has few benefits over spelling

out the types explicitly and the severe downside that it makes

 the code harder to read. Currently Nim’s documentation

generator does not translate an auto return type to its inferred

type.

106

16.29. static[T]

static is a type modifier. A static parameter must be a constant expression: proc precompiledRegex(pattern: static string): RegEx =

var res {.global.} = re(pattern)

return res

precompiledRegex("/d+") # Replaces the call with a precompiled

 # regex, stored in a global variable

precompiledRegex(paramStr(1)) # Error, command-line options

 # are not constant expressions

For the purposes of code generation, all static params are treated as generic params - the proc will be compiled separately for each unique supplied value (or combination of values).

Static params can also appear in the signatures of generic types:

type

Matrix[M,N: static int; T: Number] = array[0..(M*N - 1), T]

 # Note how `Numberìs just a type constraint here, while

 # `static int` requires us to supply an int value

AffineTransform2D[T] = Matrix[3, 3, T]

AffineTransform3D[T] = Matrix[4, 4, T]

var m1: AffineTransform3D[float] # OK

var m2: AffineTransform2D[string] # Error, `stringìs not àNumber`

Please note that static T is just a syntactic convenience for the underlying generic type static[T]. The type param can be omitted to obtain the type class of all constant expressions. A more specific type class can be created by instantiating static with another type class.

One can force an expression to be evaluated at compile time as a constant expression by coercing it to a corresponding static type:

import std/math

echo static(fac(5)), " " , static[bool](16.isPowerOfTwo) 107

The Nim compiler should report any failure to evaluate the expression or a possible type mismatch error.

In future versions of the Nim programming language the static metatype

might not be required at all. It could delay the reporting of an error until the generic type is instantiated incorrectly:

type

Matrix[M, N, T] = array[0..(M*N - 1), T]

var a, b: int

var m: Matrix[a, b, int] # Error: the array size must be provided at compile-time.

16.30. typedesc[T]

In many contexts, Nim treats the names of types as regular values. These values exist only during the compilation phase, but since all values must have a type, typedesc is considered their special type.

typedesc acts as a generic type. For instance, the type of the symbol int is typedesc[int]. Just like with regular generic types, when the generic param is omitted, typedesc denotes the type class of all types. As a syntactic

convenience, one can also use typedesc as a modifier.

Procs featuring typedesc params are considered implicitly generic. They will be instantiated for each unique combination of supplied types, and within the body of the proc, the name of each param will refer to the bound

concrete type:

proc new(T: typedesc): ref T =

echo "allocating " , T.name

new(result)

var n = Node.new

var tree = new(BinaryTree[int])

When multiple type params are present, they will bind freely to different types. To force a bind-once behavior, one can use an explicit generic param: proc acceptOnlyTypePairs[T, U](A, B: typedesc[T]; C, D: typedesc[U]) 108

Once bound, type params can appear in the rest of the proc signature: template declareVariableWithType(T: typedesc, value: T) =

var x: T = value

declareVariableWithType int, 42

Overload resolution can be further influenced by constraining the set of types that will match the type param:

template maxval(T: typedesc[int]): int = high(int) template maxval(T: typedesc[float]): float = Inf

var i = int.maxval

var f = float.maxval

when false:

var s = string.maxval # error, maxval is not implemented for string 109

16.31. typeof

 typeof(x) can for historical reasons also be written as type(x)

but type(x) is discouraged.

One can obtain the type of a given expression by constructing a typeof value from it (in many other languages this is known as the typeof operator):

var x = 0

var y: typeof(x) # y has type int

If typeof is used to determine the result type of a routine call c(X) (where X

stands for a possibly empty list of arguments), the interpretation where c is an iterator is preferred over the other interpretations, but this behavior can be changed by passing typeOfProc as the second argument to typeof:

iterator split(s: string): string = discard

proc split(s: string): seq[string] = discard

 # since an iterator is the preferred interpretation, `y` has the type

 `string`:

assert typeof("a b c" .split) is string

assert typeof("a b c" .split, typeOfProc) is seq[string]

typedesc[T] provides a mechanism for inferring the return type which

cannot be overloaded. The interaction between typeof, overloading, iterators, typedesc[T] and generics allows for idioms that are not obvious to the casual user of the language. Here is an example showing how to map JSON data to a generic object type.

import std / json

proc fromJ[T: enum](t: typedesc[T]; j: JsonNode): T {.inline.} = T(j.getInt) ①

proc fromJ(t: typedesc[string]; j: JsonNode): string {.inline.} = j.getStr proc fromJ(t: typedesc[bool]; j: JsonNode): bool {.inline.} = j.getBool proc fromJ(t: typedesc[int]; j: JsonNode): int {.inline.} = int(j.getInt) proc fromJ(t: typedesc[float]; j: JsonNode): float {.inline.} = j.getFloat proc fromJ[T: seq](t: typedesc[T]; j: JsonNode): T = ②

result = newSeq[typeof(result[0])]()

assert j.kind == JArray

for elem in items(j):

result.add fromJ(typeof(result[0]), elem) ③

110

proc fromJ[T: object](t: typedesc[T]; j: JsonNode): T = ④

result = T()

assert j.kind == JObject

for name, loc in fieldPairs(result): ⑤

if j.hasKey(name):

loc = fromJ(typeof(loc), j[name]) ⑥

① The fromJ family of procs supports the loading of enums, int, bool, float, string from JSON.

② A seq can also be loaded from JSON.

③ Depending on the sequence element’s type call the correct overloaded

fromJ proc. typeof(result[0]) is passed to the typedesc[T] parameter

enabling static dispatching.

④ An object can also be loaded from JSON.

⑤ Iterate over every field of the object via fieldPairs.

⑥ fieldPairs allows for the mutation of the object that is iterated over so that loc = … can be read as result.<field> = ….

Note that this solution allows to load complex objects which have fields that themselves are objects or primitives or sequences thereof. The compiler will produce type specialized code with no runtime overhead because the

dispatching is resolved at compile-time.

111

112

Chapter 17. Type relations

The following section defines several relations on types that are needed to describe how the type checking is done in Nim.

17.1. Type equality

Nim uses structural type equivalence for most types. Only for objects,

enumerations and distinct types and for generic types name equivalence is used.

17.2. Subtype relation

If an object type B inherits from A, B is a subtype of A. For example: type

A = object of RootObj

B = object of A

 # B is a subtype of A.

This means an object of type B can be passed to routines that expect the type A.

This subtype relation is extended to the types var, ref, ptr. If B is a subtype of A and B and A are object types then:

• var A is a subtype of var B

• ref A is a subtype of ref B

• ptr A is a subtype of ptr B.

113

If the subtype relation exists among ref or ptr types they are assignment compatible; an object of a subtype can be assigned to a location that is of the supertype:

type

Shape = ref object of RootObj

Circle = ref object of Shape

var a: Shape = Circle() # Circle is a subtype of Shape and can be assigned to an l-value of type Shape.

The subtype relation does not extend from A and B to var ref A

and var ref B. Doing so would open a hole in the type system:

type

A = ref object of RootObj

B = ref object of A



field: string

proc init(a: var A) =

a = A()

var b = B()

b.init()

echo b.field # crash here? b now points to an A, not a B

17.3. Convertible relation

A type a is implicitly convertible to type b if and only if the following algorithm returns true:

proc isImplicitlyConvertible(a, b: PType): bool =

if isSubtype(a, b):

return true

if isIntLiteral(a):

return b in {int8, int16, int32, int64, int, uint, uint8, uint16, uint32, uint64, float32, float64}

case a.kind

of int: result = b in {int32, int64}

of int8: result = b in {int16, int32, int64, int}

of int16: result = b in {int32, int64, int}

of int32: result = b in {int64, int}

of uint: result = b in {uint32, uint64}

of uint8: result = b in {uint16, uint32, uint64}

of uint16: result = b in {uint32, uint64}

114

 of uint32: result = b in {uint64}

of float32: result = b in {float64}

of float64: result = b in {float32}

of seq:

result = b == openArray and typeEquals(a.baseType, b.baseType)

of array:

result = b == openArray and typeEquals(a.baseType, b.baseType)

if a.baseType == char and a.indexType.rangeA == 0:

result = b == cstring

of cstring, ptr:

result = b == pointer

of string:

result = b == cstring

of proc:

result = typeEquals(a, b) or compatibleParametersAndEffects(a, b) We used the predicate typeEquals(a, b) for the "type equality" property and the predicate isSubtype(a, b) for the "subtype relation".

compatibleParametersAndEffects(a, b) is currently not specified.

Implicit conversions are also performed for Nim’s range type constructor.

Let a0, b0 of type T.

Let A = range[a0..b0] be the argument’s type, F the formal parameter’s type.

Then an implicit conversion from A to F exists if a0 >= low(F) and b0 <=

high(F) and both T and F are signed integers or if both are unsigned integers.

A type a is explicitly convertible to type b if and only if the following algorithm returns true:

proc isIntegralType(t: PType): bool =

result = isOrdinal(t) or t.kind in {float, float32, float64}

proc isExplicitlyConvertible(a, b: PType): bool =

isImplicitlyConvertible(a, b) or

typeEquals(a, b) or

a == distinct and typeEquals(a.baseType, b) or

b == distinct and typeEquals(b.baseType, a) or

(isIntegralType(a) and isIntegralType(b)) or

isSubtype(a, b) or

isSubtype(b, a)

The convertible relation can be extended by a user-defined type converter.

115

converter toInt(x: char): int = result = ord(x) var

x: int

chr: char = 'a'

 # implicit conversion magic happens here

x = chr

echo x # => 97

 # one can use the explicit form too

x = chr.toInt

echo x # => 97

The type conversion T(a) is an L-value if a is an L-value and if a is of type T or a distinct type of T or if T is a distinct type of typeof(a).

17.4. Assignment compatibility

An expression b can be assigned to an expression a if and only if a is an l-value and isImplicitlyConvertible(b.typ, a.typ) holds.

116

Chapter 18. Constant expressions

In certain contexts, like array[E, T] type declarations, Nim requires the expression E to be constant. A constant expression is defined as follows: 1. Literals are constant expressions.

2. If a and b are constant expressions, so is a <binaryop> b and <unaryop> a.

<unaryop> can be:

• A type conversion that can be interpreted as a type annotation like

int(4), MyTuple((a, b, c)), ObjRef(nil).

• Unary minus system.- for the builtin types.

• Unary system.not for the builtin types.

• system.succ.

• system.pred.

<binaryop> can be:

• system.+, system.-, system.*, system.mod, system.div, system.shr,

system.shl, system.max, system.min.

The current Nim implementation goes much farther than this definition and considers any expression to be constant that it can evaluate at compile-time via its powerful virtual machine. For example, the standard library’s math module contains:

func createFactTable[N: static[int]]: array[N, int] = ①

result[0] = 1

for i in 1 ..< N:

result[i] = result[i - 1] * i

117

func fac*(n: int): int =

 ## Computes the factorial of a non-negative integer `n`.

runnableExamples:

doAssert fac(0) == 1

doAssert fac(4) == 24

doAssert fac(10) == 3628800

const factTable = ②

when sizeof(int) == 2:

createFactTable[5]()

elif sizeof(int) == 4:

createFactTable[13]()

else:

createFactTable[21]()

assert(n >= 0, $n & " must not be negative.")

assert(n < factTable.len, $n & " is too large to look up in the table") factTable[n] ③

① createFactTable computes a lookup table at compile-time.

② factTable is the lookup table. Its size depends on the size of the int type.

③ The fac implementation does not do any computation; instead the

factTable is queried for the precomputed result.

The mechanisms of compile-time evaluation are the foundation for Nim’s

macro system.

118

Chapter 19. Overload resolution

In a call p(args) the routine p that matches best is selected. If multiple routines match equally well, the ambiguity is reported during semantic

analysis.

Every arg in args needs to match. Let f be the formal parameter’s type and a the type of the argument. There are multiple different categories how an argument can match:

1. Exact match: a and f are of the same type.

2. Literal match: a is an integer literal of value v and f is a signed or unsigned integer type and v is in f's range. Or: a is a floating-point literal of value v and f is a floating-point type and v is in f's range.

3. Generic match: f is a generic type and a matches, for instance a is int and f is a generic (constrained) parameter type (like in [T] or [T: int|char]).

4. Subrange or subtype match: a is a range[T] and T matches f exactly. Or: a is a subtype of f.

5. Integral conversion match: a is convertible to f and f and a is some

integer or floating-point type.

6. Conversion match: a is convertible to f, possibly via a user defined

converter.

These matching categories have a priority: An exact match is better than a literal match and that is better than a generic match etc. In the following, count(p, m) counts the number of matches of the matching category m for the routine p.

A routine p matches better than a routine q if the following algorithm returns true:

119

for each matching category m in ["exact match", "literal match",

"generic match", "subtype match",

"integral match", "conversion match"]:

if count(p, m) > count(q, m): return true

elif count(p, m) == count(q, m):

discard "continue with next category m"

else:

return false

return "ambiguous"

Some examples:

proc takesInt(x: int) = echo "int"

proc takesInt[T](x: T) = echo "T"

proc takesInt(x: int16) = echo "int16"

takesInt(4) # "int"

var x: int32

takesInt(x) # "T"

var y: int16

takesInt(y) # "int16"

var z: range[0..4] = 0

takesInt(z) # "T"

If this algorithm returns “ambiguous” further disambiguation is performed: If the argument a matches both the parameter type f of p and g of q via a subtyping relation, the inheritance depth is taken into account:

type

A = object of RootObj

B = object of A

C = object of B

proc p(obj: A) =

echo "A"

proc p(obj: B) =

echo "B"

var c = C()

 # not ambiguous, calls 'B', not 'A' since B is a subtype of A

 # but not vice versa:

p(c)

proc pp(obj: A, obj2: B) = echo "A B"

proc pp(obj: B, obj2: A) = echo "B A"

120

 # but this is ambiguous:

pp(c, c)

Likewise, for generic matches, the most specialized generic type (that still matches) is preferred:

proc gen[T](x: ref ref T) = echo "ref ref T"

proc gen[T](x: ref T) = echo "ref T"

proc gen[T](x: T) = echo "T"

var ri: ref int

gen(ri) # "ref T"

Nim is based on overloading. Overloading is not just “syntactic

sugar”, it is essential for static polymorphism.

The follow example outlines how a family of procs called toJ

can be used to load arbitrarily typed data:

import std / json

proc toJ[T: enum](e: T): JsonNode = newJInt(ord e) ①

proc toJ(s: string): JsonNode {.inline.} = newJString(s) ②

proc toJ(b: bool): JsonNode {.inline.} = newJBool(b)

proc toJ(f: float): JsonNode {.inline.} = newJFloat(f)

proc toJ(i: int): JsonNode {.inline.} = newJInt(i)

proc toJ[T](s: seq[T]): JsonNode = ③

 result = newJArray()

for x in s:

result.add toJ(x) ④

proc toJ[T: object](obj: T): JsonNode = ⑤

result = newJObject()

for f, v in fieldPairs(obj): ⑥

result[f] = toJ(v) ⑦

① Enum values are mapped to JSON by using their ordinal

values.

② string, bool, float and int are mapped to their JSON

equivalents.

③ seq[T] is mapped to a JSON array.

④ Depending on the sequence element’s type call the correct

121

overloaded toJ proc.

⑤ An object can also be loaded from JSON.

⑥ Iterate over every field of the object via fieldPairs.

⑦ Call the overloaded toJ proc for every field v of obj.

19.1. Overloading based on 'var T'

If the formal parameter f is of type var T in addition to the ordinary type checking, the argument is checked to be an l-value. var T matches better than just T then.

proc sayHi(x: int): string =

 # matches a non-var int

result = $x

proc sayHi(x: var int): string =

 # matches a var int

result = $(x + 10)

proc sayHello(x: int) =

var m = x # a mutable version of x

echo sayHi(x) # matches the non-var version of sayHi

echo sayHi(m) # matches the var version of sayHi

sayHello(3) # 3

 # 13

19.2. Lazy type resolution for untyped

 An unresolved expression is an expression for which no symbol

lookups and no type checking was performed.

Since templates and macros participate in overloading resolution, it’s

essential to have a way to pass unresolved expressions to a template or

macro. This is what the meta-type untyped accomplishes:

template rem(x: untyped) = discard

rem unresolvedExpression(undeclaredIdentifier)

A parameter of type untyped always matches any argument (as long as there is any argument passed to it).

122

But one has to watch out because other overloads might trigger the argument’s resolution:

template rem(x: untyped) = discard

proc rem[T](x: T) = discard

 # undeclared identifier: 'unresolvedExpression'

rem unresolvedExpression(undeclaredIdentifier)

untyped and varargs[untyped] are the only meta-type that are lazy in this sense, the other meta-types typed and typedesc are not lazy.

19.3. Varargs matching

See Section 16.15, “Varargs” .

19.4. Overload disambiguation

For routine calls “overload resolution” is performed. There is a weaker form of overload resolution called overload disambiguation that is performed when an overloaded symbol is used in a context where there is additional type information available. Let p be an overloaded symbol. These contexts are:

• In a function call q(…, p, …) when the corresponding formal

parameter of q is a proc type. If q itself is overloaded then the cartesian product of every interpretation of q and p must be considered.

• In an object constructor Obj(…, field: p, …) when field is a proc type.

Analogous rules exist for array/set/tuple constructors.

• In a declaration like x: T = p when T is a proc type.

As usual, ambiguous matches produce a compile-time error.

123

124

Chapter 20. Statements and expressions

Nim uses the common statement/expression paradigm: Statements do not

produce a value, in contrast to expressions. However, some expressions are statements.

Statements are separated into simple statements and complex statements.

Simple statements are statements that cannot contain other statements like assignments, calls, or the return statement; complex statements can contain other statements. To avoid the dangling else problem, complex statements always have to be indented. The details can be found in the grammar.

20.1. Statement list expression

Statements can also occur in an expression context that looks like (stmt1; stmt2; …; ex). This is called a statement list expression or (;). The type of (stmt1; stmt2; …; ex) is the type of ex. All the other statements must be of type void. (One can use discard to produce a void type.) (;) does not

introduce a new scope.

20.2. Discard statement

Example:

proc p(x, y: int): int =

result = x + y

discard p(3, 4) # discard the return value of `p`

The discard statement evaluates its expression for side-effects and throws the expression’s resulting value away, and should only be used when ignoring this value is known not to cause problems.

125

Ignoring the return value of a routine without using a discard statement is a static error.

The return value can be ignored implicitly if the called routine has been declared with the discardable pragma:

proc p(x, y: int): int {.discardable.} =

result = x + y

p(3, 4) # now valid

An empty discard statement is often used as a null statement:

proc classify(s: string) =

case s[0]

of SymChars, '_' : echo "an identifier"

of '0' .. '9' : echo "a number"

else: discard

The discardable pragma is not available for templates or

macros. This is a consequence of the fact that templates and

 macros are expanded directly at their call sites: The expanded

expression does not contain the information that it was

discardable.

20.3. Void context

In a list of statements, every expression except the last one needs to have the type void. In addition to this rule an assignment to the builtin result symbol also triggers a mandatory void context for the subsequent expressions:

proc invalid*(): string =

result = "foo"

 "invalid" # Error: value of type 'string' has to be discarded proc valid*(): string =

let x = 317

 "valid"

126

20.4. Var statement

Var statements declare new local and global variables and initialize them. A comma-separated list of variables can be used to specify variables of the same type:

var

a: int = 0

x, y, z: int

If an initializer is given, the type can be omitted: the variable is then of the same type as the initializing expression. Variables are always initialized with a default value if there is no initializing expression. The default value depends on the type and is always a zero in binary.

There is one exception from this rule: Assuming g() returns a var T type then the x of var x = g() is of type T. This can imply a copy operation:

proc `[]`(x: var Container[T]; i: int): var T

proc access(c: var Container[int]) =

var x = c[0] ①

x = 4 ②

echo c[0] ③

① Even though [] returns a var int x is of type int. The value of c[0] is copied into x.

② x is modified but c[0] is not.

③ c[0] is unmodified.

 Table 8. Default values

Type

default value

any integer type

0

any float

0.0

char

'\0'

bool

false

ref or pointer type

nil

127

Type

default value

procedural type

nil

sequence

@[]

string

""

tuple[x: A, y: B, …]

(default(A), default(B), …) (analogous for objects)

array[0…, T]

[default(T), …]

range[T]

default(T); this may be out of the valid range

T = enum

cast[T](0); this may be an invalid value

The implicit initialization can be avoided for optimization reasons with the noinit pragma:

var

a {.noInit.}: array[0..1023, char]

If a proc is annotated with the noinit pragma, this refers to its implicit result variable:

proc returnUndefinedValue: int {.noinit.} = discard

The implicit initialization can also be prevented by the requiresInit type pragma. With requiresInit an explicit initialization for an object and all of its fields is required. However, it does a form of control flow analysis to prove the variable was initialized:

type

MyObject = object {.requiresInit.}

proc use(x: MyObject) = discard

proc valid() =

var x: MyObject

if someCondition():

x = a()

else:

x = a()

 # valid: all paths set `x` before it is used:

use x

128

proc invalid() =

var x: MyObject

if someCondition():

x = a()

 # invalid: not all paths set `x` before it is used:

use x

The requiresInit pragma can be applied to object or distinct types.

20.5. Let statement

A let statement declares new local and global single assignment variables and binds a value to them. The syntax is the same as that of the var

statement, except that the keyword var is replaced by the keyword let. Let variables are not l-values and can thus not be passed to var parameters nor can their address be taken. They cannot be assigned new values.

For let variables, the same pragmas are available as for ordinary variables.

As let statements are immutable after creation they need to define a value when they are declared. The only exception to this rule is if the {.importc.}

pragma (or any of the other importX pragmas) is applied, in this case the value is expected to come from a foreign source, typically a C/C++ const.

20.6. Tuple unpacking

In a var or let statement tuple unpacking can be performed. The special identifier _ can be used to ignore some parts of the tuple:

proc returnsTuple(): (int, int, int) = (4, 2, 3) let (x, _, z) = returnsTuple()

129

20.7. Const statement

A const statement declares constants whose values are constant expressions: import std/[strutils]

const

roundPi = 3.1415

constEval = contains("abc" , 'b') # computed at compile time!

A constant is a constant expression.

See Chapter 18, Constant expressions for further details.

A good example for a more complex const is a lookup table:

const

LookupTable = {

 "one" : (1, false, "a"),

 "two" : (2, true, "b"),

 "three" : (3, false, "c")

}

There are restrictions on how these can be formed, however: The type ref cannot be part of a constant:

type

T = ref object

a, b: int

const

LookupTable = {

 "invalid" : T(a: 2, b: 3)

}

The reason for this is that Nim’s type system in general lacks constant

pointers, the data that a pointer points to is always mutable. Later versions of the language might provide such a facility.

20.8. Type section

New types in Nim are introduced within type section. A newly introduced

type can be one of:

130

1. Type aliases

type

NewNameForOldThing = int

IntArray = openArray[int]

2. Nominal types (every nominal type must be introduced via a type

section):

type

Sex = enum

Male, Female

Id = distinct string

Person = object

id: Id

name: string

sex: Sex

age: Natural

The nominal types are object, ref object, ptr object, distinct and enum.

3. Generic types:

type

KeyValuePair[A, B] = tuple[hcode: Hash, key: A, val: B]

KeyValuePairSeq[A, B] = seq[KeyValuePair[A, B]]

Table*[A, B] = object

data: KeyValuePairSeq[A, B]

counter: int

TableRef*[A, B] = ref Table[A, B]

131

Mutually recursive types have to be in the same type section, for example:

 # example demonstrating mutually recursive types

type

Node = ref object # a Node in a tree

le, ri: Node # left and right subtrees

sym: ref Sym # leaves contain a reference to a Sym

Sym = object # a symbol

name: string # the symbol's name

line: int # the line the symbol was declared in

code: Node # the symbol's abstract syntax tree

In summary:

• A type section begins with the type keyword.

• It contains multiple type definitions.

• A type definition binds a type to a name.

• Type definitions can be recursive or even mutually recursive.

• Mutually recursive types are only possible within a single type section.

• Nominal types like objects or enums can only be defined in a type section.

20.9. Static statement/expression

A static statement/expression explicitly requests compile-time execution.

Even code that has side effects is permitted in a static block:

static:

echo "echo at compile time"

There are limitations on what Nim code can be executed at compile time; the limitations change with every release of the Nim compiler and are beyond the scope of this book.

It is a static error if the Nim compiler cannot execute the block at compile time.

132

20.10. If statement

Example:

var name = readLine(stdin)

if name.endsWith('a'):

echo "What a nice name!"

elif name == "" :

echo "Don't you have a name?"

else:

echo "Boring name..."

The if statement is a simple way to make a branch in the control flow: The expression after the keyword if is evaluated, if it is true the corresponding statements after the : are executed. Otherwise the expression after the elif is evaluated (if there is an elif branch), if it is true the corresponding

statements after the : are executed. This goes on until the last elif. If all conditions fail, the else part is executed. If there is no else part, execution continues with the next statement.

In if statements, new scopes begin immediately after the if/elif/else

keywords and end after the corresponding then block.

For visualization purposes the scopes are enclosed in {| |} in the following example:

if {| (let m = input =~ re"(\w+)=\w+" ; m.isMatch): echo "key " , m[0], " value " , m[1] |}

elif {| (let m = input =~ re"" ; m.isMatch): echo "new m in this scope" |}

else: {|

echo "m not declared here" |}

133

20.11. Case statement

Example:

let line = readLine(stdin)

case line

of "delete-everything" , "restart-computer" : echo "permission denied"

of "go-for-a-walk" :

echo "please yourself"

elif line.len == 0:

echo "empty" # optional, must come after òf` branches else:

echo "unknown command" # ditto

 # indentation of the branches is also allowed; and so is an optional colon

 # after the selecting expression:

case readLine(stdin):

of "delete-everything" , "restart-computer" : echo "permission denied"

of "go-for-a-walk" :

echo "please yourself"

else:

echo "unknown command"

The case statement is similar to the if statement, but it represents a multi-branch selection. The expression after the keyword case is evaluated and if its value is in a slicelist the corresponding statements (after the of keyword) are executed. If the value is not in any given slicelist, trailing elif and else parts are executed using same semantics as for if statement, and elif is handled just like else: if. If there are no else or elif parts and not all possible values that expr can hold occur in a slicelist, a static error occurs.

This holds only for expressions of ordinal types. “All possible values” of expr are determined by expr's type. To suppress the static error an else: discard should be used.

For non-ordinal types, it is not possible to list every possible value and so these always require an else part. An exception to this rule is for the string type, which doesn’t require a trailing else or elif branch; it’s unspecified whether this will keep working in future versions.

Because case statements are checked for exhaustiveness during semantic

analysis, the value in every of branch must be a constant expression. This restriction also allows a Nim compiler to generate more performant code.

134

As a special semantic extension, an expression in an of branch of a case statement may evaluate to a set or array constructor; the set or array is then expanded into a list of its elements:

const

SymChars: set[char] = { 'a' .. 'z' , 'A' .. 'Z' , ' \x80 ' .. ' \xFF ' }

proc classify(s: string) =

case s[0]

of SymChars, '_' : echo "an identifier"

of '0' .. '9' : echo "a number"

else: echo "other"

 # is equivalent to:

proc classify(s: string) =

case s[0]

of 'a' .. 'z' , 'A' .. 'Z' , ' \x80 ' .. ' \xFF ' , '_' : echo "an identifier"

of '0' .. '9' : echo "a number"

else: echo "other"

20.12. When statement

Example:

when sizeof(int) == 2:

echo "running on a 16 bit system!"

elif sizeof(int) == 4:

echo "running on a 32 bit system!"

elif sizeof(int) == 8:

echo "running on a 64 bit system!"

else:

echo "cannot happen!"

The when statement is almost identical to the if statement with some

exceptions:

• Each condition (expr) has to be a constant expression (of type bool).

• The statements do not open a new scope.

• The statements that belong to the expression that evaluated to true are processed, the other statements are not checked for semantics! However,

each condition is checked for semantics.

The when statement enables conditional compilation techniques. The when

135

construct is also available within object definitions:

type

Option*[T] = object

 ## An optional type that may or may not contain a value of typèT`.

 ## When `Tìs a a pointer type (`ptr`, `pointer`, `refòr `proc`),

 ## `none(T)ìs represented as `nil`.

when T is SomePointer:

val: T

else:

val: T

has: bool

20.13. Return statement

Example:

return 40+2

The return statement ends the execution of the current routine. If there is a value to return, this is syntactic sugar for:

result = expr

return result

return without an expression is a short notation for return result if the routine has an implicit result variable.

The result variable is always the return value of the procedure.

The return statement raises a special return exception. break and return statements are defined in terms of raising an exception in order to specify their interactions with the exception handling statements. The return

exception is a pseudo-exception otherwise, it is ignored for Nim’s effect system.

136

20.14. Yield statement

Example:

yield (1, 2, 3)

The yield statement is used instead of the return statement in iterators. It is only valid in iterators. Execution is returned to the body of the for loop that called the iterator. Yield does not end the iteration process, but the execution is passed back to the iterator if the next iteration starts. See (Chapter 23,

 Iterators and the for statement) for further information.

20.15. Block statement

Example:

var found = false

block myblock:

for i in 0..3:

for j in 0..3:

if a[j][i] == 7:

found = true

break myblock # leave the block, in this case both for-loops

echo found

The block statement is a means to group statements to a (named) block.

Inside the block, the break statement is allowed to leave the block

immediately. A break statement can contain a name of a surrounding block to specify which block should be left.

20.16. Break statement

Example:

while cond:

break # leave thèwhilè loop

block symbol:

break symbol # leave the block named `symbol`

The break statement is used to leave a block immediately. If symbol is given, it 137

is the name of the enclosing block that is to be left. If it is absent, the innermost block is left. A break statement must be textually enclosed by a block, while or for statement.

The break statement raises a break exception. break and return statements are defined in terms of raising an exception in order to specify their interactions with the exception handling statements. The break exception is a pseudo-exception otherwise, it is ignored for Nim’s effect system.

20.17. While statement

Example:

echo "Please tell me your password:"

var pw = readLine(stdin)

while pw != "12345" :

echo "Wrong password! Next try:"

pw = readLine(stdin)

The while statement is executed until the condition evaluates to false. Endless loops are no error. while statements open an implicit block so that they can be left with a break statement.

20.18. Continue statement

A continue statement leads to the immediate next iteration of the

surrounding loop construct. It is only allowed within a loop. A continue statement is syntactic sugar for a nested block:

while expr1:

stmt1

continue

stmt2

Is equivalent to:

while expr1:

block myBlockName:

stmt1

break myBlockName

stmt2

138

20.19. Using statement

The using statement provides syntactic convenience in modules where the

same parameter names and types are used over and over. Instead of:

proc foo(c: Context; n: Node) = ...

proc bar(c: Context; n: Node, counter: int) = ...

proc baz(c: Context; n: Node) = ...

One can specify the convention that a parameter of name c should default to type Context, n should default to Node etc.:

using

c: Context

n: Node

counter: int

proc foo(c, n) = ...

proc bar(c, n, counter) = ...

proc baz(c, n) = ...

The using section uses the same indentation based grouping syntax as a var or let statements.

Note that using is not applied for template since the untyped template

parameters default to the type system.untyped.

Mixing parameters that should use the using declaration with parameters

that are explicitly typed is possible and requires a semicolon between them: proc mixedMode(c, n; x, y: int) =

 # 'c' is inferred to be of the type 'Context'

 # 'n' is inferred to be of the type 'Node'

 # But 'x' and 'y' are of type 'int'.

20.20. If expression

An if expression is almost like an if statement, but it is an expression which means that it produces a value. Example:

var y = if x > 8: 9 else: 10

139

An if expression always results in a value, so the else part is required. Elif parts are also allowed.

20.21. When expression

Just like an if expression there is a when expression available:

const

PathSep* = when defined(Windows): ' \\ '

else: '/'

20.22. Case expression

The case expression is again very similar to the case statement:

var favoriteFood =

case animal

of "dog" : "bones"

of "cat" : "mice"

elif animal. endsWith"whale" : "plankton"

else:

echo "I'm not sure what to serve, but everybody loves ice cream"

 "ice cream"

When multiple statements are given for a branch, the last expression as the result value is used.

The case expression does not produce an l-value, so the following example does not work:

type Foo = ref object

x: seq[string]

proc getX(x: Foo): var seq[string] =

case true

of true:

x.x # invalid: case does not produce an l-value

else:

x.x

var foo = Foo(x: @[])

foo.getX().add("asd")

140

Instead an explicit result or return has to be used:

proc getX(x: Foo): var seq[string] =

case true

of true:

result = x.x

else:

result = x.x

20.23. Block expression

A block expression is a block statement that produces a value. The evaluation of the block’s last expression produces this value.

Like in a block statement, the block keyword introduces a new scope.

For example:

let a = block:

var fib = @[0, 1] # `fibìs not accessible outside of thèblock`

for i in 0..10:

fib.add fib[^1] + fib[^2]

fib

20.24. Table constructor

A table constructor is syntactic sugar for an array constructor:

{ "key1" : "value1" , "key2" , "key3" : "value2" }

 # is the same as:

[("key1" , "value1"), ("key2" , "value2"), ("key3" , "value2")]

The empty table can be written {:} (in contrast to the empty set which is {}) which is thus another way to write the empty array constructor [].

This slightly unusual way of supporting tables has lots of advantages:

• The order of the (key,value)-pairs is preserved, thus it is easy to support ordered dicts with for example {key: val}.newOrderedTable.

• A table literal can be put into a readonly section and it requires a

141

minimal amount of memory.

• Every table implementation is treated equally syntactically.

• Apart from the minimal syntactic sugar, the language core does not need to contain more support for tables.

20.25. Type conversions

Syntactically a type conversion is like a routine call, but a type name replaces the routine name. A type conversion is always safe in the sense that a failure to convert a type to another results in an exception (if it cannot be

determined statically).

Ordinary procs are often preferred over type conversions in Nim: For

instance, $ is the toString operator by convention and toFloat and toInt can be used to convert from floating-point to integer or vice versa.

Type conversion can also be used to disambiguate overloaded routines:

proc p(x: int) = echo "int"

proc p(x: string) = echo "string"

let procVar = (proc(x: string))(p)

procVar("a")

Since operations on unsigned numbers wrap around and are unchecked so

are type conversions to unsigned integers and between unsigned integers.

Exception: Values that are converted to an unsigned type at compile time are checked so that code like byte(-1) does not compile.

20.26. Type casts

 Type casts are a crude mechanism to interpret the bit pattern of an expression to be of another type. Type casts are only needed for low-level programming and are inherently unsafe. A type cast is written as cast[T](x) where x is a value to be interpreted as to be of type T.

Example:

142

type

Obj = object

a: int32 # at offset 0

b: int32 # at offset 4

var obj: Obj

cast[ptr int32](cast[uint](addr obj) + 4)[] = 123

 # On most machine architectures this is a

 # convoluted, inherently weakly portable

 # way for doing:

obj.b = 123

20.27. The addr operator

The addr operator returns the address of an l-value. If the type of the location is T, the addr operator result is of the type ptr T. An address is always an untraced pointer. Taking the address of an object is unsafe, as the pointer may live longer than the object and can thus reference a non-existing object.

One can get the address of an l-value:

let t1 = "Hello"

var

t2 = t1

t3 : pointer = addr(t2)

echo repr(addr(t2))

 # --> ref 0x7fff6b71b670 --> 0x10bb81050"Hello"

echo cast[ptr string](t3)[]

 # --> Hello

20.28. The unsafeAddr operator

In some versions of Nim addr is not allowed to be performed on inherently immutable entities such as let variables, routine parameters or for loop variables. Instead of addr unsafeAddr can be used for these entities:

let myArray = [1, 2, 3]

foreignProcThatTakesAnAddr(unsafeAddr myArray)

Note however that the name is somewhat misleading as addr is an unsafe

operation too.

143

144

Chapter 21. Procedures

A routine is a symbol of kind: proc, func, method, iterator, macro, template, converter.

What most programming languages call methods or functions are called procedures in Nim. A procedure declaration consists of an identifier, zero or more formal parameters, a return value type and a block of code. Formal

parameters are declared as a list of identifiers separated by either comma or semicolon. A parameter is given a type by : typename. The type applies to all parameters immediately before it, until either the beginning of the

parameter list, a semicolon separator, or an already typed parameter, is reached. The semicolon can be used to make separation of types and

subsequent identifiers more distinct.

 # Using only commas

proc foo(a, b: int, c, d: bool): int

 # Using semicolon for visual distinction

proc foo(a, b: int; c, d: bool): int

 # Will fail: a is untyped since ';' stops type propagation.

proc foo(a; b: int; c, d: bool): int

A parameter may be declared with a default value which is used if the caller does not provide a value for the argument.

 # b is optional with 47 as its default value

proc foo(a: int, b: int = 47): int

Parameters can be declared as mutable and so allow the proc to modify the corresponding arguments, by using the type modifier var.

145

 # "returning" a value to the caller through the 2nd argument

 # Notice that the function uses no actual return value; its return type is

 `void`

proc foo(inp: int, outp: var int) =

outp = inp + 47

If the proc declaration has no body, it is a forward declaration. If the proc returns a value, the procedure body can access an implicitly declared

variable named result that represents the return value. Procs can be

overloaded. The overloading resolution algorithm determines which proc is the best match for the arguments. Example:

proc toLower(c: char): char = # toLower for characters if c in { 'A' .. 'Z' }:

result = chr(ord(c) + (ord('a') - ord('A')))

else:

result = c

proc toLower(s: string): string = # toLower for strings result = newString(len(s))

for i in 0..len(s) - 1:

result[i] = toLower(s[i]) # calls toLower for characters; no recursion!

Calling a procedure can be done in many different ways:

proc callme(x, y: int, s: string = "" , c: char, b: bool = false) = discard

 # call with positional arguments # parameter bindings:

callme(0, 1, "abc" , ' \t ' , true) # (x=0, y=1, s="abc", c='\t', b=true)

 # call with named and positional arguments:

callme(y=1, x=0, "abd" , ' \t ') # (x=0, y=1, s="abd", c='\t', b=false)

 # call with named arguments (order is not relevant):

callme(c= ' \t ' , y=1, x=0) # (x=0, y=1, s="", c='\t', b=false)

 # call as a command statement: no () needed:

callme 0, 1, "abc" , ' \t ' # (x=0, y=1, s="abc", c='\t', b=false) A procedure may call itself recursively.

 Operators are procedures with a special operator symbol as identifier: proc `$`(x: int): string =

 # converts an integer to a string; this is a prefix operator.

result = intToStr(x)

146

Operators with one parameter are prefix operators, operators with two parameters are infix operators. (However, the parser distinguishes these from the operator’s position within an expression.) There is no way to

declare postfix operators: all postfix operators are built-in and handled by the grammar explicitly.

Any operator can be called like an ordinary proc with the òpr\` notation.

(Thus an operator can have more than two parameters):

proc `*+`(a, b, c: int): int =

 # Multiply and add

result = a * b + c

assert `*+`(3, 4, 6) == `+`(`*`(a, b), c)

21.1. Method call syntax

The syntax obj.methodName(args) can be used instead of methodName(obj,

args). The parentheses can be omitted if there are no remaining arguments: obj.len (instead of len(obj)).

This method call syntax is not restricted to objects, it can be used to supply any type of first argument for routines:

echo "abc" .len # is the same as echo len "abc"

echo "abc" .toUpper()

echo { 'a' , 'b' , 'c' }.card

stdout.writeLine("Hallo") # the same as writeLine(stdout, "Hallo") Another way to look at the method call syntax is that it provides the missing postfix notation.

The method call syntax conflicts with explicit generic instantiations: p[T](x) cannot be written as x.p[T] because x.p[T] is always parsed as (x.p)[T].

See also: Section 27.17, “Method call syntax limitations”.

The [:] notation was designed to mitigate this issue: x.p[:T] is rewritten by the parser to p[T](x), x.p[:T](y) is rewritten to p[T](x, y). Note that [:] has no AST representation, the rewrite is performed directly in the parsing step.

147

21.2. Properties

Nim has no need for get-properties: Ordinary get-procedures that are called with the method call syntax achieve the same. But setting a value is different; for this we need a special setter syntax:

 # Module asocket

type

Socket* = ref object of RootObj

host: int # cannot be accessed from the outside of the module proc `host=`*(s: var Socket, value: int) {.inline.} =

 ## setter of hostAddr.

 ## This accesses the 'host' field and is not a recursive call to

 ## `host=` because the builtin dot access is preferred if it is

 ## available:

s.host = value

proc host*(s: Socket): int {.inline.} =

 ## getter of hostAddr

 ## This accesses the 'host' field and is not a recursive call to

 ## `host` because the builtin dot access is preferred if it is

 ## available:

s.host

 # module B

import asocket

var s: Socket

new s

s.host = 34 # same as `host=`(s, 34)

A proc defined as f= (with the trailing =) is called a setter. A setter can be called explicitly via the common back ticks notation:

proc `f=`(x: MyObject; value: string) =

discard

`f=`(myObject, "value")

f= can be called implicitly in the pattern x.f = value if and only if the type of x does not have a field named f or if f is not visible in the current module.

These rules ensure that object fields and accessors can have the same name.

Within the module x.f is then always interpreted as field access and outside the module it is interpreted as an accessor proc call.

148

21.3. Indexing

Array-like access properties (a[i]) are supported too as the [] subscript operator can be overloaded. To offer both read and write access no less than 3 versions have to be provided:

proc `[]`(x: Container; i: Index): ElementType

proc `[]`(x: var Container; i: Index): var ElementType proc `[]=`(x: Container; i: Index; newValue: ElementType)

For example:

type

Matrix* = object

 # Array for internal storage of elements.

data: ptr UncheckedArray[float]

 # Row and column dimensions.

m*, n*: int

proc `[]`*(m: Matrix, i, j: int): float {.inline.} =

 ## Get a single element.

m.data[i * m.n + j]

proc `[]`*(m: var Matrix, i, j: int): var float {.inline.} =

 ## Get a single element.

m.data[i * m.n + j]

proc `[]=`*(m: var Matrix, i, j: int, s: float) =

 ## Set a single element.

m.data[i * m.n + j] = s

21.4. Command invocation syntax

Routines can be invoked without the () if the call is syntactically a statement.

This command invocation syntax also works for expressions, but then only a single argument may follow. This restriction means echo f 1, f 2 is parsed as echo(f(1), f(2)) and not as echo(f(1, f(2))). The method call syntax may be used to provide one more argument in this case:

proc optarg(x: int, y: int = 0): int = x + y proc singlearg(x: int): int = 20*x

echo optarg 1, " " , singlearg 2 # prints "1 40"

149

let fail = optarg 1, optarg 8 # Wrong. Too many arguments for a command call

let x = optarg(1, optarg 8) # traditional procedure call with 2 arguments let y = 1.optarg optarg 8 # same thing as above, w/o the parenthesis assert x == y

The command invocation syntax also cannot have complex expressions as

arguments. For example: (Section 21.6, “Anonymous procs”), if, case or try.

Function calls with no arguments still need ()` to distinguish between a call and the function itself as a first-class value.

21.5. Closures

Procedures can appear at the top level in a module as well as inside other scopes, in which case they are called nested procs. A nested proc can access local variables from its enclosing scope and if it does so it becomes a closure.

Any captured variables are stored in a hidden additional argument to the closure (its environment) and they are accessed by reference by both the closure and its enclosing scope (i.e. any modifications made to them are visible in both places):

proc outer =

var i = 0

proc mutate = ①

inc i

mutate()

echo i ②

outer()

① mutate accesses i which belongs to outer. This access causes mutate to have the calling convention .closure.

② Outputs 1.

21.5.1. Creating closures in loops

Since closures capture local variables by reference it is often not the wanted behavior inside loop bodies:

150

var later: seq[proc ()] = @[]

for i in 1..2:

later.add proc () = echo i

for x in later: x()

 # Produces: 2 2

In order to capture a loop variable "by value", both a helper routine and an additional local variable (which is then captured instead of the for loop variable) have to be used:

var later: seq[proc ()] = @[]

for i in 1..2:

(proc =

let j = i

later.add proc () = echo j)()

for x in later: x()

 # Produces: 1 2

The standard library offers the helpers system.closureScope and

sugar.capture for syntactic shortcuts that accomplish the same.

21.6. Anonymous procs

Unnamed procedures can be used as lambda expressions and be passed to

other routines:

var cities = @["Frankfurt" , "Tokyo" , "New York" , "Kyiv"]

cities.sort(proc (x,y: string): int =

cmp(x.len, y.len))

Procs as expressions can appear both as nested procs and inside top-level executable code. The sugar module contains a => macro which enables a more succinct syntax for anonymous procedures resembling lambdas as they are in languages like JavaScript, C#, etc.

21.7. Func

The func keyword introduces a shortcut for a noSideEffect proc.

151

func binarySearch[T](a: openArray[T]; elem: T): int Is short for:

proc binarySearch[T](a: openArray[T]; elem: T): int {.noSideEffect.}

See Section 26.4, “Side effects” for further information.

21.8. Non-overloadable built-ins

The following built-in procs cannot be overloaded for reasons of

implementation simplicity (they require specialized semantic checking):

declared, defined, definedInScope, compiles, sizeof,

is, shallowCopy, getAst, astToStr, spawn, procCall

Thus they act more like keywords than like ordinary identifiers; unlike a keyword however, a redefinition may shadow the definition in the system module. From this list the following should not be written in dot notation x.f since x cannot be type-checked before it gets passed to f:

declared, defined, definedInScope, compiles, getAst, astToStr

21.9. Var parameters

The type of a parameter may be prefixed with the var keyword:

proc divmod(a, b: int; res, remainder: var int) =

res = a div b

remainder = a mod b

var

x, y: int

divmod(8, 5, x, y) # modifies x and y

assert x == 1

assert y == 3

In the example, res and remainder are var parameters. Var parameters can be 152

modified by the procedure and the changes are visible to the caller. The argument passed to a var parameter has to be an l-value. Var parameters are implemented as hidden pointers. The above example is comparable to:

proc divmod(a, b: int; res, remainder: ptr int) =

res[] = a div b

remainder[] = a mod b

var

x, y: int

divmod(8, 5, addr(x), addr(y))

assert x == 1

assert y == 3

In the examples, var parameters or pointers are used to provide two return values. This can be done in a cleaner way by returning a tuple:

proc divmod(a, b: int): tuple[res, remainder: int] =

(a div b, a mod b)

var t = divmod(8, 5)

assert t.res == 1

assert t.remainder == 3

One can use tuple unpacking to access the tuple’s fields:

var (x, y) = divmod(8, 5) # tuple unpacking

assert x == 1

assert y == 3

var parameters are never necessary for efficient parameter

 passing. Since non-var parameters cannot be modified, a Nim

compiler is always free to pass arguments by reference if it

considers it can speed up execution.

21.10. Var return type

A routine that is not a template nor a macro may return a var type which means that the returned value is an l-value and can be modified by the caller: var g = 0

153

proc writeAccessToG(): var int =

result = g

writeAccessToG() = 6

assert g == 6

It is a static error if the implicitly introduced pointer could be used to access a location beyond its lifetime:

proc writeAccessToG(): var int =

var g = 0

result = g # Error!

For iterators, a component of a tuple return type can have a var type too: iterator mpairs(a: var seq[string]): tuple[key: int, val: var string] =

for i in 0..a.high:

yield (i, a[i])

In the standard library every name of a routine that returns a var type starts with the prefix m per convention.

Memory safety for returning by var T is ensured by a simple borrowing rule: If result does not refer to a location pointing to the heap (that is in result = X

the X involves a ptr or ref access) then it has to be derived from the routine’s first parameter:

proc forward[T](x: var T): var T =

result = x # ok, derived from the first parameter.

proc p(param: var int): var int =

var x: int

 # we know 'forward' provides a view into the location derived from

 # its first argument 'x'.

result = forward(x) # Error: location is derived from `x`

 # which is not p's first parameter and lives

 # on the stack.

In other words, the lifetime of what result points to is attached to the lifetime of the first parameter and that is enough knowledge to verify memory safety at the call site.

154

Chapter 22. Methods

Methods are the only construct in Nim that uses dynamic dispatch, all other routines use static dispatch. Dynamic dispatch means that the runtime type of objects does influence which operation is performed.

For dynamic dispatch to work on an object it should be a reference type.

type

Expression = ref object of RootObj ## \

 ## abstract base class for an expression

Literal = ref object of Expression

x: int

PlusExpr = ref object of Expression

a, b: Expression

method eval(e: Expression): int {.base.} =

 # override this base method

raise newException(CatchableError, "Method without override") method eval(e: Literal): int = return e.x

method eval(e: PlusExpr): int =

 # watch out: relies on dynamic binding

result = eval(e.a) + eval(e.b)

proc newLit(x: int): Literal = Literal(x: x)

proc newPlus(a, b: Expression): PlusExpr = PlusExpr(a: a, b: b)

echo eval(newPlus(newPlus(newLit(1), newLit(2)), newLit(4)))

In the example the constructors newLit and newPlus are procs because they should use static binding, but eval is a method because it requires dynamic binding.

155

As can be seen in the example, base methods have to be annotated with the base pragma. The base pragma also acts as a reminder for the programmer

that a base method m is used as the foundation to determine all the effects that a call to m might cause.



Generic methods are not supported.



Compile-time execution is not supported for methods.

22.1. Static method calls via procCall

Dynamic method resolution can be inhibited via the builtin system.procCall.

This is somewhat comparable to the super keyword that traditional OOP

languages offer.

type

Thing = ref object of RootObj

Unit = ref object of Thing

x: int

method m(a: Thing) {.base.} =

echo "base"

method m(a: Unit) =

 # Call the base method:

procCall m(Thing(a))

echo "1"

156

Chapter 23. Iterators and the for

statement

The for statement is an abstract mechanism to iterate over the elements of a container. It relies on an iterator to do so. Like while statements, for statements open an implicit block so that they can be left with a break statement.

The for loop declares iteration variables - their scope reaches until the end of the loop body. The iteration variables' types are inferred by the return type of the iterator.

An iterator is similar to a procedure, except that it can be called in the context of a for loop. Iterators provide a way to specify the iteration over an abstract type. The yield statement in the called iterator plays a key role in the execution of a for loop. Whenever a yield statement is reached, the data is bound to the for loop variables and control continues in the body of the for loop. The iterator’s local variables and execution state are automatically saved between calls. Example:

 # this definition exists in the system module

iterator items*(a: string): char {.inline.} =

var i = 0

while i < len(a):

yield a[i]

inc(i)

for ch in items("hello world"): # `chìs an iteration variable echo ch

Is transformed into:

157

var i = 0

while i < len(a):

var ch = a[i]

echo ch

inc(i)

(Or into an equivalent form.)

If the iterator yields a tuple, there can be as many iteration variables as there are components in the tuple. The i’th iteration variable’s type is the type of the i’th component. In other words, implicit tuple unpacking in a for loop context is performed.

23.1. Implicit items/pairs invocations

If the for loop expression e does not denote an iterator and the for loop has exactly 1 variable, the for loop expression is rewritten to items(e); that means an items iterator is implicitly invoked:

for x in [1, 2, 3]: echo x

 # is the same as:

for x in items([1, 2, 3]): echo x

If the for loop has exactly 2 variables, a pairs iterator is implicitly invoked.

for idx, x in [1, 2, 3]: echo idx, x

 # is the same as:

for idx, x in pairs([1, 2, 3]): echo idx, x

Symbol lookup of the identifiers items/pairs is performed after the rewriting step, so that all overloads of items/pairs are taken into account.

The rewrite step can happen “too late” when the proper items

/pairs symbols are not in scope:



 # module a

import tables

158

var tab = initTable[string, int]() template foreach*() =

for key, val in tab:

echo(key, val)

import a

 # module b

foreach() ①

① This expands to for key, val in tab which is transformed

into for key, val in pairs(tab), but in module b's scope

there is no pairs iterator that would match, as that is to be

found in the tables module that module b does not import.

This pitfall will be remedied in later versions of the language.

23.2. First-class iterators

There are 2 kinds of iterators in Nim: inline and closure iterators. An inline iterator is an iterator that’s always inlined by the compiler leading to zero overhead for the abstraction, but may result in a heavy increase in code size.

The body of a for loop over an inline iterator is inlined into

 each yield statement appearing in the iterator code, so ideally

the code should be refactored to contain a single yield when

possible to avoid code bloat.

Inline iterators are second class citizens; They can be passed as parameters only to other inlining code facilities like templates, macros, and other inline iterators.

In contrast to that, a closure iterator can be passed around more freely: iterator count0(): int {.closure.} =

yield 0

iterator count2(): int {.closure.} =

var x = 1

yield x

inc x

yield x

159

proc invoke(iter: iterator(): int {.closure.}) =

for x in iter(): echo x

invoke(count0)

invoke(count2)

Closure iterators and inline iterators have some restrictions:

1. A closure iterator cannot be executed at compile time.

2. return is allowed (but rarely useful) in a closure iterator and not in an inline iterator. It ends the iteration.

3. Neither inline nor closure iterators can be recursive.

4. Neither inline nor closure iterators have the special result variable.

5. Closure iterators are not supported by the JS backend.

Iterators that are neither marked {.closure.} nor {.inline.} explicitly

default to being inline.

The iterator type is always of the calling convention closure implicitly; the following example shows how to use iterators to implement a collaborative tasking system:

 # simple tasking:

type

Task = iterator (ticker: int)

iterator a1(ticker: int) {.closure.} =

echo "a1: A"

yield

echo "a1: B"

yield

echo "a1: C"

yield

echo "a1: D"

iterator a2(ticker: int) {.closure.} =

echo "a2: A"

yield

echo "a2: B"

yield

echo "a2: C"

160

proc runTasks(t: varargs[Task]) =

var ticker = 0

while true:

let x = t[ticker mod t.len]

if finished(x): break

x(ticker)

inc ticker

runTasks(a1, a2)

The builtin system.finished can be used to determine if an iterator has

finished its operation; no exception is raised on an attempt to invoke an iterator that has already finished its work.

Note that system.finished is error prone to use because it only returns true one iteration after the iterator has finished:

iterator mycount(a, b: int): int {.closure.} =

var x = a

while x <= b:

yield x

inc x

var c = mycount # instantiate the iterator

while not finished(c):

echo c(1, 3)

 # Produces

 # 1

 # 2

 # 3

 # 0

Instead this code has to be used:

var c = mycount # instantiate the iterator

while true:

let value = c(1, 3)

if finished(c): break # and discard 'value'!

echo value

It helps to think that the iterator actually returns a pair (value, done) and finished is used to access the hidden done field.

161

Closure iterators are resumable functions and so one has to provide the arguments to every call. To get around this limitation one can capture

parameters of an outer factory proc:

proc mycount(a, b: int): iterator (): int =

result = iterator (): int =

var x = a

while x <= b:

yield x

inc x

let foo = mycount(1, 4)

for f in foo():

echo f

162

Chapter 24. User definable conversions

Widening type conversions, such as the conversion from int8 to int16, are performed implicitly. Other implicit type conversions can be introduced via a converter routine.

24.1. Converters

A converter is like an ordinary proc except that it enhances the “implicitly convertible” type relation (see Section 17.3, “Convertible relation”):

 # bad style ahead: Nim is not C.

converter toBool(x: int): bool = x != 0

if 4:

echo "compiles"

A converter can also be explicitly invoked for improved readability. Note that implicit converter chaining is not supported: If there is a converter from type A to type B and from type B to type C, the implicit conversion from A to C is not provided.

Converters should be introduced very carefully. Few use cases

 are known where it adds clarity to the code rather than

obfuscation.

163

164

Chapter 25. Exception handling

Nim offers an elaborate, semi-structured mechanism for handling runtime

errors called exception handling. Exception handling consists of the try, raise statements, an exception type hierarchy and the .raises annotation system.

25.1. Try statement

Example:

from std/strutils import parseInt

var

f: File

if open(f, "numbers.txt"):

try: ①

var a = readLine(f) ②

var b = readLine(f)

echo "sum: " & $(parseInt(a) + parseInt(b)) ③

except OverflowDefect: ④

echo "overflow!"

except ValueError, IOError: ⑤

echo "catch multiple exceptions!"

except: ⑥

echo "Unknown exception!"

finally: ⑦

close(f)

① A try statement.

② Read the first two lines of a text file.

③ Try to parse them as integers and to sum them.

④ On an OverflowDefect output "overflow!".

⑤ More than one exception type can be listed in except.

165

⑥ The empty except covers every other exception type. It is comparable to an else in an if statement.

⑦ Regardless of whether there was any exception raised or not the finally section is executed. In this case it ensures we always close the file f.

The statements after the try are executed in sequential order unless an

exception e is raised. If the exception type of e matches any listed in an except clause, the corresponding statements are executed. The statements following the except clauses are called exception handlers.

The empty except clause is executed if there is an exception that is not listed otherwise.

If there is a finally clause, it is always executed after the exception handlers.

The exception is consumed in an exception handler. However, an exception handler may raise another exception. If the exception is not handled, it is propagated through the call stack.

If an exception occurs the "rest" of a routine which is the code that is not within finally or except clauses is not executed.

25.2. Try expression

Try can also be used as an expression; the type of the try branch then needs to fit the types of except branches, but the type of the finally branch always has to be void:

from std/strutils import parseInt

let x = try: parseInt("133a")

except: -1

finally: echo "hi"

To prevent confusing code there is a parsing limitation; if the try follows a (

it has to be written as a one liner:

from std/strutils import parseInt

let x = (try: parseInt("133a") except: -1) 166

25.3. Except clauses

Within an except clause it is possible to access the current exception using the syntax ExceptionType as e:

try:

 # ...

except IOError as e:

echo "I/O error: " & e.msg

Alternatively, it is possible to use system.getCurrentException to retrieve the exception that was raised:

try:

 # ...

except IOError:

let e = getCurrentException()

Note that getCurrentException always returns a ref Exception type. If a

variable of the proper type is needed (in the example above, IOError), one must convert it explicitly:

try:

 # ...

except IOError:

let e = (ref IOError)(getCurrentException())

 # "e" is now of the proper type

However, this is rarely needed. The most common case is to extract an error message from e, and for such situations, it is enough to use

system.getCurrentExceptionMsg:

try:

 # ...

except:

echo getCurrentExceptionMsg()

25.4. Defer statement

A defer statement can be used instead of a try finally statement if the try statement lacks any except clauses. In other words, defer can be used to 167

ensure resource cleanups (even in case of an error) but not for explicit error handling.

Any statements following the defer in the current block will be considered to be in an implicit try block. For example:

proc main =

var f = open("numbers.txt" , fmWrite)

defer: close(f)

f.write "abc"

f.write "def"

Is rewritten to:

proc main =

var f = open("numbers.txt")

try:

f.write "abc"

f.write "def"

finally:

close(f)

When defer is at the outermost scope of a template/macro, its scope extends to the block where the template is called from:

template safeOpenDefer(f, path) =

var f = open(path, fmWrite)

defer: close(f)

template safeOpenFinally(f, path, body) =

var f = open(path, fmWrite)

try: body # without `defer`, `body` must be specified as parameter finally: close(f)

block:

safeOpenDefer(f, "/tmp/z01.txt")

f.write "abc"

block:

safeOpenFinally(f, "/tmp/z01.txt"):

f.write "abc" # adds a lexical scope

block:

var f = open("/tmp/z01.txt" , fmWrite)

try:

f.write "abc" # adds a lexical scope

finally: close(f)

168

Top-level defer statements are not supported since it’s unclear what such a statement should refer to.

 defer can make the control flow obscure, one should prefer try

finally or destructors.

25.5. Exception hierarchy

Exception types form a hierarchy via inheritance.

Most of the hierarchy is defined in the system module. Every exception

ultimately inherits from system.Exception.

Exceptions that indicate a runtime error that can be caught inherit from system.CatchableError (which is a subtype of Exception).

Exceptions that indicate programming bugs inherit from system.Defect

(which is a subtype of Exception) and are strictly speaking not catchable as they can also be mapped to an operation that terminates the whole process.

25.6. Raise statement

A raise statement is used to signal that an error occurred:

raise newException(IOError, "IO failed")

Execution of a raise statement starts an unwinding process: The control flow continues at a suitable innermost exception handler. That means for raise e a handler like except typeof(e) or an except without a type guard. If no such handler exists, the program is terminated.

A raise statement without an explicit exception object means that the

current exception is re-raised. The ReraiseDefect exception is raised if there is no exception to re-raise. It follows that the raise statement always raises an exception.

Apart from a raise statement there are other language constructs that can raise an exception:

• Array indexing: It is an error if the index is out of bounds.

169

• Memory allocation: There is an inherent danger of running out of memory.

• Integer arithmetic: An operation like x + 1 can produce an overflow error.

• Type conversion: If x is not of the dynamic type T then T(x) produces an error.

170

Chapter 26. Effect system

In addition to its type system Nim also offers an effect system. The goal of the effect system is to prevent even more mistakes at compile-time. The effect system is concerned with the question "what is routine X allowed to do?". In most programming languages a routine is a black box; when you see a call to function f without knowing its implementation f can perform any arbitrary task: It could perform any kind of IO, it could raise an exception, it could acquire locks that you also need to acquire causing deadlocks and it could run an arbitrary shell script, including a script that it itself generated.

Thus Nim’s effect system covers:

• Which types of exceptions a routine can raise, if any.

• Which locks a routine can acquire, if any.

• If a routine accesses any global state.

• Which custom effects like ExecProgram or UsesDatabase a routine can have.

When we talk about routine in the context of the effect system, it means proc, func, iterator, converter, method but not template or macro.

26.1. Exception tracking

The raises pragma can be used to explicitly define which exceptions a

routine is allowed to raise. The compiler verifies this:

proc p(what: bool) {.raises: [IOError, OSError].} =

if what: raise newException(IOError, "IO") else: raise newException(OSError, "OS") An empty raises list (raises: []) means that no exception may be raised: 171

proc p(): bool {.raises: [].} =

try:

unsafeCall()

result = true

except:

result = false

A raises list can also be attached to a proc type. This affects type

compatibility:

type

Callback = proc (s: string) {.raises: [IOError].}

var

c: Callback

proc p(x: string) =

raise newException(OSError, "OS")

c = p # type error

For a routine p, inference rules to determine the set of possibly raised exceptions are used; the algorithm operates on p's call graph:

1. Every indirect call via some proc type T is assumed to raise

system.Exception (the base type of the exception hierarchy) and thus any exception unless T has an explicit raises list. However, an indirect call is ignored if the call is of the form f(…) where f is a parameter of the currently analyzed routine that is marked as .effectsOf: f. The call is

optimistically assumed to have no effect. Rule 2 compensates for this

case.

2. Every expression e of some proc type within a call that is passed to

parameter marked as .effectsOf is assumed to be called indirectly and

thus its raises list is added to p's raises list.

3. Every call to a proc q which has an unknown body (due to a forward

declaration) is assumed to raise system.Exception unless q has an explicit raises list. Procs that are importc'ed are assumed to have .raises: [],

unless explicitly declared otherwise.

4. Every call to a method m is assumed to raise system.Exception unless m has an explicit raises list.

5. For every other call, the analysis can determine an exact raises list.

172

6. For determining a raises list, the raise and try statements of p are taken into consideration.

Exceptions inheriting from system.Defect are not tracked with the .raises:

[] exception tracking mechanism. This is more consistent with the built-in operations. The following code is valid:

proc mydiv(a, b): int {.raises: [].} =

a div b # can raise an DivByZeroDefect

And so is:

proc mydiv(a, b): int {.raises: [].} =

if b == 0: raise newException(DivByZeroDefect, "division by zero") else: result = a div b

The reason for this is that DivByZeroDefect inherits from Defect and with

--panics:on:option: Defects become unrecoverable errors.

26.2. EffectsOf annotation

Rules 1-2 of the exception tracking inference rules (see the previous section) ensure the following works:

proc weDontRaiseButMaybeTheCallback(callback: proc()) {.

raises: [], effectsOf: callback.} =

callback()

proc doRaise() {.raises: [IOError].} =

raise newException(IOError, "IO")

proc use() {.raises: [].} =

 # doesn't compile! Can raise IOError!

weDontRaiseButMaybeTheCallback(doRaise)

As can be seen from the example, a parameter of type proc (…) can be

annotated as .effectsOf. Such a parameter allows for effect polymorphism: The proc weDontRaiseButMaybeTheCallback raises the exceptions that callback raises.

So in many cases a callback does not cause the compiler to be overly

conservative in its effect analysis:

173

{.push warningAsError[Effect]: on.}

{.experimental: "strictEffects" .}

import algorithm

type

MyInt = distinct int

var toSort = @[MyInt 1, MyInt 2, MyInt 3]

proc cmpN(a, b: MyInt): int =

cmp(a. int, b. int)

proc harmless {.raises: [].} =

toSort.sort cmpN

proc cmpE(a, b: MyInt): int {.raises: [Exception].} =

cmp(a. int, b. int)

proc harmful {.raises: [].} =

 # does not compile, `sort` can now raise Exception

toSort.sort cmpE

26.3. Tag tracking

Exception tracking is part of Nim’s effect system. Raising an exception is an effect. Other effects can also be defined. A user defined effect is a means to tag a routine and to perform checks against this tag:

type IO = object ## input/output effect

proc readLine(): string {.tags: [IO].} = discard

proc no_IO_please() {.tags: [].} =

 # not allowed:

let x = readLine()

A tag has to be a type name. A tags list - like a raises list - can also be attached to a proc type. This affects type compatibility.

The inference for tag tracking is analogous to the inference for exception tracking.

174

26.4. Side effects

The noSideEffect pragma is used to mark a routine that can have only side effects through parameters. This means that the routine only changes

locations that are reachable from its parameters and the return value only depends on the parameters. If none of its parameters' types contain the type var, ref, ptr, cstring, or proc, then no locations are modified.

In other words, a routine has no side effects if it does not access a thread-local or global variable and it does not call any routine that has a side effect.

It is a static error to mark a routine to have no side effect if the compiler cannot verify this.

As a special semantic rule, the built-in system.debugEcho pretends to be free of side effects so that it can be used for debugging routines marked as

noSideEffect.

func is syntactic sugar for a proc with no side effects:

func `+`(x, y: int): int

To override the compiler’s side effect analysis a {.noSideEffect.} cast

pragma block can be used:

func f() =

{. cast(noSideEffect).}:

echo "test"

Side effects are usually inferred. The inference for side effects is analogous to the inference for exception tracking.

26.5. GC safety effect

We call a proc p GC safe when it doesn’t access any global variable that contains GC’ed memory (string, seq, ref or a closure) either directly or indirectly through a call to a GC unsafe proc.

The GC safety property is usually inferred. The inference for GC safety is analogous to the inference for exception tracking.

175

The gcsafe annotation can be used to mark a proc to be gcsafe, otherwise this property is inferred by the compiler. Note that noSideEffect implies gcsafe.

Routines that are imported from C are always assumed to be gcsafe.

To override the GC safety analysis a {.cast(gcsafe).} pragma block can be used:

var

someGlobal: string = "some string here"

perThread {.threadvar.}: string

proc setPerThread() =

{. cast(gcsafe).}:

deepCopy(perThread, someGlobal)

176

Chapter 27. Generics

Generics are Nim’s means to parametrize routines or types with type

 parameters. Depending on the context, the brackets are used either to introduce type parameters or to instantiate a generic routine or type.

A generic defines a family of types and routines. If G[T] is a generic

depending on type T then multiple occurrences of G[C] where C is a concrete type such as int or string denote the same type. In other words structural type equivalence is used for generics and not name equivalence.

The following example shows how a generic binary tree can be modeled:

type

BinaryTree*[T] = ref object # BinaryTree is a generic type with

 # generic param `T`

le, ri: BinaryTree[T] # left and right subtrees; may be nil

data: T # the data stored in a node

proc newNode*[T](data: T): BinaryTree[T] =

result = BinaryTree[T](le: nil, ri: nil, data: data)

proc add*[T](root: var BinaryTree[T], n: BinaryTree[T]) =

if root == nil:

root = n

else:

var it = root

while it != nil:

 # compare the data items; uses the generic `cmp` proc

 # that works for any type that has à==ànd `<òperator

var c = cmp(it.data, n.data)

if c < 0:

if it.le == nil:

it.le = n

return

it = it.le

else:

177

 if it.ri == nil:

it.ri = n

return

it = it.ri

proc add*[T](root: var BinaryTree[T], data: T) =

 # convenience proc:

add(root, newNode(data))

iterator preorder*[T](root: BinaryTree[T]): T =

 # Preorder traversal of a binary tree.

var stack: seq[BinaryTree[T]] = @[root]

while stack.len > 0:

var n = stack.pop()

while n != nil:

yield n.data

add(stack, n.ri) # push right subtree onto the stack

n = n.le # and follow the left pointer

var

root: BinaryTree[string] # instantiate a BinaryTree with `string`

add(root, newNode("hello")) # instantiates `newNodeànd àdd`

add(root, "world") # instantiates the second àdd` proc for str in preorder(root):

stdout.writeLine(str)

In G[T] the T is called a generic type parameter or a type variable.

27.1. Is operator

The is operator checks for type equivalence. It is therefore very useful for type specialization within generic code:

type

Table[Key, Value] = object

keys: seq[Key]

values: seq[Value]

when not (Key is string): # empty value for strings used for optimization

deletedKeys: seq[bool]

27.2. Type Classes

A type class is a special pseudo-type that can be used to match against types in the context of overload resolution or the is operator. Nim supports the 178

following built-in type classes:

 Table 9. Type classes

Type class Matches

object

any object type

tuple

any tuple type

enum

any enumeration

proc

any proc type

ref

any ref type

ptr

any ptr type

var

any var type

distinct

any distinct type

array

any array type

set

any set type

seq

any seq type

auto

any type

Furthermore, every generic type automatically creates a type class of the same name that will match any instantiation of the generic type.

Type classes can be combined with the | operator to form more complex type classes:

 # create a type class that will match all tuple and object types

type RecordType = (tuple | object)

proc printFields[T: RecordType](rec: T) =

for key, value in fieldPairs(rec):

echo key, " = " , value

Type constraints on generic parameters can be grouped with , and

propagation stops with ;, similarly to parameters for macros and templates: proc fn1[T; U, V: SomeFloat]() = discard # T is unconstrained template fn2(T; u, v: SomeFloat) = discard # T is unconstrained 179

Nim allows for type classes and regular types to be specified as type constraints of the generic type parameter:

proc onlyIntOrString[T: int|string](x, y: T) = discard onlyIntOrString(450, 616) # valid

onlyIntOrString(5.0, 0.0) # type mismatch: float is not an int or a string onlyIntOrString("xy" , 50) # invalid as 'T' cannot be both at the same time 27.3. Implicit generics

A type class can be used directly as the parameter’s type.

 # create a type class that will match all tuple and object types

type RecordType = (tuple | object)

proc printFields(rec: RecordType) =

for key, value in fieldPairs(rec):

echo key, " = " , value

Routines utilizing type classes in such a manner are considered to be

 implicitly generic. They will be instantiated once for each unique combination of param types used within the program.

Implicit generics can make the code harder to understand as a

 generic has different symbol binding rules than non-generics.

Instead of proc p(x, y: tuple) prefer proc p[T: tuple](x, y:

T).

By default, during overload resolution, each named type class will bind to exactly one concrete type. We call such type classes bind once types. Here is an example taken directly from the system module to illustrate this:

proc `==`*(x, y: tuple): bool =

 ## requires `xànd `y` to be of the same tuple type

 ## generic `==òperator for tuples that is lifted from the components

 ## of `xànd `y`.

result = true

for a, b in fields(x, y):

if a != b: result = false

Alternatively, the distinct type modifier can be applied to the type class to 180

allow each param matching the type class to bind to a different type. Such type classes are called bind many types.

Procs written with the implicitly generic style will often need to refer to the type parameters of the matched generic type. They can be easily accessed using the dot syntax:

type Matrix[T, Rows, Columns] = object

...

proc `[]`(m: Matrix, row, col: int): Matrix.T =

m.data[col * high(Matrix.Columns) + row]

Here are more examples that illustrate implicit generics:

proc p(t: Table; k: Table.Key): Table.Value

 # is the same as (except that it also adds `Keyànd `Valuè to the scope): proc p[Key, Value](t: Table[Key, Value]; k: Key): Value

proc p(a: Table, b: Table)

 # is the same as (except that it also adds `Keyànd `Valuè to the scope): proc p[Key, Value](a, b: Table[Key, Value])

proc p(a: Table, b: distinct Table)

 # is the same as (except that it also adds `Keyànd `Valuè to the scope): proc p[Key, Value, KeyB, ValueB](a: Table[Key, Value], b: Table[KeyB, ValueB])

typedesc used as a parameter type also introduces an implicit generic.

typedesc has its own set of rules:

proc p(a: typedesc)

 # is the same as (except that it also adds `T` to the scope):

proc p[T](a: typedesc[T])

181

typedesc is a "bind many" type class:

proc p(a, b: typedesc)

 # is roughly the same as:

proc p[T, T2](a: typedesc[T], b: typedesc[T2])

A parameter of type typedesc is itself usable as a type. If it is used as a type, it’s the underlying type. (In other words, one level of "typedesc"-ness is stripped off):

proc p(a: typedesc; b: a) = discard

 # is roughly the same as:

proc p[T](a: typedesc[T]; b: T) = discard

 # hence this is a valid call:

p(int, 4)

 # as parameter 'a' requires a type, but 'b' requires a value.

27.4. Generic inference restrictions

The types var T and typedesc[T] cannot be inferred in a generic instantiation.

The following is not allowed:

proc g[T](f: proc(x: T); x: T) =

f(x)

proc c(y: int) = echo y

proc v(y: var int) =

y += 100

var i: int

 # allowed: infers 'T' to be of type 'int'

g(c, 42)

 # not valid: 'T' is not inferred to be of type 'var int'

g(v, i)

 # also not allowed: explicit instantiation via 'var int'

g[var int](v, i)

182

27.5. Symbol lookup in generics

The symbol binding rules in generics are slightly subtle: There are “open”

and “closed” symbols.

27.5.1. Open and Closed symbols

A “closed” symbol cannot be re-bound in the instantiation context, an “open”

symbol can. Per default, symbols that are overloaded in the scope of the generic definition are open and all other symbols are closed.

Open symbols are looked up in two different contexts: Both the context at definition and the context at instantiation are considered:

type

Index = distinct int

proc `==` (a, b: Index): bool {.borrow.}

var a = (0, 0.Index)

var b = (0, 0.Index)

echo a == b # works!

In the example, the generic == for tuples (as defined in the system module) uses the == operators of the tuple’s components. However, the == for the Index type is defined after the == for tuples; yet the example compiles as the instantiation takes the currently defined symbols into account too.

27.6. Mixin statement

A symbol can be forced to be open by a mixin declaration:

proc create*[T](): ref T =

 # there is no overloaded 'init' here, so we need to state that it's an

 # open symbol explicitly:

mixin init

new result

init result

mixin statements are only available in templates and generics.

183

27.7. Bind statement

The bind statement is the counterpart to the mixin statement. It can be used to explicitly declare identifiers that should be bound early (i.e. the identifiers should be looked up in the scope of the template/generic definition):

 # Module A

var

lastId = 0

template genId*: untyped =

bind lastId

inc(lastId)

lastId

 # Module B

import A

echo genId()

But a bind is rarely useful because symbol binding from the definition scope is the default.

bind statements are only available in templates and generics.

27.8. Delegating bind statements

The following example outlines a problem that can arise when generic

instantiations cross multiple different modules:

 # module A

proc genericA*[T](x: T) =

mixin init

init(x)

 # module C

type O = object

proc init*(x: var O) = discard

import C

184

 # module B

proc genericB*[T](x: T) =

 # Without thèbind init` statement C's init proc is

 # not available when `genericBìs instantiated:

bind init

genericA(x)

 # module main

import B, C

genericB O()

Module B has an init proc from module C in its scope that is not taken into account when genericB is instantiated which leads to the instantiation of genericA. The solution is to forward these symbols by a bind statement inside genericB.

27.9. Templates

A template is a simple form of a macro: It is a simple substitution mechanism that operates on Nim’s abstract syntax trees.

The syntax to invoke a template is the same as calling any other kind of routine.

Example:

template `!=` (a, b: untyped): untyped =

 # this definition exists in the system module

not (a == b)

assert(5 != 6) # transformed into: assert(not (5 == 6))

The !=, >, >=, in, notin, isnot operators are in fact templates:

a > b is transformed into b < a.

a in b is transformed into contains(b, a).

notin and isnot have the obvious meanings.

The “types” of template parameters can be the symbols untyped, typed or

typedesc. These are “meta types”, they can only be used in certain contexts.

Regular types can be used too; this implies that typed expressions are

185

expected.

27.10. Typed vs untyped parameters

For an untyped parameter symbol lookups and type resolution is not

performed before the expression is passed to the template. This means that semantic checking of the argument that is passed to an untyped parameter is lazily done. The implications of this mechanism are important to understand.

For example, it means that undeclared identifiers can be passed to the template:

template declareInt(x: untyped) =

var x: int

declareInt(x) # valid

x = 3

template declareInt(x: typed) =

var x: int

declareInt(x) # invalid, because x has not been declared and so it has no type

A template where every parameter is untyped is called an immediate

template. For historical reasons, templates can be explicitly annotated with an immediate pragma and then these templates do not take part in

overloading resolution and the parameters' types are ignored by the compiler. Explicit immediate templates are deprecated.

27.11. Passing a code block to a template

One can pass a block of statements as the last argument to a template

following the special : syntax:

template withFile(f, fn, mode, actions: untyped): untyped =

var f: File

if open(f, fn, mode):

try:

actions

finally:

close(f)

else:

186

 quit("cannot open: " & fn)

withFile(txt, "ttempl3.txt" , fmWrite): # special colon txt.writeLine("line 1")

txt.writeLine("line 2")

In the example, the two writeLine statements are bound to the actions

parameter.

Usually, to pass a block of code to a template, the parameter that accepts the block needs to be of type untyped. Because symbol lookups are then delayed until template instantiation time:

template t(body: typed) =

proc p = echo "p"

block:

body

t:

p() # fails with 'undeclared identifier: p'

The above code fails with the error message that p is not declared. The reason for this is that the p() body is type-checked before getting passed to the body parameter and type checking implies symbol lookups. The same code works

with untyped as the passed body is not required to be type-checked:

template t(body: untyped) =

proc p = echo "p"

block:

body

t:

p() # compiles

untyped parameters cause problems with overloading:

template t(body: untyped) = ①

proc p = echo "p"



body

proc t(a: int) = discard ②

t:

p() ③

187

① A template that takes an untyped code snippet.

② A proc that overloads the symbol t.

③ The code snippet p() needs to be checked for semantics

before it can be decided which overloaded routine t to

invoke. This conflicts with `t’s requirements.

In theory the compiler could resolve the call to t without

problem. In practice, at the time of this writing, the compiler is

not able to do that. In the long run we hope to phase out

untyped parameters; what they enable can be accomplished by

other means that compose better.

27.12. Varargs of untyped

In addition to the untyped meta-type that delays type checking, there is also varargs[untyped] so that not even the number of parameters is fixed:

template hideIdentifiers(x: varargs[untyped]) = discard

hideIdentifiers(undeclared1, undeclared2)

However, since a template cannot iterate over varargs, this feature is

generally much more useful for macros.

27.13. Symbol binding in templates

A template is a hygienic macro and so opens a new scope. The distinction between open and closed symbols applies to templates as it does apply to generics:

 # Module A

var

lastId = 0

template genId*: untyped =

inc(lastId)

lastId

188

 # Module B

import A

echo genId() # Works as 'lastId' is bound in 'genId's defining scope As in generics, symbol binding can be influenced via mixin or bind

statements.

27.14. Identifier construction

In templates, identifiers can be constructed with the backticks notation: template typedef(name: untyped, typ: typedesc) =

type

`T namè* {.inject.} = typ

`P namè* {.inject.} = ref `T namè

typedef(myint, int)

var x: PMyInt

In the example, name is instantiated with myint, so T name becomes Tmyint.

27.15. Template parameter lookup rules

A parameter p in a template is even substituted in the expression x.p. Thus, template arguments can be used as field names and a global symbol can be shadowed by the same argument name even when fully qualified:

 # module 'm'

type

Lev = enum

levA, levB

var abclev = levB

template tstLev(abclev: Lev) =

echo abclev, " " , m.abclev

tstLev(levA)

 # produces: 'levA levA'

189

But the global symbol can be captured by a bind statement:

 # module 'm'

type

Lev = enum

levA, levB

var abclev = levB

template tstLev(abclev: Lev) =

bind m.abclev

echo abclev, " " , m.abclev

tstLev(levA)

 # produces: 'levA levB'

 Instead of relying on this subtle rule, name your parameters so

that they do not conflict with other names.

27.16. Hygiene in templates

Per default, templates are hygienic: Local identifiers declared in a template cannot be accessed in the instantiation context.

template `||`(a, b: untyped): untyped =

let aa = a ①

if aa.len > 0: aa else: b

var a = ""

var b = "abc"

echo a || b || "def" ②

① The variable aa is introduced so that the expression a is evaluated only once.

② The output of the program is "abc".

Every expansion causes a “fresh” set of local variables to be created. These local variables do not interfere with each other. A template is thus very similar to an .inline proc or func.

190

27.16.1. Inject and gensym

Whether a symbol that is declared in a template is exposed to the

instantiation scope is controlled by the inject and gensym pragmas: gensym'ed symbols are not exposed but inject'ed symbols are.

The default for symbols of entity type, var, let and const is gensym and for a routine it is inject. However, if the name of the entity is passed as a template parameter, it is an inject'ed symbol:

template withFile(f, fn, mode: untyped, actions: untyped): untyped =

block:

var f: File # since 'f' is a template param, it's injected implicitly

...

withFile(txt, "ttempl3.txt" , fmWrite):

txt.writeLine("line 1")

txt.writeLine("line 2")

The inject and gensym pragmas are second class annotations; they have no semantics outside of a template definition and cannot be abstracted over:

{.pragma myInject: inject.}

template t() =

var x {.myInject.}: int # does NOT work

To get rid of hygiene in templates, one can use the dirty pragma for a

template. inject and gensym have no effect in dirty templates.

gensym'ed symbols cannot be used as field in the x.field syntax. Nor can they be used in the ObjectConstruction(field: value) and

namedParameterCall(field = value) syntactic constructs.

The reason for this is that code like

type

T = object

f: int

template tmp(x: T) =

let f = 34

echo x.f, T(f: 4)

191

should work as expected.

However, this means that the method call syntax is not available for

gensym'ed symbols:

template tmp(x) =

type

T {.gensym.} = int

echo x.T # invalid: instead use: 'echo T(x)'.

tmp(12)

27.17. Method call syntax limitations

The expression x in x.f needs to be checked for semantics (that means

symbol lookup and type checking have to be performed) before it can be

decided that it needs to be rewritten to f(x). Therefore the dot syntax has some limitations when it is used to invoke templates/macros:

template declareVar(name: untyped) =

const name {.inject.} = 45

 # Doesn't compile:

unknownIdentifier.declareVar

192

Chapter 28. Macros

A macro is similar to an advanced but low level template. Macros can be used to implement domain specific languages. A macro is a routine that operates directly on the abstract syntax tree (AST) of the Nim programming language.

Unfortunately, the AST is implementation defined.

To write macros, one needs to know how the Nim concrete syntax is

converted to an abstract syntax tree. A macro receives ASTs as its input parameters and returns a new AST. The compiler then analyzes the result

AST for errors - a macro cannot be used to circumvent error checking. Let r be the result of a macro invocation m(args). r is inserted into the position of the invocation m(args). r can contain further macro invocations, these are processed after the expansion of m. The process iterates until no more macro expansions can be performed or until some implementation defined

iteration limit is reached. Reaching the limit is a static error.

28.1. Macros API

The tree transformations that a macro can perform are enabled by the macros standard module. The API is based on a single NimNode type that represents a single node or a complete tree. Every NimNode has a node kind determining if the node is an if statement, a routine call, etc. SomèNimNodès can also

have children.

 The NodeKind is a enum with fields like nnkStmtList or nnkIfStmt.

The nnk prefix exists for historical reasons.

The following example implements a debug command that accepts a variable number of arguments and writes them with their name and value:

193

import std/macros

macro debug(args: varargs[untyped]): untyped = ①

result = newNimNode(nnkStmtList, args) ②

for a in args: ③

result.add newCall("write" , ident"stdout" , toStrLit(a)) ④

result.add newCall("write" , ident"stdout" , newLit(": ")) ⑤

result.add newCall("writeLine" , ident"stdout" , a) ⑥

var ⑦

a: array[0..10, int]

x = "some string"

a[0] = 42

a[1] = 45

debug(a[0], a[1], x) ⑧

① Inside the debug macro every parameter (that is not a static parameter) is of type NimNode and not of the type that is written down in the signature.

That means within the body of debug args is of type NimNode and not of

type varargs[untyped].

② debug returns a list of statements (nnkStmtList).

③ For every passed argument do:

④ Add a call to the statement list that writes the expression; toStrLit

converts an AST to its string representation.

⑤ Also add a call to the statement list that writes the string literal ": ".

⑥ Add a call to the statement list that writes the expressions value of the current argument a.

⑦ Example data that is passed to the debug macro.

⑧ Call to the debug macro.

The macro call expands to:

write(stdout, "a[0]")

write(stdout, ": ")

writeLine(stdout, a[0])

write(stdout, "a[1]")

write(stdout, ": ")

writeLine(stdout, a[1])

write(stdout, "x")

194

write(stdout, ": ")

writeLine(stdout, x)

Arguments that are passed to a varargs parameter are wrapped in an array constructor expression. This is why debug iterates over all of args's children.

28.2. BindSym

The above debug macro relies on the fact that write, writeLine and stdout are declared in the system module and are thus visible in the instantiating

context.

Via the bindSym builtin there is a way to use bound identifiers (a.k.a. symbols) instead of using unbound identifiers:

import std/macros

macro debug(n: varargs[typed]): untyped =

result = newNimNode(nnkStmtList, n)

for x in n:

 # we can bind symbols in scope via 'bindSym':

result.add newCall(bindSym"write" , bindSym"stdout" , toStrLit(x)) result.add newCall(bindSym"write" , bindSym"stdout" , newStrLitNode": ") result.add newCall(bindSym"writeLine" , bindSym"stdout" , x) var

a: array[0..10, int]

x = "some string"

a[0] = 42

a[1] = 45

debug(a[0], a[1], x)

The macro call expands to:

write(stdout, "a[0]")

write(stdout, ": ")

writeLine(stdout, a[0])

write(stdout, "a[1]")

write(stdout, ": ")

writeLine(stdout, a[1])

write(stdout, "x")

write(stdout, ": ")

195

writeLine(stdout, x)

However, the symbols write, writeLine and stdout are already bound and are not looked up again. As the example shows, bindSym does work with

overloaded symbols implicitly.

The distinction between bindSym"name" and ident"name" is easiest to understand when one takes scope into consideration.

This is valid code:

import std/macros

macro m(a: string): untyped =

proc helper(a: string) = echo a

result = newCall(bindSym"helper" , a)

m "abc"

 And this is invalid code:

import std/macros

macro m(a: string): untyped =

proc helper(a: string) = echo a

result = newCall(ident"helper" , a)

m "abc"

Note how in both cases helper is local to the macro m and

invisible outside of `m’s body.

28.3. For loop macros

A macro that only takes a single expression of the special type

system.ForLoopStmt can rewrite the entire for loop:

import std/macros

macro example(loop: ForLoopStmt) =

result = newTree(nnkForStmt) # Create a new For loop.

result.add loop[^3] # This is "item".

196

 result.add loop[^2][^1] # This is "[1, 2, 3]".

result.add newCall(bindSym"echo" , loop[0])

for item in example([1, 2, 3]): discard

Expands to:

for item in items([1, 2, 3]):

echo item

Another example:

import std/macros

macro enumerate(x: ForLoopStmt): untyped =

expectKind x, nnkForStmt

 # check if the starting count is specified:

var countStart = if x[^2].len == 2: newLit(0) else: x[^2][1]

result = newStmtList()

 # we strip off the first for loop variable

 # and use it as an integer counter:

result.add newVarStmt(x[0], countStart)

var body = x[^1]

if body.kind != nnkStmtList:

body = newTree(nnkStmtList, body)

body.add newCall(bindSym"inc" , x[0])

var newFor = newTree(nnkForStmt)

for i in 1..x.len-3:

newFor.add x[i]

 # transform enumerate(X) to 'X':

newFor.add x[^2][^1]

newFor.add body

result.add newFor

 # wrap the whole macro in a block to create a new scope:

result = newTree(nnkBlockExpr, newEmptyNode(), result)

for a, b in enumerate(items([1, 2, 3])):

echo a, " " , b

 # without wrapping the macro in a block, we'd need to choose different

 # names for àànd `b` here to avoid redefinition errors

for a, b in enumerate(10, [1, 2, 3, 5]):

echo a, " " , b

 For readability and maintainability it is best to use the least

 powerful programming construct that still accomplishes the

197

goal. So the "check list" is:

(1) Use an ordinary proc/iterator, if possible. (2) Else: Use a

generic proc/iterator, if possible. (3) Else: Use a template, if

possible. (4) Else: Use a macro.

The Part III: Mastering Macros contains many more examples of how to write and use macros.

198

Chapter 29. Lifetime-tracking hooks

The memory management for Nim’s standard string and seq types as well as other standard collections is performed via so-called "Lifetime-tracking hooks", which are particular type bound operators.

There are different hooks for each (generic or concrete) object type T (T can also be a distinct type) that are called implicitly, in strategic places.

The word “hook” here does not imply any kind of dynamic

 binding or runtime indirections, the implicit calls are statically

bound and potentially inlined.

29.1. =destroy hook

A =destroy hook frees the object’s associated memory and releases other

associated resources. Variables are destroyed via this hook when they go out of scope or when the routine they were declared in is about to return.

The prototype of this hook for a type T needs to be:

proc `=destroy`(x: T)

The general pattern in =destroy looks like:

proc `=destroy`(x: T) =

 # first check if 'x' was moved to somewhere else:

if x.field != nil:

freeResource(x.field)

199

29.2. =wasMoved hook

A =wasMoved hook sets the object to a state that signifies to the destructor there is nothing to destroy.

The prototype of this hook for a type T needs to be:

proc `=wasMoved`(x: var T)

Usually some pointer field inside the object is set to nil:

proc `=wasMoved`(x: var T) =

x.field = nil

29.3. =sink hook

A =sink hook moves an object around, the resources are stolen from the

source and passed to the destination. It is ensured that the source’s

destructor does not free the resources afterward by setting the object to its

“was moved” value via the =wasMoved hook.

When not provided a combination of =destroy and copyMem is used instead.

This is efficient hence users rarely need to implement their own =sink

operator, it is enough to provide =destroy and =copy, the compiler takes care of the rest.

The prototype of this hook for a type T needs to be:

proc `=sink`(dest: var T; source: T)

The general pattern in =sink looks like:

proc `=sink`(dest: var T; source: T) =

`=destroy`(dest)

`=wasMoved`(dest)

dest.field = source.field

 =sink does not need to check for self-assignments. How self-

assignments are handled is explained later.

200

29.4. =copy hook

The ordinary assignment in Nim conceptually copies the values. The =copy hook is called for assignments that couldn’t be transformed into =sink

operations.

The prototype of this hook for a type T needs to be:

proc `=copy`(dest: var T; source: T)

The general pattern in =copy looks like:

proc `=copy`(dest: var T; source: T) =

 # protect against self-assignments:

if dest.field != source.field:

`=destroy`(dest)

`=wasMoved`(dest)

dest.field = duplicateResource(source.field)

The =copy proc can be marked with the {.error.} pragma. Then any

assignment that otherwise would lead to a copy is prevented at compile-time.

This looks like:

proc `=copy`(dest: var T; source: T) {.error.}

Notice that there is no = before the {.error.} pragma.

29.5. =dup hook

A =dup hook duplicates an object. =dup(x) can be regarded as an optimization replacing a wasMoved(dest); =copy(dest, x) operation.

The prototype of this hook for a type T needs to be:

proc `=dup`(x: T): T

The general pattern in implementing =dup looks like:

201

type

Ref[T] = object

data: ptr T

rc: ptr int

proc `=dup`[T](x: Ref[T]): Ref[T] =

result = x

if x.rc != nil:

inc x.rc[]

29.6. =trace hook

A custom container type can support Nim’s cycle collector --mm:orc via the

=trace hook. If the container does not implement =trace, cyclic data

structures which are constructed with the help of the container might leak memory or resources, but memory safety is not compromised.

The prototype of this hook for a type T needs to be:

proc `=tracè(dest: var T; env: pointer)

env is used by ORC to keep track of its internal state, it should be passed around to calls of the built-in =trace operation.

The general pattern in using =destroy with =trace looks like:

type Test[T] = object

size: Natural

arr: ptr UncheckedArray[T] # raw pointer field

proc makeTest[T](size: Natural): Test[T] =

Test[T](size: size,

arr: cast[ptr UncheckedArray[T]](alloc0(sizeof(T) * size))) proc `=destroy`[T](dest: var Test[T]) =

if dest.arr != nil:

for i in 0 ..< dest.size: dest.arr[i].`=destroy`

dest.arr.dealloc

proc `=tracè[T](dest: var Test[T]; env: pointer) =

if dest.arr != nil: # trace thè`T``'s which may be cyclic for i in 0 ..< dest.size: dest.arr[i].`=traceènv

 # following may be other custom "`hooks`" as required...

202

The =trace hooks (which are only used by --mm:orc) are

 currently more experimental and less refined than the other

hooks.

29.7. Move semantics

A “move” can be regarded as an optimized copy operation. If the source of the copy operation is not used afterward, the copy can be replaced by a

move. The notation lastReadOf(x) is used to describe that x is not used

afterward. This property is computed by a static control flow analysis but can also be enforced by using system.move explicitly.

One can query if the analysis is able to perform a move with

system.ensureMove. move enforces a move operation and calls =wasMoved

whereas ensureMove is an annotation that implies no runtime operation. An ensureMove annotation leads to a static error if the compiler cannot prove that a move would be safe.

For example:

proc main(normalParam: string; sinkParam: sink string) =

var x = "abc"

 # valid:

let valid = ensureMove x

 # invalid:

let invalid = ensureMove normalParam

 # valid:

let alsoValid = ensureMove sinkParam

29.8. Swap

The need to check for self-assignments and also the need to destroy previous objects inside =copy and =sink is a strong indicator to treat system.swap as a builtin primitive of its own that simply swaps every field in the involved objects via copyMem or a comparable mechanism. In other words, swap(a, b) is not implemented as let tmp = move(b); b = move(a); a = move(tmp).

This has further consequences:

• Objects that contain pointers that point to the same object are not

supported by Nim’s model. Otherwise swapped objects would end up in

203

an inconsistent state.

• Sequences can use realloc in the implementation.

29.9. Sink parameters

To move a variable into a collection usually sink parameters are involved. A location that is passed to a sink parameter should not be used afterward. This is ensured by a static analysis over a control flow graph. If it cannot be proven to be the last usage of the location, a copy is done instead and this copy is then passed to the sink parameter.

A sink parameter may be consumed once in the proc’s body but doesn’t have to be consumed at all. The reason for this is that signatures like proc put(t: var Table; k: sink Key, v: sink Value) should be possible without any

further overloads and put might not take ownership of k if k already exists in the table. Sink parameters enable an affine type system, not a linear type system.

The employed static analysis is limited and only concerned with local

variables; however, object and tuple fields are treated as separate entities: proc consume(x: sink Obj) = discard "no implementation"

proc main =

let tup = (Obj(), Obj())

consume tup[0]

 # ok, only tup[0] was consumed, tup[1] is still alive:

echo tup[1]

Sometimes it is required to explicitly move a value into its final position: proc main =

var dest, src: array[10, string]

 # ...

for i in 0..high(dest): dest[i] = move(src[i])

An implementation is allowed, but not required to implement even more

move optimizations (and the current implementation does not).

204

29.10. Rewrite rules

There are two different allowed implementation strategies:

1. The produced finally section can be a single section that is wrapped

around the complete routine body.

2. The produced finally section is wrapped around the enclosing scope.

The current implementation follows strategy (2). This means that resources are destroyed at the scope exit.

 Table 10. Rewrite rules

Pattern

Rewritten as

Rule name

destroy-var

var x: T; stmts

var x: T; try stmts

finally: `=destroy`(x)

nested-function-call

g(f(...))

g(let tmp;

bitwiseCopy tmp,

f(...);

tmp)

finally:

`=destroy`(tmp)

function-sink

x = f(...)

`=sink`(x, f(...))

move-optimization

x = lastReadOf z

`=sink`(x, z)

`=wasMoved`(z)

self-assignment-removal

v = v

discard "nop"

copy

x = y

`=copy`(x, y)

call-to-sink

f_sink(g())

f_sink(g())

copy-to-sink

f_sink(notLastReadOf

(let tmp; `=dup`(y);

y)

f_sink(tmp))

move-to-sink

f_sink(lastReadOf y)

f_sink(y)

`=wasMoved`(y)

205

29.11. Object and array construction

Object and array construction is treated as a function call where the function has sink parameters.

29.12. Destructor removal

=wasMoved(x) followed by a =destroy(x) operation cancel each other out. An implementation is encouraged to exploit this in order to improve efficiency and code sizes. The current implementation does perform this optimization.

29.13. Self assignments

=sink in combination with =wasMoved can handle self-assignments but it’s subtle.

The simple case of x = x cannot be turned into =sink(x, x); =wasMoved(x) because that would lose x's value. The solution is that simple self-assignments that consist of

• Symbols: x = x

• Field access: x.f = x.f

• Array, sequence or string access with indices known at compile-time:

x[0] = x[0]

are transformed into an empty statement that does nothing. The compiler is free to optimize further cases.

The complex case looks like a variant of x = f(x), we consider x =

select(rand() < 0.5, x, y) here:

206

proc select(cond: bool; a, b: sink string): string =

if cond:

result = a # moves a into result

else:

result = b # moves b into result

proc main =

var x = "abc"

var y = "xyz"

 # possible self-assignment:

x = select(true, x, y)

Is transformed into:

proc select(cond: bool; a, b: sink string): string =

try:

if cond:

`=sink`(result, a)

`=wasMoved`(a)

else:

`=sink`(result, b)

`=wasMoved`(b)

finally:

`=destroy`(b)

`=destroy`(a)

proc main =

var

x: string

y: string

try:

`=sink`(x, "abc")

`=sink`(y, "xyz")

`=sink`(x, select(true,

let blitTmp = x

`=wasMoved`(x)

blitTmp,

let blitTmp = y

`=wasMoved`(y)

blitTmp))

echo [x]

finally:

`=destroy`(y)

`=destroy`(x)

As can be manually verified, this transformation is correct for self-

assignments.

207

29.14. Lent type

proc p(x: sink T) means that the proc p takes ownership of x. To eliminate even more creation/copy ←→ destruction pairs, a proc’s return type can be annotated as lent T. This is useful for “getter” accessors that seek to allow an immutable view into a container.

The sink and lent annotations allow us to remove most (if not all)

superfluous copies and destructions.

lent T is like var T a hidden pointer. It is proven by the compiler that the pointer does not outlive its origin. No destructor call is injected for

expressions of type lent T or of type var T.

type

Tree = object

kids: seq[Tree]

proc construct(kids: sink seq[Tree]): Tree =

result = Tree(kids: kids)

 # converted into:

`=sink`(result.kids, kids); `=wasMoved`(kids)

`=destroy`(kids)

proc `[]`*(x: Tree; i: int): lent Tree =

result = x.kids[i]

 # borrows from 'x', this is transformed into:

result = addr x.kids[i]

 # This means 'lent' is like 'var T' a hidden pointer.

 # Unlike 'var' this hidden pointer cannot be used to mutate the object.

iterator children*(t: Tree): lent Tree =

for x in t.kids: yield x

proc main =

 # everything turned into moves:

let t = construct(@[construct(@[]), construct(@[])])

echo t[0] # accessor does not copy the element!

29.15. The .cursor annotation

Nim’s ref type is implemented via the same runtime “hooks” and thus via

reference counting. This means that cyclic structures cannot be freed

immediately (but eventually they are freed as a cycle collector also exists).

208

With the .cursor annotation one can break up cycles declaratively: type

Node = ref object

left: Node # owning ref

right {.cursor.}: Node # non-owning ref

But please notice that this is not C++'s weak_ptr, it means the right field is not involved in the reference counting, it is a raw pointer without runtime

checks.

Automatic reference counting also has the disadvantage that it introduces overhead when iterating over linked structures. The .cursor annotation can also be used to avoid this overhead:

var it {.cursor.} = listRoot

while it != nil:

use(it)

it = it.next

In fact, .cursor more generally prevents object construction/destruction pairs and so can also be useful in other contexts. The alternative solution would be to use raw pointers (ptr) instead which is more cumbersome and also more dangerous for Nim’s evolution: Later on, a compiler can try to prove .cursor annotations to be safe, but for ptr a compiler cannot report possible

problems.

29.16. Cursor inference / copy elision

The current implementation also performs .cursor inference. Cursor

inference is a form of copy elision.

To see how and when we can do that, think about this question: In dest = src when do we really have to materialize the full copy? - Only if dest or src are mutated afterward. If dest is a local variable that is simple to analyze. And if src is a location derived from a formal parameter, we also know it is not mutated! In other words, we do a compile-time copy-on-write analysis.

This means that “borrowed” views can be written naturally and without

explicit pointer indirections:

209

proc main(tab: Table[string, string]) =

let v = tab["key"] # inferred as .cursor because 'tab' is not mutated.

 # no copy into 'v', no destruction of 'v'.

use(v)

useItAgain(v)

29.17. Hook lifting

The hooks of a tuple type (A, B, …) are generated by lifting the hooks of the involved types A, B, … to the tuple type. In other words, a copy x = y is implemented as x[0] = y[0]; x[1] = y[1]; …, likewise for =sink and

=destroy.

Other value-based compound types like object and array are handled

correspondingly. For object however, the generated hooks can be

overridden. This can also be important to use an alternative traversal of the involved data structure that is more efficient or in order to avoid deep recursions.

29.18. Hook generation

The ability to override a hook leads to a phase ordering problem:

type

Foo[T] = object

proc main =

var f: Foo[int]

 # error: destructor for 'f' called here before

 # it was seen in this module.

proc `=destroy`[T](f: var Foo[T]) =

discard

The solution is to define proc `=destroy[T](f: var Foo[T])` before it is used.

The compiler generates implicit hooks for all types in strategic places so that an explicitly provided hook that comes too “late” can be detected reliably.

These strategic places are derived from the following rewrite rules:

• In the construct let/var x = … (var/let binding) hooks are generated for typeof(x).

210

• In x = … (assignment) hooks are generated for typeof(x).

• In f(…) (function call) hooks are generated for typeof(f(…)).

• For every sink parameter x: sink T the hooks are generated for

typeof(x).

29.19. nodestroy pragma

The experimental nodestroy pragma inhibits hook injections. This can be

used to specialize the object traversal in order to avoid deep recursions: type Node = ref object

x, y: int32

left, right: Node

type Tree = object

root: Node

proc `=destroy`(t: var Tree) {.nodestroy.} =

 # use an explicit stack so that we do not get stack overflows:

var s: seq[Node] = @[t.root]

while s.len > 0:

let x = s.pop

if x.left != nil: s.add(x.left)

if x.right != nil: s.add(x.right)

 # free the memory explicitly:

dispose(x)

 # notice how even the destructor for 's' is not called implicitly

 # anymore thanks to .nodestroy, so we have to call it on our own:

`=destroy`(s)

As can be seen from the example, this solution is hardly sufficient and should eventually be replaced by a better solution.

29.20. Copy on write

String literals are implemented as "copy on write". When assigning a string literal to a variable, a copy of the literal won’t be created. Instead the variable simply points to the literal. The literal is shared between different variables which are pointing to it. The copy operation is deferred until the first write.

 The abstraction fails for addr x because whether the address is

211

going to be used for mutations is unknown.

prepareMutation should be called before the address operation:

var x = "abc"

var y = x

prepareMutation(y)

moveMem(addr y[0], addr x[0], 3)

assert y == "abc"

29.21. Practice

In practice the hooks for memory and resource management should be used

rarely; Nim usually does the right thing and overriding the default behavior can be both error-prone and result in non-intuitive behavior. However, the hooks are very useful for interoperability with C and C++.

Here is a prototypical example of a C library that we want to wrap:

 #include <stdlib.h>

typedef struct {

double x;

char* s;

} Obj;

Obj* createObj(const char* s) {

Obj* result = (Obj*) malloc(sizeof(Obj));

result->x = 40.0;

result->s = malloc(100);

strcpy(result->s, s);

return result;

}

void destroyObj(Obj* obj) {

free(obj->s);

free(obj);

}

void useObj(Obj* obj) {}

double getX(Obj* obj) { return obj->x; }

The wrapper should automate the memory management so that destroyObj

does not have to be called explicitly:

212

type

Obj = object ①

proc createObj(s: cstring): ptr Obj {.importc.} ②

proc destroyObj(obj: ptr Obj) {.importc.}

proc useObj(obj: ptr Obj) {.importc.}

proc getX(obj: ptr Obj): float {.importc.}

type

Wrapper = object ③

obj: ptr Obj

proc `=destroy`(dest: var Wrapper) =

if dest.obj != nil: destroyObj(dest.obj) ④

proc `=copy`(dest: var Wrapper; source: Wrapper) {.error.} ⑤

proc create(s: string): Wrapper = Wrapper(obj: createObj(cstring(s))) ⑥

proc use(w: Wrapper) = useObj(w.obj)

proc getX(w: Wrapper): float = getX(w.obj) ⑦

proc useWrapper = ⑧

let w = @[create("abc"), create("def")] ⑨

use w[0]

echo w[1].getX ⑩

useWrapper()

① The C struct is mapped directly to a Nim object.

② The procs createObj, destroyObj, useObj, and getX are imported from C.

③ The Wrapper object encapsulates a C ptr Obj.

④ The wrapper has a custom destructor that calls destroyObj. The destructor is called automatically if the lifetime of an object of type Wrapper ends.

⑤ Because the C library offers no way to copy an Obj the wrapper does not offer it either. Any attempt to copy a wrapper will be rejected by the

compiler.

⑥ create is used to wrap createObj. Its input parameter was changed from cstring to string in order to improve memory safety.

⑦ Obj also offers useObj and getX operations. These are wrapped in order to work on Wrapper. Alternatively a converter from Wrapper to ptr Obj could be provided.

213

⑧ useWrapper shows how the wrapper can be used.

⑨ Sequences of Wrapper can be created easily and the memory management

is automatic.

⑩ When useWrapper returns w's destructor is called which calls the

destructor of Wrapper. The destructor of Wrapper then calls destroyObj

ensuring that there are no memory leaks.

At the time of this writing, the example needs to use the

--mm:orc or --mm:arc compiler switches. Otherwise the

 destruction of the sequence of Wrapper does not call Wrappers

destructor. Later versions of the compiler will make --mm:orc

the default.

Instead of prohibiting the =copy operation via {.error.} the wrapper could also offer reference counting:

type

Wrapper = object

obj: ptr Obj

rc: ptr int ①

proc `=destroy`(dest: var Wrapper) =

if dest.obj != nil:

if dest.rc[] == 0: ②

dealloc(dest.rc) ③

destroyObj(dest.obj)

else:

dec dest.rc[]

proc `=copy`(dest: var Wrapper; source: Wrapper) = ④

inc source.rc[] ⑤

`=destroy`(dest) ⑥

dest.obj = source.obj ⑦

dest.rc = source.rc

proc create(s: string): Wrapper =

Wrapper(obj: createObj(cstring(s)),

rc: cast[ptr int](alloc0(sizeof(int)))) ⑧

① Wrapper now has a reference count (rc). This must be a ptr or a ref and allocated on the heap so that its value is shared between different

instances.

② Use the reference count to see if destroyObj needs to be called.

214

③ The reference count itself also needs to be deallocated because it is stored on the heap.

④ The copy operation.

⑤ Increment the source's reference count first in order to protect against self assignments.

⑥ Destroy what was in dest as we are about to overwrite its contents.

⑦ Copy the data over.

⑧ alloc0 allocates memory of a given size and sets the memory cells to zero.

It is used here to initialize the reference count.

215

216

Chapter 30. Strict funcs

As an experimental mode called strictFuncs a stricter definition of “side effect” is available. In addition to the existing rule that a side effect is calling a function with side effects the following rule is also enforced:

A store to the heap via a ref or ptr indirection is not allowed.

For example:

{.experimental: "strictFuncs" .}

type

Node = ref object

le, ri: Node

data: string

func len(n: Node): int =

 # valid: len does not have side effects

var it = n

while it != nil:

inc result

it = it.ri

func mut(n: Node) =

n.data = "yeah" # short for: m[].data = "yeah"

 # Error: 'mut' can have side effects

Mutations via var T and out T parameters continue to be allowed in a strict func. Hence a prototype such as func add[T](s: var seq[T]; elem: sink T) is valid and can be used in the following func:

func tokenize(input: string): seq[string] =

result = @[]

for w in splitWhitespace(input): result.add w

217

The mutation that add performs does not count as a side effect and so tokenize can be a func.

218

Chapter 31. View types



View types are more effective with "strict funcs".

A view type is a type that is or contains one of the following types:

• lent T (view into T)

• openArray[T] (pair of (pointer to array of T, size))

For example:

type

View1 = openArray[byte]

View2 = lent string

View3 = Table[openArray[char], int]

Exceptions to this rule are types constructed via ptr or proc. For example, the following types are not view types:

type

NotView1 = proc (x: openArray[int])

NotView2 = ptr openArray[char]

NotView3 = ptr array[4, lent int]

The mutability aspect of a view type is not part of the type but part of the locations it’s derived from.

A view is a symbol (a let, var, const, etc.) that has a view type.

Nim allows view types to be used as local variables. In the current

implementation this feature needs to be enabled via {.experimental:

"views".}.

219

A local variable of a view type borrows from the locations and it is statically enforced that the view does not outlive the location it was borrowed from.

For example:

{.experimental: "views" .}

proc take(a: openArray[int]) =

echo a.len

proc main(s: seq[int]) =

var x: openArray[int] = s # 'x' is a view into 's'

 # it is checked that 'x' does not outlive 's' and

 # that 's' is not mutated.

for i in 0 .. high(x):

echo x[i]

take(x)

take(x.toOpenArray(0, 1)) # slicing remains possible

let y = x # create a view from a view

take y

 # it is checked that 'y' does not outlive 'x' and

 # that 'x' is not mutated as long as 'y' lives.

main(@[11, 22, 33])

A local variable of a view type can borrow from a location derived from a parameter, another local variable, a global const or let symbol or a thread-local var or let.

Let p be the proc that is analyzed for the correctness of the borrow operation.

Let source be one of:

• A formal parameter of p. Note that this does not cover parameters of

inner procs.

• The result symbol of p.

• A local var or let or const of p. Note that this does not cover locals of inner procs.

• A thread-local var or let.

• A global let or const.

220

• A constant array/seq/object/tuple constructor.

31.1. Path expressions

A location derived from source is then defined as a path expression that has source as the owner. A path expression e is defined recursively:

• source itself is a path expression.

• Container access like e[i] is a path expression.

• Tuple access e[0] is a path expression.

• Object field access e.field is a path expression.

• system.toOpenArray(e, …) is a path expression.

• Pointer dereference e[] is a path expression.

• An address addr e, unsafeAddr e is a path expression.

• A type conversion T(e) is a path expression.

• A cast expression cast[T](e) is a path expression.

• f(e, …) is a path expression if f's return type is a view type. Because the view can only have been borrowed from e, we then know that owner of

f(e, …) is e.

If a view type is used as a return type, the location must borrow from a location that is derived from the first parameter that is passed to the proc.

See Section 21.10, “Var return type” for details about how this is done for var T.

A mutable view can borrow from a mutable location, an immutable view can borrow from both a mutable or an immutable location.

If a view borrows from a mutable location, the view can be used to update the location. Otherwise it cannot be used for mutations.

The duration of a borrow is the span of commands beginning from the assignment to the view and ending with the last usage of the view.

For the duration of the borrow operation, no mutations to the borrowed

locations may be performed except via the view that borrowed from the

location. The borrowed location is said to be sealed during the borrow.

221

{.experimental: "views" .}

type

Obj = object

field: string

proc dangerous(s: var seq[Obj]) =

let v: lent Obj = s[0] # seal 's'

s.setLen 0 # prevented at compile-time because 's' is sealed.

echo v.field

The scope of the view does not matter:

{.experimental: "views" .}

type

Obj = object

field: string

proc valid(s: var seq[Obj]) =

let v: lent Obj = s[0] # begin of borrow

echo v.field # end of borrow

s.setLen 0 # valid because 'v' isn't used afterward

The analysis requires as much precision about mutations as is reasonably obtainable, so it is more effective with the experimental strict funcs feature

(see Chapter 30, Strict funcs). In other words --experimental:views:option: works better with --experimental:strictFuncs:option:.

The analysis is currently control flow insensitive:

proc invalid(s: var seq[Obj]) =

let v: lent Obj = s[0]

if false:

s.setLen 0

echo v.field

In this example, the compiler assumes that s.setLen 0 invalidates the borrow operation of v even though a human being can easily see that it will never do that at runtime.

222

31.2. Start of a borrow

A borrow starts with one of the following:

• The assignment of a non-view-type to a view-type.

• The assignment of a location that is derived from a local parameter to a view-type.

31.3. End of a borrow

A borrow operation ends with the last usage of the view variable.

31.4. Reborrows

A view v can borrow from multiple different locations. However, the borrow is always the full span of v's lifetime and every location that is borrowed from is sealed during v's lifetime.

223

224

Part III: Mastering Macros

225

226

Chapter 32. Introduction

So far we have seen simple examples of how Nim programs can be written

and we have looked at how the various language features are defined in

quite a formal manner. This part focusses on advanced programming

techniques, in particular how Nim’s macro system can be used to raise the level of abstraction.

This part assumes that the reader is already familiar with Chapter 28,

 Macros.

227

228

Chapter 33. AST introspection

The mapping from Nim’s syntax to syntax trees is rather subtle. While the syntax is optimized for readability and conciseness the syntax trees are designed for ease of construction and traversal. Like in Lisp the tree consists of nested nodes where each node is of a certain "kind" such as "if statement"

(nnkIfStmt) or "routine call" (nnkCall).

The mapping can easily be seen with treeRepr:

import std / macros

macro investigate(body: untyped) = ①

echo treeRepr body ②

investigate:

if undeclaredIdentifier == 3:

echo "3"

else:

echo "not 3"

① Declares a macro called investigate that works on untyped trees.

② Calls treeRepr which produces a debug string of body.

Because macro expansion happens at compile time this program produces at compile time:

229

StmtList

IfStmt

ElifBranch

Infix

Ident "=="

Ident "undeclaredIdentifier"

IntLit 3

StmtList

Command

Ident "echo"

StrLit "3"

Else

StmtList

Command

Ident "echo"

StrLit "not 3"

We can see that a list of statements StmtList is passed to investigate. In order to create a StmtList one can use newTree(nnkStmtList, <children here>).

33.1. Typed vs untyped ASTs

The difference between typed and unytyped parameters is important for

templates and it is even more important for macros. The AST that is passed to a typed macro parameter can differ significantly from an AST that is passed to an untyped macro parameter.

For example:

import std / macros

macro investigateTyped(body: typed) =

echo treeRepr body

var needsToBeDeclaredIdentifier = 0

investigateTyped:

if needsToBeDeclaredIdentifier == 3:

echo "3"

else:

echo "not 3"

This program produces at compile time:

230

StmtList

IfStmt

ElifBranch

Infix

Sym "=="

Sym "needsToBeDeclaredIdentifier"

IntLit 3

Command

Sym "echo"

HiddenStdConv

Empty

Bracket

StrLit "3"

Else

Command

Sym "echo"

HiddenStdConv

Empty

Bracket

StrLit "not 3"

Note how symbol lookups happened producing nnkSym nodes and the echo

calls have mysterious hidden conversion nodes containing an nnkBracket

node. In other words, echo "3" was transformed into echo ["3"] because echo uses a varargs parameter. Many details like these have to be understood

before one can write a macro operating on typed ASTs. For this reason most of the following examples operate on untyped ASTs.

231

232

Chapter 34. AST creation

An AST can be created in different ways and these ways can all be combined freely. But one of the easiest ways is to use quote do. For example, an

operator ==~ that checks if two floating point values almost equal can be written as a template:

template `==~`(x, y: float): bool = abs(x - y) < 1e-9

Or it can be written as a macro that uses quote do:

import std / macros

macro `==~`(x, y: float): bool =

result = quote do:

abs(`x` - `y`) < 1e-9

quote do turns a pattern of code into a NimNode. Inside the pattern backticks can be used to access symbols from the macro’s scope. The ==~ macro can

also be written as:

import std / macros

macro `==~`(x, y: float): bool =

result = newCall(bindSym"<" ,

newCall(bindSym"abs" , newCall(bindSym"-" , x, y)), newLit(1e-9))

In my opinion this more imperative style of AST creation is easier to

understand for beginners and so it is what is used in the following more complex examples.

233

234

Chapter 35. Collect macro

As our first complex example we will look at how Nim’s collect macro can be implemented. The standard library already contains collect, it can be found in std/sugar. collect is the preferred method of turning a potentially nested loop construct from a statement to an expression.

Instead of:

import std / tables

const Data = toTable({ "a" : 1, "b" : 2, "c" : 3}) var s = newSeq[string]()

for k, v in Data.pairs:

if v mod 2 == 0:

s.add k

One can use the more declarative:

import std / [tables, sugar]

const Data = toTable({ "a" : 1, "b" : 2, "c" : 3}) let s = collect(newSeq):

for k, v in Data.pairs:

if v mod 2 == 0: k

An an exercise we will reimplement collect. For a beginner, writing a macro is usually a hard task.

As the first step we postulate the code pattern that the macro needs to

expand to: collect(constructorCall): body should be translated into

something like:

235

block:

var tmp = constructorCall[typeOf(body)]()

sinkInto(body, tmp.add)

tmp

where sinkInto(body, tmp.add) describes the AST where the final expression x of body is replaced by tmp.add x. We have to walk if-expressions, loops and

“statement list expressions” to arrive at the “final expression” which is the part of the body that produces the value:

import macros

proc sinkInto(n, fullBody, res, bracketExpr: NimNode): NimNode = ①

case n.kind

of nnkStmtList, nnkStmtListExpr, nnkBlockStmt, nnkBlockExpr,

nnkWhileStmt, nnkForStmt, nnkElifBranch, nnkElse, nnkElifExpr,

nnkOfBranch, nnkExceptBranch: ②

result = copyNimTree(n)

if n.len >= 1:

result[^1] = sinkInto(n[^1], fullBody, res, bracketExpr)

of nnkIfExpr, nnkIfStmt, nnkTryStmt: ③

result = copyNimTree(n)

for i in 0..<n.len:

result[i] = sinkInto(n[i], fullBody, res, bracketExpr)

of nnkCaseStmt:

result = copyNimTree(n)

for i in 1..<n.len: ④

result[i] = sinkInto(n[i], fullBody, res, bracketExpr)

else:

if bracketExpr.len == 1: ⑤

bracketExpr.add(newCall(bindSym"typeof" , fullBody))

result = newCall(bindSym"add" , res, n) ⑥

macro collect*(init, body: untyped): untyped =

let res = genSym(nskVar, "collectResult") ⑦

let bracketExpr = newTree(nnkBracketExpr, init) ⑧

let transformedBody = sinkInto(body, body, res, bracketExpr) ⑨

let call = newTree(nnkCall, bracketExpr) ⑩

result = newTree(nnkStmtListExpr, newVarStmt(res, call),

transformedBody, res) ⑪

① Traverses n recursively and produces a copy of n except that the value producing subexpression x is replaced by add(res, x). fullBody is the full body and it is used for producing init[typeof(body)]() which is

accomplished by modifying bracketExpr.

236

② For nnkStmtListExpr and the like we only follow the last child. The last child can be accessed via n[^1].

③ For if expressions and the like we follow all possible branches. This

allows for code like if cond: a else: b to be transformed into: if cond: add(tmp, a) else: add(tmp, b).

④ A case expression is just like an if expression except that we start from 1

here in order to skip the selection expression which is not the value

producing expression that we are interested in.

⑤ If the bracketExpr is still the init expression, add typeof(body) to it producing init[typeof(body)].

⑥ We arrived at the value producing expression. Transform it to add(res, value).

⑦ We create a (var res = init[typeof(body)]; transformedBody; res)

construct which is called an nnkStmtListExpr tree. res is a fresh variable produced from macros.genSym.

⑧ The construct init[T] is generated as an nnkBracketExpr.

⑨ Let sinkInto perform the recursive traversal.

⑩ We transform init[T] to init[T]().

⑪ The result of the macro is this (var res = init[typeof(body)];

transformedBody; res) construct.

Note that this is a simplified implementation, the standard library’s collect macro implements more features and is more flexible.

237

238

Chapter 36. strformat

Macros can be used to translate mini languages embedded inside string

literals into Nim code. A good example for this is the standard library’s strformat module.

Instead of a & " " & $b & " " & c you can write fmt"{a} {b} {c}". Inside the string literal, curly braces enclose a Nim expression. The expression is turned into a string via $. The standard library’s fmt supports many features for formatting strings, integers and floats, their precision and alignment.

However, in our reimplementation we keep things simple: We only support

curly braces and use macros.parseExpr to do the hard part of parsing the Nim subexpressions into Nim’s AST.

It is good style to split up the tasks “parsing” and “synthesis” into different routines. Only the synthesis uses Nim’s AST API. The parser/tokenizer is implemented as an iterator:

type TokenKind = enum ①

Literal ②

NimExpr ③

iterator tokenize(s: string): (TokenKind, string) = ④

var i = 0

var tok = Literal ⑤

while i < s.len:

let start = i

case tok

of Literal:

while i < s.len and s[i] != '{' : inc i ⑥

of NimExpr:

while i < s.len and s[i] != '}' : inc i ⑦

yield (tok, s.substr(start, i-1))

tok = if tok == Literal: NimExpr else: Literal ⑧

inc i

239

① The tokenizer distinguishes only between two kinds of tokens.

② A Literal token means it should be interpreted literally. For example, the

"abc" part from "{x}abc".

③ A NimExpr needs to be parsed as a Nim expression. For example, the "x"

part from "{x}abc".

④ tokenize yields the determined tokens. A token is a pair of (TokenKind, string).

⑤ The tokenizer starts in the state Literal.

⑥ If the tokenizer is in the state Literal it needs to proceed until either the end of the string is reached or until a '{' is found.

⑦ If the tokenizer is in the state NimExpr it needs to proceed until either the end of the string is reached or until a '}' is found.

⑧ After a Literal token a NimExpr token must follow and vice versa.

The fmt macro uses this tokenize iterator:

import macros

macro fmt*(pattern: static[string]): string = ①

var args = newTree(nnkBracket) ②

for (k, s) in tokenize(pattern): ③

case k

of Literal:

if s != "" :

args.add newLit(s) ④

of NimExpr:

args.add newCall(bindSym"$" , parseExpr(s)) ⑤

if args.len == 0: ⑥

result = newLit("")

else:

result = nestList(bindSym"&" , args) ⑦

var x = 0.9

var y = "abc"

echo fmt"{x} {y}" ⑧

① fmt takes a static[string] as input. This means that inside the macro

body pattern really is of type string and not of NimNode making the data easier to access.

② args collects all the arguments that we pass to the & operator.

240

③ We use the tokenize iterator and unpack the token tuple into k and s.

④ If the token is a Literal and not the empty string, we can append s to args. But we need to convert s to a NimNode first via newLit(s).

⑤ If the token is a NimExpr we use macros.parseExpr to parse it into a NimNode.

We then wrap the node and use it as an argument to a call of the $

operator. Thus fmt supports any expression that can be turned into a

string via $.

⑥ For a call like fmt"" it is possible that args remains empty. We map this case to the empty string literal "".

⑦ Else we call the concatenation operator & with args. However & only accepts two arguments so we need to turn &[a, b, c] to (a & b) & c. This nesting of arguments is performed by macros.nestList.

⑧ Produces the output: "0.9 abc".

241

242

Chapter 37. strscans

The tokenize iterator, as it was implemented in the previous chapter, is straight-forward but imperative code, and the task of parsing comes up frequently in day to day programming. Ideally we want to program in a

 declarative way; only describing how to extract the desired data via patterns and not how to advance any required auxiliary cursors, for example. The

standard library offers the relatively unknown module strscans that helps with this task.

strscans.scanTuple can be used to extract data into a custom tuple type. The tuple type depends on the pattern that is tried to match. For example:

import std / strscans

const InputData = "1000-01-01 00:00:00" ①

let (ok, year, month, day, time) = scanTuple(InputData, " $i -$i -is $+") ②

if ok:

assert year == 1000 ③

assert month == 1 ④

assert day == 1 ⑤

assert time == "00:00:00" ⑥

① InputData contains a date a clock time that we seek to parse.

② The string "$i-$i-is$"ìs a description of how to extract the data.

Characters are matched verbatim except for substrings starting with

`$`. `$ì means to expect a string substring that can be parsed into

an ìnt`. `$s` means to skip optional whitespace. `$ matches the rest

of the input.

③ year is inferred to be of type int because it corresponds to the first $i pattern. For InputData its value is 1000.

243

④ month is inferred to be of type int because it corresponds to the second $i pattern. For InputData its value is 1.

⑤ day is inferred to be of type int because it corresponds to the third $i pattern. For InputData its value is 1.

⑥ time is inferred to be of type string because it corresponds to the $+

pattern. For InputData its value is "00:00:00".

scanTuple needs to produce a tuple of variable length depending on the

pattern that we pass to it. The first component of the tuple is always of type bool and contains the information if the parse was successful.

In order to simplify the task that scanTuple has to do, we first create a couple of helper routines operating on a parsing State:

import std / parseutils

type

State = object ①

i: int

err: bool

proc matchChar(s: string; c: var State; ch: char) = ②

if not c.err:

if c.i < s.len and s[c.i] == ch:

inc c.i

else:

c.err = true

proc skipWhitespace(s: string; c: var State) = ③

if not c.err:

while c.i < s.len and s[c.i] in { ' ' , ' \t ' , ' \n ' , ' \r ' }: inc c.i proc matchInt(s: string; res: var int; c: var State) = ④

if not c.err:

let span = parseInt(s, res, c.i)

if span > 0:

inc c.i, span

else:

c.err = true

proc matchRest(s: string; res: var string; c: var State) = ⑤

if not c.err:

res = s.substr(c.i)

① The parsing State consists of the current parsing position i and an error flag called err. Once err is true, it is never reset to false.

244

② matchChar tries to match a single character ch.

③ skipWhitespace skips optional whitespace.

④ matchInt tries to match the input at position c.i against an integer. It does so with the help of the standard library’s parseutils.parseInt function.

⑤ matchRest matches the rest of the input string and stores it into res.

This design with an explicit error state allows us to emit sequential code rather than (potentially deeply) nested if statements:

import std / macros

macro scanTuple*(input: string; pattern: static[string]): untyped = ①

var i = 0

var body = newTree(nnkStmtList) ②

var tup = newTree(nnkTupleConstr) ③

tup.add newLit(true)

let stateVar = genSym(nskVar, "stateVar")

let res = genSym(nskVar, "scanResult")

while i < pattern.len:

if pattern[i] == '$' :

inc i

case pattern[i]

of 'i' : ④

body.add newCall(bindSym"matchInt" , input,

newTree(nnkBracketExpr, res, newLit(tup.len)), stateVar)

tup.add newLit(0)

of 's' : ⑤

body.add newCall(bindSym"skipWhitespace" , input, stateVar) of '+' : ⑥

body.add newCall(bindSym"matchRest" , input,

newTree(nnkBracketExpr, res, newLit(tup.len)), stateVar)

tup.add newLit("")

else:

error "invalid pattern"

inc i

else: ⑦

body.add newCall(bindSym"matchChar" , input,

stateVar, newLit(pattern[i]))

inc i

result = newTree(nnkStmtListExpr, ⑧

newVarStmt(res, tup),

newVarStmt(stateVar, newTree(nnkObjConstr, bindSym"State")), body,

newAssignment(newTree(nnkBracketExpr, res, newLit(0)),

newCall(bindSym"not" , newDotExpr(stateVar, ident"err"))), res)

245

 when defined(debugScanTuple):

echo repr result ⑨

① Because the exact return tuple type depends on pattern, only untyped can be used as the return type.

② body collects the list of statements that contains the calls to the helpers matchChar, skipWhitespace, matchInt, and matchRest.

③ tup collects the resulting tuple value (not the tuple type!).

④ We map the pattern $i to a call to matchInt.

⑤ We map the pattern $s to a call to skipWhitespace.

⑥ We map the pattern $+ to a call to matchRest.

⑦ Every other character in pattern is mapped to matchChar.

⑧ The result of scanTuple is a statement list expression roughly like (var scanResult = (false, …); var stateVar = State(); body; scanResult[0]

= not stateVar.err; scanResult).

⑨ The when … section allows us to inspect the produced code easily.

If we compile the program with the switch --define:debugScanTuple it enables the line echo repr result so at compile-time the produced AST is written to standard output:

var scanResult_123 = (true, 0, 0, 0, "") var stateVar_456 = State()

matchInt(InputData, scanResult_123[1], stateVar_456)

matchChar(InputData, stateVar_456, '-')

matchInt(InputData, scanResult_123[2], stateVar_456)

matchChar(InputData, stateVar_456, '-')

matchInt(InputData, scanResult_123[3], stateVar_456)

skipWhitespace(InputData, stateVar_456)

matchRest(InputData, scanResult_123[4], stateVar_456)

scanResult_123[0] = not(stateVar_456.err)

scanResult_123

echo repr result is an idiom worth remembering; it is important for

debugging macro code and also allows for an easier development process.

246

Chapter 38. HTML trees

Embedding mini languages within string literals is often not the best way to model a problem domain. An alternative is to leverage the full power of

Nim’s syntax. A templating system for convenient HTML tree generation is a good example here.

But before we can outline the macro’s design we need to model the HTML

tree:

type

Tag* = enum ①

text, html, head, body, table, tr, th, td

TagWithKids = range[html..high(Tag)] ②

HtmlNode* = ref object ③

case tag: Tag

of text:

s: string

else:

kids: seq[HtmlNode]

proc newTextNode*(s: sink string): HtmlNode = ④

HtmlNode(tag: text, s: s)

proc newTree*(tag: TagWithKids; kids: varargs[HtmlNode]): HtmlNode = ⑤

HtmlNode(tag: tag, kids: @kids)

proc add*(parent: HtmlNode; kid: sink HtmlNode) = parent.kids.add kid from std / xmltree import addEscaped

proc toString(n: HtmlNode; result: var string) = ⑥

case n.tag

of text:

result.addEscaped n.s

else:

result.add "<" & $n.tag

if n.kids.len == 0:

247

 result.add " />"

else:

result.add "> \n "

for k in items(n.kids): toString(k, result)

result.add " \n </" & $n.tag & ">"

proc `$`*(n: HtmlNode): string = ⑦

result = newStringOfCap(1000)

toString n, result

① Reduced list of possible HTML tags.

② A subtype of Tag that covers the tags that have kids.

③ A tree of HTML modelled via a case object.

④ newTextNode constructs a single text node.

⑤ newTree constructs a node with a variable number of children.

⑥ toString is recursive and uses a var string parameter as its buffer to write to. This var parameter is crucial for efficiency.

⑦ For convenience a dollar operator is provided that allocates a large buffer and then calls toString to make effective use of this buffer.

newTextNode, newTree, and add are good enough to produce complex HTML

tables:

proc toTable(headers: openArray[string]; data: seq[seq[int]]): HtmlNode = ①

assert headers.len == data.len ②

var tab = newTree(table)

for i in 0..<data.len:

var row = newTree(tr, newTree(th, newTextNode(headers[i])))

for col in data[i]:

row.add newTree(td, newTextNode($col))

tab.add row ③

result = newTree(html, newTree(body, tab)) ④

① toTable produces a 2 dimensional HTML table from headers and data.

② We require that every column has a corresponding header.

③ We must not forget to append the temporary row to tab.

④ The table is wrapped inside <html><body>…</body></html>.

This style of programming is low level and error prone; it is easy to forget to append row to tab, for example. Instead we would like to write the following: 248

proc toTable(headers: openArray[string]; data: seq[seq[int]]): HtmlNode =

assert headers.len == data.len

result = buildHtml:

body:

table:

for i in 0..<data.len:

tr:

th:

text headers[i]

for col in data[i]:

td:

text $col

The domain specific language should compose with ordinary Nim code, we

want to be able to use ordinary if and for statements inside the HTML

templating system.

The required buildHtml macro needs to walk the passed AST recursively and introduce temporary variables for each if and for statement. Every enum

value of TagWithKids is translated to a newTree call, a call to text is translated to newTextNode:

import macros

proc whichTag(n: NimNode): Tag = ①

for e in low(TagWithKids)..high(TagWithKids):

if n.eqIdent($e): return e ②

return text ③

proc traverse(n, dest: NimNode): NimNode = ④

if n.kind in nnkCallKinds: ⑤

if n[0].eqIdent("text"):

expectLen n, 2

result = newCall(bindSym"newTextNode" , n[1]) ⑥

if dest != nil:

result = newCall(bindSym"add" , dest, result)

else:

let tag = whichTag(n[0])

if tag == text:

result = copyNimNode(n) ⑦

result.add n[0]

for i in 1..<n.len:

result.add traverse(n[i], nil)

else:

let tmpTree = genSym(nskVar, "tmpTree") ⑧

result = newTree(nnkStmtList,

newVarStmt(tmpTree, newCall(bindSym"newTree" , n[0]))) 249

 for i in 1..<n.len:

result.add traverse(n[i], tmpTree)

if dest != nil:

result.add newCall(bindSym"add" , dest, tmpTree)

else:

result = copyNimNode(n) ⑨

for child in n:

result.add traverse(child, dest)

macro buildHtml(n: untyped): untyped =

let tmpTree = genSym(nskVar, "tmpTree")

var call = newCall(bindSym"newTree" , bindSym"html") result = newTree(nnkStmtListExpr, newVarStmt(tmpTree, call))

result.add traverse(n, tmpTree) ⑩

result.add tmpTree ⑪

① whichTag returns the tag that the call operation corresponds to.

② body: is mapped to Tag.body etc.

③ It returns text if it is not any tag.

④ traverse does the bulk of the work. It traverses n and produces a modified copy of the AST. dest is the potential destination of where to attach the HtmlNode to.

⑤ If the node is any kind of “call expression” we examine if it is a call to the text operation.

⑥ If so, it translates text x to newTextNode(x).

⑦ If the call is not a call to a tag simply traverse n recursively.

⑧ If the call is a tag transform it into (var tmpTree = newTree(tag);

translatedBody; dest.add tmpTree).

⑨ For any node that is not a call expression traverse n recursively.

⑩ buildHtml calls the traverse auxiliary proc.

⑪ buildHtml transforms n into (var tmpTree = newTree(html); traverse(n); tmpTree) which is an nnkStmtListExpr that produces a value of type

HtmlNode so that it can be bound to a variable.

250

Chapter 39. Advice

The examples we have seen so far do not only show how macros can be

implemented; they are also supposed to show good design of domain specific languages (DSL).

In general a library that uses macros to good effect focuses on:

1. Composability. It should be possible to combine different DSLs into a coherent program.

2. Understandability. Hide the right amount of details but do not hide

important aspects of your programs. For example, injecting temporary

variables is almost always beneficial and arguably a large part of what

drives the distinction between low level and high level programming. On

the other hand, hiding control flow can make your programs more

brittle. Beware of designs that focus on “single character” DSLs such as regular expressions and what strformat offers; these are inherently not

scalable as single characters are hard to remember and it is not obvious how to arrive at a design where optional whitespace can be inserted for

better readability.

3. Documentation. Macros should be documented well. The performed

transformations should be outlined and the design ideas behind the DSL

should be documented.

251

252

Part IV: Mastering Parallelism

253

254

Chapter 40. Introduction

Any modern programming language has to offer plenty of support for

concurrency and parallelism. The reason is that even tiny embedded devices have CPUs with multiple cores these days. In order to make effective use of these systems the programmer has to give hints to the compiler and runtime system and outline which parts of the program can run in parallel.

Concurrency is the overlapped execution of tasks whereas parallelism is the simultaneous execution of tasks. Concurrency can be beneficial as a program structuring mechanism and is tied to the notion of “blocking” or rather its avoidance. The primary example for the benefits of concurrency is a server which should be responsive to new requests even though old requests have not yet finished. Parallelism is a means to make programs run faster and a good example use case for it is graphics programming: Every pixel can be accessed independently of the other pixels on the screen and can be written to in order to change its color and produce a shape.

The mechanisms we look at here are useful both for concurrency and

parallelism.

255

256

Chapter 41. Threading

There are two ways to introduce parallelism in Nim: A rather low-level API for thread creation where a thread of execution is directly provided by the operating system, and a high-level API for annotating potential parallelism that the runtime is free to exploit, but does not have to. The reason for this is that sending a task to a different processor to execute might be more

expensive than executing it on the current processor immediately.

A Nim program starts to run in the so-called “main thread”. The main thread runs every top level statement. In order to run things in parallel at least one additional thread needs to be created.

41.1. createThread

The low-level API is centered around a Thread[T] type. A Thread[T] runs a proc of the type proc (x: T), in other words: the T is the type of a single parameter than can be passed to the proc at thread creation:

proc worker(s: string) {.thread.} = ①

echo s

var background: Thread[string] ②

createThread background, worker, "abc" ③

echo "xyz" ④

joinThread background ⑤

echo "control flow converged" ⑥

① The proc worker runs in parallel with the main thread. So it is annotated as a thread proc. The thread pragma is an alias for gcsafe.

② Declares a variable named background of type Thread of string.

③ Creates a single background thread and attaches it to a variable named background.

257

④ Outputs "xyz" but competes with the output of the background thread.

⑤ Waits for the background thread to finish execution.

⑥ At this point the background thread has finished and control flow

continues in the main thread only.

This program can either produce "abc" followed by "xyz" or "xyz" followed by

"abc". It is not deterministic because both the background thread and the main thread compete for the stdout stream resource that echo uses and one threads gets to output its message first.

41.2. Single worker, single channel

Creating a thread is an expensive operation and so usually one tries to keep a thread running and give it more than one task. This is typically accomplished by having the thread run a loop that waits on a queue or channel for items to work on:

var chan: Channel[string] ①

chan.open() ②

proc worker() {.thread.} = ③

while true: ④

let task = chan.recv() ⑤

if task.len == 0: break ⑥

echo task ⑦

proc log(msg: string) = ⑧

chan.send msg

var logger: Thread[void] ⑨

createThread logger, worker ⑩

log "a" ⑪

log "b"

log "c"

log "" ⑫

joinThread logger ⑬

chan.close() ⑭

① Declares a channel named chan of type Channel of string.

② A channel has to be opened before something can be sent.

③ The proc worker runs in parallel with the main thread. So it is annotated as a thread proc. The thread pragma is an alias for gcsafe.

258

④ The while true loop and break inside the loop is a common idiom when processing channel items.

⑤ Blocks until an item arrives at chan.

⑥ In this rather adhoc protocol an empty string indicates that the thread should stop processing.

⑦ Processes the task.

⑧ Logging a message is as simple as sending the string to chan.

⑨ The thread does not need any data at startup so a Thread of void is used.

⑩ Attaches the worker proc to the logger thread variable.

⑪ The strings "a" then "b" then "c" should be logged.

⑫ Sends the empty string to tell the background thread to shut down.

⑬ Waits for the background to finish.

⑭ A channel must be closed explicitly to free its resources.

259

41.3. Multiple workers, single channel

So far we have only used a single background thread. Together with the main thread we can only make effective use of 2 CPU cores. In order to make use of all available cores an array of worker threads can be used. The following program outlines how this can be done:

var chan: Channel[string]

chan.open()

proc worker(threadIndex: int) {.thread.} = ①

while true:

let task = chan.recv()

if task.len == 0: break

echo "Thread " , threadIndex, ": " , task ②

proc log(msg: string) =

chan.send msg

var loggers: array[8, Thread[int]] ③

for i in 0 ..< loggers.len:

createThread loggers[i], worker, i ④

log "a" ⑤

log "b"

log "c"

for i in 0 ..< loggers.len:

log "" ⑥

joinThreads loggers ⑦

chan.close()

① A thread index is passed to every worker thread.

② The thread index is echoed in addition to task.

③ Declares a thread pool named loggers with 8 entries of type Thread[int].

④ Starts up every thread in the array loggers. The index i is passed to the threadIndex parameter.

⑤ Logs some messages.

⑥ Sends every thread in the thread pool the "should stop" message.

⑦ Waits for all threads in the thread pool to stop execution.

260

Chapter 42. spawn

The Channel and Thread types are available since version 1 of Nim and are widely used. It is common to declare these as global variables. In fact it is highly recommended to do so! While global variables are usually

discouraged, in this case they are justified: There is no aliasing possible between global variables so it is easy to see how many threads are used and which channels they use and how the flow of communication looks. The

topology of the program is clear.

A more elegant mechanism that abstracts away the nitty-gritty details of manual thread pool creation and task delivery is available via spawn: spawn f(args) runs f(args) in parallel or concurrently or potentially in parallel, depending on the implementation. spawn should not be confused with

createThread — it wraps the f(args) call in a task and passes this task to some already existing thread pool. So the f should not be a long-running function that receives data from a channel, it should simply be an operation that is expensive enough to be worthwhile to run in parallel. But depending on the current load of the machine it might not actually run in parallel. Variations of spawn are implemented in different third-party libraries. We focus here on the spawn implementation that is provided by the “Malebolgia” library.

Malebolgia is the successor of std / threadpool and is particularly simple and effective. (Run the command nimble install malebolgia to install it.)

Malebolgia only supports “structured concurrency” which means there is a clear point in the source code where all parallel flows of control converged.

In Malebolgia this is at the end of an awaitAll environment:

261

import malebolgia ①

proc f(i: int) = echo i ②

var m = createMaster() ③

m.awaitAll: ④

for i in 0 ..< 10:

m.spawn f(i) ⑤

 # all tasks are complete ⑥

① Imports the malebolgia dependency that this example requires.

② f is what we run in parallel.

③ Declares a variable m of type Master which is used for synchronization.

④ Waits until all tasks are completed.

⑤ Creates a task that runs f(i) on the hidden thread pool.

⑥ By construction we know that all tasks have been completed at this point.

If a spawned task raises an exception, the master object notices and rethrows the exception after awaitAll. If multiple tasks raise an exception only the first exception is kept and rethrown.

Please be aware that a spawn in Malebolgia is a hint. The library is allowed to ignore the request for parallelism. In other words the above program might execute as if spawn and awaitAll would not exist:

proc f(i: int) = echo i

for i in 0 ..< 10:

f(i)

42.1. Return values

In some implementations of spawn, if the spawned function has a return value of type T the type of spawn f is a FlowVar of type T. FlowVar is short for “data flow variable”. It has the interesting property that data races are prevented by construction: A data flow variable can be written to only once and a read operation blocks until it was written to. In other words, a read operation synchronizes.

But the awaitAll operation also synchronizes! Malebolgia takes this insight to 262

do away with a FlowVar wrapping type. This is particularly useful when every spawn should write to a distinct array location, because we can keep working with seq[T] as opposed to seq[FlowVar[T]].

The following example is a standard benchmark for parallel programming

and demonstrates this benefit:

import malebolgia

proc dfs(depth, breadth: int): int {.gcsafe.} = ①

if depth == 0: return 1

var sums = newSeq[int](breadth) ②

var m = createMaster() ③

m.awaitAll: ④

for i in 0 ..< breadth:

m.spawn dfs(depth - 1, breadth) -> sums[i] ⑤

result = 0

for i in 0 ..< breadth:

result += sums[i] ⑥

echo dfs(8, 8) ⑦

① The dfs proc needs to be annotated with gcsafe manually because it is

recursive. Reminder: gcsafe means that it does not access global variables that use managed memory.

② We collect the results of the subtasks in the seq sums.

③ Creates a Master object m for task coordination.

④ Synchronizes all spawned tasks using an awaitAll block.

⑤ Spawns subtasks recursively and stores the result in sums[i]. For an

explanation of the arrow →, see the text below.

⑥ After the awaitAll operation we can read from sums without any locking or synchronization.

⑦ Shows how to invoke dfs and output its result.

The most important aspect of this example is the → notation: Symbols that denote the target location of the spawn (sums in this case) are treated specially in Malebolgia. The awaitAll macro ensures that these symbols are only

written to and are not used in any context that could imply a read operation.

The macro detects simple “read/write” and “write/write” conflicts.

263

42.2. Sharing memory

A spawned task might run on a different thread than the calling thread or it might not. The reason is that the task creation step can be more expensive than running the code directly. This implies that an operation that waits for an event to occur and is scheduled before the operation that triggers this event can lead to a program making no progress. A special case of this

scenario can happen with channels: If the recv operation is scheduled before a send operation and both operations are scheduled to run on the same

thread.

In fact, channels are much more low level than people realize: every send must be paired with a corresponding recv operation and yet across most (if not all) programming languages and libraries there is no static check to ensure this!

Instead, memory can be shared and locks should then be used to ensure that no data races can happen. Malebolgia offers a type Locker[T] that wraps a container of type T and enforces proper locking operations. The wrapped

value can be accessed as lock x as y where x is the Locker object and y is a fresh identifier that denotes the wrapped object, or it can be accessed as unprotected x as y when the wrapped object should be accessed without a

locking operation. Inside a concurrently running operation one needs to use lock but after the awaitAll we can use unprotected:

import std / [strutils, tables]

import malebolgia

import malebolgia / lockers

proc countWords(filename: string; results: Locker[CountTable[string]]) = ①

for w in splitWhitespace(readFile(filename)): ②

lock results as r: ③

r.inc w ④

proc main() =

var m = createMaster()

var results = initLocker initCountTable[string]() ⑤

m.awaitAll:

m.spawn countWords("fileA.txt" , results) ⑥

m.spawn countWords("fileB.txt" , results)

unprotected results as r: ⑦

r.sort() ⑧

echo r

264

main()

① countWords takes a Locker[CountTable[string]] which is comparable to a var CountTable[string].

② Iterates over every word of the input file. A “word” is a substring

separated by whitespace.

③ Acquires results's attached lock and accesses the CountTable[string]

under the name of r. The lock is released after the block of code that is passed to the lock macro.

④ Under the protection of the lock, tell the CountTable to count the word w.

⑤ Creates an object of type Locker[CountTable[string]] and binds it to the name results.

⑥ Runs countWords for two different files in parallel.

⑦ Accesses the underlying CountTable as r without any locking. This is safe because we know that after the awaitAll operation all parallel processing is complete.

⑧ Sorts the CountTable so that the most commonly used words come first in the output.

There are few restrictions on what values can be shared between threads

and thus what can be wrapped in a Locker but as usual pointers and the

nonrestrictive aliasing they allow for cause trouble.

For example, the following program easily subverts the protection of the lock:

proc example(results: Locker[ptr int]) =

var x: ptr int

lock results as r:

x = r # create an alias

 # store outside of the lock:

x[] = 13

The situation is worse for ref. A ref T pointer is implemented with reference counting and based on the lifetime-tracking hooks. For performance reasons however, the reference counting does not use atomic CPU instructions. Refs cannot be shared in Nim, but they can be moved across threads! For such a move to be successful, a whole subgraph must be moved and no external

references to the data must remain. Even read accesses can be harmful as 265

they keep local variables alive to a point where their destructors introduce hidden write accesses that can cause data races:

proc use(x: ref int) = discard "nothing to do"

proc example(results: Locker[seq[ref int]]) =

var x = new(int)

lock results as r:

r.add x

use x ①

 # scope of `xènds ②

① The use of x outside of the lock keeps x alive and so it is not moved to r but copied.

② The destructor for x runs here and produces a potential data race! The program is invalid should a different thread run code like lock results

as r: r.setLen 0 at the same time that the destructor runs.

The following code avoids this problem:

proc use(x: ref int) = discard "nothing to do"

proc example(results: Locker[seq[ref int]]) =

var x = new(int)

use x ①

lock results as r:

r.add ensureMove x ②

① The unprotected access should happen before x is added to results.

② The compiler has to ensure that x is moved into results.

266

Chapter 43. Isolated data

We can avoid the need to constantly watch out for subtle problems with ref T can be avoided by using Nim’s Isolated[T] type, provided by the module std / isolation.

Isolated is a type that has the following declaration and associated routines: type

Isolated*[T] = object

value: T

proc `=copy`*[T](dest: var Isolated[T]; src: Isolated[T]) {.error.}

 ## Isolated data can only be moved, not copied.

proc `=sink`*[T](dest: var Isolated[T]; src: Isolated[T]) =

 # delegate to value's sink operation

`=sink`(dest.value, src.value)

proc `=destroy`*[T](dest: var Isolated[T]) =

 # delegate to value's destroy operation

`=destroy`(dest.value)

proc isolate*[T](value: sink T): Isolated[T]

 ## Creates an isolated subgraph from the expression `valuè.

 ## Isolation is checked at compile time.

proc unsafeIsolate*[T](value: sink T): Isolated[T] =

 ## Creates an isolated subgraph from the expression `valuè.

 ## Warning: The proc doesn't check whether `valueìs isolated.

Isolated[T](value: value)

proc extract*[T](src: var Isolated[T]): T =

 ## Returns the internal value of `src`.

 ## The value is moved from `src`.

result = move(src.value)

267

Construction must ensure that the invariant holds, namely that the wrapped T is free of external aliases into it. To ensure this property, construction must be done via the proc isolate (or via the unchecked unsafe unsafeIsolate

proc). The isolate proc is the only operation that needs special language support; it performs an "isolation check".

How this isolation check is performed is beyond the scope of the book and the used algorithm is being refined frequently. But a crucial insight is that calls of noSideEffect routines are safe to isolate as long as variables that are of type ref or contain a ref are not used inside the call expression:

import std / isolation

var global: ref int

func identity(x: ref int): ref int = x func select(cond: bool; x, y: ref int): ref int =

(if cond: x else: y)

proc main =

let a = isolate(new(ref int)) ①

let local = new(ref int) ②

let b = isolate(local) ③

global = local ④

let c = isolate select(true, identity(new(ref int)), new(ref int)) ⑤

① new(ref int) creates an object on the heap that cannot possibly be aliased yet. It is safe to be “isolated”.

② Once new(ref int) is assigned to the variable local this variable could used later on breaking the isolation.

③ Hence isolate(local) produces a compile-time error, saying that local

cannot be isolated.

④ local is assigned to global which could be used later on to break the

isolation.

⑤ Nested calls can be isolated too, as long as the calls are noSideEffect and no variables are involved.

In the context of an isolation check, object constructions such as

MyRefObject(a: x, b: y) can be treated like routine calls and hence are

allowed to be isolated.

The Isolated[T] type is powerful enough to model linked lists. The freedom 268

of data races is ensured at compile time. The following program exposes these ideas and uses createThread instead of spawn in order to show that Isolated[T] works with the low-level threading API too:

import std / [os, locks, isolation]

type

MyList {.acyclic.} = ref object ①

data: string

next: Isolated[MyList] ②

template withMyLock*(a: Lock, body: untyped) = ③

acquire(a)

{.gcsafe.}: ④

try:

body

finally:

release(a)

var head: Isolated[MyList] ⑤

var headLock: Lock; initLock headLock ⑥

proc send(x: sink string) =

withMyLock headLock:

head = isolate MyList(data: x, next: move head) ⑦

proc worker() {.thread.} =

var workItem = MyList(nil)

var endReached = false

while true:

withMyLock headLock:

workItem = extract head ⑧

if workItem != nil:

head = move workItem.next ⑨

if workItem.isNil: ⑩

if endReached: break

os.sleep 30 ⑪

else:

if workItem.data.len == 0: ⑫

endReached = true

else:

echo workItem.data

var thr: Thread[void] ⑬

createThread(thr, worker)

send "abc"

send "def"

send ""

joinThread(thr)

269

① The node type a linked list consists of. It has to be annotated with acyclic so that the cycle collector does not get involved; it does not support

objects that are shared between threads.

② Instead of the typical next: MyList we declare next to be of type

Isolated[MyList] to enforce the invariant that list nodes can only be

moved between threads and not copied and so do not require

synchronization via atomic instructions or locks.

③ Even though std / locks offers a withLock template we define our own

here that adds {.gcsafe.}.

④ Since we seek to use ref freely in the block without triggering the notion of “gcsafety” (see Section 26.5, “GC safety effect”) we wrap the whole block in a {.gcsafe.} environment.

⑤ The head of the linked list must be of the type Isolated[MyList] in order to be protected by Nim’s type system.

⑥ Multiple threads access the head of the list potentially at the same time. At runtime head is protected by the headLock lock.

⑦ Moves the old value of head into the next field of the constructed node and isolates this node. Then this node becomes the new head of the singly

linked list. The isolation succeeds because head itself is of type Isolated so uniqueness is preserved as long as it is moved from.

⑧ While traversing the list in the worker thread we unlink the node that we seek to work on.

⑨ After this move operation the object that workItem points to is isolated.

⑩ Since workItem is isolated, we can proceed with the rest of the logic

outside of the withMyLock environment.

⑪ The item is nil and we have not yet reached the stop token, so wait and give the other thread time to send more tasks.

⑫ As in previous examples we use the empty string to denote a stop token.

Due to the singly linked list and the reversing nature of the traversal

(both send and receive use the next field) there can be nodes after the stop token. Thus we have as an ending condition: The end token has been

received and the traversal arrives at a nil node.

⑬ The usual plumbing code to setup the worker thread and send it some

tasks.

270

Chapter 44. Smart pointers

As we can see, Isolated[T] is rather hard to work with and effectively turns an existing ref into a “unique ref”. It is most useful when the ref type stems from a library that we have no control over.

If we have the control over the used pointer type and the pointer is used in a concurrent setting then ref should be avoided and instead a more refined

“smart pointer” type should be used. For example, the “smartptrs” module from the “threading” package provides the SharedPtr, ConstPtr and UniquePtr types.

A SharedPtr is a reference-counted pointer type that uses atomic instructions and thus can be shared between threads. A ConstPtr is a SharedPtr that

enforces that the data it wraps can only be used for read accesses. And finally a UniquePtr is a pointer that has a single owner and can only be moved

around.

The following snippet outlines how SharedPtr can be used to create a singly linked list:

import threading/smartptrs

type

MyList = object ①

data: string

next: SharedPtr[MyList] ②

var head, tail: SharedPtr[MyList] ③

proc send(x: sink string) =

withMyLock headLock:

tail = newSharedPtr MyList(data: x, next: move tail) ④

if head.isNil: head = tail ⑤

271

① The node type a linked list consists of.

② The next field is of type SharedPtr[MyList] so that there can be more

references to it than just the owning reference. This makes list traversals convenient to write as we can avoid the destructive moves during

traversal.

③ The head and tail of the list have to be of type SharedPtr[MyList] too.

④ Appending to the list works much like insertion in the Isolated[T] case.

⑤ Since a SharedPtr supports a copy operation, both head and tail can point to the same object.

The program using SharedPtr arguably can be a little easier than its Isolated variant, but both are no match for a seq container that is wrapped in a lock or a dedicated channel data structure. Pointers are hard to use, especially in a multithreading setting. Modern Nim code avoids pointers for this reason. It is far easier to program in a world of values with restricted aliasing capabilities.

272

Chapter 45. Parallel for each and reduce

There is a form of sharing memory that is particularly simple and effective, and that requires neither locks nor atomic instructions:

1. “Parallel for each”: If a simple operation should be applied to each

element of an array and if the iteration order does not matter, the loop can run in parallel.

2. “Parallel reduce”: A sum or product over an array of numbers can be

computed by splitting up the array in disjoint slices, then computing the sum or product of every slice and then combining the intermediate

results.

The slices we work on need to be sendable to the thread pool’s internal task queue, and without causing a copy of the data. Only a (pointer, length) pair should be transmitted. Unfortunately, Nim’s openArray type is not sendable between threads because the compiler cannot guarantee safe access nor safe lifetimes. Instead, we use the type ptr system.UncheckedArray[T] which is exactly what its name suggests: A raw unsafe pointer to an array of

unspecified size. There is no index checking. We compute the address of an array element with a custom operator @! in order to make the rest of the code more pleasing to the eye:

template `@!`[T](data: openArray[T]; i: int): untyped = ①

cast[ptr UncheckedArray[T]](addr data[i]) ②

① An operator for array element address computation, also known as

pointer arithmetic.

② The address of the i-th array element is addr data[i] but it needs to be casted into the type ptr UncheckedArray as we will access the successive elements data[i], data[i+1], data[i+2], … with it.

273

45.1. parMap

A “for each” operation is also commonly known as a map. We call our parallel map parMap:

import malebolgia

template parMap[T](data: var openArray[T]; bulkSize: int; op: untyped) = ①

proc worker(a: ptr UncheckedArray[T]; until: int) = ②

for i in 0 ..< until: op a[i] ③

var m = createMaster()

m.awaitAll:

var i = 0

while i+bulkSize <= data.len: ④

m.spawn worker(data@!i, bulkSize) ⑤

i += bulkSize ⑥

if i < data.len: ⑦

m.spawn worker(data@!i, data.len-i) ⑧

① parMap takes an openArray, a bulkSize and the operation op to perform. The bulkSize is crucial to make the tasks big enough to amortize the overhead of sending the task to a different CPU.

② The worker operates on a (pointer, length) slice.

③ The worker applies op to every element of the slice.

④ As long as a slice of bulkSize exists…

⑤ …run op on data[i ..< i+bulkSize].

⑥ Advance the run index i by bulkSize and proceed with the next slice.

⑦ The final slice might have fewer elements than bulkSize and needs to be special cased.

⑧ The final slice has length data.len-i.

For parallelization to be worthwhile, the input data array has to be of a sufficient length and the bulkSize must not be too small:

274

var testData: seq[int] = @[]

for i in 0 ..< 10_000: testData.add i ①

proc mul4(x: var int) = x *= 4 ②

parMap(testData, 600, mul4) ③

for i in 0 ..< 10_000: assert testData[i] == i*4 ④

① Creates test data, an array of 10_000 elements with the values 0, 1, 2, …

② mul4 takes a number and multiplies it by 4 and stores the result back into the var parameter. This is passed to the parMap template which mutates

the array in place.

③ Calls parMap with the test data, a block size of 600 and the mul4 routine.

mul4 could also have been declared as a template and parMap would accept it.

④ Tests that the seq was successfully mutated, the i-th element should have the value i * 4.

The power of structured concurrency combined with raw memory accesses

and Nim’s template mechanism cannot be underestimated. Of course, these

dangerous mechanisms should only be used behind the curtain of a safe

abstraction, but that is parMap's purpose. At the same time exposing the bulkSize is crucial for performance tweaking and should not be hidden.

Providing a good default value for bulkSize is basically impossible as it depends on the cost of the op snippet that is run on every array element.

275

45.2. parReduce

There are few if any languages besides Nim that can express implementations of parMap and parReduce as concisely. parReduce can be implemented like this: template parReduce[T](data: openArray[T]; bulkSize: int;

op: untyped): untyped = ①

proc reduce[Tx](a: ptr UncheckedArray[Tx]; until: int): Tx = ②

result = default(Tx) ③

for i in 0 ..< until:

op(result, a[i]) ④

var m = createMaster()

var res = newSeq[int](data.len div bulkSize + 1) ⑤

var r = 0 ⑥

m.awaitAll:

var i = 0

while i+bulkSize <= data.len: ⑦

m.spawn reduce(data@!i, bulkSize) -> res[r] ⑧

r += 1

i += bulkSize

if i < data.len: ⑨

m.spawn reduce(data@!i, data.len-i) -> res[r] ⑩

r += 1

reduce(res@!0, r) ⑪

① parReduce takes an openArray, a bulkSize and which operation op to

perform. The bulkSize is crucial to make the tasks big enough to amortize the overhead of sending the task to a different CPU.

② reduce is a helper proc that takes a slice and accumulates a result. Note that due to a current compiler limitation the inner generic type cannot be named T and so Tx was used.

③ Instead of 0 or 0.0 we use default(Tx) to keep it generic.

④ The actual reduction step. If op is += then op(result, a[i]) is transformed into +=(result, a[i]) which is the same as result += a[i].

⑤ For a parallel reduction we need a helper container that keeps the

intermediate results. It is named res here. It is very important not to

grow the seq after construction! An add might cause a reallocation of the seq which would be disastrous! The binding → res[r] passes the address

of res[r] to a worker thread and so it must be stable.

⑥ r is a helper variable that keeps the currently used length of res.

276

⑦ As long as a slice of bulkSize exists…

⑧ …reduce data[i ..< i+bulkSize] via op.

⑨ The final slice might have fewer elements than bulkSize and needs to be special cased.

⑩ The final slice has length data.len-i.

⑪ All intermediate results need to be reduced after the spawned tasks have been completed. This reduction is also the final result that the template

“returns”.

Now we need to test our parReduce implementation:

var numbers: seq[int] = @[]

for i in 0 ..< 10_000: numbers.add i ①

let sum = parReduce(numbers, 600, `+=`) ②

assert sum == 49995000 ③

① Creates test data, an array of 10_000 elements with the values 0, 1, 2, …

② Calls parReduce with the test data, a block size of 600 and the += builtin operator for integers.

③ Ensures the sum has the correct value.

Notice how this example works even though += is not a real proc but a builtin thanks to the substitution rules of a template.

277

45.3. parFind

Quite analogous to reduce, a search parFind can be written. The task is to return the minimal index of an element that fulfills some criterion or

predicate. The helper proc that runs serially over the slice needs to know the offset so that later on the minimum of the results can be taken:

template parFind[T](data: openArray[T]; bulkSize: int;

predicate: untyped): int = ①

proc linearFind[Tx](a: ptr UncheckedArray[Tx];

until, offset: int): int = ②

for i in 0 ..< until:

if predicate(a[i]): return i + offset ③

return -1 ④

var m = createMaster()

var res = newSeq[int](data.len div bulkSize + 1) ⑤

var r = 0 ⑥

m.awaitAll:

var i = 0

while i+bulkSize <= data.len: ⑦

m.spawn linearFind(data@!i, bulkSize, i) -> res[r] ⑧

r += 1

i += bulkSize

if i < data.len: ⑨

m.spawn linearFind(data@!i, data.len-i, i) -> res[r] ⑩

r += 1

var result = -1 ⑪

for i in 0 ..< r:

if res[i] >= 0: ⑫

result = res[i]

break

result ⑬

① parFind takes an openArray, a bulkSize and the predicate to search for. It returns the smallest index of an element that fulfills predicate. It

produces the value -1 if no such element exists.

② linearFind is a helper proc that takes a slice and performs a linear search.

The offset parameter is used to adjust the index so that it refers to the real position within the openArray and not within the slice. Note that due to a current compiler limitation the inner generic type cannot be named T

and so Tx was used.

③ Returns on a successful search.

④ For an unsuccessful search we return -1.

278

⑤ For a parallel search we need a helper container that keeps the intermediate results. It is named res here. It is very important not to

grow the seq after construction! An add might cause a reallocation of the seq which would be disastrous! The binding → res[r] passes the address

of res[r] to a worker thread and so it must be stable.

⑥ r is a helper variable that keeps the currently used length of res.

⑦ As long as a slice of bulkSize exists…

⑧ …search data[i ..< i+bulkSize].

⑨ The final slice might have fewer elements than bulkSize and needs to be special cased.

⑩ The final slice has length data.len-i.

⑪ Keep in mind that a template does not have an implicitly declared result variable. So we need to declare one here ourselves.

⑫ Iterates over the intermediate results and stops as soon as a valid index was found.

⑬ The final value that is produced by the template is result.

This time we pass a helper template to parFind for our testing purposes: var haystack: seq[int] = @[]

for i in 0 ..< 10_000: haystack.add i ①

template predicate(x): untyped = x == 1000 ②

let idx = parFind(haystack, 600, predicate) ③

assert idx == 1000 ④

① Creates test data, an array of 10_000 elements with the values 0, 1, 2, …

② predicate takes the current array element and compares it to the number 1000. This is helper template that is then passed to parFind.

③ Calls parFind with the test data, a block size of 600 and the predicate.

④ Ensures that idx has the correct value.

279

280

Chapter 46. Final advice

46.1. What to avoid

1. Global variables. Global variables make your routines lack the

noSideEffect effect that is required for using either createThread or spawn safely.

2. Don’t use createThread unless you implement your own thread pool.

3. Don’t use ref. Prefer seq as seq lacks the problematic aliasing aspects and can be moved around just as easily as a ref.

4. Avoid channels as these do not compose well with potential concurrency, where the runtime system is free not to exploit the concurrency and to run a task on the same thread instead.

46.2. What to use

Malebolgia’s abstractions have been the result of years of research and cover most use cases:

1. Use parMap, parFind, and parReduce which work at a very high level and are easy to use correctly and hard to use incorrectly.

2. Use spawn and awaitAll or alternatives that enforce structured

concurrency.

3. Share memory via a Locker[T] wrapper that ensures at compile time that data races cannot happen.

In some sense Malebolgia’s abstractions are the most natural extensions that add concurrency to “single-threaded” Nim:

• Function call expressions can be run in parallel via spawn. Divergent

281

control flow, as it exists in the single-threaded Nim in the form of case or if statements, eventually converges again via awaitAll.

• Spawned function calls can return values.

• Global variables or shared memory in the form of var parameters are

enabled with Locker[T].

282

Appendix A: Grammar

The grammar’s start symbol is module.

This file is generated by compiler/parser.nim.

module = complexOrSimpleStmt ^* (';' / IND{=})

comma = ',' COMMENT?

semicolon = ';' COMMENT?

colon = ':' COMMENT?

colcom = ':' COMMENT?

operator = OP0 | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 | OP7 | OP8 | OP9

| 'or' | 'xor' | 'and'

| 'is' | 'isnot' | 'in' | 'notin' | 'of' | 'as' | 'from'

| 'div' | 'mod' | 'shl' | 'shr' | 'not' | '..'

prefixOperator = operator

optInd = COMMENT? IND?

optPar = (IND{>} | IND{=})?

simpleExpr = arrowExpr (OP0 optInd arrowExpr)* pragma?

arrowExpr = assignExpr (OP1 optInd assignExpr)*

assignExpr = orExpr (OP2 optInd orExpr)*

orExpr = andExpr (OP3 optInd andExpr)*

andExpr = cmpExpr (OP4 optInd cmpExpr)*

cmpExpr = sliceExpr (OP5 optInd sliceExpr)*

sliceExpr = ampExpr (OP6 optInd ampExpr)*

ampExpr = plusExpr (OP7 optInd plusExpr)*

plusExpr = mulExpr (OP8 optInd mulExpr)*

mulExpr = dollarExpr (OP9 optInd dollarExpr)*

dollarExpr = primary (OP10 optInd primary)*

operatorB = OP0 | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 | OP7 | OP8 | OP9 |

'div' | 'mod' | 'shl' | 'shr' | 'in' | 'notin' |

'is' | 'isnot' | 'not' | 'of' | 'as' | 'from' | '..' |

'and' | 'or' | 'xor'

symbol = '`' (KEYW|IDENT|literal|(operator|'('|')'|'['|']'|'{'|'}'|'=')+)+

'`'

| IDENT | 'addr' | 'type' | 'static'

symbolOrKeyword = symbol | KEYW

exprColonEqExpr = expr ((':'|'=') expr

/ doBlock extraPostExprBlock*)?

exprEqExpr = expr ('=' expr

283

 / doBlock extraPostExprBlock*)?

exprList = expr ^+ comma

optionalExprList = expr ^* comma

exprColonEqExprList = exprColonEqExpr (comma exprColonEqExpr)* (comma)?

qualifiedIdent = symbol ('.' optInd symbolOrKeyword)?

setOrTableConstr = '{' ((exprColonEqExpr comma)* | ':') '}'

castExpr = 'cast' ('[' optInd typeDesc optPar ']' '(' optInd expr optPar

')') /

parKeyw = 'discard' | 'include' | 'if' | 'while' | 'case' | 'try'

| 'finally' | 'except' | 'for' | 'block' | 'const' | 'let'

| 'when' | 'var' | 'mixin'

par = '(' optInd

(&parKeyw (ifExpr / complexOrSimpleStmt) ^+ ';'

| ';' (ifExpr / complexOrSimpleStmt) ^+ ';'

| pragmaStmt

| simpleExpr ((doBlock extraPostExprBlock*)

| ('=' expr (';' (ifExpr / complexOrSimpleStmt) ^+

';')?)

| (':' expr (',' exprColonEqExpr ^+ ',')?)))

optPar ')'

literal = | INT_LIT | INT8_LIT | INT16_LIT | INT32_LIT | INT64_LIT

| UINT_LIT | UINT8_LIT | UINT16_LIT | UINT32_LIT | UINT64_LIT

| FLOAT_LIT | FLOAT32_LIT | FLOAT64_LIT

| STR_LIT | RSTR_LIT | TRIPLESTR_LIT

| CHAR_LIT | CUSTOM_NUMERIC_LIT

| NIL

generalizedLit = GENERALIZED_STR_LIT | GENERALIZED_TRIPLESTR_LIT

identOrLiteral = generalizedLit | symbol | literal

| par | arrayConstr | setOrTableConstr | tupleConstr

| castExpr

tupleConstr = '(' optInd (exprColonEqExpr comma?)* optPar ')'

arrayConstr = '[' optInd (exprColonEqExpr comma?)* optPar ']'

primarySuffix = '(' (exprColonEqExpr comma?)* ')'

| '.' optInd symbolOrKeyword ('[:' exprList ']' ('(' exprColonEqExpr

')')?)? generalizedLit?

| DOTLIKEOP optInd symbolOrKeyword generalizedLit?

| '[' optInd exprColonEqExprList optPar ']'

| '{' optInd exprColonEqExprList optPar '}'

pragma = '{.' optInd (exprColonEqExpr comma?)* optPar ('.}' | '}')

identVis = symbol OPR? # postfix position

identVisDot = symbol '.' optInd symbolOrKeyword OPR?

identWithPragma = identVis pragma?

identWithPragmaDot = identVisDot pragma?

declColonEquals = identWithPragma (comma identWithPragma)* comma?

(':' optInd typeDescExpr)? ('=' optInd expr)?

identColonEquals = IDENT (comma IDENT)* comma?

(':' optInd typeDescExpr)? ('=' optInd expr)?)

tupleTypeBracket = '[' optInd (identColonEquals (comma/semicolon)?)* optPar

']'

tupleType = 'tuple' tupleTypeBracket

tupleDecl = 'tuple' (tupleTypeBracket /

284

 COMMENT? (IND{>} identColonEquals (IND{=} identColonEquals)*)?) paramList = '(' declColonEquals ^* (comma/semicolon) ')'

paramListArrow = paramList? ('->' optInd typeDesc)?

paramListColon = paramList? (':' optInd typeDesc)?

doBlock = 'do' paramListArrow pragma? colcom stmt

routineExpr = ('proc' | 'func' | 'iterator') paramListColon pragma? ('='

COMMENT? stmt)?

routineType = ('proc' | 'iterator') paramListColon pragma?

forStmt = 'for' ((varTuple / identWithPragma) ^+ comma) 'in' expr colcom stmt

forExpr = forStmt

expr = (blockExpr

| ifExpr

| whenExpr

| caseStmt

| forExpr

| tryExpr)

/ simpleExpr

simplePrimary = SIGILLIKEOP? identOrLiteral primarySuffix*

commandStart = &('`'|IDENT|literal|'cast'|'addr'|'type'|'var'|'out'|

'static'|'enum'|'tuple'|'object'|'proc')

primary = simplePrimary (commandStart expr (doBlock extraPostExprBlock*)?)?

/ operatorB primary

/ routineExpr

/ rawTypeDesc

/ prefixOperator primary

rawTypeDesc = (tupleType | routineType | 'enum' | 'object' |

('var' | 'out' | 'ref' | 'ptr' | 'distinct') typeDesc?)

('not' primary)?

typeDescExpr = (routineType / simpleExpr) ('not' primary)?

typeDesc = rawTypeDesc / typeDescExpr

typeDefValue = ((tupleDecl | enumDecl | objectDecl | conceptDecl |

('ref' | 'ptr' | 'distinct') (tupleDecl | objectDecl))

/ (simpleExpr (exprEqExpr ^+ comma postExprBlocks?)?))

('not' primary)?

extraPostExprBlock = (IND{=} doBlock

| IND{=} 'of' exprList ':' stmt

| IND{=} 'elif' expr ':' stmt

| IND{=} 'except' optionalExprList ':' stmt

| IND{=} 'finally' ':' stmt

| IND{=} 'else' ':' stmt)

postExprBlocks = (doBlock / ':' (extraPostExprBlock / stmt))

extraPostExprBlock*

exprStmt = simpleExpr postExprBlocks?

/ simplePrimary (exprEqExpr ^+ comma) postExprBlocks?

/ simpleExpr '=' optInd (expr postExprBlocks?)

importStmt = 'import' optInd expr

((comma expr)*

/ 'except' optInd (expr ^+ comma))

exportStmt = 'export' optInd expr

((comma expr)*

285

 / 'except' optInd (expr ^+ comma))

includeStmt = 'include' optInd expr ^+ comma

fromStmt = 'from' expr 'import' optInd expr (comma expr)*

returnStmt = 'return' optInd expr?

raiseStmt = 'raise' optInd expr?

yieldStmt = 'yield' optInd expr?

discardStmt = 'discard' optInd expr?

breakStmt = 'break' optInd expr?

continueStmt = 'continue' optInd expr?

condStmt = expr colcom stmt COMMENT?

(IND{=} 'elif' expr colcom stmt)*

(IND{=} 'else' colcom stmt)?

ifStmt = 'if' condStmt

whenStmt = 'when' condStmt

condExpr = expr colcom stmt optInd

('elif' expr colcom stmt optInd)*

'else' colcom stmt

ifExpr = 'if' condExpr

whenExpr = 'when' condExpr

whileStmt = 'while' expr colcom stmt

ofBranch = 'of' exprList colcom stmt

ofBranches = ofBranch (IND{=} ofBranch)*

(IND{=} 'elif' expr colcom stmt)*

(IND{=} 'else' colcom stmt)?

caseStmt = 'case' expr ':'? COMMENT?

(IND{>} ofBranches DED

| IND{=} ofBranches)

tryStmt = 'try' colcom stmt &(IND{=}? 'except'|'finally')

(IND{=}? 'except' optionalExprList colcom stmt)*

(IND{=}? 'finally' colcom stmt)?

tryExpr = 'try' colcom stmt &(optInd 'except'|'finally')

(optInd 'except' optionalExprList colcom stmt)*

(optInd 'finally' colcom stmt)?

blockStmt = 'block' symbol? colcom stmt

blockExpr = 'block' symbol? colcom stmt

staticStmt = 'static' colcom stmt

deferStmt = 'defer' colcom stmt

asmStmt = 'asm' pragma? (STR_LIT | RSTR_LIT | TRIPLESTR_LIT)

genericParam = symbol (comma symbol)* (colon expr)? ('=' optInd expr)?

genericParamList = '[' optInd

genericParam ^* (comma/semicolon) optPar ']'

pattern = '{' stmt '}'

indAndComment = (IND{>} COMMENT)? | COMMENT?

routine = optInd identVis pattern? genericParamList?

paramListColon pragma? ('=' COMMENT? stmt)? indAndComment

commentStmt = COMMENT

section(RULE) = COMMENT? RULE / (IND{>} (RULE / COMMENT)^+IND{=} DED) enumDecl = 'enum' optInd (symbol pragma? optInd ('=' optInd expr COMMENT?)?

comma?)+

objectWhen = 'when' expr colcom objectPart COMMENT?

('elif' expr colcom objectPart COMMENT?)*

286

 ('else' colcom objectPart COMMENT?)?

objectBranch = 'of' exprList colcom objectPart

objectBranches = objectBranch (IND{=} objectBranch)*

(IND{=} 'elif' expr colcom objectPart)*

(IND{=} 'else' colcom objectPart)?

objectCase = 'case' declColonEquals ':'? COMMENT?

(IND{>} objectBranches DED

| IND{=} objectBranches)

objectPart = IND{>} objectPart^+IND{=} DED

/ objectWhen / objectCase / 'nil' / 'discard' / declColonEquals

objectDecl = 'object' ('of' typeDesc)? COMMENT? objectPart

conceptParam = ('var' | 'out')? symbol

conceptDecl = 'concept' conceptParam ^* ',' (pragma)? ('of' typeDesc ^*

',')?

&IND{>} stmt

typeDef = identVisDot genericParamList? pragma '=' optInd typeDefValue

indAndComment?

varTupleLhs = '(' optInd (identWithPragma / varTupleLhs) ^+ comma optPar ')'

varTuple = varTupleLhs '=' optInd expr

colonBody = colcom stmt postExprBlocks?

variable = (varTuple / identColonEquals) colonBody? indAndComment

constant = (varTuple / identWithPragma) (colon typeDesc)? '=' optInd expr indAndComment

bindStmt = 'bind' optInd qualifiedIdent ^+ comma

mixinStmt = 'mixin' optInd qualifiedIdent ^+ comma

pragmaStmt = pragma (':' COMMENT? stmt)?

simpleStmt = ((returnStmt | raiseStmt | yieldStmt | discardStmt | breakStmt

| continueStmt | pragmaStmt | importStmt | exportStmt | fromStmt

| includeStmt | commentStmt) / exprStmt) COMMENT?

complexOrSimpleStmt = (ifStmt | whenStmt | whileStmt

| tryStmt | forStmt

| blockStmt | staticStmt | deferStmt | asmStmt

| 'proc' routine

| 'method' routine

| 'func' routine

| 'iterator' routine

| 'macro' routine

| 'template' routine

| 'converter' routine

| 'type' section(typeDef)

| 'const' section(constant)

| ('let' | 'var' | 'using') section(variable)

| bindStmt | mixinStmt)

/ simpleStmt

stmt = (IND{>} complexOrSimpleStmt^+(IND{=} / ';') DED)

/ simpleStmt ^+ ';'

287

288

Appendix B: Nim standard library cheat

sheet

289

B.1. Integers

Integer functionality is available via the automatically imported system module.

 Table 11. Operations on integers

Operation

Example

div: Integer division (without

13 div 5 == 2

a remainder).

mod: Integer modulo

13 mod 5 == 3

(remainder).

shl: Shift left.

1 shl 3 == 8

shr: Shift right.

8 shr 1 == 4

and: Bitwise and.

0b0011 and 0b0101 == 0b0001

or: Bitwise or.

0b0011 or 0b0101 == 0b0111

xor: Bitwise xor.

0b0011 xor 0b0101 == 0b0110

toInt: Converts a floating

toInt(2.49) == 2

point number into an integer.

toInt(2.5) == 3

inc: Increments the value of

var x = 5

an ordinal variable.

inc x

assert x == 6

inc x, 3

assert x == 9

dec: Decrements the value of

var x = 5

an ordinal variable.

dec x

assert x == 4

dec x, 3

assert x == 1

290

B.2. Strings

To use some of the available functionality on strings, you need to import std/strutils.

 Table 12. String-related functionality

Operation

Example

$: Converts a type into a

$123 == "123"

string.

add: Add a character to a

 "abc" .add 'd' == "abcd"

string.

&: Concatenation of two

 "ab" & "cd" == "abcd"

strings.

join: Concatenation with a

["ab" , "cd" , "ef"].join("-x-") == "ab-x-cd-string between each element.

 x-ef"

split: Splits a string on

split("ab cd") == @["ab" , "cd"]

whitespace characters.

split: Splits a string on a

 "abxcd" .split('x') == @["ab" , "cd"]

given character.

find: Searches for a character

 "abcd" .find('c') == 2

inside of a string.

find: Searches for a substring

 "abcd" .find("bc") == 1

inside of a string.

replace: Replaces every

 "acdc" .replace('c' , 'x') == "axdx"

occurrence of a given

character with a new one.

291

B.3. Sequences

To use some of the available functionality on sequences, you need to import std/sequtils.

 Table 13. Seq-related functionality

Operation

Example

toSeq: Converts an iterable

toSeq(1..3) == @[1, 2, 3]

into a sequence.

@: Converts arrays and strings

@ "abc" == @['a' , 'b' , 'c']

to a sequence.

&: Concatenation of two

@[1, 2] & @[3, 4] == @[1, 2, 3, 4]

sequences.

map: Applies a proc to every

proc double(x: int): int =

item in a sequence.

2*x

var a = @[1, 3, 5]

var b = a.map(double)

assert b == @[2, 6, 10]

filter: Returns a new

proc small(x: int): bool =

sequence with values that

x < 4

satisfy a predicate.

var a = @[1, 3, 5]

var b = a.filter(small)

assert b == @[1, 3]

292

B.4. Bit sets

Bit sets are built-in, i.e. available via the automatically imported system module.

 Table 14. Bit sets operations

Operation

Example

incl: Include an element in

var a = {5 .. 8}

the set.

a.incl 3

assert a == {3, 5, 6, 7, 8}

excl: Exclude an element

var a = {5 .. 8}

from the set.

a.excl 5

assert a == {6, 7, 8}

*: Intersection between two

assert {1, 2} * {2, 3} == {2}

sets.

+: Union between two sets.

assert {1, 2} * {2, 3} == {1, 2, 3}

-: Difference between two

assert {1, 2} - {2, 3} == {1}

sets.

<: A proper subset.

assert {1, 2} < {1, 2, 3}

assert not({1, 2} < {1, 2})

293

B.5. Hashes

To implement hashing for custom types, one can import the std/hashes

module.

 Table 15. Hashing operations

Operation

Example

!&: Mixing a hash value.

var h: Hash = 0

for element in mySeq:

h = h !& hash(element)

!$: Finishing the hash value.

var h: Hash = 0

for element in mySeq:

h = h !& hash(element)

h = !$h

294

B.6. Hash sets

Hash sets are available with import std/sets.

 Table 16. Hash sets operations

Operation

Example

toHashSet: Converts a

assert toHashSet("acdc") == ['a' , 'c' , collection to a hash set.

 'd'].toHashSet

*, intersection: Intersection

var a = [1, 2].toHashSet

between two sets.

var b = [2, 3].toHashSet

assert a * b == [2].toHashSet

+, union: Union between two

var a = [1, 2].toHashSet

sets.

var b = [2, 3].toHashSet

assert a + b == [1, 2, 3].toHashSet

-, difference: Difference

var a = [1, 2].toHashSet

between two sets.

var b = [2, 3].toHashSet

assert a - b == [1].toHashSet

assert b - a == [3].toHashSet

<: A proper subset.

var a = [1, 2].toHashSet

var c = [1, 2, 3].toHashSet

assert a < c

assert not(a < a)

<=: A subset.

var a = [1, 2].toHashSet

var c = [1, 2, 3].toHashSet

assert a <= c

assert a <= a

card, len: Number of

assert card([1, 2].toHashSet) == 2

elements in a set.

pop: Removes and returns a

var s = [1, 2, 3].toHashSet

random element from a set.

let x = s.pop

assert card(s) == 2

295

Operation

Example

containsOrIncl: Adds an

var s = [1, 2].toHashSet

element to the set, and

assert s.containsOrIncl(1)

returns true if the key

assert not s.containsOrIncl(9)

already existed.

assert s == [1, 2, 9].toHashSet

296

B.7. Hash tables

Hash tables are available with import std/tables.

 Table 17. Tables-related functionality

Operation

Example

initTable: Initializes an

var a = initTable[int, string]()

empty hash table.

toTable: Creates a table from

var a = toTable([(5, "ab"), (7, "cd")]) a container of pairs.

[]=: Inserts a key-value pair

var a = toTable([(5, "ab"), (7, "cd")]) into a table.

a[9] = "ef"

[]: Retrieves a value from a

var a = toTable([(5, "ab"), (7, "cd")]) given key. Raises an

echo a[5] # => "ab"

exception if a key doesn’t

echo a[9] # => raises KeyError

exist.

getOrDefault: Retrieves a

var a = toTable([(5, "ab"), (7, "cd")]) value from a given key.

echo a.getOrDefault(5) # => "ab"

Returns a default (or

echo a.getOrDefault(9) # => ""

provided) value if a key

echo a.getOrDefault(5, "ef") # => "ab"

echo a.getOrDefault(9, "ef") # => "ef"

doesn’t exist.

hasKey: Checks if a given key

var a = toTable([(5, "ab"), (7, "cd")]) is in the table.

assert a.hasKey(5)

assert not a.hasKey(9)

hasKeyOrPut: Returns true if a

var a = toTable([(5, "ab"), (7, "cd")]) given key is in the table.

if a.hasKeyOrPut(7, "ef"):

Otherwise inserts a value.

a[5].add 'z'

if a.hasKeyOrPut(9, "gh"):

a[5].add 'y'

assert a == {5: "abz" , 7: "cd" , 9:

 "gh" }.toTable

mgetOrPut: Gets a value of a

var a = toTable([(5, "ab"), (7, "cd")]) given key, or puts a new

a.mgetOrPut(5, "xy").add 'z'

value if the key doesn’t exist.

a.mgetOrPut(9, "ef").add 'y'

Returns a modifiable value.

assert a == {5: "abz" , 7: "cd" , 9:

 "efy" }.toTable

297

Operation

Example

del: Deletes a key from the

var a = toTable([(5, "ab"), (7, "cd")]) table. Does nothing if the key

a.del(5)

is not in the table.

a.del(9)

assert a == {7: "cd" }.toTable

pop: Deletes a key from the

var a = toTable([(5, "ab"), (7, "cd")]) table. Returns true if the key

var s = ""

existed, and sets the given

assert a.pop(5, s)

variable to the value of the

assert s == "ab"

s = ""

key. Returns false if the key

assert not a.pop(9, s)

didn’t exist, and the variable

assert s == ""

is unchanged.

298

B.8. Optionals

Types which encapsulate optional value are available with import

std/options.

 Table 18. Optionals-related functionality

Operation

Example

Option[T]: Type of an

var a: Option[int]

optional variable.

some: Returns a value of an

var a: Option[int]

Option.

a = some(31)

none: Returns an Option that

var a: Option[int]

has no value.

a = none(int)

isSome: Checks if an Option

assert some(31).isSome

contains a value.

assert not none(int).isSome

isNone: Checks if an Option is

assert not some(31).isNone

empty.

assert none(int).isNone

get: Return a value of an

assert some(31).get(-1) == 31

Option or a default value if

assert none(int).get(-1) == -1

there is no value.

filter: Applies a function to

proc isOdd(x: int): bool =

the value of an Option.

x mod 2 == 1

assert some(31).filter(isOdd) == some(31)

assert some(32).filter(isOdd) == none(int)

assert none(int).filter(isOdd) == none(int)

map: Applies a function to the

proc isOdd(x: int): bool =

value of an Option and

x mod 2 == 1

returns a new Option.

assert some(31).map(isOdd) == some(true)

assert some(32).map(isOdd) == none(bool)

assert none(int).map(isOdd) == none(bool)

299

B.9. String formatting

String formatting and interpolation is available with import std/strformat.

One can use either fmt or & for formatting. Note that the string in fmt"{expr}"

is a generalized raw string literal, i.e. \n will not be interpreted as a newline (the \ will be escaped). The & will interpret \n as a new line:

import std/strformat

let msg = "hello"

assert fmt"{msg}\n" == "hello\\ n"

assert & "{msg}\n " == "hello\n "

 Table 19. String format functionality

Operation

Example

<, ^, >: Left (default for

let s = "nim"

strings), center, right (default

let x = 987.12

for numbers) alignment.

assert fmt"{s:5}" == "nim "

assert fmt"{s:<5}" == "nim "

assert fmt"{s:>5}" == " nim"

assert fmt"{s:^5}" == " nim "

assert fmt"{x:8.2f}" == " 987.12"

assert fmt"{x:8.4f}" == "987.1200"

assert fmt"{x:<8.1f}" == "987.1 "

fmt"{expr=}": This expands to

let s = "nim"

fmt"expr={expr}", which is

useful for debugging.

assert fmt"{s=}" == "s=nim"

assert fmt"{s = }" == "s = nim"

300

B.10. Algorithms

Some common algorithms on arrays and sequences are available via import

std/algorithm.

 Table 20. Algorithm functionality

Operation

Example

binarySearch: Assumes the

var a = [50, 60, 70, 80]

container is sorted and

assert a.binarySearch(70) == 2

binary searches for an

element.

fill: Fills a slice of a

var a: array[5, int]

container with a value. If no

a.fill(2, 4, 99)

range is specified, it assigns a

assert a == [0, 0, 99, 99, 99]

value to all elements.

a.fill(88)

assert a == [88, 88, 88, 88, 88]

reverse: Reverses a slice of a

var a = [10, 20, 30, 40, 50, 60]

container. If no range is

a.reverse(1, 3)

specified, it reverses the

assert a == [10, 40, 30, 20, 50, 60]

whole container.

a.reverse()

assert a == [60, 50, 20, 30, 40, 10]

nextPermutation: Modifies a

var a = [10, 20, 30, 40]

container, changing it to the

assert a.nextPermutation() == true

next lexicographic

assert a == [10, 20, 40, 30]

permutation. Returns true if

a = [40, 30, 20, 10]

a permutation happened (the

assert a.nextPermutation() == false

last-ordered permutation was

assert a == [40, 30, 20, 10]

not reached).

prevPermutation: Modifies a

var a = [10, 20, 30, 40]

container, changing it to the

assert a.prevPermutation() == false

previous lexicographic

assert a == [10, 20, 30, 40]

permutation. Returns true if

a = [40, 30, 10, 20]

a permutation happened (the

assert a.prevPermutation() == true

first-ordered permutation

assert a == [40, 20, 30, 10]

was not reached).

301

Operation

Example

product: Cartesian product.

var a = @[10, 20, 30]

var b = @[99, 88]

assert product([a, b]) == @[

@[30, 88], @[20, 88], @[10, 88],

@[30, 99], @[20, 99], @[10, 99],

]

rotateLeft, rotatedLeft: Left

var a = [10, 20, 30, 40, 50]

rotation of a container. For

a.rotateLeft(1)

right rotation use negative

assert a == [20, 30, 40, 50, 10]

distance. rotateLeft is an in-

assert a.rotatedLeft(-2) == @[50, 10, 20,

place version of rotatedLeft.

30, 40]

sort, sorted: Merge sort of a

var a = [20, 40, 50, 10, 30]

container. sort is an in-place

version of sorted.

assert sorted(a) == @[10, 20, 30, 40, 50]

a.sort(Descending)

assert a == [50, 40, 30, 20, 10]

302

B.11. OS

Basic operating system facilities are available with import std/os.

 Table 21. OS functionality

Operation

Example

/, joinPath: Joins two

 "foo" / "bar" == "foo/bar"

directory names to one.

addFileExt: Adds an

addFileExt("foo" , "bar") == "foo.bar"

extension to a filename

addFileExt("foo.exe" , "bar") == "foo.exe"

without one.

changeFileExt: Changes an

changeFileExt("foo" , "bar") == "foo.bar"

extension of a filename. Pass

changeFileExt("foo.exe" , "bar") ==

"" to remove an existing

 "foo.bar"

extension.

changeFileExt("foo.exe" , "") == "foo"

execShellCmd: Executes a shell

assert execShellCmd("ls -la") == 0

command and returns its

error code.

extractFilename: Extracts the

extractFilename("foo/bar/baz.exe") ==

filename of a given path.

 "baz.exe"

extractFilename("foo/bar/") == ""

parentDir: Returns the parent

parentDir("foo/bar/baz.exe") == "foo/bar"

directory of a path.

parentDir("foo/bar/") == "foo"

splitFile: Splits a filename

splitFile("foo/bar/baz.exe") == ("foo/bar" , into a tuple containing

 "baz" , ".exe")

directory, filename, and

splitFile("foo/bar/") == ("foo/bar" , "" , extension.

 "")

303

Operation

Example

paramCount: Returns the

 myfile.nim

number of command line

import os

arguments given to the

application.

echo paramCount()

> ./myfile

0

> ./myfile foo bar

2

paramStr: Returns n-th

 myfile.nim

command line argument

import os

given to the application

echo paramStr(1)

> ./myfile foo bar

foo

304

B.12. JSON

Basic JSON support is available via import std/json.

 Table 22. JSON functionality

Operation

Example

parseJson: Creates a JSON tree

let jsonNode = parseJson("""{"key":

from a string.

 3.14}""")

assert jsonNode.kind == JObject

assert jsonNode["key"].kind == JFloat

pretty: Produces a pretty

let a = parseJson("""{"key": 3.14}""") string representation for the

echo pretty(a)

provided JSON tree.

getInt: Retrieves the int

var a = %60

value of a JInt JsonNode.

assert a.getInt == 60

getFloat: Retrieves the float

var a = %60.0

value of a JFloat JsonNode.

assert a.getFloat == 60.0

getStr: Retrieves the string

var a = % "abc"

value of a JString JsonNode.

assert a.getStr == "abc"

getBool: Retrieves the bool

var a = %true

value of a JBool JsonNode.

assert a.getBool == true

%: Generic constructor for

let s = % "abc"

JSON data. Can construct

let i = %5

atoms and composed arrays

let f = %5.5

and objects.

let b = %false

let a = %[%5, %5.0, % "x" , %true,

%{ "key" : %8, "keyB" : %9}]

assert $a ==

 """[5,5.0,"x",true,{"key":8,"keyB":9}]"""

%*: Generic constructor for

let a = %*[5, 5.0, "x" , true,

JSON data and does so

{ "key" : 8, "keyB" : 9}]

recursively. Can construct

atoms and composed arrays

assert $a ==

 """[5,5.0,"x",true,{"key":8,"keyB":9}]"""

and objects.

305

B.13. Unicode

Basic Unicode support is available via import std/unicode. A Unicode code point is called a Rune.

 Table 23. Unicode functionality

Operation

Example

runeLen: Returns the number

let a = "añyóng"

of runes of a string.

assert a.runeLen == 6

assert a.len == 8

runeAt: Returns the rune of

let a = "añyóng"

the given string at the given

assert a.runeAt(1) == "ñ" .runeAt(0)

 byte index.

assert a.runeAt(2) == "ñ" .runeAt(1)

assert a.runeAt(3) == "y" .runeAt(0)

validateUtf8: Returns the

assert validateUtf8("añyóng") == -1

position of the first invalid

byte that does not hold valid

UTF-8 data. If every byte is

valid -1 is returned.

runes: Iterates over any rune

for r in runes("añyóng"):

of a string.

echo r == Rune('g')

cmpRunesIgnoreCase:

assert cmpRunesIgnoreCase("añyóng" ,

Compares two UTF-8 strings

 "anyong") > 0

and ignores the case.

Returns: 0 if a == b and a

value < 0 if a < b and a value

> 0ìf a > b.

toUTF8, $: Converts a rune

assert toUTF8("añyóng" .runeAt(1)) == "ñ"

into its UTF-8 representation.

$ is an alias for toUTF8.

306

Index

@

$, 86

*, 93

@, 88

[ESC], 54, 57

A

abstract syntax tree, 49

addr, 101, 143

alert, 54, 57

algebraic data types, 95

aliasing, 100

anonymous procedures, 151

apostrophe, 54, 57

arrow-like, 64

AST, 49, 193

asterisk, 69

auto, 106

Automatic type conversions, 78

awaitAll, 261

B

backslash, 54, 57

backspace, 54, 57

base, 156

base type, 105

bind, 184

bind many, 181

bind once, 180

bindSym, 195

307

bitsize, 100

block, 137

block expression, 141

bool, 82

borrow, 106

break, 137

C

calling conventions, 103

carriage return, 54, 57

case, 134, 140

cdecl, 104

Channel, 258

char, 83

character with decimal value d, 54, 57

character with hex value HH, 54, 57

closure, 104, 150

closure iterator, 159

code point, 87

collaborative tasking, 160

collect, 235

command invocation syntax, 149

comment pieces, 51

compiler, 47

complex statements, 125

concatenation operator, 26

const, 39, 130

constant, 117

ConstPtr, 271

continue, 138

control flow analysis, 128

converter, 115, 163

convertible, 114

cstring, 87

D

dangling else problem, 125

data flow variable, 262

defer, 167

dereferencing, 102

dirty, 191

308

discard, 125

discardable, 126

discriminator, 96

distinct, 105, 131

Documentation comments, 51

dollar operator, 26

domain specific language, 249

domain specific languages, 193

Dot-like operators, 65

dynamic dispatch, 155

dynamic type, 47

E

effect system, 171

enum, 131

enumeration, 83

escape, 54, 57

escape sequences, 54, 56

except, 166-167

exception handlers, 166

F

fastcall, 104

finally, 166

flags, 100

floatChecks, 82

FloatingPointDefect, 81

FlowVar, 262

for, 157

form feed, 54, 57

forward, 185

forward declaration, 146

func, 151

functions, 145

G

GC safe, 175

gcsafe, 176

generic type parameter, 178

Generic types, 131

generics, 35

309

gensym, 191

grammar, 65

H

hygienic, 188, 190

I

identifier, 47, 67

if, 133, 139

immediate, 186

immutable, 29

implicit block, 157

implicitly generic, 180

import, 69-70

include, 71

indentation sensitive, 50

infChecks, 81

information hiding, 69

inheritable, 94

inheritance, 93

inject, 42, 191

inline, 104

inline iterator, 159

is, 178

Isolated, 267

items, 158

iterator, 33, 157

L

l-value, 122

l-values, 47

lambda, 151

let, 129

line feed, 54, 57

literal, 47

locations, 47

M

macro, 15, 193

main thread, 257

map, 274

310

method call syntax, 147

methods, 145

mixin, 183

modules, 69

Mutually recursive types, 132

N

nanChecks, 81

narrowing type conversion, 78

nested procs, 150

newline, 54, 56

nil, 102

nimcall, 103

noconv, 105

NodeKind, 193

nodestroy, 211

noinit, 128

nominal types, 131

noSideEffect, 151, 175

O

object, 92, 131

object construction expression, 95

openarray, 90

Operators, 146

ORC, 202

out of memory, 170

overflow, 170

overload disambiguation, 68

overload resolution, 41

P

Parallel for each, 273

Parallel reduce, 273

parFind, 278

phases of translation, 49

pointer, 101

pointer arithmetic, 273

procedures, 145

processor, 47

program, 47

311

ptr, 101

ptr object, 101, 131

Q

quotation mark, 54, 57

R

raise, 169

raises, 171

recursion, 24

Recursive module dependencies, 69

ref, 101

ref object, 101, 131

reference counting, 214

references, 100

requiresInit, 128

ReraiseDefect, 169

result, 136, 146

return, 33, 136

routine, 145

routines, 67

S

safecall, 104

scope, 47, 67, 69

separate compilation, 69

seq, 27

serialization, 95

set type, 98

setter, 148

shadow, 152

SharedPtr, 271

side effect, 217

sigil-like, 63

simple statements, 125

single assignment, 129

slice, 62

smart pointer, 271

source files, 47

spawn, 261

specialization, 35

312

static, 107, 132

static dispatch, 155

static type, 47

stdcall, 104

strformat, 239

strictFuncs, 217

string literal, 25, 86

strscans, 243

subrange, 80

subtype, 113

sum types, 95

super, 156

symbols, 195

syscall, 104

system, 74

system.procCall, 156

T

table constructor, 141

tabulator, 54, 57

target machine, 47

template, 40

terminated, 169

thiscall, 104

thread, 257

tokens, 49

traced, 101

treeRepr, 229

try, 166

tuple, 92

tuple unpacking, 129

type, 47, 130

Type aliases, 131

type bound operators, 199

Type casts, 142

type class, 178

type constraints, 180

type conversion, 37, 142, 163

type parameters, 177

type suffix, 59

type variable, 178

313

typedesc, 108

typeof, 110

U

Unicode code point, 306

unicode codepoint, 55

unicode codepoint with hex value HHHH, 55

UniquePtr, 271

unprotected, 264

unresolved, 122

unsafeAddr, 143

unsigned integer, 78

untraced, 101

untyped, 186

unwinding, 169

using, 139

V

var, 29, 152

varargs, 90

varargs[untyped], 188

variable, 127

vertical tabulator, 54, 57

view type, 219

void, 126

W

when, 135, 140

while, 138

widening type conversion, 78

Y

yield, 137

314

Document Outline

	Mastering Nim: A complete guide to the programming language

	Colophon

	Table of Contents

	Acknowledgments

	Preface

	History and theory behind Nim

	Who is this for

	Structure of the book

	Part I: Introduction to Nim via graphics

	Chapter 1. Introduction

	Chapter 2. Drawing a line

	2.1. Drawing horizontal and vertical lines

	2.1.1. Drawing a line using one point, length, direction

	2.1.2. Drawing a line by specifying start and end

	Chapter 3. Rendering Text

	Chapter 4. Sequences

	Chapter 5. Parameter passing and mutability

	Chapter 6. Let vs Var

	Chapter 7. Iterators

	7.1. Yield

	Chapter 8. Generics

	Chapter 9. Templates

	Chapter 10. Macros

	Part II: Nim language specification

	Chapter 11. Basic terms

	Chapter 12. Lexical analysis

	12.1. Notation used in this chapter

	12.2. Indentation

	12.3. Comments

	12.4. Multiline comments

	12.5. Identifiers & Keywords

	12.6. Identifier equality

	12.7. String literals

	12.8. Triple quoted string literals

	12.9. Raw string literals

	12.10. Generalized raw string literals

	12.11. Character literals

	12.12. Numeric Literals

	12.12.1. Custom Numeric Literals

	12.13. Operators

	12.14. Other tokens

	12.15. Unicode Operators

	Chapter 13. Syntax

	13.1. Associativity

	13.1.1. Precedence

	13.2. Dot-like operators

	Chapter 14. Declarations and scope rules

	Chapter 15. Modules

	15.1. Export marker

	15.2. Module processing

	15.3. Import statement

	15.4. Include statement

	15.5. Module names in imports

	15.6. Collective imports from a directory

	15.7. Pseudo import/include paths

	15.8. From import statement

	15.9. Export statement

	15.10. Scope rules

	15.10.1. Block scope

	15.10.2. Tuple or object scope

	15.10.3. Module scope

	Chapter 16. Type system

	16.1. Ordinal types

	16.2. Pre-defined integer types

	16.3. Integer literals

	16.4. Subrange types

	16.5. Pre-defined floating-point types

	16.5.1. Nan and Inf checks

	16.6. Boolean type

	16.7. Character type

	16.8. Enumeration types

	16.9. Overloadable enum field names

	16.10. String type

	16.11. cstring type

	16.12. Structured types

	16.13. Array and sequence types

	16.14. Open arrays

	16.15. Varargs

	16.16. Unchecked arrays

	16.17. Tuples and object types

	16.18. fields and fieldPairs iterators

	16.19. Object construction

	16.20. Object variants

	16.21. cast uncheckedAssign

	16.22. Set type

	16.22.1. Bit fields

	16.23. Reference and pointer types

	16.24. Nil

	16.25. Procedural type

	16.26. Calling conventions

	16.27. Distinct type

	16.27.1. borrow annotation

	16.28. Auto type

	16.29. static[T]

	16.30. typedesc[T]

	16.31. typeof

	Chapter 17. Type relations

	17.1. Type equality

	17.2. Subtype relation

	17.3. Convertible relation

	17.4. Assignment compatibility

	Chapter 18. Constant expressions

	Chapter 19. Overload resolution

	19.1. Overloading based on 'var T'

	19.2. Lazy type resolution for untyped

	19.3. Varargs matching

	19.4. Overload disambiguation

	Chapter 20. Statements and expressions

	20.1. Statement list expression

	20.2. Discard statement

	20.3. Void context

	20.4. Var statement

	20.5. Let statement

	20.6. Tuple unpacking

	20.7. Const statement

	20.8. Type section

	20.9. Static statement/expression

	20.10. If statement

	20.11. Case statement

	20.12. When statement

	20.13. Return statement

	20.14. Yield statement

	20.15. Block statement

	20.16. Break statement

	20.17. While statement

	20.18. Continue statement

	20.19. Using statement

	20.20. If expression

	20.21. When expression

	20.22. Case expression

	20.23. Block expression

	20.24. Table constructor

	20.25. Type conversions

	20.26. Type casts

	20.27. The addr operator

	20.28. The unsafeAddr operator

	Chapter 21. Procedures

	21.1. Method call syntax

	21.2. Properties

	21.3. Indexing

	21.4. Command invocation syntax

	21.5. Closures

	21.5.1. Creating closures in loops

	21.6. Anonymous procs

	21.7. Func

	21.8. Non-overloadable built-ins

	21.9. Var parameters

	21.10. Var return type

	Chapter 22. Methods

	22.1. Static method calls via procCall

	Chapter 23. Iterators and the for statement

	23.1. Implicit items/pairs invocations

	23.2. First-class iterators

	Chapter 24. User definable conversions

	24.1. Converters

	Chapter 25. Exception handling

	25.1. Try statement

	25.2. Try expression

	25.3. Except clauses

	25.4. Defer statement

	25.5. Exception hierarchy

	25.6. Raise statement

	Chapter 26. Effect system

	26.1. Exception tracking

	26.2. EffectsOf annotation

	26.3. Tag tracking

	26.4. Side effects

	26.5. GC safety effect

	Chapter 27. Generics

	27.1. Is operator

	27.2. Type Classes

	27.3. Implicit generics

	27.4. Generic inference restrictions

	27.5. Symbol lookup in generics

	27.5.1. Open and Closed symbols

	27.6. Mixin statement

	27.7. Bind statement

	27.8. Delegating bind statements

	27.9. Templates

	27.10. Typed vs untyped parameters

	27.11. Passing a code block to a template

	27.12. Varargs of untyped

	27.13. Symbol binding in templates

	27.14. Identifier construction

	27.15. Template parameter lookup rules

	27.16. Hygiene in templates

	27.16.1. Inject and gensym

	27.17. Method call syntax limitations

	Chapter 28. Macros

	28.1. Macros API

	28.2. BindSym

	28.3. For loop macros

	Chapter 29. Lifetime-tracking hooks

	29.1. =destroy hook

	29.2. =wasMoved hook

	29.3. =sink hook

	29.4. =copy hook

	29.5. =dup hook

	29.6. =trace hook

	29.7. Move semantics

	29.8. Swap

	29.9. Sink parameters

	29.10. Rewrite rules

	29.11. Object and array construction

	29.12. Destructor removal

	29.13. Self assignments

	29.14. Lent type

	29.15. The .cursor annotation

	29.16. Cursor inference / copy elision

	29.17. Hook lifting

	29.18. Hook generation

	29.19. nodestroy pragma

	29.20. Copy on write

	29.21. Practice

	Chapter 30. Strict funcs

	Chapter 31. View types

	31.1. Path expressions

	31.2. Start of a borrow

	31.3. End of a borrow

	31.4. Reborrows

	Part III: Mastering Macros

	Chapter 32. Introduction

	Chapter 33. AST introspection

	33.1. Typed vs untyped ASTs

	Chapter 34. AST creation

	Chapter 35. Collect macro

	Chapter 36. strformat

	Chapter 37. strscans

	Chapter 38. HTML trees

	Chapter 39. Advice

	Part IV: Mastering Parallelism

	Chapter 40. Introduction

	Chapter 41. Threading

	41.1. createThread

	41.2. Single worker, single channel

	41.3. Multiple workers, single channel

	Chapter 42. spawn

	42.1. Return values

	42.2. Sharing memory

	Chapter 43. Isolated data

	Chapter 44. Smart pointers

	Chapter 45. Parallel for each and reduce

	45.1. parMap

	45.2. parReduce

	45.3. parFind

	Chapter 46. Final advice

	46.1. What to avoid

	46.2. What to use

	Appendix A: Grammar

	Appendix B: Nim standard library cheat sheet

	B.1. Integers

	B.2. Strings

	B.3. Sequences

	B.4. Bit sets

	B.5. Hashes

	B.6. Hash sets

	B.7. Hash tables

	B.8. Optionals

	B.9. String formatting

	B.10. Algorithms

	B.11. OS

	B.12. JSON

	B.13. Unicode

	Index

cover.jpeg
Mastering
Nim

b
‘\
L

A complete gtiide to the
programming language

Andreas Rumpf

