

Microsoft Excel 2019 VBA and Macros

Bill Jelen

Tracy Syrstad

[image:]

Microsoft Excel 2019 VBA and Macros

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2019 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0611-4
ISBN-10: 1-5093-0611-0

Library of Congress Control Number: 2018963483

1 18

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an “as is” basis. The author, the publisher, and Microsoft Corporation shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief: Brett Bartow

Executive Editor: Loretta Yates

Project Editor: Charlotte Kughen

Managing Editor: Sandra Schroeder

Senior Project Editor: Tracey Croom

Copy Editor: Charlotte Kughen

Indexer: Cheryl Lenser

Proofreaders: Sarah Kearns and Karen Davis

Technical Editor: Bob Umlas

Editorial Assistant: Cindy Teeters

Cover Designer: Twist Creative, Seattle

Compositor: Bronkella Publishing LLC

For Chip Pearson. Chip’s website on VBA helped tens of thousands of people around the globe. We were sorry to hear that he died this year in an auto accident and dedicate this edition of the book to Chip.

—Bill Jelen & Tracy Syrstad

Contents at a Glance

Introduction

CHAPTER 1 Unleashing the power of Excel with VBA

CHAPTER 2 This sounds like BASIC, so why doesn’t it look familiar?

CHAPTER 3 Referring to ranges

CHAPTER 4 Looping and flow control

CHAPTER 5 R1C1-style formulas

CHAPTER 6 Creating and manipulating names in VBA

CHAPTER 7 Event programming

CHAPTER 8 Arrays

CHAPTER 9 Creating classes and collections

CHAPTER 10 Userforms: An introduction

CHAPTER 11 Data mining with Advanced Filter

CHAPTER 12 Using VBA to create pivot tables

CHAPTER 13 Excel power

CHAPTER 14 Sample user-defined functions

CHAPTER 15 Creating charts

CHAPTER 16 Data visualizations and conditional formatting

CHAPTER 17 Dashboarding with sparklines in Excel 2019

CHAPTER 18 Reading from and writing to the web

CHAPTER 19 Text file processing

CHAPTER 20 Automating Word

CHAPTER 21 Using Access as a back end to enhance multiuser access to data

CHAPTER 22 Advanced userform techniques

CHAPTER 23 The Windows Application Programming Interface (API)

CHAPTER 24 Handling errors

CHAPTER 25 Customizing the ribbon to run macros

CHAPTER 26 Creating add-ins

CHAPTER 27 An introduction to creating Office add-ins

CHAPTER 28 What’s new in Excel 2019 and what’s changed

Index

Contents

Introduction

Chapter 1 Unleashing the power of Excel with VBA

Barriers to entry

The macro recorder doesn’t work!

No one person on the Excel team is focused on the macro recorder

Visual Basic is not like BASIC

Good news: Climbing the learning curve is easy

Great news: Excel with VBA is worth the effort

Knowing your tools: The Developer tab

Understanding which file types allow macros

Macro security

Adding a trusted location

Using macro settings to enable macros in workbooks outside trusted locations

Using Disable All Macros With Notification

Overview of recording, storing, and running a macro

Filling out the Record Macro dialog box

Running a macro

Creating a macro button on the ribbon

Creating a macro button on the Quick Access Toolbar

Assigning a macro to a form control, text box, or shape

Understanding the VB Editor

VB Editor settings

The Project Explorer

The Properties window

Understanding shortcomings of the macro recorder

Recording the macro

Examining code in the Programming window

Running the macro on another day produces undesired results

Possible solution: Use relative references when recording

Never use AutoSum or Quick Analysis while recording a macro

Four tips for using the macro recorder

Next steps

Chapter 2 This sounds like BASIC, so why doesn’t it look familiar?

Understanding the parts of VBA “speech”

VBA is not really hard

VBA Help files: Using F1 to find anything

Using Help topics

Examining recorded macro code: Using the VB Editor and Help

Optional parameters

Defined constants

Properties can return objects

Using debugging tools to figure out recorded code

Stepping through code

More debugging options: Breakpoints

Backing up or moving forward in code

Not stepping through each line of code

Querying anything while stepping through code

Using a watch to set a breakpoint

Using a watch on an object

Object Browser: The ultimate reference

Seven tips for cleaning up recorded code

Tip 1: Don’t select anything

Tip 2: Use Cells(2,5) because it’s more convenient than Range("E2")

Tip 3: Use more reliable ways to find the last row

Tip 4: Use variables to avoid hard-coding rows and formulas

Tip 5: Use R1C1 formulas that make your life easier

Tip 6: Copy and paste in a single statement

Tip 7: Use With...End With to perform multiple actions

Next steps

Chapter 3 Referring to ranges

The Range object

Syntax for specifying a range

Referencing named ranges

Shortcut for referencing ranges

Referencing ranges in other sheets

Referencing a range relative to another range

Using the Cells property to select a range

Using the Offset property to refer to a range

Using the Resize property to change the size of a range

Using the Columns and Rows properties to specify a range

Using the Union method to join multiple ranges

Using the Intersect method to create a new range from overlapping ranges

Using the IsEmpty function to check whether a cell is empty

Using the CurrentRegion property to select a data range

Using the Areas collection to return a noncontiguous range

Referencing tables

Next steps

Chapter 4 Looping and flow control

For...Next loops

Using variables in the For statement

Variations on the For...Next loop

Exiting a loop early after a condition is met

Nesting one loop inside another loop

Do loops

Using the While or Until clause in Do loops

The VBA loop: For Each

Object variables

Flow control: Using If...Then...Else and Select Case

Basic flow control: If...Then...Else

Using Select Case...End Select for multiple conditions

Next steps

Chapter 5 R1C1-style formulas

Toggling to R1C1-style references

Witnessing the miracle of Excel formulas

Entering a formula once and copying 1,000 times

The secret: It’s not that amazing

Understanding the R1C1 reference style

Using R1C1 with relative references

Using R1C1 with absolute references

Using R1C1 with mixed references

Referring to entire columns or rows with R1C1 style

Replacing many A1 formulas with a single R1C1 formula

Remembering column numbers associated with column letters

Using R1C1 formulas with array formulas

Next steps

Chapter 6 Creating and manipulating names in VBA

Global versus local names

Adding names

Deleting names

Adding comments

Types of names

Formulas

Strings

Numbers

Tables

Using arrays in names

Reserved names

Hiding names

Checking for the existence of a name

Next steps

Chapter 7 Event programming

Levels of events

Using events

Event parameters

Enabling events

Workbook events

Workbook-level sheet events

Worksheet events

Chart events

Embedded charts

Embedded chart and chart sheet events

Application-level events

Next steps

Chapter 8 Arrays

Declaring an array

Declaring a multidimensional array

Filling an array

Retrieving data from an array

Using arrays to speed up code

Using dynamic arrays

Passing an array

Next steps

Chapter 9 Creating classes and collections

Inserting a class module

Trapping application and embedded chart events

Application events

Embedded chart events

Creating a custom object

Using a custom object

Using collections

Creating a collection

Creating a collection in a standard module

Creating a collection in a class module

Using dictionaries

Using user-defined types to create custom properties

Next steps

Chapter 10 Userforms: An introduction

Input boxes

Message boxes

Creating a userform

Calling and hiding a userform

Programming userforms

Userform events

Programming controls

Using basic form controls

Using labels, text boxes, and command buttons

Deciding whether to use list boxes or combo boxes in forms

Using the MultiSelect property of a list box

Adding option buttons to a userform

Adding graphics to a userform

Using a spin button on a userform

Using the MultiPage control to combine forms

Verifying field entry

Illegal window closing

Getting a file name

Next steps

Chapter 11 Data mining with Advanced Filter

Replacing a loop with AutoFilter

Using AutoFilter techniques

Selecting visible cells only

Advanced Filter—easier in VBA than in Excel

Using the Excel interface to build an advanced filter

Using Advanced Filter to extract a unique list of values

Extracting a unique list of values with the user interface

Extracting a unique list of values with VBA code

Getting unique combinations of two or more fields

Using Advanced Filter with criteria ranges

Joining multiple criteria with a logical OR

Joining two criteria with a logical AND

Other slightly complex criteria ranges

The most complex criteria: Replacing the list of values with a condition created as the result of a formula

Setting up a condition as the result of a formula

Using filter in place in Advanced Filter

Catching no records when using a filter in place

Showing all records after running a filter in place

The real workhorse: xlFilterCopy with all records rather than unique records only

Copying all columns

Copying a subset of columns and reordering

Excel in practice: Turning off a few drop-down menus in the AutoFilter

Next steps

Chapter 12 Using VBA to create pivot tables

Understanding how pivot tables evolved over various Excel versions

While building a pivot table in Excel VBA

Defining the pivot cache

Creating and configuring the pivot table

Adding fields to the data area

Learning why you cannot move or change part of a pivot report

Determining the size of a finished pivot table to convert the pivot table to values

Using advanced pivot table features

Using multiple value fields

Grouping daily dates to months, quarters, or years

Changing the calculation to show percentages

Eliminating blank cells in the values area

Controlling the sort order with AutoSort

Replicating the report for every product

Filtering a data set

Manually filtering two or more items in a pivot field

Using the conceptual filters

Using the search filter

Setting up slicers to filter a pivot table

Setting up a timeline to filter an Excel 2019 pivot table

Using the Data Model in Excel 2019

Adding both tables to the Data Model

Creating a relationship between the two tables

Defining the pivot cache and building the pivot table

Adding model fields to the pivot table

Adding numeric fields to the values area

Putting it all together

Using other pivot table features

Calculated data fields

Calculated items

Using ShowDetail to filter a record set

Changing the layout from the Design tab

Settings for the report layout

Suppressing subtotals for multiple row fields

Next steps

Chapter 13 Excel power

File operations

Listing files in a directory

Importing and deleting a CSV file

Reading a text file into memory and parsing

Combining and separating workbooks

Separating worksheets into workbooks

Combining workbooks

Copying data to separate worksheets without using Filter

Exporting data to an XML file

Working with cell comments

Resizing comments

Placing a chart in a comment

Tracking user changes

Techniques for VBA pros

Creating an Excel state class module

Drilling-down a pivot table

Filtering an OLAP pivot table by a list of items

Creating a custom sort order

Creating a cell progress indicator

Using a protected password box

Changing case

Selecting with SpecialCells

Resetting a table’s format

Using VBA Extensibility to add code to new workbooks

Next steps

Chapter 14 Sample user-defined functions

Creating user-defined functions

Building a simple custom function

Sharing UDFs

Useful custom Excel functions

Setting the current workbook’s name in a cell

Setting the current workbook’s name and file path in a cell

Checking whether a workbook is open

Checking whether a sheet in an open workbook exists

Counting the number of workbooks in a directory

Retrieving the user ID

Retrieving date and time of last save

Retrieving permanent date and time

Validating an email address

Summing cells based on interior color

Counting unique values

Removing duplicates from a range

Finding the first nonzero-length cell in a range

Substituting multiple characters

Retrieving numbers from mixed text

Converting week number into date

Extracting a single element from a delimited string

Sorting and concatenating

Sorting numeric and alpha characters

Searching for a string within text

Reversing the contents of a cell

Returning the addresses of duplicate maximum values

Returning a hyperlink address

Returning the column letter of a cell address

Using static random

Using Select…Case on a worksheet

Next steps

Chapter 15 Creating charts

Using .AddChart2 to create a chart

Understanding chart styles

Formatting a chart

Referring to a specific chart

Specifying a chart title

Applying a chart color

Filtering a chart

Using SetElement to emulate changes from the plus icon

Using the format method to micromanage formatting options

Changing an object’s fill

Formatting line settings

Creating a combo chart

Creating map charts

Creating waterfall charts

Exporting a chart as a graphic

Considering backward compatibility

Next steps

Chapter 16 Data visualizations and conditional formatting

VBA methods and properties for data visualizations

Adding data bars to a range

Adding color scales to a range

Adding icon sets to a range

Specifying an icon set

Specifying ranges for each icon

Using visualization tricks

Creating an icon set for a subset of a range

Using two colors of data bars in a range

Using other conditional formatting methods

Formatting cells that are above or below average

Formatting cells in the top 10 or bottom 5

Formatting unique or duplicate cells

Formatting cells based on their value

Formatting cells that contain text

Formatting cells that contain dates

Formatting cells that contain blanks or errors

Using a formula to determine which cells to format

Using the new NumberFormat property

Next steps

Chapter 17 Dashboarding with sparklines in Excel 2019

Creating sparklines

Scaling sparklines

Formatting sparklines

Using theme colors

Using RGB colors

Formatting sparkline elements

Formatting win/loss charts

Creating a dashboard

Observations about sparklines

Creating hundreds of individual sparklines in a dashboard

Next steps

Chapter 18 Reading from and writing to the web

Getting data from the web

Building multiple queries with VBA

Finding results from retrieved data

Putting it all together

Examples of scraping websites using web queries

Using Application.OnTime to periodically analyze data

Using ready mode for scheduled procedures

Specifying a window of time for an update

Canceling a previously scheduled macro

Closing Excel cancels all pending scheduled macros

Scheduling a macro to run x minutes in the future

Scheduling a verbal reminder

Scheduling a macro to run every two minutes

Publishing data to a web page

Using VBA to create custom web pages

Using Excel as a content management system

Bonus: FTP from Excel

Next steps

Chapter 19 Text file processing

Importing from text files

Importing text files with fewer than 1,048,576 rows

Dealing with text files with more than 1,048,576 rows

Writing Text Files

Next steps

Chapter 20 Automating Word

Using early binding to reference a Word object

Using late binding to reference a Word object

Using the New keyword to reference the Word application

Using the CreateObject function to create a new instance of an object

Using the GetObject function to reference an existing instance of Word

Using constant values

Using the Watches window to retrieve the real value of a constant

Using the Object Browser to retrieve the real value of a constant

Understanding Word’s objects

The Document object

Controlling form fields in Word

Next steps

Chapter 21 Using Access as a back end to enhance multiuser access to data

ADO versus DAOs

The tools of ADO

Adding a record to a database

Retrieving records from a database

Updating an existing record

Deleting records via ADO

Summarizing records via ADO

Other utilities via ADO

Checking for the existence of tables

Checking for the existence of a field

Adding a table on the fly

Adding a field on the fly

SQL Server examples

Next steps

Chapter 22 Advanced userform techniques

Using the UserForm toolbar in the design of controls on userforms

More userform controls

CheckBox controls

TabStrip controls

RefEdit controls

ToggleButton controls

Using a scrollbar as a slider to select values

Controls and collections

Modeless userforms

Using hyperlinks in userforms

Adding controls at runtime

Resizing the userform on the fly

Adding a control on the fly

Sizing on the fly

Adding other controls

Adding an image on the fly

Putting it all together

Adding help to a userform

Showing accelerator keys

Adding control tip text

Creating the tab order

Coloring the active control

Creating transparent forms

Next steps

Chapter 23 The Windows Application Programming Interface (API)

Understanding an API declaration

Using an API declaration

Making 32-bit- and 64-bit-compatible API declarations

API function examples

Retrieving the computer name

Checking whether an Excel file is open on a network

Retrieving display-resolution information

Customizing the About dialog box

Disabling the X for closing a userform

Creating a running timer

Playing sounds

Next steps

Chapter 24 Handling errors

What happens when an error occurs?

A misleading debug error in userform code

Basic error handling with the On Error GoTo syntax

Generic error handlers

Handling errors by choosing to ignore them

Suppressing Excel warnings

Encountering errors on purpose

Training your clients

Errors that won’t show up in debug mode

Errors while developing versus errors months later

Runtime error 9: Subscript out of range

Runtime error 1004: Method range of object global failed

The ills of protecting code

More problems with passwords

Errors caused by different versions

Next steps

Chapter 25 Customizing the ribbon to run macros

Where to add code: The customui folder and file

Creating a tab and a group

Adding a control to a ribbon

Accessing the file structure

Understanding the RELS file

Renaming an Excel file and opening a workbook

Using images on buttons

Using Microsoft Office icons on a ribbon

Adding custom icon images to a ribbon

Troubleshooting error messages

The attribute “Attribute Name” on the element “customui ribbon” is not defined in the DTD/schema

Illegal qualified name character

Element “customui Tag Name” is unexpected according to content model of parent element “customui Tag Name”

Found a problem with some content

Wrong number of arguments or invalid property assignment

Invalid file format or file extension

Nothing happens

Other ways to run a macro

Using a keyboard shortcut to run a macro

Attaching a macro to a command button

Attaching a macro to a shape

Attaching a macro to an ActiveX control

Running a macro from a hyperlink

Next steps

Chapter 26 Creating add-ins

Characteristics of standard add-ins

Converting an Excel workbook to an add-in

Using Save As to convert a file to an add-in

Using the VB Editor to convert a file to an add-in

Having a client install an add-in

Standard add-ins are not secure

Closing add-ins

Removing add-ins

Using a hidden workbook as an alternative to an add-in

Next steps

Chapter 27 An introduction to creating Office add-ins

Creating your first Office add-in—Hello World

Adding interactivity to an Office add-in

A basic introduction to HTML

Using tags

Adding buttons

Using CSS files

Using XML to define an Office add-in

Using JavaScript to add interactivity to an Office add-in

The structure of a function

Curly braces and spaces

Semicolons and line breaks

Comments

Variables

Strings

Arrays

JavaScript for loops

How to do an if statement in JavaScript

How to do a Select..Case statement in JavaScript

How to use a For each..next statement in JavaScript

Mathematical, logical, and assignment Operators

Math functions in JavaScript

Writing to the content pane or task pane

JavaScript changes for working in an Office add-in

Next steps

Chapter 28 What’s new in Excel 2019 and what’s changed

Office 365 subscription versus Excel 2019 perpetual

If it has changed in the front end, it has changed in VBA

The ribbon

Single-document interface

Modern array formulas

Quick Analysis tool

Charts

Pivot tables

Slicers

Icons

3D Models

SmartArt

Learning the new objects and methods

Compatibility mode

Using the Version property

Using the Excel8CompatibilityMode property

Next steps

Index

Acknowledgments

Thanks to Tracy Syrstad for being a great coauthor.

Bob Umlas is the smartest Excel guy I know and is an awesome technical editor. At Pearson, Loretta Yates is an excellent acquisitions editor. Thanks to the Kughens for guiding this book through production. I updated this edition in residence at the Kola Mi Writing Camp. My sincere thanks to the staff there for keeping me on track.

Along the way, I’ve learned a lot about VBA programming from the awesome community at the MrExcel.com message board. VoG, Richard Schollar, and Jon von der Heyden all stand out as having contributed posts that led to ideas in this book. Thanks to Pam Gensel for Excel macro lesson #1. Mala Singh taught me about creating charts in VBA.

My family was incredibly supportive during this time. Thanks to Mary Ellen Jelen, Robert F. Jelen, Barbara Jelen, and Robert K. Jelen.

—Bill

Thank you to all the moderators at the MrExcel forum who keep the board organized, despite the best efforts of the spammers. Thank you to Joe4, RoryA, and Petersss for helping process all the forum’s contact emails.

Programming is a constant learning experience, and I really appreciate the clients who have encouraged me to program outside my comfort zone so that my skills and knowledge have expanded.

World of Warcraft is how I de-stress. I’d like to give a special thank you to my in-game friends who help make the game so much fun and let me unwind: Louisiv (for teaching me how to tank), War (best co-tank ever), Amabeast (for pushing me out of my comfort zone), Chraz (for keeping my toon alive), and Jagdeule (for showing me how great an MM hunter could be).

And last, but not least, thanks to Bill Jelen. His site, MrExcel.com, is a place where thousands come for help. It’s also a place where I, and others like me, have an opportunity to learn from and assist others.

—Tracy

About the Authors

[image:] Bill Jelen, Excel MVP and the host of MrExcel.com, has been using spreadsheets since 1985, and he launched the MrExcel.com website in 1998. Bill was a regular guest on Call for Help with Leo Laporte and has produced more than 2,200 episodes of his daily video podcast, Learn Excel from MrExcel. He is the author of 57 books about Microsoft Excel and writes the monthly Excel column for Strategic Finance magazine. Before founding MrExcel.com, Bill Jelen spent 12 years in the trenches—working as a financial analyst for finance, marketing, accounting, and operations departments of a $500 million public company. He lives in Merritt Island, Florida, with his wife, Mary Ellen.

Tracy Syrstad is a Microsoft Excel developer and author of nine Excel books. She has been helping people with Microsoft Office issues since 1997, when she discovered free online forums where anyone could ask and answer questions. Tracy found out she enjoyed teaching others new skills, and when she began working as a developer, she was able to integrate the fun of teaching with one-on-one online desktop sharing sessions. Tracy lives on an acreage in eastern South Dakota with her husband, one dog, two cats, one horse, and a variety of wild foxes, squirrels, and rabbits.

Introduction

In this Introduction, you will:

	Find out what is in this book

	Have a peek at the future of VBA and Windows versions of Excel

	Learn about special elements and typographical conventions in this book

	Find out where to find code files for this book

As corporate IT departments have found themselves with long backlogs of requests, Excel users have discovered that they can produce the reports needed to run their businesses themselves using the macro language Visual Basic for Applications (VBA). VBA enables you to achieve tremendous efficiencies in your day-to-day use of Excel. VBA helps you figure out how to import data and produce reports in Excel so that you don′t have to wait for the IT department to help you.

Is JavaScript a threat to VBA?

Your first questions are likely: ″Should I invest time in learning VBA? How long will Microsoft support VBA? Will the new JavaScript language announced in May 2018 replace VBA?˝

Your investments in VBA will serve you well until at least 2046.

The last macro language change—from XLM to VBA—happened in 1993. XLM is still supported in Excel to this day. That was a case where VBA was better than XLM, but XLM is still supported 26 years later. If Microsoft ever switches from VBA to JavaScript, I expect that they will continue to support VBA in the Windows and Mac versions of Excel for the next 26 years.

In May 2018, Microsoft announced a new JavaScript user-defined function (UDF) that would allow macro code to run on both the client version of Excel and in Excel Online. The cross-platform ability is interesting.

In the Excel universe today, there are versions of Excel running in Windows, in MacOS, on mobile phones powered by Android and iOS, and in modern browsers using Excel Online. In my world, I use Excel 99% of the time on a Windows computer. There is perhaps 1% of the time where I will open an Excel workbook on an iPad. But, if you are in a mobile environment where you are using Excel in a browser, then the JavaScript UDFs might be appropriate for you.

For an introduction to JavaScript UDFs in Excel, read Suat M. Ozgur′s Excel JavaScript UDFs Straight to the Point (ISBN 978-1-61547-247-5).

However, JavaScript performance is still horrible. If you don′t need your macros to run in Excel Online, the VBA version of your macro will run eight times quicker than the JavaScript version. For people who plan to run Excel only on the Mac or Windows platforms, VBA will be your go-to macro language for another decade.

The threat to Excel VBA is the new Excel Power Query tools found in the Get & Transform tab of the Data tab in Excel for Windows. If you are writing macros to clean imported data, you should consider cleaning the data once with Power Query and then refreshing the query each day. I have a lot of Power Query workflows set up that would have previously required VBA. For a primer on Power Query, check out Master Your Data with Excel and Power BI: Leveraging Power Query to Get & Transform Your Task Flow by Ken Puls and Miguel Escobar (ISBN 978-1-61547-058-7).

What is in this book?

You have taken the right step by purchasing this book. We can help you reduce the learning curve so that you can write your own VBA macros and put an end to the burden of generating reports manually.

Reducing the learning curve

This Introduction provides a case study about the power of macros. Chapter 1, ″Unleashing the power of Excel with VBA,˝ introduces the tools and confirms what you probably already know: The macro recorder does not work reliably. Chapter 2, ″This sounds like BASIC, so why doesn′t it look familiar?˝ helps you understand the crazy syntax of VBA. Chapter 3, ″Referring to ranges,˝ cracks the code on how to work efficiently with ranges and cells.

Chapter 4, ″Looping and flow control,˝ covers the power of looping using VBA. The case study in this chapter demonstrates creating a program to produce a department report and then wrapping that report routine in a loop to produce 46 reports.

Chapter 5, ″R1C1-style formulas,˝ covers, obviously, R1C1-style formulas. Chapter 6, ″Creating and manipulating names in VBA,˝ covers names. Chapter 7, ″Event programming,˝ includes some great tricks that use event programming. Chapters 8, ″Arrays,˝ and 9, ″Creating classes and collections,˝ cover arrays, classes, and collections. Chapter 10, ″Userforms: An introduction,˝ introduces custom dialog boxes that you can use to collect information from a human using Excel.

Excel VBA power

Chapters 11, ″Data mining with Advanced Filter,˝ and 12, ″Using VBA to create pivot tables,˝ provide an in-depth look at Filter, Advanced Filter, and pivot tables. Report automation tools rely heavily on these concepts. Chapters 13, ″Excel power,˝ and 14, ″Sample user-defined functions,˝ include dozens of code samples designed to exhibit the power of Excel VBA and custom functions.

Chapters 15, ″Creating charts,˝ through 20, ″Automating Word,˝ handle charting, data visualizations, web queries, sparklines, and automating Word.

Techie stuff needed to produce applications

Chapter 21, ″Using Access as a back end to enhance multiuser access to data,˝ handles reading and writing to Access databases and SQL Server. The techniques for using Access databases enable you to build an application with the multiuser features of Access while keeping the friendly front end of Excel.

Chapter 22, ″Advanced userform techniques,˝ shows you how to go further with userforms. Chapter 23, ″The Windows Application Programming Interface (API),˝ teaches some tricky ways to achieve tasks using the Windows API. Chapters 24, ″Handling errors,˝ through 26, ″Creating add-ins,˝ deal with error handling, custom menus, and add-ins. Chapter 27, ″An introduction to creating Office add-ins,˝ provides a brief introduction to building your own JavaScript application within Excel. Chapter 28, ″What′s new in Excel 2019 and what′s changed,˝ summarizes the changes in Excel 2019.

Does this book teach Excel?

Microsoft believes that the ordinary Office customer touches only 10% of the features in Office. We realize that everyone reading this book is above average, and the visitors to MrExcel.com are a pretty smart audience. Even so, a poll of 8,000 MrExcel.com readers showed that only 42% of smarter-than-average users are using any 1 of the top 10 power features in Excel.

Bill regularly presents a Power Excel seminar for accountants. These are hard-core Excelers who use Excel 30 to 40 hours every week. Even so, two things come out in every seminar. First, half of the audience gasps when they see how quickly you can do tasks with a particular feature, such as automatic subtotals or pivot tables. Second, someone in the audience routinely trumps me. For example, someone asks a question, I answer, and someone in the second row raises a hand to give a better answer.

The point? Both the authors and the audience of this book know a lot about Excel. However, we assume that in any given chapter, maybe 58% of the people have not used pivot tables before and maybe even fewer have used the Top 10 Filter feature of pivot tables. With this in mind, before we show how to automate something in VBA, we briefly cover how to do the same task in the Excel interface. This book does not teach you how to make pivot tables, but it does alert you when you might need to explore a topic and learn more about it elsewhere.

Case study: Monthly accounting reports

This is a true story. Valerie is a business analyst in the accounting department of a medium-size corporation. Her company recently installed an overbudget $16 million enterprise resource planning (ERP) system. As the project ground to a close, there were no resources left in the IT budget to produce the monthly report that this corporation used to summarize each department.

However, Valerie had been close enough to the implementation to think of a way to produce the report herself. She understood that she could export general ledger data from the ERP system to a text file with comma-separated values. Using Excel, Valerie was able to import the general ledger data from the ERP system into Excel.

Creating the report was not easy. As in many other companies, there were exceptions in the data. Valerie knew that certain accounts in one particular cost center needed to be reclassed as expenses. She knew that other accounts needed to be excluded from the report entirely. Working carefully in Excel, Valerie made these adjustments. She created one pivot table to produce the first summary section of the report. She cut the pivot table results and pasted them into a blank worksheet. Then she created a new pivot table report for the second section of the summary. After about three hours, she had imported the data, produced five pivot tables, arranged them in a summary, and neatly formatted the report in color.

Becoming the hero

Valerie handed the report to her manager. The manager had just heard from the IT department that it would be months before they could get around to producing ″that convoluted report.˝ When Valerie created the Excel report, she became the instant hero of the day. In three hours, Valerie had managed to do the impossible. Valerie was on cloud nine after a well-deserved ″atta-girl.˝

More cheers

The next day, Valerie′s manager attended the monthly department meeting. When the department managers started complaining that they could not get the report from the ERP system, this manager pulled out his department′s report and placed it on the table. The other managers were amazed. How was he able to produce this report? Everyone was relieved to hear that someone had cracked the code. The company president asked Valerie′s manager if he could have the report produced for each department.

Cheers turn to dread

You can probably see what′s coming. This particular company had 46 departments. That means 46 one-page summaries had to be produced once a month. Each report required importing data from the ERP system, backing out certain accounts, producing five pivot tables, and then formatting the reports in color. It had taken Valerie three hours to produce the first report, but after she got into the swing of things, she could produce the 46 reports in 40 hours. Even after she reduced her time per report, though, this is horrible. Valerie had a job to do before she became responsible for spending 40 hours a month producing these reports in Excel.

VBA to the rescue

Valerie found Bill′s company, MrExcel Consulting, and explained her situation. In the course of about a week, Bill was able to produce a series of macros in Visual Basic that did all the mundane tasks. For example, the macros imported the data, backed out certain accounts, made five pivot tables, and applied the color formatting. From start to finish, the entire 40-hour manual process was reduced to two button clicks and about 4 minutes.

Right now, either you or someone in your company is probably stuck doing manual tasks in Excel that can be automated with VBA. We are confident that we can walk into any company that has 20 or more Excel users and find a case just as amazing as Valerie′s.

Versions of Excel

This sixth edition of VBA and Macros is designed to work with Excel 2019 and Office 365 features released up through June 2018. The previous editions of this book covered code for Excel 97 through Excel 2016. In 80% of the chapters, the code for Excel 2019 is identical to the code in previous versions.

Differences for Mac users

Although Excel for Windows and Excel for the Mac are similar in terms of user interface, there are a number of differences when you compare the VBA environment. Certainly, nothing in Chapter 23 that uses the Windows API will work on the Mac. That said, the overall concepts discussed in this book apply to the Mac. You can find a general list of differences as they apply to the Mac at http://www.mrexcel.com/macvba.html Development in VBA for Mac Excel 2019 is far more difficult than in Windows, with only rudimentary VBA editing tools. Microsoft actually recommends that you write all of your VBA in Excel 2019 for Windows and then use that VBA on the Mac.

Special elements and typographical conventions

The following typographical conventions are used in this book:

	Italic—Indicates new terms when they are defined, special emphasis, non-English words or phrases, and letters or words used as words.

	Monospace—Indicates parts of VBA code, such as object or method names.

	Bold monospace—Indicates user input.

In addition to these typographical conventions, there are several special elements. Each chapter has at least one case study that presents a real-world solution to common problems. The case study also demonstrates practical applications of topics discussed in the chapter.

In addition to the case studies, you will see Notes, Tips, and Cautions.

[image: Images]

Note Notes provide additional information outside the main thread of the chapter discussion that might be useful for you to know.

[image: Images]

Tip Tips provide quick workarounds and time-saving techniques to help you work more efficiently.

[image: Images]

Caution Cautions warn about potential pitfalls you might encounter. Pay attention to the Cautions; they alert you to problems that might otherwise cause you hours of frustration.

About the companion content

As a thank-you for buying this book, we have put together a set of 50 Excel workbooks that demonstrate the concepts included in this book. This set of files includes all the code from the book, sample data, and additional notes from the authors. To download the code files, visit this book′s web page at microsoftpressstore.com/Excel2019VBAMacros/downloads.

Support and feedback

The following sections provide information on errata, book support, feedback, and contact information.

Stay in touch

Let′s keep the conversation going! We′re on Twitter:

http://twitter.com/MicrosoftPress

http://twitter.com/MrExcel

Errata, updates, and book support

We′ve made every effort to ensure the accuracy of this book and its companion content. Any errors that have been reported since this book was published are listed at microsoftpressstore.com/Excel2019VBAMacros/errata.

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at microsoftpresscs@pearson.com.

Please note that product support for Microsoft software and hardware is not offered through the previous addresses. For help with Microsoft software or hardware, go to http://support.microsoft.com.

CHAPTER 1
Unleashing the power of Excel with VBA

In this chapter, you will:

	Understand the power of Excel

	Learn the barriers to entry of using Excel

	Get to know your tools: The Developer tab

	Understand which file types allow macros

	Be introduced to macro security

	Get an overview of recording, storing, and running a macro

	Find out how to run a macro

	Understand the VB Editor

	Understand the shortcomings of the macro recorder

Visual Basic for Applications (VBA) combined with Microsoft Excel is probably the most powerful tool available to you. VBA is sitting on the desktops of 850 million users of Microsoft Office, and most have never figured out how to harness the power of VBA in Excel. Using VBA, you can speed the production of any task in Excel. If you regularly use Excel to produce a series of monthly charts, for example, you can have VBA do that task for you in a matter of seconds.

Barriers to entry

There are two barriers to learning successful VBA programming. First, Excel’s macro recorder is flawed and does not produce workable code for you to use as a model. Second, for many who learned a programming language such as BASIC, the syntax of VBA is horribly frustrating.

The macro recorder doesn’t work!

Microsoft began to dominate the spreadsheet market in the mid-1990s. Although it was wildly successful in building a powerful spreadsheet program to which any Lotus 1-2-3 user could easily transition, the macro language was just too different. Anyone proficient in recording Lotus 1-2-3 macros who tried recording a few macros in Excel most likely failed. Although the Microsoft VBA programming language is much more powerful than the Lotus 1-2-3 macro language, the fundamental flaw is that the macro recorder does not work when you use the default settings.

With Lotus 1-2-3, you could record a macro today and play it back tomorrow, and it would faithfully work. When you attempt the same feat in Microsoft Excel, the macro might work today but not tomorrow. In 1995, when I tried to record my first Excel macro, I was horribly frustrated by this. In this book, I teach you the three rules for getting the most out of the macro recorder.

No one person on the Excel team is focused on the macro recorder

As Microsoft adds new features to Excel, the individual project manager for a feature makes sure that the macro recorder will record something when you execute the command. In the past decade, the recorded code might work in some situations, but it often does not work in all situations. If Microsoft had someone who was focused on creating a useful macro recorder, the recorded code could often be a lot more general than it currently is.

It used to be that you could record a command in any of five ways and the recorded code would work. Unfortunately, today, if you want to use the macro recorder, you often have to try recording the macro several different ways to find a set of steps that records code that reliably works.

Visual Basic is not like BASIC

Two decades ago, the code generated by the macro recorder was unlike anything I had ever seen. It said this was “Visual Basic” (VB). I have had the pleasure of learning half a dozen programming languages at various times; this bizarre-looking language was horribly unintuitive and did not resemble the BASIC language I had learned in high school.

To make matters worse, even in 1995 I was the spreadsheet expert in my office. My company had forced everyone to convert from Lotus 1-2-3 to Excel, which meant I was faced with a macro recorder that didn’t work and a language that I couldn’t understand. This was not a good combination of events.

My assumption in writing this book is that you are pretty talented with a spreadsheet. You probably know more than 90% of the people in your office. I also assume that even though you are not a programmer, you might have taken a class in BASIC at some point. However, knowing BASIC is not a requirement—it actually is a barrier to entry into the ranks of being a successful VBA programmer. There is a good chance that you have recorded a macro in Excel, and there’s a similar chance that you were not happy with the results.

Good news: Climbing the learning curve is easy

Even if you’ve been frustrated with the macro recorder, it is really just a small speed bump on your road to writing powerful programs in Excel. This book teaches you not only why the macro recorder fails but also how to change the recorded code into something useful. For all the former BASIC programmers in the audience, I decode VBA so that you can easily pick through recorded macro code and understand what is happening.

Great news: Excel with VBA is worth the effort

Although you probably have been frustrated with Microsoft over the inability to record macros in Excel, the great news is that Excel VBA is powerful. Absolutely anything you can do in the Excel interface can be duplicated with stunning speed in Excel VBA. If you find yourself routinely creating the same reports manually day after day or week after week, Excel VBA will greatly streamline those tasks.

The authors of this book work for MrExcel Consulting. In this role, we have automated reports for hundreds of clients. The stories are often similar: The IT department has a several-month backlog of requests. Someone in accounting or engineering discovers that he or she can import some data into Excel and get the reports necessary to run the business. This is a liberating event: You no longer need to wait months for the IT department to write a program. However, the problem is that after you import the data into Excel and win accolades from your manager for producing the report, you will likely be asked to produce the same report every month or every week. This becomes very tedious.

Again, the great news is that with a few hours of VBA programming, you can automate the reporting process and turn it into a few button clicks. The reward is great. So hang with me as we cover a few of the basics.

This chapter exposes why the macro recorder does not work. It also walks through an example of recorded code and demonstrates why it works today but will fail tomorrow. I realize that the code you see in this chapter might not be familiar to you, but that’s okay. The point of this chapter is to demonstrate the fundamental problem with the macro recorder. This chapter also explains the fundamentals of the Visual Basic environment.

Knowing your tools: The Developer tab

Let’s start with a basic overview of the tools needed to use VBA. By default, Microsoft hides the VBA tools. You need to complete the following steps to change a setting to access the Developer tab:

	Right-click the ribbon and choose Customize The Ribbon.

	In the right list box, select the Developer check box, which is the tenth item.

	Click OK to return to Excel.

Excel displays the Developer tab, as shown in Figure 1-1.

[image: Once enabled, the Developer tab offers tools for macro recording.]

FIGURE 1-1 The Developer tab provides an interface for running and recording macros.

The Code group on the Developer tab contains the icons used for recording and playing back VBA macros, as listed here:

	Visual Basic—Opens the Visual Basic Editor.

	Macros—Displays the Macro dialog box, where you can choose to run or edit a macro from the list of macros.

	Record Macro—Begins the process of recording a macro.

	Use Relative References—Toggles between using relative or absolute recording. With relative recording, Excel records that you move down three cells. With absolute recording, Excel records that you selected cell A4.

	Macro Security—Accesses the Trust Center, where you can choose to allow or disallow macros to run on this computer.

The Add-ins group provides icons for managing regular add-ins and COM add-ins.

The Controls group of the Developer tab contains an Insert menu where you can access a variety of programming controls that can be placed on the worksheet. See “Assigning a macro to a form control, text box, or shape,” later in this chapter. Other icons in this group enable you to work with the on-sheet controls. The Run Dialog button enables you to display a custom dialog box or userform that you designed in VBA. For more on userforms, see Chapter 10, “Userforms: An introduction.”

The XML group of the Developer tab contains tools for importing and exporting XML documents.

The Modify group enables you to specify whether the Document Panel is always displayed for new documents. Users can enter keywords and a document description in the Document Panel. If you have SharePoint and InfoPath, you can define custom fields to appear in the Document Panel.

Understanding which file types allow macros

Excel 2019 offers support for four file types. Macros are not allowed to be stored in the .xlsx file type, and this file type is the default file type! You have to use the Save As setting for all of your macro workbooks, or you can change the default file type used by Excel 2019.

The available files types are as listed here:

	Excel Workbook (.xlsx)—Files are stored as a series of XML objects and then zipped into a single file. This creates significantly smaller file sizes. It also allows other applications (even Notepad!) to edit or create Excel workbooks. Unfortunately, macros cannot be stored in files with an .xlsx extension.

	Excel Macro-Enabled Workbook (.xlsm)—This is similar to the default .xlsx format, except macros are allowed. The basic concept is that if someone has an .xlsx file, he will not need to worry about malicious macros. However, if he sees an .xlsm file, he should be concerned that there might be macros attached.

	Excel Binary Workbook (.xlsb)—This is a binary format designed to handle the larger 1-million-row grid size introduced in Excel 2007. Legacy versions of Excel stored their files in a proprietary binary format. Although binary formats might load more quickly, they are more prone to corruption, and a few lost bits can destroy a whole file. Macros are allowed in this format.

	Excel 97-2003 Workbook (.xls)—This format produces files that can be read by anyone using legacy versions of Excel. Macros are allowed in this binary format; however, when you save in this format, you lose access to any cells outside A1:IV65536. In addition, if someone opens the file in Excel 2003, she loses access to anything that used features introduced in Excel 2007 or later.

To avoid having to choose a macro-enabled workbook in the Save As dialog box, you can customize your copy of Excel to always save new files in the .xlsm format by following these steps:

	Click the File menu and select Options.

	In the Excel Options dialog box, select the Save category from the left navigation pane.

	Open the Save Files In This Format drop-down menu and select Excel Macro-Enabled Workbook (*.xlsm). Click OK.

[image: Images]

Note Although you and I are not afraid to use macros, I have encountered people who freak out when they see the .xlsm file type. They actually seem angry that I sent them an .xlsm file that did not have any macros. Google’s Gmail has joined this camp, refusing to show a preview of any attachments sent in the .xlsm format.

If you encounter someone who seems to have a fear of the .xlsm file type, remind them of these points:

	Every workbook created in the past 30 years could have had macros, but in fact, most did not.

	If someone is trying to avoid macros, she should use the security settings to prevent macros from running anyway. The person can still open the .xlsm file to get the data in the spreadsheet.

With these arguments, I hope you can overcome any fears of the .xlsm file type so that it can be your default file type.

Macro security

After a Word VBA macro was used as the delivery method for the Melissa virus, Microsoft changed the default security settings to prevent macros from running. Therefore, before we can begin discussing the recording of a macro, it’s important to look at how to adjust the default settings.

In Excel 2019, you can either globally adjust the security settings or control macro settings for certain workbooks by saving the workbooks in a trusted location. Any workbook stored in a folder that is marked as a trusted location automatically has its macros enabled.

You can find the macro security settings under the Macro Security icon on the Developer tab. When you click this icon, the Macro Settings category of the Trust Center is displayed. You can use the left navigation bar in the dialog box to access the Trusted Locations list.

Adding a trusted location

You can choose to store your macro workbooks in a folder that is marked as a trusted location. Any workbook stored in a trusted folder will have its macros enabled. Microsoft suggests that a trusted location should be on your hard drive. The default setting is that you cannot trust a location on a network drive.

To specify a trusted location, follow these steps:

	Click Macro Security in the Developer tab.

	Click Trusted Locations in the left navigation pane of the Trust Center.

	If you want to trust a location on a network drive, select Allow Trusted Locations On My Network.

	Click the Add New Location button. Excel displays the Microsoft Office Trusted Location dialog box (see Figure 1-2).

[image: This figure shows the Microsoft Office Trusted Location dialog box. You specify a folder path and then choose whether subfolders of that location are also trusted.]

FIGURE 1-2 You manage trusted folders in the Trusted Locations category of the Trust Center.

	Click the Browse button. Excel displays the Browse dialog box.

	Browse to the parent folder of the folder you want to be a trusted location. Click the trusted folder. Although the folder name does not appear in the Folder Name box, click OK. The correct folder name will appear in the Browse dialog box.

	If you want to trust subfolders of the selected folder, select Subfolders Of This Location Are Also Trusted.

	Click OK to add the folder to the Trusted Locations list.

[image: Images]

Caution Use care when selecting a trusted location. When you double-click an Excel attachment in an email message, Outlook stores the file in a temporary folder on your C: drive. You will not want to globally add the C drive and all subfolders to the Trusted Locations list.

Using macro settings to enable macros in workbooks outside trusted locations

For all macros not stored in a trusted location, Excel relies on the macro settings. The Low, Medium, High, and Very High settings that were familiar in Excel 2003 have been renamed.

To access the macro settings, click Macro Security in the Developer tab. Excel displays the Macro Settings category of the Trust Center dialog box. Select the second option, Disable All Macros With Notification. A description of each option follows:

	Disable All Macros Without Notification—This setting prevents all macros from running. This setting is for people who never intend to run macros. Because you are currently holding a book that teaches you how to use macros, it is assumed that this setting is not for you. This setting is roughly equivalent to the old Very High security setting in Excel 2003. With this setting, only macros in the Trusted Locations folders can run.

	Disable All Macros With Notification—The operative words in this setting are “With Notification.” This means that you see a notification when you open a file with macros and you can choose to enable the content. If you ignore the notification, the macros remain disabled. This setting is similar to the Medium security setting in Excel 2003 and is the recommended setting. In Excel 2019, a message is displayed in the Message area indicating that macros have been disabled. You can choose to enable the content by clicking that option, as shown in Figure 1-3.

[image: The Message area below the Formula Bar says “Security Warning Macros Have Been Disabled” with a button to Enable Content.]

FIGURE 1-3 The Enable Content option appears when you use Disable All Macros With Notification.

	Disable All Macros Except Digitally Signed Macros—This setting requires you to obtain a digital signing tool from Verisign or another provider. This might be appropriate if you are going to be selling add-ins to others, but it’s a bit of a hassle if you just want to write macros for your own use.

	Enable All Macros (Not Recommended: Potentially Dangerous Code Can Run)—This setting is similar to the Low macro security setting in Excel 2003. Although it requires the least amount of hassle, it also opens your computer to attacks from malicious Melissa-like viruses. Microsoft suggests that you not use this setting.

Using Disable All Macros With Notification

It is recommended that you set your macro settings to Disable All Macros With Notification. If you use this setting and open a workbook that contains macros, you see a security warning in the area just above the formula bar. If you are expecting macros in this workbook, click Enable Content. If you do not want to enable macros for the current workbook, dismiss the security warning by clicking the X at the far right of the message bar.

If you forget to enable the macros and attempt to run a macro, Excel indicates that you cannot run the macro because all macros have been disabled. If this occurs, close the workbook and reopen it to access the message bar again.

[image: Images]

Caution After you enable macros in a workbook stored on a local hard drive and then save the workbook, Excel remembers that you previously enabled macros in this workbook. The next time you open this workbook, macros are automatically enabled.

Overview of recording, storing, and running a macro

Recording a macro is useful when you do not have experience writing lines of code in a macro. As you gain more knowledge and experience, you will record macros less frequently.

To begin recording a macro, select Record Macro from the Developer tab. Before recording begins, Excel displays the Record Macro dialog box, as shown in Figure 1-4.

[image: The Record Macro dialog box has fields for designating a macro name, shortcut key, where to store macros, and a description.]

FIGURE 1-4 Use the Record Macro dialog box to assign a name and a shortcut key to the macro being recorded.

Filling out the Record Macro dialog box

In the Macro Name field, type a name for the macro. Be sure to type continuous characters. For example, type Macro1 (without a space), not Macro 1 (with a space). Assuming that you will soon be creating many macros, use a meaningful name for the macro. A name such as FormatReport is more useful than one like Macro1.

The second field in the Record Macro dialog box is a shortcut key. If you type a lowercase j in this field and later press Ctrl+J, this macro runs. Be careful, however, because Ctrl+A through Ctrl+Z (except Ctrl+J) are all already assigned to other tasks in Excel. If you assign a macro to Ctrl+B, you won’t be able to use Ctrl+B for bold anymore. One alternative is to assign the macros to Ctrl+Shift+A through Ctrl+Shift+Z. To assign a macro to Ctrl+Shift+A, you type Shift+A in the shortcut key box.

[image: Images]

Caution You can reuse a shortcut key for a macro. For example, if you assign a macro to Ctrl+C, Excel runs your macro instead of doing the normal action of copy.

In the Record Macro dialog box, choose where you want to save a macro when it is recorded: Personal Macro Workbook, New Workbook, or This Workbook. My recommendation is that you store macros related to a particular workbook in This Workbook.

The Personal Macro Workbook (Personal.xlsm) is not a visible workbook; it is created if you choose to save the recording in the Personal Macro Workbook. This workbook is used to save a macro in a workbook that opens automatically when you start Excel, thereby enabling you to use the macro. After Excel is started, the workbook is hidden. If you want to display it, select Unhide from the View tab.

[image: Images]

Tip I do not recommend that you use the personal workbook for every macro you save. Save only those macros that assist you in general tasks—not in tasks that are performed in a specific sheet or workbook.

The fourth box in the Record Macro dialog box is for a description. This description is added as a comment to the beginning of your macro.

After you select the location where you want to store the macro, click OK. Record your macro. For this example, type Hello World in the active cell and press Ctrl+Enter to accept the entry and stay in the same cell. When you are finished recording the macro, click the Stop Recording icon in the Developer tab.

[image: Images]

Tip You also can access a Stop Recording icon in the lower-left corner of the Excel window. Look for a small white square to the right of the word Ready in the status bar. Using this Stop button might be more convenient than returning to the Developer tab. After you record your first macro, this area usually has a Record Macro icon, which is a small dot on an Excel worksheet.

Running a macro

If you assigned a shortcut key to your macro, you can play it by pressing the key combination. You also can assign macros to a button on the ribbon or the Quick Access Toolbar, form controls, or drawing objects, or you can run them from the Visual Basic toolbar.

Creating a macro button on the ribbon

You can add an icon to a new group on the ribbon to run your macro. This is appropriate for macros stored in the Personal Macro Workbook. Icons added to the ribbon are still enabled even when your macro workbook is not open. If you click the icon when the macro workbook is not open, Excel opens the workbook and runs the macro. Follow these steps to add a macro button to the ribbon:

	Right-click the ribbon and choose Customize The Ribbon.

	In the list box on the right, choose the tab name where you want to add an icon.

	Click the New Group button below the right list box. Excel adds a new entry called New Group (Custom) to the end of the groups in that ribbon tab.

	To move the group to the left in the ribbon tab, click the up arrow icon on the right side of the dialog box several times.

	To rename the group, click the Rename button. Type a new name, such as Report Macros. Click OK. Excel shows the group in the list box as Report Macros (Custom). Note that the word Custom does not appear in the ribbon.

	Open the upper-left drop-down menu and choose Macros from the list. The Macros category is fourth in the list. Excel displays a list of available macros in the left list box.

	Choose a macro from the left list box. Click the Add button in the center of the dialog box. Excel moves the macro to the right list box in the selected group. Excel uses a generic VBA icon for all macros.

	Click the macro in the right list box. Click the Rename button at the bottom of the right list box. Excel displays a list of 180 possible icons. Choose an icon. Alternatively, type a friendly label for the icon, such as Format Report.

	You can move the Report Macros group to a new location on the ribbon tab. Click Report Macros (Custom) and use the up and down arrow icons on the right of the dialog box.

	Click OK to close the Excel Options dialog box. The new button appears on the selected ribbon tab.

Creating a macro button on the Quick Access Toolbar

You can add an icon to the Quick Access Toolbar to run a macro. If a macro is stored in the Personal Macro Workbook, you can have the button permanently displayed in the Quick Access Toolbar. If the macro is stored in the current workbook, you can specify that the icon should appear only when the workbook is open. Follow these steps to add a macro button to the Quick Access Toolbar:

	Right-click the Quick Access Toolbar and choose Customize Quick Access Toolbar.

	If your macro should be available only when the current workbook is open, open the upper-right drop-down menu and change For All Documents (Default) to For FileName.xlsm. Any icons associated with the current workbook are displayed at the end of the Quick Access Toolbar.

	Open the upper-left drop-down menu and select Macros from the list. The Macros category is fourth in the list. Excel displays a list of available macros in the left list box.

	Choose a macro from the left list box. Click the Add button in the center of the dialog box. Excel moves the macro to the right list box. Excel uses a generic VBA icon for all macros.

	Click the macro in the right list box. Click the Modify button at the bottom of the right list box. Excel displays a list of 180 possible icons (see Figure 1-5). Choose an icon from the list. In the Display Name box, replace the macro name with a short name that appears in the ToolTip for the icon.

[image: This figure shows the Quick Access Toolbar section of the Excel Options dialog box. The top-left drop-down list has been changed to Macros. In the left list box, the ImportInvoiceRelative macro is selected. The Add>> button in the middle was used to move the macro to the list box on the right. On top of the Excel Options dialog box, you see a Modify Button dialog box with 180 icons and a Display Name field. Anything you enter in the Display Name will be used as a ToolTip when someone hovers over the icon in the toolbar.]

FIGURE 1-5 You can attach a macro to a button on the Quick Access Toolbar.

	Click OK to close the Modify Button dialog box.

	Click OK to close the Excel Options dialog box. The new button appears on the Quick Access Toolbar.

Assigning a macro to a form control, text box, or shape

If you want to create a macro specific to a workbook, you can store the macro in the workbook and attach it to a form control or any object on the sheet.

Follow these steps to attach a macro to a form control on the sheet:

	On the Developer tab, click the Insert button to open its drop-down menu. Excel offers 12 form controls and 12 ActiveX controls in this one drop-down menu. The form controls are at the top, and the ActiveX controls are at the bottom. Most icons in the ActiveX section of the drop-down menu look identical to an icon in the form controls section of the drop-down menu. Click the Button Form Control icon at the upper-left corner of the Insert drop-down menu.

	Move your cursor over the worksheet; the cursor changes to a plus sign.

	Draw a button on the sheet by clicking and holding the left mouse button while drawing a box shape. Release the button when you have finished.

	Choose a macro from the Assign Macro dialog box and click OK. The button is created with generic text such as Button 1.

	Type a new label for the button. Note that while you are typing, the selection border around the button changes from dots to diagonal lines to indicate that you are in Text Edit mode. You cannot change the button color while in Text Edit mode. To exit Text Edit mode, either click the diagonal lines to change them to dots or Ctrl+click the button again. Note that if you accidentally click away from the button, you should Ctrl+click the button to select it. Then drag the cursor over the text on the button to select the text.

	Right-click the dots surrounding the button and select Format Control. Excel displays the Format Control dialog box, which has seven tabs across the top. If your Format Control dialog box has only a Font tab, you failed to exit Text Edit mode. If this occurred, close the dialog box, Ctrl+click the button, and repeat this step.

	Use the settings in the Format Control dialog box to change the font size, font color, margins, and similar settings for the control. Click OK to close the Format Control dialog box when you have finished. Click a cell to deselect the button.

	Click the new button to run the macro.

Macros can be assigned to any worksheet object, such as clip art, a shape, SmartArt graphics, or a text box. In Figure 1-6, the top button is a traditional button form control. The other images are clip art, a shape with WordArt, and a SmartArt graphic. To assign a macro to any object, right-click the object and select Assign Macro.

[image: This figure shows six different ways to run a macro. You can add a button to the Quick Access Toolbar or the ribbon. You can use a button from the Forms Controls area of Developer. You can use clipart. You can use a Shape with WordArt. You can use SmartArt.]

FIGURE 1-6 Assigning a macro to a form control or an object is appropriate for macros stored in the same workbook as the control. You can assign a macro to any of these objects.

Understanding the VB Editor

If you want to edit a recorded macro, you do it in the VB Editor. Press Alt+F11 or use the Visual Basic icon in the Developer tab.

Figure 1-7 shows an example of a typical VB Editor screen. You can see three windows: the Project Explorer, the Properties window, and the Programming window. Don’t worry if your window doesn’t look exactly like this because you will see how to display the windows you need in this review of the editor.

[image: This figure shows the VBA Editor with three panes open. Top left is the Project Explorer. Bottom left is the Properties window. Right side is the code pane.]

FIGURE 1-7 The VB Editor window.

VB Editor settings

Several settings in the VB Editor enable you to customize this editor and assist you in writing your macros.

Under Tools, Options, Editor, you find several useful settings. All settings except for one are set correctly by default. The remaining setting requires some consideration on your part. This setting is Require Variable Declaration. By default, Excel does not require you to declare variables. I prefer selecting this setting because it can save time when you create a program. My coauthor prefers to change this setting to require variable declaration. This change forces the compiler to stop if it finds a variable that it does not recognize, which reduces misspelled variable names. Whether you turn this setting on or keep it off is a matter of your personal preference.

The Project Explorer

The Project Explorer lists any open workbooks and add-ins that are loaded. If you click the + icon next to the VBA Project, you see that there is a folder containing Microsoft Excel objects. There can also be folders for forms, class modules, and standard modules. Each folder includes one or more individual components.

Right-clicking a component and selecting View Code or just double-clicking the components brings up any code in the Programming window. The exception is userforms, where double-clicking displays the userform in Design view.

To display the Project Explorer window, select View, Project Explorer from the menu or press Ctrl+R or locate the bizarre Project Explorer icon just below the Tools menu, sandwiched between Design Mode and Properties Window.

To insert a module, right-click your project, select Insert, and then choose the type of module you want. The available modules are as follows:

	Microsoft Excel objects—By default, a project consists of sheet modules for each sheet in the workbook and a single ThisWorkbook module. Code specific to a sheet such as controls or sheet events is placed on the corresponding sheet. Workbook events are placed in the ThisWorkbook module. You read more about events in Chapter 7, “Event programming.”

	Forms—Excel enables you to design your own forms to interact with the user. You read more about these forms in Chapter 10.

	Modules—When you record a macro, Excel automatically creates a module in which to place the code. Most of your code resides in these types of modules.

	Class modules—Class modules are Excel’s way of letting you create your own objects. They also allow pieces of code to be shared among programmers without the programmer’s needing to understand how it works. You read more about class modules in Chapter 9, “Creating classes and collections.”

The Properties window

The Properties window enables you to edit the properties of various components such as sheets, workbooks, modules, and form controls. The properties list varies according to what component is selected. To display this window, select View, Properties Window from the menu, press F4, or click the Project Properties icon on the toolbar.

Understanding shortcomings of the macro recorder

Suppose you work in an accounting department. Each day you receive a text file from the company system showing all the invoices produced the prior day. This text file has commas separating the fields. The columns in the file are Invoice Date, Invoice Number, Sales Rep Number, Customer Number, Product Revenue, Service Revenue, and Product Cost (see Figure 1-8).

[image: This figure shows an Invoice.txt file in Notepad.]

FIGURE 1-8 The Invoice.txt file has seven columns separated by commas.

Each morning, you manually import this file into Excel. You add a total row to the data, bold the headings, and then print the report for distribution to a few managers.

This seems like a simple process that would be ideally suited to using the macro recorder. However, due to some problems with the macro recorder, your first few attempts might not be successful. The following example explains how to overcome these problems.

Case study: Preparing to record a macro

The task mentioned in the preceding section is perfect for a macro. However, before you record a macro, think about the steps you will use. In this case, the steps are as follows:

	Click the File menu and select Open.

	Navigate to the folder where Invoice.txt is stored.

	Select All Files (*.*) from the Files of Type drop-down menu.

	Select Invoice.txt.

	Click Open.

	In the Text Import Wizard—Step 1 Of 3 dialog box, select Delimited from the Original Data Type section.

	Click Next.

	In the Text Import Wizard—Step 2 Of 3 dialog box, clear the Tab key and select Comma in the Delimiters section.

	Click Next.

	In the Text Import Wizard—Step 3 Of 3 dialog box, select General in the Column Data Format section and change it to Date: MDY.

	Click Finish to import the file.

	Press the Ctrl key and the down arrow key to move to the last row of data.

	Press the down arrow one more time to move to the total row.

	Type the word Total.

	Press the right arrow key four times to move to column E of the total row.

	Click the AutoSum button and press Ctrl+Enter to add a total to the Product Revenue column while remaining in that cell.

	Click the AutoFill handle and drag it from column E to column G to copy the total formula to columns F and G.

	Highlight row 1 and click the Bold icon on the Home tab to set the headings in bold.

	Highlight the total row and click the Bold icon on the Home tab to set the totals in bold.

	Press Ctrl+* to select the current region.

	From the Home tab, select Format, AutoFit Column Width.

After you have rehearsed these steps in your head, you are ready to record your first macro. Open a blank workbook and save it with a name such as MacroToImportInvoices.xlsm. Click the Record Macro button on the Developer tab.

In the Record Macro dialog box, the default macro name is Macro1. Change this to something descriptive like ImportInvoice. Make sure that the macros will be stored in This Workbook. You might want an easy way to run this macro later, so type the letter i in the Shortcut Key field. In the Description field, add a little descriptive text to tell what the macro is doing (see Figure 1-9). Click OK when you are ready.

[image: This figure shows the Record Macro dialog box. The Macro Name is ImportInvoice. The shortcut key is Ctrl+I. Select In This Workbook from the Store Macro In drop-down menu.]

FIGURE 1-9 Before recording the macro, you need to complete the Record Macro dialog box.

Recording the macro

The macro recorder is now recording your every move. For this reason, perform your steps in exact order without extraneous actions. If you accidentally move to column F, type a value, clear the value, and then move back to E to enter the first total, the recorded macro will blindly make that same mistake day after day after day. Recorded macros move fast, but there is nothing like watching the macro recorder play out your mistakes repeatedly.

Carefully execute all the actions necessary to produce the report. After you have performed the final step, click the Stop Recording button in the Developer tab of the ribbon.

Examining code in the Programming window

Let’s look at the code you just recorded in the “Preparing to record a macro” section. Don’t worry if it doesn’t make sense yet.

To open the VB Editor, press Alt+F11. In your VBA project (MacroToImportInvoices.xlsm), find the component Module1, right-click the module, and select View Code. Notice that some lines start with an apostrophe; these are comments and are ignored by the program. The macro recorder starts your macros with a few comments, using the description you entered in the Record Macro dialog box. The comment for the keyboard shortcut is there to remind you of the shortcut.

[image: Images]

Note The comment does not assign the shortcut. If you change the comment to be Ctrl+J, it does not change the shortcut. You must change the setting in the Macro dialog box in Excel or run this line of code:

Click here to view code image

Application.MacroOptions Macro:="ImportInvoice", _

Description:="", ShortcutKey:="j"

Recorded macro code is usually pretty tidy (see Figure 1-10). Each line of code that is not a comment is indented 4 characters. If a line is longer than 100 characters, the recorder breaks it into multiple lines and indents the continued lines an additional 4 characters. To continue a line of code, type a space and an underscore at the end of the first line and then continue the code on the next line. Don’t forget the space before the underscore. Using an underscore without the preceding space causes an error.

[image: This figure shows the recorded example macro.]

FIGURE 1-10 The recorded macro is neat looking and nicely indented.

[image: Images]

Note The physical limitations of this book do not allow 100 characters on a single line. Therefore, the lines are broken at 80 characters so that they fit on a page. For this reason, your recorded macro might look slightly different from the ones that appear in this book.

Consider that the following seven lines of recorded code are actually only one line of code that has been broken into seven lines for readability:

Click here to view code image

Workbooks.OpenText Filename:="C:\somepath\invoice.txt", _

Origin:=437, StartRow:=1, DataType:=xlDelimited, _

TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False, _

Tab:=True, Semicolon:=False, Comma:=True, Space:=False, _

Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), _

Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), _

Array(7, 1)), TrailingMinusNumbers:=True

Counting this as one line, the macro recorder was able to record the 21-step process in 14 lines of code, which is pretty impressive.

[image: Images]

Note Each action you perform in the Excel user interface might equate to one or more lines of recorded code. Some actions might generate a dozen lines of code.

Test each macro

It is always a good idea to test macros. To test your new macro, return to the regular Excel interface by pressing Alt+F11. Close Invoice.txt without saving any changes. MacroToImportInvoices.xls is still open.

Press Ctrl+I to run the recorded macro. It should work beautifully if you completed the steps correctly. The data is imported, totals are added, bold formatting is applied, and the columns are made wider. This seems like a perfect solution (see Figure 1-11).

[image: The figure shows the data that the macro has formatted in the sheet: headings in row 1, data in rows 2 through 10, and total in row 11.]

FIGURE 1-11 The macro formats the data in the sheet.

Running the macro on another day produces undesired results

After testing the macro, be sure to save your macro file to use on another day. But suppose that the next day, after receiving a new Invoice.txt file from the system, you open the macro and press Ctrl+I to run it, and disaster strikes. The data for June 5 happened to have 9 invoices, but the data for June 6 now has 17 invoices. The recorded macro blindly added the totals in Row 11 because this was where you put the totals when the macro was recorded (see Figure 1-12).

[image: The data for June 6 goes all the way to row 22, but the macro put the totals in row 11.]

FIGURE 1-12 The intent of the recorded macro was to add a total at the end of the data, but the recorder made a macro that always adds totals at row 11.

For those of you working along using the sample files in this book, follow these steps to try importing data for another day:

	Close Invoice.txt in Excel.

	In Windows Explorer, rename Invoice.txt to be Invoice1.txt.

	In Windows Explorer, rename Invoice2.txt to be Invoice.txt.

	Return to Excel and the MacroToImportInvoices.xlsm workbook.

	Press Ctrl+I to run the macro with the larger data set.

This problem arises because the macro recorder is recording all your actions in Absolute mode by default. As an alternative to using the default state of the macro recorder, the next section discusses relative recording and how it might get you closer to the desired solution.

Possible solution: Use relative references when recording

By default, the macro recorder records all actions as absolute actions. If you navigate to row 11 when you record the macro, the macro will always go to row 11 when the macro is run. This is rarely appropriate when dealing with variable numbers of rows of data. The better option is to use relative references when recording.

Macros recorded with absolute references note the actual address of the cell pointer, such as A11. Macros recorded with relative references note that the cell pointer should move a certain number of rows and columns from its current position. For example, if the cell pointer starts in cell A1, the code ActiveCell.Offset(16, 1).Select would move the cell pointer to B17, which is the cell 16 rows down and 1 column to the right.

Although relative recording is appropriate in most situations, there are times when you need to do something absolute while recording a macro. Here’s a great example: After adding the totals to a data set, you need to return to row 1. If you simply click row 1 while in Relative mode, Excel records that you want to select the row 10 rows above the current row. This works with the first invoice file but not with longer or shorter invoice files. Here are two workarounds:

	Toggle relative recording off, click row 1, and then toggle relative recording back on.

	Keep relative recording turned on. Display the Go To dialog box by pressing F5. Type A1 and click OK. The Go To dialog box gets recorded as always, going to the absolute address you typed, even if relative recording is turned on. A variation of this method is used in the following example.

The next example shows the same task as before but uses relative references this time. The solution will be much closer to working correctly.

Case study: Recording a macro with relative references

Let’s try to record the macro again, this time using relative references.

Note: If you are following along with the sample files, complete these steps:

	Close Invoice.txt in Excel.

	Rename Invoice.txt as Invoice2.txt.

	Rename Invoice1.txt as Invoice.txt.

	Return to the MacroToImportInvoices.xlsm workbook.

In the Developer tab, choose Use Relative References to toggle on relative recording. This setting persists until you turn it off or until you close Excel.

In the workbook MacroToImportInvoices.xlsm, record a new macro by selecting Record Macro from the Developer tab. Give the new macro the name ImportInvoicesRelative and assign a different shortcut key, such as Ctrl+J.

Repeat steps 1 through 11 from the “Preparing to record a macro” section to import the file and then follow these steps:

	Press Ctrl+down arrow to move to the last row of data.

	Press the down arrow key one more time to move to the total row.

	Type the word Total.

	Press the right arrow key four times to move to column E of the total row.

	Hold the Shift key while pressing the right arrow key twice to select E11:G11.

	Click the AutoSum button.

	Press Shift+spacebar to select the entire row. Type Ctrl+B to apply bold formatting to it.

	Press F5 to display the Go To dialog box.

	In the Go To dialog box, type A1:G1 and click OK. Even though relative recording is turned on, any navigation through the Go To dialog box is recorded as an absolute reference.

	Click the Bold icon to set the headings in bold.

	Press Ctrl+* to select all data in the current region.

	From the Home tab, select Format, AutoFit Column Width.

	Stop recording.

Press Alt+F11 to go to the VB Editor to review your code. The new macro appears in Module1, below the previous macro.

If you close Excel between recording the first and second macros, Excel inserts a new module called Module2 for the newly recorded macro:

Click here to view code image

Sub ImportInvoicesRelative()

' ImportInvoicesRelative Macro

' Import. Total Row. Format.

' Keyboard Shortcut: Ctrl+J

Workbooks.OpenText Filename:="C:\data\invoice.txt", _

 Origin:= 437, StartRow:=1, DataType:=xlDelimited, _

 TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False, _

 Tab:=False, Semicolon:=False, Comma:=True, Space:=False, _

 Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), _

 Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), _

 Array(7, 1)), TrailingMinusNumbers:=True

Selection.End(xlDown).Select

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Total"

ActiveCell.Offset(0, 4).Range("A1:C1").Select

Selection.FormulaR1C1 = "=SUM(R[-9]C:R[-1]C)"

ActiveCell.Rows("1:1").EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold = True

Application.Goto Reference:="R1C1:R1C7"

Selection.Font.Bold = True

Selection.CurrentRegion.Select

Selection.Columns.AutoFitSelection.Font.Bold = True

End Sub

To test the macro, close Invoice.txt without saving and then run the macro with Ctrl+J. Everything should look good, and you should get the same results as with the macro you created with the macro recorder.

The next test is to see whether the program works on the next day when you might have more rows. If you are working along with the sample files, close Invoice.txt in Excel. Rename Invoice.txt to Invoice1.txt. Rename Invoice2.txt to Invoice.txt.

Open MacroToImportInvoices.xls and run the new macro with Ctrl+J. This time, everything should look good, with the totals in the correct places. Look at Figure 1-13. Do you see anything out of the ordinary?

[image: By using relative reference while recording, one problem is fixed. Data goes to row 22 and the totals appear in row 23, which is the correct location. But green triangles in each of the three total cells indicate a problem. The total is not adding up everything in the column.]

FIGURE 1-13 After running the Relative macro, the totals appear in the correct row.

If you aren’t careful, you might print these reports for your manager. If you did, you would be in trouble. When you look in cell E19, you can see that Excel has inserted a green triangle to tell you to look at the cell.

When you move the cell pointer to E19, an alert indicator pops up near the cell. This indicator tells you that the formula fails to include adjacent cells. If you look in the formula bar, you see that the macro totaled only from row 10 to row 18. Neither the relative recording nor the nonrelative recording is smart enough to replicate the logic of the AutoSum button.

Imagine that you had fewer invoice records on this particular day. Excel would have rewarded you with the illogical formula =SUM(E6:E1048574), as shown in Figure 1-14. Since this formula would be in E7, circular reference warnings appear in the status bar.

[image: When you run ImportInvoiceRelative with fewer records, the formula in the total row is a disaster. Here, there are invoice records in rows 2 through 7. The total formula in cell E7 is =SUM(E6:E1048574).]

FIGURE 1-14 An incorrect formula appears when you run the relative macro with fewer invoice records.

[image: Images]

Note To try this yourself, close Invoice.txt in Excel. Rename Invoice.txt to Invoice2.txt. Rename Invoice4.txt to Invoice.txt.

If you have tried using the macro recorder, most likely you have run into problems similar to the ones produced in the previous two case studies. Although this is frustrating, you should be happy to know that the macro recorder actually gets you 95% of the way to a useful macro.

Your job is to recognize where the macro recorder is likely to fail and then be able to dive into the VBA code to fix the one or two lines that require adjusting to have a perfect macro. With some added human intelligence, you can produce awesome macros to speed up your daily work.

If you are like me, you are cursing Microsoft about now. We have wasted a good deal of time over a couple of days, and neither macro works. What makes it worse is that this sort of procedure would have been handled perfectly by the old Lotus 1-2-3 macro recorder introduced in 1983. Mitch Kapor solved this problem 33 years ago, and Microsoft still can’t get it right.

Did you know that up through Excel 97, Microsoft Excel secretly ran Lotus command-line macros? I found this out right after Microsoft quit supporting Excel 97. At that time, a number of companies upgraded to Excel XP, which no longer supported the Lotus 1-2-3 macros. Many of these companies hired my company to convert the old Lotus 1-2-3 macros to Excel VBA. It is interesting that in Excel 5, Excel 95, and Excel 97, Microsoft offered an interpreter that could handle the Lotus macros that solved this problem correctly, yet its own macro recorder couldn’t (and still can’t!) solve the problem.

Never use AutoSum or Quick Analysis while recording a macro

There actually is a macro recorder solution to the current problem with recording an AutoSum. It is important to recognize that the macro recorder will never correctly record the intent of the AutoSum button.

If you are in cell E99 and click the AutoSum button, Excel starts scanning from cell E98 upward until it locates a text cell, a blank cell, or a formula. It then proposes a formula that sums everything between the current cell and the found cell.

However, the macro recorder records the particular result of that search on the day that the macro was recorded. Rather than record something along the lines of “do the normal AutoSum logic,” the macro recorder inserts a single line of code to add up the previous 98 cells.

Excel 2013 added the Quick Analysis feature. Select E2:G99; click the Quick Analysis icon that appears below and to the right of a rectangular selection; choose Totals, Sum at Bottom; and you get the correct totals in row 100. The macro recorder hard-codes the formulas to always appear in row 100 and to always total row 2 through row 99.

The somewhat bizarre workaround is to type a SUM function that uses a mix of relative and absolute row references. If you type =SUM(E$2:E10) while the macro recorder is running, Excel correctly adds code that always sums from a fixed row two down to the relative reference that is just above the current cell.

Here is the resulting code, with a few comments:

Click here to view code image

Sub FormatInvoice3()

' FormatInvoice3 Macro

' Import. Total. Format.

' Keyboard Shortcut: Ctrl+K

Workbooks.OpenText Filename:="C:\Data\invoice.txt", _

Origin:=437, StartRow:=1, DataType:=xlDelimited, _

TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False, _

Tab:=False, Semicolon:=False, Comma:=True, Space:=False, _

Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), _

Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), _

Array(7, 1)), TrailingMinusNumbers:=True

Selection.End(xlDown).Select

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Total"

ActiveCell.Offset(0, 4).Range("A1").Select

Selection.FormulaR1C1 = "=SUM(R2C:R[-1]C)"

Selection.AutoFill Destination:=ActiveCell.Range("A1:C1"), _

Type:=xlFillDefault

ActiveCell.Range("A1:C1").Select

ActiveCell.Rows("1:1").EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold = True

Application.Goto Reference:="R1C1:R1C7"

Selection.Font.Bold = True

Selection.CurrentRegion.Select

Selection.Columns.AutoFit

End Sub

This third macro consistently works with a data set of any size.

Four tips for using the macro recorder

You will rarely be able to record 100% of your macros and have them work. However, you will get much closer by using the following four tips.

Tip 1: Turn on the Use Relative References setting

Microsoft should have made this setting the default. Turn the setting on and leave it on while recording your macros.

Tip 2: Use special navigation keys to move to the bottom of a data set

If you are at the top of a data set and need to move to the last cell that contains data, you can press Ctrl+down arrow or press the End key and then the down arrow key.

Similarly, to move to the last column in the current row of the data set, press Ctrl+right arrow or press End and then press the right arrow key.

By using these navigation keys, you can jump to the end of the data set, no matter how many rows or columns you have today.

Use Ctrl+* to select the current region around the active cell. Provided that you have no blank rows or blank columns in your data, this key combination selects the entire data set.

Tip 3: Never touch the AutoSum icon while recording a macro

The macro recorder does not record the “essence” of the AutoSum button. Instead, it hard-codes the formula that resulted from pressing the AutoSum button. This formula does not work any time you have more or fewer records in the data set.

Instead, type a formula with a single dollar sign, such as =SUM(E$2:E10). When this is done, the macro recorder records the first E$2 as a fixed reference and starts the SUM range directly below the row 1 headings. Provided that the active cell is E11, the macro recorder recognizes E10 as a relative reference pointing directly above the current cell.

Tip 4: Try recording different methods if one method does not work

There are often many ways to perform tasks in Excel. If you encounter buggy code from one method, try another method. With 16 different project managers on the Excel team, it is likely that each method was programmed by a different group. In one of the case studies in this chapter, one task involved applying AutoFit Column Width to all cells. Some people might press Ctrl+A to select all cells. Others might press Ctrl+*. Since Excel 2007, the code generated by Ctrl+A when pressed in Relative mode does not work. The Ctrl+* code is very old and continues to work in all cases.

Next steps

Chapter 2, “This sounds like BASIC, so why doesn’t it look familiar?” examines the three macros you recorded in this chapter to make more sense out of them. When you know how to decode the VBA code, it will feel natural to either correct the recorded code or simply write code from scratch. Hang on through one more chapter. You’ll soon learn that VBA is the solution, and you’ll be writing useful code that works consistently.

CHAPTER 2
This sounds like BASIC, so why doesn’t it look familiar?

In this chapter, you will:

	Find out how VBA is different than BASIC

	Understand the parts of VBA “speech”

	Find out that learning VBA is not really hard

	Examine recorded macro code using the VB Editor and Help

	Use debugging tools to figure out recorded code

	Get to know the Object Browser

	Learn seven tips for cleaning up recorded code

As mentioned in Chapter 1, “Unleashing the power of Excel with VBA,” if you have taken a class in a procedural language such as BASIC or COBOL, you might be confused when you look at VBA code. Even though VBA stands for Visual Basic for Applications, it is an object-oriented version of BASIC. Here is a bit of VBA code:

Click here to view code image

Selection.End(xlDown).Select

Range("A11").Select

ActiveCell.FormulaR1C1 = "Total"

Range("E11").Select

Selection.FormulaR1C1 = _

"=SUM(R[-9]C:R[-1]C)"

Selection.AutoFill _

Destination:=Range("E11:G11"), _

Type:=xlFillDefault

This code likely makes no sense to anyone who knows only procedural languages. Unfortunately, your first introduction to programming in school (assuming that you are more than 40 years old) would have been a procedural language.

Here is a section of code written in the BASIC language:

For x = 1 to 10

Print Rpt$(" ",x);

Print "*"

Next x

If you run this code, you get a pyramid of asterisks on your screen:

*

*

*

*

*

*

*

*

*

*

If you have ever been in a procedural programming class, you can probably look at the code and figure out what is going on because procedural languages are more English-like than object-oriented languages. The statement Print "Hello World" follows the verb–object format, which is how you would generally talk. Let’s step away from programming for a second and look at a concrete example.

Understanding the parts of VBA “speech”

If you were going to write code for instructions to play soccer using BASIC, the instruction to kick a ball would look something like this:

"Kick the Ball"

Hey, this is how you talk! It makes sense. You have a verb (kick) and then a noun (ball). The BASIC code in the preceding section has a verb (Print) and a noun (the asterisk, *). Life is good.

Here is the problem: VBA doesn’t work like this. In fact, no object-oriented language works like this. In an object-oriented language, the objects (nouns) are most important, hence the name: object-oriented. If you were going to write code for instructions to play soccer with VBA, the basic structure would be as follows:

Ball.Kick

You have a noun (Ball), which comes first. In VBA, this is an object. Then you have the verb (Kick), which comes next. In VBA, this is a method.

The basic structure of VBA is a bunch of lines of code with this syntax:

Object.Method

Needless to say, this is not English. If you took a romance language in high school, you will remember that those languages use a “noun–adjective” construct. However, no one uses “noun–verb” to tell someone to do something:

Water.Drink

Food.Eat

Girl.Kiss

That is why VBA is confusing to someone who previously took a procedural programming class.

Let’s carry the analogy a bit further. Imagine that you walk onto a grassy field, and there are five balls in front of you: a soccer ball, basketball, baseball, bowling ball, and tennis ball. You want to instruct a kid on your soccer team to “kick the soccer ball.”

If you tell him to kick the ball (or ball.kick), you really aren’t sure which one of the five balls he will kick. Maybe he will kick the one closest to him, which could be a problem if he is standing in front of the bowling ball.

For almost any noun, or object in VBA, there is a collection of that object. Think about Excel. If you can have one row, you can have a bunch of rows. If you can have one cell, you can have a bunch of cells. If you can have one worksheet, you can have a bunch of worksheets. The only difference between an object and a collection is that you add an s to the name of the object:

Row becomes Rows.

Cell becomes Cells.

Ball becomes Balls.

When you refer to something that is a collection, you have to tell the programming language to which item you are referring. There are a couple of ways to do this. You can refer to an item by using a number. For example, if the soccer ball is the second ball, you might say this:

Balls(2).Kick

This works fine, but it could be a dangerous way to program. For example, it might work on Tuesday. However, if you get to the field on Wednesday and someone has rearranged the balls, Balls(2).Kick might be a painful exercise.

A much safer way to go is to use a name for the object in a collection. You can say the following:

Balls("Soccer").Kick

With this method, you always know that it will be the soccer ball that is being kicked.

So far, so good. You know that a ball will be kicked, and you know that it will be the soccer ball. For most of the verbs, or methods in Excel VBA, there are parameters that tell how to do the action. These parameters act as adverbs. You might want the soccer ball to be kicked to the left and with a hard force. In this case, the method would have a number of parameters that tell how the program should perform the method:

Click here to view code image

Balls("Soccer").Kick Direction:=Left, Force:=Hard

When you are looking at VBA code, the colon–equal sign combination (:=) indicates that you are looking at parameters of how the verb should be performed.

Sometimes, a method will have a list of 10 parameters, some of which are optional. For example, if the Kick method has an Elevation parameter, you would have this line of code:

Click here to view code image

Balls("Soccer").Kick Direction:=Left, Force:=Hard, Elevation:=High

Here is the confusing part: Every method has a default order for its parameters. If you are not a conscientious programmer, and you happen to know the order of the parameters, you can leave off the parameter names. The following code is equivalent to the previous line of code:

Click here to view code image

Balls("Soccer").Kick Left, Hard, High

This throws a monkey wrench into our understanding. Without :=, it is not obvious that you have parameters. Unless you know the parameter order, you might not understand what is being said. It is pretty easy with Left, Hard, and High, but when you have parameters like the following:

Click here to view code image

ActiveSheet.Shapes.AddShape type:=1, Left:=10, Top:=20, _

Width:=100, Height:=200

it gets confusing if you instead have this:

Click here to view code image

ActiveSheet.Shapes.AddShape 1, 10, 20, 100, 200

The preceding line is valid code. However, unless you know that the default order of the parameters for this Add method is Type, Left, Top, Width, Height, this code does not make sense. The default order for any particular method is the order of the parameters as shown in the Help topic for that method.

To make life more confusing, you are allowed to start specifying parameters in their default order without naming them, and then you can switch to naming parameters when you hit one that does not match the default order. If you want to kick the ball to the left and high but do not care about the force (that is, you are willing to accept the default force), the following two statements are equivalent:

Click here to view code image

Balls("Soccer").Kick Direction:=Left, Elevation:=High

Balls("Soccer").Kick Left, Elevation:=High

However, keep in mind that as soon as you start naming parameters, they have to be named for the remainder of that line of code.

Some methods simply act on their own. To simulate pressing the F9 key, you use this code:

Application.Calculate

Other methods perform an action and create something. For example, you can add a worksheet by using the following:

Click here to view code image

Worksheets.Add Before:=Worksheets(1)

However, because Worksheets.Add creates a new object, you can assign the results of this method to a variable. In this case, you must surround the parameters with parentheses:

Click here to view code image

Set MyWorksheet = Worksheets.Add(Before:=Worksheets(1))

One final bit of grammar is necessary: adjectives. Just as adjectives describe a noun, properties describe an object. Because you are an Excel fan, let’s switch from the soccer analogy to an Excel analogy. There is an object to describe the active cell. Fortunately, it has a very intuitive name:

ActiveCell

Suppose you want to change the color of the active cell to red. There is a property called Interior.Color for a cell that uses a complex series of codes. However, you can turn a cell to red by using this code:

ActiveCell.Interior.Color = 255

You can see how this can be confusing. Again, there is the noun-dot-something construct, but this time it is Object.Property rather than Object.Method. How you tell them apart is quite subtle: There is no colon before the equal sign. A property is almost always set equal to something, or perhaps the value of a property is assigned to something else.

To make this cell color the same as cell A1, you might say this:

Click here to view code image

ActiveCell.Interior.Color = Range("A1").Interior.Color

Interior.Color is a property. By changing the value of a property, you can make things look different. It is kind of bizarre: Change an adjective, and you are actually doing something to the cell. Humans would say, “Color the cell red,” whereas VBA says this:

ActiveCell.Interior.Color = 255

Table 2-1 summarizes the VBA “parts of speech.”

TABLE 2-1 Parts of the VBA programming language

	VBA Component

	Analogous To

	Notes

	Object

	Noun

	Examples include cell or sheet.

	Collection

	Plural noun

	Usually specifies which object: Worksheets(1).

	Method

	Verb

	Appears as Object.Method.

	Parameter

	Adverb

	Lists parameters after the method. Separate the parameter name from its value with :=.

	Property

	Adjective

	You can set a property (for example, activecell.height=10) or store the value of a property (for example, x = activecell.height).

VBA is not really hard

Knowing whether you are dealing with properties or methods helps you set up the correct syntax for your code. Don’t worry if it all seems confusing right now. When you are writing VBA code from scratch, it is tough to know whether the process of changing a cell to yellow requires a verb or an adjective. Is it a method or a property?

This is where the macro recorder is especially helpful. When you don’t know how to code something, you record a short little macro, look at the recorded code, and figure out what is going on.

VBA Help files: Using F1 to find anything

Excel VBA Help is an amazing feature, provided that you are connected to the Internet. If you are going to write VBA macros, you absolutely must have access to the VBA Help topics installed. Follow these steps to see how easy it is to get help in VBA:

	Open Excel and switch to the VB Editor by pressing Alt+F11. From the Insert menu, select Module.

	Type these three lines of code:

Sub Test()

MsgBox "Hello World!"

End Sub

	Click inside the word MsgBox.

	With the cursor in the word MsgBox, press F1. If you can reach the Internet, you see the Help topic for the MsgBox function.

Using Help topics

If you request help on a function or method, the Help topic walks you through the various available arguments. If you browse to the bottom of a Help topic, you can see a great resource: code samples under the Example heading (see Figure 2-1).

[image: An online Help topic for MsgBox includes a code sample that you can copy and paste to your project.]

FIGURE 2-1 Most Help topics include code samples.

It is possible to select the code, copy it to the Clipboard by pressing Ctrl+C, and then paste it into a module by pressing Ctrl+V.

After you record a macro, if there are objects or methods about which you are unsure, you can get help by inserting the cursor in any keyword and pressing F1.

Examining recorded macro code: Using the VB Editor and Help

Let’s take a look at the code you recorded in Chapter 1 to see whether it makes more sense now that you know about objects, properties, and methods. You can also see whether it’s possible to correct the errors created by the macro recorder.

Figure 2-2 shows the first code that Excel recorded in the example from Chapter 1.

[image: The figure shows a code listing of the ImportInvoice macro from Chapter 1.]

FIGURE 2-2 Here is the recorded code from the example in Chapter 1.

Now that you understand the concept of Noun.Verb or Object.Method, consider the first line of code that says Workbooks.OpenText. In this case, Workbooks is an object, and OpenText is a method. Click your cursor inside the word OpenText and press F1 for an explanation of the OpenText method (see Figure 2-3).

[image: This figure shows the parameters list for the OpenText method. The DataType parameter can be xlDelimited or xlFixedWidth.]

FIGURE 2-3 This shows part of the Help topic for the OpenText method.

The Help file confirms that OpenText is a method, or an action word. The default order for all the arguments that can be used with OpenText appears in the gray box. Notice that only one argument is required: Filename. All the other arguments are listed as optional.

Optional parameters

The Help file can tell you if you happen to skip an optional parameter. For StartRow, the Help file indicates that the default value is 1. If you leave out the StartRow parameter, Excel starts importing at row 1. This is fairly safe.

Now look at the Help file note about Origin. If this argument is omitted, you inherit whatever value was used for Origin the last time someone used this feature in Excel on this computer. That is a recipe for disaster. For example, your code might work 98% of the time. However, immediately after someone imports an Arabic file, Excel remembers the setting for Arabic and thereafter assumes that this is what your macro wants if you don’t explicitly code this parameter.

Defined constants

Look at the Help file entry for DataType in Figure 2-3, which says it can be one of these constants: xlDelimited or xlFixedWidth. The Help file says these are the valid xlTextParsingType constants that are predefined in Excel VBA. In the VB Editor, press Ctrl+G to bring up the Immediate window. In the Immediate window, type this line and press Enter:

Print xlFixedWidth

The answer appears in the Immediate window. xlFixedWidth is the equivalent of saying 2 (see Figure 2-4). In the Immediate window, type Print xlDelimited, which is really the same as typing 1. Microsoft correctly assumes that it is easier for someone to read code that uses the somewhat English-like term xlDelimited than to read 1.

[image: Two commands and their responses are shown in the Immediate window. If you type Print xlFixedWidth and press Enter, the answer is 2. If you type Print xldelimited and press Enter, the answer is 1.]

FIGURE 2-4 In the Immediate window of the VB Editor, you can query to see the true value of constants such as xlFixedWidth.

If you were an evil programmer, you could certainly memorize all these constants and write code using the numeric equivalents of the constants. However, the programming gods (and the next person who has to look at your code) will curse you for this.

In most cases, the Help file either specifically calls out the valid values of the constants or offers a hyperlink that opens the Help topic showing the complete enumeration and the valid values for the constants (see Figure 2-5).

[image: This figure shows a list of the xlColumnDataType values. Some common values are xlTextFormat, xlGeneralFormat, xlMDYFormat, and xlSkipColumn.]

FIGURE 2-5 Click the hyperlink to see all the possible constant values. Here, the 10 possible xlColumnDataType constants are revealed in a new Help topic.

One complaint with this excellent Help system is that it does not identify which parameters are new to a given version. In this particular case, TrailingMinusNumbers was introduced in Excel 2002. If you attempt to give this program to someone who is still using Excel 2000, the code does not run because Excel does not understand the TrailingMinusNumbers parameter. Sadly, the only way to learn to handle this frustrating problem is through trial and error.

If you read the Help topic on OpenText, you can surmise that it is basically the equivalent of opening a file using the Text Import Wizard. In step 1 of the wizard, you normally choose either Delimited or Fixed Width. You also specify the file origin and at which row to start. This first step of the wizard is handled by these parameters of the OpenText method:

Origin:=437

StartRow:=1

DataType:=xlDelimited

Step 2 of the Text Import Wizard enables you to specify that your fields be delimited by commas. Because you do not want to treat two commas as a single comma, the Treat Consecutive Delimiters As One check box should not be selected. Sometimes, a field may contain a comma, such as “XYZ, Inc.” In this case, the field should have quotes around the value, as specified in the Text Qualifier box. This second step of the wizard is handled by the following parameters of the OpenText method:

TextQualifier:=xlDoubleQuote

ConsecutiveDelimiter:=False

Tab:=False

Semicolon:=False

Comma:=True

Space:=False

Other:=False

Step 3 of the wizard is where you actually identify the field types. In this case, you leave all fields as General except for the first field, which is marked as a date in MDY (Month, Day, Year) format. This is represented in code by the FieldInfo parameter.

The third step of the Text Import Wizard is fairly complex. The entire FieldInfo parameter of the OpenText method duplicates the choices made in this step of the wizard. If you happen to click the Advanced button on the third step of the wizard, you have an opportunity to specify something other than the default decimal and thousands separators, as well as the setting Trailing Minus For Negative Numbers.

[image: Images]

Note Note that the macro recorder does not write code for DecimalSeparator or ThousandsSeparator unless you change these from the defaults. The macro recorder does, however, always record the TrailingMinusNumbers parameter.

Remember that every action you perform in Excel while recording a macro gets translated to VBA code. In the case of many dialog boxes, the settings you do not change are often recorded along with the items you do change. When you click OK to close the dialog box, the macro recorder often records all the current settings from the dialog box in the macro.

Here is another example. The next line of code in the macro is this:

Selection.End(xlDown).Select

You can click to get help for three topics in this line of code: Selection, End, and Select. Assuming that Selection and Select are somewhat self-explanatory, click in the word End and press F1 for Help.

This Help topic says that End is a property. It returns a Range object that is equivalent to pressing End+up arrow or End+down arrow in the Excel interface (see Figure 2-6). If you click the blue hyperlink for xlDirection, you see the valid parameters that can be passed to the End function.

[image: In the Help topic for Range.End, the single parameter is Direction. The Data Type is listed as XlDirection and XlDirection is a hyperlink. Click the hyperlink to get the four possible directions: xlDown, xlUp, xlToRight, xlToLeft.]

FIGURE 2-6 The correct Help topic for the End property.

Properties can return objects

Recall from earlier in this chapter that the basic syntax of VBA is Object.Method. Consider the line of code currently under examination:

Selection.End(xlDown).Select

In this particular line of code, the method is Select. The End keyword is a property, but from the Help file, you see that it returns a Range object. Because the Select method can apply to a Range object, the method is actually appended to a property.

Based on this information, you might assume that Selection is the object in this line of code. If you click the mouse in the word Selection and press F1, you will see that according to the Help topic, Selection is actually a property and not an object. In reality, the proper code would be Application.Selection. However, when you are running within Excel, VBA assumes you are referring to the Excel object model, so you can leave off the Application object. If you were to write a program in Word VBA to automate Excel, you would be required to include an object variable before the Selection property to qualify to which application you are referring.

In this case, the Application.Selection can return several types of objects. If a cell is selected, it returns the Range object.

Using debugging tools to figure out recorded code

The following sections introduce some awesome debugging tools that are available in the VB Editor. These tools are excellent for helping you see what a recorded macro code is doing.

Stepping through code

Generally, a macro runs quickly: You start it, and less than a second later, it is done. If something goes wrong, you do not have an opportunity to figure out what the macro is doing. However, using Excel’s Step Into feature makes it possible to run one line of code at a time.

To use this feature, make sure your cursor is in the procedure you want to run, such as the ImportInvoice procedure, and then from the menu, select Debug, Step Into, as shown in Figure 2-7. Alternatively, you can press F8.

[image: This figure shows the VBA Editor’s Debug menu. The mouse cursor is highlighting Step Into.]

FIGURE 2-7 You can use the Step Into feature to run a single line of code at a time.

The VB Editor is now in Break mode. The line about to be executed is highlighted in yellow, with a yellow arrow in the margin before the code (see Figure 2-8).

[image: A yellow arrow appears in the margin to the left of Sub ImportInvoice(). The yellow arrow points to the line that will be executed next.]

FIGURE 2-8 The first line of the macro is about to run.

In this case, the next line to be executed is the Sub ImportInvoice() line. This basically says, “You are about to start running this procedure.” Press the F8 key to execute the line in yellow and move to the next line of code. The long code for OpenText is then highlighted. Press F8 to run this line of code. When you see that Selection.End(xlDown).Select is highlighted, you know that Visual Basic has finished running the OpenText command. At this point, you can press Alt+Tab to switch to Excel and see that the Invoice.txt file has been parsed into Excel. Note that A1 is selected.

[image: Images]

Note If you have a wide monitor, you can use the Restore Down icon at the top right of the VBA window to arrange the window so that you can see both the VBA window and the Excel window. (Restore Down is the two-tiled-window icon between the Minimize “dash” and the Close Window X icon at the top of every window.)

This is also a great trick to use while recording new code. You can actually watch the code appear as you do things in Excel.

Switch back to the VB Editor by pressing Alt+Tab. The next line about to be executed is Selection.End(xlDown).Select. Press F8 to run this code. Switch to Excel to see that the last cell in your data set is selected.

Press F8 again to run the Range("A11").Select line. If you switch to Excel by pressing Alt+Tab, you see that this is where the macro starts to have problems. Instead of moving to the first blank row, the program moves to the wrong row.

Now that you have identified the problem area, you can stop the code execution by using the Reset command. You can start the Reset command either by selecting Run, Reset or by clicking the Reset button on the toolbar (it is a small blue square next to icons for Run and Pause). After clicking Reset, you should return to Excel and undo anything done by the partially completed macro. In this case, you need to close the Invoice.txt file without saving.

More debugging options: Breakpoints

If you have hundreds of lines of code, you might not want to step through each line one at a time. If you have a general idea that a problem is happening in one particular section of the program, you can set a breakpoint. You can then have the code start to run, but the macro breaks just before it executes the breakpoint line of code.

To set a breakpoint, click in the gray margin area to the left of the line of code on which you want to break. A large maroon dot appears next to this code, and the line of code is highlighted in brown (see Figure 2-9). (If you don’t see the margin area, go to Tools, Options, Editor Format and choose Margin Indicator Bar.) Or select a line of code and press F9 to toggle a breakpoint on or off.

[image: A large round dot appears in the margin to the left of Selection.FormulaR1C1. The entire line of code is in white font on a dark background. This line is a breakpoint.]

FIGURE 2-9 The large maroon dot signifies a breakpoint.

Next, from the Visual Basic menu, select Run, Run Sub/UserForm or press F5. The program executes but stops just before running the line in the breakpoint. The VB Editor shows the breakpoint line highlighted in yellow. You can now press F8 to begin stepping through the code.

After you have finished debugging your code, remove the breakpoints by clicking the dark brown dot in the margin next to each breakpoint to toggle it off. Alternatively, you can select Debug, Clear All Breakpoints or press Ctrl+Shift+F9 to clear all breakpoints that you set in the project.

Backing up or moving forward in code

When you are stepping through code, you might want to jump over some lines of code, or you might have corrected some lines of code that you want to run again. This is easy to do when you are working in Break mode. One favorite method is to use the mouse to grab the yellow arrow. The cursor changes to a three-arrow icon, which enables you to move the next line up or down. Drag the yellow line to whichever line you want to execute next. The other option is to right-click the line to which you want to jump and then select Set Next Statement.

Not stepping through each line of code

When you are stepping through code, you might want to run a section of code without stepping through each line, such as when you get to a loop. You might want VBA to run through the loop 100 times so you can step through the lines after the loop. It is particularly monotonous to press the F8 key hundreds of times to step through a loop. Instead, click the cursor on the line you want to step to and then press Ctrl+F8 or select Debug, Run To Cursor. This command is also available in the right-click menu.

Querying anything while stepping through code

Even though variables have not yet been discussed, you can query the value of anything while in Break mode. However, keep in mind that the macro recorder never records a variable.

Using the Immediate window

Press Ctrl+G to display the Immediate window in the VB Editor. While the macro is in Break mode, ask the VB Editor to tell you the currently selected cell, the name of the active sheet, or the value of any variable. Figure 2-10 shows several examples of queries typed into the Immediate window.

[image: Three commands and the responses are shown in the Immediate window. Print Selection.Address is A6. Print Selection.Value is 6/8/2017. Print ActiveSheet.Name is invoice.]

FIGURE 2-10 Queries that can be typed into the Immediate window while a macro is in Break mode, shown along with their answers.

Instead of typing Print, you can type a question mark: ? Selection.Address. Read the question mark as, “What is.”

When invoked with Ctrl+G, the Immediate window usually appears at the bottom of the code window. You can use the resize handle, which is located above the blue Immediate title bar, to make the Immediate window larger or smaller.

There is a scrollbar on the side of the Immediate window that you can use to scroll backward or forward through past entries in the Immediate window.

It is not necessary to run queries only at the bottom of the Immediate window. For example, if you have just run a line of code, in the Immediate window you can ask for the Selection.Address to ensure that this line of code worked.

Press the F8 key to run the next line of code. Instead of retyping the same query, click in the Immediate window anywhere in the line that contains the last query and press Enter.

The Immediate window runs this query again, displays the results on the next line, and pushes the old results farther down the window. In this case, the selected address is E11:G11. The previous answer, A6, is pushed down the window.

You also can use this method to change the query by clicking to the right of the word Address in the Immediate window. Press the Backspace key to erase the word Address and instead type Columns.Count. Press Enter, and the Immediate window shows the number of columns in the selection.

This is an excellent technique to use when you are trying to figure out a sticky bit of code. For example, you can query the name of the active sheet (Print Activesheet.Name), the selection (Print Selection.Address), the active cell (Print ActiveCell.Address), the formula in the active cell (Print ActiveCell.Formula), the value of the active cell (Print ActiveCell.Value or Print ActiveCell because Value is the default property of a cell), and so on.

To dismiss the Immediate window, click the X in its upper-right corner.

[image: Images]

Note Ctrl+G does not toggle the window off. Use the X at the top right of the Immediate window to close it.

Querying by hovering

In many instances, you can hover the cursor over an expression in code and then wait a second for a ToolTip to show the current value of the expression. This is incredibly helpful when you get to looping in Chapter 4, “Looping and flow control.” It also comes in handy with recorded code. Note that the expression that you hover over does not have to be in the line of code just executed. In Figure 2-11, Visual Basic just selected E11, making E11 the active cell. If you hover the cursor over ActiveCell.FormulaR1C1, you see a ToolTip showing that the formula in the active cell is "=SUM(R[-9]C:R[-1]C)".

[image: Hover over ActiveCell.FormulaR1C1 and a ToolTip appears with ActiveCell.FormulaR1C1 = “=SUM(R[-9]C:R[-1]C”.]

FIGURE 2-11 Hover the mouse cursor over any expression for a few seconds, and a ToolTip shows the current value of the expression.

Sometimes the VBA window seems to not respond to hovering. Because some expressions are not supposed to show values, it is difficult to tell whether VBA is not displaying a value on purpose or whether you are in the buggy “not responding” mode. Try hovering over something that you know should respond, such as a variable. If you get no response, hover, click into the variable, and continue to hover. This tends to wake Excel from its stupor, and hovering works again.

Are you impressed yet? This chapter started with a complaint that VBA doesn’t seem much like BASIC. However, by now you have to admit that the Visual Basic environment is great to work in and that the debugging tools are excellent.

Querying by using a Watches window

In Visual Basic, a watch is not something you wear on your wrist; instead, it allows you to watch the value of any expression while you step through code. Let’s say that in the current example, you want to watch to see what is selected as the code runs. You can do this by setting up a watch for Selection.Address.

From the VB Editor Debug menu, select Add Watch. In the Add Watch dialog box, enter Selection.Address in the Expression text box and click OK (see Figure 2-12).

[image: The Add Watch dialog box for the expression of Selection.Address. Three radio buttons at the bottom offer a choice of Watch Expression or Break When Value Is True or Break When Value Changes.]

FIGURE 2-12 Setting up a watch to see the address of the current selection.

A Watches window is added to the busy Visual Basic window, usually at the bottom of the code window. When you start running the macro, import the file and press End+down arrow to move to the last row with data. The Watches window confirms that Selection.Address is A18 (see Figure 2-13).

[image: This figure shows a very short Watches window. Headings for Expression, Value, Type, and Context are followed by Selection.Address, A18, VariantString, Module1.ImportInvoice.]

FIGURE 2-13 Without having to hover or type in the Immediate window, you always can see the value of watched expressions.

Press the F8 key to run the code Rows("1:1").Select. The Watches window is updated to show that the current address of the Selection is now $1:$1.

In the Watches window, the value column is read/write (where possible)! You can type a new value here and see it change on the worksheet.

Using a watch to set a breakpoint

Right-click any line in the Watches window and select Edit Watch. In the Watch Type section of the Edit Watch dialog box, select Break When Value Changes. Click OK.

The glasses icon changes to a hand with triangle icon. You can now press F5 to run the code. The macro starts running lines of code until something new is selected. This is very powerful. Instead of having to step through each line of code, you can now conveniently have the macro stop only when something important has happened. You also can set up a watch to stop when the value of a particular variable changes.

Using a watch on an object

In the preceding example, you watched a specific property: Selection.Address. It also is possible to watch an object such as Selection. In Figure 2-14, when a watch has been set up on Selection, you get the glasses icon and a + icon.

[image: A second watch is added to the Watches window. The selection appears with a plus icon to the left. Without opening the plus icon, the value is 6/5/2017.]

FIGURE 2-14 Setting a watch on an object gives you a + icon next to the glasses.

By clicking the + icon, you can see all the properties associated with Selection. When you look at Figure 2-15, you can see more than you ever wanted to know about Selection! There are properties you probably never realized are available. You can see that the AddIndent property is set to False and the AllowEdit property is set to True. There are useful properties further down in the list, such as the Formula of the selection.

[image: After clicking the plus icon next to Selection, a tree view appears with many properties for the selection. The figure shows AddIndent, Allow Edit, Application, Areas, Borders, Cells, Column, ColumnWidth, and more. Note that several properties, such as Borders, also include a plus icon that you can click to expand the entry.]

FIGURE 2-15 Clicking the + icon shows a plethora of properties and their current values.

In this Watches window, some entries can be expanded. For example, the Borders collection has a plus next to it, which means you can click any + icon to see more details.

Object Browser: The ultimate reference

In the VB Editor, press F2 to open the Object Browser, which lets you browse and search the entire Excel object library. I’ve previously owned large Excel books that devoted 400-plus pages to listing every object in the Object Browser. You can save a tree by learning to use the more-powerful Object Browser. The built-in Object Browser is always available; you simply press the F2 key. The next few pages show you how to use it.

When you press F2, the Object Browser appears where the code window normally appears. The topmost drop-down menu currently shows <All Libraries>. There are entries in this drop-down menu for Excel, Office, VBA, and each workbook that you have open, plus additional entries for anything you check in Tools, References. For now, go to the drop-down menu and select only Excel.

In the left window of the Object Browser is a list of all classes available for Excel. Click the Application class in the left window. The right window adjusts to show all properties and methods that apply to the Application object. Click something in the right window, such as ActiveCell. The bottom window of the Object Browser tells you that ActiveCell is a property that returns a range. It also tells you that ActiveCell is read-only (an alert that you cannot assign an address to ActiveCell to move the cell pointer).

You have learned from the Object Browser that ActiveCell returns a range. When you click the green hyperlink for Range in the bottom window, you see all the properties and methods that apply to Range objects and, hence, to the ActiveCell property. Click any property or method and then click the yellow question mark near the top of the Object Browser to go to the Help topic for that property or method.

Type any term in the text box next to the binoculars and click the binoculars to find all matching members of the Excel library. Methods appear as green books with speed lines. Properties appear as index cards, each with a hand pointing to it.

The search capabilities and hyperlinks available in the Object Browser make it much more valuable than an alphabetic printed listing of all the information. Learn to make use of the Object Browser in the VBA window by pressing F2. To close the Object Browser and return to your code window, click the X in the upper-right corner.

Seven tips for cleaning up recorded code

Chapter 1 gave you four tips for recording code. So far, this chapter has covered how to understand the recorded code, how to access VBA help for any word, and how to use the excellent VBA debugging tools to step through your code. The remainder of this chapter presents seven tips to use when cleaning up recorded code.

Tip 1: Don’t select anything

Nothing screams “recorded code” more than having code that selects things before acting on them. This makes sense in a way: In the Excel interface, you have to select row 1 before you can make it bold.

However, this is done rarely in VBA. There are a couple of exceptions to this rule. For example, you need to select a cell when setting up a formula for conditional formatting. And it is possible to directly turn on bold font to row 1 without selecting it.

To streamline the code the macro recorder gives you, in many cases you can remove the part of the code that performs the selection. The following two lines are macro recorder code before it has been streamlined:

Cells.Select

Selection.Columns.AutoFit

You can streamline the recorded code so it looks like this:

Cells.Columns.AutoFit

There are a couple of advantages to doing this streamlining. First, there will be half as many lines of code in your program. Second, the program will run faster.

To do this streamlining, after recording code, highlight from before the word Select at the end of one line all the way to the dot after the word Selection on the next line and press Delete (see Figures 2-16 and 2-17).

[image: This code snippet includes a common sight in recorded code: Rows(“11:11”).Select on one line and Selection.Font.Bold = True on the next line. The word Select on the first row and Selection and the dot on the second row has been highlighted. This example continues in Figure 2-17.]

FIGURE 2-16 Select the part of the code highlighted here…

[image: After pressing Delete, the two lines of code become a single line of code: Rows(“11:11”).Font.Bold = True.]

FIGURE 2-17 …and press the Delete key. This is Cleaning Up Recorded Macros 101.

Tip 2: Use Cells(2,5) because it’s more convenient than Range("E2")

The macro recorder uses the Range() property frequently. If you follow the macro recorder’s example, you will find yourself building a lot of complicated code. For example, if you have the row number for the total row stored in a variable, you might try to build this code:

Click here to view code image

Range("E" & TotalRow).Formula = "=SUM(E2:E" & TotalRow-1 & ")"

In this code, you are using concatenation to join the letter E with the current value of the TotalRow variable. This works, but eventually you have to refer to a range where the column is stored in a variable. Say that FinalCol is 10, which indicates column J. To refer to this column in a Range command, you need to do something like this:

Click here to view code image

FinalColLetter = MID("ABCDEFGHIJKLMNOPQRSTUVWXYZ",FinalCol,1)

Range(FinalColLetter & "2").Select

Alternatively, perhaps you could do something like this:

Click here to view code image

FinalColLetter = CHR(64 + FinalCol)

Range(FinalColLetter & "2").Select

These approaches work for the first 26 columns but fail for the remaining 99.85% of the columns.

You could start to write 10-line functions to calculate that the column letter for column 15896 is WMJ, but it is not necessary. Instead of using Range("WMJ17"), you can use the Cells(Row,Column) syntax.

Chapter 3, “Referring to ranges,” covers this topic in complete detail. However, for now you need to understand that Range("E10") and Cells(10, 5) both point to the cell at the intersection of the fifth column and the tenth row. Chapter 3 also shows you how to use .Resize to point to a rectangular range. Cells(11, 5).Resize(1, 3) is E11:G11.

Tip 3: Use more reliable ways to find the last row

It is difficult to trust data from just anywhere. If you are analyzing data in Excel, remember that the data can come from who-knows-what system written who-knows-how-long-ago. The universal truth is that eventually some clerk will find a way to break the source system and enter a record without an invoice number. Maybe it will take a power failure to do it, but invariably, you cannot count on having every cell filled in.

This is a problem when you’re using the End+down arrow shortcut. This key combination does not take you to the last row with data in the worksheet. It takes you to the last row with data in the current range. In Figure 2-18, pressing End+down arrow would move the cursor to cell A7 rather than the true last row with data.

[image: This figure shows four columns of data. For some reason, a random blank cell occurs in cell A8, but more data continues in rows 9, 10, and 11.]

FIGURE 2-18 End+down arrow fails in the user interface if a record is missing a value. Similarly, End(xlDown) fails in Excel VBA.

One better solution is to start at the bottom of the worksheet and look for the first non-blank cell by using this:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

This method could fail if the very last record happens to contain the blank row. If the data is dense enough that there will always be a diagonal path of non-blank cells to the last row, you could use this:

Click here to view code image

FinalRow = Cells(1,1).CurrentRegion.Rows.Count

If you are sure that there are not any notes or stray activated cells below the data set, you might try this:

Click here to view code image

FinalRow = Cells(1, 1).SpecialCells(xlLastCell).Row

The xlLastCell property is often wrong. Say that you have data in A1:F500. If you accidentally press Ctrl+down arrow from A500, you will arrive at A1048576. If you then apply Bold to the empty cell, it becomes activated. Or, if you type Total and then clear the cell, it becomes activated. At this point, xlLastCell will refer to F1048576.

Another method is to use the Find method:

Click here to view code image

FinalRow = Cells.Find("*", SearchOrder:=xlByRows, _

SearchDirection:=xlPrevious).Row

You will have to choose from these various methods based on the nature of your data set. If you are not sure, you could loop through all columns. If you are expecting seven columns of data, you could use this code:

Click here to view code image

FinalRow = 0

For i = 1 to 7

ThisFinal = Cells(Rows.Count, i).End(xlUp).Row

If ThisFinal > FinalRow then FinalRow = ThisFinal

Next i

Tip 4: Use variables to avoid hard-coding rows and formulas

The macro recorder never records a variable. Variables are easy to use, but just as in BASIC, a variable can remember a value. Variables are discussed in more detail in Chapter 4.

It is recommended that you set the last row that contains data to a variable. Be sure to use meaningful variable names such as FinalRow:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

When you know the row number of the last record, put the word Total in column A of the next row:

Click here to view code image

Cells(FinalRow + 1, 1).Value = "Total"

You can even use the variable when building the formula. This formula totals everything from E2 to the FinalRow of E:

Click here to view code image

Cells(FinalRow + 1, 5).Formula = "=SUM(E2:E" & FinalRow & ")"

Tip 5: Use R1C1 formulas that make your life easier

The macro recorder often writes formulas in an arcane R1C1 style. However, most people change the code back to use a regular A1-style formula. After reading Chapter 5, “R1C1-style formulas,” you will understand that there are times when you can build an R1C1 formula that is much simpler than the corresponding A1-style formula. By using an R1C1 formula, you can add totals to all three cells in the total row with the following:

Click here to view code image

Cells(FinalRow+1, 5).Resize(1, 3).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

Tip 6: Copy and paste in a single statement

Recorded code is notorious for copying a range, selecting another range, and then doing an ActiveSheet.Paste. The Copy method as it applies to a range is actually much more powerful. You can specify what to copy and also specify the destination in one statement.

Here’s the recorded code:

Range("E14").Select

Selection.Copy

Range("F14:G14").Select

ActiveSheet.Paste

Here’s better code:

Click here to view code image

Range("E14").Copy Destination:=Range("F14:G14")

Tip 7: Use With...End With to perform multiple actions

If you are making the total row bold with double underline and a larger font and special color, you might get recorded code like this:

Click here to view code image

Range("A14:G14").Select

Selection.Font.Bold = True

Selection.Font.Size = 12

Selection.Font.ColorIndex = 5

Selection.Font.Underline = xlUnderlineStyleDoubleAccounting

For four of these lines of code, VBA must resolve the expression Selection.Font. Because you have four lines that all refer to the same object, you can name the object once at the top of a With block. Inside the With...End With block, everything that starts with a period is assumed to refer to the With object:

Click here to view code image

With Range("A14:G14").Font

.Bold = True

.Size = 12

.ColorIndex = 5

.Underline = xlUnderlineStyleDoubleAccounting

End With

Case study: Putting it all together—Fixing the recorded code

Using the seven tips discussed in the preceding section, you can convert the recorded code from Chapter 1 into efficient, professional-looking code. Here is the code as recorded by the macro recorder at the end of Chapter 1:

Click here to view code image

Sub FormatInvoice3()

Workbooks.OpenText Filename:="C:\Data\invoice.txt", Origin:=437, _

StartRow:=1, DataType:=xlDelimited, TextQualifier:=xlDoubleQuote, _

ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False, _

Comma:=True, Space:=False, Other:=False, FieldInfo:=Array(_

Array(1, 3), Array(2, 1), Array(3, 1), Array(4, 1), _

Array(5, 1), Array(6, 1), Array(7, 1))

Selection.End(xlDown).Select

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Total"

ActiveCell.Offset(0, 4).Range("A1").Select

Selection.FormulaR1C1 = "=SUM(R2C:R[-1]C)"

Selection.AutoFill Destination:=ActiveCell.Range("A1:C1"), Type:= _

xlFillDefault

ActiveCell.Range("A1:C1").Select

ActiveCell.Rows("1:1").EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold = True

Application.Goto Reference:="R1C1:R1C7"

Selection.Font.Bold = True

Selection.CurrentRegion.Select

Selection.Columns.AutoFit

End Sub

Follow these steps to clean up the recorded macro code:

	Leave the Workbook.OpenText lines alone; they are fine as recorded.

	Note that the following line of code attempts to locate the final row of data so that the program knows where to enter the total row:

Selection.End(xlDown).Select

	You do not need to select anything to find the last row. It also helps to assign the row number of the final row and the total row to a variable so that they can be used later. To handle the unexpected case in which a single cell in column A is blank, start at the bottom of the worksheet and go up to find the last used row:

Click here to view code image

' Find the last row with data. This might change every day

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

TotalRow = FinalRow + 1

Note that these lines of code enter the word Total in column A of the total row:

Click here to view code image

ActiveCell.Offset(1,0).Select

ActiveCell.FormulaR1C1 = "'Total"

Better code uses the TotalRow variable to locate where to enter the word Total. Again, there is no need to select the cell before entering the label:

Click here to view code image

' Build a Total row below this

Cells(TotalRow,1).Value = "Total"

	Note that these lines of code enter the Total formula in column E and copy it to the next two columns:

Click here to view code image

ActiveCell.Offset(0, 4).Range("A1").Select

Selection.FormulaR1C1 = "=SUM(R2C:R[-1]C)"

Selection.AutoFill Destination:=ActiveCell.Range("A1:C1"), Type:= _

xlFillDefault

ActiveCell.Range("A1:C1").Select

There is no reason to do all this selecting. The following line enters the formula in three cells:

Click here to view code image

Cells(TotalRow,5).Resize(1, 3).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

(The R1C1 style of formulas is discussed in Chapter 5.)

	Note that the macro recorder selects a range and then applies formatting:

Click here to view code image

ActiveCell.Rows("1:1").EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold = True

Application.Goto Reference:="R1C1:R1C7"

Selection.Font.Bold = True

There is no reason to select before applying the formatting. The preceding five lines can be simplified to the two lines below. These two lines perform the same action and do it much more quickly:

Click here to view code image

Cells(TotalRow, 1).Resize(1, 7).Font.Bold = True

Cells(1, 1).Resize(1, 7).Font.Bold = True

	Note that the macro recorder selects all cells before doing the AutoFit command:

Selection.CurrentRegion.Select

Selection.Columns.AutoFit

There is no need to select the cells before doing the AutoFit:

Click here to view code image

Cells(1, 1).Resize(TotalRow, 7).Columns.AutoFit

	Note that the macro recorder adds a short description to the top of each macro:

' ImportInvoice Macro

You have changed the recorded macro code into something that will actually work, so you should feel free to add your name as author to the description and mention what the macro does:

Click here to view code image

' Written by Bill Jelen. Import invoice.txt and add totals.

Here is the final macro with all the changes:

Click here to view code image

Sub FormatInvoiceFixed()

' Written by Bill Jelen. Import invoice.txt and add totals.

Click here to view code image

Workbooks.OpenText Filename:="C:\Data\invoice.txt", Origin:=437, _

StartRow:=1, DataType:=xlDelimited, TextQualifier:=xlDoubleQuote, _

ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False, _

Comma:=True, Space:=False, Other:=False, FieldInfo:=Array(_

Array(1, 3), Array(2, 1), Array(3, 1), Array(4, 1), _

Array(5, 1), Array(6, 1), Array(7, 1))

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

TotalRow = FinalRow + 1

Cells(TotalRow, 1).Value = "Total"

Cells(TotalRow, 5).Resize(1, 3).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

Cells(TotalRow, 1).Resize(1, 7).Font.Bold = True

Cells(1, 1).Resize(1, 7).Font.Bold = True

Cells(1, 1).Resize(TotalRow, 7).Columns.AutoFit

End Sub

Next steps

By now, you should know how to record a macro. You should also be able to use Help and debugging to figure out how code works. This chapter provides seven tools for making the recorded code look like professional code.

The next chapters go into more detail about referring to ranges, looping, and the crazy but useful R1C1 style of formulas that the macro recorder loves to use.

CHAPTER 3
Referring to ranges

In this chapter, you will:

	Learn how to reference the Range object

	Reference ranges in other sheets

	Reference a range relative to another range

	Use the Cells property to select a range

	Use the Offset property to refer to a range

	Use the Resize property to change the size of a range

	Use the Columns and Rows properties to specify a range

	Use the Union method to join multiple ranges

	Use the Intersect method to create a new range from overlapping ranges

	Use the IsEmpty function to check whether a cell is empty

	Use the CurrentRegion property to select a data range

	Use the SpecialCells property to interact with specific cells in a range

	Use the Areas collection to return a noncontiguous range

	Learn the syntax used for tables

A range can be a cell, a row, a column, or a grouping of any of these. The Range object is probably the most frequently used object in Excel VBA; after all, you’re manipulating data on a sheet. Although a range can refer to any grouping of cells on a sheet, it can refer to only one sheet at a time. If you want to refer to ranges on multiple sheets, you must refer to each sheet separately.

This chapter shows you different ways of referring to ranges, such as specifying a row or column. You’ll also find out how to manipulate cells based on the active cell and how to create a new range from overlapping ranges.

The Range object

The following is the Excel object hierarchy:

Click here to view code image

Application > Workbook > Worksheet > Range

The Range object is a property of the Worksheet object. This means it requires that a sheet be active or else it must reference a worksheet. Both of the following lines mean the same thing if Worksheets(1) is the active sheet:

Click here to view code image

Range("A1")

Worksheets(1).Range("A1")

There are several ways to refer to a Range object. Range("A1") is the most identifiable because that is how the macro recorder refers to it. However, all the following are equivalent when referring to cell D5:

Click here to view code image

Range("D5")

[D5]

Range("B3").Range("C3")

Cells(5,4)

Range("A1").Offset(4,3)

Range("MyRange") 'assuming that D5 has a 'Name of MyRange

Which format you use depends on your needs. Keep reading. It will all make sense soon!

Syntax for specifying a range

The Range property has two acceptable syntaxes. To specify a rectangular range in the first syntax, specify the complete range reference just as you would in a formula in Excel:

Range("A1:B5")

In the alternative syntax, specify the upper-left corner and lower-right corner of the desired rectangular range. In this syntax, the equivalent statement might be this:

Range("A1", "B5")

For either corner, you can substitute a named range, the Cells property, or the ActiveCell property. The following line of code selects the rectangular range from A1 to the active cell:

Range("A1", ActiveCell).Select

The following statement selects from the active cell to five rows below the active cell and two columns to the right:

Click here to view code image

Range(ActiveCell, ActiveCell.Offset(5, 2)).Select

Referencing named ranges

You probably have already used named ranges on your worksheets and in formulas. You can also use them in VBA.

Use the following code to refer to the range "MyRange" in Sheet1:

Click here to view code image

Worksheets("Sheet1").Range("MyRange")

Notice the name of the range is in quotes—unlike the use of named ranges in formulas on the sheet itself. If you forget to put the name in quotes, Excel thinks you are referring to a variable in the program. One exception is if you use the shortcut syntax discussed in the next section. In that case, quotes aren’t used.

Shortcut for referencing ranges

A shortcut is available when referencing ranges. The shortcut involves using square brackets, as shown in Table 3-1.

TABLE 3-1 Shortcuts for referencing ranges

	Standard Method

	Shortcut

	Range("D5")

	[D5]

	Range("A1:D5")

	[A1:D5]

	Range("A1:D5, G6:I17")

	[A1:D5, G6:I17]

	Range("MyRange")

	[MyRange]

Referencing ranges in other sheets

Switching between sheets by activating the needed sheet slows down your code. To avoid this, refer to a sheet that is not active by first referencing the Worksheet object:

Worksheets("Sheet1").Range("A1")

This line of code references Sheet1 of the active workbook even if Sheet2 is the active sheet.

To reference a range in another workbook, include the Workbook object, the Worksheet object, and then the Range object:

Click here to view code image

Workbooks("InvoiceData.xlsx").Worksheets("Sheet1").Range("A1")

To use the Range property as an argument within another Range property, identify the range fully each time. For example, suppose that Sheet1 is your active sheet and you need to total data from Sheet2:

Click here to view code image

WorksheetFunction.Sum(Worksheets("Sheet2").Range(Range("A1"), _

Range("A7")))

This line does not work. Why not? Although Range("A1"), Range("A7") is meant to refer to the sheet at the beginning of the code line (Sheet2), Excel does not assume that you want to carry the Worksheet object reference over to these other Range objects and assumes that they refer to the active sheet, Sheet1. So what do you do? Well, you could write this:

Click here to view code image

WorksheetFunction.Sum(Worksheets("Sheet2").Range(Worksheets("Sheet2"). _

Range("A1"), Worksheets("Sheet2").Range("A7")))

But this not only is a long line of code but also difficult to read! Thankfully, there is a simpler way, using With...End With:

Click here to view code image

With Worksheets("Sheet2")

 WorksheetFunction.Sum(.Range(.Range("A1"), .Range("A7")))

End With

Notice now there is a .Range in your code but without the preceding object reference. That’s because With Worksheets("Sheet2") implies that the object of the range is that worksheet. Whenever Excel sees a period without an object reference directly to the left of it, it looks up the code for the closest With statement and uses that as the object reference.

Referencing a range relative to another range

Typically, the Range object is a property of a worksheet. It is also possible to have Range be the property of another range. In this case, the Range property is relative to the original range, which makes for unintuitive code. Consider this example:

Range("B5").Range("C3").Select

This code actually selects cell D7. Think about cell C3, which is located two rows below and two columns to the right of cell A1. The preceding line of code starts at cell B5. If we assume that B5 is in the A1 position, VBA finds the cell that would be in the C3 position relative to B5. In other words, VBA finds the cell that is two rows below and two columns to the right of B5, which is D7.

Again, I consider this coding style to be very unintuitive. This line of code mentions two addresses, and the actual cell selected is neither of these addresses! It seems misleading when you’re trying to read this code.

You might consider using this syntax to refer to a cell relative to the active cell. For example, the following line of code activates the cell three rows down and four columns to the right of the currently active cell:

Selection.Range("E4").Select

I mention this syntax only because the macro recorder uses it. Recall that when you recorded a macro in Chapter 1, “Unleashing the power of Excel with VBA,” with relative references on, the following line was recorded:

Click here to view code image

ActiveCell.Offset(0, 4).Range("A2").Select

This line found the cell four columns to the right of the active cell, and from there it selected the cell that would correspond to A2. This is not the easiest way to write code, but it is the way the macro recorder does it.

Although a worksheet is usually the object of the Range property, occasionally, such as during recording, a range may be the property of a range.

Using the Cells property to select a range

The Cells property refers to all the cells of the specified Range object, which can be a worksheet or a range of cells. For example, this line selects all the cells of the active sheet:

Cells.Select

Using the Cells property with the Range object might seem redundant:

Range("A1:D5").Cells

This line refers to the original Range object. However, the Cells property has an Item property that makes the Cells property very useful. The Item property enables you to refer to a specific cell relative to the Range object.

The syntax for using the Item property with the Cells property is as follows:

Cells.Item(Row,Column)

You must use a numeric value for Row, but you may use the numeric value or string value for Column. Both of the following lines refer to cell C5:

Cells.Item(5,"C")

Cells.Item(5,3)

Because the Item property is the default property of the Range object, you can shorten these lines as follows:

Cells(5,"C")

Cells(5,3)

The ability to use numeric values for parameters is particularly useful if you need to loop through rows or columns. The macro recorder usually uses something like Range("A1").Select for a single cell and Range("A1:C5").Select for a range of cells. If you’re learning to code only from the recorder, you might be tempted to write code like this:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 1 to FinalRow

 Range("A" & i & ":E" & i).Font.Bold = True

Next i

This little piece of code, which loops through rows and bolds the cells in columns A through E, is awkward to read and write. But how else can you do it? Like this:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 1 to FinalRow

Cells(i,"A").Resize(,5).Font.Bold = True

Next i

Instead of trying to type the range address, the new code uses the Cells and Resize properties to find the required cell, based on the active cell. See the “Using the Resize property to change the size of a range” section later in this chapter for more information on the Resize property.

You can use the Cells properties for parameters in the Range property. The following refers to the range A1:E5:

Range(Cells(1,1),Cells(5,5))

This is particularly useful when you need to specify variables with a parameter, as in the previous looping example.

Using the Offset property to refer to a range

You’ve already seen a reference to Offset when you recorded a relative reference. Offset enables you to manipulate a cell based on the location of another cell, such as the active cell. Therefore, you do not need to know the address of the cell you want to manipulate.

The syntax for the Offset property is as follows:

Click here to view code image

Range.Offset(RowOffset, ColumnOffset)

For example, the following code affects cell F5 from cell A1:

Click here to view code image

Range("A1").Offset(RowOffset:=4, ColumnOffset:=5)

Or, shorter yet, you can write this:

Range("A1").Offset(4,5)

The count of the rows and columns starts at A1 but does not include A1.

If you need to go over only a row or a column, but not both, you don’t have to enter both the row and the column parameters. To refer to a cell one column over, use one of these lines:

Click here to view code image

Range("A1").Offset(ColumnOffset:=1)

Range("A1").Offset(,1)

Both of these lines have the same meaning, so the choice is yours. If you use the second line, make sure to include the comma so Excel knows that the 1 refers to the ColumnOffset argument. Referring to a cell one row up is similar:

Click here to view code image

Range("B2").Offset(RowOffset:=-1)

Range("B2").Offset(-1)

Once again, you can choose which one to use. It’s a matter of readability of the code.

Suppose you have a list of produce in column A, with totals next to the produce items in column B. If you want to find any total equal to zero and place LOW in the cell next to it, do this:

Click here to view code image

Set Rng = Range("B1:B16").Find(What:="0", LookAt:=xlWhole, _

LookIn:=xlValues)

Rng.Offset(, 1).Value = "LOW"

When used in a Sub and looping through a data set, it would look like this:

Click here to view code image

Sub FindLow()

With Range("B1:B16")

Set Rng = .Find(What:="0", LookAt:=xlWhole, LookIn:=xlValues)

If Not Rng Is Nothing Then

firstAddress = Rng.Address

Do

Rng.Offset(, 1).Value = "LOW"

Set Rng = .FindNext(Rng)

Loop While Not Rng Is Nothing And Rng.Address <> firstAddress

End If

End With

End Sub

The LOW totals are noted by the program, as shown inFigure 3-1.

[image: The figure shows a range of data with produce listed in column A and quantities in column B. One of the fruits has a quantity of 0. LOW appears in column C for that fruit.]

FIGURE 3-1 The code puts “LOW” next to the zeros in the data set.

[image: Images]

Note Refer to the section “Object variables” in Chapter 4, “Looping and flow control,” for more information on the Set statement.

Offsetting isn’t only for single cells; you can use it with ranges. You can shift the focus of a range over in the same way you can shift the active cell. The following line refers to B2:D4 (seeFigure 3-2):

Range("A1:C3").Offset(1,1)

[image: In the figure, a border is drawn around the range A1:C3. Cells B2:D4 are filled in.]

FIGURE 3-2 Offsetting the original range A1:C3 by one row and one column references a new range, B2:D4.

Using the Resize property to change the size of a range

The Resize property enables you to change the size of a range based on the location of the active cell. You can create a new range as needed. This is the syntax for the Resize property:

Click here to view code image

Range.Resize(RowSize, ColumnSize)

To reference the range B3:D13, use the following:

Click here to view code image

Range("B3").Resize(RowSize:=11, ColumnSize:=3)

Here’s a simpler way to reference this range:

Range("B3").Resize(11, 3)

But what if you need to resize by only a row or a column—not both? You don’t have to enter both the row and the column parameters.

To expand by two columns, use either of the following:

Click here to view code image

Range("B3").Resize(ColumnSize:=2)

or

Range("B3").Resize(,2)

Both lines mean the same thing. The choice is yours. If you use the second line, make sure to include the comma so Excel knows the 2 refers to the ColumnSize argument. Resizing just the rows is similar. You can use either of the following:

Range("B3").Resize(RowSize:=2)

or

Range("B3").Resize(2)

Once again, the choice is yours. It is a matter of readability of the code.

From the list of produce, say that you want to find the zero totals and color the cells of the total and corresponding produce (seeFigure 3-3). Here’s what you do:

Click here to view code image

Set Rng = Range("B1:B16").Find(What:="0", LookAt:=xlWhole, _

LookIn:=xlValues)

Rng.Offset(, -1).Resize(, 2).Interior.ColorIndex = 15

[image: The figure shows a range of data with produce listed in column A and quantities in column B. Cells for produce with a quantity of zero are shaded.]

FIGURE 3-3 You can resize a range to extend the selection.

Notice that the Offset property first moves the active cell over to the produce column. When you’re resizing, the upper-left-corner cell must remain the same.

Resizing isn’t only for single cells; you can use it to resize an existing range. For example, if you have a named range but need it and the column next to it, use this:

Range("Produce").Resize(,2)

Remember, the number you resize by is the total number of rows/columns you want to include.

Using the Columns and Rows properties to specify a range

The Columns and Rows properties refer to the columns and rows of a specified Range object, which can be a worksheet or a range of cells. They return a Range object referencing the rows or columns of the specified object.

You’ve seen the following line used, but what is it doing?

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

This line of code finds the last row in a sheet in which column A has a value and places the row number of that Range object into the variable called FinalRow. This can be useful when you need to loop through a sheet row by row; you will know exactly how many rows you need to go through.

[image: Images]

Note Some properties of columns and rows require contiguous rows and columns in order to work properly. For example, if you were to use the following line of code, 9 would be the answer because only the first range would be evaluated:

Click here to view code image

Range("A1:B9, C10:D19").Rows.Count

However, if the ranges were grouped separately, the answer would be 19. Excel takes the top-left cell address, A1, and the bottom-right cell address, D19, and counts the rows in the range A1:D19:

Click here to view code image

Range("A1:B9", "C10:D19").Rows.Count

Using the Union method to join multiple ranges

The Union method enables you to join two or more noncontiguous ranges. It creates a temporary object of the multiple ranges, which enables you to affect them at the same time:

Click here to view code image

Application.Union(argument1, argument2, etc.)

The expression Application is not required. The following code joins two named ranges on the sheet, inserts the =RAND() formula, and bolds them:

Click here to view code image

Set UnionRange = Union(Range("Range1"), Range("Range2"))

With UnionRange

.Formula = "=RAND()"

.Font.Bold = True

End With

Using the Intersect method to create a new range from overlapping ranges

The Intersect method returns the cells that overlap between two or more ranges. If there is no overlap, an error is returned:

Click here to view code image

Application.Intersect(argument1, argument2, etc.)

The expression Application is not required. The following code colors the overlapping cells of the two ranges:

Click here to view code image

Set IntersectRange = Intersect(Range("Range1"), Range("Range2"))

IntersectRange.Interior.ColorIndex = 6

Using the IsEmpty function to check whether a cell is empty

The IsEmpty function returns a Boolean value that indicates whether a single cell is empty: True if empty, False if not. The cell must truly be empty for the function to return True. If it contains even just a space that you cannot see, Excel does not consider the cell to be empty:

IsEmpty(Cell)

Say that you have several groups of data separated by a blank row. You want to make the separations a little more obvious. The following code goes down the data in column A. When it finds an empty cell in column A, it colors in the first four cells of that row (seeFigure 3-4):

Click here to view code image

LastRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 1 To LastRow

If IsEmpty(Cells(i, 1)) Then

Cells(i, 1).Resize(1, 4).Interior.ColorIndex = 1

End If

Next i

[image: The figure shows a stacked report of produce, counts, and percentages. A filled blank row separates one group of produce data from the next.]

FIGURE 3-4 You can make separations more obvious by using colored rows.

Using the CurrentRegion property to select a data range

CurrentRegion returns a Range object that represents a set of contiguous data. As long as the data is surrounded by one empty row and one empty column, you can select the data set by using CurrentRegion:

RangeObject.CurrentRegion

The following line selects A1:D3 because this is the contiguous range of cells around cell A1 (seeFigure 3-5):

Range("A1").CurrentRegion.Select

This is useful if you have a data set whose size is in constant flux.

[image: The figure shows a stacked report of produce, counts, and percentages. A blank row separates one group of produce data from the next. One group in the report is selected.]

FIGURE 3-5 You can use CurrentRegion to select a range of contiguous data around the active cell.

Case Study: Using the SpecialCells method to select specific cells

Even Excel power users might not have encountered the Go To Special dialog box. If you press the F5 key in an Excel worksheet, you get the normal Go To dialog box (seeFigure 3-6). In the lower-left corner of this dialog box is a button labeled Special. Click this button to get to the super-powerful Go To Special dialog box (seeFigure 3-7).

[image: In the image, the Go To dialog box is open next to some data. There is a button labeled Special in the lower-left corner of the dialog box.]

FIGURE 3-6 Although the Go To dialog box doesn’t seem useful, click the Special button in the lower-left corner to specify what type of cells to select.

In the Excel interface, the Go To Special dialog box enables you to select only cells with formulas, only blank cells, or only the visible cells. Selecting only visible cells is excellent for grabbing the visible results of AutoFiltered data.

To simulate the Go To Special dialog box in VBA, use the SpecialCells method. This enables you to act on cells that meet certain criteria, like this:

Click here to view code image

RangeObject.SpecialCells(Type, Value)

[image: The Go To Special dialog box is open with the Formulas option selected. The numerical values on the sheet are selected, whereas the produce labels are not.]

FIGURE 3-7 The Go To Special dialog box has many incredibly useful selection tools, such as one for selecting only the formulas on a sheet.

The SpecialCells method has two parameters: Type and Value. Type is one of the xlCellType constants:

xlCellTypeAllFormatConditions

xlCellTypeAllValidation

xlCellTypeBlanks

xlCellTypeComments

xlCellTypeConstants

xlCellTypeFormulas

xlCellTypeLastCell

xlCellTypeSameFormatConditions

xlCellTypeSameValidation

xlCellTypeVisible

Set one of the following optional Value constants if you use xlCellTypeConstants or xlCellTypeFormulas:

Click here to view code image

xlErrors

xlLogical

xlNumbers

xlTextValues

The following code returns all the ranges that have conditional formatting. It produces an error if there are no conditional formats and adds a border around each contiguous section it finds:

Click here to view code image

Set rngCond = ActiveSheet.Cells.SpecialCells(xlCellTypeAllFormatConditions)

If Not rngCond Is Nothing Then

 rngCond.BorderAround xlContinuous

End If

Have you ever had someone send you a worksheet without all the labels filled in? Some people think that the data shown inFigure 3-8 looks tidy. They enter the Region field only once for each region. This might look aesthetically pleasing, but it’s impossible to sort.

[image: The figure shows a set of data where the values in column A are not repeated for each row, but the values in column B and C are unique.]

FIGURE 3-8 The blank cells in the Region column make it difficult to sort data sets such as this.

Using the SpecialCells method to select all the blanks in this range is one way to fill the blank region cells quickly using the region found above them:

Click here to view code image

Sub FillIn()

On Error Resume Next 'Need this because if there aren't any blank

'cells, the code will error

Range("A1").CurrentRegion.SpecialCells(xlCellTypeBlanks).FormulaR1C1 _

 = "=R[-1]C"

Range("A1").CurrentRegion.Value = Range("A1").CurrentRegion.Value

End Sub

In this code, Range("A1").CurrentRegion refers to the contiguous range of data in the report. The SpecialCells method returns just the blank cells in that range. This particular formula fills in all the blank cells with a formula that points to the cell above the blank cell. (You can read more about R1C1-Style Formulas in Chapter 5, “R1C1-style formulas.”) The second line of code is a fast way to simulate using the Copy and Paste Special Values commands.Figure 3-9 shows the results.

[image: In the figure, the cells in column A that were previously blank now reflect the value of the previous cell.]

FIGURE 3-9 After the macro runs, the blank cells in the Region column have been filled with data.

Using the Areas collection to return a noncontiguous range

The Areas collection is a collection of noncontiguous ranges within a selection. It consists of individual Range objects representing contiguous ranges of cells within the selection. If a selection contains only one area, the Areas collection contains a single Range object that corresponds to that selection.

You might be tempted to loop through the rows in a sheet and check the properties of a cell in a row, such as its formatting (for example, font or fill) or whether the cell contains a formula or value. Then you could copy the row and paste it to another section. However, there is an easier way. InFigure 3-10, the user enters the values below each fruit and vegetable. The percentages are formulas. The following line of code selects the cells with numeric constants and copies them to another area:

Click here to view code image

Range("A:D").SpecialCells(xlCellTypeConstants, xlNumbers).Copy _

Range("I1")

[image: There are two data sets. The data on the left consists of multiple sets of produce, quantities, and calculated percentages. The data on the right is a contiguous range of the quantities.]

FIGURE 3-10 The Areas collection makes it easier to manipulate noncontiguous ranges.

Referencing tables

A table is a special type of range that offers the convenience of referencing named ranges. However, tables are not created in the same manner as other ranges. For more information on how to create a named table, see Chapter 6, “Creating and manipulating names in VBA.”

Although you can reference a table by using Worksheets(1).Range("Table1"), you have access to more of the properties and methods that are unique to tables if you use the ListObjects object, like this:

Click here to view code image

Worksheets(1).ListObjects("Table1")

This opens the properties and methods of a table, but you can’t use that line to select the table. To do that, you have to specify the part of the table you want to work with. To select the entire table, including the header and total rows, specify the Range property:

Click here to view code image

Worksheets(1).ListObjects("Table1").Range.Select

The table part properties include the following:

	Range—Returns the entire table.

	DataBodyRange—Returns the data part only.

	HeaderRowRange—Returns the header row only.

	TotalRowRange—Returns the total row only.

What I really like about coding with tables is the ease of referencing specific columns of a table. You don’t have to know how many columns to move in from a starting position or the letter/number of the column, and you don’t have to use a FIND function. Instead, you can use the header name of the column. For example, to select the data of the Qty column of the table, but not the header or total rows, do this:

Click here to view code image

Worksheets(1).ListObjects("Table1").ListColumns("Qty")_

.DataBodyRange.Select

[image: Images]

Note For more details on coding with tables, check out Excel Tables: A Complete Guide for Creating, Using, and Automating Lists and Tables by Zack Barresse and Kevin Jones (ISBN: 9781615470280).

Next steps

Chapter 4 describes a fundamental component of any programming language: loops. If you have taken a programming class, you will be familiar with basic loop structures. VBA supports all the usual loops. That chapter also describes a special loop, For Each...Next, which is unique to object-oriented programming such as VBA.

CHAPTER 4
Looping and flow control

In this chapter, you will:

	Work with For...Next loops

	Get to know Do loops

	Be introduced to the VBA loop: For Each

	Use If...Then...Else and Select Case for flow control

Loops make your life easier. You might have 20 lines of macro code that do something cool one time. Add a line of code above and below, and suddenly your macro fixes a million rows instead of one row. Loops are a fundamental component of any programming language. If you’ve taken any programming classes—even BASIC—you’ve likely encountered a For...Next loop. Fortunately, VBA supports all the usual loops, plus a special loop that is excellent to use with VBA.

This chapter covers the basic loop constructs:

	For...Next

	Do...While

	Do...Until

	While...Wend

	Do Until...Loop

This chapter also discusses the useful loop construct that is unique to object-oriented languages: For Each...Next.

For...Next loops

For and Next are common loop constructs. Everything between For and the Next is run multiple times. Each time the code runs, a certain counter variable, specified in the For statement, has a different value.

Consider this code:

Click here to view code image

For i = 1 to 10

Cells(i, i).Value = i

Next i

As this program starts to run, you need to give the counter variable a name. In this example, the name of the variable is i. The first time through the code, the variable i is set to 1. The first time the loop is executed, i is equal to 1, so the cell in row 1, column 1 is set to 1 (see Figure 4-1).

[image: This image shows a For-Next loop in debug mode. The first iteration through the loop has happened and the number 1 is written to cell A1.]

FIGURE 4-1 After the first iteration through the loop, the cell in row 1, column 1 has the value 1.

[image: Images]

Note To improve readability, you should always indent lines of code inside of a loop. It is your preference whether you use 1, 2, 3, or 4 spaces for the indent.

Let’s take a close look at what happens as VBA gets to the line that says Next i. Before this line is run, the variable i is equal to 1. During the execution of Next i, VBA must make a decision. VBA adds 1 to the variable i and compares it to the maximum value in the To clause of the For statement. If it is within the limits specified in the To clause, the loop is not finished. In this case, the value of i is incremented to 2. Code execution then moves back to the first line of code after the For statement. Figure 4-2 shows the state of the program before it runs the Next line. Figure 4-3 shows what happens after the Next line is executed.

[image: Still in debug mode, this image shows the value of i when the Next i line of code is about to be run. The tooltip shows that i is equal to 1.]

FIGURE 4-2 Before the Next i statement is run, i is equal to 1. VBA can safely add 1 to i, and it will be less than or equal to the 10 specified in the To clause of the For statement.

[image: After pressing F8 again, the macro moves back to the first line of code in the loop. The tooltip is showing that i has now incremented to 2. When this line of code writes the value of i to Cells(i, i), you should see a 2 appear in cell B2.]

FIGURE 4-3 After the Next i statement is run, i is incremented to 2. Code execution continues with the line of code immediately following the For statement, which writes a 2 to cell B2.

The second time through the loop, the value of i is 2. The cell in row 2, column 2 (that is, cell B2) gets the value 2.

As the process continues, the Next i statement advances i up to 3, 4, and so on. On the tenth pass through the loop, the cell in row 10, column 10 is assigned the value 10.

It is interesting to watch what happens to the variable i on the last pass through Next i. Before running the Next i line, the variable contains 10. VBA is now at a decision point. It adds 1 to the variable i. The value stored in i is now equal to 11, which is greater than the limit in the For...Next loop. VBA then moves execution to the next line in the macro after the Next statement (see Figure 4-4). In case you are tempted to use the variable i later in the macro, it is important to realize that it will be incremented beyond the limit specified in the To clause of the For statement.

[image: The macro has finished running. The figure shows a diagonal series of numbers, starting with 1 in A1, 2 in B2, 3 in C3, all the way down to 10 in J10.]

FIGURE 4-4 After incrementing i to 11, code execution moves to the line after the Next statement.

The common use for such a loop is to walk through all the rows in a data set and decide to perform some action based on some criteria. For example, to mark all the rows with positive service revenue in column F, you could use this loop:

Click here to view code image

For i = 2 to 10

 If Cells(i, 6).Value > 0 Then

 Cells(i, 8).Value = “Service Revenue”

 Cells(i, 1).Resize(1, 8).Interior.ColorIndex = 4

 End If

Next i

This loop checks each item of data from row 2 through row 10. If there is a positive number in column F, column H of that row has a new label, and the cells in columns A:H of the row are colored using the color index 4, which is green. After this macro has been run, the results look as shown in Figure 4-5.

Using variables in the For statement

The previous example is not very useful in that it works only when there are exactly 10 rows of data. It is possible to use a variable to specify the upper and lower limit of the For statement. This code sample identifies FinalRow with data and then loops from row 2 to that row:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 to FinalRow

If Cells(i, 6).Value > 0 Then

Cells(i, 8).Value = "Service Revenue"

Cells(i, 1).Resize(1, 8).Interior.ColorIndex = 4

End If

Next i

[image: This image shows nine rows of data. Column F contains data for Service Revenue. While most of the rows have no service revenue, the two rows that have non-zero service revenue are highlighted with a fill color and the words Service Revenue appear in the previously blank column H.]

FIGURE 4-5 After the loop completes all nine iterations, any rows with positive values in column F are colored green and have the label ServiceRevenue added to column H.

[image: Images]

Warning Exercise caution when using variables. What if the imported file today is empty and has only a heading row? In this case, the FinalRow variable is equal to 1. This makes the first statement of the loop essentially, say, For i = 2 to 1. Because the start number is higher than the end number, the loop does not execute at all. The variable i is equal to 2, and code execution jumps to the line after Next.

Variations on the For...Next loop

In a For...Next loop, it is possible to have the loop variable jump up by something other than 1. For example, you might use it to apply greenbar formatting to every other row in a data set. In this case, you want to have the counter variable i examine every other row in the data set. Indicate this by adding the Step clause to the end of the For statement:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 to FinalRow Step 2

Cells(i, 1).Resize(1, 7).Interior.ColorIndex = 35

Next i

While running this code, VBA adds a light green shading to rows 2, 4, 6, and so on (see Figure 4-6).

[image: In this image, every other row is highlighted in green.]

FIGURE 4-6 The Step clause in the For statement of the loop causes the action to occur on every other row.

The Step clause can be any number. You might want to check every tenth row of a data set to extract a random sample. In this case, you would use Step 10:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextRow = FinalRow + 5

Cells(NextRow-1, 1).Value = "Random Sample of Above Data"

For i = 2 to FinalRow Step 10

Cells(i, 1).Resize(1, 8).Copy Destination:=Cells(NextRow, 1)

NextRow = NextRow + 1

Next i

You can also have a For...Next loop run backward from high to low. This is particularly useful if you are selectively deleting rows. To do this, reverse the order of the For statement and have the Step clause specify a negative number:

Click here to view code image

’ Delete all rows where column C is the Internal rep - S54

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = FinalRow to 2 Step -1

If Cells(i, 3).Value = "S54" Then

Rows(i).Delete

End If

Next i

[image: Images]

Note There is a faster way to delete the records, which is discussed in the “Replacing a loop with AutoFilter” section of Chapter 11, “Data mining with Advanced Filter.”

Exiting a loop early after a condition is met

Sometimes you don’t need to execute a whole loop. Perhaps you just need to read through a data set until you find one record that meets a certain criteria. In this case, you want to find the first record and then stop the loop. A statement called Exit For does this.

The following sample macro looks for a row in the data set where service revenue in column F is positive and product revenue in column E is 0. If such a row is found, you might indicate a message that the file needs manual processing today and move the cell pointer to that row:

Click here to view code image

’ Are there any special processing situations in the data?

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

ProblemFound = False

For i = 2 to FinalRow

If Cells(i, 6).Value > 0 Then

If cells(i, 5).Value = 0 Then

Cells(i, 6).Select

ProblemFound = True

Exit For

End If

End If

Next i

If ProblemFound Then

MsgBox “There is a problem at row” & i

Exit Sub

End If

Nesting one loop inside another loop

It is okay to run a loop inside another loop. The following code has the first loop run through all the rows in a record set while the second loop runs through all the columns:

Click here to view code image

' Loop through each row and column

' Add a checkerboard format

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

FinalCol = Cells(1, Columns.Count).End(xlToLeft).Column

For I = 2 To FinalRow

' For even numbered rows, start in column 1

' For odd numbered rows, start in column 2

If I Mod 2 = 1 Then ' Divide I by 2 and keep remainder

StartCol = 1

Else

StartCol = 2

End If

For J = StartCol To FinalCol Step 2

Cells(I, J).Interior.ColorIndex = 35

Next J

Next I

In this code, the outer loop is using the i counter variable to loop through all the rows in the data set. The inner loop is using the j counter variable to loop through all the columns in that row. Because Figure 4-7 has seven data rows, the code runs through the i loop seven times. Each time through the i loop, the code runs through the j loop six or seven times. This means that the line of code that is inside the j loop ends up being executed several times for each pass through the i loop. Figure 4-7 shows the result.

[image: In this image, a checkerboard pattern is shown in which every other cell has a light fill.]

FIGURE 4-7 The result of nesting one loop inside the other; VBA can loop through each row and then each column.

Do loops

There are several variations of the Do loop. The most basic Do loop is useful for doing a bunch of mundane tasks. For example, suppose that someone sends you a list of addresses going down a column, as shown in Figure 4-8.

In this case, you might need to rearrange these addresses into a database with name in column B, street in column C, and city and state in column D. By setting relative recording (see Chapter 1, “Unleashing the power of Excel with VBA”) and using the shortcut Ctrl+A, you can record this bit of useful code:

Click here to view code image

Sub FixOneRecord()

' Keyboard Shortcut: Ctrl+Shift+A

ActiveCell.Offset(1, 0).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-1, 1).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(2, -1).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-2, 2).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(1, -2).Range("A1:A3").Select

Selection.EntireRow.Delete

ActiveCell.Select

End Sub

[image: This image shows names and addresses of four people. Rather than having each name in a row, the data has a name in A6; the street address in A7; the city, state, and ZIP code in A8; a blank in A9; and then the next name in A10. Data continues with more names and addresses going down column A.]"/>

FIGURE 4-8 It would be more useful to have these addresses in a database format to use in a mail merge.

This code is designed to copy one single address into database format. The code also navigates the cell pointer to the name of the next address in the list. Each time you press Ctrl+A, one address is reformatted.

[image: Images]

Note Do not assume that the preceding code is suitable for a professional application. Remember that you don’t need to select something before acting on it. However, sometimes macros are written just to automate a one-time mundane task.

Without a macro, a lot of manual copying and pasting would be required. However, with the preceding recorded macro, you can simply place the cell pointer on a name in column A and press Ctrl+Shift+A. That one address is copied into three columns, and the cell pointer moves to the start of the next address (see Figure 4-9).

[image: The name, street address, and city that were previously in A6:A8 have now been transposed to A6:C6. The cell pointer is on the next name which has now moved from A10 to A7.]

FIGURE 4-9 After the macro is run once, one address is moved into the proper format, and the cell pointer is positioned to run the macro again.

When you use this macro, you are able to process an address every second using the shortcut. However, when you need to process 5,000 addresses, you do not want to keep running the same macro over and over. In this case, you can use a Do...Loop to set up the macro to run continuously. You can have VBA run this code continuously by enclosing the recorded code with Do at the top and Loop at the end. Now you can sit back and watch the code perform this insanely boring task in minutes rather than hours.

Note that this particular Do...Loop will run forever because there is no mechanism to stop it. This works for the task at hand because you can watch the progress on the screen and press Ctrl+Break to stop execution when the program advances past the end of this database.

This code uses a Do loop to fix the addresses:

Click here to view code image

Sub FixAllRecords()

Do

ActiveCell.Offset(1, 0).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-1, 1).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(2, -1).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-2, 2).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(1, -2).Range("A1:A3").Select

Selection.EntireRow.Delete

ActiveCell.Select

Loop

End Sub

These examples have shown quick-and-dirty loops that are great for when you need to accomplish a task quickly. The Do...Loop provides a number of options that enable you to have the program stop automatically when it accomplishes the end of the task.

The first option is to have a line in the Do...Loop that detects the end of the data set and exits the loop. In the current example, this could be accomplished by using the Exit Do command in an If statement. If the current cell is on a cell that is empty, you can assume that you have reached the end of the data and stopped processing the loop:

Click here to view code image

Sub LoopUntilDone()

Do

If Selection.Value = "" Then Exit Do

ActiveCell.Offset(1, 0).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-1, 1).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(2, -1).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-2, 2).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(1, -2).Range("A1:A3").Select

Selection.EntireRow.Delete

ActiveCell.Select

Loop

End Sub

Using the While or Until clause in Do loops

There are four variations of using While or Until. These clauses can be added to either the Do statement or the Loop statement. In each case, the While or Until clause includes some test that evaluates to True or False.

With a Do While <test expression>...Loop construct, the loop is never executed if <test expression> is false. If you are reading records from a text file, you cannot assume that the file has one or more records. Instead, you need to test to see whether you are already at the end of file with the EOF function before you enter the loop:

Click here to view code image

' Read a text file, skipping the Total lines

Open "C:\Invoice.txt" For Input As #1

R = 1

Do While Not EOF(1)

Line Input #1, Data

If Not Left (Data, 5) = "TOTAL" Then

' Import this row

r = r + 1

Cells(r, 1).Value = Data

End If

Loop

Close #1

In this example, the Not keyword EOF(1) evaluates to True after there are no more records to be read from Invoice.txt. Some programmers think it is hard to read a program that contains a lot of instances of Not. To avoid the use of Not, use the Do Until <test expression>...Loop construct:

Click here to view code image

' Read a text file, skipping the Total lines

Open "C:\Invoice.txt" For Input As #1

r = 1

Do Until EOF(1)

Line Input #1, Data

If Not Left(Data, 5) = "TOTAL" Then

' Import this row

r = r + 1

Cells(r, 1).Value = Data

End If

Loop

Close #1

In other examples, you might always want the loop to be executed the first time. In these cases, move the While or Until instruction to the end of the loop. This code sample asks the user to enter sales amounts made that day; it continually asks for sales amounts until the user enters a zero:

Click here to view code image

TotalSales = 0

Do

x = InputBox(_

Prompt:="Enter Amount of Next Invoice. Enter 0 when done.", _

Type:=1)

TotalSales = TotalSales + x

Loop Until x = 0

MsgBox "The total for today is $" & TotalSales

In the following loop, a check amount is entered, and then it looks for open invoices to which the check can be applied. However, it is often the case that a single check is received that covers several invoices. The following program sequentially applies the check to the oldest invoices until 100% of the check has been applied:

Click here to view code image

' Ask for the amount of check received. Add zero to convert to numeric.

AmtToApply = InputBox("Enter Amount of Check") + 0

' Loop through the list of open invoices.

' Apply the check to the oldest open invoices and Decrement AmtToApply

NextRow = 2

Do While AmtToApply > 0

OpenAmt = Cells(NextRow, 3)

If OpenAmt > AmtToApply Then

' Apply total check to this invoice

Cells(NextRow, 4).Value = AmtToApply

AmtToApply = 0

Else

Cells(NextRow, 4).Value = OpenAmt

AmtToApply = AmtToApply - OpenAmt

End If

NextRow = NextRow + 1

Loop

Because you can construct the Do...Loop with the While or Until qualifiers at the beginning or end, you have a great deal of subtle control over whether the loop is always executed once, even when the condition is true at the beginning.

While...Wend loops

While...Wend loops are included in VBA for backward compatibility. In the VBA help file, Microsoft suggests that the Do...Loop construction is more flexible. However, because you might encounter While...Wend loops in code written by others, this chapter includes a quick example. In this loop, the first line is always While <condition>. The last line of the loop is always Wend. Note that there is no Exit While statement. In general, these loops are okay, but the Do...Loop construct is more robust and flexible. Because the Do loop offers either the While or the Until qualifier, you can use this qualifier at the beginning or the end of the loop, and you can exit a Do loop early:

Click here to view code image

' Read a text file, adding the amounts

Open "C:\Invoice.txt" For Input As #1

TotalSales = 0

While Not EOF(1)

Line Input #1, Data

TotalSales = TotalSales + Data

Wend

MsgBox "Total Sales=" & TotalSales

 Close #1

The VBA loop: For Each

Even though the VBA loop is an excellent loop, the macro recorder never records this type of loop. VBA is an object-oriented language. It is common to have a collection of objects in Excel, such as a collection of worksheets in a workbook, cells in a range, pivot tables on a worksheet, or data series on a chart.

This special type of loop is great for looping through all the items in a collection. However, before discussing this loop in detail, you need to understand a special kind of variable called object variables.

Object variables

At this point, you have seen a variable that contains a single value. When you have a variable such as TotalSales = 0, TotalSales is a normal variable and generally contains only a single value. It is also possible to have a more powerful variable called an object variable that holds many values. In other words, any property associated with the object is also associated with the object variable.

Generally, developers do not take the time to declare variables. Many books implore you to use the DIM statement to identify all your variables at the top of the procedure. This enables you to specify that a certain variable must be of a certain type, such as Integer or Double. Although this saves a tiny bit of memory, it requires you to know up front which variables you plan on using. However, developers tend to whip up a new variable on the fly as the need arises. Even so, there are great benefits to declaring object variables. For example, the VBA AutoComplete feature turns on if you declare an object variable at the top of your procedure. The following lines of code declare three object variables—a worksheet, a range, and a pivot table:

Click here to view code image

Sub Test()

Dim WSD as Worksheet

Dim MyCell as Range

Dim PT as PivotTable

Set WSD = ThisWorkbook.Worksheets("Data")

Set MyCell = WSD.Cells(Rows.Count, 1).End(xlUp).Offset(1, 0)

Set PT = WSD.PivotTables(1)

...

In this code, you can see that more than an equal sign is used to assign object variables. You also need to use the Set statement to assign a specific object to the object variable.

There are many good reasons to use object variables, not the least of which is the fact that it can be a great shorthand notation. It is easier to have many lines of code refer to WSD than to ThisWorkbook.Worksheets("Data"). In addition, as mentioned earlier, the object variable inherits all the properties of the object to which it refers.

The For Each loop employs an object variable rather than a Counter variable. The following code loops through all the cells in column A:

Click here to view code image

For Each cell in Range("A1").CurrentRegion.Resize(, 1)

If cell.Value = "Total" Then

cell.Resize(1,8).Font.Bold = True

End If

Next cell

This code uses the .CurrentRegion property to define the current region and then uses the .Resize property to limit the selected range to a single column. The object variable is called Cell. Any name could be used for the object variable, but Cell seems more appropriate than something arbitrary like Fred.

The following code sample searches all open workbooks, looking for a workbook in which the first worksheet is called Menu:

Click here to view code image

For Each wb in Workbooks

If wb.Worksheets(1).Name = "Menu" Then

WBFound = True

WBName = wb.Name

Exit For

End If

Next wb

This code sample deletes all pivot tables on the current sheet:

Click here to view code image

For Each pt in ActiveSheet.PivotTables

pt.TableRange2.Clear

Next pt

Flow control: Using If...Then...Else and Select Case

Another aspect of programming that will never be recorded by the macro recorder is the concept of flow control. Sometimes you do not want every line of a program to be executed every time you run a macro. VBA offers two excellent choices for flow control: the If...Then...Else construct and the Select Case construct.

Basic flow control: If...Then...Else

The most common device for program flow control is the If statement. For example, suppose you have a list of products, as shown in Figure 4-10. You want to loop through each product in the list and copy it to either a Fruits list or a Vegetables list. Beginning programmers might be tempted to loop through the rows twice—once to look for fruit and a second time to look for vegetables. However, there is no need to loop through twice because you can use an If...Then...Else construct on a single loop to copy each row to the correct place.

[image: A data set with three columns. The Class column in A contains the text of either Fruit or Vegetable. Column B shows product. Column C shows quantity.]

FIGURE 4-10 A single loop can look for fruits or vegetables.

Using conditions

Any If statement needs a condition that is being tested. The condition should always evaluate to TRUE or FALSE. Here are some examples of simple and complex conditions:

	If Range("A1").Value = "Title" Then

	If Not Range("A1").Value = "Title" Then

	If Range("A1").Value = "Title" And Range("B1").Value = "Fruit" Then

	If Range("A1").Value = "Title" Or Range("B1").Value = "Fruit" Then

Using If...Then...End If

After the If statement, you can include one or more program lines that will be executed only if the condition is met. You should then close the If block with an End If line. Here is a simple example of an If statement:

Click here to view code image

Sub ColorFruitRedBold()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow

If Cells(i, 1).Value = "Fruit" Then

Cells(i, 1).Resize(1, 3).Font.Bold = True

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3

End If

Next i

MsgBox "Fruit is now bold and red"

End Sub

Either/or decisions: If...Then...Else...End If

Sometimes you will want to do one set of statements if a condition is true and another set of statements if the condition is not true. To do this with VBA, the second set of conditions would be coded after the Else statement. There is still only one End If statement associated with this construct. For example, you could use the following code to color the fruit red and the vegetables green:

Click here to view code image

Sub FruitRedVegGreen()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow

If Cells(i, 1).Value = "Fruit" Then

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3

Else

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50

End If

Next i

MsgBox "Fruit is red / Veggies are green"

End Sub

Using If...ElseIf...End If for multiple conditions

Notice that the product list includes one item that is classified as an herb. Three conditions can be used to test items on the list. It is possible to build an If...End If structure with multiple conditions. First, test to see whether the record is a fruit. Next, use an ElseIf to test whether the record is a vegetable. Then test to see whether the record is an herb. Finally, if the record is none of those, highlight the record as an error. Here’s the code that does all this:

Click here to view code image

Sub MultipleIf()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow

If Cells(i, 1).Value = "Fruit" Then

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3

ElseIf Cells(i, 1).Value = "Vegetable" Then

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50

ElseIf Cells(i, 1).Value = "Herbs" Then

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 5

Else

' This must be a record in error

Cells(i, 1).Resize(1, 3).Interior.ColorIndex = 6

End If

Next i

MsgBox "Fruit is red / Veggies are green / Herbs are blue"

End Sub

Using Select Case...End Select for multiple conditions

When you have many different conditions, it becomes unwieldy to use many ElseIf statements. For this reason, VBA offers another construct, known as the Select Case construct. In your running example, always check the value of the class in column A. This value is called the test expression. The basic syntax of this construct starts with the words Select Case followed by the test expression:

Select Case Cells(i, 1).Value

Thinking about this problem in English, you might say, “In cases in which the record is fruit, color the record with red.” VBA uses a shorthand version of this. You write the word Case followed by the literal "Fruit". Any statements that follow Case "Fruit" are executed whenever the test expression is a fruit. After these statements, you have the next Case statement: Case "Vegetables". You continue in this fashion, writing a Case statement followed by the program lines that are executed if that case is true.

After you have listed all the possible conditions you can think of, you can optionally include a Case Else section at the end. The Case Else section includes what the program should do if the test expression matches none of your cases. Below, the macro adds a note in column D if an unexpected value is found in A. Finally, you close the entire construct with the End Select statement.

The following program does the same operation as the previous macro but uses a Select Case statement:

Click here to view code image

Sub SelectCase()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow

Select Case Cells(i, 1).Value

Case "Fruit"

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3

Case "Vegetable"

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50

Case "Herbs"

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 5

Case Else

Cells(i, 4).Value = "Unexpected value!"

End Select

Next i

MsgBox "Fruit is red / Veggies are green / Herbs are blue"

End Sub

Complex expressions in Case statements

It is possible to have fairly complex expressions in Case statements. For example, say that you want to perform the same actions for all berry records:

Click here to view code image

Case "Strawberry", "Blueberry", "Raspberry"

AdCode = 1

If it makes sense to do so, you might code a range of values in the Case statement:

Click here to view code image

Case 1 to 20

Discount = 0.05

Case 21 to 100

Discount = 0.1

You can include the keyword Is and a comparison operator, such as > or <:

Click here to view code image

Case Is < 10

Discount = 0

Case Is > 100

Discount = 0.2

Case Else

Discount = 0.10

Nesting If statements

It is not only possible but also common to nest an If statement inside another If statement. In this situation, it is important to use proper indentation. You often will find that you have several End If lines at the end of the construct. With proper indentation, it is easier to tell which End If is associated with a particular If.

The final macro in this chapter contains a lot of logic that handles the following discount rules:

	For fruit, quantities less than 5 cases get no discount.

	Quantities of fruit from 5 to 20 cases get a 10% discount.

	Quantities of fruit greater than 20 cases get a 15% discount.

	For herbs, quantities less than 10 cases get no discount.

	Quantities of herbs from 10 cases to 15 cases get a 3% discount.

	Quantities of herbs greater than 15 cases get a 6% discount.

	For vegetables except asparagus, quantities of 5 cases and greater earn a 12% discount.

	Asparagus requires 20 cases for a discount of 12%.

	None of the discounts applies if the product is on sale this week. The sale price is 25% off the normal price. This week’s sale items are strawberries, lettuce, and tomatoes.

The code to execute this logic follows:

Click here to view code image

Sub ComplexIf()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow

ThisClass = Cells(i, 1).Value

ThisProduct = Cells(i, 2).Value

ThisQty = Cells(i, 3).Value

' First, figure out if the item is on sale

Select Case ThisProduct

Case "Strawberry", "Lettuce", "Tomatoes"

Sale = True

Case Else

Sale = False

End Select

' Figure out the discount

If Sale Then

Discount = 0.25

Elseif ThisClass = "Fruit" Then

Select Case ThisQty

Case Is < 5

Discount = 0

Case 5 To 20

Discount = 0.1

Case Is > 20

Discount = 0.15

End Select

ElseIf ThisClass = "Herbs" Then

Select Case ThisQty

Case Is < 10

Discount = 0

Case 10 To 15

Discount = 0.03

Case Is > 15

Discount = 0.06

End Select

ElseIf ThisClass = "Vegetables" Then

' There is a special condition for asparagus

If ThisProduct = "Asparagus" Then

If ThisQty < 20 Then

Discount = 0

Else

Discount = 0.12

End If

Else

If ThisQty < 5 Then

Discount = 0

Else

Discount = 0.12

End If ' Is the product asparagus or not?

End If ' Is the product on sale?

Cells(i, 4).Value = Discount

If Sale Then

Cells(i, 4).Font.Bold = True

End If

Next i

Range("D1").Value = "Discount"

MsgBox "Discounts have been applied"

End Sub

Next steps

Loops add a tremendous amount of power to your recorded macros. Any time you need to repeat a process over all worksheets or all rows in a worksheet, using a loop is the way to go. Excel VBA supports the traditional programming loops of For...Next and Do...Loop and the object-oriented loop For Each...Next. Chapter 5, “R1C1-style formulas,” discusses the seemingly arcane R1C1 style of formulas and shows why it is important in Excel VBA.

CHAPTER 5
R1C1-style formulas

In this chapter, you will:

	Understand A1 versus R1C1 references

	Toggle to R1C1-style references

	Witness the miracle of Excel formulas

	Examine the R1C1 reference style

	Use R1C1 formulas with array formulas

Understanding R1C1 formulas will make your job easier in VBA. You could skip this chapter, but if you do, your code will be harder to write. Taking 30 minutes to understand R1C1 will make every macro you write for the rest of your life easier to code.

We can trace the A1 style of referencing back to VisiCalc. Dan Bricklin and Bob Frankston used A1 to refer to the cell in the upper-left corner of the spreadsheet. Mitch Kapor used this same addressing scheme in Lotus 1-2-3. Upstart Multiplan from Microsoft attempted to buck the trend and used something called R1C1-style addressing. In R1C1 addressing, the cell known as A1 is referred to as R1C1 because it is in row 1, column 1.

With the dominance of Lotus 1-2-3 in the 1980s and early 1990s, the A1 style became the standard. Microsoft realized it was fighting a losing battle and eventually offered either R1C1-style addressing or A1-style addressing in Excel. When you open Excel today, the A1 style is used by default. Officially, however, Microsoft supports both styles of addressing.

You would think that this chapter would be a non-issue. Anyone who uses the Excel interface would agree that the R1C1 style is dead. However, we have what on the face of it seems to be an annoying problem: The macro recorder records formulas in the R1C1 style. So you might be thinking that you just need to learn R1C1 addressing so that you can read the recorded code and switch it back to the familiar A1 style.

I have to give Microsoft credit. R1C1-style formulas, you’ll grow to understand, are actually more efficient, especially when you are dealing with writing formulas in VBA. Using R1C1-style addressing enables you to write more efficient code. Plus, there are some features such as setting up array formulas that require you to enter a formula in R1C1 style.

I can hear the collective groan from Excel users everywhere. You could skip these pages on this old-fashioned addressing style if it were only an annoyance or an efficiency issue. However, because it is necessary to understand R1C1 addressing to effectively use important features such as array formulas, you have to dive in and learn this style.

Toggling to R1C1-style references

You don’t need to switch to R1C1 style in order to use .FormulaR1C1 in your code. However, while you’re learning about R1C1, it helps to temporarily switch to R1C1 style.

To switch to R1C1-style addressing, select Options from the File menu. In the Formulas category, select the R1C1 Reference Style check box (see Figure 5-1).

[image: This image shows the Excel Options dialog box. In the left menu bar, items such as General, Formulas, and Data are listed. Select Formulas. In the body of the dialog box, the second section is Working With Formulas. The first check box in that section is R1C1 Reference Style.]

FIGURE 5-1 Selecting the R1C1 reference style in the Formulas category of the Excel Options dialog box causes Excel to use R1C1 style in the Excel user interface.

After you switch to R1C1 style, the column letters A, B, C across the top of the worksheet are replaced by numbers 1, 2, 3 (see Figure 5-2).

[image: This image shows the Excel grid. Instead of column letters across the top (A, B, C, D), there are numbers: 1, 2, 3, 4.]

FIGURE 5-2 In R1C1 style, the column letters are replaced by numbers.

In this format, the cell that you know as B5 is called R5C2 because it is in row 5, column 2.

Every couple weeks, someone manages to accidentally turn on this option, and we get an urgent support request at MrExcel. This style is foreign to 99% of spreadsheet users.

Witnessing the miracle of Excel formulas

Automatically recalculating thousands of cells is the main benefit of electronic spreadsheets over the green ledger paper used up until 1979. However, a close second-prize award would be that you can enter one formula and copy that formula to thousands of cells.

Entering a formula once and copying 1,000 times

Switch back to A1 style referencing. Consider the worksheet shown in Figure 5-3. Enter a simple formula such as =B4*C4 in cell D4, double-click the AutoFill handle, and the formula intelligently changes as it is copied down the range.

[image: The figure shows a formula of =B4*C4 entered in cell D4. It is multiplying quantity times unit price.]

FIGURE 5-3 Double-click the AutoFill handle, and Excel intelligently copies this relative-reference formula down the column.

The formula is rewritten for each row, eventually becoming =C9*B9. It seems intimidating to consider having a macro enter all these different formulas. Figure 5-4 shows how the formulas change when you copy them down columns D, F, and G.

[image: Images]

Note Press Ctrl+’ to switch to showing formulas rather than their results. Press it again to toggle back to seeing values.

[image: In the figure, the original formula in D4 has been copied down the column. With Excel in Show Formulas mode, you can see that the formula is rewritten in each cell. The B4 changes to B5, then B6, and so on. Also in this image are some formulas to calculate Sales Tax in column F. These formulas contain an absolute reference to B1. As those formulas are copied down the column, the B1 portion of the formula does not change.]

FIGURE 5-4 Amazingly, Excel adjusts the cell references in each formula as you copy down the column.

The formula in cell F4 includes both relative and absolute formulas: =IF(E4,ROUND(D4*B1,2),0). Thanks to the dollar signs inserted in cell B1, you can copy down this formula, and it always multiplies the total price in this row by the tax rate in cell B1.

The secret: It’s not that amazing

Excel actually uses R1C1-style formulas behind the scenes. Excel shows addresses and formulas in A1 style merely because it needs to adhere to the standard made popular by VisiCalc and Lotus.

If you switch the worksheet in Figure 5-4 to use R1C1 notation, you can see that the “different” formulas in D4:D9 are all actually identical formulas in R1C1 notation. The same is true of F4:F9 and G4:G9.

Use the Options dialog box to change the sample worksheet to R1C1-style addresses. If you examine the formulas in Figure 5-5, you see that in R1C1 language, every formula in column 4 is identical. Given that Excel is storing the formulas in R1C1 style, copying them, and then merely translating to A1 style for us to understand, it is no longer that amazing that Excel can easily manipulate A1-style formulas as it does.

[image: This figure repeats the view from Figure 5-4, but the worksheet is in R1C1 Formula mode. In this mode, every formula in column 4 is identical: =RC[-2]*RC[-1]. Even in column F, the formula with absolute references is identical all the way down the column: =IF(RC[-1],ROUND(RC[-2]*R1C2,2),0).]

FIGURE 5-5 The same formulas as in Figure 5-4 are shown in R1C1 style. Note that every formula in column 4 is the same, and every formula in column 6 is the same.

This is one of the reasons R1C1-style formulas are more efficient than A1-style formulas in VBA. When you have the same formula being entered in an entire range, it is less confusing.

Case study: Entering A1 versus R1C1 in VBA

Think about how you would set up this spreadsheet in the Excel interface. First, you enter a formula in cells D4, F4, and G4. Next, you copy these cells and paste them the rest of the way down the column. By using R1C1-style formulas, you can enter the same formula in the entire column at once.

The equivalent code in R1C1 style allows the formulas to be entered for the entire column in a single statement. Remember, the advantage of R1C1-style formulas is that all the formulas in Columns D and F, and most of G, are identical:

Click here to view code image

Sub R1C1Style()

' Locate the FinalRow

FinalRow = Cells(Rows.Count, 2).End(xlUp).Row

' Enter the first formula

Range("D4:D" & FinalRow).FormulaR1C1 = "=RC[-1]*RC[-2]"

Range("F4:F" & FinalRow).FormulaR1C1 = _

"=IF(RC[-1],ROUND(RC[-2]*R1C2,2),0)"

Range("G4:G" & FinalRow).FormulaR1C1 = "=RC[-1]+RC[-3]"

' Enter the Total Row

Cells(FinalRow + 1, 1).Value = "Total"

Cells(FinalRow + 1, 6).FormulaR1C1 = "=SUM(R4C:R[-1]C)"

End Sub

[image: Images]

Note It seems counterintuitive, but when you specify an A1-style formula, Microsoft internally converts the formula to R1C1 and then enters that formula in the entire range. Thus, you can actually add the “same” A1-style formula to an entire range by using a single line of code:

Click here to view code image

Range("D4:D" & FinalRow).Formula = "=B4*C4"

[image: Images]

Note Although you are asking for the formula =B4*C4 to be entered in D4:D1000, Excel enters this formula in row 4 and appropriately adjusts the formula for the additional rows.

Understanding the R1C1 reference style

An R1C1-style reference includes the letter R to refer to row and the letter C to refer to column. Because the most common reference in a formula is a relative reference, let’s first look at relative references in R1C1 style.

Using R1C1 with relative references

Imagine that you are entering a formula in a cell. To point to a cell in a formula, you use the letters R and C. After each letter, enter the number of rows or columns in square brackets.

The following list explains the “rules” for using R1C1 relative references:

	For columns, a positive number means to move to the right a certain number of columns, and a negative number means to move to the left a certain number of columns. For example, from cell E5, use RC[1] to refer to F5 and RC[-1] to refer to D5.

	For rows, a positive number means to move down the spreadsheet a certain number of rows. A negative number means to move toward the top of the spreadsheet a certain number of rows. For example, from cell E5, use R[1]C to refer to E6 and use cell R[-1]C to refer to E4.

	If you leave off the number for either the R or the C, it means that you are pointing to a cell in the same row or column as the cell with the formula. For example, the R in RC[3] means that you are pointing to the current row.

	If you enter =R[-1]C[-1] in cell E5, you are referring to a cell one row up and one column to the left: cell D4.

	If you enter =RC[1] in cell E5, you are referring to a cell in the same row but one column to the right: cell F5.

	If you enter =RC in cell E5, you are referring to a cell in the same row and column, which is cell E5 itself. You would generally not do this because it would create a circular reference.

Figure 5-6 shows how you would enter a reference in cell E5 to point to various cells around E5.

[image: This image illustrates how a formula in cell E5 would refer to adjacent cells. To refer to C5, that cell is in the same row and two columns to the left. You would use =RC[-2] to refer to that cell. The -2 in square brackets says to point 2 columns to the left. The R without a number means “in the current row”. From E5, pointing to E7 would be =R[2]C. In this formula, the C means same column. The R with a 2 in square brackets means two rows below the current row.]

FIGURE 5-6 Here are various relative references. These would be entered in cell E5 to describe each cell around E5.

You can use R1C1 style to refer to a range of cells. If you want to add up the 12 cells to the left of the current cell, you use this formula:

=SUM(RC[-12]:RC[-1])

Using R1C1 with absolute references

An absolute reference is a reference in which the row and column remain fixed when the formula is copied to a new location. In A1-style notation, Excel uses a $ before the row number or column letter to keep that row or column absolute as the formula is copied.

To always refer to an absolute row or column number, just leave off the square brackets. This reference refers to cell B3, no matter where it is entered:

=R3C2

Using R1C1 with mixed references

A mixed reference is a reference in which the row is fixed and the column is allowed to be relative or in which the column is fixed and the row is allowed to be relative. This is useful in many situations.

Imagine that you have written a macro to import Invoice.txt into Excel. Using .End(xlUp), you find where the total row should go. As you are entering totals, you know that you want to sum from the row above the formula up to row 2. The following code would handle that:

Click here to view code image

Sub MixedReference()

TotalRow = Cells(Rows.Count, 1).End(xlUp).Row + 1

Cells(TotalRow, 1).Value = "Total"

Cells(TotalRow, 5).Resize(1, 3).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

End Sub

In this code, the reference R2C:R[-1]C indicates that the formula should add from row 2 in the same column to the row just above the formula in the current column. Do you see the advantage to using R1C1 formulas in this case? You can use a single R1C1 formula with a mixed reference to easily enter a formula to handle an indeterminate number of rows of data (see Figure 5-7).

[image: Even tricky cell references such as =G$2:G10 can be written in R1C1 style. The formula in G11 is =SUM(R2C:R{-1]C). In this formula, the R2 without any square brackets means that you always want to point to row 2. The R[-1]C with square brackets around the -1 means that you always want to point to the row above.]

FIGURE 5-7 After the macro has run, the formulas in columns 5:7 of the total row will have a reference to a range that is locked to row 2, but all other aspects are relative.

Referring to entire columns or rows with R1C1 style

You will occasionally write a formula that refers to an entire column. For example, you might want to know the maximum value in column G. If you don’t know how many rows you will have in G, you can write =MAX($G:$G) in A1 style or =MAX(C7) in R1C1 style. To find the minimum value in row 1, use =MIN($1:$1) in A1 style or =MIN(R1) in R1C1 style. You can use relative reference for either rows or columns. To find the average of the row above the current cell, use =AVERAGE(R[-1]).

Replacing many A1 formulas with a single R1C1 formula

When you get used to R1C1-style formulas, they actually seem a lot more intuitive to build. One classic example to illustrate R1C1-style formulas is building a multiplication table. It is easy to build a multiplication table in Excel using a single mixed-reference formula.

Building the table

Enter the numbers 1 through 12 going across B1:M1. Copy and transpose these so that the same numbers are going down A2:A13. Now the challenge is to build a single formula that works in all cells of B2:M13 and that shows the multiplication of the number in row 1 by the number in column 1. Using A1-style formulas, you must press the F4 key five times to get the dollar signs in the proper locations. The following is a far simpler formula in R1C1 style:

Click here to view code image

Sub MultiplicationTable()

' Build a multiplication table using a single formula

Range("B1:M1").Value = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

Range("B1:M1").Font.Bold = True

Range("B1:M1").Copy

Range("A2:A13").PasteSpecial Transpose:=True

Range("B2:M13").FormulaR1C1 = "=RC1*R1C"

Cells.EntireColumn.AutoFit

End Sub

The R1C1-style reference =RC1*R1C could not be simpler. In English, it is saying, “Take this row’s column 1 and multiply it by row 1 of this column.” It works perfectly to build the multiplication table shown in Figure 5-8.

[image: This worksheet in the figure shows a multiplication table. The numbers 1 to 12 run horizontally from B1 to M1 and vertically from A2 to A13. An identical formula in the 144 cells of the multiplication table is =RC1*R1C. In English, this formula is saying “Take this row column 1 and multiply by row 1 this column.”]

FIGURE 5-8 The macro creates a multiplication table. The formula in B2 uses two mixed references: =$A2*B$1.

[image: Images]

Caution After running the macro and producing the multiplication table shown in Figure 5-8, note that Excel still has the copied range from line 2 of the macro as the active Clipboard item. If the user of this macro selects a cell and presses Enter, the contents of those cells copy to the new location. However, this is generally not desirable. To get Excel out of Cut/Copy mode, add this line of code before your program ends:

Application.CutCopyMode = False

An interesting twist

Try this experiment: Move the cell pointer to F6. Turn on macro recording using the Record Macro button on the Developer tab. Click the Use Relative Reference button on the Developer tab. Enter the formula =A1 and press Ctrl+Enter to stay in F6. Click the Stop Recording button on the floating toolbar. You get this single-line macro, which enters a formula that points to a cell five rows up and five columns to the left:

Click here to view code image

Sub Macro1()

 ActiveCell.FormulaR1C1 = "=R[-5]C[-5]"

End Sub

Now, move the cell pointer to cell A1 and run the macro that you just recorded. You might think that pointing to a cell five rows above A1 would lead to the ubiquitous Run Time Error 1004. But it doesn’t! When you run the macro, the formula in cell A1 is pointing to =XFA1048572, as shown in Figure 5-9, meaning that R1C1-style formulas actually wrap from the left side of the workbook to the right side. I cannot think of any instance in which this would actually be useful, but for those of you who rely on Excel to error out when you ask for something that does not make sense, be aware that your macro will happily provide a result that’s probably not the one that you expected!

[image: This image illustrates an apparent bug. If you use VBA to enter a R1C1 formula in B1, the formula tells Excel to point five rows up and five columns to the left. Excel points to XFA1048572.]

FIGURE 5-9 The formula to point to five rows above B1 wraps around to the bottom of the worksheet.

Remembering column numbers associated with column letters

I like R1C1-style formulas enough to use them regularly in VBA. I don’t like them enough to change my Excel interface over to R1C1-style numbers. So I routinely have to know that the cell known as U21, for example, is really R21C21.

Knowing that U is the twenty-first letter of the alphabet is not something that comes naturally. We have 26 letters, so A is 1 and Z is 26. M is the halfway point of the alphabet and is column 13. The rest of the letters are not particularly intuitive. A quick way to get the column number for any column is to enter =COLUMN() in any empty cell in that column. The result tells you that, for example, DGX is column 2910 (see Figure 5-10).

[image: While in A1 style, it is difficult to figure out the column number for a column. In this image, a formula of =COLUMN() is entered in cell DGX1. The answer of 2910 means that DGC is the 2910th column. A R1C1 formula would refer to =R1C2910 to refer to DGX1.]

FIGURE 5-10 Use the temporary formula =COLUMN() to learn the column number of any cell.

You could also select any cell in DGX, switch to VBA, press Ctrl+G for the Immediate window, type ? ActiveCell.Column, and press Enter.

Using R1C1 formulas with array formulas

Array formulas are powerful “superformulas.” At MrExcel.com, we call these CSE formulas because you have to use Ctrl+Shift+Enter to enter them. If you are not familiar with array formulas, you probably think they look as though they should not work.

The array formula in F4 in Figure 5-11 is a formula that does more than 19,000 multiplications and then sums the result. It looks as though this would be an illegal formula. In fact, if you happen to enter it without using Ctrl+Shift+Enter, you get the expected #VALUE! error. However, if you enter it with Ctrl+Shift+Enter, the formula miraculously pops out an array of 19,000 values and evaluates each one.

[image: In the figure, an array formula calculates the number of Friday the 13ths between a start date and an end date. The formula shown in the formula bar is {=SUM((WEEKDAY(ROW(INDIRECT(E1&“:”&E2)),3)=6)*(DAY(ROW(INDIRECT(E1&“:”&E2)))=13))}.]

FIGURE 5-11 The array formula in F4 does 19,000 calculations. You must use Ctrl+Shift+Enter to enter this formula.

[image: Images]

Note You do not type the curly braces when entering the formula. Excel adds them for you when you press Ctrl+Shift+Enter.

The code to enter these formulas follows:

Click here to view code image

Sub EnterArrayFormulas()

Cells(4, 6).FormulaArray = "=SUM((WEEKDAY(ROW(INDIRECT(" & _

"R[-3]C[-1]& "":""&R[-2]C[-1])),3)=6)*(DAY(ROW(INDIRECT(" & _

"(R[-3]C[-1]&"":""&R[-2]C[-1])))=13))"

 End Sub

Note that although the formulas appear in the user interface in A1-style notation, you must use R1C1-style notation for entering array formulas.

[image: Images]

Tip Use this trick to quickly find the R1C1 formula: Enter a regular A1-style formula or an array formula in any cell in Excel. Select that cell. Switch to the VB Editor. Press Ctrl+G to display the Immediate window. Type Print ActiveCell.FormulaR1C1 and press Enter. Excel converts the formula in the formula bar to an R1C1-style formula. You also can use a question mark instead of Print.

Next steps

Read Chapter 6, “Creating and manipulating names in VBA,” to learn how to use named ranges in macros.

CHAPTER 6
Creating and manipulating names in VBA

In this chapter, you will:

	Learn the difference between global and local names

	Learn how to add and delete names

	Include information about a name by adding a comment

	Learn about the different types of names

	Make names invisible

	Check for the existence of a name

You’ve probably named ranges in a worksheet by highlighting a range and typing a name in the Name box to the left of the formula bar. You also might have created more complicated names containing formulas. For example, perhaps you created a name with a formula that finds the last row in a column. The ability to name a range makes it much easier to write formulas.

The ability to create and manipulate names is also available in VBA, which provides the same benefits as naming ranges in a worksheet. For example, you can store a new range in a name.

This chapter explains different types of names and the various ways you can use them.

Global versus local names

Names that are global are available anywhere in a workbook. Names that are local are available only on a specific worksheet. With local names, you can have multiple references in the workbook with the same name. Global names must be unique to the workbook.

The Name Manager dialog box (accessed via the Formulas tab) lists all the visible names in a workbook, even a name that has been assigned to both the global and the local levels. The Scope column lists the scope of the name, whether it is the workbook or a specific sheet, such as Sheet1.

For example, in Figure 6-1, the name Apples is assigned to Sheet1 and also to the workbook.

[image: The screenshot shows the Name Manager dialog box. It lists various names. Global names have a scope of Workbook. Local names list the sheet name, such as Sheet1, for the scope.]

FIGURE 6-1 The Name Manager lists all local and global names.

Adding names

If you record the creation of a named range and then view the code, you see something like this:

Click here to view code image

ActiveWorkbook.Names.Add Name:="Fruits", RefersToR1C1:="=Sheet2!R1C1:R6C6"

This creates a global name Fruits, which includes the range A1:F6 (R1C1:R6C6). The formula is enclosed in quotes, and the equal sign in the formula must be included. In addition, the range reference must be absolute (that is, it must include the $ sign) or in R1C1 notation. If the sheet on which the name is created is the active sheet, the sheet reference does not have to be included. However, including the sheet reference can make the code easier to understand.

To create a local name, include the sheet name with the Name parameter:

Click here to view code image

ActiveWorkbook.Names.Add Name:="Sheet2!Fruits", _

RefersToR1C1:="=Sheet2!R1C1:R6C6"

Alternatively, specify that the Names collection belongs to a worksheet:

Click here to view code image

Worksheets("Sheet2").Names.Add Name:="Fruits", _

RefersToR1C1:="=Sheet2!R1C1:R6C6"

[image: Images]

Note If a reference is not absolute, the name might be created, but it will not point to the correct range. For example, if you run the following line of code, the name is created in the workbook:

Click here to view code image

ActiveWorkbook.Names.Add Name:="Citrus", _

RefersTo:="=Sheet1!A1"

However, as you can see in Figure 6-2, the name hasn’t actually been assigned to the range. The reference will change depending on which cell is the active cell when the name is viewed.

[image: The screenshot shows the Name Manager dialog box. The name Citrus is listed, and it references cell D13, instead of A1, the cell reference in the code.]

FIGURE 6-2 Despite what was coded, because absolute referencing was not used, Citrus refers to the active cell.

The preceding example shows what you would get from the macro recorder. There is simpler code to get the same result:

Range("A1:F6").Name = "Fruits"

Alternatively, for a local variable only, you can use this:

Click here to view code image

Range("A1:F6").Name = "Sheet1!Fruits"

When creating names with these methods, absolute referencing is not required.

[image: Images]

Note You can use table names like defined names, but you don’t create them the same way. See the “Tables” section later in this chapter for more information about creating table names.

Although this method is much easier and quicker than what the macro recorder creates, it’s limited in that it works only for ranges. Formulas, strings, numbers, and arrays require the use of the Add method.

The name you create becomes an object when referenced like this:

Names("Fruits")

The object has many properties, including Name, which you can use to rename the existing name, like this:

Names("Fruits").Name = "Produce"

Fruits no longer exists; Produce is now the name of the range.

When you are renaming names in which a local reference and a global reference both carry the same name, the previous line renames the local reference first.

Deleting names

Use the Delete method to delete a name:

Names("ProduceNum").Delete

An error occurs if you attempt to delete a name that does not exist.

[image: Images]

Note If both local and global references with the same name exist, be more specific about which name is being deleted because the local reference is deleted first.

Adding comments

You can add comments about names, such as why a name was created or where it is used. To insert a comment for the local name LocalOffice, do this:

Click here to view code image

ActiveWorkbook.Worksheets("Sheet7").Names("LocalOffice").Comment = _

"Holds the name of the current office"

The comments appear in a column in the Name Manager, as shown in Figure 6-3.

[image: Images]

Warning The name must exist before a comment can be added to it.

[image: The screenshot shows the Name Manager dialog box. The name LocalOffice is listed with a comment.]

FIGURE 6-3 You can add comments about names to help remember their purpose.

Types of names

The most common use of names is for storing ranges; however, names can store more than just ranges. After all, names store information. Names make it simple to remember and use potentially complex or large amounts of information. In addition, unlike variables, names remember what they store beyond the life of the program.

You know how to create range names, but you can also assign names to name formulas, strings, numbers, and arrays, as described in the following pages.

Formulas

The syntax for storing a formula in a name is the same as for a range because the range is essentially a formula. The following code allows for a dynamic named column with the item listing starting in A2:

Click here to view code image

Names.Add Name:="ProductList", _

RefersTo:="=OFFSET(Sheet2!A2,0,0,COUNTA(Sheet2!$A:$A))"

This code is useful for creating dynamic data sets or for referencing any dynamic listing on which calculations may be performed, as shown in Figure 6-4.

[image: The screenshot shows the Name Manager dialog box. The RefersTo value of the selected name, ProductList, is an OFFSET formula.]

FIGURE 6-4 You can assign names to dynamic formulas.

Strings

When using names to hold strings such as the name of the current fruit producer, enclose the string value in quotation marks. Because no formula is involved, an equal sign is not needed. If you were to include an equal sign, Excel would treat the value as a formula. Let Excel include the equal sign shown in the Name Manager:

Click here to view code image

Names.Add Name: = "Company", RefersTo:="CompanyA"

Figure 6-5 shows how the coded name appears in the Name Manager window.

[image: The screenshot shows the Name Manager dialog box. The RefersTo value of the selected name, Company, is a quotation mark–enclosed string value preceded by an equal sign.]

FIGURE 6-5 You can assign a name to a string value.

[image: Images]

Tip Because names do not lose their references between sessions, using names is a great way to store values as opposed to storing values in cells from which the information would have to be retrieved. For example, to track the leading producer between seasons, create the name Leader. If the new season’s leading producer matches the name reference, you could create a special report comparing the seasons. The other option is to create a special sheet to track the values between sessions and then retrieve the values when needed. With names, the values are readily available.

The following procedure shows how cells in a variable sheet are used to retain information between sessions:

Click here to view code image

Sub NoNames(ByRef CurrentTop As String)

TopSeller = Worksheets("Variables").Range("A1").Value

If CurrentTop = TopSeller Then

MsgBox "Top Producer is " & TopSeller & " again."

Else

MsgBox "New Top Producer is " & CurrentTop

End If

End Sub

The following procedure shows how names are used to store information between sessions:

Click here to view code image

Sub WithNames()

If Evaluate("Current") = Evaluate("Previous") Then

MsgBox "Top Producer is " & Evaluate("Previous") & " again."

Else

MsgBox "New Top Producer is " & Evaluate("Current")

End If

End Sub

If Current and Previous are previously declared names, you access them directly rather than create variables in which to pass them. Note the use of the Evaluate method to extract the values in names. The string being stored cannot have more than 255 characters.

Numbers

You can use names to store numbers between sessions. Here’s an example:

Click here to view code image

NumofSales = 5123

Names.Add Name:="TotalSales", RefersTo:=NumofSales

Alternatively, you can use this:

Click here to view code image

Names.Add Name:="TotalSales", RefersTo:=5123

Notice the lack of quotation marks and an equal sign in the RefersTo parameter. Using quotation marks changes the number to a string. With the addition of an equal sign in the quotation marks, the number changes to a formula.

To retrieve the value in the name, you have a longer and a shorter option:

Click here to view code image

NumofSales = Names("TotalSales").Value

or this:

NumofSales = [TotalSales]

[image: Images]

Note Keep in mind that someone reading your code might not be familiar with the use of the Evaluate method (square brackets). If you know that someone else will be reading your code, avoid the use of the Evaluate method or add a comment explaining it.

Tables

Excel tables share some of the properties of defined names, but they also have their own unique methods. Unlike with the defined names you are used to dealing with, you cannot manually create tables. In other words, you cannot select a range on a sheet and type a name in the Name field. However, you can manually create them via VBA.

Tables are not created using the same method as defined names. Instead of Range(xx).Add or Names.Add, use ListObjects.Add.

To create a table from cells A1:C26, and assuming that the data table has column headers, as shown in Figure 6-6, use this:

Click here to view code image

ActiveSheet.ListObjects.Add(xlSrcRange, Range("A1:C26"), , xlYes).Name = "Table1"

[image: The screenshot shows a data set that has been converted to an Excel table. The name of the table, Table1, is shown in the Name field.]

FIGURE 6-6 You can turn a normal table into an Excel table by assigning a name to it using VBA.

xlSrcRange (the SourceType) tells Excel that the source of the data is an Excel range. You then need to specify the range (the source) of the table. If you have headers in the table, include that row when indicating the range. The next argument, which is not used in the preceding example, is LinkSource, a Boolean indicating whether there is an external data source that is not used if SourceType is xlSrcRange. xlYes lets Excel know that the data table has column headers; otherwise, Excel automatically generates them. The final argument, which is not shown in the preceding example, is the destination. This is used when SourceType is xlSrcExternal, indicating the upper-left cell where the table will begin.

Using arrays in names

A name can hold the data stored in an array. The array size is limited by available memory. See Chapter 8, “Arrays,” for more information about arrays.

An array reference is stored in a name the same way as a numeric reference:

Click here to view code image

Sub NamedArray()

Dim myArray(10, 5)

Dim i As Integer, j As Integer

'The following For loops fill the array myArray

For i = 0 To 10 'by default arrays start at 0

For j = 0 To 5

myArray(i, j) = i + j

Next j

Next i

'The following line takes our array and gives it a name

Names.Add Name:="FirstArray", RefersTo:=myArray

End Sub

Because the name references a variable, no quotation marks or equal signs are required.

Reserved names

Excel uses local names of its own to keep track of information. These local names are considered reserved, and if you use them for your own references, they might cause problems.

Highlight an area on a sheet. Then from the Page Layout tab, select Print Area, Set Print Area.

As shown in Figure 6-7, a Print_Area listing is in the Name field. Deselect the area and look again in the Name field drop-down menu. The name is still listed there. Select it, and the print area that was previously set is now highlighted. If you save, close, and reopen the workbook, Print_Area is still set to the same range. Print_Area is a name reserved by Excel for its own use.

[image: The figure shows the print area on a sheet has been selected. Print_Area appears in the Name field.]

FIGURE 6-7 Excel creates its own names.

[image: Images]

Note Each sheet has its own print area. In addition, setting a new print area on a sheet that has an existing print area overwrites the original print-area name.

Fortunately, Excel does not have a large list of reserved names:

Criteria

Database

Extract

Print_Area

Print_Titles

Criteria and Extract are used when Advanced Filter (on the Data tab, select Advanced from the Sort & Filter group) is configured to extract the results of the filter to a new location.

Database is no longer required in Excel. However, some features, such as Data Form, still recognize it. Legacy versions of Excel used it to identify the data you wanted to manipulate in certain functions.

Print_Area is used when a print area is set (from the Page Layout tab, select Print Area, Set Print Area) or when Page Setup options that designate the print area (from the Page Layout tab, Scale) are changed.

Print_Titles is used when print titles are set (select Page Layout, Print Titles).

You should avoid using these reserved names, and you should use variations on them with caution. For example, if you create the name PrintTitles, you might accidentally code this:

Click here to view code image

Worksheets("Sheet4").Names("Print_Titles").Delete

If you do this, you delete the Excel name rather than your custom name.

Hiding names

Names are incredibly useful, but you don’t necessarily want to see all the names you have created. Like many other objects, names have a Visible property. To hide a name, set the Visible property to False. To unhide a name, set the Visible property to True:

Click here to view code image

Names.Add Name:="ProduceNum", RefersTo:="=A1", Visible:=False

[image: Images]

Tip If a user creates a Name object with the same name as the hidden one, the hidden name is overwritten without any warning message. To prevent this, protect the worksheet.

Checking for the existence of a name

You can use the following function to check for the existence of a user-defined name, even a hidden one:

Click here to view code image

Function NameExists(ByVal FindName As String, _

Optional TargetBook As Workbook) As Boolean

If TargetBook Is Nothing Then

If ActiveWorkbook Is Nothing Then

NameExists = False

Exit Function

End If

Set TargetBook = ActiveWorkbook

End If

On Error Resume Next

NameExists = CBool(Len(TargetBook.Names(FindName).Name) <> 0)

On Error GoTo 0

End Function

Keep in mind that this function does not return the existence of Excel’s reserved names. Even so, this is a handy addition to your arsenal of “programmers’ useful code.” (See Chapter 14, “Sample user-defined functions,” for more information on implementing custom functions.)

The preceding code is also an example of how to use errors to your advantage. If the name for which you are searching does not exist, an error message is generated. By adding the On Error Resume Next line, you force the code to continue. Use On Error Goto 0 to reset error trapping; otherwise, other errors may be skipped. The use of CBool ensures that a Boolean is the value returned to the function.

Using named ranges for VLOOKUP

Say that every day you import a file of sales data from a chain of retail stores. The file includes the store number but not the store name. You obviously don’t want to have to type store names every day, but you would like to have store names appear on all the reports that you run.

You have a table (listobject) of store numbers and names on a hidden worksheet. You want to use VBA to help maintain the list of stores each day and then use the VLOOKUP function to get store names from the list into your data set.

The basic steps are listed here:

	Import the data file.

	Find all the unique store numbers in today’s file.

	See whether any of these store numbers are not in your current table of store names.

	For any stores that are new, add them to the table, and ask the user for a store name.

	The StoreList table is larger, but because tables automatically size themselves, you don’t need to do anything.

	Use a VLOOKUP function in the original data set to add a store name to all records. This VLOOKUP references the named range of the newly expanded Store Names data set.

The following code handles these six steps:

Click here to view code image

Sub ImportData()

'This routine imports sales.csv to the data sheet

'Check to see whether any stores in column A are new

'If any are new, then add them to the StoreList table

Dim WSD As Worksheet, WSM As Worksheet

Dim WB As Workbook

Dim tblStores As ListObject

Dim NewRow As ListRow

Set WB = ThisWorkbook

'Data is stored on the Data worksheet

Set WSD = WB.Worksheets("Data")

'StoreList is stored on a menu worksheet

Set WSM = WB.Worksheets("Menu")

Set tblStores = WSM.ListObjects("tblStoreLookup")

'Open the file. This makes the csv file active

Workbooks.Open Filename:="C:\Sales.csv"

'Copy the data to WSD and close

ActiveWorkbook.Range("A1").CurrentRegion.Copy _

Destination:=WSD.Range("A1")

ActiveWorkbook.Close SaveChanges:=False

'Create a list of unique stores from column A and place in Z

FinalRow = WSD.Cells(WSD.Rows.Count, 1).End(xlUp).Row

WSD.Range("A1").Resize(FinalRow, 1).AdvancedFilter _

 Action:=xlFilterCopy, CopyToRange:=WSD.Range("Z1"), Unique:=True

'For all the unique stores, see whether they are in the

'current store list

'ISNA returns True for missing store because the VLOOKUP will

'return an error

FinalStore = WSD.Range("Z" & WSD.Rows.Count).End(xlUp).Row

WSD.Range("AA1").Value = "There?"

Click here to view code image

WSD.Range("AA2:AA" & FinalStore).FormulaR1C1 = _

"=ISNA(VLOOKUP(RC[-1], tblStoreLookup[#All],1,False))"

'Loop through the list of today's stores. If they are shown

' as missing, then add them at the bottom of the StoreList

For i = 2 To FinalStore

If WSD.Cells(i, 27).Value = True Then

'get the next available row in the table

Set NewRow = tblStores.ListRows.Add

ThisStore = Cells(i, 26).Value

With NewRow.Range

.Columns(1) = ThisStore

.Columns(2) = _

InputBox(Prompt:="Enter name of store " _

& ThisStore, Title:="New Store Found")

End With

End If

Next i

'Delete the temporary list of stores in Z & AA

WSD.Range("Z1:AA" & FinalStore).Clear

'Use VLOOKUP to add StoreName to column B of the data set

WSD.Range("B1").EntireColumn.Insert

WSD.Range("B1").Value = "StoreName"

WSD.Range("B2:B" & FinalRow).FormulaR1C1 = _

 "=VLOOKUP(RC1, tblStoreLookup[#All],2,False)"

'Change Formulas to Values

WSD.Range("B2:B" & FinalRow).Value = Range("B2:B" & FinalRow).Value

'Fix columnwidths

WSD.Range("A1").CurrentRegion.EntireColumn.AutoFit

'Release variables to free system memory

Set NewRow = Nothing

Set tblStores = Nothing

Set WB = Nothing

Set WSD = Nothing

Set WSM = Nothing

End Sub

Next steps

In Chapter 7, “Event programming,” you find out how you can write code to run automatically based on a person’s actions such as activating a sheet or selecting a cell. This is done with events, which are actions in Excel that you can capture and use to your advantage.

CHAPTER 7
Event programming

In this chapter, you will:

	Learn what events are and how to use them

	Review the different types of workbook, worksheet, chart, and application-level events

	Use a sheet event to quickly enter military time into a cell

In this book, you’ve read about workbook events, and you’ve seen examples of worksheet events. An event allows you to automatically trigger a procedure to run based on something a user or another procedure does in Excel. For example, if a person changes the contents of a cell, after he or she presses Enter or Tab, you can have code run automatically. The event that triggers the code is the changing of the contents of the cell.

Levels of events

You can find events at the following levels:

	Application level—Control based on application actions, such as Application_NewWorkbook

	Workbook level—Control based on workbook actions, such as Workbook_Open

	Worksheet level—Control based on worksheet actions, such as Worksheet_SelectionChange

	Chart sheet level—Control based on chart actions, such as Chart_Activate

These are the places where you should put different types of events:

	Workbook events go into the ThisWorkbook module.

	Worksheet events go into the module of the sheet they affect, such as Sheet1.

	Chart sheet events go into the module of the chart sheet they affect, such as Chart1.

	Pivot table events go into the module of the sheet with the pivot table, or they can go into the ThisWorkbook module.

	Embedded chart and application events go into class modules.

The events can still make procedure or function calls outside their own modules. Therefore, if you want the same action to take place for two different sheets, you don’t have to copy the code. Instead, place the code in a module and have each sheet event call the procedure.

This chapter explains different levels of events, where to find them, and how to use the events.

[image: Images]

Note Userform and control events are discussed in Chapter 10, “Userforms: An introduction,” and Chapter 22, “Advanced userform techniques.”

Using events

Each level consists of several types of events, and memorizing the syntax of them all would be a feat. Excel makes it easy to view and insert the available events in their proper modules right from the VB Editor.

When a ThisWorkbook, Sheet, Chart Sheet, or Class module is active, the corresponding events are available through the Object and Procedure drop-down menus, as shown in Figure 7-1.

[image: A screenshot of the drop-down menus at the top of the Programming Window. The left drop-down menu is called Object and is currently set to Worksheet. The right drop-down menu is called Procedure. The Procedure drop-down menu is open and lists several Worksheet events.]

FIGURE 7-1 The different events are easy to access from the VB Editor Object and Procedure drop-down menus.

After an object is selected, the Procedure drop-down menu updates to list the events available for that object. Selecting a procedure automatically places the procedure header (Private Sub) and footer (End Sub) in the editor, as shown in Figure 7-2.

[image: The figure shows the drop-down menus at the top of the Programming Window. The worksheet level event FollowHyperlink has been selected in the Procedure list. The header and footer for the event are shown in the code part of the Programming Window.]

FIGURE 7-2 The procedure header and footer are automatically placed when you make selections from the drop-down menus.

Event parameters

Some events have parameters, such as Target or Cancel, that allow values to be passed into the procedure. For example, some procedures are triggered before the actual event, such as BeforeRightClick. Assigning True to the Cancel parameter prevents the default action from taking place. In this case, the shortcut menu is prevented from appearing:

Click here to view code image

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _

Cancel As Boolean)

Cancel = True

End Sub

Enabling events

Some events can trigger other events, including themselves. For example, the Worksheet_Change event is triggered by a change in a cell. If the event is triggered and the procedure itself changes a cell, the event gets triggered again, which changes a cell, triggering the event, and so on. The procedure gets stuck in an endless loop.

To prevent an endless loop, disable the events and then re-enable them at the end of the procedure:

Click here to view code image

Private Sub Worksheet_Change(ByVal Target As Range)

Application.EnableEvents = False

Range("A1").Value = Target.Value

Application.EnableEvents = True

End Sub

[image: Images]

Tip To interrupt a macro, press Esc or Ctrl+Break. To restart it, use Run on the toolbar or press F5.

Workbook events

Table 7-1 lists event procedures that are available at the workbook level. Some events, such as Workbook_SheetActivate, are sheet events that are available at the workbook level. This means you don’t have to copy and paste the code in each sheet in which you want it to run.

[image: Images]

Note Table 7-1 does not include the sheet events that are also available at the sheet level. To learn more about such events, such as Workbook_SheetChange, look up the Change event in Table 7-3.

TABLE 7-1 Workbook events

	Event Name

	Description

	Workbook_Activate

	Occurs when the workbook containing this event becomes the active workbook.

	Workbook_Deactivate

	Occurs when the active workbook is switched from the workbook containing the event to another workbook.

	
Workbook_Open

	
The default workbook event; occurs when a workbook is opened; no user interface is required.

	
Workbook_BeforeSave

	
Occurs when the workbook is saved. SaveAsUI is set to True if the Save As dialog box is to be displayed. Setting Cancel to True prevents the workbook from being saved.

	
Workbook_AfterSave

	
Occurs after the workbook is saved. Success returns True if the file saved successfully and False if the save was not successful.

	
Workbook_BeforePrint

	
Occurs when any print command is used, whether it is in the ribbon, on the keyboard, or in a macro. Setting Cancel to True prevents the workbook from being printed.

	
Workbook_BeforeClose

	
Occurs when the user closes a workbook. Setting Cancel to True prevents the workbook from closing.

	
Workbook_NewSheet

	
Occurs when a new sheet is added to the active workbook. Sh is the new worksheet or chart sheet object.

	
Workbook_NewChart

	
Occurs when the user adds a new chart to the active workbook. Ch is the new chart object. The event is not triggered if a chart is moved from one location to another, unless it is moved between a chart sheet and a chart object. In that case, the event is triggered because a new chart sheet or object is being created.

	
Workbook_WindowResize

	
Occurs when the user resizes the active workbook’s window. Wn is the window.

	
Workbook_WindowActivate

	
Occurs when the user activates any workbook window. Wn is the window. Only activating the workbook window starts this event.

	
Workbook_WindowDeactivate

	
Occurs when the user deactivates any workbook window. Wn is the window. Only deactivating the workbook window starts this event.

	
Workbook_AddInInstall

	
Occurs when the user installs the workbook as an add-in (by selecting File, Options, Add-ins). Double-clicking an .xlam file (an add-in) to open it does not activate the event.

	
Workbook_AddInUninstall

	
Occurs when the user uninstalls the workbook (add-in). The add-in is not automatically closed.

	
Workbook_Sync

	
Occurs when the user synchronizes the local copy of a sheet in a workbook that is part of a Document Workspace with the copy on the server. SyncEventType is the status of the synchronization.

	
Workbook_PivotTableCloseConnection

	
Occurs when a pivot table report closes its connection to its data source. Target is the pivot table that has closed the connection.

	
Workbook_PivotTableOpenConnection

	
Occurs when a pivot table report opens a connection to its data source. Target is the pivot table that has opened the connection.

	
Workbook_RowsetComplete

	
Occurs when the user drills through a record set or calls on the row set action on an OLAP pivot table. Description is a description of the event; Sheet is the name of the sheet on which the record set is created; Success indicates success or failure.

	
Workbook_BeforeXmlExport

	
Occurs when the user exports or saves XML data. Map is the map used to export or save the data; Url is the location of the XML file; setting Cancel to True cancels the export operation.

	
Workbook_AfterXmlExport

	
Occurs after the user exports or saves XML data. Map is the map used to export or save the data; Url is the location of the XML file; Result indicates success or failure.

	
Workbook_BeforeXmlImport

	
Occurs when the user imports or refreshes XML data. Map is the map used to import the data; Url is the location of the XML file; IsRefresh returns True if the event was triggered by refreshing an existing connection and False if triggered by importing from a new data source; setting Cancel to True cancels the import or refresh operation.

	
Workbook_AfterXmlImport

	
Occurs when the user exports or saves XML data. Map is the map used to export or save the data; IsRefresh returns True if the event was triggered by refreshing an existing connection and False if triggered by importing from a new data source; Result indicates success or failure.

	
Workbook_ModelChange

	
Occurs when the user changes the Data Model. Changes is the type of change, such as columns added, changed, or deleted, that was made to the Data Model.

	
Workbook_BeforeRemoteChange

	
Occurs before changes by a remote user are merged into the workbook.

	
Workbook_AfterRemoteChange

	
Occurs after changes by a remote user are merged into the workbook.

Workbook-level sheet events

Table 7-2 lists sheet and pivot table events that are available at the workbook level. These events affect all sheets in the workbook.

TABLE 7-2 Workbook-level sheet and pivot table events

	
Event Name

	
Description

	
Workbook_SheetActivate

	
Occurs when the user activates any chart sheet or worksheet in the workbook. Sh is the active sheet.

	
Workbook_SheetBeforeDelete

	
Occurs before any worksheet in the workbook is deleted. Sh is the sheet being deleted.

	
Workbook_SheetBeforeDoubleClick

	
Occurs when the user double-clicks any chart sheet or worksheet in the active workbook. Sh is the active sheet; Target is the object that’s double-clicked; setting Cancel to True prevents the default action from taking place.

	
Workbook_SheetBeforeRightClick

	
Occurs when the user right-clicks any worksheet in the active workbook. Sh is the active worksheet; Target is the object that’s right-clicked; setting Cancel to True prevents the default action from taking place.

	
Workbook_SheetCalculate

	
Occurs when any worksheet is recalculated or any updated data is plotted on a chart. Sh is the sheet that triggers the calculation.

	
Workbook_SheetChange

	
Occurs when the user changes any range in a worksheet. Sh is the worksheet; Target is the changed range.

	
Workbook_SheetDeactivate

	
Occurs when the user deactivates any chart sheet or worksheet in the workbook. Sh is the sheet being switched from.

	
Workbook_SheetFollowHyperlink

	
Occurs when the user clicks any hyperlink in Excel. Sh is the active worksheet; Target is the hyperlink.

	
Workbook_SheetSelectionChange

	
Occurs when the user selects a new range on any sheet. Sh is the active sheet; Target is the affected range.

	
Workbook_SheetTableUpdate

	
Occurs after a query table (not a list object) connected to a data model is updated. Sh is the sheet with the query table; Target is the query table that was updated.

	
Workbook_SheetLensGalleryRenderComplete

	
Occurs when the user selects the Quick Analysis tool. Sh is the active sheet.

	
Workbook_SheetPivotTableUpdate

	
Occurs when the user updates a pivot table. Sh is the sheet with the pivot table; Target is the updated pivot table.

	
Workbook_SheetPivotTableAfterValueChange

	
Occurs after the user edits cells inside a pivot table or the user recalculates them if they contain a formula. Sh is the sheet the pivot table is on; TargetPivotTable is the pivot table with the changed cells; TargetRange is the range that was changed.

	
Workbook_SheetPivotTableBeforeAllocateChanges

	
Occurs before a pivot table is updated from its OLAP data source. Sh is the sheet the pivot table is on; TargetPivotTable is the updated pivot table; ValueChangeStart is the index number of the first change; ValueChangeEnd is the index number of the last change; setting Cancel to True prevents the changes from being applied to the pivot table.

	
Workbook_SheetPivotTableBeforeCommitChanges

	
Occurs before an OLAP pivot table updates its data source. Sh is the sheet the pivot table is on; TargetPivotTable is the updated pivot table; ValueChangeStart is the index number of the first change; ValueChangeEnd is the index number of the last change; setting Cancel to True prevents the changes from being applied to the data source.

	
Workbook_SheetPivotTableBeforeDiscardChanges

	
Occurs before an OLAP pivot table discards changes from its data source. Sh is the sheet the pivot table is on; TargetPivotTable is the pivot table with changes to discard; ValueChangeStart is the index number of the first change; ValueChangeEnd is the index number of the last change.

	
Workbook_SheetPivotTableChangeSync

	
Occurs after the user changes a pivot table. Sh is the sheet the pivot table is on; Target is the pivot table that has been changed.

Worksheet events

Table 7-3 lists event procedures that are available at the worksheet level.

TABLE 7-3 Worksheet events

	
Event Name

	
Description

	
Worksheet_Activate

	
Occurs when the sheet on which the event is located becomes the active sheet.

	
Worksheet_BeforeDelete

	
Occurs before the sheet on which the event is located is deleted.

	
Worksheet_Deactivate

	
Occurs when another sheet becomes the active sheet. If a Deactivate event is on the active sheet and you switch to a sheet with an Activate event, the Deactivate event runs first, followed by the Activate event.

	
Worksheet_BeforeDoubleClick

	
Allows control over what happens when the user double-clicks the sheet. Target is the selected range on the sheet; Cancel is set to False by default, but if set to True, it prevents the default action, such as entering a cell, from happening.

	
Worksheet_BeforeRightClick

	
Occurs when the user right-clicks a range. Target is the object that’s right-clicked; setting Cancel to True prevents the default action from taking place.

	
Worksheet_Calculate

	
Occurs after a sheet is recalculated.

	
Worksheet_Change

	
Triggered by a change to a cell’s value, such as when the user enters, edits, deletes, or pastes text. Recalculation of a value does not trigger the event. Target is the cell that has been changed.

	
Worksheet_SelectionChange

	
Occurs when the user selects a new range. Target is the newly selected range.

	
Worksheet_FollowHyperlink

	
Occurs when the user clicks a hyperlink. Target is the hyperlink.

	
Worksheet_LensGalleryRenderComplete

	
Occurs when the user selects the Quick Analysis tool.

	
Worksheet_PivotTableUpdate

	
Occurs when the user updates a pivot table. Target is the updated pivot table.

	
Worksheet_PivotTableAfterValueChange

	
Occurs after the user edits cells inside a pivot table or the user recalculates them if they contain a formula. TargetPivotTable is the pivot table with the changed cells; TargetRange is the range that was changed.

	
Worksheet_PivotTableBeforeAllocateChanges

	
Occurs before a pivot table is updated from its OLAP data source. Sh is the sheet the pivot table is on; TargetPivotTable is the updated pivot table; ValueChangeStart is the index number of the first change; ValueChangeEnd is the index number of the last change; setting Cancel to True prevents the changes from being applied to the pivot table.

	
Worksheet_PivotTableBeforeCommitChanges

	
Occurs before an OLAP pivot table updates its data source. TargetPivotTable is the updated pivot table; ValueChangeStart is the index number of the first change; ValueChangeEnd is the index number of the last change; setting Cancel to True prevents the changes from being applied to the data source.

	
Worksheet_PivotTableBeforeDiscardChanges

	
Occurs before an OLAP pivot table discards changes from its data source. TargetPivotTable is the pivot table with changes to discard; ValueChangeStart is the index number of the first change; ValueChangeEnd is the index number of the last change.

	
Worksheet_PivotTableChangeSync

	
Occurs after a pivot table has been changed. Target is the pivot table that has been changed.

	
Worksheet_TableUpdate

	
Occurs after a query table (not a list object) connected to a data model is updated. Target is the query table that has been changed..

Case study: Quickly entering military time into a cell

Say that you’re entering arrival and departure times and want the times to be formatted with a 24-hour clock, also known as military time. You have tried formatting the cell, but no matter how you enter the times, they are displayed in the 0:00 hours and minutes format.

The only way to get the time to appear as military time, such as 23:45, is to have the time entered in the cell in that manner. Because typing the colon is time-consuming, it would be more efficient to enter the numbers and let Excel format the time for you.

The solution is to use a Change event to take what is in the cell and insert the colon for you:

Click here to view code image

Private Sub Worksheet_Change(ByVal Target As Range)

Dim ThisColumn As Integer

Dim UserInput As String, NewInput As String

ThisColumn = Target.Column

If ThisColumn < 3 Then

If Target.Count > 1 Then Exit Sub 'more than 1 cell selected

If Len(Target) = 1 Then Exit Sub 'only 1 character entered

UserInput = Target.Value

If IsNumeric(UserInput) Then

If UserInput > 1 Then

NewInput = Left(UserInput, Len(UserInput) - 2) & ":" & _

Right(UserInput, 2)

Application.EnableEvents = False

Target = NewInput

Application.EnableEvents = True

End If

End If

End If

End Sub

An entry of 2345 displays as 23:45. Note that the code limits this format change to columns A and B (If ThisColumn < 3). Without this limitation, entering numbers anywhere on a sheet, such as in a totals column, would force the numbers to be reformatted.

[image: Images]

Note Use Application.EnableEvents = False to prevent the procedure from calling itself when the value in the target is updated.

Chart events

Chart events occur when a chart is changed or activated. Embedded charts require the use of class modules to access the events. For more information about class modules, see Chapter 9, “Creating classes and collections.”

Embedded charts

Because embedded charts do not create chart sheets, the chart events are not as readily available as those of chart sheets. However, you can make them available by adding a class module, as described here:

	Insert a class module.

	Rename the module to something that will make sense to you, such as cl_ChartEvents.

	Enter the following line of code in the class module:

Click here to view code image

Public WithEvents myChartClass As Chart

The chart events are now available to the chart, as shown in Figure 7-3. They are accessed in the class module rather than on a chart sheet.

	Insert a standard module.

	Enter the following lines of code in the standard module:

Click here to view code image

Dim myClassModule As New cl_ChartEvents

Sub InitializeChart()

Set myClassModule.myChartClass = _

Worksheets(1).ChartObjects(1).Chart

End Sub

These lines initialize the embedded chart to be recognized as a chart object. The procedure must be run once per Excel session.

[image: Images]

Note You can use Workbook_Open to automatically run the InitializeChart procedure.

[image: A screenshot of the drop-down menu at the top of the Programming Window. The Object menu is set to myChartClass. The Procedure menu is open and lists several Chart events.]

FIGURE 7-3 Embedded chart events are now available in the class module.

Embedded chart and chart sheet events

Whether a chart is embedded on a regular sheet or is its own chart sheet, the same events are available. The only difference will be that the procedure heading for an embedded chart replaces Chart with the class object you created. For example, to trigger the BeforeDoubleClick event on a chart sheet, the procedure header would be this: Chart_BeforeDoubleClick.

To trigger the BeforeDoubleClick event on an embedded chart (using the class object created in the previous section), the procedure header would be this: myChartClass_BeforeDoubleClick.

Table 7-4 lists the various chart events available to both embedded charts and chart sheets.

TABLE 7-4 Chart events

	
Event Name

	
Description

	
Chart_Activate

	
Occurs when a chart sheet is activated or changed.

	
Chart_BeforeDoubleClick

	
Occurs when any part of a chart is double-clicked. ElementID is the part of the chart that is double-clicked, such as the legend. Arg1 and Arg2 are dependent on the ElementID; setting Cancel to True prevents the default double-click action from occurring.

	
Chart_BeforeRightClick

	
Occurs when the user right-clicks a chart. Setting Cancel to True prevents the default right-click action from occurring.

	
Chart_Calculate

	
Occurs when the user changes a chart’s data.

	
Chart_Deactivate

	
Occurs when the user makes another object (such as another chart or sheet) the active object.

	
Chart_MouseDown

	
Occurs when the cursor is over the chart and the user presses any mouse button. Button is the mouse button that was clicked; Shift is whether a Shift, Ctrl, or Alt key was pressed; X is the X coordinate of the cursor when the button is pressed; Y is the Y coordinate of the cursor when the button is pressed.

	
Chart_MouseMove

	
Occurs as the user moves the cursor over a chart. Button is the mouse button being held down, if any; Shift is whether a Shift, Ctrl, or Alt key was pressed; X is the X coordinate of the cursor on the chart; Y is the Y coordinate of the cursor on the chart.

	
Chart_MouseUp

	
Occurs when the user releases any mouse button while the cursor is on the chart. Button is the mouse button that was clicked; Shift is whether a Shift, Ctrl, or Alt key was pressed; X is the X coordinate of the cursor when the button is released; Y is the Y coordinate of the cursor when the button is released.

	
Chart_Resize

	
Occurs when the user resizes a chart using the resize handles. However, this does not occur when the size is changed using the size controls on the Chart Tools, Format tab or Format Chart Area task pane.

	
Chart_Select

	
Occurs when the user selects a chart element. ElementID is the part of the chart selected, such as the legend. Arg1 and Arg2 are dependent on the ElementID.

	
Chart_SeriesChange

	
Occurs when a chart data point is updated. SeriesIndex is the offset in the Series collection of updated series; PointIndex is the offset in the Point collection of updated points..

Application-level events

Application-level events, listed in Table 7-5, affect all open workbooks in an Excel session. You need a class module to access them. This is similar to the class module used to access events for embedded chart events. For more information about class modules, see Chapter 9.

Follow these steps to create the class module:

	Insert a class module.

	Rename the module to something that makes sense to you, such as cl_AppEvents.

	Enter the following line of code in the class module:

Click here to view code image

Public WithEvents AppEvent As Application

The application events are now available to the workbook, as shown in Figure 7-4. They are accessed in the class module rather than in a standard module.

	Insert a standard module.

	Enter the following lines of code in the standard module:

Click here to view code image

Dim myAppEvent As New cl_AppEvents

Sub InitializeAppEvent()

Set myAppEvent.AppEvent = Application

End Sub

These lines initialize the application to recognize application events. The procedure must be run once per session.

[image: Images]

Tip You can use Workbook_Open to automatically run the InitializeAppEvent procedure.

[image: A screenshot of the drop-down menus at the top of the Programming Window. The Object menu is set to AppEvent. The Procedure menu is open and lists several Application events.]

FIGURE 7-4 Application events are now available through the class module.

[image: Images]

Note The object in front of the event, such as AppEvent, is dependent on the name given in the class module.

TABLE 7-5 Application events

	
Event Name

	
Description

	
AppEvent_AfterCalculate

	
Occurs after all calculations are complete, after AfterRefresh, and SheetChange events, and after Application.CalculationState is set to xlDone, and there aren’t any outstanding queries or incomplete calculations.

	
AppEvent_NewWorkbook

	
Occurs when the user creates a new workbook. Wb is the new workbook.

	
AppEvent_ProtectedViewWindowActivate

	
Occurs when the user activates a workbook in Protected View mode. Pvw is the workbook being activated.

	
AppEvent_ProtectedViewWindowBeforeClose

	
Occurs when the user closes a workbook in Protected View mode. Pvw is the workbook being deactivated; Reason is why the workbook closed; setting Cancel to True prevents the workbook from closing.

	
AppEvent_ProtectedViewWindowDeactivate

	
Occurs when the user deactivates a workbook in Protected View mode. Pvw is the workbook being deactivated.

	
AppEvent_ProtectedViewWindowOpen

	
Occurs when a workbook is open in Protected View mode. Pvw is the workbook being opened.

	
AppEvent_ProtectedViewWindowResize

	
Occurs when the user resizes the window of the protected workbook. However, this does not occur in the application itself. Pvw is the workbook that’s being resized.

	
AppEvent_ProtectedViewWindowBeforeEdit

	
Occurs when the user clicks the Enable Editing button of a protected workbook. Pvw is the protected workbook; setting Cancel to True prevents the workbook from being enabled.

	
AppEvent_SheetActivate

	
Occurs when the user activates a sheet. Sh is the worksheet or chart sheet.

	
AppEvent_SheetBeforeDelete

	
Occurs before any worksheet in a workbook is deleted. Sh is the sheet being deleted.

	
AppEvent_SheetBeforeDoubleClick

	
Occurs when the user double-clicks a worksheet. Target is the selected range on the sheet; Cancel is set to False by default. However, when set to True, it prevents the default action, such as entering a cell, from happening.

	
AppEvent_SheetBeforeRightClick

	
Occurs when the user right-clicks any worksheet. Sh is the active worksheet; Target is the object that’s right-clicked; setting Cancel to True prevents the default action from taking place.

	
AppEvent_SheetCalculate

	
Occurs when the user recalculates any worksheet or plots any updated data on a chart. Sh is the active sheet.

	
AppEvent_SheetChange

	
Occurs when the user changes the value of any cell. Sh is the worksheet; Target is the changed range.

	
AppEvent_SheetDeactivate

	
Occurs when the user deactivates any chart sheet or worksheet in a workbook. Sh is the sheet being deactivated.

	
AppEvent_SheetFollowHyperlink

	
Occurs when the user clicks any hyperlink in Excel. Sh is the active worksheet; Target is the hyperlink.

	
AppEvent_SheetSelectionChange

	
Occurs when the user selects a new range on any sheet. Sh is the active sheet; Target is the selected range.

	
AppEvent_SheetTableUpdate

	
Occurs when the user changes a table object. Sh is the active sheet; Target is the table object that was updated.

	
AppEvent_SheetLensGalleryRenderComplete

	
Occurs when the user selects the Quick Analysis tool. Sh is the active sheet.

	
AppEvent_SheetPivotTableUpdate

	
Occurs when the user updates a pivot table. Sh is the active sheet; Target is the updated pivot table.

	
AppEvent_SheetPivotTableAfterValueChange

	
Occurs after the user edits cells inside a pivot table or, if the cells contain a formula, the user recalculates them. Sh is the sheet the pivot table is on; TargetPivotTable is the pivot table with the changed cells; TargetRange is the range that was changed.

	
AppEvent_SheetPivotTableBeforeAllocateChanges

	
Occurs before a pivot table is updated from its OLAP data source. Sh is the sheet the pivot table is on; TargetPivotTable is the updated pivot table; ValueChangeStart is the index number of the first change; ValueChangeEnd is the index number of the last change; setting Cancel to True prevents the changes from being applied to the pivot table.

	
AppEvent_SheetPivotTableBeforeCommitChanges

	
Occurs before an OLAP pivot table updates its data source. Sh is the sheet the pivot table is on; TargetPivotTable is the updated pivot table; ValueChangeStart is the index number of the first change; ValueChangeEnd is the index number of the last change; setting Cancel to True prevents the changes from being applied to the data source.

	
AppEvent_SheetPivotTableBeforeDiscardChanges

	
Occurs before an OLAP pivot table discards changes from its data source. Sh is the sheet the pivot table is on; TargetPivotTable is the pivot table with changes to discard; ValueChangeStart is the index number of the first change; ValueChangeEnd is the index number of the last change.

	
AppEvent_WindowActivate

	
Occurs when the user activates any workbook window. Wb is the workbook that’s being deactivated; Wn is the window. This works only if there are multiple windows.

	
AppEvent_WindowDeactivate

	
Occurs when the user deactivates any workbook window. Wb is the active workbook; Wn is the window. This works only if there are multiple windows.

	
AppEvent_WindowResize

	
Occurs when the user resizes the active workbook. Wb is the active workbook; Wn is the window.

	
AppEvent_WorkbookActivate

	
Occurs when the user activates any workbook. Wb is the workbook being activated.

	
AppEvent_WorkbookDeactivate

	
Occurs when the user switches between workbooks. Wb is the workbook that’s being switched away from.

	
AppEvent_WorkbookAddinInstall

	
Occurs when the user installs a workbook as an add-in (via File, Options, Add-ins). Double-clicking an .xlam file to open it does not activate the event. Wb is the workbook being installed.

	
AppEvent_WorkbookAddinUninstall

	
Occurs when the user uninstalls a workbook (add-in). The add-in is not automatically closed. Wb is the workbook being uninstalled.

	
AppEvent_WorkbookBeforeClose

	
Occurs when the user closes a workbook. Wb is the workbook; setting Cancel to True prevents the workbook from closing.

	
AppEvent_WorkbookBeforePrint

	
Occurs when the user uses any print command (via the ribbon, keyboard, or a macro). Wb is the workbook; setting Cancel to True prevents the workbook from being printed.

	
AppEvent_Workbook_BeforeSave

	
Occurs when the user saves the workbook. Wb is the workbook; SaveAsUI is set to True if the Save As dialog box is to be displayed; setting Cancel to True prevents the workbook from being saved.

	
AppEvent_WorkbookAfterSave

	
Occurs after the user has saved the workbook. Wb is the workbook; Success returns True if the file saved successfully and returns False if the save was not successful.

	
AppEvent_WorkbookNewSheet

	
Occurs when the user adds a new sheet to the active workbook. Wb is the workbook; Sh is the new worksheet.

	
AppEvent_WorkbookNewChart

	
Occurs when the user adds a new chart to the active workbook. Wb is the workbook; Ch is the new chart object. The event is not triggered if the user moves a chart from one location to another, unless the user moves it between a chart sheet and a chart object. In that case, the event is triggered because a new chart sheet or object is being created.

	
AppEvent_WorkbookOpen

	
Occurs when the user opens a workbook. Wb is the workbook that was just opened.

	
AppEvent_WorkbookPivotTableCloseConnection

	
Occurs when a pivot table report closes its connection to its data source. Wb is the workbook containing the pivot table that triggered the event; Target is the pivot table that has closed the connection.

	
AppEvent_WorkbookPivotTableOpenConnection

	
Occurs when a pivot table report opens a connection to its data source. Wb is the workbook containing the pivot table that triggered the event; Target is the pivot table that has opened the connection.

	
AppEvent_WorkbookRowsetComplete

	
Occurs when the user drills through a record set or calls upon the row set action on an OLAP pivot table. Wb is the workbook that triggered the event; Description is a description of the event; Sheet is the name of the sheet on which the record set is created; Success indicates success or failure.

	
AppEvent_WorkbookSync

	
Occurs when the user synchronizes the local copy of a sheet in a workbook that is part of a document workspace with the copy on the server. Wb is the workbook that triggered the event; SyncEventType is the status of the synchronization.

	
AppEvent_WorkbookBeforeXmlExport

	
Occurs when the user exports or saves XML data. Wb is the workbook that triggered the event; Map is the map used to export or save the data; Url is the location of the XML file; Cancel set to True cancels the export operation.

	
AppEvent_WorkbookAfterXmlExport

	
Occurs after the user exports or saves XML data. Wb is the workbook that triggered the event; Map is the map used to export or save the data; Url is the location of the XML file; Result indicates success or failure.

	
AppEvent_WorkbookBeforeXmlImport

	
Occurs when the user imports or refreshes XML data. Wb is the workbook that triggered the event; Map is the map used to import the data; Url is the location of the XML file; IsRefresh returns True if the event was triggered by refreshing an existing connection and False if triggered by importing from a new data source; setting Cancel to True cancels the import or refresh operation.

	
AppEvent_WorkbookAfterXmlImport

	
Occurs after the user imports or refreshes XML data. Wb is the workbook that triggered the event; Map is the map used to import the data; IsRefresh returns True if the event was triggered by refreshing an existing connection and False if triggered by importing from a new data source; Result indicates success or failure.

	
AppEvent_WorkbookModelChange

	
Occurs when the user changes the Data Model. Wb is the workbook that triggered the event; Changes is the type of change, such as columns added, changed, or deleted, that the user made to the Data Model.

	
AppEvent_WorkbookAfterRemoteChange

	
Occurs after changes by a remote user are merged into the workbook. Wb is the workbook that triggered the event.

	
AppEvent_WorkbookBeforeRemoteChange

	
Occurs before changes by a remote user are merged into the workbook. Wb is the workbook that triggered the event..

Next steps

In this chapter, you’ve learned more about interfacing with Excel. In Chapter 8, “Arrays,” you find out how to use multidimensional arrays. Reading data into a multidimensional array, performing calculations on the array, and then writing the array back to a range can speed up your macros dramatically.

CHAPTER 8
Arrays

In this chapter, you will:

	Learn how to declare an array

	Fill an array

	Retrieve data from an array

	Use an array to speed up code

	Use dynamic arrays

	Pass an array to another procedure or function

An array is a type of variable that can be used to hold more than one piece of data. For example, if you have to work with the name and address of a client, your first thought might be to assign one variable for the name and another for the address of the client. Instead, consider using an array, which can hold both pieces of information—and not for just one client but for hundreds.

Declaring an array

You declare an array by adding parentheses after the array name and specifying the number of array elements in the parentheses:

Dim myArray(2)

This creates an array, myArray, that contains three elements:

Click here to view code image

myArray(0) = 10

myArray(1) = 20

myArray(2) = 30

Three elements are included because, by default, the index count starts at 0. If the index count needs to start at 1, use Option Base 1 to force the count to start at 1. To do this, place the Option Base statement in the declarations section at the top of the module:

Click here to view code image

Option Base 1

Sub MyFirstArray()

Dim myArray(2)

This now forces the array to have only two elements.

You also can create an array independently of the Option Base statement by declaring its lower and upper bounds:

Click here to view code image

Dim myArray(1 to 10)

Dim BigArray(100 to 200)

Every array has a lower bound (LBound) and an upper bound (UBound). When you declare Dim myArray(2), you are declaring the upper bound and allowing the Option Base statement to declare the lower bound. By declaring Dim myArray(1 to 10), you declare the lower bound, 1, and the upper bound, 10.

Declaring a multidimensional array

The arrays just discussed are considered one-dimensional arrays because only one number designates the location of an element of the array. Such an array is like a single row of data, but because there can be only one row, you do not have to worry about the row number — only the column number. For example, to retrieve the second element (Option Base 0), use myArray(1).

In some cases, a single dimension is not enough. This is where multidimensional arrays come in. Whereas a one-dimensional array is a single row of data, a two-dimensional array contains rows and columns.

To declare another dimension to an array, you add another argument. The following creates an array of 10 rows and 20 columns:

Dim myArray(1 to 10, 1 to 20)

[image: Images]

Note Another word for array is matrix, which is what a spreadsheet is. The Cells object refers to elements of a spreadsheet—and a cell consists of a row and a column. You’ve been using arrays all along!

You can create additional dimensions by including additional arguments. For example, to create a three-dimensional array, do this:

Dim myArray (1 to 4, 1 to 10, 1 to 4)

The following code places values in the first two columns of the first row, as shown in Figure 8-1:

myArray(1,1) = 10

myArray(1,2) = 20

[image: The figure shows the VB Editor Watches window. The first row of the variable, myArray, is expanded and shows two values: myArray(1,1) with a value of 10 and myArray(1,2) with a value of 20.]

FIGURE 8-1 The VB Editor Watches window shows the first “row” of the array being filled from the previous lines of code.

The following code places values in the first two columns of the second row:

myArray(2,1) = 20

myArray(2,2) = 40

And so on. Of course, this is time-consuming and can require many lines of code. Other ways to fill an array are discussed in the next section.

[image: Images]

Note To get the upper or lower bounds of another dimension, you have to specify the dimension. For example, to retrieve the upper bound of the second dimension, use this: UBound(MyArray,2).

Filling an array

Now that you can declare an array, you need to fill it. One method discussed earlier is to enter a value for each element of the array individually. However, there is a quicker way, as shown in the following sample code and Figure 8-2:

Click here to view code image

Option Base 1

Sub ColumnHeaders()

Dim myArray As Variant 'Variants can hold any type of data, including arrays

Dim myCount As Integer

'Fill the variant with array data

myArray = Array("Name", "Address", "Phone", "Email")

'Unload the array onto a sheet by placing it in a range of the same size

'if not using Option Base 1, then add 1 to LBound

Worksheets("Sheet2").Range("A1").Resize(LBound(myArray), _

UBound(myArray)).Value = myArray

End With

End Sub

[image: The figure shows that Name, Address, Phone, and Email fill the cells starting in A1 and ending in D1.]

FIGURE 8-2 Use an array to create column headers quickly.

Variant variables can hold any type of information. Create a Variant-type variable that can be treated like an array. Use the Array function to shove the data into the variant and force the variant to take on the properties of an array. Notice that you don’t declare the size of the array when you fill it, as shown in the previous example.

If the information needed in the array is on the sheet already, use the following to fill an array quickly. This code creates an array that is 16 rows by 2 columns:

Click here to view code image

Dim myArray As Variant

myArray = Worksheets("Sheet1").Range("B2:C17")

Although these two methods are quick and straightforward, they might not always suit the situation. For example, if you need every other row in an array, use the following code (see Figure 8-3):

Click here to view code image

Sub EveryOtherRow()

'there are 16 rows of data, but we are only filling every other row

'half the table size, so our array needs only 8 rows

Dim myArray(1 To 8, 1 To 2)

Dim i As Integer, j As Integer, myCount As Integer

'Fill the array with every other row

For i = 1 To 8

For j = 1 To 2

'i*2 directs the program to retrieve every other row

myArray(i, j) = Worksheets("Sheet1").Cells(i * 2, j + 1).Value

Next j

Next i

'Calculate contents of array and transfer results to sheet

For myCount = LBound(myArray) To UBound(myArray)

Worksheets("Sheet1").Cells(myCount * 2, 4).Value = _

WorksheetFunction.Sum(myArray(myCount, 1), myArray(myCount, 2))

Next myCount

End Sub

[image: The figure shows a data set with labels in column A and year data in columns B and C. Every other row in column D is a sum of the data in columns B and C.]

FIGURE 8-3 You can fill the array with data from every other row.

LBound finds the start location—the lower bound—of the array (myArray). UBound finds the end location—the upper bound—of the array. The program can then loop through the array and sum the information as it writes it to the sheet. How to extract data from an array is explained in the following section.

Retrieving data from an array

After an array is filled, the data needs to be retrieved. However, before you do that, you can manipulate the data or return information about it, such as the maximum integer, as shown in the following code (see Figure 8-4):

Click here to view code image

Sub QuickFillMax()

Dim myArray As Variant

Click here to view code image

myArray = Worksheets("Sheet1").Range("B2:C12").Value

MsgBox "Maximum Integer is: " & WorksheetFunction.Max(myArray)

End Sub

[image: The figure shows a data set with labels in column A and year data in columns B and C. A message box with the maximum integer, 101, is shown.]

FIGURE 8-4 You can return the Max value in an array.

Data also can be manipulated before it is returned to the sheet. In the following example, LBound and UBound are used with a For loop to loop through the elements of the array and average each set:

[image: Images]

Note MyCount + 1 is used to place the results back on the sheet because LBound is 1 and the data starts in row 2.

Click here to view code image

Sub QuickFillAverage()

Dim myArray As Variant

Dim myCount As Integer

'fill the array

myArray = Worksheets("Sheet1").Range("B2:C12")

'Average the data in the array just as it is placed on the sheet

For myCount = LBound(myArray) To UBound(myArray)

'calculate the average and place the result in column E

Worksheets("Sheet1").Cells(myCount + 1, 5).Value = _

WorksheetFunction.Average(myArray(myCount, 1), myArray(myCount, 2))

Next myCount

End Sub

The results are placed on the sheet in a new column (see Figure 8-5).

[image: The figure shows a data set with labels in column A and year data in columns B and C. Column E shows the average of the data in columns B and C.]

FIGURE 8-5 Calculations can be done on the data as it is returned to the sheet.

Using arrays to speed up code

So far you have learned that arrays can make it easier to manipulate data and get information from it, but is that all they are good for? No, arrays are powerful because they can actually make the code run faster!

In the preceding example, each row was processed as it was placed on the sheet. Imagine doing that 10,000 times, 100,000 times, or more. Each time Excel has to write to the sheet, it slows down. You can minimize writing to the sheet by doing all the processing in memory and then writing the data to the sheet one time.

In the following example, the calculated average is placed in a second array: MyAverage. First, you ReDim it so that it has enough room to hold all the calculated values. (See the next section, “Using dynamic arrays,” for more information.) Then, after looping and filling it, you place the entire array on the sheet. Notice that the range you place it in is resized to fit the entire array. Also, because the array was created in code and is just a single element (row), you have to transpose it so it’s in column form:

Click here to view code image

Sub QuickFillAverageFast()

'Writes the data to the sheet once

'Also more flexible with dynamic range

Dim myArray As Variant, MyAverage As Variant

Dim myCount As Long, LastRow As Long

Dim wksData As Worksheet

Set wksData = Worksheets("EveryOther")

With wksData

LastRow = .Range("A" & .Rows.Count).End(xlUp).Row

myArray = .Range("B2:C" & LastRow)

ReDim MyAverage(UBound(myArray))

For myCount = LBound(myArray) To UBound(myArray)

MyAverage(myCount) = _

WorksheetFunction.Average(myArray(myCount, 1), _

myArray(myCount, 2))

Next myCount

.Range("E2").Resize(UBound(MyAverage)).Value = _

Application.Transpose(MyAverage)

End With

End Sub

Using dynamic arrays

You don’t always know how big an array needs to be. You could create an array based on how big it could ever need to be, but that’s a waste of memory—and what if it turns out that it needs to be even bigger? To avoid this problem, you can use a dynamic array. A dynamic array is an array that does not have a set size. In other words, you declare the array but leave the parentheses empty, like this:

Dim myArray()

Later, as the program needs to use the array, ReDim is used to set the size of the array. The following program, which returns the names of all the sheets in the workbook, first creates a boundless array and then sets the upper bound after it knows how many sheets are in the workbook:

Click here to view code image

Sub MySheets()

Dim myArray() As String

Dim myCount As Integer, NumShts As Integer

NumShts = ActiveWorkbook.Worksheets.Count

'Size the array

ReDim myArray(1 To NumShts)

For myCount = 1 To NumShts

myArray(myCount) = ActiveWorkbook.Sheets(myCount).Name

Next myCount

End Sub

Using ReDim reinitializes the array. Therefore, if you use it many times, such as in a loop, you lose all the data it holds. To prevent this from happening, use Preserve. The Preserve keyword enables you to resize the last array dimension, but you cannot use it to change the number of dimensions.

The following example looks for all the Excel files in a directory and puts the results in an array. Because you do not know how many files there will be until you actually look at them, you can’t size the array before the program is run:

Click here to view code image

Sub XLFiles()

Dim FName As String

Dim arNames() As String

Dim myCount As Integer

FName = Dir("C:\Excel VBA 2019 by Jelen & Syrstad*.xls*")

Do Until FName = ""

myCount = myCount + 1

ReDim Preserve arNames(1 To myCount)

arNames(myCount) = FName

FName = Dir

Loop

End Sub

[image: Images]

Note Using Preserve with large amounts of data in a loop can slow down the program. If possible, use code to figure out the maximum size of an array as soon as possible.

Passing an array

Just like strings, integers, and other variables, arrays can be passed into other procedures. This makes for more efficient and easier-to-read code. The following sub, PassAnArray, passes the array myArray into the function RegionSales. The data in the array is summed for the specified region, and the result is returned to the sub:

Click here to view code image

Sub PassAnArray()

Dim myArray() As Variant

Dim myRegion As String

myArray = Range("mySalesData") 'named range containing all the data

myRegion = InputBox("Enter Region - Central, East, West")

MsgBox myRegion & " Sales are: " & Format(RegionSales(myArray, _

myRegion), "$#,#00.00")

End Sub

Function RegionSales(ByRef BigArray As Variant, sRegion As String) As Long

Dim myCount As Integer

RegionSales = 0

For myCount = LBound(BigArray) To UBound(BigArray)

'The regions are listed in column 1 of the data,

'hence the 1st column of the array

If BigArray(myCount, 1) = sRegion Then

'The data to sum is the 6th column in the data

RegionSales = BigArray(myCount, 6) + RegionSales

End If

Next myCount

End Function

[image: Images]

Warning You can’t assign the values of one array to be the values of another unless both arrays are the same size or the second array doesn’t have specifically declared dimensions. To append values from one array to another or to pass values between arrays of differing sizes, you have to loop through the arrays.

Next steps

Arrays are a type of variable used for holding more than one piece of data. In Chapter 9, “Creating classes and collections,” you discover the powerful technique of setting up your own class module. With this technique, you can set up your own object with its own methods and properties.

CHAPTER 9
Creating classes and collections

In this chapter, you will:

	Learn how to insert a class module

	Trap application and embedded chart events

	Create and use a custom object

	Learn various methods of creating collections

	Minimize the use of repeated code by using a collection

	Learn about dictionaries

	Create custom properties with user-defined types (UDTs)

Excel already has many objects available, but there are times when the job at hand requires a custom object. You can create custom objects that you use in the same way as Excel’s built-in objects. These special objects are created in class modules.

Class modules are used to create custom objects with custom properties and methods. They can also be used to trap application events, embedded chart events, ActiveX control events, and more.

Collections are a variable type that can hold groups of similar items, including custom objects. Each item in a collection has a unique key, and you can use that unique key to retrieve a value, including all the properties of an object, from the collection.

Inserting a class module

From the VB Editor, select Insert, Class Module. A new module, Class1, is added to the VBAProject workbook and is visible in the Project Explorer window (see Figure 9-1). Here are two things to keep in mind concerning class modules:

	Each custom object must have its own module. (Event trapping can share a module.)

	The class module should be renamed to reflect the custom object.

[image: A screenshot of the Project Explorer. A class module, Class1, is selected in the Class Modules folder.]

FIGURE 9-1 Custom objects are created in class modules.

Trapping application and embedded chart events

Chapter 7, “Event programming,” explains how certain actions in workbooks, worksheets, and nonembedded charts can be trapped and used to activate code. It briefly reviews how to set up a class module to trap application and chart events. The following text goes into more detail about what was shown in that chapter.

Application events

The Workbook_BeforePrint event is triggered when the workbook in which it resides is printed. If you want to run the same code in every workbook available, you have to copy the code to each workbook. Alternatively, you can use an application event, WorkbookBeforePrint, which is triggered when any workbook is printed.

The application events already exist, but a class module must be set up first so that the events can be seen. To create a class module, follow these steps:

	Insert a class module into the project. Select View, Properties Window and rename it something that makes sense to you, such as cAppEvents.

	Enter the following into the class module:

Public WithEvents xlApp As Application

The name of the variable, xlApp, can be any variable name. The WithEvents keyword exposes the events associated with the Application object.

	Select xlApp from the class module’s Object drop-down menu and then click the Procedure drop-down menu to its right to view the events that are available for the xlApp’s object type (Application), as shown in see Figure 9-2.

[image: Images]

Tip For a review of the various application events, see the “Application-level events” section in Chapter 7.

[image: A screenshot of the drop-down lists at the top of the Programming Window. The Object drop-down list is set to xlApp. The Procedure drop-down list is open and shows several Application events.]

FIGURE 9-2 Events are made available after an object is created.

Any of the events listed can be captured, just as workbook and worksheet events were captured in Chapter 7. The following example uses the NewWorkbook event to set up footer information automatically. This code is placed in the class module, below the xlApp declaration line you just added:

Click here to view code image

Private Sub xlApp_NewWorkbook(ByVal Wb As Workbook)

Dim wks As Worksheet

With Wb

For Each wks In .Worksheets

wks.PageSetup.LeftFooter = "Created by: " & Application.UserName

wks.PageSetup.RightFooter = Now

Next wks

End With

End Sub

The procedure placed in a class module does not run automatically, as events in workbook or worksheet modules would. An instance of the class module must be created, and the Application object must be assigned to the xlApp property. After that is complete, the TrapAppEvent procedure needs to run. As long as the procedure is running, the footer is created on each sheet every time a new workbook is added. Place the following in a standard module:

Click here to view code image

Public clsAppEvent As New cAppEvents

Sub TrapAppEvent()

Set myAppEvent.xlApp = Application

End Sub

[image: Images]

Note The application event trapping can be terminated by any action that resets the module level or public variables, including editing code in the VB Editor. To restart event trapping, run the procedure that creates the object (TrapAppEvent).

In this example, the public myAppEvent declaration was placed in a standard module with the TrapAppEvent procedure. To automate the running of the entire event trapping, all the modules could be transferred to the Personal.xlsb and the procedure transferred to a Workbook_Open event. In any case, the Public declaration of myAppEvent must remain in a standard module so that it can be shared among modules.

Embedded chart events

Preparing to trap embedded chart events is the same as preparing to trap application events. Create a class module, insert the public declaration for a chart type, create a procedure for the desired event, and then add a standard module procedure to initiate the trapping. The same class module used for the application event can be used for the embedded chart event.

Place the following line in the declaration section of the class module:

Click here to view code image

Public WithEvents xlChart As Chart

The available chart events are now viewable (see Figure 9-3).

[image: Images]

Tip For a review of the various charts events, see “Embedded chart and chart sheet events” in Chapter 7.

[image: A screenshot of the drop-down menus at the top of the Programming Window. The Object drop-down menu is set to xlChart. The Procedure drop-down menu is open and shows several Chart events.]

FIGURE 9-3 The chart events are available after the chart type variable has been declared.

Next you’ll create a program to change the chart scale. You need to set up three events. The primary event, MouseDown, changes the chart scale with a right-click or double-click. Because these actions also have actions associated with them, you need two more events, BeforeRightClick and BeforeDoubleClick, which prevent the usual action from taking place.

The following BeforeDoubleClick event prevents the normal result of a double-click from taking place:

Click here to view code image

Private Sub xlChart_BeforeDoubleClick(ByVal ElementID As Long, _

ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)

Cancel = True

End Sub

The following BeforeRightClick event prevents the normal result of a right-click from taking place:

Click here to view code image

Private Sub xlChart_BeforeRightClick(Cancel As Boolean)

Cancel = True

End Sub

Now that the normal actions of the double-click and right-click have been controlled, MouseDown rewrites the actions initiated by a right-click and double-click:

Click here to view code image

Private Sub xlChart_MouseDown(ByVal Button As Long, _

ByVal Shift As Long, ByVal x As Long, ByVal y As Long)

If Button = 1 Then 'left mouse button

xlChart.Axes(xlValue).MaximumScale = _

xlChart.Axes(xlValue).MaximumScale - 50

End If

If Button = 2 Then 'right mouse button

xlChart.Axes(xlValue).MaximumScale = _

xlChart.Axes(xlValue).MaximumScale + 50

End If

End Sub

After the events are set in the class module, all that is left to do is declare the variable in a standard module, as follows:

Click here to view code image

Public myChartEvent As New clsEvents

Then create a procedure that captures the events on the embedded chart:

Click here to view code image

Sub TrapChartEvent()

Set myChartEvent.xlChart = Worksheets("EmbedChart"). _

ChartObjects("Chart 2").Chart

End Sub

Creating a custom object

Class modules are useful for trapping events, but they also are valuable because you can use them to create custom objects. When you are creating a custom object, the class module becomes a template of the object’s properties and methods. To help you understand this better, in this section you create an employee object to track employee name, ID, hourly wage rate, and hours worked.

Insert a class module and rename it cEmployee. The cEmployee object has six properties and one method. Properties are variables in the object that you can assign a value to or read a value from. They can be private, in which case they are accessible only within the class module itself, or they can be public, which means they’re available from any module.

At the very top of the class module, place the following private variables. Notice that each line begins with the word Private. These variables will be used only within the class module itself. They receive their values from properties or functions within the class module:

Click here to view code image

Private m_employeename As String

Private m_employeeid As String

Private m_employeehourlyrate As String

Private m_employeeweeklyhours As String

Private m_normalhours As Double

Private m_overtimehours As Double

Property Let procedures are used to assign values to properties. By default, properties are public, so you don’t actually have to state that:

Click here to view code image

Property Let EmployeeName(RHS As String)

m_employeename = RHS

End Property

Property Let EmployeeID(RHS As String)

m_employeeid = RHS

End Property

Property Let EmployeeHourlyRate(RHS As Double)

m_employeehourlyrate = RHS

End Property

Property Let EmployeeWeeklyHours(RHS As Double)

m_employeeweeklyhours = RHS

m_normalhours = WorksheetFunction.Min(40, RHS)

m_overtimehours = WorksheetFunction.Max(0, RHS - 40)

End Property

These four objects’ properties are writable. Place them after declaring the private variables. The argument, RHS, is the value being assigned to the property, which is then assigned to one of the private variables. I like to use RHS (Right Hand Side—easy to remember!) as a common argument name for consistency, but you can use what you want.

Property Get procedures are read-only properties of the class module:

Click here to view code image

Property Get EmployeeName() As String

EmployeeName = m_employeename

End Property

Property Get EmployeeID() As String

EmployeeID = m_employeeid

End Property

Property Get EmployeeWeeklyHours() As Double

EmployeeWeeklyHours = m_employeeweeklyhours

End Property

Property Get EmployeeNormalHours() As Double

EmployeeNormalHours = m_normalhours

End Property

Property Get EmployeeOverTimeHours() As Double

EmployeeOverTimeHours = m_overtimehours

End Property

In addition to three of the properties you assign values to, two more are available to get values from: EmployeeNormalHours and EmployeeOverTimeHours. EmployeeHourlyRate is the one property that a value can be written to but not read from. Why? Imagine that you have another routine that reads all the values from a database into the program’s memory. A programmer using your class module doesn’t need to see this raw data. Using the Get property, you can control what data the programmer can access but still have the data available to the program.

[image: Images]

Note Property Set procedures are used to assign an object to a property. For example, if you want to create a worksheet property that gets passed a worksheet object, do this:

Property Set DataWorksheets (RHS as Worksheet)

You would use Get to retrieve, like this:

Property Get DataWorksheets () As Worksheet

Finally, you have the function that becomes an object method:

Click here to view code image

Public Function EmployeeWeeklyPay() As Double

EmployeeWeeklyPay = (m_normalhours * m_employeehourlyrate) + _

(m_overtimehours * m_employeehourlyrate * 1.5)

End Function

Like a normal function, it can have arguments, but in this case, you’ve previously set all the variables it needs by using Let.

You also can use subs in class modules. In this case, a function is used because you want to return a value. But if you want to do an action, like Range.Cut, then you use a sub.

The object is now complete. The next step is to use the object in an actual program.

Using a custom object

When a custom object is properly configured in a class module, it can be referenced from other modules. To access the properties and functions of the object, first declare a variable as the class module and then set a new instance of the object. You can then write the code, referencing the custom object and taking advantage of IntelliSense to access its properties and methods, as shown in see Figure 9-4.

The following example uses the custom object created in the previous section, “Creating a custom object.” It sets the values of the properties and then generates a message box, retrieving some of those values and accessing the method you created:

Click here to view code image

Sub SingleEmployeePayTime()

'declare a variable as the class module/object

Dim clsEmployee As cEmployee

'set a new instance to the object

Set clsEmployee = New cEmployee

With clsEmployee

.EmployeeName = "Tracy Syrstad"

.EmployeeID = "1651"

.EmployeeHourlyRate = 35.15

.EmployeeWeeklyHours = 45

MsgBox .EmployeeName & Chr(10) & Chr(9) & _

"Normal Hours: " & .EmployeeNormalHours & Chr(10) & Chr(9) & _

"OverTime Hours: " & .EmployeeOverTimeHours & Chr(10) & Chr(9) & _

"Weekly Pay : $" & .EmployeeWeeklyPay

End With

End Sub

[image: A screenshot of several lines of code. An object IntelliSense window is open, listing the various properties and the method we created for the custom object.]

FIGURE 9-4 The properties and method of the custom object are just as easily accessible as they are for standard objects.

Using collections

A collection holds a group of similar items. For example, Worksheet is a member of the Worksheets collection. You can add, remove, count, and refer to each worksheet in a workbook by its item number.

Creating a collection

To use a collection, you first declare a variable as the collection and then set a new instance of the collection. You can then use the Add method to add items to it:

Click here to view code image

CollectionName.Add Item, Key, Before, After

The Add method has four arguments. Item is whatever information the collection holds. It can be anything from a string to an object such as a worksheet. The second value, which is optional, is Key. It is used to look up a member of the collection. It must be a unique string value. You can use Key to directly reference an item in a collection. If you don’t know Key, then the only way to find an item in a collection is to loop through the collection.

Before and After are optional arguments you can use to position an item in a collection. You can refer to the key or position of the item. The following example creates a collection with two items. The first item is added with a key; the second item is not.

Click here to view code image

Dim myFirstCollection as Collection

Set MyFirstCollection = New Collection

MyFirstCollection.Add Item1, "Key1" 'with a key

MyFirstCollection.Add Item2 'without a key

Notice that the key is a string. If you want to use numbers for the key, then force the number to be treated as a string, like this:

Click here to view code image

MyFirstCollection.Add Item3, CStr(1)

Creating a collection in a standard module

By setting up a collection in a standard module, you can access the four default collection methods: Add, Remove, Count, and Item. The following example reads a list of employees from a sheet into an array. It then loops through the array, supplying each property of the custom object with a value, and places each record in the collection, as shown in see Figure 9-5.

[image: A screenshot of the custom object in a collection. The multiple properties and values of the custom object, such as EmployeeID and EmployeeName, are listed.]

FIGURE 9-5 A collection can hold any type of variable, including a custom object’s properties.

[image: Images]

Note This example stores a custom object in a collection. As I said earlier, the value a collection holds can be anything, including the multiple properties of a class module. Technically, a single record of the collection holds just one value: the custom object. But the custom object itself consists of multiple values.

Click here to view code image

Sub EmployeesPayUsingCollection()

Dim colEmployees As Collection 'declare a variable for the collection

Dim clsEmployee As cEmployee

Dim arrEmployees

Dim tblEmployees As ListObject

Dim i As Long

Dim FullName As String

Set colEmployees = New Collection 'set a new instance of the collection

Set tblEmployees = Worksheets("Employee Info").ListObjects("tblEmployees")

arrEmployees = tblEmployees.DataBodyRange

'loop through each employee

'assign values to the custom object properties

'then place the custom object into the collection

'using the employee id as the unique key

For i = 1 To UBound(arrEmployees)

Set clsEmployee = New cEmployee

With clsEmployee

.EmployeeName = arrEmployees(i, 1)

.EmployeeID = arrEmployees(i, 2)

.EmployeeHourlyRate = arrEmployees(i, 3)

.EmployeeWeeklyHours = arrEmployees(i, 4)

colEmployees.Add clsEmployee, CStr(.EmployeeID)

Click here to view code image

End With

Next i

'retrieve information from the custom object in the collection

'specifically, the second member of the collection

Set clsEmployee = colEmployees(2)

MsgBox "Number of Employees: " & colEmployees.Count & Chr(10) & _

"Employee(2) Name: " & clsEmployee.EmployeeName

'retrieve information using the key

FullName = colEmployees("1651").EmployeeName

MsgBox Left(FullName, Len(FullName) - InStr(1, FullName, " ") - 2) & _

"'s Weekly Pay: $" & colEmployees("1651").EmployeeWeeklyPay

Set colEmployees = Nothing

Set tblEmployees = Nothing

Set clsEmployee = Nothing

End Sub

The collection colEmployees is declared as a new collection, and the record clsEmployee is assigned as a new object of the class module cEmployee.

After the object’s properties are given values, the record clsEmployee is added to the collection. The second parameter of the Add method applies a unique key to the record, which, in this case, is EmployeeID. This allows a specific record to be accessed quickly, as shown by the second message box (colEmployees(“1651”).EmployeeWeeklyPay) (see Figure 9-6).

[image: A message box stating the first name and weekly pay of employee ID 1651.]

FIGURE 9-6 Individual records in a collection can be easily accessed.

Creating a collection in a class module

When you create a collection in a class module, the innate methods of the collection (Add, Remove, Count, Item) cannot be accessed outside the class module; you need to create your own methods and properties. The advantages of creating a collection in a class module are the following:

	The entire code is in one module.

	You have more control over what is done with the collection.

	You can prevent access to the collection.

Insert a new class module for the collection and rename it cEmployees. Declare a private collection to be used within the class module:

Click here to view code image

Private AllEmployees As New Collection

Add the new properties and methods required to make the collection work. The innate methods of the collection are available within the class module, and you can use them to create the custom methods and properties.

Insert an Add method for adding new items to the collection:

Click here to view code image

Public Sub Add(recEmployee As clsEmployee)

AllEmployees.Add recEmployee, CStr(recEmployee.EmployeeID)

End Sub

Insert a Remove method to remove a specific item from the collection:

Click here to view code image

Public Sub Remove(myItem As Variant)

AllEmployees.Remove (myItem)

End Sub

Insert a Count property to return the number of items in the collection:

Click here to view code image

Public Property Get Count() As Long

Count = AllEmployees.Count

End Property

Insert an Items property to return the entire collection:

Click here to view code image

Public Property Get Items() As Collection

Set Items = AllEmployees

End Property

Insert an Item property to return a specific item from the collection:

Click here to view code image

Public Property Get Item(myItem As Variant) As cEmployee

Set Item = AllEmployees(myItem)

End Property

Property Get is used with Count, Item, and Items because these are read-only properties. Item returns a reference to a single member of the collection, whereas Items returns the entire collection so that it can be used in For Each Next loops.

After the collection is configured in the class module, you can write a procedure in a standard module to use it:

Click here to view code image

Sub EmployeesPayUsingCollection()

'using a collection in a class module

Dim colEmployees As cEmployees

Dim clsEmployee As cEmployee

Dim arrEmployees

Dim tblEmployees As ListObject

Dim i As Long

Dim FullName as String

Set colEmployees = New cEmployees 'set a new instance of the collection

Set tblEmployees = Worksheets("Employee Info").ListObjects("tblEmployees")

Click here to view code image

arrEmployees = tblEmployees.DataBodyRange

'loop through each employee

'assign values to the custom object properties

'then place the custom object into the collection

'using the employee id as the unique key

For i = 1 To UBound(arrEmployees)

Set clsEmployee = New cEmployee

With clsEmployee

.EmployeeName = arrEmployees(i, 1)

.EmployeeID = arrEmployees(i, 2)

.EmployeeHourlyRate = arrEmployees(i, 3)

.EmployeeWeeklyHours = arrEmployees(i, 4)

'the key is added by the class module Add method

colEmployees.Add clsEmployee

End With

Next i

'retrieve information from the custom object in the collection

'specifically, the second member of the collection

Set clsEmployee = colEmployees.Item(2)

MsgBox "Number of Employees: " & colEmployees.Count & Chr(10) & _

"Employee(2) Name: " & clsEmployee.EmployeeName

'retrieve information using the key

FullName = colEmployees("1651").EmployeeName

MsgBox Left(FullName, Len(FullName) - InStr(1, FullName, " ") - 2) & _

"'s Weekly Pay: $" & colEmployees("1651").EmployeeWeeklyPay

Set colEmployees = Nothing

Set tblEmployees = Nothing

Set clsEmployee = Nothing

End Sub

This program is not too different from the one used with the standard collection, but there are a few key differences:

	Instead of declaring colEmployees as Collection, you declare it as type cEmployees, the new class module collection.

	The array and collection are filled the same way, but the way the records in the collection are referenced has changed. When a member of the collection, such as employee record 2, is referenced, the Item property must be used.

Using dictionaries

The ability to use a key to look up values in a collection is a major plus. I often parallel collections and arrays to help find information in an array. For example, I use the key in the collection to look up a value, which is the location of a record in the array.

But a major downside to collections is that after you add an item to a collection, you can’t change it. So, if you need the advantages of a collection but also need to change the value, you should use a dictionary. A dictionary does everything a collection does and more, but it needs a little more setup because it’s part of the Microsoft Scripting Runtime Library.

Some of the other differences between collections and dictionaries include the following:

	A dictionary requires a key.

	A dictionary key can be any variable type except for an array.

	A dictionary key can be changed.

	You have to use the key to retrieve a value. You can’t use the item’s position.

	You can change a value.

	You can check for the existence of a key.

In the following example, which declares the dictionary using late binding, data is placed into an array and processed, using the product name as the key. The summed quantities are then placed on the sheet, with the dictionary keys as labels, as shown in see Figure 9-7.

[image: A data set is at the top of the sheet. Beneath the data is a summary of the quantities by product.]

FIGURE 9-7 You can use a dictionary to hold values that could change multiple times as the code runs.

[image: Images]

Tip See Chapter 20, “Automating Word,” for information on early versus late binding.

Click here to view code image

Sub UsingADictionary()

Dim dictData As Object

Dim bItemExists As Boolean

Dim tblSales As ListObject

Click here to view code image

Dim arrData, arrReport, arrHeaders

Dim i As Long

Dim rng As Range

'create the dictionary object

Set dictData = CreateObject("Scripting.Dictionary")

Set tblSales = Worksheets("Table”).ListObjects("tblSales")

'put the data into an array for faster processing

arrData = tblSales.DataBodyRange

'loop through the array

For i = 1 To UBound(arrData)

'if key exists, add to it

'else create and add to it

If dictData.Exists(arrData(i, 2)) Then

dictData.Item(arrData(i, 2)) = dictData.Item(arrData(i, 2)) + _

arrData(i, 5)

Else

dictData.Add arrData(i, 2), arrData(i, 5)

End If

Next i

'rename a key, just for the heck of it

'the only way to rename a key is to know the name of it

dictData.Key("Tools") = "Electrical Tools"

'the location 2 rows beneath the table

Set rng = tblSales.Range.Offset(tblSales.Range.Rows.Count + 2).Resize(1, 1)

'put the dictionary keys and values each into an array

'then dump them on the sheet

arrHeaders = dictData.Keys

rng.Resize(dictData.Count, 1).Value = Application.Transpose(arrHeaders)

arrReport = dictData.Items

rng.Offset(, 1).Resize(dictData.Count, 1).Value = _

Application.Transpose(arrReport)

Set dictData = Nothing

Set tblSales = Nothing

Set rng = Nothing

End Sub

The Exists method allows you to check for the existence of a key. If the key exists, True is returned; otherwise, False is returned. You can rename a key simply by assigning a new name to it (dictData.Key(“Tools”) = “Electrical Tools”). Dictionaries also have two methods, Keys and Items, that allow you to dump those values into an array. Collections do not include those methods.

Case study: Minimizing duplicate code for ActiveX labels

Say that you have a complex sheet that requires a way for the user to get help. You can place the information in comment boxes, but they are not very obvious, especially to novice Excel users. Another option is to create help buttons.

To do this, create small ActiveX labels (not Form Control labels) with a question mark in each one on the worksheet. To get the button-like appearance shown in Figure 9-8, set the SpecialEffect property of the labels to Raised and darken the BackColor. Place one label per row. On another sheet, enter the help text you want to appear when the label is clicked. Ensure that the label name number matches the row in which the text is placed. For example, if the label name is Label1, place the corresponding text in cell A1; if the label name is label51, place the text in cell A51.

[image: The image on the left is screenshot of several help buttons on a sheet.] [image: The image on the right shows instructions in rows 1 through 3 on a separate sheet.]

FIGURE 9-8 You can attach help buttons to the sheet and enter help text on another sheet, which you can later hide.

Create a simple userform with a label and a close button. (see Chapter 10, “Userforms—An Introduction,” for more information on userforms.) Rename the form HelpForm, the button CloseHelp, and the label HelpText. Size the label large enough to hold the help text. Add the following macro, CloseHelp_Click, behind the form to hide it when the button is clicked:

Click here to view code image

Private Sub CloseHelp_Click()

Unload Me

End Sub

At this point, you could program each button separately. If you have many buttons, this would be tedious. And if you ever need to add more buttons, you will have to update the code. Or you could create a class module and a collection that will automatically include all the help buttons on the sheet, now and in the future.

Insert a class module named cLabel. You need a public variable, HelpLabel, to capture the control events:

Click here to view code image

Public WithEvents HelpLabel As MSForms.Label

In addition, you need a method of finding and displaying the corresponding help text. The following code extracts the number at the end of the label name and uses that to find the corresponding row on the sheet with the help text:

Click here to view code image

Private Sub HelpLabel_Click()

Dim RowNumber As Long

RowNumber = Right(HelpLabel.Name, Len(HelpLabel.Name) - 5)

If HelpLabel.Caption = "?" Then

HelpForm.Caption = "Label in cell " & "A" & RowNumber

HelpForm.HelpText.Caption = Worksheets("Help Text").Cells(RowNumber, 1)

HelpForm.Show

End If

End Sub

In the ThisWorkbook module, declare a global collection at the top of the module. Then create a Workbook_Open procedure to create a collection of the labels in the workbook:

Click here to view code image

Dim colLabels As Collection

Sub Workbook_Open()

Dim wks As Worksheet

Dim clsLbl As cLabel

Dim OleObj As OLEObject

Set colLabels= New Collection

For Each wks In ThisWorkbook.Worksheets

For Each OleObj In wks.OLEObjects

If OleObj.OLEType = xlOLEControl Then

'in case you have other controls on the sheet, include only the labels

If TypeName(OleObj.Object) = "Label" Then

Set clsLbl = New cLabel

Set clsLbl.HelpLabel = OleObj.Object

colLabels.Add clsLbl

End If

End If

Next OleObj

Next wks

End Sub

Run Workbook_Open to create the collection. Click a label on the worksheet. The corresponding help text appears in the help form, as shown in see Figure 9-9.

[image: A message box displaying the text of the help button assigned to cell A1.]

FIGURE 9-9 Help text is only a click away.

Using user-defined types to create custom properties

User-defined types (UDTs) provide some of the power of a custom object, but without the need for a class module. A class module allows for the creation of custom properties and methods, whereas a UDT allows only custom properties. However, sometimes that is all you need.

A UDT is declared with a Type...End Type statement. It can be public or private. A name that is treated like an object is given to the UDT. Within Type, individual variables are declared that become the properties of the UDT.

Within a procedure, a variable of the custom type is defined. When that variable is used, the properties are available, just as they are in a custom object (see Figure 9-10).

[image: A screenshot of some code. Two UDTs have been declared at the top of the module. In a procedure, IntelliSense appears to help select a property of the UDT object.]

FIGURE 9-10 The properties of a UDT are available as they are in a custom object.

The following example uses two UDTs to summarize a report of product styles in various stores. The first UDT consists of properties for each product style:

Click here to view code image

Public Type Style

StyleName As String

Price As Single

UnitsSold As Long

UnitsOnHand As Long

End Type

The second UDT consists of the store name and an array whose type is the first UDT:

Click here to view code image

Public Type Store

ID As String

Styles() As Style

End Type

After the UDTs are established, the main program is written. Only a variable of the second UDT type, Store, is needed because that type contains the first type, Style (see Figure 9-11). However, all the properties of the UDTs are easily available. In addition, with the use of the UDT, the various variables are easy to remember—they are only a dot (.) away. Here is the main program:

Click here to view code image

Sub UDTMain()

Dim ThisStore As Long, ThisStyle As Long

Dim CurrRow As Long, i As Long

Dim TotalDollarsSold As Double, TotalDollarsOnHand As Double

Dim TotalUnitsSold As Long, TotalUnitsOnHand As Long

Dim StoreID As String

Dim tblStores As ListObject

Dim arrStores 'to hold the data from the table

ReDim Stores(0 To 0) As Store 'The UDT is declared as the outer array

Set tblStores = Worksheets("Sales Data").ListObjects("tblStores")

'ensure data is sorted by name

Click here to view code image

With tblStores

.Sort.SortFields.Add .ListColumns(1).DataBodyRange, _

xlSortOnValues, xlAscending

.Sort.Apply

.Sort.SortFields.Clear

End With

'put the data into an array so it's faster to process

arrStores = tblStores.DataBodyRange

'The following For loop fills both arrays.

'The outer array is filled with the

'store name and an inner array consisting of product details.

'To accomplish this, the store name is tracked, and when it changes,

'the outer array is expanded.

'The inner array for each outer array expands with each new product

For i = LBound(arrStores) To UBound(arrStores)

StoreID = arrStores(i, 1)

'Checks whether this is the first entry in the outer array

If LBound(Stores) = 0 Then

ThisStore = 1

ReDim Stores(1 To 1) As Store

Stores(1).ID = StoreID

ReDim Stores(1).Styles(0 To 0) As Style

Else

'if it's not the first entry, see if the store has already been added

For ThisStore = LBound(Stores) To UBound(Stores)

'the store has already been added; no need to add again

If Stores(ThisStore).ID = StoreID Then Exit For

Next ThisStore

'the store hasn't been added, so add it now

If ThisStore > UBound(Stores) Then

ReDim Preserve Stores(LBound(Stores) To_

UBound(Stores) + 1) As Store

Stores(ThisStore).ID = StoreID

ReDim Stores(ThisStore).Styles(0 To 0) As Style

End If

End If

'now add the store details

With Stores(ThisStore)

'check if the style already exists in the inner array

If LBound(.Styles) = 0 Then

ReDim .Styles(1 To 1) As Style

Else

ReDim Preserve .Styles(LBound(.Styles) To _

UBound(.Styles) + 1) As Style

End If

'add the rest of the details for the Style

With .Styles(UBound(.Styles))

.StyleName = arrStores(i, 2)

.Price = arrStores(i, 3)

.UnitsSold = arrStores(i, 4)

.UnitsOnHand = arrStores(i, 5)

End With

End With

Next i

Click here to view code image

'Create a report on a new sheet

Sheets.Add

Range("A1").Resize(, 5).Value = Array("Store ID", "Units Sold", _

"Dollars Sold", "Units On Hand", "Dollars On Hand")

CurrRow = 2

'loop through the outer array

For ThisStore = LBound(Stores) To UBound(Stores)

With Stores(ThisStore)

TotalDollarsSold = 0

TotalUnitsSold = 0

TotalDollarsOnHand = 0

TotalUnitsOnHand = 0

'Go through the inner array of product styles within the array

'of stores to summarize information

For ThisStyle = LBound(.Styles) To UBound(.Styles)

With .Styles(ThisStyle)

TotalDollarsSold = TotalDollarsSold + .UnitsSold *.Price

TotalUnitsSold = TotalUnitsSold + .UnitsSold

TotalDollarsOnHand = TotalDollarsOnHand + .UnitsOnHand * _

.Price

TotalUnitsOnHand = TotalUnitsOnHand + .UnitsOnHand

End With

Next ThisStyle

Range("A" & CurrRow).Resize(, 5).Value = _

Array(.ID, TotalUnitsSold, TotalDollarsSold, _

TotalUnitsOnHand, TotalDollarsOnHand)

End With

CurrRow = CurrRow + 1

Next ThisStore

Set tblStores = Nothing

End Sub

[image: A screenshot of Locals Window showing an expanded view of the first Stores item. It contains several Styles items. The first Styles item is expanded and lists its various properties and their values.]

FIGURE 9-11 The Stores variable is of type Store, which includes the Styles variable array. This allows you to organize multiple pieces of data in a couple variables.

Next steps

Chapter 10 introduces the tools you can use to interact with users. You’ll find out how to prompt people for information to use in your code, warn them of illegal actions, and provide them with an interface to work with other than the spreadsheet.

CHAPTER 10
Userforms: An introduction

In this chapter, you will:

	Use an input box to request user input

	Use a message box to display information

	Learn how to create a userform

	Add controls to the userform

	Verify a required field has an entry

	Prevent a user from closing a form

	Prompt the user to select a file

Userforms enable you to display information and allow the user to input information. Using InputBox and MsgBox controls are simple ways of doing this. You can use the userform controls in the VB Editor to create forms that are more complex.

This chapter covers simple user interfaces using input boxes and message boxes and the basics of creating userforms in the VB Editor.

[image: Images]

Note To learn more about advanced userform programming, see Chapter 22, “Advanced userform techniques.”

Input boxes

The InputBox function is used to create a basic interface element that requests input from the user before the program can continue. You can configure the prompt, the title for the window, a default value, the window position, and user help files. The only two buttons provided are the OK and Cancel buttons. The returned value is a string.

The following code asks the user for the number of months to be averaged. Figure 10-1 shows the resulting input box.

Click here to view code image

AveMos = InputBox(Prompt:="Enter the number " & " of months to average", _

Title:="Enter Months", Default:="3")

[image: A screenshot of an input box requesting the number of months to average.]

FIGURE 10-1 An input box can be simple but still effective.

[image: Images]

Tip If you need to force the entry of a variable type other than string, use Application.InputBox. This method allows you to specify the return data type, including a formula, number, or cell reference.

Message boxes

The MsgBox function creates a message box that displays information and waits for the user to click a button before continuing. Whereas InputBox has only OK and Cancel buttons, the MsgBox function enables you to choose from several configurations of buttons, including Yes, No, OK, and Cancel. You also can configure the prompt, the window title, and help files. The following code produces a prompt to find out whether the user wants to continue. You use a Select Case statement to continue the program with the appropriate action:

Click here to view code image

myTitle = "Report Finalized"

MyMsg = "Do you want to save changes and close?"

Response = MsgBox(myMsg, vbExclamation + vbYesNoCancel, myTitle)

Select Case Response

Case Is = vbYes

ActiveWorkbook.Close SaveChanges:=True

Case Is = vbNo

ActiveWorkbook.Close SaveChanges:=False

Case Is = vbCancel

Exit Sub

End Select

Figure 10-2 shows the resulting customized message box.

[image: A screenshot of a message box asking if the user wants to save changes and close. An exclamation symbol is to the left of the prompt. Yes, No, and Cancel buttons appear in the box.]

FIGURE 10-2 The MsgBox function is used to display information and obtain a basic response from the user.

[image: Images]

Tip You can combine an icon option and a buttons option for the buttons argument by separating them with the plus (+) symbol. In the previous example,vbExclamation + vbYesNoCancel instructed Excel to show the exclamation symbol and the Yes, No, and Cancel buttons.

Creating a userform

Userforms combine the capabilities of InputBox and MsgBox to create a more efficient way of interacting with the user. For example, rather than have the user fill out personal information on a sheet, you can create a userform that prompts for the required data (see Figure 10-3).

[image: A userform with three text fields and corresponding labels for employee name, position, and hire date.]

FIGURE 10-3 Create a custom userform to get more information from the user.

Insert a userform in the VB Editor by selecting Insert, UserForm from the main menu. When a UserForm module is added to the Project Explorer, a blank form appears in the window where your code usually is, and the Controls toolbox appears.

To change the codename of the userform, select the form and change the (Name) property. The codename of a userform is used to refer to the form, as shown in the following sections. You can resize a userform by grabbing and dragging the handles on its right side, bottom edge, or lower-right corner. To add controls to the form, click the desired control in the toolbox and draw it on the form. You can move and resize controls at any time.

[image: Images]

Note By default, the toolbox displays the most common controls. To access more controls, right-click the toolbox and select Additional Controls. However, be careful; other users might not have the same additional controls as you do. If you send users a form with a control they do not have installed, the program generates an error.

After you add a control to a form, you can change its properties from the Properties window. (Or, if you don’t want to set the properties manually now, you can set them later programmatically.) If the Properties window is not visible, you can bring it up by selecting View, Properties Window. Figure 10-4 shows the Properties window for a text box.

[image: The left image is a userform with the text box entry field for Employee Name selected. The right image is the Properties window for the selected text box.]

FIGURE 10-4 Use the Properties window to change the properties of a control.

Calling and hiding a userform

A userform can be called from any module. The syntax FormName.Show causes a form for the user to pop up:

frm_AddEmp.Show

The Load method can also be used to call a userform to place it in memory. It allows a form to be loaded while remaining hidden:

Load frm_AddEmp

To hide a userform, use the Hide method. When you do, the form is still active but is hidden from the user. However, the controls on the form can still be accessed programmatically:

frm_AddEmp.Hide

The Unload method unloads a form from memory and removes it from the user’s view, which means the form cannot be accessed by the user or programmatically:

Unload Me

[image: Images]

TIP Me is a keyword that can be used to refer to the userform. It can be used in the code of any control to refer to itself.

Programming userforms

The code for a control goes in the form’s module. Unlike with the other modules, double-clicking the form’s module opens the form in Design view. To view the code, you can right-click either the module or the userform in Design view and select View Code.

Userform events

Just like a worksheet, a userform has events that are triggered by actions. After the userform has been added to a project, the events are available in the Properties drop-down menu at the top right of the code window (see Figure 10-5); to access them, select UserForm from the Object drop-down menu on the left.

[image: A screenshot of the drop-down menus at the top of the programming window. The Object drop-down menu is set to UserForm. The Procedure drop-down menu is open and lists several UserForm events.]

FIGURE 10-5 Various events for a userform can be selected from the drop-down menu at the top of the code window.

The available events for userforms are described in Table 10-1.

TABLE 10-1 Userform events

	Event

	Description

	Activate

	Occurs when a userform is either loaded or shown. This event is triggered after the Initialize event.

	AddControl

	Occurs when a control is added to a userform at runtime. Does not run at design time or upon userform initialization.

	BeforeDragOver

	Occurs while the user does a drag and drop onto the userform.

	BeforeDropOrPaste

	Occurs right before the user is about to drop or paste data into the userform.

	Click

	Occurs when the user clicks the userform with the mouse.

	DblClick

	Occurs when the user double-clicks the userform with the mouse. If a click event is also in use, the double-click event will not work.

	Deactivate

	Occurs when a userform is deactivated.

	Error

	Occurs when the userform runs into an error and cannot return the error information.

	Initialize

	Occurs when the userform is first loaded, before the Activate event.

	KeyDown

	Occurs when the user presses a key on the keyboard.

	KeyPress

	Occurs when the user presses an ANSI key. An ANSI key is a typable character such as the letter A. An example of a nontypable character is the Tab key.

	KeyUp

	Occurs when the user releases a key on the keyboard.

	Layout

	Occurs when the control changes size.

	MouseDown

	Occurs when the user presses the mouse button within the borders of the userform.

	MouseMove

	Occurs when the user moves the mouse within the borders of the userform.

	MouseUp

	Occurs when the user releases the mouse button within the borders of the userform.

	QueryClose

	Occurs before a userform closes. It allows you to recognize the method used to close a formand have code respond accordingly.

	RemoveControl

	Occurs when a control is deleted from within the userform.

	Resize

	Occurs when the userform is resized.

	Scroll

	Occurs when a visible scrollbar box is repositioned.

	Terminate

	Occurs after the userform has been unloaded. This is triggered after QueryClose.

	Zoom

	Occurs when the zoom value is changed.

Programming controls

To program a control, highlight the control and select View, Code. The footer, header, and default action for the control are entered in the programming field automatically. To see the other actions that are available for a control, select the control from the Object drop-down menu and view the actions in the Properties drop-down menu, as shown in Figure 10-6.

[image: A screenshot of the drop-down menus at the top of the Programming window. The Object drop-down menu is set to a button control, btn_EmpCancel. The Procedure drop-down menu is open and lists several events available to button controls.]

FIGURE 10-6 You can select various actions for a control from the VB Editor drop-down menus.

The controls are objects, like ActiveWorkbook. They have properties and methods that depend on the type of control. Most of the programming for the controls is done in the form’s module. However, if another module needs to refer to a control, the parent, which is the form, needs to be included with the object. Here’s an example of a button event that closes the form:

Click here to view code image

Private Sub btn_EmpCancel_Click()

Unload Me

End Sub

The preceding code can be broken down into three sections.

	btn_EmpCancel—Name given to the control

	Click—Action of the control

	Unload Me—Code behind the control, which, in this case, is unloading the form

[image: Images]

Tip Change the (Name) property in the control’s Properties window to rename a control from the default assigned by the editor.

Case study: Bug fix when adding controls to an existing form

If you’ve been using a userform for some time and later try to add a new control, you might find that Excel seems to get confused about the control. You will see that the control is added to the form, but when you right-click the control and select View Code, the code module does not seem to acknowledge that the control exists. The control name is not available in the left drop-down menu at the top of the code module.

To work around this situation, follow these steps:

	Add all the controls you need to add to the existing userform.

	In the Project Explorer, right-click the userform and select Export File. Select Save to save the file in the default location.

	In the Project Explorer, right-click the userform and select Remove. Because you just exported the userform, click No to the question about exporting.

	Right-click anywhere in the Project Explorer and select Import File. Select the file name that you saved in step 2.

The new controls are now available in the code window of the userform.

Using basic form controls

Each control has different events associated with it, so you can code what happens based on the user’s actions. A table reviewing the control events is available at the end of each of the sections that follow.

	[image: The label control looks like the letter A.]
	A label control is used to display text with information for the user.

	[image: The textbox control looks like the letters ab in a square box.]
	A text box control is used to get a manual entry from the user.

	[image: The command button control looks like the letters ab in a box with rounded corners.]
	A command button control is used to create a button a user can press to have the program perform an action.

Using labels, text boxes, and command buttons

The basic form shown in Figure 10-7 consists of labels, text boxes, and command buttons. Using such a form is a simple yet effective method of requesting information from the user. After the text boxes have been filled in, the user clicks OK, and your code reformats the data, if needed, then adds the information to a sheet (see Figure 10-8), as shown in the following code:

[image: A userform with Employee Name, Position, and Hire Date filled out.]

FIGURE 10-7 You can use a simple form like this to collect information from the user.

[image: A data set showing the employee data that was filled out in the form.]

FIGURE 10-8 The information from the form is added to the sheet.

Click here to view code image

Private Sub btn_EmpOK_Click()

Dim LastRow As Long

Dim tblEmployees As ListObject

Set tblEmployees = Worksheets("Employees").ListObjects("tblEmployees")

With tblEmployees

 .ListRows.Add 'add a new row

With .DataBodyRange

LastRow = .Rows.Count 'get the new row

.Cells(LastRow, 1).Value = tb_EmpName.Value

.Cells(LastRow, 2).Value = tb_EmpPosition.Value

 .Cells(LastRow, 3).Value = tb_EmpHireDate.Value

End With

End With

Set tblEmployees = Nothing

End Sub

By changing the code as shown in the following sample, you can use the same form design to retrieve information. The following code retrieves the position and hire date after the employee’s name is entered:

Click here to view code image

Private Sub btn_EmpOK_Click()

Dim EmpFound As Range

Dim tblEmployees As ListObject

Set tblEmployees = Worksheets("Employees").ListObjects("tblEmployees")

With tblEmployees.ListColumns("Name").DataBodyRange

 Set EmpFound = .Find(tb_EmpName.Value)

 If EmpFound Is Nothing Then

Msgbox ("Employee not found!")

tb_EmpName.Value = ""

 Else

With .Cells(EmpFound.Row - 1, 1)

tb_EmpPosition = .Offset(0, 1)

tb_HireDate = .Offset(0, 2)

End With

 End If

End With

Set EmpFound = Nothing

Set tblEmployees = Nothing

End Sub

EmpFound returns the location of the match as it pertains to the sheet, not the listobject. To return the correct location as it pertains to the listobject’s databodyrange, subtract 1 from Emfound.Row.

The available events for Label, TextBox, and CommandButton controls are described in Table 10-2.

TABLE 10-2 Label, TextBox, and CommandButton control events

	Event

	Description

	AfterUpdate1

	Occurs after the control’s data has been changed by the user.

	BeforeDragOver

	Occurs while the user drags and drops data onto the control.

	BeforeDropOrPaste

	Occurs right before the user is about to drop or paste data into the control.

	BeforeUpdate1

	Occurs before the data in the control is changed.

	Change1

	Occurs when the value of the control is changed.

	Click2

	Occurs when the user clicks the control with the mouse.

	DblClick

	Occurs when the user double-clicks the control with the mouse.

	DropButtonClick1

	Occurs when the user presses F4 on the keyboard. This is similar to the drop-down controlon the combo box, but there is no drop-down feature on a text box.

	Enter3

	Occurs right before the control receives the focus from another control on the same user-form.

	Error

	Occurs when the control runs into an error and cannot return the error information.

	Exit3

	Occurs right after the control loses focus to another control on the same userform.

	KeyDown3

	Occurs when the user presses a key on the keyboard.

	KeyPress3

	Occurs when the user presses an ANSI key. An ANSI key is a typable character such as the letter A. An example of a nontypable character is the Tab key.

	KeyUp3

	Occurs when the user releases a key on the keyboard.

	MouseDown

	Occurs when the user presses the mouse button within the borders of the control.

	MouseMove

	Occurs when the user moves the mouse within the borders of the control.

	MouseUp

	Occurs when the user releases the mouse button within the borders of the control.

1TextBox control only

2Label and CommandButton controls

3TextBox and CommandButton controls

Deciding whether to use list boxes or combo boxes in forms

You can let users type employee names to search for, but what if they misspell a name? You need a way to make sure that names are typed correctly. Which do you use for this, a list box or a combo box? As explained below, the two are similar, but the combo box has an additional feature that you may or may not need.

	[image: The list box control looks like a small box with text lines on the left and scroll buttons on the right.]
	A list box displays a list of values from which the user can choose.

	[image: The combo box control looks like a drop-down menu.]
	A combo box displays a list of values from which the user can choose and allows the user to enter a new value.

In this case, when you want to limit user options, you should use a list box to list the employee names, as shown in Figure 10-9.

[image: A form with a list box from which the user can select an employee name.]

FIGURE 10-9 You can use a list box to control user input and selections.

Use the following Initialize event to fill the list box with names:

Click here to view code image

Private Sub UserForm_Initialize()

Dim tblEmployees As ListObject

Set tblEmployees = Worksheets("Employees").ListObjects("tblEmployees")

Me.lb_EmpName.RowSource = tblEmployees.ListColumns(1).DataBodyRange.Address

Set tblEmployees = Nothing

End Sub

Use the Click event to fill in the position and hire date fields when a name is selected:

Click here to view code image

Private Sub lb_EmpName_Click()

Dim EmpFound As Range

Dim tblEmployees As ListObject

Set tblEmployees = Worksheets("Employees").ListObjects("tblEmployees")

With tblEmployees.ListColumns("Name").DataBodyRange

Set EmpFound = .Find(lb_EmpName.Value)

With .Cells(EmpFound.Row - 1, 1)

tb_EmpPosition.Value = .Offset(0, 1)

tb_HireDate.Value = .Offset(0, 2)

End With

End With

Set EmpFound = Nothing

Set tblEmployees = Nothing

End Sub

Using the MultiSelect property of a list box

List boxes have a MultiSelect property, which enables the user to select multiple items from the choices in the list box (see in Figure 10-10):

	fmMultiSelectSingle—The default setting allows only a single item selection at a time.

	fmMultiSelectMulti—This allows an item to be deselected when it is clicked again; multiple items can also be selected.

	fmMultiSelectExtended—This allows the Ctrl and Shift keys to be used to select multiple items.

If multiple items are selected, the Value property cannot be used to retrieve the items. Instead, check to see whether the item is selected and then manipulate it as needed, using the following code:

Click here to view code image

Private Sub btn_EmpOK_Click()

Dim LastRow As Integer, i As Integer

Dim tblEmployees As ListObject

Set tblEmployees = Worksheets("Employees").ListObjects("tblEmployees")

With tblEmployees

.ListRows.Add 'add a new row

With .DataBodyRange

LastRow = .Rows.Count 'get the new row

.Cells(LastRow, 1).Value = tb_EmpName.Value

For i = 0 To lb_EmpPosition.ListCount - 1

'if the item is selected, add it to the sheet

If lb_EmpPosition.Selected(i) = True Then

.Cells(LastRow, 2).Value = .Cells(LastRow, 2).Value & _

lb_EmpPosition.List(i) & ","

End If

Next i

.Cells(LastRow, 3).Value = tb_HireDate.Value

'remove excess comma

.Cells(LastRow, 2).Value = Left(.Cells(LastRow, 2).Value, _

Len(.Cells(LastRow, 2).Value) - 1)

End With

End With

Set tblEmployees = Nothing

End Sub

[image: The figure shows a form with a list box in which multiple items are selected.]

FIGURE 10-10 The MultiSelect property enables the user to select multiple items from a list box.

The items in a list box start counting at zero. For this reason, if you use the ListCount property, you must subtract one from the result:

Click here to view code image

For i = 0 To lb_EmpPosition.ListCount - 1

The available events for ListBox controls and ComboBox controls are described in Table 10-3.

TABLE 10-3 ListBox and ComboBox control events

	Event

	Description

	AfterUpdate

	Occurs after the control’s data has been changed by the user.

	BeforeDragOver

	Occurs while the user drags and drops data onto the control.

	BeforeDropOrPaste

	Occurs right before the user is about to drop or paste data into the control.

	BeforeUpdate

	Occurs before the data in the control is changed.

	Change

	Occurs when the value of the control is changed.

	Click

	Occurs when the user selects a value from the list box or combo box.

	DblClick

	Occurs when the user double-clicks the control with the mouse.

	DropButtonClick1

	Occurs when the drop-down menu appears after the user clicks the drop-down arrow of thecombo box or presses F4 on the keyboard.

	Enter

	Occurs right before the control receives the focus from another control on the same user-form.

	Error

	Occurs when the control runs into an error and can’t return the error information.

	Exit

	Occurs right after the control loses focus to another control on the same userform.

	KeyDown

	Occurs when the user presses a key on the keyboard.

	KeyPress

	Occurs when the user presses an ANSI key. An ANSI key is a typable character such as the letter A. An example of a nontypable character is the Tab key.

	KeyUp

	Occurs when the user releases a key on the keyboard.

	MouseDown

	Occurs when the user presses the mouse button within the borders of the control.

	MouseMove

	Occurs when the user moves the mouse within the borders of the control.

	MouseUp

	Occurs when the user releases the mouse button within the borders of the control.

1 ComboBox control only

Adding option buttons to a userform

	[image: The option button control looks like a circle with a dot in it.]
	Option buttons are similar to check boxes in that they can be used to make selections. However, unlike check boxes, option buttons can be configured to allow only one selection out of a group.

	[image: The frame control looks like a square with an opening at the top. In the opening are the letters X and Y.]
	Using the Frame tool, draw a frame to separate the next set of controls from the other controls on the userform. The frame is used to group option buttons together, as shown in Figure 10-11.

[image: The figure shows a form with option buttons to select which building the selected employee is assigned to. The option buttons are contained within a frame.]

FIGURE 10-11 You can use a frame to group option buttons together.

Option buttons have a GroupName property. If you assign the same group name, Buildings, to a set of option buttons, you force them to act collectively, as a toggle, so that only one button in the set can be selected. Selecting an option button automatically deselects the other buttons in the same group or frame. To prevent this behavior, either leave the GroupName property blank or enter a unique name for each option button.

[image: Images]

Note For users who prefer to select the option button’s label rather than the button itself, create a separate label and add code to the label, like this, to trigger the option button:

Click here to view code image

Private Sub Lbl_Bldg1_Click()

Obtn_Bldg1.Value = True

End Sub

The available events for OptionButton controls and Frame controls are described in Table 10-4.

TABLE 10-4 OptionButton and Frame control events

	Event

	Description

	AfterUpdate1

	Occurs after the control’s data has been changed by the user.

	AddControl2

	Occurs when a control is added to a frame on a form at runtime. Does not run at design timeor upon userform initialization.

	BeforeDragOver

	Occurs while the user does a drag and drop onto the control.

	BeforeDropOrPaste

	Occurs right before the user is about to drop or paste data into the control.

	BeforeUpdate1

	Occurs before the data in the control is changed.

	Change1

	Occurs when the value of the control is changed.

	Click

	Occurs when the user clicks the control with the mouse.

	DblClick

	Occurs when the user double-clicks the control with the mouse.

	Enter

	Occurs right before the control receives the focus from another control on the same user-form.

	Error

	Occurs when the control runs into an error and cannot return the error information.

	Exit

	Occurs right after the control loses focus to another control on the same userform.

	KeyDown

	Occurs when the user presses a key on the keyboard.

	KeyPress

	Occurs when the user presses an ANSI key. An ANSI key is a typable character such as the letter A. An example of a nontypable character is the Tab key.

	KeyUp

	Occurs when the user releases a key on the keyboard.

	Layout2

	Occurs when the frame changes size.

	MouseDown

	Occurs when the user presses the mouse button within the borders of the control.

	MouseMove

	Occurs when the user moves the mouse within the borders of the control.

	MouseUp

	Occurs when the user releases the mouse button within the borders of the control.

	RemoveControl2

	Occurs when a control is deleted from within the frame control.

	Scroll2

	Occurs when the scrollbar box, if visible, is repositioned.

	Zoom2

	Occurs when the zoom value is changed.

1 OptionButton control only

2 Frame control only

Adding graphics to a userform

	[image: The image control looks like a drawing of mountains in a square box.]
	A list on a form can be even more helpful if a corresponding graphic is added to the form. The following code displays a photograph corresponding to the selected employee from the list box:

Click here to view code image

Private Sub lb_EmpName_Change()

Dim EmpFound As Range

Dim tblEmployees As ListObject

Set tblEmployees = Worksheets("Employees").ListObjects("tblEmployees")

With tblEmployees

Set EmpFound = .ListColumns("Name"). _

DataBodyRange.Find(lb_EmpName.Value)

If EmpFound Is Nothing Then

MsgBox ("Employee not found!")

lb_EmpName.Value = ""

Exit Sub

Else

With .DataBodyRange.Cells(EmpFound.Row - 1, _

.ListColumns("Name").Index)

tb_EmpPosition = .Offset(0, 1)

tb_HireDate = .Offset(0, 2)

On Error Resume Next

Img_Employee.Picture = LoadPicture _

(ThisWorkbook.Path & "\" & EmpFound.Value & ".jpg")

On Error GoTo 0

End With

End If

End With

Set EmpFound = Nothing

Set tblEmployees = Nothing

End Sub

The available events for Graphic controls are described in Table 10-5.

TABLE 10-5 Graphic control events

	Event

	Description

	BeforeDragOver

	Occurs while the user drags and drops data onto the control.

	BeforeDropOrPaste

	Occurs right before the user is about to drop or paste data into the control.

	Click

	Occurs when the user clicks the image with the mouse.

	DblClick

	Occurs when the user double-clicks the image with the mouse.

	Error

	Occurs when the control runs into an error and can’t return the error information.

	MouseDown

	Occurs when the user presses the mouse button within the borders of the image.

	MouseMove

	Occurs when the user moves the mouse within the borders of the image.

	MouseUp

	Occurs when the user releases the mouse button within the borders of the control.

Using a spin button on a userform

[image: The spin button control looks like a box split by a horizontal line with arrows above and below the line.] In the example we’ve been working with, the Hire Date field allows the user to enter the date in any format, such as 1/1/18 or January 1, 2018. This possible inconsistency can create problems later on, if you need to use or search for dates. The solution? Force users to enter dates in a unified manner.

Spin buttons allow the user to increment/decrement through a series of numbers. In this way, the user is forced to enter numbers rather than text. Draw a spin button for a Month entry on the form. In the Properties window, set Min to 1 for January and Max to 12 for December. For the Value property, enter 1, the first month. Next, draw a text box next to the spin button. This text box reflects the value of the spin button. In addition, you can use labels. Place the code below behind the month’s spin button control:

Click here to view code image

Private Sub SpBtn_Month_Change()

tb_Month.Value = SpBtn_Month.Value

End Sub

Finish building the form. Use a Min of 1 and Max of 31 for Day, or a Min of 1900 and a Max of 2100 for Year:

Click here to view code image

Private Sub btn_EmpOK_Click()

Dim LastRow As Integer, i As Integer

Dim tblEmployees As ListObject

Set tblEmployees = Worksheets("Employees").ListObjects("tblEmployees")

If tb_EmpName.Value = "" Then

frm_AddEmp.Hide

MsgBox ("Please enter an Employee Name")

frm_AddEmp.Show

Exit Sub

End If

With tblEmployees

.ListRows.Add 'add a new row

With .DataBodyRange

LastRow = .Rows.Count 'get the new row

.Cells(LastRow, 1).Value = tb_EmpName.Value

For i = 0 To lb_EmpPosition.ListCount - 1

If lb_EmpPosition.Selected(i) = True Then

.Cells(LastRow, 2).Value = _

.Cells(LastRow, 2).Value & lb_EmpPosition.List(i) & ","

End If

Next i

'Concatenate the values from the textboxes to create the date

.Cells(LastRow, 3).Value = tb_Month.Value & "/" & tb_Day.Value & _

"/" & tb_Year.Value

End With

End With

End Sub

The available events for SpinButton controls are described in Table 10-6.

TABLE 10-6 SpinButton control events

	Event

	Description

	AfterUpdate

	Occurs after the control’s data has been changed by the user.

	BeforeDragOver

	Occurs while the user drags and drops data onto the control.

	BeforeDropOrPaste

	Occurs right before the user is about to drop or paste data into the control.

	BeforeUpdate

	Occurs before the data in the control is changed.

	Change

	Occurs when the value of the control is changed.

	Enter

	Occurs right before the control receives the focus from another control on the sameuserform.

	Error

	Occurs when the control runs into an error and cannot return the error information.

	Exit

	Occurs right after the control loses focus to another control on the same userform.

	KeyDown

	Occurs when the user presses a key on the keyboard.

	KeyPress

	Occurs when the user presses an ANSI key. An ANSI key is a typable character such as theletter A. An example of a nontypable character is the Tab key.

	KeyUp

	Occurs when the user releases a key on the keyboard.

	SpinDown

	Occurs when the user clicks the lower or left spin button, decreasing the value.

	SpinUp

	Occurs when the user clicks the upper or right spin button, increasing the value.

Using the MultiPage control to combine forms

[image: The multipage control looks like a folder with two tabs across the tab. The first tab is a darker color than the second.] The MultiPage control provides a neat way of organizing multiple forms. Instead of having one form for personal employee information and one for on-the-job information, combine the information into one multipage form, as shown in Figures 10-12 and 10-13.

[image: The figure shows a multipage userform with two tabs: Employee Information and Personal Information. The Employee Information tab is the active tab. It reflects information about the employee’s employment.]

FIGURE 10-12 Use the MultiPage control to combine multiple forms. This is the first page of the form.

[image: The figure shows a multipage userform with two tabs: Employee Information and Personal Information. The Personal Information tab is the active tab. It has different fields from the first tab.]

FIGURE 10-13 This is the second page of the form.

You can modify a page by right-clicking the tab of the page and then choosing from the following menu options: New Page, Delete Page, Rename, and Move.

[image: Images]

Tip Adding multipage forms after the rest of the form has been created is not an easy task. Therefore, plan multipage forms from the beginning. If you decide later that you need a multipage form, insert a new form, draw the MultiPage control, and copy/paste the controls from the other forms to the new form.

[image: Images]

Note Do not right-click in the tab area to view the MultiPage code. Instead, right-click in the MultiPage control’s main area to get the View Code option.

Unlike many of the other controls in which the Value property holds a user-entered or user-selected value, the MultiPage control uses the Value property to hold the number of the active page, starting at zero. For example, if you have a five-page form and want to activate the fourth page, use this:

MultiPage1.Value = 3

If you have a control you want all the pages to share, such as a Save, Cancel, or Close button, place the control on the main userform rather than on the individual pages, as shown in Figure 10-14.

[image: The Close button on the userform is placed outside the MultiPage control.]

FIGURE 10-14 Place common controls such as the Close button on the main userform.

The available events for MultiPage controls are described in Table 10-7.

TABLE 10-7 MultiPage control events

	Event

	Description

	AddControl

	Occurs when a control is added to a page of the MultiPage control. Does not run at designtime or upon userform initialization.

	BeforeDragOver

	Occurs while the user drags and drops data onto a page of the MultiPage control.

	BeforeDropOrPaste

	Occurs right before the user is about to drop or paste data onto a page of the MultiPage control.

	Change

	Occurs when the user changes pages of a MultiPage control.

	Click

	Occurs when the user clicks on a page of the MultiPage control.

	DblClick

	Occurs when the user double-clicks a page of the MultiPage control.

	Enter

	Occurs right before the MultiPage control receives the focus from another control on the same userform.

	Error

	Occurs when the MultiPage control runs into an error and cannot return the error informa-tion.

	Exit

	Occurs right after the MultiPage control loses focus to another control on the same user-form.

	KeyDown

	Occurs when the user presses a key on the keyboard.

	KeyPress

	Occurs when the user presses an ANSI key. An ANSI key is a typable character, such as the letter A. An example of a nontypable character is the Tab key.

	KeyUp

	Occurs when the user releases a key on the keyboard.

	Layout

	Occurs when the MultiPage control changes size.

	MouseDown

	Occurs when the user presses the mouse button within the borders of the control.

	MouseMove

	Occurs when the user moves the mouse within the borders of the control.

	MouseUp

	Occurs when the user releases the mouse button within the borders of the control.

	RemoveControl

	Occurs when a control is removed from a page of the MultiPage control.

	Scroll

	Occurs when the scrollbar box, if visible, is repositioned.

	Zoom

	Occurs when the zoom value is changed.

Verifying field entry

Even when users are told to fill in all the fields, they don’t always do it. With a paper form, there is no way to force them to do so. As a programmer, you can ensure that all required fields are filled in by not allowing the user to continue until all requirements are met. Here’s how to do this:

Click here to view code image

If tb_EmpName.Value = "" Then

frm_AddEmp.Hide

MsgBox "Please enter an Employee Name"

frm_AddEmp.Show

Exit Sub

End If

Illegal window closing

The userforms created in the VB Editor are not that different from normal dialog boxes; they also include the X close button in the upper-right corner. Although using the button is not wrong, it can cause problems, depending on the objective of the userform. In cases like this, you might want to control what happens if the user clicks the button. Use the QueryClose event of the userform to find out what method is used to close the form and code an appropriate action:

Click here to view code image

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

If CloseMode = vbFormControlMenu Then

MsgBox "Please use the OK or Cancel buttons to close the form", _

vbCritical

Cancel = True 'prevent the form from closing

End If

End Sub

When you know which method the user used to try to close the form, you can create a message box similar to the one shown in Figure 10-15 to warn the user that the method was illegal.

[image: The figure shows a message box on top of a form. The message box informs the user to use the buttons on the form to close the form.]

FIGURE 10-15 You can control what happens when the user clicks the X button.

The QueryClose event can be triggered in four ways:

	vbFormControlMenu—The user either right-clicks on the form’s title bar and selects the Close command or clicks the X in the upper-right corner of the form.

	vbFormCode—The Unload statement is used.

	vbAppWindows—Windows shuts down.

	vbAppTaskManager—The application is shut down by the Task Manager.

Getting a file name

One of the most common client interactions occurs when you need the client to specify a path and file name. Excel VBA has a built-in function to display the File Open dialog box, as shown in Figure 10-16. The client browses to and selects a file. When the client clicks the Open button, instead of opening the file, Excel VBA returns the full path and file name to the code:

[image: A screenshot of a dialog box requesting the user to select a file. The file types have been limited to show only Excel workbooks.]

FIGURE 10-16 Use the File Open dialog box to allow the user to select a file.

Click here to view code image

Sub SelectFile()

'Ask which file to copy

x = Application.GetOpenFilename(_

FileFilter:="Excel Files (*.xls*), *.xls*", _

Title:="Choose File to Copy", MultiSelect:=False)

'check in case no files were selected

If x = "False" Then Exit Sub

MsgBox "You selected " & x

End Sub

The preceding code allows the client to select one file. If you want the user to specify multiple files, use this code:

Click here to view code image

Sub ManyFiles()

Dim x As Variant

x = Application.GetOpenFilename(_

FileFilter:="Excel Files (*.xls*), *.xls*", _

Title:="Choose Files", MultiSelect:=True)

On Error Resume Next

If Ubound(x) > 0 Then

For i = 1 To UBound(x)

MsgBox "You selected " & x(i)

Next i

ElseIf x = "False" Then

Exit Sub

End If

On Error GoTo 0

End Sub

In a similar fashion, you can use Application.GetSaveAsFileName to find the path and file name that should be used to save a file.

Next steps

Userforms allow you to get information from the users and guide them on how to provide the program with that information. In Chapter 11, “Data mining with Advanced Filter,” you’ll find out about using Advanced Filter to produce reports quickly.

CHAPTER 11
Data mining with Advanced Filter

In this chapter, you will:

	Replace a loop by using AutoFilter

	Get to know Advanced Filter

	Use Advanced Filter to extract a unique list of values

	Use Advanced Filter with criteria ranges

	Use filter in place in Advanced Filter

	Use Advanced Record to return all records that match the criteria

Read this chapter.

Although very few people use Advanced Filter in Excel, it is a workhorse in Excel VBA. I estimate that I end up using one of these filtering techniques as the core of a macro in 80% of the macros I develop for clients. Given that Advanced Filter is used in fewer than 1% of Excel sessions, this is a dramatic statistic.

So even if you hardly ever use Advanced Filter in regular Excel, you should study this chapter to learn some powerful VBA techniques.

Replacing a loop with AutoFilter

In Chapter 4, “Looping and flow control,” you read about several ways to loop through a data set to format records that match certain criteria. By using Filter (Microsoft’s name for what was originally AutoFilter), you can achieve the same result much faster. While other examples in this chapter use the Advanced Filter, this example can be solved with the simpler Filter. Although Microsoft changed the name of AutoFilter to Filter in Excel 2007, the VBA code still refers to AutoFilter.

When AutoFilter was added to Excel, the team at Microsoft added extra care and attention to it. Items hidden because of AutoFilter are not simply treated like other hidden rows. AutoFilter gets special treatment. You’ve likely run into the frustrating situation in the past where you have applied formatting to visible rows and the formatting has gotten applied to the hidden rows. This is certainly a problem when you’ve hidden rows by clicking the #2 Group and Outline button after using the Subtotal command. This is always a problem when you manually hide rows. But it is never a problem when the rows are hidden because of AutoFilter.

After you’ve applied AutoFilter to hide rows, any action performed on the CurrentRegion is applied only to the visible rows. You can apply bold. You can change the font to red. You can even use CurrentRegion.EntireRow.Delete to delete the visible rows and not affect the rows hidden by the filter.

Let’s say that you have a data set like the one shown in Figure 11-1, and you want to perform some action on all the records that match a certain criteria, such as all Ford records.

[image: This figure shows rows 83 to 89 of an eight-column data set. The customer Ford is shown in cell D86. All of A86:H86 is highlighted with a fill color and bold font.]

FIGURE 11-1 Find all Ford records and mark them.

In Chapter 5, “R1C1-style formulas,” you learned to write code like the following, which you could use to color all the Ford records green:

Click here to view code image

Sub OldLoop()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow

If Cells(i, 4) = "Ford" Then

Cells(i, 1).Resize(1, 8).Interior.Color = RGB(0,255,0)

End If

Next i

End Sub

If you needed to delete records, you had to be careful to run the loop from the bottom of the data set to the top, using code like this:

Click here to view code image

Sub OldLoopToDelete()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = FinalRow To 2 Step -1

If Cells(i, 4) = "Ford" Then

Rows(i).Delete

End If

Next i

End Sub

The AutoFilter method, however, enables you to isolate all the Ford records in a single line of code:

Click here to view code image

Range("A1").AutoFilter Field:=4, Criteria1:= "Ford"

After isolating the matching records, you do not need to use the VisibleCellsOnly setting to format the matching records. Instead, you can use the following line of code to make all the matching records green:

Click here to view code image

Range("A1").CurrentRegion.Interior.Color = RGB(0,255,0)

There are two problems with the current two-line macro. First, the program leaves the AutoFilter drop-down menus in the data set. Second, the heading row is also formatted in green.

[image: Images]

Note The .CurrentRegion property extends the A1 reference to include the entire data set.

This single line of code turns off the AutoFilter drop-down menus and clears the filter:

Range("A1").AutoFilter

If you want to leave the AutoFilter drop-down menus on but clear the column D drop-down menu from showing Ford, you can use this line of code:

ActiveSheet.ShowAllData

Addressing the second problem is a bit more difficult. After you apply the filter and select Range("A1").CurrentRegion, the selection automatically includes the headers in the selection. Any formatting is also applied to the header row.

If you do not care about the first blank row below the data, you can simply add OFFSET(1) to move the current region down to start in A2. This would be fine if your goal were to delete all the Ford records:

Click here to view code image

Sub DeleteFord()

' skips header, but also deletes blank row below

Range("A1").AutoFilter Field:=4, Criteria1:="Ford"

Range("A1").CurrentRegion.Offset(1).EntireRow.Delete

Range("A1").AutoFilter

End Sub

[image: Images]

Note The OFFSET property usually requires the number of rows and the number of columns. Using .OFFSET(-2, 5) moves two rows up and five columns right. If you do not want to adjust by any columns, you can leave off the column parameter. Using .OFFSET(1) means one row down and zero columns over.

The preceding code works when you do not mind if the first blank row below the data is deleted. However, when you apply a green format to those rows, the code applies the green format to the blank row below the data set, and that would not look right.

If you will be doing some formatting, you can determine the height of the data set and use .Resize to reduce the height of the current region while you use OFFSET:

Click here to view code image

Sub ColorFord()

DataHt = Range("A1").CurrentRegion.Rows.Count

Range("A1").AutoFilter Field:=4, Criteria1:="Ford"

Click here to view code image

With Range("A1").CurrentRegion.Offset(1).Resize(DataHt - 1)

' No need to use VisibleCellsOnly for formatting

.Interior.Color = RGB(0,255,0)

.Font.Bold = True

End With

' Clear the AutoFilter & remove drop-downs

Range("A1").AutoFilter

End Sub

Using AutoFilter techniques

Excel 2007 introduced the possibility of selecting multiple items from a filter, filtering by color, filtering by icon, filtering by top 10, and filtering to virtual date filters. Excel 2010 introduced the search box in the filter drop-down menu. All these filters have VBA equivalents, although some of them are implemented in VBA using legacy filtering methods.

Selecting multiple items

Legacy versions of Excel allowed you to select two values, joined by AND or OR. In this case, you would specify xlAnd or xlOr as the operator:

Click here to view code image

Range("A1").AutoFilter Field:=4, _

Criteria1:="Ford", _

Operator:=xlOr, _

Criteria2:="General Motors"

As the AutoFilter command became more flexible, Microsoft continued to use the same three parameters, even if they didn’t quite make sense. For example, Excel still lets you filter a field by asking for the top five items or the bottom 8% of records. To use this type of filter, specify either "5" or "8" as the Criteria1 argument and then specify xlTop10Items, xlTop10Percent, xlBottom10Items, or xlBottom10Percent as the operator. For example, the following code produces the top 12 revenue records:

Click here to view code image

Sub Top10Filter()

' Top 12 Revenue Records

Range("A1").AutoFilter Field:=6, _

Criteria1:="12", _

Operator:=xlTop10Items

End Sub

There are a lot of numbers (6, 12, 10) in the code for this AutoFilter. Field:=6 indicates that you are looking at the sixth column. xlTop10Items is the name of the filter, but the filter is not limited to 10 items. The criteria 12 indicates the number of items that you want the filter to return.

Excel offers several new filter options. It continues to force these filter options to fit in the old object model, where the filter command must fit in an operator and up to two criteria fields.

If you want to choose three or more items, change the operator to Operator: =xlFilterValues and specify the list of items as an array in the Criteria1 argument:

Click here to view code image

Range("A1").AutoFilter Field:=4, _

Criteria1:=Array("General Motors", "Ford", "Fiat"), _

Operator:=xlFilterValues

Selecting using the Search box

Excel 2010 introduced the Search box in the AutoFilter drop-down menu. After typing something in the Search box, you can use the Select All Search Results item.

The macro recorder does a poor job of recording the Search box. The macro recorder hard-codes a list of customers who matched the search at the time you ran the macro.

Think about the Search box. It is really a shortcut way of selecting Text Filters, Contains. Furthermore, the Contains filter is actually a shortcut way of specifying the search string surrounded by asterisks. Therefore, to filter to all the records that contain “at,” use this:

Click here to view code image

Range("A1").AutoFilter, Field:=4, Criteria1:="*at*"

Filtering by color

To find records that have a particular font color, use the operator xlFilterFontColor and specify a particular RGB value as the criteria. This code finds all cells with a red font in column F:

Click here to view code image

Sub FilterByFontColor()

Range("A1").AutoFilter Field:=6, _

Criteria1:=RGB(255, 0, 0), Operator:=xlFilterFontColor

End Sub

To find records that have no particular font color, use the operator xlFilterAutomaticFillColor and do not specify criteria:

Click here to view code image

Sub FilterNoFontColor()

Range("A1").AutoFilter Field:=6, _

Operator:=xlFilterAutomaticFontColor

End Sub

To find records that have a particular fill color, use the operator xlFilterCellColor and specify a particular RGB value as the criteria. This code finds all red cells in column F:

Click here to view code image

Sub FilterByFillColor()

Range("A1").AutoFilter Field:=6, _

Criteria1:=RGB(255, 0, 0), Operator:=xlFilterCellColor

End Sub

To find records that have no fill color, use the operator xlFilterNoFill and do not specify criteria.

Filtering by icon

If you are expecting a data set to have an icon set applied, you can filter to show only records with one particular icon by using the xlFilterIcon operator.

For the criteria, you have to know which icon set has been applied, as well as which icon within the set you want to filter by. The icon sets are identified using the names shown in column A in Figure 11-2. The items range from 1 through 5. The following code filters the Revenue column to show the rows containing an upward-pointing arrow in the 5 Arrows Gray icon set:

Click here to view code image

Sub FilterByIcon()

Range("A1").AutoFilter Field:=6, _

Criteria1:=ActiveWorkbook.IconSets(xl5ArrowsGray).Item(5), _

Operator:=xlFilterIcon

End Sub

To find records that have no conditional formatting icon, use the operator xlFilterNoIcon and do not specify criteria.

[image: The figure shows the 20 icon sets in a worksheet. The names in column A are like xl3Stars, xl3Flags, xl4Arrows. Columns B, C, and D show the individual icons for the ten sets with three icons. In rows 12 through 16, the four-icon sets are shown in B12:E16. In rows 17 through 21, the five-icon sets are shown in B17:F21. The five columns of icons are numbered, with column B being 1 and so on up to F being item number 5.]

FIGURE 11-2 To search for a particular icon, you need to know the icon set from column A and the item number from row 1.

Selecting a dynamic date range using AutoFilters

Perhaps the most powerful feature in the world of Excel filters is the dynamic filters. These filters enable you to choose records that are above average or with a date field to select virtual periods, such as next week or last year.

To use a dynamic filter, specify xlFilterDynamic as the operator and then use 1 of 34 values as Criteria1. The following code finds all dates that are in the next year:

Click here to view code image

Sub DynamicAutoFilter()

Range("A1").AutoFilter Field:=3, _

Criteria1:=xlFilterNextYear, _

Click here to view code image

Operator:=xlFilterDynamic

End Sub

The following are all the dynamic filter criteria options, which you specify as Criteria1 in the AutoFilter method:

	Criteria for values—Use xlFilterAboveAverage or xlFilterBelowAverage to find all the rows that are above or below average.

	Criteria for future periods—Use xlFilterTomorrow, xlFilterNextWeek, xlFilterNextMonth, xlFilterNextQuarter, or xlFilterNextYear to find rows that fall in a certain future period. Note that “next week” starts on Sunday and ends on Saturday.

	Criteria for current periods—Use xlFilterToday, xlFilterThisWeek, xlFilterThisMonth, xlFilterThisQuarter, or xlFilterThisYear to find rows that fall within the current period. Excel uses the system clock to find the current day.

	Criteria for past periods—Use xlFilterYesterday, xlFilterLastWeek, xlFilterLastMonth, xlFilterLastQuarter, xlFilterLastYear, or xlFilterYearToDate to find rows that fall within a previous period.

	Criteria for specific quarters—Use xlFilterDatesInPeriodQuarter1, xlFilterDatesInPeriodQuarter2, xlFilterDatesInPeriodQuarter3, or xlFilterDatesInPeriodQuarter4 to filter to rows that fall within a specific quarter. Note that these filters do not differentiate based on a year. If you ask for quarter 1, you might get records from this January, last February, and next March.

	Criteria for specific months—Use xlFilterDatesInPeriodJanuary through xlFilterDatesInPeriodDecember to filter to records that fall during a certain month. As with quarters, the filter does not filter to any particular year.

Unfortunately, you cannot combine criteria. You might think that you can specify xlFilterDatesInPeriodJanuary as Criteria1 and xlFilterDatesNextYear as Criteria2. Even though this is a brilliant thought, Microsoft does not support this syntax (yet).

Selecting visible cells only

After you apply a filter, most commands operate only on the visible rows in the selection. If you need to delete the records, format the records, or apply a conditional format to the records, you can simply refer to the .CurrentRegion of the first heading cell and perform the command.

However, if you have a data set in which the rows have been hidden using the Hide Rows command, any formatting applied to .CurrentRegion applies to the hidden rows, too. In these cases, you should use the Visible Cells Only option in the Go To Special dialog box, as shown in Figure 11-3.

[image: The figure shows the Go To Special dialog box, which offers a choice for Visible Cells Only.]

FIGURE 11-3 If rows have been manually hidden, use Visible Cells Only in the Go To Special dialog box.

To use Visible Cells Only in code, use the SpecialCells property:

Click here to view code image

Range("A1").CurrentRegion.SpecialCells(xlCellTypeVisible)

Case study: Using Go To Special instead of looping

The Go To Special dialog box also plays a role in this case study.

At a Data Analyst Boot Camp, one of the attendees had a macro that was taking a long time to run. The workbook had a number of selection controls. A complex IF() function in cells H10:H750 was choosing which records should be included in a report. While that IF() statement had many nested conditions, the formula was inserting either KEEP or HIDE in each cell:

=IF(logical_test, "KEEP","HIDE")

The following section of code was hiding individual rows:

Click here to view code image

For Each cell In Range("H10:H750")

If cell.Value = "HIDE" Then

cell.EntireRow.Hidden = True

End If

Next cell

The macro was taking several minutes to run. SUBTOTAL formulas that excluded hidden rows were recalculating after each pass through the loop. The first attempts to speed up the macro involved turning off screen updating and calculation:

Click here to view code image

Application.ScreenUpdating = False

Application.Calculation = xlCalculationManual

For Each cell In Range("H10:H750")

If cell.Value = "HIDE" Then

cell.EntireRow.Hidden = True

End If

Next cell

Application.Calculation = xlCalculationAutomatic

Application.ScreenUpdating = True

For some reason, looping through all the records was still taking too long. We tried using AutoFilter to isolate the HIDE records and then hiding those rows, but we lost the manual row hiding after turning off AutoFilter.

The solution was to make use of the Go To Special dialog box’s ability to limit the selection to text results of formulas. First, the formula in column H was changed to return either HIDE or a number:

=IF(logical_test, "HIDE",1)

Then, the following single line of code was able to hide the rows that evaluated to a text value in column H:

Click here to view code image

Range("H10:H750") _

.SpecialCells(xlCellTypeFormulas, xlTextValues) _

.EntireRow.Hidden = True

Because all the rows were hidden in a single command, that section of the macro ran in seconds rather than minutes.

Advanced Filter—easier in VBA than in Excel

Using the arcane Advanced Filter command is so difficult in the Excel user interface that it is pretty rare to find someone who enjoys using it regularly.

However, in VBA, advanced filters are a joy to use. With a single line of code, you can rapidly extract a subset of records from a database or quickly get a unique list of values in any column. This is critical when you want to run reports for a specific region or customer. Two advanced filters are used most often in the same procedure—one to get a unique list of customers and a second to filter to each customer, as shown in Figure 11-4. The rest of this chapter builds toward such a routine.

[image: The SmartArt diagram in the image shows the four steps involved in using Advanced Filter. Step 1: Get a unique list of customers using Advanced Filter Unique. Step 2: Build an output range by copying headings from the input range. Step 3: Loop through each customer using an Advanced Filter. Step 4: Clean up by deleting criteria and output ranges.]

FIGURE 11-4 A typical macro uses two advanced filters.

Using the Excel interface to build an advanced filter

Because not many people use the Advanced Filter feature, this section walks you through examples using the user interface to build an advanced filter and then shows you the analogous code. You will be amazed at how complex the user interface seems and yet how easy it is to program a powerful advanced filter to extract records.

One reason Advanced Filter is hard to use is that you can use it in several different ways. Every Advanced Filter has to have a List Range. You must make three basic choices in the Advanced Filter dialog box. Because each choice has two options, there are eight (2 × 2 × 2) possible combinations of these choices. The three basic choices are shown in Figure 11-5 and described here:

	Action—You can select Filter The List, In-Place or you can select Copy To Another Location. If you choose to filter the records in place, the nonmatching rows are hidden. Choosing to copy to a new location copies the records that match the filter to a new range.

	Criteria—You can filter with or without criteria. Filtering with criteria is appropriate for getting a subset of rows. Filtering without criteria is still useful when you want a subset of columns or when you are using the Unique Records Only option.

	Unique—You can choose to request Unique Records Only or request all matching records. The Unique option makes using the Advanced Filter command one of the fastest ways to find a unique list of values in one field. By placing the Customer heading in the output range, you get a unique list of values for that one column.

[image: The figure shows the Advanced Filter dialog box, which offers a choice between Filter The List, In Place or Copy To Another Location. Three reference boxes show the List Range, Criteria Range, and Copy To Range. A check box offers Unique Records Only.]

FIGURE 11-5 The Advanced Filter dialog box is complicated to use in the Excel user interface. Fortunately, it is much easier in VBA.

Using Advanced Filter to extract a unique list of values

One of the simplest uses of Advanced Filter is to extract a unique list of a single field from a data set. In this example, you want to get a unique list of customers from a sales report. You know that Customer is in column D of the data set. You have an unknown number of records starting in cell A2, and row 1 is the header row. There is nothing located to the right of the data set.

Extracting a unique list of values with the user interface

To extract a unique list of values, follow these steps:

	With the cursor anywhere in the data range, select Advanced from the Sort & Filter group on the Data tab. The first time you use the Advanced Filter command on a worksheet, Excel automatically populates the List Range text box with the entire range of your data set. On subsequent uses of the Advanced Filter command, this dialog box remembers the settings from the prior advanced filter.

	Select the Unique Records Only check box at the bottom of the dialog box.

	In the Action section, select Copy To Another Location.

	Type J1 in the Copy To text box.

By default, Excel copies all the columns in the data set. You can filter just the Customer column either by limiting List Range to include only column D or by specifying one or more headings in the Copy To range. Each method has its own drawbacks.

Changing the list range to a single column

Edit List Range to point to the Customer column. In this case, you need to change the default A1:H1127 to D1:D1127. The Advanced Filter dialog box should appear.

[image: Images]

Note When you initially edit any range in the dialog box, Excel might be in Point mode. In this mode, pressing a left- or right-arrow key inserts a cell reference in the text box. If you see the word Point in the lower-left corner of your Excel window, press the F2 key to change from Point mode to Edit mode.

The drawback of this method is that Excel remembers the list range on subsequent uses of the Advanced Filter command. If you later want to get a unique list of regions, you will be constantly specifying the list range.

Copying the customer heading before filtering

With a little thought before invoking the Advanced Filter command, you can allow Excel to keep the default list range A1:H1127. In cell J1, type the Customer heading as shown in Figure 11-6. Leave the List Range field pointing to columns A through H. Because the Copy To range of J1 already contains a valid heading from the list range, Excel copies data only from the Customer column. This is the preferred method, particularly if you will be using multiple advanced filters. Because Excel remembers the settings from the preceding advanced filter, it is more convenient to always filter the entire columns of the list range and limit the columns by setting up headings in the Copy To range.

After you use either of these methods to perform the advanced filter, a concise list of the unique customers appears in column J (see Figure 11-6).

[image: From the original data set in A:H, a unique list of customers is shown in column J. Note the list is not sorted; it appears in the same sequence that the customers are found in the original data.]

FIGURE 11-6 The advanced filter extracted a unique list of customers from the data set and copied it to column J.

Extracting a unique list of values with VBA code

In VBA, you use the AdvancedFilter method to carry out the Advanced Filter command. Again, you have three choices to make:

	Action—Choose to either filter in place with the parameter Action:=xlFilterInPlace or copy with Action:=xlFilterCopy. If you want to copy, you also have to specify the parameter CopyToRange:=Range("J1").

	Criteria—To filter with criteria, include the parameter CriteriaRange:=Range("L1:L2"). To filter without criteria, omit this optional parameter.

	Unique—To return only unique records, specify the parameter Unique:=True.

The following code sets up a single-column output range two columns to the right of the last-used column in the data range:

Click here to view code image

Sub GetUniqueCustomers()

Dim IRange As Range

Dim ORange As Range

' Find the size of today's data set

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range. Copy heading from D1 there

Range("D1").Copy Destination:=Cells(1, NextCol)

Set ORange = Cells(1, NextCol)

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers

IRange.AdvancedFilter Action:=xlFilterCopy, CopyToRange:=ORange, _

Unique:=True

End Sub

By default, an advanced filter copies all columns. If you want just one particular column, use that column heading as the heading in the output range.

The first bit of code finds the final row and column in the data set. Although it is not necessary to do so, you can define an object variable for the output range (ORange) and for the input range (IRange).

This code is generic enough that it will not have to be rewritten if new columns are added to the data set later. Setting up the object variables for the input and output range is done for readability rather than out of necessity. The previous code could be written just as easily like this shortened version:

Click here to view code image

Sub UniqueCustomerRedux()

' Copy a heading to create an output range

Range("J1").Value = Range("D1").Value

' Use the Advanced Filter

Range("A1").CurrentRegion.AdvancedFilter xlFilterCopy, _

CopyToRange:=Range("J1"), Unique:=True

End Sub

When you run either of the previous blocks of code on the sample data set, you get a unique list of customers off to the right of the data. The key to getting a unique list of customers is copying the header from the Customer field to a blank cell and specifying this cell as the output range.

After you have the unique list of customers, you can sort the list and add a SUMIF formula to get total revenue by customer. The following code gets the unique list of customers, sorts it, and then builds a formula to total revenue by customer. Figure 11-7 shows the results:

Click here to view code image

Sub RevenueByCustomers()

Dim IRange As Range

Dim ORange As Range

' Find the size of today's data set

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range. Copy the heading from D1 there

Range("D1").Copy Destination:=Cells(1, NextCol)

Set ORange = Cells(1, NextCol)

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers

IRange.AdvancedFilter Action:=xlFilterCopy, _

CopyToRange:=ORange, Unique:=True

' Determine how many unique customers we have

LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data

Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _

Order1:=xlAscending, Header:=xlYes

Click here to view code image

 ' Add a SUMIF formula to get totals

Cells(1, NextCol + 1).Value = "Revenue"

Cells(2, NextCol + 1).Resize(LastRow - 1).FormulaR1C1 = _

"=SUMIF(R2C4:R" & FinalRow & _

"C4,RC[-1],R2C6:R" & FinalRow & "C6)"

End Sub

[image: To the right of the unique customers in J, a SUMIF formula in K calculates total revenue. The customers have been sorted by the VBA macro.]

FIGURE 11-7 This macro produced a summary report by customer from a lengthy data set. Using AdvancedFilter is the key to powerful macros such as these.

Another use of a unique list of values is to quickly populate a list box or a combo box on a userform. For example, suppose that you have a macro that can run a report for any one specific customer. To allow your clients to choose which customers to report, create a simple userform. Add a list box to the userform and set the list box’s MultiSelect property to 1-fmMultiSelectMulti. In this case, the form is named frmReport. In addition to the list box, there are four command buttons: OK, Cancel, Mark All, and Clear All. The code to run the form follows. Note that the Userform_Initialize procedure includes an advanced filter to get the unique list of customers from the data set:

Click here to view code image

Private Sub CancelButton_Click()

Unload Me

End Sub

Private Sub cbSubAll_Click()

For i = 0 To lbCust.ListCount - 1

Me.lbCust.Selected(i) = True

Next i

End Sub

Private Sub cbSubClear_Click()

For i = 0 To lbCust.ListCount - 1

Me.lbCust.Selected(i) = False

Next i

End Sub

Private Sub OKButton_Click()

For i = 0 To lbCust.ListCount - 1

If Me.lbCust.Selected(i) = True Then

' Call a routine (discussed later) to produce this report

RunCustReport WhichCust:=Me.lbCust.List(i)

End If

Next i

Click here to view code image

Unload Me

End Sub

Private Sub UserForm_Initialize()

Dim IRange As Range

Dim ORange As Range

' Find the size of today's data set

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range. Copy the heading from D1 there

Range("D1").Copy Destination:=Cells(1, NextCol)

Set ORange = Cells(1, NextCol)

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers

IRange.AdvancedFilter Action:=xlFilterCopy, _

CopyToRange:=ORange, Unique:=True

' Determine how many unique customers we have

LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data

Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _

Order1:=xlAscending, Header:=xlYes

With Me.lbCust

.RowSource = ""

.List = Cells(2, NextCol).Resize(LastRow - 1, 1).Value

End With

' Erase the temporary list of customers

Cells(1, NextCol).Resize(LastRow, 1).Clear

End Sub

Launch this form with a simple module, like this:

Sub ShowCustForm()

frmReport.Show

End Sub

Your clients are presented with a list of all valid customers from the data set. Because the list box’s MultiSelect property is set to allow it, the clients can select any number of customers.

Getting unique combinations of two or more fields

To get all unique combinations of two or more fields, build the output range to include the additional fields. This code sample builds a list of unique combinations of two fields: Customer and Product:

Click here to view code image

Sub UniqueCustomerProduct()

Dim IRange As Range

Click here to view code image

Dim ORange As Range

' Find the size of today's data set

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range. Copy headings from D1 & B1

Range("D1").Copy Destination:=Cells(1, NextCol)

Range("B1").Copy Destination:=Cells(1, NextCol + 1)

Set ORange = Cells(1, NextCol).Resize(1, 2)

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers & product

IRange.AdvancedFilter Action:=xlFilterCopy, _

CopyToRange:=ORange, Unique:=True

' Determine how many unique rows we have

LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data

Cells(1, NextCol).Resize(LastRow, 2).Sort Key1:=Cells(1, NextCol), _

Order1:=xlAscending, Key2:=Cells(1, NextCol + 1), _

Order2:=xlAscending, Header:=xlYes

End Sub

In the result shown in Figure 11-8, you can see that Enhanced Eggbeater buys only one product, and Distinctive Wax buys three products. This might be useful as a guide in running reports on either customer by product or product by customer.

[image: The figure shows the output range, which includes headings for Customer and Product. The first unique customer, Cool Saddle Trailers, appears three times, each row with a different product.]

FIGURE 11-8 By including two columns in the output range on a Unique Values query, you get every combination of customer and product.

Using Advanced Filter with criteria ranges

As the name implies, Advanced Filter is usually used to filter records—in other words, to get a subset of data. You specify the subset by setting up a criteria range.

[image: Images]

Note Even if you are familiar with criteria, be sure to check out using the powerful Boolean formula in criteria ranges later in this chapter, in the section “The most complex criteria: Replacing the list of values with a condition created as the result of a formula.”

Set up a criteria range in a blank area of a worksheet. A criteria range always includes two or more rows. The first row of the criteria range contains one or more field header values to match the one(s) in the data range you want to filter. The second row contains a value showing which records to extract. In Figure 11-9, J1:J2 is the criteria range, and L1 is the output range.

In the Excel user interface, to extract a unique list of products that were purchased by a particular customer, select Advanced Filter and set up the Advanced Filter dialog box as shown in Figure 11-9. Figure 11-10 shows the results.

[image: This Advanced Filter dialog box in the figure specifies Copy To Another Location. The List Range is A1:H1127. The Criteria Range is J1:J2 and the Copy To range is L1. The Unique Records Only box is checked.]

FIGURE 11-9 To learn a unique list of products purchased by Cool Saddle Traders, set up the criteria range in J1:J2.

[image: The figure shows the worksheet associated with the Advanced Filter from Figure 11-9. J1 has a heading of Customer. J2 has the criteria of Cool Saddle Traders. The output range in L1 contains a heading of Product. After running the filter, a list of three unique product numbers purchased by Cool Saddle Traders is shown.]

FIGURE 11-10 Here is the result of the advanced filter that uses a criteria range and asks for a unique list of products. Of course, more complex and interesting criteria can be built.

You can use the following VBA code to perform an equivalent advanced filter:

Click here to view code image

Sub UniqueProductsOneCustomer()

Dim IRange As Range

Dim ORange As Range

Dim CRange As Range

' Find the size of today's data set

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range with one customer

Cells(1, NextCol).Value = Range("D1").Value

' In reality, this value should be passed from the userform

Cells(2, NextCol).Value = Range("D2").Value

Set CRange = Cells(1, NextCol).Resize(2, 1)

' Set up the output range. Copy the heading from B1 there

Range("B1").Copy Destination:=Cells(1, NextCol + 2)

Set ORange = Cells(1, NextCol + 2)

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers & product

IRange.AdvancedFilter Action:=xlFilterCopy, _

CriteriaRange:=CRange, CopyToRange:=ORange, Unique:=True

' The above could also be written as:

'IRange.AdvancedFilter xlFilterCopy, CRange, ORange, True

' Determine how many unique rows we have

LastRow = Cells(Rows.Count, NextCol + 2).End(xlUp).Row

' Sort the data

Cells(1, NextCol + 2).Resize(LastRow, 1).Sort Key1:=Cells(1, _

NextCol + 2), Order1:=xlAscending, Header:=xlYes

End Sub

Joining multiple criteria with a logical OR

You might want to filter records that match one criteria or another. For example, you can extract customers who purchased either product M556 or product R537. This is called a logical OR criteria.

When your criteria should be joined by a logical OR, place the criteria on subsequent rows of the criteria range. For example, the criteria range shown in J1:J3 in Figure 11-11 tells you which customers order product M556 or product W435.

[image: The figure shows a criteria in J1:J3. The heading in J1 is Product. Two products in J2 and J3 will be joined by a logical OR criteria.]

FIGURE 11-11 Place criteria on successive rows to join them with an OR. This criteria range gets customers who ordered either product M556 or product W435.

Joining two criteria with a logical AND

Sometimes, you will want to filter records that match one criteria and another criteria. For example, you might want to extract records in which the product sold was W435 and the region was the West region. This is called a logical AND.

To join two criteria with AND, put both criteria on the same row of the criteria range. For example, the criteria range shown in J1:K2 in Figure 11-12 gets the customers who ordered product W435 in the West region.

[image: The figures shows a criteria range in J1:K2. The headings in row 1 are Product and Region. The product in J2 is W435, and the region in K2 is West. Any filter using this criteria range returns sales of product W435 in the West region.]

FIGURE 11-12 Place criteria on the same row to join them with an AND. The criteria range in J1:K2 gets customers from the West region who ordered product W435.

Other slightly complex criteria ranges

The criteria range shown in Figure 11-13 is based on two different fields that are joined with an OR. The query finds all records that are from the West region or whose product is W435.

[image: The figure shows a criteria range that’s two columns by three rows tall. Headings in Row 1 are Region and Product. West is alone on row 2, in J2. W435 is alone on row 3, in K2. This arrangement implies a logical OR.]

FIGURE 11-13 The criteria range in J1:K3 returns records in which either the region is West or the product is W435.

The most complex criteria: Replacing the list of values with a condition created as the result of a formula

It is possible to have a criteria range with multiple logical AND and logical OR criteria joined together. Although this might work in some situations, in other scenarios it quickly gets out of hand. Fortunately, Excel allows for criteria in which the records are selected as the result of a formula to handle this situation.

Case study: Working with very complex criteria

Your clients so loved the “Create a Customer” report that they hired you to write a new report. In this case, they could select any customer, any product, any region, or any combination of them. You can quickly adapt the frmReport userform to show three list boxes, as shown in Figure 11-14.

[image: The figure shows a userform with three columns. The first lists 20+ customers. The second lists three products. The third lists three regions. You can multi-select items from each column. In this example, two customers and two products are selected. The discussion continues in Figure 11-15.]

FIGURE 11-14 This super-flexible form lets clients run any types of reports that they can imagine. It creates some nightmarish criteria ranges, though, unless you know the way out.

In your first test, imagine that you select two customers and two products. In this case, your program has to build a five-row criteria range, as shown in Figure 11-15. This isn’t too bad.

[image: Using the settings from the previous userform, the criteria range is five rows tall. Headings appear in row 1. Each of the two customers appears for each of the two products.]

FIGURE 11-15 This criteria range returns any records for which the two selected customers ordered any of the two selected products.

This gets crazy if someone selects 10 products, all regions except the house region, and all customers except the internal customer. Your criteria range would need unique combinations of the selected fields. This could easily be 10 products times 9 regions times 499 customers—or more than 44,000 rows of criteria range. You could quickly end up with a criteria range that spans thousands of rows and three columns. I was once foolish enough to actually try running an advanced filter with such a criteria range. It would still be trying to compute if I hadn’t rebooted the computer.

The solution for this report is to replace the lists of values with a formula-based condition.

Setting up a condition as the result of a formula

Amazingly, there is an incredibly obscure version of Advanced Filter criteria that can replace the 44,000-row criteria range in the previous case study. In the alternative form of criteria range, the top row is left blank. There is no heading above the criteria. The criteria set up in row 2 is a formula that results in True or False. If the formula contains any relative references to row 2 of the data range, Excel compares that formula to every row of the data range, one by one.

For example, if you want all records in which Gross Profit Percentage is below 53%, the formula built in J2 references the profit in H2 and the revenue in F2. You need to leave J1 blank to tell Excel that you are using a computed criteria. Cell J2 contains the formula =(H2/F2)<0.53. The criteria range for the advanced filter would be specified as J1:J2.

As Excel performs the advanced filter, it logically copies the formula and applies it to all rows in the database. Anywhere that the formula evaluates to True, the record is included in the output range.

This is incredibly powerful and runs remarkably fast. You can combine multiple formulas in adjacent columns or rows to join the formula criteria with AND or OR, just as you do with regular criteria.

[image: Images]

Note Row 1 of the criteria range doesn’t have to be blank, but it cannot contain words that are headings in the data range. You could perhaps use that row to explain that someone should look to this page in this book for an explanation of these computed criteria.

Case study: Using formula-based conditions in the Excel user interface

You can use formula-based conditions to solve the report introduced in the previous case study. Figure 11-16 shows the flow involved in setting up a formula-based condition.

To illustrate, off to the right of the criteria range, set up a column of cells with the list of selected customers. Assign a name to the range, such as MyCust. In cell J2 of the criteria range, enter a formula such as =NOT(ISNA(Match(D2, MyCust,0))).

To the right of the MyCust range, set up a range with a list of selected products. Assign this range the name MyProd. In K2 of the criteria range, add this formula to check products: =NOT(ISNA(Match(B2,MyProd,0))).

To the right of the MyProd range, set up a range with a list of selected regions. Assign this range the name MyRegion. In L2 of the criteria range, add this formula to check for selected regions: =NOT(ISNA(Match(A2, MyRegion,0))).

Now, with a criteria range of J1:L2, you can effectively retrieve records that match any combination of selections from the userform.

[image: This process diagram lists ten steps: 1. Write customer choices to a range in O. 2. Assign Name MyCust to Range. 3. Criteria Formula in J2: =NOT(ISNA(MATCH(D2,MyCust,0))). 4. Write Product choices to column P. 5. Assign name MyProd to Range. 6. Criteria Formula in K2: =NOT(ISNA(MATCH(B2,MyProd,0))). 7. Write Region choices in Q. 8. Assign name MyRegion to Range. 9. Criteria Formula in L2: =NOT(ISNA(MATCH(B2,MyRegion,0))). 10. Advanced Filter using J1:L2 as criteria.]

FIGURE 11-16 Here are the logical steps in using formula-based conditions to solve the problem.

Using formula-based conditions with VBA

Referring back to the userform shown in Figure 11-14, you can use formula-based conditions to filter the report using the userform. The following is the code for this userform. Note the logic in OKButton_Click that builds the formula. Figure 11-17 shows the Excel sheet just before the advanced filter is run.

[image: This figure shows the three formulas in J2:L2 with no headings above them. The formulas are pointing to a list of customers in O, product in P, regions in Q.]

FIGURE 11-17 Here is the worksheet just before the macro runs the advanced filter.

The following code initializes the userform. Three advanced filters find the unique list of customers, products, and regions:

Click here to view code image

Private Sub UserForm_Initialize()

Dim IRange As Range

Dim ORange As Range

' Find the size of today's data set

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Set up the output range for Customer. Copy the heading from D1 there

Range("D1").Copy Destination:=Cells(1, NextCol)

Set ORange = Cells(1, NextCol)

' Use the Advanced Filter to get a unique list of customers

IRange.AdvancedFilter Action:=xlFilterCopy, CriteriaRange:="", _

CopyToRange:=ORange, Unique:=True

' Determine how many unique customers we have

LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data

Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _

Order1:=xlAscending, Header:=xlYes

With Me.lbCust

.RowSource = ""

.List = Application.Transpose(_

Cells(2,NextCol).Resize(LastRow-1,1))

End With

' Erase the temporary list of customers

Cells(1, NextCol).Resize(LastRow, 1).Clear

' Set up an output range for the product. Copy the heading from D1 there

Range("B1").Copy Destination:=Cells(1, NextCol)

Set ORange = Cells(1, NextCol)

' Use the Advanced Filter to get a unique list of customers

IRange.AdvancedFilter Action:=xlFilterCopy, _

CopyToRange:=ORange, Unique:=True

' Determine how many unique customers we have

LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data

Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _

Order1:=xlAscending, Header:=xlYes

With Me.lbProduct

Click here to view code image

.RowSource = ""

' The list has to go across, so transpose the vertical data.

.List = Application.Transpose(_

Cells(2,NextCol).Resize(LastRow-1,1))

End With

' Erase the temporary list of customers

Cells(1, NextCol).Resize(LastRow, 1).Clear

' Set up the output range for Region. Copy the heading from A1 there

Range("A1").Copy Destination:=Cells(1, NextCol)

Set ORange = Cells(1, NextCol)

' Use the Advanced Filter to get a unique list of customers

IRange.AdvancedFilter Action:=xlFilterCopy, CopyToRange:=ORange, _

Unique:=True

' Determine how many unique customers we have

LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data

Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _

Order1:=xlAscending, Header:=xlYes

With Me.lbRegion

.RowSource = ""

.List = Application.Transpose(_

Cells(2,NextCol).Resize(LastRow-1,1))

End With

' Erase the temporary list of customers

Cells(1, NextCol).Resize(LastRow, 1).Clear

End Sub

These tiny procedures run when someone clicks Mark All or Clear All in the userform in Figure 11-14:

Click here to view code image

Private Sub CancelButton_Click()

Unload Me

End Sub

Private Sub cbSubAll_Click()

For i = 0 To lbCust.ListCount - 1

Me.lbCust.Selected(i) = True

Next i

End Sub

Private Sub cbSubClear_Click()

For i = 0 To lbCust.ListCount - 1

Me.lbCust.Selected(i) = False

Next i

End Sub

Private Sub CommandButton1_Click()

' Clear all products

For i = 0 To lbProduct.ListCount - 1

Click here to view code image

Me.lbProduct.Selected(i) = False

Next i

End Sub

Private Sub CommandButton2_Click()

' Mark all products

For i = 0 To lbProduct.ListCount - 1

Me.lbProduct.Selected(i) = True

Next i

End Sub

Private Sub CommandButton3_Click()

' Clear all regions

For i = 0 To lbRegion.ListCount - 1

Me.lbRegion.Selected(i) = False

Next i

End Sub

Private Sub CommandButton4_Click()

' Mark all regions

For i = 0 To lbRegion.ListCount - 1

Me.lbRegion.Selected(i) = True

Next i

End Sub

The following code is attached to the OK button. This code builds three ranges in O, P, and Q that list the selected customers, products, and regions. The actual criteria range is composed of three blank cells in J1:L1 and then three formulas in J2:L2:

Click here to view code image

Private Sub OKButton_Click()

Dim CRange As Range, IRange As Range, ORange As Range

' Build a complex criteria that ANDs all choices together

NextCCol = 10

NextTCol = 15

For j = 1 To 3

Select Case j

Case 1

MyControl = "lbCust"

MyColumn = 4

Case 2

MyControl = "lbProduct"

MyColumn = 2

Case 3

MyControl = "lbRegion"

MyColumn = 1

End Select

NextRow = 2

' Check to see what was selected.

For i = 0 To Me.Controls(MyControl).ListCount - 1

If Me.Controls(MyControl).Selected(i) = True Then

Cells(NextRow, NextTCol).Value = _

Me.Controls(MyControl).List(i)

NextRow = NextRow + 1

Click here to view code image

End If

Next i

' If anything was selected, build a new criteria formula

If NextRow > 2 Then

' the reference to Row 2 must be relative in order to work

MyFormula = "=NOT(ISNA(MATCH(RC" & MyColumn & ",R2C" & _

NextTCol & ":R" & NextRow - 1 & "C" & NextTCol & ",0)))"

Cells(2, NextCCol).FormulaR1C1 = MyFormula

NextTCol = NextTCol + 1

NextCCol = NextCCol + 1

End If

Next j

Unload Me

' Figure 11-17 shows the worksheet at this point

' If we built any criteria, define the criteria range

If NextCCol > 10 Then

Set CRange = Range(Cells(1, 10), Cells(2, NextCCol - 1))

Set IRange = Range("A1").CurrentRegion

Set ORange = Cells(1, 20)

IRange.AdvancedFilter xlFilterCopy, CRange, Orange

' Clear out the criteria

Cells(1, 10).Resize(1, 10).EntireColumn.Clear

End If

' At this point, the matching records are in T1

End Sub

Figure 11-17 shows the worksheet just before the AdvancedFilter method is called. The user has selected customers, products, and regions. The macro has built temporary tables in columns O, P, and Q to show which values the user selected. The criteria range is J1:L2. The criteria formula in J2 looks to see whether the value in $D2 is in the list of selected customers in O. The formulas in K2 and L2 compare $B2 to column P and $A2 to column Q.

[image: Images]

Note Excel VBA Help says that if you do not specify a criteria range, no criteria are used. This is not true in Excel 2013, 2016, and 2019. If no criteria range is specified in these versions of Excel, the advanced filter inherits the criteria range from the prior advanced filter. You should include CriteriaRange:="" to clear the prior value.

Using formula-based conditions to return above-average records

The formula-based conditions formula criteria are cool but are a rarely used feature in a rarely used function. Some interesting business applications use this technique. For example, this criteria formula would find all the above-average rows in the data set:

=$A2>Average($A$2:$A$1048576)

Using filter in place in Advanced Filter

It is possible to filter a large data set in place. In this case, you do not need an output range. You normally specify a criteria range; otherwise, you return 100% of the records, and there is no need to use the advanced filter!

In the user interface of Excel, running Filter In Place makes sense: You can easily peruse the filtered list, looking for something in particular.

Running a filter in place in VBA is a little less convenient. The only good way to programmatically peruse the filtered records is to use the xlCellTypeVisible option of the SpecialCells method. In the Excel user interface, the equivalent action is to select Home, Find & Select, Go to Special. In the Go to Special dialog box, select Visible Cells Only.

To run a Filter In Place, use the constant XLFilterInPlace as the Action parameter in the AdvancedFilter command and remove the CopyToRange from the command:

Click here to view code image

IRange.AdvancedFilter Action:=xlFilterInPlace, CriteriaRange:=CRange, _Unique:=False

Then you use this programmatic equivalent to looping by using Visible Cells Only:

Click here to view code image

For Each cell In Range("A2:A" & FinalRow).SpecialCells(xlCellTypeVisible)

Ctr = Ctr + 1

Next cell

MsgBox Ctr & " cells match the criteria"

If you know that there will be no blanks in the visible cells, you can eliminate the loop with this:

Click here to view code image

Ctr = Application.Counta(Range("A2:A" & _FinalRow).SpecialCells(xlCellTypeVisible))

Catching no records when using a filter in place

Just as when using Copy, you have to watch out for the possibility of having no records match the criteria. However, in this case, it is more difficult to realize that nothing is returned. You generally find out when the .SpecialCells method returns a runtime error 1004, which indicates that no cells were found.

To catch this condition, you have to set up an error trap to anticipate the 1004 error with the SpecialCells method:

Click here to view code image

On Error GoTo NoRecs

For Each cell In _

Range("A2:A" & FinalRow).SpecialCells(xlCellTypeVisible)

Ctr = Ctr + 1

Next cell

On Error GoTo 0

MsgBox Ctr & " cells match the criteria"

Exit Sub

Click here to view code image

NoRecs:

MsgBox "No records match the criteria"

End Sub

[image: Images]

Note See Chapter 24, “Handling errors,” for more information on catching errors.

This error trap works because it specifically excludes the header row from the SpecialCells range. The header row is always visible after an advanced filter. Including it in the range would prevent the 1004 error from being raised.

Showing all records after running a filter in place

After doing a filter in place, you can get all records to show again by using the ShowAllData method:

ActiveSheet.ShowAllData

The real workhorse: xlFilterCopy with all records rather than unique records only

The examples at the beginning of this chapter talk about using xlFilterCopy to get a unique list of values in a field. You used unique lists of customers, regions, and products to populate the list boxes in your report-specific userforms.

However, a more common scenario is to use an advanced filter to return all records that match the criteria. After the client selects which customer to report, an advanced filter can extract all records for that customer.

In all the examples in the following sections, you want to keep the Unique Records Only check box cleared. You do this in VBA by specifying Unique:=False as a parameter to the AdvancedFilter method. This is not difficult to do, and you have some powerful options. If you need only a subset of fields for a report, copy only those field headings to the output range. If you want to resequence the fields to appear exactly as you need them in the report, you can do this by changing the sequence of the headings in the output range.

The next sections walk you through three quick examples to show the options available.

Copying all columns

To copy all columns, specify a single blank cell as the output range. You get all columns for those records that match the criteria, as shown in Figure 11-18:

Click here to view code image

Sub AllColumnsOneCustomer()

Dim IRange As Range

Click here to view code image

Dim ORange As Range

Dim CRange As Range

' Find the size of today's data set

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the criteria range with one customer

Cells(1, NextCol).Value = Range("D1").Value

' In reality, this value should be passed from the userform

Cells(2, NextCol).Value = Range("D2").Value

Set CRange = Cells(1, NextCol).Resize(2, 1)

' Set up the output range. It is a single blank cell

Set ORange = Cells(1, NextCol + 2)

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers & product

IRange.AdvancedFilter Action:=xlFilterCopy, _

CriteriaRange:=CRange, CopyToRange:=Orange

End Sub

[image: The figure shows the results of an advanced filter with a blank output range. All the columns from the original data set are copied to the output range.]

FIGURE 11-18 When using xlFilterCopy with a blank output range, you get all columns in the same order as they appear in the original list range.

Copying a subset of columns and reordering

If you are doing an advanced filter to send records to a report, it is likely that you might need only a subset of columns, and you might need them in a different sequence.

This example finishes the frmReport example that was presented earlier in this chapter. As you recall, frmReport allows the client to select a customer. The OK button then calls the RunCustReport routine, passing a parameter to identify for which customer to prepare a report.

Imagine that this is a report being sent to the customer. The customer really does not care about the surrounding region, and you do not want to reveal your cost of goods sold or profit. Assuming that you will put the customer’s name in the title of the report, the fields that you need in order to produce the report are Date, Quantity, Product, and Revenue.

The following code copies those headings to the output range:

Click here to view code image

Sub RunCustReport(WhichCust As Variant)

Dim IRange As Range

Click here to view code image

Dim ORange As Range

Dim CRange As Range

Dim WBN As Workbook

Dim WSN As Worksheet

Dim WSO As Worksheet

Set WSO = ActiveSheet

' Find the size of today's data set

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the criteria range with one customer

Cells(1, NextCol).Value = Range("D1").Value

Cells(2, NextCol).Value = WhichCust

Set CRange = Cells(1, NextCol).Resize(2, 1)

' Set up the output range. We want Date, Quantity, Product, Revenue

' These columns are in C, E, B, and F

Cells(1, NextCol + 2).Resize(1, 4).Value = _

Array(Cells(1, 3), Cells(1, 5), Cells(1, 2), Cells(1, 6))

Set ORange = Cells(1, NextCol + 2).Resize(1, 4)

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers & products

IRange.AdvancedFilter Action:=xlFilterCopy, _

CriteriaRange:=CRange, CopyToRange:=ORange

' Create a new workbook with one blank sheet to hold the output

' xlWBATWorksheet is the template name for a single worksheet

Set WBN = Workbooks.Add(xlWBATWorksheet)

Set WSN = WBN.Worksheets(1)

' Set up a title on WSN

WSN.Cells(1, 1).Value = "Report of Sales to " & WhichCust

' Copy data from WSO to WSN

WSO.Cells(1, NextCol + 2).CurrentRegion.Copy _

Destination:=WSN.Cells(3, 1)

TotalRow = WSN.Cells(Rows.Count, 1).End(xlUp).Row + 1

WSN.Cells(TotalRow, 1).Value = "Total"

WSN.Cells(TotalRow, 2).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

WSN.Cells(TotalRow, 4).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

' Format the new report with bold

WSN.Cells(3, 1).Resize(1, 4).Font.Bold = True

WSN.Cells(TotalRow, 1).Resize(1, 4).Font.Bold = True

WSN.Cells(1, 1).Font.Size = 18

WBN.SaveAs ThisWorkbook.Path & Application.PathSeparator & _

WhichCust & ".xlsx"

WBN.Close SaveChanges:=False

Click here to view code image

WSO.Select

' clear the output range, etc.

Range("J:Z").Clear

End Sub

The advanced filter produces data, as shown in Figure 11-19. The program then goes on to copy the matching records to a new workbook. A title and a total row are added, and the report is saved with the customer’s name. Figure 11-20 shows the final report.

[image: The figure shows headings of Date, Product, Quantity, and Revenue in the Output range. By specifying the headings, you can resequence the columns from the input range.]

FIGURE 11-19 Immediately after the advanced filter, you have just the columns and records needed for the report.

[image: The figure shows the data from the output range in Figure 11-19 has been copied to a new workbook and formatted.]

FIGURE 11-20 After copying the filtered data to a new sheet and applying some formatting, you have a good-looking report to send to each customer.

Case study: Utilizing two kinds of advanced filters to create a report for each customer

The final advanced filter example for this chapter uses several advanced filter techniques. Let’s say that after importing invoice records, you want to send a purchase summary to each customer. The process would be as follows:

	Run an advanced filter, requesting unique values, to get a list of customers in column J. This AdvancedFilter specifies the Unique:=True parameter and uses a CopyToRange that includes a single heading, Customer:

Click here to view code image

' Set up the output range. Copy the heading from D1 there

Range("D1").Copy Destination:=Cells(1, NextCol)

Click here to view code image

Set ORange = Cells(1, NextCol)

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers

IRange.AdvancedFilter Action:=xlFilterCopy, CriteriaRange:="", _

CopyToRange:=ORange, Unique:=True

	For each customer in the list of unique customers in column J, perform steps 3 through 7. Find the number of customers in the output range from step 1. Then use a For Each Cell loop to loop through the customers:

Click here to view code image

' Loop through each customer

FinalCust = Cells(Rows.Count, NextCol).End(xlUp).Row

For Each cell In Cells(2, NextCol).Resize(FinalCust - 1, 1)

ThisCust = cell.Value

' ... Steps 3 through 7 here

Next Cell

	Build a criteria range in L1:L2 to be used in a new advanced filter. The criteria range would include the heading Customer in L1 and the customer name from this iteration of the loop in cell L2:

Click here to view code image

' Set up the criteria range with one customer

Cells(1, NextCol + 2).Value = Range("D1").Value

Cells(2, NextCol + 2).Value = ThisCust

Set CRange = Cells(1, NextCol + 2).Resize(2, 1)

	Use an advanced filter to copy matching records for this customer to column N. This Advanced Filter statement specifies the Unique:=False parameter. Because you want only the columns Date, Quantity, Product, and Revenue, the CopyToRange specifies a four-column range with those headings copied in the proper order:

Click here to view code image

' Set up the output range. We want Date, Quantity, Product, Revenue

' These columns are in C, E, B, and F

Cells(1, NextCol + 4).Resize(1, 4).Value = _

Array(Cells(1, 3), Cells(1, 5), Cells(1, 2), Cells(1, 6))

Set ORange = Cells(1, NextCol + 4).Resize(1, 4)

' Use the Advanced Filter to get a unique list of customers & product

IRange.AdvancedFilter Action:=xlFilterCopy, CriteriaRange:=CRange, _

CopyToRange:=Orange

	Copy the customer records to a report sheet in a new workbook. The VBA code uses the Workbooks. Add method to create a new blank workbook. Using the template name xlWBATWorksheet is the way to specify that you want a workbook with a single worksheet. The extracted records from step 4 are copied to cell A3 of the new workbook:

Click here to view code image

' Create a new workbook with one blank sheet to hold the output

Set WBN = Workbooks.Add(xlWBATWorksheet)

Set WSN = WBN.Worksheets(1)

' Copy data from WSO to WSN

WSO.Cells(1, NextCol + 4).CurrentRegion.Copy _

Destination:=WSN.Cells(3, 1)

	Format the report with a title and totals. In VBA, add a title that reflects the customer’s name in cell A1. Make the headings bold and add a total below the final row:

Click here to view code image

' Set up a title on WSN

WSN.Cells(1, 1).Value = "Report of Sales to " & ThisCust

TotalRow = WSN.Cells(Rows.Count, 1).End(xlUp).Row + 1

WSN.Cells(TotalRow, 1).Value = "Total"

WSN.Cells(TotalRow, 2).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

WSN.Cells(TotalRow, 4).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

' Format the new report with bold

WSN.Cells(3, 1).Resize(1, 4).Font.Bold = True

WSN.Cells(TotalRow, 1).Resize(1, 4).Font.Bold = True

WSN.Cells(1, 1).Font.Size = 18

	Use Save As to save the workbook based on the customer name. After the workbook is saved, close the new workbook. Return to the original workbook and clear the output range to prepare for the next pass through the loop:

Click here to view code image

WBN.SaveAs ThisWorkbook.Path & Application.PathSeparator & _

WhichCust & ".xlsx"

WBN.Close SaveChanges:=False

WSO.Select

' Free up memory by setting object variables to nothing

Set WSN = Nothing

Set WBN = Nothing

' clear the output range, etc.

Cells(1, NextCol + 2).Resize(1, 10).EntireColumn.Clear

The complete code is as follows:

Click here to view code image

Sub RunReportForEachCustomer()

Dim IRange As Range

Dim ORange As Range

Dim CRange As Range

Dim WBN As Workbook

Dim WSN As Worksheet

Dim WSO As Worksheet

Set WSO = ActiveSheet

' Find the size of today's data set

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' First - get a unique list of customers in J

' Set up the output range. Copy the heading from D1 there

Range("D1").Copy Destination:=Cells(1, NextCol)

Set ORange = Cells(1, NextCol)

' Define the input range

Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

Click here to view code image

' Use the Advanced Filter to get a unique list of customers

IRange.AdvancedFilter Action:=xlFilterCopy, CriteriaRange:="", _

CopyToRange:=ORange, Unique:=True

' Loop through each customer

FinalCust = Cells(Rows.Count, NextCol).End(xlUp).Row

For Each cell In Cells(2, NextCol).Resize(FinalCust - 1, 1)

ThisCust = cell.Value

' Set up the criteria range with one customer

Cells(1, NextCol + 2).Value = Range("D1").Value

Cells(2, NextCol + 2).Value = ThisCust

Set CRange = Cells(1, NextCol + 2).Resize(2, 1)

' Set up the output range. We want Date, Quantity, Product, Revenue

' These columns are in C, E, B, and F

Cells(1, NextCol + 4).Resize(1, 4).Value = _

Array(Cells(1, 3), Cells(1, 5), Cells(1, 2), Cells(1, 6))

Set ORange = Cells(1, NextCol + 4).Resize(1, 4)

' Adv. Filter for unique customers & product

IRange.AdvancedFilter Action:=xlFilterCopy, _

CriteriaRange:=CRange, _

CopyToRange:=Orange

' Create a new workbook with one blank sheet to hold the output

Set WBN = Workbooks.Add(xlWBATWorksheet)

Set WSN = WBN.Worksheets(1)

' Copy data from WSO to WSN

WSO.Cells(1, NextCol + 4).CurrentRegion.Copy _

Destination:=WSN.Cells(3, 1)

' Set up a title on WSN

WSN.Cells(1, 1).Value = "Report of Sales to " & ThisCust

TotalRow = WSN.Cells(Rows.Count, 1).End(xlUp).Row + 1

WSN.Cells(TotalRow, 1).Value = "Total"

WSN.Cells(TotalRow, 2).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

WSN.Cells(TotalRow, 4).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

' Format the new report with bold

WSN.Cells(3, 1).Resize(1, 4).Font.Bold = True

WSN.Cells(TotalRow, 1).Resize(1, 4).Font.Bold = True

WSN.Cells(1, 1).Font.Size = 18

WBN.SaveAs ThisWorkbook.Path & Application.PathSeparator & _

WhichCust & ".xlsx"

WBN.Close SaveChanges:=False

WSO.Select

Set WSN = Nothing

Set WBN = Nothing

' clear the output range, etc.

Cells(1, NextCol + 2).Resize(1, 10).EntireColumn.Clear

Click here to view code image

Next cell

Cells(1, NextCol).EntireColumn.Clear

MsgBox FinalCust - 1 & " Reports have been created!"

End Sub

This is a remarkable 58 lines of code. By incorporating a couple of advanced filters and not much else, you have managed to produce a tool that created 27 reports in less than 1 minute. Even an Excel power user would normally take 2 to 3 minutes per report to create these manually. In less than 60 seconds, this code will save someone a few hours every time these reports need to be created. Imagine a real scenario in which there are hundreds of customers. Undoubtedly, there are people in every city who are manually creating these reports in Excel because they simply don’t realize the power of Excel VBA.

Excel in practice: Turning off a few drop-down menus in the AutoFilter

A really cool trick is possible only in Excel VBA. When you AutoFilter a list in the Excel user interface, every column in the data set gets a field drop-down arrow in the heading row. Sometimes you have a field that does not make a lot of sense to AutoFilter. For example, in your current data set, you might want to provide AutoFilter drop-down menus for Region, Product, and Customer but not the numeric or date fields. After setting up the AutoFilter, you need one line of code to turn off each drop-down menu that you do not want to appear. The following code turns off the drop-down menus for columns C, E, F, G, and H:

Click here to view code image

Sub AutoFilterCustom()

Range("A1").AutoFilter Field:=3, VisibleDropDown:=False

Range("A1").AutoFilter Field:=5, VisibleDropDown:=False

Range("A1").AutoFilter Field:=6, VisibleDropDown:=False

Range("A1").AutoFilter Field:=7, VisibleDropDown:=False

Range("A1").AutoFilter Field:=8, VisibleDropDown:=False

End Sub

Using this tool is a fairly rare treat. Most of the time, Excel VBA lets you do things that are possible in the user interface—and lets you do them rapidly. The VisibleDropDown parameter actually enables you to do something in VBA that is generally not available in the Excel user interface. Your knowledgeable clients will be scratching their heads, trying to figure out how you set up the cool automatic filter with only a few filterable columns (see Figure 11-21).

[image: This screenshot shows something unusual: Filter drop-down arrows appear in A1, B1, and D1, but not C1 or E1.]

FIGURE 11-21 Using VBA, you can set up an automatic filter in which only certain columns have the AutoFilter drop-down arrow.

To clear the filter from the customer column, use this code:

Click here to view code image

Sub SimpleFilter()

Worksheets("SalesReport").Select

Range("A1").AutoFilter

Range("A1").AutoFilter Field:=4

End Sub

Next steps

The techniques from this chapter give you many reporting techniques available via the arcane Advanced Filter tool. Chapter 12, “Using VBA to create pivot tables,” introduces the most powerful feature in Excel: the pivot table. The combination of advanced filters and pivot tables can help you create reporting tools that enable amazing applications.

CHAPTER 12
Using VBA to create pivot tables

In this chapter, you will:

	Find out how pivot tables evolved

	Build a pivot table

	Use advanced pivot table features

	Filter a data set

	Use the data model in Excel 2019

	Use other pivot table features

Pivot tables are the most powerful tools that Excel has to offer. The concept was first put into practice by Lotus, with its Improv product.

I love pivot tables because they help you very quickly summarize massive amounts of data. The name pivot table comes from the ability you have to drag fields in the PivotTable Fields list and have them recalculate. You can use a basic pivot table to produce a concise summary in seconds. However, pivot tables come in so many varieties that they can be the tools of choice for many different uses. You can build pivot tables to act as the calculation engine to produce reports by store or by style or to quickly find the top 5 or bottom 10 of anything.

I don’t suggest that you use VBA to build pivot tables for a user; rather, I suggest that you use pivot tables as a means to an end—to extract a summary of data that you can then take on to better uses.

Understanding how pivot tables evolved over various Excel versions

As Microsoft invests in making Excel the premier choice in business intelligence, pivot tables continue to evolve. They were introduced in Excel 5 and perfected in Excel 97. In Excel 2000, pivot table creation in VBA was dramatically altered. Some new parameters were added in Excel 2002. A few new properties, such as PivotFilters and TableStyle2, were added in Excel 2007. These are some of the changes Microsoft has made in the most recent four versions:

	Excel 2010 introduced slicers, Repeat All Item Labels, Named Sets, and several new calculation options: xlPercentOfParentColumn, xlPercentOfParentRow, xlPercentRunningTotal, xlRankAscending, and xlRankDescending. These do not work in Excel 2007.

	Excel 2013 introduced timelines, the xlDistinctCount function, and the Power Pivot Data Model. You can add tables to the Data Model, create a relationship, and produce a pivot table, but this code does not run in Excel 2010 or earlier.

	Excel 2016 introduced AutoGrouping for dates. Although this is automatic, it does not affect pivot tables built with VBA.

	Excel 2019 introduced PivotTable defaults. This does not affect pivot tables built with VBA.

Because of all the changes from version to version, you need to be extremely careful when writing code in Excel 2019 that might be run in other versions.

[image: Images]

Note Much of the code in this chapter works with Excel 2010 and newer. Although this book does not include code for Excel 2007, one Excel 2007 example has been included in the sample file for this chapter. The code listings from this chapter are available for download at http://www.MrExcel.com/getcode2019.html.

While building a pivot table in Excel VBA

As I mentioned earlier, this chapter does not mean to imply that you should use VBA to build pivot tables to give to your clients. Instead, the purpose of this chapter is to remind you that you can use pivot tables as a means to an end: You can use a pivot table to extract a summary of data and then use that summary elsewhere.

[image: Images]

Note Although the Excel user interface has names for the various sections of a pivot table, VBA code continues to refer to the old names. Microsoft made this choice because, otherwise, millions of lines of code would stop working in Excel 2007 because they would refer to, say, a page field rather than a filter field. Today the four sections of a pivot table in the Excel user interface are Filter, Columns, Rows, and Values, but VBA continues to use the old terms: Page fields, Column fields, Row fields, and Data fields.

Defining the pivot cache

In this first part of this chapter, the data set is an eight-column by 5,000-row data set, as shown in Figure 12-1. The macros create a regular pivot table from the worksheet data. Near the end of the chapter, an example shows how to build a pivot table based on the Data Model and Power Pivot.

[image: The figure shows eight columns of data in the data set: Region, Product, Date, Customer, Quantity, Revenue, COGS, and Profit.]

FIGURE 12-1 You can create summary reports from this data set.

In Excel 2010 and later, you first create a pivot cache object to describe the input area of the data:

Click here to view code image

Dim WSD As Worksheet

Dim PTCache As PivotCache

Dim PT As PivotTable

Dim PRange As Range

Dim FinalRow As Long

Dim FinalCol As Long

Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables

PT.TableRange2.Clear

Next PT

' Define input area and set up a pivot cache

FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

FinalCol = WSD.Cells(1, Columns.Count).End(xlToLeft).Column

Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase, _

SourceData:=PRange, _

Version:=xlPivotTableVersion14)

Creating and configuring the pivot table

After defining the pivot cache, use the CreatePivotTable method to create a blank pivot table based on the defined pivot cache:

Click here to view code image

Set PT = PTCache.CreatePivotTable(TableDestination:=WSD.Cells(2, _

FinalCol + 2), TableName:="PivotTable1", Version:=xlPivotTableVersion14)

In the CreatePivotTable method, you specify the output location and optionally give the table a name. After running the preceding code, you have a strange-looking blank pivot table like the one shown in Figure 12-2. You need to use code to drop fields onto the table.

[image: The figure shows cells J2:K3 with borders. This is the empty pivot table created with the CreatePivotTable method.]

FIGURE 12-2 When you use the CreatePivotTable method, Excel gives you a four-cell blank pivot table that is not very useful.

You can now run through the steps needed to lay out the pivot table. In the .AddFields method, you can specify one or more fields that should be in the row, column, or filter area of the pivot table.

The RowFields parameter enables you to define fields that appear in the Rows area of the PivotTable Fields list. The ColumnFields parameter corresponds to the Columns area. The PageFields parameter corresponds to the Filter area.

The following line of code populates a pivot table with two fields in the row area and one field in the column area:

Click here to view code image

' Set up the row & column fields

PT.AddFields RowFields:=Array("Region", "Customer"), _

ColumnFields:="Product"

To add a field such as Revenue to the values area of the table, you change the Orientation property of the field to be xlDataField.

Adding fields to the data area

When you are adding fields to the data area of a pivot table, there are many settings you should control instead of letting Excel’s IntelliSense decide. For example, say that you are building a report with revenue that you will likely want to sum. If you don’t explicitly specify the calculation, Excel scans through the values in the underlying data. If 100% of the revenue columns are numeric, Excel sums those columns. If one cell is blank or contains text, Excel decides on that day to count the revenue, which produces confusing results. Because of this possible variability, you should never use the DataFields argument in the AddFields method. Instead, change the property of the field to xlDataField. You can then specify the Function to be xlSum.

Although you are setting up the Data field, you can change several other properties within the same With...End With block. For example, the Position property is useful when you are adding multiple fields to the data area. Specify 1 for the first field, 2 for the second field, and so on.

By default, Excel renames a Revenue field to have a strange name like Sum of Revenue. You can use the .Name property to change that heading back to something normal.

[image: Images]

Note You cannot reuse the word Revenue as a name. Instead, you should add a trailing space after the word Revenue.

You are not required to specify a number format, but doing so can make the resulting pivot table easier to understand and takes only one extra line of code:

Click here to view code image

' Set up the data fields

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "#,##0"

.Name = "Revenue "

End With

Your pivot table inherits the table style settings selected as the default on whatever computer happens to run the code. If you want control over the final format, you can explicitly choose a table style. The following code applies banded rows and a medium table style:

Click here to view code image

' Format the pivot table

PT.ShowTableStyleRowStripes = True

PT.TableStyle2 = "PivotStyleMedium10"

If you want to reuse the data from the pivot table, turn off the grand totals and subtotals and fill in the labels along the left column. The fastest way to suppress the 11 possible subtotals is to set Subtotals(1) to True and then to False, like this:

Click here to view code image

With PT

.ColumnGrand = False

.RowGrand = False

.RepeatAllLabels xlRepeatLabels ' New in Excel 2010

End With

PT.PivotFields("Region").Subtotals(1) = True

PT.PivotFields("Region").Subtotals(1) = False

At this point, you have a complete pivot table like the one shown in Figure 12-3.

[image: The figure shows row fields of Region and Customer on the left side of the pivot table. Products go across the top.]

FIGURE 12-3 Running fewer than 50 lines of code created this pivot table in less than a second.

Listing 12-1 shows the complete code used to generate this pivot table.

Listing 12-1 Code to generate the pivot table shown in Figure 12-3

Click here to view code image

Sub CreatePivot()

Dim WSD As Worksheet

Dim PTCache As PivotCache

Dim PT As PivotTable

Dim PRange As Range

Dim FinalRow As Long

Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables

PT.TableRange2.Clear

Next PT

' Define input area and set up a pivot cache

FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row

FinalCol = WSD.Cells(1, Application.Columns.Count). _

End(xlToLeft).Column

Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:= xlDatabase, _

SourceData:=PRange.Address, _

Version:=xlPivotTableVersion14)

' Create the pivot table from the pivot cache

Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _

Cells(2, FinalCol + 2), TableName:="PivotTable1")

' Set up the row and column fields

PT.AddFields RowFields:=Array("Region", "Customer"), _

ColumnFields:="Product"

' Set up the data fields

With PT.PivotFields("Revenue")

.Orientation = xlDataField

Click here to view code image

.Function = xlSum

.Position = 1

.NumberFormat = "#,##0"

.Name = "Revenue "

End With

'Format the pivot table

PT.ShowTableStyleRowStripes = True

PT.TableStyle2 = "PivotStyleMedium10"

With PT

.ColumnGrand = False

.RowGrand = False

.RepeatAllLabels xlRepeatLabels

End With

PT.PivotFields("Region").Subtotals(1) = True

PT.PivotFields("Region").Subtotals(1) = False

WSD.Activate

Range("J2").Select

End Sub

Learning why you cannot move or change part of a pivot report

Although pivot tables are incredible, they have annoying limitations; for example, you cannot move or change just part of a pivot table. Try to run a macro that clears row 2. The macro comes to a screeching halt with the error 1004, as shown in Figure 12-4. To get around this limitation, you can copy the pivot table and paste as values.

[image: The figure shows a 1004 error, which is what happens if you try to delete some cells that are part of the pivot table.]

FIGURE 12-4 You cannot delete just part of a pivot table.

Determining the size of a finished pivot table to convert the pivot table to values

Knowing the size of a pivot table in advance is difficult. If you run a report of transactional data on one day, you might or might not have sales from the West region, for example. This could cause your table to be either six or seven columns wide. Therefore, you should use the special property TableRange2 to refer to the entire pivot table.

PT.TableRange2 includes the entire pivot table. In Figure 12-5, TableRange2 includes the extra row at the top with the field heading Revenue. To eliminate that row, the code copies PT.TableRange2 but offsets this selection by one row by using .Offset(1, 0). Depending on the nature of your pivot table, you might need to use an offset of two or more rows to get rid of extraneous information at the top of the pivot table.

[image: The figure shows the pivot table created by the code in J2:M7. But the top row of the pivot table contains labels of Revenue and Region. The Marching Ants indicate that the Cut Copy Range is J3:M8. J3 is one row below the top of the table and row 8 is completely blank. But when you paste as values to row 11, the resulting report looks just fine.]

FIGURE 12-5 This figure shows an intermediate result of the macro. Only the summary in J12:M17 will remain after the macro finishes.

The code copies PT.TableRange2 and uses PasteSpecial on a cell four rows below the current pivot table. At that point in the code, your worksheet looks as shown in Figure 12-5. The table in J2 is a live pivot table, and the table in J12 is the copied results.

You can then eliminate the pivot table by applying the Clear method to the entire table. If your code is then going on to do additional formatting, you should remove the pivot cache from memory by setting PTCache equal to Nothing.

The code in Listing 12-2 uses a pivot table to produce a summary from the underlying data. At the end of the code, the pivot table is copied to static values, and the pivot table is cleared.

Listing 12-2 Code to produce a static summary from a pivot table

Click here to view code image

Sub CreateSummaryReportUsingPivot()

' Use a pivot table to create a static summary report

' with product going down the rows and regions across

Dim WSD As Worksheet

Dim PTCache As PivotCache

Dim PT As PivotTable

Dim PRange As Range

Dim FinalRow As Long

Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables

PT.TableRange2.Clear

Next PT

WSD.Range("J1:Z1").EntireColumn.Clear

Click here to view code image

' Define input area and set up a pivot cache

FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row

FinalCol = WSD.Cells(1, Application.Columns.Count). _

End(xlToLeft).Column

Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:= xlDatabase, _

SourceData:=PRange.Address, _

Version:=xlPivotTableVersion14)

' Create the pivot table from the pivot cache

Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _

Cells(2, FinalCol + 2), TableName:="PivotTable1")

' Set up the row fields

PT.AddFields RowFields:="Product", ColumnFields:="Region"

' Set up the data fields

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "#,##0"

.Name = "Revenue "

End With

With PT

.ColumnGrand = False

.RowGrand = False

.NullString = "0"

End With

' PT.TableRange2 contains the results. Move these to J12

' as just values and not a real pivot table.

PT.TableRange2.Offset(1, 0).Copy

WSD.Cells(5 + PT.TableRange2.Rows.Count, FinalCol + 2). _

PasteSpecial xlPasteValues

' At this point, the worksheet looks like Figure 12-5

' Delete the original pivot table and the pivot cache

PT.TableRange2.Clear

Set PTCache = Nothing

WSD.Activate

Range("J12").Select

End Sub

The code in Listing 12-2 creates the pivot table. It then copies the results and pastes them as values in J12:M13. Figure 12-5, which was shown previously, includes an intermediate result just before the original pivot table is cleared.

So far, this chapter has walked you through building very simple pivot table reports. Pivot tables offer far more flexibility, though. The sections that follow present more complex reporting examples.

Using advanced pivot table features

In this section, you use the detailed transactional data to produce a series of reports for each product line manager. This section covers the following advanced pivot table steps that are required in these reports:

	Group the daily dates up to yearly dates.

	Add multiple fields to the values area.

	Control the sort order so the largest customers are listed first.

	Use the ShowPages feature to replicate the report for each product line manager.

	After producing the pivot tables, convert each pivot table to values and do some basic formatting.

Figure 12-6 shows the report for one product line manager to give you an idea of the final goal.

[image: In the figure, the report has a title of Product report for A292. A heading of Customer appears in A5. Columns B:D show # of Orders, Revenue, % of Total for last year. E:G (F:G not shown) contains the same data for this year.]

FIGURE 12-6 Using pivot tables simplifies the creation of the report.

Using multiple value fields

The report has three fields in the values area: # of Orders, Revenue, and % of Total Revenue. Anytime you have two or more fields in the values area, a new virtual field named Data becomes available in your pivot table. In Excel 2019, the Data field appears as Σ Values in the PivotTable Fields list. When creating your pivot table, you can specify Data as one of the column fields or row fields. The position of the Data field is important: It usually works best as the innermost column field.

When you define a pivot table in VBA, you have two column fields: the Date field and the Data field. To specify two or more fields in the AddFields method, you wrap those fields in an array function.

Use this code to define the pivot table:

Click here to view code image

' Set up the row fields

PT.AddFields RowFields:="Customer", _

ColumnFields:=Array("Date", "Data"), _

PageFields:="Product"

This is the first time you have seen the PageFields parameter in this chapter. When you are creating a pivot table for someone to use, you should know that the fields in PageFields allow for easy ad hoc analysis. In this case, the value in PageFields is going to make it easy to replicate the report for every product line manager.

Counting the number of records

So far, the .Function property of the Data fields has always been xlSum. A total of 11 functions are available: xlSum, xlCount, xlAverage, xlStdDev, xlMin, xlMax, and so on.

Count is the only function that works for text fields. To count the number of records, and hence the number of orders, add a text field to the data area and choose xlCount as the function:

Click here to view code image

With PT.PivotFields("Region")

.Orientation = xlDataField

.Function = xlCount

.Position = 1

.NumberFormat = "#,##0"

.Name = "# of Orders "

End With

[image: Images]

Note This is a count of the number of records. It is not a count of the distinct values in a field. This kind of count was previously difficult to do in a pivot table. It is now possible using the Data Model. See the “Using the Data Model in Excel 2019” section later in this chapter for details.

Grouping daily dates to months, quarters, or years

Pivot tables have the amazing capability to group daily dates up to months, quarters, and years. In VBA, this feature is a bit annoying because you must select a date cell before issuing the grouping command.

[image: Images]

Note I used to go through all sorts of gyrations to figure out where the first date field was. In fact, you can simply refer to PT.PivotFields("Date").LabelRange to point to the Date heading.

There are seven choices for group times or dates: Seconds, Minutes, Hours, Days, Months, Quarters, and Years. Note that you can group a field by multiple items. To do so, you specify a series of True/False values corresponding to Seconds, Minutes, and so on.

For example, to group by Months, Quarters, and Years, you would use the following:

Click here to view code image

PT.PivotFields("Date").LabelRange.Group , Periods:= _

Array(False, False, False, False, True, True, True)

[image: Images]

Note Never choose to group by only months without including years. If you do this, Excel combines January from all years in the data into a single item called January. Although this is great for seasonality analyses, it is rarely what you want in a summary. Always choose Years and Months in the Grouping dialog box.

If you want to group by week, you group only by day and use 7 as the value for the By parameter:

Click here to view code image

PT.PivotFields("Date").LabelRange.Group _

Start:=True, End:=True, By:=7, _

Periods:=Array(False, False, False, True, False, False, False)

Specifying True for Start and End starts the first week at the earliest date in the data. If you want to show only the weeks from Monday, January 1, 2018, to Sunday, January 2, 2020, use this code:

Click here to view code image

With PT.PivotFields("Date")

.LabelRange.Group _

Start:=DateSerial(2018, 1, 1), _

End:=DateSerial(2020, 1, 4), _

By:=7, _

Periods:=Array(False, False, False, True, False, False, False)

On Error Resume Next

.PivotItems("<1/1/2018").Visible = False

.PivotItems(">1/2/2020").Visible = False

On Error Goto 0

End With

[image: Images]

Note There is one limitation to grouping by week. When you group by week, you cannot also group by any other measure. For example, grouping by both week and quarter is not valid.

Excel 2019 introduced the concept of AutoGrouping for dates. Excel 2019 has built-in rules that analyze the span of dates and decide whether dates should be grouped by month or by month, quarter, and year. This does not happen in VBA, but you can force it by using this:

PT.AutoGroup

For this report, you need to group only by year, so the code is as follows:

Click here to view code image

' Group daily dates up to years

PT.PivotFields("Date").LabelRange.Group , Periods:= _

Array(False, False, False, False, False, False, True)

[image: Images]

Tip Before grouping the daily dates up to years, you had about 500 date columns across this report. After grouping, you have two date columns plus a total. I prefer to group the dates as soon as possible in the macro. If you added the other two data fields to the report before grouping, your report would be 1,500 columns wide. Although this is not a problem since Excel 2007 increased the column limit from 256 to 16,384, it still creates an unusually large report when you ultimately need only a few columns. Allowing the pivot table to grow to 1,500 columns, even for a few lines of code, would make the worksheet’s last cell be column BER.

After you group daily dates to years, the new Year field is still called Date. This might not always be the case. If you roll daily dates up to months and to years, the Date field contains months, and a new Year field is added to the PivotTable Fields list to hold years.

Changing the calculation to show percentages

Excel 2019 offers 15 choices on the Show Values As tab of the Value Field Settings dialog box. These calculations enable you to change how a field is displayed in the report. Instead of showing sales, you could show sales as a percentage of total sales. You could show a running total. You could show each day’s sales as a percentage of the previous day’s sales.

All these settings are controlled through the .Calculation property of the pivot field. Each calculation has its own unique set of rules. Some, such as % Of Column, work without any further settings. Others, such as Running Total In, require a base field. Others, such as Running Total, require a base field and a base item.

To get the percentage of the total, specify xlPercentOfTotal as the .Calculation property for the page field:

.Calculation = xlPercentOfTotal

To set up a running total, you have to specify a BaseField. If you need a running total along a date column, use this:

Click here to view code image

' Set up Running Total

.Calculation = xlRunningTotal

.BaseField = "Date"

With ship months going down the rows, you might want to see the percentage of revenue growth from month to month. You can set up this arrangement with the xlPercentDifferenceFrom setting. In this case, you must specify that the BaseField is "Date" and that the BaseItem is something called “(previous)":

Click here to view code image

' Set up % change from prior month

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Caption = "%Change"

.Calculation = xlPercentDifferenceFrom

.BaseField = "Date"

.BaseItem = "(previous)"

.NumberFormat = "#0.0%"

End With

Note that with positional calculations, you cannot use the AutoShow or AutoSort methods. This is too bad; it would be interesting to sort the customers from high to low and see their sizes in relation to each other.

You can use the xlPercentDifferenceFrom setting to express revenues as a percentage of the West region sales:

Click here to view code image

' Show revenue as a percentage of California

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Caption = "% of West"

.Calculation = xlPercentDifferenceFrom

.BaseField = "State"

.BaseItem = "California"

.Position = 3

.NumberFormat = "#0.0%"

End With

Table 12-1 shows the complete list of .Calculation options. The second column indicates the compatibility of the calculation with earlier versions of Excel. The third column indicates whether you need a base field or a base item.

TABLE 12-1 Complete list of .Calculation options

	
Calculation

	
Version compatibility

	
BaseField/BaseItem

	
xlDifferenceFrom

	
All

	
Both required

	
xlIndex

	
All

	
Neither

	
xlPercentDifferenceFrom

	
All

	
Both required

	
xlPercentOf

	
All

	
Both required

	
xlPercentOfColumn

	
All

	
Neither

	
xlPercentOfParent

	
2010+

	
BaseField only

	
xlPercentOfParentColumn

	
2010+

	
Both required

	
xlPercentOfParentRow

	
2010+

	
Both required

	
xlPercentOfRow

	
All

	
Neither

	
xlPercentOfTotal

	
All

	
Neither

	
xlPercentRunningTotal

	
2010+

	
BaseField only

	
xlRankAscending

	
2010+

	
BaseField only

	
xlRankDescending

	
2010+

	
BaseField only

	
xlRunningTotal

	
All

	
BaseField only

After that long explanation of the .Calculation property, you can build the other two pivot table fields for the product line report.

Add Revenue to the report twice. The first time, there is no calculation. The second time, calculate the percentage of total:

Click here to view code image

' Set up the data fields - Revenue

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 2

.NumberFormat = "#,##0"

.Name = "Revenue "

End With

' Set up the data fields - % of total Revenue

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 3

.NumberFormat = "0.0%"

.Name = "% of Total "

.Calculation = xlPercentOfColumn

End With

[image: Images]

Note Take careful note of the name of the first field in the preceding code. By default, Excel would use Sum of Revenue. If you think this is a goofy title (as I do), you can change it. However, you cannot change it to Revenue because there is already a field in the PivotTable Fields list with that name.

In the preceding code, I use the name Revenue with a trailing space. This works fine, and no one notices the extra space. However, in the rest of the macro, when you refer to this field, remember to refer to it as Revenue with a trailing space.

Eliminating blank cells in the values area

If you have some customers who were new in year 2, their sales will appear blank in year 1. Anyone using Excel 97 or later can replace blank cells with zeros. In the Excel interface, you can find the setting for this on the Layout & Format tab of the PivotTable Options dialog box. Select the For Empty Cells, Show option and type 0 in the box.

The equivalent operation in VBA is to set the NullString property for the pivot table to "0":

PT.NullString = "0"

[image: Images]

Note Although the proper code is to set this value to a text zero, Excel puts a real zero in the empty cells.

[image: The pivot table in the figure has a Product label in J1 and a filter drop-down arrow in K1.]

FIGURE 12-7 The Product drop-down menu in column K enables you to filter the report to certain products.

Controlling the sort order with AutoSort

The Excel interface offers an AutoSort option that enables you to show customers in descending order, based on revenue. The equivalent code in VBA to sort the product field by descending revenue uses the AutoSort method:

Click here to view code image

PT.PivotFields("Customer").AutoSort Order:=xlDescending, _

Field:="Revenue "

After applying some formatting in the macro, you now have one report with totals for all products, as shown in Figure 12-7.

Replicating the report for every product

As long as your pivot table was not built on an OLAP data source, you now have access to one of the most powerful, but least-well-known, features in pivot tables. The command is called Show Report Filter Pages, and it replicates your pivot table for every item in one of the fields in the Filters area.

Because you built the report in this example with Product as a filter field, it takes only the following code to replicate the pivot table for every product:

Click here to view code image

' Replicate the pivot table for each product

PT.ShowPages PageField:="Product"

After running this code, you have a new worksheet for every product in the data set. From there, you have some simple formatting and calculations to do. Check the end of the macro, shown in Listing 12-3, for these techniques, which should be second nature by this point in the book.

Listing 12-3 Code to produce one report per product

Click here to view code image

Sub CustomerByProductReport()

' Use a pivot table to create a report for each product

' with customers in rows and years in columns

Dim WSD As Worksheet

Dim PTCache As PivotCache

Click here to view code image

 Dim PT As PivotTable

Dim PT2 As PivotTable

Dim WS As Worksheet

Dim WSF As Worksheet

Dim PRange As Range

Dim FinalRow As Long

Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables

PT.TableRange2.Clear

Next PT

WSD.Range("J1:Z1").EntireColumn.Clear

' Define input area and set up a pivot cache

FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row

FinalCol = WSD.Cells(1, Application.Columns.Count). _

End(xlToLeft).Column

Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:= xlDatabase, _

SourceData:=PRange.Address, _

Version:=xlPivotTableVersion14)

' Create the pivot table from the pivot cache

Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _

Cells(2, FinalCol + 2), TableName:="PivotTable1")

' Set up the row fields

PT.AddFields RowFields:="Customer", _

ColumnFields:=Array("Date", "Data"), _

PageFields:="Product"

' Set up the data fields - count of orders

With PT.PivotFields("Region")

.Orientation = xlDataField

.Function = xlCount

.Position = 1

.NumberFormat = "#,##0"

.Name = "# of Orders "

End With

' Group daily dates up to years

PT.PivotFields("Date").LabelRange.Group , Periods:= _

Array(False, False, False, False, False, False, True)

' Set up the data fields - Revenue

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 2

.NumberFormat = "#,##0"

.Name = "Revenue "

End With

Click here to view code image

 ' Set up the data fields - % of total Revenue

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 3

.NumberFormat = "0.0%"

.Name = "% of Total "

.Calculation = xlPercentOfColumn

End With

' Sort the customers so the largest is at the top

PT.PivotFields("Customer").AutoSort Order:=xlDescending, _

Field:="Revenue "

With PT

.ShowTableStyleColumnStripes = True

.ShowTableStyleRowStripes = True

.TableStyle2 = "PivotStyleMedium10"

.NullString = "0"

End With

' Replicate the pivot table for each product

PT.ShowPages PageField:="Product"

Ctr = 0

For Each WS In ActiveWorkbook.Worksheets

If WS.PivotTables.Count > 0 Then

If WS.Cells(1, 1).Value = "Product" Then

' Save some info

WS.Select

ThisProduct = Cells(1, 2).Value

Ctr = Ctr + 1

If Ctr = 1 Then

Set WSF = ActiveSheet

End If

Set PT2 = WS.PivotTables(1)

CalcRows = PT2.TableRange1.Rows.Count - 3

PT2.TableRange2.Copy

PT2.TableRange2.PasteSpecial xlPasteValues

Range("A1:C3").ClearContents

Range("A1:B2").Clear

Range("A1").Value = "Product report for " & ThisProduct

Range("A1").Style = "Title"

' Fix some headings

Range("b5:d5").Copy Destination:=Range("H5:J5")

Range("H4").Value = "Total"

Range("I4:J4").Clear

Click here to view code image

' Copy the format

Range("J1").Resize(CalcRows + 5, 1).Copy

Range("K1").Resize(CalcRows + 5, 1). _

PasteSpecial xlPasteFormats

Range("K5").Value = "% Rev Growth"

Range("K6").Resize(CalcRows, 1).FormulaR1C1 = _

"=IFERROR(RC6/RC3-1,1)"

Range("A2:K5").Style = "Heading 4"

Range("A2").Resize(CalcRows + 10, 11).Columns.AutoFit

End If

End If

Next WS

WSD.Select

PT.TableRange2.Clear

Set PTCache = Nothing

WSF.Select

MsgBox Ctr & " product reports created."

End Sub

Filtering a data set

There are many ways to filter a pivot table, from using the slicers, to the conceptual filters, to simply selecting and clearing items from one of the many field drop-down menus.

Manually filtering two or more items in a pivot field

When you open a field heading drop-down menu and select or clear items from the list, you are applying a manual filter (see Figure 12-8).

For example, say that you have one client who sells shoes. In the report showing sales of sandals, he wants to see just the stores that are in warm-weather states. The code to hide a particular store is as follows:

Click here to view code image

PT.PivotFields("Store").PivotItems("Minneapolis").Visible = False

[image: This figure shows the Filter drop-down list on the Row Labels heading in J2. A list of all customers with check boxes appears at the bottom of the filter. A search box appears above the list of customers. The figure also shows a flyout menu from Label Filters, where you can specify a filter such as Contains, Greater Than, Begins With, and so on.]

FIGURE 12-8 This filter drop-down menu offers manual filters, a search box, and conceptual filters.

This process is easy in VBA. After building the table with Product in the page field, loop through to change the Visible property to show only the total of certain products:

Click here to view code image

' Make sure all PivotItems along line are visible

For Each PivItem In _

PT.PivotFields("Product").PivotItems

PivItem.Visible = True

Next PivItem

' Now - loop through and keep only certain items visible

For Each PivItem In _

PT.PivotFields("Product").PivotItems

Select Case PivItem.Name

Case "Landscaping/Grounds Care", _

"Green Plants and Foliage Care"

PivItem.Visible = True

Case Else

PivItem.Visible = False

End Select

Next PivItem

Using the conceptual filters

Excel 2007 introduced conceptual filters for date fields, numeric fields, and text fields. Open the drop-down menu for any field label in the pivot table, and you can choose Label Filters, Date Filters, or Value Filters. The date filters offer the capability to filter to a conceptual period such as last month or next year (see Figure 12-9).

[image: In the figure, a filter drop-down menu on a date field includes a flyout menu for Date Filters. You can choose Equals, Before, After, Between, Tomorrow, Today, Yesterday, or Next Week.]

FIGURE 12-9 These date filters were introduced in Excel 2007.

To apply a label filter in VBA, use the PivotFilters.Add method. The following code filters to the customers that start with the letter E:

Click here to view code image

PT.PivotFields("Customer").PivotFilters.Add _

Type:=xlCaptionBeginsWith, Value1:="E"

To clear the filter from the Customer field, use the ClearAllFilters method:

Click here to view code image

PT.PivotFields("Customer").ClearAllFilters

To apply a date filter to the date field to find records from this week, use this code:

Click here to view code image

PT.PivotFields("Date").PivotFilters.Add Type:=xlThisWeek

The value filters enable you to filter one field based on the value of another field. For example, to find all the markets where the total revenue is more than $100,000, use this code:

Click here to view code image

PT.PivotFields("Market").PivotFilters.Add _

Type:=xlValueIsGreaterThan, _

DataField:=PT.PivotFields("Sum of Revenue"), _

Value1:=100000

Other value filters might enable you to specify, for example, that you want branches where the revenue is between $50,000 and $100,000. In this case, you specify one limit as Value1 and the second limit as Value2:

Click here to view code image

PT.PivotFields("Market").PivotFilters.Add _

Type:=xlValueIsBetween, _

DataField:=PT.PivotFields("Sum of Revenue"), _

Value1:=50000, Value2:=100000

Table 12-2 lists all the possible filter types.

TABLE 12-2 Filter types

	
Filter type

	
Description

	
xlBefore

	
Filters for all dates before a specified date.

	
xlBeforeOrEqualTo

	
Filters for all dates on or before a specified date.

	
xlAfter

	
Filters for all dates after a specified date.

	
xlAfterOrEqualTo

	
Filters for all dates on or after a specified date.

	
xlAllDatesInPeriodJanuary

	
Filters for all dates in January.

	
xlAllDatesInPeriodFebruary

	
Filters for all dates in February.

	
xlAllDatesInPeriodMarch

	
Filters for all dates in March.

	
xlAllDatesInPeriodApril

	
Filters for all dates in April.

	
xlAllDatesInPeriodMay

	
Filters for all dates in May.

	
xlAllDatesInPeriodJune

	
Filters for all dates in June.

	
xlAllDatesInPeriodJuly

	
Filters for all dates in July.

	
xlAllDatesInPeriodAugust

	
Filters for all dates in August.

	
xlAllDatesInPeriodSeptember

	
Filters for all dates in September.

	
xlAllDatesInPeriodOctober

	
Filters for all dates in October.

	
xlAllDatesInPeriodNovember

	
Filters for all dates in November.

	
xlAllDatesInPeriodDecember

	
Filters for all dates in December.

	
xlAllDatesInPeriodQuarter1

	
Filters for all dates in Quarter 1.

	
xlAllDatesInPeriodQuarter2

	
Filters for all dates in Quarter 2.

	
xlAllDatesInPeriodQuarter3

	
Filters for all dates in Quarter 3.

	
xlAllDatesInPeriodQuarter4

	
Filters for all dates in Quarter 4.

	
xlBottomCount

	
Filters for the specified number of values from the bottom of a list.

	
xlBottomPercent

	
Filters for the specified percentage of values from the bottom of a list.

	
xlBottomSum

	
Sums the values from the bottom of the list.

	
xlCaptionBeginsWith

	
Filters for all captions, beginning with the specified string.

	
xlCaptionContains

	
Filters for all captions that contain the specified string.

	
xlCaptionDoesNotBeginWith

	
Filters for all captions that do not begin with the specified string.

	
xlCaptionDoesNotContain

	
Filters for all captions that do not contain the specified string.

	
xlCaptionDoesNotEndWith

	
Filters for all captions that do not end with the specified string.

	
xlCaptionDoesNotEqual

	
Filters for all captions that do not match the specified string.

	
xlCaptionEndsWith

	
Filters for all captions that end with the specified string.

	
xlCaptionEquals

	
Filters for all captions that match the specified string.

	
xlCaptionIsBetween

	
Filters for all captions that are within a specified range of values.

	
xlCaptionIsGreaterThan

	
Filters for all captions that are greater than the specified value.

	
xlCaptionIsGreaterThanOrEqualTo

	
Filters for all captions that are greater than or match the specified value.

	
xlCaptionIsLessThan

	
Filters for all captions that are less than the specified value.

	
xlCaptionIsLessThanOrEqualTo

	
Filters for all captions that are less than or match the specified value.

	
xlCaptionIsNotBetween

	
Filters for all captions that are not within a specified range of values.

	
xlDateBetween

	
Filters for all dates that are within a specified range of dates.

	
xlDateLastMonth

	
Filters for all dates that apply to the previous month.

	
xlDateLastQuarter

	
Filters for all dates that apply to the previous quarter.

	
xlDateLastWeek

	
Filters for all dates that apply to the previous week.

	
xlDateLastYear

	
Filters for all dates that apply to the previous year.

	
xlDateNextMonth

	
Filters for all dates that apply to the next month.

	
xlDateNextQuarter

	
Filters for all dates that apply to the next quarter.

	
xlDateNextWeek

	
Filters for all dates that apply to the next week.

	
xlDateNextYear

	
Filters for all dates that apply to the next year.

	
xlDateThisMonth

	
Filters for all dates that apply to the current month.

	
xlDateThisQuarter

	
Filters for all dates that apply to the current quarter.

	
xlDateThisWeek

	
Filters for all dates that apply to the current week.

	
xlDateThisYear

	
Filters for all dates that apply to the current year.

	
xlDateToday

	
Filters for all dates that apply to the current date.

	
xlDateTomorrow

	
Filters for all dates that apply to the next day.

	
xlDateYesterday

	
Filters for all dates that apply to the previous day.

	
xlNotSpecificDate

	
Filters for all dates that do not match a specified date.

	
xlSpecificDate

	
Filters for all dates that match a specified date.

	
xlTopCount

	
Filters for the specified number of values from the top of a list.

	
xlTopPercent

	
Filters for the specified percentage of values from the top of a list.

	
xlTopSum

	
Sums the values from the top of the list.

	
xlValueDoesNotEqual

	
Filters for all values that do not match the specified value.

	
xlValueEquals

	
Filters for all values that match the specified value.

	
xlValueIsBetween

	
Filters for all values that are within a specified range of values.

	
xlValueIsGreaterThan

	
Filters for all values that are greater than the specified value.

	
xlValueIsGreaterThanOrEqualTo

	
Filters for all values that are greater than or match the specified value.

	
xlValueIsLessThan

	
Filters for all values that are less than the specified value.

	
xlValueIsLessThanOrEqualTo

	
Filters for all values that are less than or match the specified value.

	
xlValueIsNotBetween

	
Filters for all values that are not within a specified range of values.

	
xlYearToDate

	
Filters for all values that are within one year of a specified date.

Using the search filter

Excel 2010 added a Search box to the filter drop-down menu. Although this is a slick feature in the Excel interface, there is no equivalent magic in VBA. Whereas the drop-down menu offers the Select All Search Results check box, the equivalent VBA just lists all the items that match the selection. To achieve the same results in VBA, use the xlCaptionContains filter described in the code that precedes Table 12-2.

Case study: Filtering to the top 5 or top 10 by using a filter

If you are designing an executive dashboard utility, you might want to spotlight the top 5 customers. As with the AutoSort option, you could be a pivot table pro and never have stumbled across the Top 10 AutoShow feature in Excel. This setting enables you to select either the top or the bottom n records, based on any data field in the report.

The code to use AutoShow in VBA involves the .AutoShow method:

Click here to view code image

' Show only the top 5 customers

PT.PivotFields("Customer").AutoShow Top:=xlAutomatic, Range:=xlTop, _

Count:=5, Field:= "Sum of Revenue"

When you create a report using the .AutoShow method, it is often helpful to copy the data and then go back to the original pivot report to get the totals for all markets. In the code, this is achieved by removing the Customer field from the pivot table and copying the grand total to the report. The code that follows produces the report shown in Figure 12-10:

Click here to view code image

Sub Top5Customers()

' Produce a report of the top 5 customers

Dim WSD As Worksheet

Dim WSR As Worksheet

Dim WBN As Workbook

Dim PTCache As PivotCache

Dim PT As PivotTable

Dim PRange As Range

Dim FinalRow As Long

Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables

PT.TableRange2.Clear

Next PT

WSD.Range("J1:Z1").EntireColumn.Clear

' Define input area and set up a pivot cache

FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row

FinalCol = WSD.Cells(1, Application.Columns.Count). _

End(xlToLeft).Column

Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:= xlDatabase, _

SourceData:=PRange.Address, _

Click here to view code image

Version:=xlPivotTableVersion14)

' Create the pivot table from the pivot cache

Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _

Cells(2, FinalCol + 2), TableName:="PivotTable1")

' Set up the row fields

PT.AddFields RowFields:="Customer", ColumnFields:="Product"

' Set up the data fields

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "#,##0"

.Name = "Total Revenue"

End With

' Ensure that we get zeros instead of blanks in the data area

PT.NullString = "0"

' Sort customers descending by sum of revenue

PT.PivotFields("Customer").AutoSort Order:=xlDescending, _

Field:="Total Revenue"

' Show only the top 5 customers

PT.PivotFields("Customer").AutoShow _

Type:=xlAutomatic, Range:=xlTop, _

Count:=5, Field:="Total Revenue"

' Create a new blank workbook with one worksheet

Set WBN = Workbooks.Add(xlWBATWorksheet)

Set WSR = WBN.Worksheets(1)

WSR.Name = "Report"

' Set up title for report

With WSR.[A1]

.Value = "Top 5 Customers"

.Font.Size = 14

End With

' Copy the pivot table data to row 3 of the report sheet

' Use offset to eliminate the title row of the pivot table

PT.TableRange2.Offset(1, 0).Copy

WSR.[A3].PasteSpecial Paste:=xlPasteValuesAndNumberFormats

LastRow = WSR.Cells(Rows.Count, 1).End(xlUp).Row

WSR.Cells(LastRow, 1).Value = "Top 5 Total"

' Go back to the pivot table to get totals without the AutoShow

PT.PivotFields("Customer").Orientation = xlHidden

PT.ManualUpdate = False

PT.ManualUpdate = True

PT.TableRange2.Offset(2, 0).Copy

WSR.Cells(LastRow + 2, 1).PasteSpecial Paste:= _

Click here to view code image

xlPasteValuesAndNumberFormats

WSR.Cells(LastRow + 2, 1).Value = "Total Company"

' Clear the pivot table

PT.TableRange2.Clear

Set PTCache = Nothing

' Do some basic formatting

' Autofit columns, bold the headings, right-align

WSR.Range(WSR.Range("A3"), WSR.Cells(LastRow + 2, 6)).Columns.AutoFit

Range("A3").EntireRow.Font.Bold = True

Range("A3").EntireRow.HorizontalAlignment = xlRight

Range("A3").HorizontalAlignment = xlLeft

Range("A2").Select

MsgBox "CEO Report has been Created"

End Sub

[image: The report in the image contains data from two pivot tables. The top five customers appear in A4:A8. A total of the top five appears in row 9. In row 11, a second pivot table shows the total for all customers.]

FIGURE 12-10 The Top 5 Customers report contains two pivot tables.

The Top 5 Customers report actually contains two snapshots of a pivot table. After using the AutoShow feature to grab the top five markets with their totals, the macro went back to the pivot table, removed the AutoShow option, and grabbed the total of all customers to produce the Total Company row.

Setting up slicers to filter a pivot table

Excel 2010 introduced the concept of slicers for filtering pivot tables. A slicer is a visual filter that you can resize and reposition. You can control the color of a slicer and control the number of columns in it. You can also select or unselect items from a slicer by using VBA.

Figure 12-11 shows a pivot table with two slicers. Both of the slicers have been modified to show multiple columns.

[image: A tiny pivot table appears at the bottom of this figure. A set of Customer slicer tiles appear at the top. There are three columns and seven rows of customers. You can select a customer by clicking on the title, or select multiple customers using the Ctrl key or the Multi-Select. The Product slicers is one row by five columns.]

FIGURE 12-11 Slicers provide a visual filter of several fields.

Slicers work only with pivot tables designed to be used by Excel 2010 or newer. A slicer consists of a slicer cache and a slicer. To define a slicer cache, you need to specify a pivot table as the source and a field name as the SourceField. The slicer cache is defined at the workbook level. The following code would enable you to have a slicer on a different worksheet than the pivot table:

Click here to view code image

Dim SCP as SlicerCache

Dim SCR as SlicerCache

Set SCP = ActiveWorkbook.SlicerCaches.Add(Source:=PT, SourceField:="Product")

Set SCR = ActiveWorkbook.SlicerCaches.Add(Source:=PT, SourceField:="Region")

After you have defined the slicer cache, you can add the slicer. The slicer is defined as an object of the slicer cache. Specify a worksheet as the destination. The name argument controls the internal name for the slicer. The Caption argument is the heading that is visible in the slicer. This might be useful if you would like to show the name Region, but the IT department defined the field as IDKRegn. Specify the size of the slicer by using height and width in points. Specify the location by using top and left in points.

In the following code, the values for top, left, height, and width are assigned to be equal to the location or size of certain cell ranges:

Click here to view code image

Dim SLP as Slicer

Set SLP = SCP.Slicers.Add(SlicerDestination:=WSD, Name:="Product", _

Caption:="Product", _

Top:=WSD.Range("A12").Top, _

Left:=WSD.Range("A12").Left + 10, _

Width:=WSR.Range("A12:C12").Width, _

Height:=WSD.Range("A12:A16").Height)

Every slicer starts out as one column. You can change the style and number of columns code like this:

Click here to view code image

' Format the color and number of columns

With SLP

.Style = "SlicerStyleLight6"

.NumberOfColumns = 5

End With

After the slicer is defined, you can use VBA to choose which items are activated in the slicer. It seems counterintuitive, but to choose items in the slicer, you have to change SlicerItem, which is a member of the SlicerCache, not a member of the Slicer:

Click here to view code image

With SCP

.SlicerItems("A292").Selected = True

.SlicerItems("B722").Selected = True

.SlicerItems("C409").Selected = False

.SlicerItems("D625").Selected = False

.SlicerItems("E438").Selected = False

End With

Listing 12-4 shows how to build a pivot table with two slicers.

Listing 12-4 Code to build a pivot table with two slicers

Click here to view code image

Sub PivotWithTwoSlicers()

Dim SCP As SlicerCache ' For Product slicer

Dim SCC As SlicerCache ' For Customer slicer

Dim SLP As Slicer

Dim SLC As Slicer

Dim WSD As Worksheet

Dim WSR As Worksheet

Dim WBD As Workbook

Dim PT As PivotTable

Dim PTCache As PivotCache

Dim PRange As Range

Dim FinalRow As Long

Set WBD = ActiveWorkbook

Set WSD = Worksheets("Data")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables

PT.TableRange2.Clear

Next PT

' Delete any prior slicer cache

For Each SC In ActiveWorkbook.SlicerCaches

SC.Delete

Next SC

' Define input area and set up a pivot cache

WSD.Select

FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

FinalCol = WSD.Cells(1, Columns.Count). _

End(xlToLeft).Column

Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

' Define the pivot table cache

Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase, _

Click here to view code image

SourceData:=PRange.Address, _

Version:=xlPivotTableVersion15)

' Create the pivot table from the pivot cache

Set PT = PTCache.CreatePivotTable(_

TableDestination:=Cells(18, FinalCol + 2), _

TableName:="PivotTable1", _

DefaultVersion:=xlPivotTableVersion15)

' Set up the row and column fields

PT.AddFields RowFields:=Array("Region")

' Set up the data fields

With PT.PivotFields("Quantity")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "#,##0"

.Name = "Quantity "

End With

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "$#,##0"

.Name = "Revenue "

End With

With PT.PivotFields("Profit")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "$#,##0"

.Name = "Profit "

End With

' Define the slicer caches

Set SCC = WBD.SlicerCaches.Add(PT, "Customer")

Set SCP = WBD.SlicerCaches.Add(PT, "Product")

' Define Product as a slicer

Set SLP = SCP.Slicers.Add(WSD, , _

Name:="Product", _

Caption:="Product", _

Top:=WSD.Range("J14").Top + 5, _

Left:=WSD.Range("J14").Left + 5, _

Width:=343, Height:=54)

SLP.Style = "SlicerStyleLight4"

SLP.NumberOfColumns = 5

' Define Customer as a slicer

Set SLC = SCC.Slicers.Add(WSD, , _

Name:="Customer", _

Click here to view code image

Caption:="Customer", _

Top:=WSD.Range("J1").Top + 5, _

Left:=WSD.Range("J1").Left + 5, _

Width:=415, Height:=184)

SLC.Style = "SlicerStyleLight2"

SLC.NumberOfColumns = 3

' Unselect some products

With SCP

.SlicerItems("C409").Selected = False

.SlicerItems("D625").Selected = False

.SlicerItems("E438").Selected = False

End With

' Unselect one customer

With SCC

.SlicerItems("Guarded Kettle Corporation").Selected = False

End With

End Sub

The preceding code assigned the newly created slicer to an object variable so you could easily format the slicer. What if a slicer was created before your macro starts running? You can easily figure out the name of the slicer. If a slicer is created for the Product field, for example, the name of the SlicerCache is "Slicer_Product". The following code formats existing slicers:

Click here to view code image

Sub MoveAndFormatSlicer()

Dim SCP As SlicerCache

Dim SLP as Slicer

Dim WSD As Worksheet

Set WSD = ActiveSheet

Set SCP = ActiveWorkbook.SlicerCaches("Slicer_Product")

Set SLP = SCS.Slicers("Product")

With SLP

.Style = "SlicerStyleLight6"

.NumberOfColumns = 5

.Top = WSD.Range("A1").Top + 5

.Left = WSD.Range("A1").Left + 5

.Width = WSD.Range("A1:B14").Width - 60

.Height = WSD.Range("A1:B14").Height

End With

End Sub

Setting up a timeline to filter an Excel 2019 pivot table

Microsoft introduced the Timeline slicer in Excel 2013. This is a special type of slicer that is not compatible with Excel 2010 or earlier. The marketing name of Excel 2013 was Version 15, and VBA still uses that name, so if you plan on using a Timeline slicer, you have to specify xlPivotTableVersion15 (or higher) in two places in the code:

Click here to view code image

' Define the pivot table cache

Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase, _

SourceData:=PRange.Address, _

Version:=xlPivotTableVersion15)

' Create the pivot table from the pivot cache

Set PT = PTCache.CreatePivotTable(_

TableDestination:=Cells(10, FinalCol + 2), _

TableName:="PivotTable1", _

DefaultVersion:=xlPivotTableVersion15)

Later, after adding fields to your pivot table, you define a slicer cache and specify the type as xlTimeLine:

Click here to view code image

' Define the slicer cache

' First two arguments are Source and SourceField

' Third argument, Name, should be skipped

Set SC = WBD.SlicerCaches.Add2(PT, "ShipDate", , _

SlicerCacheType:=xlTimeline)

Then you add the slicer to the slicer cache:

Click here to view code image

' Define the timeline as a slicer

Set SL = SC.Slicers.Add(WSD, , _

Name:="ShipDate", _

Caption:="Year", _

Top:=WSD.Range("J1").Top, _

Left:=WSD.Range("J1").Left, _

Width:=262.5, Height:=108)

Timelines can exist at the day, month, quarter, or year level. To change the level of a timeline, use the TimelineViewState.Level property:

Click here to view code image

SL.TimelineViewState.Level = xlTimelineLevelYears

To filter a timeline to certain dates, you have to use the Timeline State.SetFilterDataRange property, which applies to the slicer cache:

Click here to view code image

SC.TimelineState.SetFilterDateRange "1/1/2014", "12/31/2015"

Listing 12-5 shows the complete macro to build a version 15 pivot table and add a Timeline slicer.

Listing 12-5 Code to build a pivot with a timeline

Click here to view code image

Sub PivotWithYearSlicer()

Dim SC As SlicerCache

Dim SL As Slicer

Dim WSD As Worksheet

Dim WSR As Worksheet

Dim WBD As Workbook

Dim PT As PivotTable

Dim PTCache As PivotCache

Dim PRange As Range

Dim FinalRow As Long

Click here to view code image

Set WBD = ActiveWorkbook

Set WSD = Worksheets("Data")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables

PT.TableRange2.Clear

Next PT

' Delete any prior slicer cache

For Each SC In ActiveWorkbook.SlicerCaches

SC.Delete

Next SC

' Define input area and set up a pivot cache

WSD.Select

FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

FinalCol = WSD.Cells(1, Columns.Count). _

End(xlToLeft).Column

Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

' Define the pivot table cache

Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase, _

SourceData:=PRange.Address, _

Version:=xlPivotTableVersion15)

' Create the pivot table from the pivot cache

Set PT = PTCache.CreatePivotTable(_

TableDestination:=Cells(10, FinalCol + 2), _

TableName:="PivotTable1", _

DefaultVersion:=xlPivotTableVersion15)

' Set up the row and column fields

PT.AddFields RowFields:=Array("Customer")

' Set up the data fields

With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "#,##0"

.Name = "Revenue "

End With

' Define the slicer cache

' First two arguments are Source and SourceField

' Third argument, Name, should be skipped

Set SC = WBD.SlicerCaches.Add2(PT, "ShipDate", , _

SlicerCacheType:=xlTimeline)

' Define the timeline as a slicer

Set SL = SC.Slicers.Add(WSD, , _

Name:="ShipDate", _

Caption:="Year", _

Click here to view code image

Top:=WSD.Range("J1").Top, _

Left:=WSD.Range("J1").Left, _

Width:=262.5, Height:=108)

' Set the timeline to show years

SL.TimelineViewState.Level = xlTimelineLevelYears

' Set the dates for the timeline

SC.TimelineState.SetFilterDateRange "1/1/2018", "12/31/2018"

End Sub

Figure 12-12 shows the Timeline slicer built by the code in Listing 12-5.

[image: The figure shows a Timeline slicer set to show years. It currently shows 2018 through 2019 and 2018 is selected. Note that a drop-down menu at the top right lets you change the slicer to choose Quarters or Months.]

FIGURE 12-12 Timelines were introduced in Excel 2013.

Using the Data Model in Excel 2019

Excel 2019 incorporates most parts of Power Pivot into the core Excel product. This means you can add two tables to the Data Model, create a relationship, build a measure, and then build a pivot table from the Data Model.

To follow along with this example, open the Figure 12-BeforeDataModel.xlsm file from the sample download files. This workbook has two tables: Sales and Sector. Sector is a lookup table that is related to the Sales table via a customer field. To build the pivot table, follow these general steps:

	Add the main table to the Data Model.

	Add the lookup table to the Data Model.

	Link the two tables with a relationship.

	Create a pivot cache from ThisWorkbookDataModel.

	Create a pivot table from the cache.

	Add row fields.

	Define a measure. Add the measure to the pivot table.

Adding both tables to the Data Model

You should already have a data set in the workbook that has been converted to a table using the Ctrl+T shortcut. On the Table Tools Design tab, change the table name to Sales. To link this table to the Data Model, use this code:

Click here to view code image

' Build Connection to the main Sales table

Set WBT = ActiveWorkbook

TableName = "Sales"

WBT.Connections.Add Name:="LinkedTable_" & TableName, _

Description:="", _

ConnectionString:="WORKSHEET;" & WBT.FullName, _

CommandText:=WBT.Name & "!" & TableName, _

lCmdType:=7, _

CreateModelConnection:=True, _

ImportRelationships:=False

There are several variables in this code that use the table name, the workbook path, or the workbook name. By storing the table name in a variable at the top of the code, you can use the variables to build the connection name, connection string, and command text.

Adapting the preceding code to link to the lookup table then requires only changing the TableName variable:

Click here to view code image

TableName = "Sector"

WBT.Connections.Add Name:="LinkedTable_" & TableName, _

Description:="", _

ConnectionString:="WORKSHEET;" & WBT.FullName, _

CommandText:=WBT.Name & "!" & TableName, _

lCmdType:=7, _

CreateModelConnection:=True, _

ImportRelationships:=False

Creating a relationship between the two tables

When you create a relationship in the Excel interface, you specify four items in the Create Relationship dialog box. The code to create the relationship is more streamlined. There can be only one Data Model per workbook. Set an object variable MO to refer to the model in this workbook. Use the ModelRelationships.Add method, specifying the two fields that are linked:

Click here to view code image

' Relate the two tables

Dim MO As Model

Set MO = ActiveWorkbook.Model

MO.ModelRelationships.Add _

ForeignKeyColumn:= _

MO.ModelTables("Sales").ModelTableColumns("Customer"), _

PrimaryKeyColumn:= _

MO.ModelTables("Sector").ModelTableColumns("Customer")

Defining the pivot cache and building the pivot table

The code to define the pivot cache specifies that the data is external. Even though the linked tables are in your workbook, and even though the Data Model is stored as a binary large object within the workbook, this is still considered an external data connection. The connection is always called ThisWorkbookDataModel. To set up the pivot cache, use this code:

Click here to view code image

' Define the PivotCache

Set PTCache = WBT.PivotCaches.Create(SourceType:=xlExternal, _

SourceData:=WBT.Connections("ThisWorkbookDataModel"), _

Version:=xlPivotTableVersion15)

' Create the pivot table from the pivot cache

Set PT = PTCache.CreatePivotTable(_

TableDestination:=WSD.Cells(1, 1), TableName:="PivotTable1")

Adding model fields to the pivot table

There are two types of fields you need to add to the pivot table. Text fields such as Customer, Sector, and Product are simply fields that can be added to the row or column area of the pivot table. No calculation has to happen to these fields. The code for adding text fields is shown in this section. When you add a numeric field to the values area in the Excel interface, you are actually implicitly defining a new calculated field. To do this in VBA, you have to explicitly define the field and then add it.

First, let’s look at the simpler example of adding a text field to the row area. The VBA code generically looks like this:

Click here to view code image

With PT.CubeFields("[TableName].[FieldName]")

.Orientation = xlRowField

.Position = 1

End With

In the current example, add the Sector field from the Sector table by using this code:

Click here to view code image

With PT.CubeFields("[Sector].[Sector]")

.Orientation = xlRowField

.Position = 1

End With

Adding numeric fields to the values area

If you have a Data Model pivot table and you check the Revenue field, you see the Revenue field move to the Values area. Behind the scenes, though, Excel is implicitly defining a new measure called Sum of Revenue. (You can see the implicit measures in the Power Pivot window if you have Excel 2019 Pro Plus.) In VBA, you need to define a new measure for Sum of Revenue. To make it easier to refer to this measure later, assign the new measure to an object variable:

Click here to view code image

' Before you can add Revenue to the pivot table,

' you have to define the measure.

' This happens using the GetMeasure method.

' Assign the cube field to the CFRevenue object

Dim CFRevenue As CubeField

Set CFRevenue = PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Revenue]", _

Function:=xlSum, _

Caption:="Sum of Revenue")

' Add the newly created cube field to the pivot table

PT.AddDataField Field:=CFRevenue, _

Caption:="Total Revenue"

PT.PivotFields("Total Revenue").NumberFormat = "$#,##0,K"

You can use the preceding code to create a new measure. The following measure uses the new xlDistinctCount function to count the number of unique customers in each sector:

Click here to view code image

' Add distinct count of customer as a cube field

Dim CFCustCount As CubeField

Set CFCustCount = PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Customer]", _

Function:=xlDistinctCount, _

Caption:="Customer Count")

' Add the newly created cube field to the pivot table

PT.AddDataField Field:=CFCustCount, _

Caption:="Customer Count"

Now that PowerPivot ships with every copy of Excel 2019, you can use DAX formulas to create new measures. The following code adds a field for Median Sales:

Click here to view code image

' Add Median Sales using DAX

ActiveWorkbook.Model.ModelMeasures.Add _

MeasureName:="Median Sales", _

AssociatedTable:=ActiveWorkbook.Model.ModelTables("Sales"), _

Formula:="Median([Revenue])", _

FormatInformation:=ActiveWorkbook.Model.ModelFormatCurrency("Default", 2)

PT.AddDataField PT.CubeFields("[Measures].[Median Sales]")

Putting it all together

Figure 12-13 shows the Data Model pivot table created using the code in Listing 12-6.

[image: The figure shows a pivot table with Total Revenue, Customer Count, and Median Sales.]

FIGURE 12-13 Two tables are linked with a pivot table and two measures via a macro.

Listing 12-6 Code to create a Data Model pivot table

Click here to view code image

Sub BuildModelPivotTable()

Dim WBT As Workbook

Dim WC As WorkbookConnection

Dim MO As Model

Dim PTCache As PivotCache

Dim PT As PivotTable

Dim WSD As Worksheet

Dim CFRevenue As CubeField

Dim CFCustCount As CubeField

Set WBT = ActiveWorkbook

Set WSD = WBT.Worksheets("Report")

' Build connection to the main Sales table

TableName = "Sales"

WBT.Connections.Add2 Name:="LinkedTable_" & TableName, _

Description:="MainTable", _

ConnectionString:="WORKSHEET;" & WBT.FullName, _

CommandText:=WBT.Name & "!" & TableName, _

lCmdType:=7, _

CreateModelConnection:=True, _

ImportRelationships:=False

' Build connection to the Sector lookup table

TableName = "Sector"

WBT.Connections.Add2 Name:="LinkedTable_" & TableName, _

Description:="LookupTable", _

ConnectionString:="WORKSHEET;" & WBT.FullName, _

CommandText:=WBT.Name & "!" & TableName, _

lCmdType:=7, _

CreateModelConnection:=True, _

ImportRelationships:=False

' Relate the two tables

Set MO = ActiveWorkbook.Model

MO.ModelRelationships.Add _

ForeignKeyColumn:=MO.ModelTables("Sales") _

.ModelTableColumns("Customer"), _

PrimaryKeyColumn:=MO.ModelTables("Sector") _

.ModelTableColumns("Customer")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables

PT.TableRange2.Clear

Next PT

' Define the PivotCache

Set PTCache = WBT.PivotCaches.Create(SourceType:=xlExternal, _

SourceData:=WBT.Connections("ThisWorkbookDataModel"), _

Version:=xlPivotTableVersion15)

' Create the pivot table from the pivot cache

Set PT = PTCache.CreatePivotTable(_

TableDestination:=WSD.Cells(1, 1), TableName:="PivotTable1")

Click here to view code image

' Add the Sector field from the Sector table to the Row areas

With PT.CubeFields("[Sector].[Sector]")

.Orientation = xlRowField

.Position = 1

End With

' Before you can add Revenue to the pivot table,

' you have to define the measure.

' This happens using the GetMeasure method

' Assign the cube field to the CFRevenue object

Set CFRevenue = PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Revenue]", _

Function:=xlSum, _

Caption:="Sum of Revenue")

' Add the newly created cube field to the pivot table

PT.AddDataField Field:=CFRevenue, _

Caption:="Total Revenue"

PT.PivotFields("[Measures].[Sum of Revenue]") _

.NumberFormat = "$#,##0,K"

' Add Distinct Count of Customer as a cube field

Set CFCustCount = PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Customer]", _

Function:=xlDistinctCount, _

Caption:="Customer Count")

' Add the newly created cube field to the pivot table

PT.AddDataField Field:=CFCustCount, _

Caption:="Customer Count"

' Add Median Sales using DAX

ActiveWorkbook.Model.ModelMeasures.Add _

MeasureName:="Median Sales", _

AssociatedTable:= _

ActiveWorkbook.Model.ModelTables("Sales"), _

Formula:="Median([Revenue])", _

FormatInformation:= _

ActiveWorkbook.Model.ModelFormatCurrency("Default", 2)

PT.AddDataField PT.CubeFields("[Measures].[Median Sales]")

End Sub

Using other pivot table features

This section covers a few additional features in pivot tables that you might need to code with VBA.

Calculated data fields

Pivot tables offer two types of formulas. The most useful type creates a calculated field. This adds a new field to the pivot table. Calculations for calculated fields are always done at the summary level. If you define a calculated field for average price as revenue divided by units sold, Excel first adds the total revenue and total quantity, and then it does the division of these totals to get the result. In many cases, this is exactly what you need. If your calculation does not follow the associative law of mathematics, it might not work as you expect.

To set up a calculated field, use the Add method with the CalculatedFields object. You have to specify a field name and a formula, as shown here:

Click here to view code image

' Define calculated fields

PT.CalculatedFields.Add Name:="ProfitPercent", _

Formula:="=Profit/Revenue"

With PT.PivotFields("ProfitPercent")

.Orientation = xlDataField

.Function = xlSum

.Position = 3

.NumberFormat = "#0.0%"

.Name = "GP Pct"

End With

[image: Images]

Note If you create a field called Profit Percent, the default pivot table produces a field called Sum of Profit Percent. This title is misleading and downright silly. To prevent this, use the Name property when defining the Data field to replace Sum of Profit Percent with something such as GP Pct. Keep in mind that this name must differ from the name for the calculated field.

Calculated items

Suppose you have a Measure field with two items: Budget and Actual. You would like to add a new position to calculate Variance as Actual minus Budget. You can do this with a calculated item by using this code:

Click here to view code image

' Define calculated item along the product dimension

PT.PivotFields("Measure").CalculatedItems _

.Add "Variance", "='Actual'-'Budget'"

Using ShowDetail to filter a record set

When you double-click any number in any pivot table in the Excel user interface, Excel inserts a new sheet in the workbook and copies all the source records that represent that number. In the Excel user interface, this is a great way to perform a drill-down query into a data set.

The equivalent VBA property is ShowDetail. By setting this property to True for any cell in the pivot table, you generate a new worksheet with all the records that make up that cell:

Click here to view code image

PT.TableRange2.Offset(2, 1).Resize(1, 1).ShowDetail = True

Changing the layout from the Design tab

The Layout group on the Design tab contains four drop-down menus that control the following:

	Location of subtotals (top or bottom)

	Presence of grand totals

	Report layout, including whether outer row labels are repeated

	Presence of blank rows

Subtotals can appear either at the top or at the bottom of a group of pivot items. The SubtotalLocation property applies to the entire pivot table; valid values are xlAtBottom and xlAtTop:

PT.SubtotalLocation:=xlAtTop

Grand totals can be turned on or off for rows or columns. Because these two settings can be confusing, remember that at the bottom of a report, there is a total line that most people would call the grand total row. To turn off that row, you have to use the following:

PT.ColumnGrand = False

You need to turn off ColumnGrand when you want to suppress the total row because Microsoft calls that row the “grand total for columns.” Get it? In other words, Microsoft is saying that the row at the bottom contains the total of the columns above it. It is one of the more awkward phrases in the Excel ribbon. It confuses me every time.

To suppress what you would call the grand total column along the right side of the report, you have to suppress what Microsoft calls the “total for rows” by using the following code:

PT.RowGrand = False

Settings for the report layout

There are three settings for the report layout:

	Tabular layout—Similar to the default layout in Excel 2003

	Outline layout—Optionally available in Excel 2003

	Compact layout—Introduced in Excel 2007

When you create a pivot table in the Excel interface, you get the Compact layout. When you build a pivot table in VBA, you get the Tabular layout. You can change to one of the other layouts with one of these lines:

Click here to view code image

PT.RowAxisLayout xlTabularRow

PT.RowAxisLayout xlOutlineRow

PT.RowAxisLayout xlCompactRow

Starting in Excel 2007, you can add a blank line to the layout after each group of pivot items. Although the Design tab offers a single setting to affect the entire pivot table, the setting is actually applied individually to each pivot field. The macro recorder responds by recording a dozen lines of code for a pivot table with 12 fields. You can intelligently add a single line of code for the outer row fields:

Click here to view code image

PT.PivotFields("Region").LayoutBlankLine = True

Suppressing subtotals for multiple row fields

As soon as you have more than one row field, Excel automatically adds subtotals for all but the innermost row field. That extra row field can get in the way if you plan to reuse the results of the pivot table as a new data set for some other purpose. Although accomplishing this task manually can be relatively simple, the VBA code to suppress subtotals is surprisingly complex.

Most people do not realize that it is possible to show multiple types of subtotals. For example, you can choose to show Total, Average, Min, and Max in the same pivot table.

To suppress subtotals for a field, you must set the Subtotals property equal to an array of 12 False values. The first False turns off automatic subtotals, the second False turns off the Sum subtotal, the third False turns off the Count subtotal, and so on. This code suppresses the Region subtotal:

Click here to view code image

PT.PivotFields("Region").Subtotals = Array(False, False, False, False, _

False, False, False, False, False, False, False, False)

A different technique is to turn on the first subtotal. This method automatically turns off the other 11 subtotals. You can then turn off the first subtotal to make sure that all subtotals are suppressed:

Click here to view code image

PT.PivotFields("Region").Subtotals(1) = True

PT.PivotFields("Region").Subtotals(1) = False

Case study: Applying a data visualization

Beginning with Excel 2007, fantastic data visualizations such as icon sets, color gradients, and in-cell data bars are offered. When you apply a visualization to a pivot table, you should exclude the total rows from the visualization.

If you have 20 customers that average $3 million in revenue each, the total for the 20 customers is $60 million. If you include the total in the data visualization, the total gets the largest bar, and all the customer records have tiny bars.

In the Excel user interface, you always want to use the Add Rule or Edit Rule choice to select the option All Cells Showing “Sum of Revenue” for “Customer.”

The code to add a data bar to the Revenue field is as follows:

Click here to view code image

' Apply a data bar

PT.TableRange2.Cells(3, 2).Select

Selection.FormatConditions.AddDatabar

Selection.FormatConditions(1).ShowValue = True

Selection.FormatConditions(1).SetFirstPriority

With Selection.FormatConditions(1)

.MinPoint.Modify newtype:=xlConditionValueLowestValue

.MaxPoint.Modify newtype:=xlConditionValueHighestValue

End With

With Selection.FormatConditions(1).BarColor

.ThemeColor = xlThemeColorAccent3

.TintAndShade = -0.5

End With

Selection.FormatConditions(1).ScopeType = xlFieldsScope

Next steps

You may be able to tell that pivot tables are my favorite feature in Excel. They are incredibly powerful and flexible. Combined with VBA, they provide an excellent calculation engine and power many of the reports I build for clients. Chapter 13, “Excel power,” offers multiple techniques for handling various tasks in VBA.

CHAPTER 13
Excel power

In this chapter, you will:

	List all files in a folder

	Import data from a CSV file

	Learn methods of splitting and merging data

	Export data to an XML file

	Create a log file

	Learn favorite techniques of various VBA pros

Amajor secret of successful programmers is to never waste time writing the same code twice. They all have little bits—or even big bits—of code that they use over and over again. Another big secret is to never take 8 hours doing something that can be done in 10 minutes—which is what this book is about!

This chapter contains programs donated by several Excel power programmers. These are programs they have found useful and that they hope will help you, too. Not only can these programs save you time, but they also can teach you new ways of solving common problems.

Different programmers have different programming styles, and we didn’t rewrite the submissions. As you review the code in this chapter, you’ll notice different ways of doing the same task, such as referring to ranges.

File operations

The utilities shown in the following sections deal with handling files in folders. Being able to loop through a list of files in a folder is a useful task.

Listing files in a directory

This utility was submitted by our good friend Nathan P. Oliver of Minneapolis, Minnesota.

This program returns the filename, size, and date modified of all specified file types in the selected directory and its subfolders:

Click here to view code image

Sub ExcelFileSearch()

Dim srchExt As Variant, srchDir As Variant

Dim i As Long, j As Long, strName As String

Dim varArr(1 To 1048576, 1 To 3) As Variant

Dim strFileFullName As String

Dim ws As Worksheet

Dim fso As Object

Let srchExt = Application.InputBox("Please Enter File Extension", _

"Info Request")

If srchExt = False And Not TypeName(srchExt) = "String" Then

Exit Sub

End If

Let srchDir = BrowseForFolderShell

If srchDir = False And Not TypeName(srchDir) = "String" Then

Exit Sub

End If

Application.ScreenUpdating = False

Set ws = ThisWorkbook.Worksheets.Add(Sheets(1))

On Error Resume Next

Application.DisplayAlerts = False

ThisWorkbook.Worksheets("FileSearch Results").Delete

Application.DisplayAlerts = True

On Error GoTo 0

ws.Name = "FileSearch Results"

Let strName = Dir$(srchDir & "*" & srchExt)

Do While strName <> vbNullString

Let i = i + 1

Let strFileFullName = srchDir & strName

Let varArr(i, 1) = strFileFullName

Let varArr(i, 2) = FileLen(strFileFullName) \ 1024

Let varArr(i, 3) = FileDateTime(strFileFullName)

Let strName = Dir$()

Loop

Set fso = CreateObject("Scripting.FileSystemObject")

Call recurseSubFolders(fso.GetFolder(srchDir), varArr(), i, CStr(srchExt))

Set fso = Nothing

ThisWorkbook.Windows(1).DisplayHeadings = False

With ws

If i > 0 Then

.Range("A2").Resize(i, UBound(varArr, 2)).Value = varArr

For j = 1 To i

.Hyperlinks.Add anchor:=.Cells(j + 1, 1), Address:=varArr(j, 1)

Next

End If

.Range(.Cells(1, 4), .Cells(1, .Columns.Count)).EntireColumn.Hidden = _

True

.Range(.Cells(.Rows.Count, 1).End(xlUp)(2), _

.Cells(.Rows.Count, 1)).EntireRow.Hidden = True

With .Range("A1:C1")

Click here to view code image

.Value = Array("Full Name", "Kilobytes", "Last Modified")

.Font.Underline = xlUnderlineStyleSingle

.EntireColumn.AutoFit

.HorizontalAlignment = xlCenter

End With

End With

Application.ScreenUpdating = True

End Sub

Private Sub recurseSubFolders(ByRef Folder As Object, _

ByRef varArr() As Variant, _

ByRef i As Long, _

ByRef srchExt As String)

Dim SubFolder As Object

Dim strName As String, strFileFullName As String

For Each SubFolder In Folder.SubFolders

Let strName = Dir$(SubFolder.Path & "*" & srchExt)

Do While strName <> vbNullString

Let i = i + 1

Let strFileFullName = SubFolder.Path & "\" & strName

Let varArr(i, 1) = strFileFullName

Let varArr(i, 2) = FileLen(strFileFullName) \ 1024

Let varArr(i, 3) = FileDateTime(strFileFullName)

Let strName = Dir$()

Loop

If i > 1048576 Then Exit Sub

Call recurseSubFolders(SubFolder, varArr(), i, srchExt)

Next

End Sub

Private Function BrowseForFolderShell() As Variant

Dim objShell As Object, objFolder As Object

Set objShell = CreateObject("Shell.Application")

Set objFolder = objShell.BrowseForFolder(0, "Please select a folder", _

0, "C:\")

If Not objFolder Is Nothing Then

On Error Resume Next

If IsError(objFolder.Items.Item.Path) Then

BrowseForFolderShell = CStr(objFolder)

Else

On Error GoTo 0

If Len(objFolder.Items.Item.Path) > 3 Then

BrowseForFolderShell = objFolder.Items.Item.Path & _

Application.PathSeparator

Else

BrowseForFolderShell = objFolder.Items.Item.Path

End If

End If

Else

BrowseForFolderShell = False

End If

Set objFolder = Nothing: Set objShell = Nothing

End Function

Importing and deleting a CSV file

This utility was submitted by Masaru Kaji of Kobe, Japan. Masaru is a computer systems administrator. He maintains an Excel VBA tip site, Cell Masters, at cellmasters.net/vbatips.htm.

If you find yourself importing a lot of comma-separated value (CSV) files and then having to go back and delete them, this program is for you. It quickly opens a CSV file in Excel and permanently deletes the original file:

Click here to view code image

Option Base 1

Sub OpenLargeCSVFast()

Dim buf(1 To 16384) As Variant

Dim i As Long

'Change the file location and name here

Const strFilePath As String = "C:\temp\Sales.CSV"

Dim strRenamedPath As String

strRenamedPath = Split(strFilePath, ".")(0) & "txt"

With Application

.ScreenUpdating = False

.DisplayAlerts = False

End With

'Setting an array for FieldInfo to open CSV

For i = 1 To 16384

buf(i) = Array(i, 2)

Next

Name strFilePath As strRenamedPath

Workbooks.OpenText Filename:=strRenamedPath, DataType:=xlDelimited, _

Comma:=True, FieldInfo:=buf

Erase buf

ActiveSheet.UsedRange.Copy ThisWorkbook.Sheets(1).Range("A1")

ActiveWorkbook.Close False

Kill strRenamedPath

With Application

.ScreenUpdating = True

.DisplayAlerts = True

End With

End Sub

Reading a text file into memory and parsing

This utility was submitted by Rory Archibald, a reinsurance analyst residing in East Sussex, United Kingdom. A self-admitted geek by inclination, he also maintains the website ExcelMatters.com.

This utility takes a different approach to reading a text file than you might have used in the past. Instead of reading one record at a time, the macro loads the entire text file into memory in a single string variable. The macro then parses the string into individual records, all still in memory. It then places all the records on the sheet at one time (what I like to call “dumping” the data onto the sheet). The advantage of this method is that you access the file on disk only one time. All subsequent processing occurs in memory and is very fast. Without further ado, here’s the utility:

Click here to view code image

Sub LoadLinesFromCSV()

Dim sht As Worksheet

Dim strtxt As String

Dim textArray() As String

' Add new sheet for output

Set sht = Sheets.Add

' open the csv file

With CreateObject("Scripting.FileSystemObject") _

.GetFile("c:\temp\sales.csv").OpenAsTextStream(1)

'read the contents into a variable

strtxt = .ReadAll

' close it!

.Close

End With

'split the text into an array using carriage return and line feed

'separator

textArray = VBA.Split(strtxt, vbCrLf)

sht.Range("A1").Resize(UBound(textArray) + 1).Value = _

Application.Transpose(textArray)

End Sub

Combining and separating workbooks

The utilities in the following sections demonstrate how to combine worksheets into a single workbook or separate a single workbook into individual worksheets or export data on a sheet to an XML file.

Separating worksheets into workbooks

This utility was submitted by Tommy Miles of Houston, Texas.

This sample goes through the active workbook and saves each sheet as its own workbook in the same path as the original workbook. It names the new workbooks based on the sheet name, and it overwrites files without prompting. Notice that you need to choose whether you save the file as .xlsm (macro-enabled) or .xlsx (with macros stripped). In the following code, both lines are included—xlsm and xlsx—but the xlsx lines are commented out to make them inactive:

Click here to view code image

Sub SplitWorkbook()

Dim ws As Worksheet

Dim DisplayStatusBar As Boolean

DisplayStatusBar = Application.DisplayStatusBar

Application.DisplayStatusBar = True

Application.ScreenUpdating = False

Application.DisplayAlerts = False

Click here to view code image

For Each ws In ThisWorkbook.Sheets

Dim NewFileName As String

Application.StatusBar = ThisWorkbook.Sheets.Count & _

" Remaining Sheets"

If ThisWorkbook.Sheets.Count <> 1 Then

NewFileName = ThisWorkbook.Path & "\" & ws.Name & ".xlsm" _

'Macro-Enabled

' NewFileName = ThisWorkbook.Path & "\" & ws.Name & ".xlsx" _

'Not Macro-Enabled

ws.Copy

ActiveWorkbook.Sheets(1).Name = "Sheet1"

ActiveWorkbook.SaveAs Filename:=NewFileName, _

FileFormat:=xlOpenXMLWorkbookMacroEnabled

' ActiveWorkbook.SaveAs Filename:=NewFileName, _

FileFormat:=xlOpenXMLWorkbook

ActiveWorkbook.Close SaveChanges:=False

Else

NewFileName = ThisWorkbook.Path & "\" & ws.Name & ".xlsm"

' NewFileName = ThisWorkbook.Path & "\" & ws.Name & ".xlsx"

ws.Name = "Sheet1"

End If

Next

Application.DisplayAlerts = True

Application.StatusBar = False

Application.DisplayStatusBar = DisplayStatusBar

Application.ScreenUpdating = True

End Sub

Combining workbooks

This utility was submitted by Tommy Miles.

This sample goes through all the Excel files in a specified directory and combines them into a single workbook. It renames the sheets based on the name of the original workbook:

Click here to view code image

Sub CombineWorkbooks()

Dim CurFile As String, DirLoc As String

Dim DestWB As Workbook

Dim ws As Object 'allows for different sheet types

DirLoc = ThisWorkbook.Path & "\tst\" 'location of files

CurFile = Dir(DirLoc & "*.xls*")

Application.ScreenUpdating = False

Application.EnableEvents = False

Set DestWB = Workbooks.Add(xlWorksheet)

Do While CurFile <> vbNullString

Dim OrigWB As Workbook

Set OrigWB = Workbooks.Open(Filename:=DirLoc & CurFile, _

ReadOnly:=True)

Click here to view code image

'Limits to valid sheet names and removes ".xls*"

CurFile = Left(Left(CurFile, Len(CurFile) - 5), 29)

For Each ws In OrigWB.Sheets

ws.Copy After:=DestWB.Sheets(DestWB.Sheets.Count)

If OrigWB.Sheets.Count > 1 Then

DestWB.Sheets(DestWB.Sheets.Count).Name = CurFile & ws.Index

Else

DestWB.Sheets(DestWB.Sheets.Count).Name = CurFile

End If

Next

OrigWB.Close SaveChanges:=False

CurFile = Dir

Loop

Application.DisplayAlerts = False

DestWB.Sheets(1).Delete

Application.DisplayAlerts = True

Application.ScreenUpdating = True

Application.EnableEvents = True

Set DestWB = Nothing

End Sub

Copying data to separate worksheets without using Filter

This utility was submitted by Zack Barresse from Boardman, Oregon. Zack is an Excel ninja and VBA nut, and he’s a former firefighter and paramedic who owns/operates exceltables.com. He co-authored one of my favorite books, Excel Tables: A Complete Guide for Creating, Using, and Automating Lists and Tables (Holy Macro! Books, 2014), with Kevin Jones.

You can use Filter to select specific records and then copy them to another sheet. But if you are dealing with a lot of data or have formulas in the data set, it can take a while to run. Instead of using Filter, consider using a formula to mark the desired records and then sort by that column to group the desired records together. Combine this with SpecialCells, and you could have a procedure that runs up to 10 times faster than code that uses Filter. Here’s how it looks:

Click here to view code image

Sub CriteriaRange_Copy()

Dim Table As ListObject

Dim SortColumn As ListColumn

Dim CriteriaColumn As ListColumn

Dim FoundRange As Range

Dim TargetSheet As Worksheet

Dim HeaderVisible As Boolean

Set Table = ActiveSheet.ListObjects(1) ' Set as desired

HeaderVisible = Table.ShowHeaders

Table.ShowHeaders = True

On Error GoTo RemoveColumns

Click here to view code image

Set SortColumn = Table.ListColumns.Add(Table.ListColumns.Count + 1)

Set CriteriaColumn = Table.ListColumns.Add _

(Table.ListColumns.Count + 1)

On Error GoTo 0

'Add a column to keep track of the original order of the records

SortColumn.Name = " Sort"

CriteriaColumn.Name = " Criteria"

SortColumn.DataBodyRange.Formula = "=ROW(A1!)"

SortColumn.DataBodyRange.Value = SortColumn.DataBodyRange.Value

'add the formula to mark the desired records

'the records not wanted will have errors

CriteriaColumn.DataBodyRange.Formula = "=1/(([@Units]<10)*([@Cost]<5))"

CriteriaColumn.DataBodyRange.Value = CriteriaColumn.DataBodyRange.Value

Table.Range.Sort Key1:=CriteriaColumn.Range(1, 1), _

Order1:=xlAscending, Header:=xlYes

On Error Resume Next

Set FoundRange = Intersect(Table.Range, CriteriaColumn.DataBodyRange. _

SpecialCells(xlCellTypeConstants, xlNumbers).EntireRow)

On Error GoTo 0

If Not FoundRange Is Nothing Then

Set TargetSheet = ThisWorkbook.Worksheets.Add(After:=ActiveSheet)

FoundRange(1, 1).Offset(-1, 0).Resize(FoundRange.Rows.Count + 1, _

FoundRange.Columns.Count - 2).Copy

TargetSheet.Range("A1").PasteSpecial xlPasteValuesAndNumberFormats

Application.CutCopyMode = False

End If

Table.Range.Sort Key1:=SortColumn.Range(1, 1), Order1:=xlAscending, _

Header:=xlYes

RemoveColumns:

If Not SortColumn Is Nothing Then SortColumn.Delete

If Not CriteriaColumn Is Nothing Then CriteriaColumn.Delete

Table.ShowHeaders = HeaderVisible

End Sub

Exporting data to an XML file

This utility was submitted by Livio Lanzo. Livio is currently working as a business analyst in finance in Luxembourg. His main task is to develop Excel/Access tools for a bank. Livio is also active on the MrExcel.com forum under the handle VBA Geek.

This program exports the data from a table to an XML file. It uses early binding, so a reference must be established in the VB Editor using Tools, References to the Microsoft XML, v6.0 library:

Click here to view code image

Const ROOT_ELEMENT_NAME = "SAMPLEDATA"

Const GROUPS_NAME = "EMPLOYEES"

Const XML_EXPORT_PATH = "C:\temp\myXMLFile.xml"

Click here to view code image

Sub CreateXML()

Dim xml_DOM As MSXML2.DOMDocument60

Dim xml_El As MSXML2.IXMLDOMElement

Dim xRow As Long

Dim xCol As Long

Set xml_DOM = CreateObject("MSXML2.DOMDocument.6.0")

xml_DOM.appendChild xml_DOM.createElement(ROOT_ELEMENT_NAME)

With Sheet1.ListObjects("TableEmployees")

For xRow = 1 To .ListRows.Count

CREATE_APPEND_ELEMENT xml_DOM, ROOT_ELEMENT_NAME, GROUPS_NAME, _

0, NODE_ELEMENT

For xCol = 1 To .ListColumns.Count

CREATE_APPEND_ELEMENT xml_DOM, GROUPS_NAME,

.HeaderRowRange(1, xCol).Text, (xRow - 1), NODE_ELEMENT

CREATE_APPEND_ELEMENT xml_DOM, .HeaderRowRange(1, xCol).Text, _

.DataBodyRange(xRow, xCol).Text, (xRow - 1), NODE_TEXT

Next xCol

Next xRow

End With

xml_DOM.Save XML_EXPORT_PATH

MsgBox "File Created: " & XML_EXPORT_PATH, vbInformation

End Sub

Private Sub CREATE_APPEND_ELEMENT(xmlDOM As MSXML2.DOMDocument60, _

ParentElName As String, _

NewElName As String, _

ParentElIndex As Long, _

ELType As MSXML2.tagDOMNodeType)

Dim xml_ELEMENT As Object

If ELType = NODE_ELEMENT Then

Set xml_ELEMENT = xmlDOM.createElement(NewElName)

ElseIf ELType = NODE_TEXT Then

Set xml_ELEMENT = xmlDOM.createTextNode(NewElName)

End If

xmlDOM.getElementsByTagName(ParentElName)(ParentElIndex).appendChild _

xml_ELEMENT

End Sub

Working with cell comments

Cell comments are an often-underused feature in Excel. The following two utilities help you get the most out of cell comments.

Resizing comments

This utility was submitted by Tom Urtis of San Francisco, California. Tom is the principal owner of Atlas Programming Management, an Excel consulting firm in the Bay Area.

Excel doesn’t automatically resize cell comments. In addition, if you have several of them on a sheet, as shown in Figure 13-1, resizing them one at a time can be a hassle. The following utility resizes all the comment boxes on a sheet so that, when selected, the entire comment is easily viewable, as shown in Figure 13-2.

[image: The screenshot shows differently sized cell comments. Not all the text within the comments is viewable.]

FIGURE 13-1 By default, Excel doesn’t size the comment boxes to show all the entered text.

[image: The cell comments shown in Figure 13-2 have been resized to show all the text comments.]

FIGURE 13-2 Resize the comment boxes to fit all the text.

Click here to view code image

Sub CommentFitter()

Application.ScreenUpdating = False

Dim x As Range, y As Long

For Each x In Cells.SpecialCells(xlCellTypeComments)

Select Case True

Case Len(x.NoteText) <> 0

With x.Comment

.Shape.TextFrame.AutoSize = True

If .Shape.Width > 250 Then

y = .Shape.Width * .Shape.Height

.Shape.Width = 150

.Shape.Height = (y / 200) * 1.3

End If

End With

End Select

Next x

Application.ScreenUpdating = True

End Sub

Placing a chart in a comment

This is another utility submitted by Tom Urtis.

A live chart cannot exist in a shape, but you can take a picture of a chart and load it into the comment shape, as shown in Figure 13-3.

[image: The screenshot shows a cell comment with a chart placed in it.]

FIGURE 13-3 Place a chart in a cell comment.

These are the steps to do this manually:

	Create and save the picture image you want the comment to display.

	If you have not already done so, create the comment and select the cell in which the comment is located.

	From the Review tab, select Edit Comment or right-click the cell and select Edit Comment.

	Right-click the comment border and select Format Comment.

	Select the Colors And Lines tab and click the down arrow belonging to the Color field of the Fill section.

	Select Fill Effects, select the Picture tab, and then click the Select Picture button.

	Navigate to your desired image, select the image, and click OK twice.

The effect of having a “live chart” in a comment can be achieved if, for example, the code is part of a SheetChange event when the chart’s source data is being changed. In addition, business charts are updated often, so you might want a macro to keep the comment updated and to avoid repeating the same steps.

The following utility does just that—and you can use it by simply modifying the file pathname, chart name, destination sheet, cell, and size of comment shape, depending on the size of the chart:

Click here to view code image

Sub PlaceGraph()

Dim x As String, z As Range

Application.ScreenUpdating = False

'assign a temporary location to hold the image

Click here to view code image

x = "C:\temp\XWMJGraph.gif"

'assign the cell to hold the comment

Set z = Worksheets("ChartInComment").Range("A3")

'delete any existing comment in the cell

On Error Resume Next

z.Comment.Delete

On Error GoTo 0

'select and export the chart

ActiveSheet.ChartObjects("Chart 1").Activate

ActiveChart.Export x

'add a new comment to the cell, set the size and insert the chart

With z.AddComment

With .Shape

.Height = 322

.Width = 465

.Fill.UserPicture x

End With

End With

'delete the temporary image

Kill x

Range("A1").Activate

Application.ScreenUpdating = True

Set z = Nothing

End Sub

Tracking user changes

The Change event is a code solution posted often at Excel forums, primarily because it fills a void that formulas alone can’t manage (for example, inserting a date and time stamp when a user changes a specific range). The following utility takes advantage of the Change event in order to create a log file that tracks the cell address, new value, date, time, and username for changes made to column A of the sheet in which the code is placed:

This utility was submitted by Chris “Smitty” Smith of Crested Butte, Colorado. Smitty writes Excel help content for Microsoft on support.office.com. Prior to that he was a professional Office developer. When he’s not busy at work, he is an avid rock and ice climber and an occasional mountaineer.

Click here to view code image

Private Sub Worksheet_Change(ByVal Target As Range)

'Code goes in the Worksheet specific module

Dim ws As Worksheet

Dim lr As Long

Dim rng As Range

'Set the Destination worksheet

Click here to view code image

Set ws = Sheets("Log Sheet")

'Get the first unused row on the Log sheet

lr = ws.Cells(Rows.Count, "A").End(xlUp).Row

'Set Target Range, i.e. Range("A1, B2, C3"), or Range("A1:B3")

Set rng = Target.Parent.Range("A:A")

'Only look at single cell changes

If Target.Count > 1 Then Exit Sub

'Only look at that range

If Intersect(Target, rng) Is Nothing Then Exit Sub

'Action if Condition(s) are met (do your thing here...)

'Put the Target cell's Address in Column A

ws.Cells(lr + 1, "A").Value = Target.Address

'Put the Target cell's value in Column B

ws.Cells(lr + 1, "B").Value = Target.Value

'Put the Date in Column C

ws.Cells(lr + 1, "C").Value = Date

'Put the Time in Column D

ws.Cells(lr + 1, "D").Value = Format(Now, "HH:MM:SS AM/PM")

'Put the Date in Column E

ws.Cells(lr + 1, "E").Value = Environ("UserName")

End Sub

Techniques for VBA pros

The utilities provided in the following sections amaze me. In the various message board communities on the Internet, VBA programmers are constantly coming up with new ways to do things faster and better. When someone posts some new code that obviously runs circles around the prior generally accepted best code, everyone benefits.

Creating an Excel state class module

This utility was submitted by Juan Pablo Gonzàlez Ruiz of Bogotà, Colombia. Juan Pablo is an Excel consultant who runs his photography business at www.juanpg.com.

The following class module is one of my favorites, and I use it in almost every project I create. Before Juan shared the module with me, I used to enter the eight lines of code to turn off and back on screen updating, events, alerts, and calculations. At the beginning of a sub I would turn them off, and at the end I would turn them back on. That was quite a bit of typing. Now I just place the class module in a new workbook I create and call it as needed.

Insert a class module named CAppState and place the following code in it:

Click here to view code image

Private m_su As Boolean

Private m_ee As Boolean

Private m_da As Boolean

Private m_calc As Long

Private m_cursor As Long

Private m_except As StateEnum

Click here to view code image

Public Enum StateEnum

None = 0

ScreenUpdating = 1

EnableEvents = 2

DisplayAlerts = 4

Calculation = 8

Cursor = 16

End Enum

Public Sub SetState(Optional ByVal except As StateEnum = StateEnum.None)

m_except = except

With Application

If Not m_except And StateEnum.ScreenUpdating Then

.ScreenUpdating = False

End If

If Not m_except And StateEnum.EnableEvents Then

.EnableEvents = False

End If

If Not m_except And StateEnum.DisplayAlerts Then

.DisplayAlerts = False

End If

If Not m_except And StateEnum.Calculation Then

.Calculation = xlCalculationManual

End If

If Not m_except And StateEnum.Cursor Then

.Cursor = xlWait

End If

End With

End Sub

Private Sub Class_Initialize()

With Application

m_su = .ScreenUpdating

m_ee = .EnableEvents

m_da = .DisplayAlerts

m_calc = .Calculation

m_cursor = .Cursor

End With

End Sub

Private Sub Class_Terminate()

With Application

If Not m_except And StateEnum.ScreenUpdating Then

.ScreenUpdating = m_su

End If

If Not m_except And StateEnum.EnableEvents Then

.EnableEvents = m_ee

End If

Click here to view code image

If Not m_except And StateEnum.DisplayAlerts Then

.DisplayAlerts = m_da

End If

If Not m_except And StateEnum.Calculation Then

.Calculation = m_calc

End If

If Not m_except And StateEnum.Cursor Then

.Cursor = m_cursor

End If

End With

End Sub

The following code is an example of calling the class module to turn off the various states, running your code, and then setting the states back:

Click here to view code image

Sub RunFasterCode

Dim appState As CAppState

Set appState = New CAppState

appState.SetState None

'run your code

'if you have any formulas that need to update, use

'Application.Calculate

'to force the workbook to calculate

Set appState = Nothing

End Sub

Drilling-down a pivot table

This is yet another utility submitted by Tom Urtis.

When you are double-clicking the data section, a pivot table’s default behavior is to insert a new worksheet and display that drill-down information on the new sheet. This utility serves as an option for convenience, to keep the drilled-down record sets on the same sheet as the pivot table (see Figure 13-4) so that you can delete them as you want.

[image: The figure shows a single sheet with a pivot table and the drill-down of a value from the summarized data.]

FIGURE 13-4 Show the drill-down record set on the same sheet as the pivot table.

To use this macro, double-click the data section or the totals section to create stacked drill-down record sets in the next available row of the sheet. To delete any drill-down record sets you have created, double-click anywhere in their respective current region.

Here’s the utility:

Click here to view code image

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, _

Cancel As Boolean)

Application.ScreenUpdating = False

Dim LPTR&

With ActiveSheet.PivotTables(1).DataBodyRange

LPTR = .Rows.Count + .Row - 1

End With

Dim PTT As Integer

On Error Resume Next

PTT = Target.PivotCell.PivotCellType

If Err.Number = 1004 Then

Err.Clear

If Not IsEmpty(Target) Then

If Target.Row > Range("A1").CurrentRegion.Rows.Count + 1 Then

Cancel = True

With Target.CurrentRegion

.Resize(.Rows.Count + 1).EntireRow.Delete

End With

End If

Else

Cancel = True

End If

Else

CS = ActiveSheet.Name

End If

Application.ScreenUpdating = True

End Sub

Filtering an OLAP pivot table by a list of items

This utility was submitted by Jerry Sullivan of San Diego, California. Jerry is an operations manager for exp (www.exp.com), a building engineering consulting firm.

This procedure filters an OLAP pivot table to show items in a separate list, regardless of whether an item in that list has a matching record.

The code converts user-friendly items into MDX member references—for example, from “banana” to “[tblSales].[product_name].&[banana]"]”:

Click here to view code image

Sub FilterOLAP_PT()

'example showing call to function sOLAP_FilterByItemList

Dim pvt As PivotTable

Dim sErrMsg As String, sTemplate As String

Dim vItemsToBeVisible As Variant

On Error GoTo ErrProc

With Application

Click here to view code image

.EnableCancelKey = xlErrorHandler

.ScreenUpdating = False

.DisplayStatusBar = False

.EnableEvents = False

End With

'read filter items from worksheet table

vItemsToBeVisible = Application.Transpose(_

wksPivots.ListObjects("tblVisibleItemsList").DataBodyRange.Value)

Set pvt = wksPivots.PivotTables("PivotTable1")

'call function

sErrMsg = sOLAP_FilterByItemList(_

pvf:=pvt.PivotFields("[tblSales].[product_name].[product_name]"), _

vItemsToBeVisible:=vItemsToBeVisible, _

sItemPattern:="[tblSales].[product_name].&[ThisItem]")

ExitProc:

On Error Resume Next

With Application

.EnableEvents = True

.DisplayStatusBar = True

.ScreenUpdating = True

End With

If Len(sErrMsg) > 0 Then MsgBox sErrMsg

Exit Sub

ErrProc:

sErrMsg = Err.Number & " - " & Err.Description

Resume ExitProc

End Sub

Private Function sOLAP_FilterByItemList(ByVal pvf As PivotField, _

ByVal vItemsToBeVisible As Variant, _

ByVal sItemPattern As String) As String

'filters an OLAP pivot table to display a list of items,

' where some of the items might not exist

'works by testing whether each pivotitem exists, then building an

' array of existing items to be used with the VisibleItemsList ' property

'Input Parameters:

'pvf - pivotfield object to be filtered

'vItemsToBeVisible - 1-D array of strings representing items to be ' visible

'sItemPattern - string that has MDX pattern of pivotItem reference

' where the text "ThisItem" will be replaced by each

' item in vItemsToBeVisible to make pivotItem references.

' e.g.: "[tblSales].[product_name].&[ThisItem]"

Dim lFilterItemCount As Long, lNdx As Long

Dim vFilterArray As Variant

Dim vSaveVisibleItemsList As Variant

Dim sReturnMsg As String, sPivotItemName As String

Click here to view code image

'store existing visible items

vSaveVisibleItemsList = pvf.VisibleItemsList

If Not (IsArray(vItemsToBeVisible)) Then _

vItemsToBeVisible = Array(vItemsToBeVisible)

ReDim vFilterArray(1 To _

UBound(vItemsToBeVisible) - LBound(vItemsToBeVisible) + 1)

pvf.Parent.ManualUpdate = True

'check if pivotitem exists then build array of items that exist

For lNdx = LBound(vItemsToBeVisible) To UBound(vItemsToBeVisible)

'create MDX format pivotItem reference by substituting item into

'pattern

sPivotItemName = Replace(sItemPattern, "ThisItem", _

vItemsToBeVisible(lNdx))

'attempt to make specified item the only visible item

On Error Resume Next

pvf.VisibleItemsList = Array(sPivotItemName)

On Error GoTo 0

'if item doesn't exist in field, this will be false

If LCase$(sPivotItemName) = LCase$(pvf.VisibleItemsList(1)) Then

lFilterItemCount = lFilterItemCount + 1

vFilterArray(lFilterItemCount) = sPivotItemName

End If

Next lNdx

'if at least one existing item found, filter pivot using array

If lFilterItemCount > 0 Then

ReDim Preserve vFilterArray(1 To lFilterItemCount)

pvf.VisibleItemsList = vFilterArray

Else

sReturnMsg = "No matching items found."

pvf.VisibleItemsList = vSaveVisibleItemsList

End If

pvf.Parent.ManualUpdate = False

sOLAP_FilterByItemList = sReturnMsg

End Function

Creating a custom sort order

This utility was submitted by Wei Jiang of Wuhan City, China.

By default, Excel enables you to sort lists numerically or alphabetically, but sometimes that is not what is needed. For example, a client might need each day’s sales data sorted by the default division order of belts, handbags, watches, wallets, and everything else. Although you can manually set up a custom series and sort using it, if you’re creating an automated workbook for other users, that might not be an option. This utility uses a custom sort order list to sort a range of data into default division order and then deletes the custom sort order, and Figure 13-5 shows the results:

[image: The figure shows columns A:C of a data set with dates in column A, categories in column B, and quantities in column C. The categories are listed in column I in the desired sort order.]

FIGURE 13-5 When you use the macro, the list in A:C is sorted first by date and then by the custom sort list in Column I.

Click here to view code image

Sub CustomSort()

' add the custom list to Custom Lists

Application.AddCustomList ListArray:=Range(“I1:I5”)

' get the list number

nIndex = Application.GetCustomListNum(Range(“I1:I5”).Value)

' Now, we could sort a range with the custom list.

' Note, we should use nIndex + 1 as the custom list number here,

' for the first one is Normal order

Range(“A2:C16”).Sort Key1:=Range(“B2”), Order1:=xlAscending, _

Header:=xlNo, Orientation:=xlSortColumns, _

OrderCustom:=nIndex + 1

Range(“A2:C16”).Sort Key1:=Range(“A2”), Order1:=xlAscending, _

Header:=xlNo, Orientation:=xlSortColumns

' At the end, we should remove this custom list...

Application.DeleteCustomList nIndex

End Sub

Creating a cell progress indicator

Here is another utility submitted by the prolific Tom Urtis.

I have to admit, the conditional formatting options in Excel, such as data bars, are fantastic. However, there still isn’t an option for a visual like the example shown in Figure 13-6. The following utility builds a progress indicator in column C, based on entries in columns A and B:

Click here to view code image

Private Sub Worksheet_Change(ByVal Target As Range)

If Target.Column > 2 Or Target.Cells.Count > 1 Then Exit Sub

If Application.IsNumber(Target.Value) = False Then

Application.EnableEvents = False

Application.Undo

Application.EnableEvents = True

MsgBox "Numbers only please."

Exit Sub

End If

Select Case Target.Column

Case 1

If Target.Value > Target.Offset(0, 1).Value Then

Application.EnableEvents = False

Click here to view code image

Application.Undo

Application.EnableEvents = True

MsgBox "Value in column A may not be larger than value " & _

"in column B."

Exit Sub

End If

Case 2

If Target.Value < Target.Offset(0, -1).Value Then

Application.EnableEvents = False

Application.Undo

Application.EnableEvents = True

MsgBox "Value in column B may not be smaller " & _

"than value in column A."

Exit Sub

End If

End Select

Dim x As Long

x = Target.Row

Dim z As String

z = Range("B" & x).Value - Range("A" & x).Value

With Range("C" & x)

.Formula = "=IF(RC[-1]<=RC[-2],REPT(""n"",RC[-1])&" & _

"REPT(""n"",RC[-2]-RC[-1]),REPT(""n"",RC[-2])&" & _

"REPT(""o"",RC[-1]-RC[-2]))"

.Value = .Value

.Font.Name = "Wingdings"

.Font.ColorIndex = 1

.Font.Size = 10

If Len(Range("A" & x)) <> 0 Then

.Characters(1, (.Characters.Count - z)).Font.ColorIndex = 3

.Characters(1, (.Characters.Count - z)).Font.Size = 12

End If

End With

End Sub

[image: In the figure, column C is a series of empty and filled boxes. The total number of boxes in a cell represents the progress required for the row, entered in column B. The progress made, the value in column A, is represented by filled boxes. Empty boxes represent the difference between progress required and progress made.]

FIGURE 13-6 You can use indicators in cells to show progress.

Using a protected password box

This utility was submitted by Daniel Klann of Sydney, Australia. Daniel works mainly with VBA in Excel and Access but dabbles in all sorts of languages.

Using an input box for password protection has a major security flaw: The characters being entered are easily viewable. This program changes the characters to asterisks as they are entered—just like a real password field (see Figure 13-7). Note that the code that follows does not work in 64-bit Excel. Refer to Chapter 23, “The Windows Application Programming Interface (API),” for information on modifying the code for 64-bit Excel.

[image: In the figure, the password has been entered in the input box, but only asterisks are visible.]

FIGURE 13-7 You can use an input box as a secure password field.

Here is the utility:

Click here to view code image

Private Declare Function CallNextHookEx Lib "user32" _

(ByVal hHook As Long, _

ByVal ncode As Long, ByVal wParam As Long, lParam As Any) As Long

Private Declare Function GetModuleHandle Lib "kernel32" _

Alias "GetModuleHandleA" (ByVal lpModuleName As String) As Long

Private Declare Function SetWindowsHookEx Lib "user32" _

Alias "SetWindowsHookExA" _

(ByVal idHook As Long, ByVal lpfn As Long, _

ByVal hmod As Long,ByVal dwThreadId As Long) As Long

Private Declare Function UnhookWindowsHookEx Lib "user32" _

(ByVal hHook As Long) As Long

Private Declare Function SendDlgItemMessage Lib "user32" _

Alias "SendDlgItemMessageA" _

(ByVal hDlg As Long, _

ByVal nIDDlgItem As Long, ByVal wMsg As Long, _

ByVal wParam As Long, ByVal lParam As Long) As Long

Private Declare Function GetClassName Lib "user32" _

Alias "GetClassNameA" (ByVal hwnd As Long, _

ByVal lpClassName As String, _

ByVal nMaxCount As Long) As Long

Private Declare Function GetCurrentThreadId _

Lib "kernel32" () As Long

'Constants to be used in our API functions

Private Const EM_SETPASSWORDCHAR = &HCC

Private Const WH_CBT = 5

Private Const HCBT_ACTIVATE = 5

Private Const HC_ACTION = 0

Click here to view code image

Private hHook As Long

Public Function NewProc(ByVal lngCode As Long, _

ByVal wParam As Long, ByVal lParam As Long) As Long

Dim RetVal

Dim strClassName As String, lngBuffer As Long

If lngCode < HC_ACTION Then

NewProc = CallNextHookEx(hHook, lngCode, wParam, lParam)

Exit Function

End If

strClassName = String$(256, " ")

lngBuffer = 255

If lngCode = HCBT_ACTIVATE Then 'A window has been activated

RetVal = GetClassName(wParam, strClassName, lngBuffer)

'Check for class name of the Inputbox

If Left$(strClassName, RetVal) = "#32770" Then

'Change the edit control to display the password character *.

'You can change the Asc("*") as you please.

SendDlgItemMessage wParam, &H1324, EM_SETPASSWORDCHAR, Asc("*"), &H0

End If

End If

'This line will ensure that any other hooks that may be in place are

'called correctly.

CallNextHookEx hHook, lngCode, wParam, lParam

End Function

Public Function InputBoxDK(Prompt, Optional Title, _

Optional Default, Optional XPos, _

Optional YPos, Optional HelpFile, Optional Context) As String

Dim lngModHwnd As Long, lngThreadID As Long

lngThreadID = GetCurrentThreadId

lngModHwnd = GetModuleHandle(vbNullString)

hHook = SetWindowsHookEx(WH_CBT, AddressOf NewProc, lngModHwnd, _

lngThreadID)

On Error Resume Next

InputBoxDK = InputBox(Prompt, Title, Default, XPos, YPos, HelpFile, _

Context)

UnhookWindowsHookEx hHook

End Function

Sub PasswordBox()

If InputBoxDK("Please enter password", "Password Required") <> _

"password" Then

MsgBox "Sorry, that was not a correct password."

Else

Click here to view code image

MsgBox "Correct Password! Come on in."

End If

End Sub

Changing case

This utility was submitted by Ivan F. Moala of Auckland, New Zealand. Ivan is the site author of The XcelFiles (excelplaza.com/ep_ivan/default.php), where you can find out how to do things you thought you could not do in Excel.

Word can change the case of selected text, but that capability is notably lacking in Excel. This program enables an Excel user to change the case of text in any selected range, as shown in Figure 13-8.

[image: The figure shows an input box prompting the user for the desired conversion type.]

FIGURE 13-8 You can now change the case of words, just like in Word.

Click here to view code image

Sub TextCaseChange()

Dim RgText As Range

Dim oCell As Range

Dim Ans As String

Dim strTest As String

Dim sCap As Integer, _

lCap As Integer, _

i As Integer

'// You need to select a range to alter first!

Again:

Ans = Application.InputBox("[L]owercase" & vbCr & "[U]ppercase" & vbCr & _

"[S]entence" & vbCr & "[T]itles" & vbCr & "[C]apsSmall", _

"Type in a Letter", Type:=2)

If Ans = "False" Then Exit Sub

If InStr(1, "LUSTC", UCase(Ans), vbTextCompare) = 0 _

Or Len(Ans) > 1 Then GoTo Again

On Error GoTo NoText

If Selection.Count = 1 Then

Set RgText = Selection

Else

Set RgText = Selection.SpecialCells(xlCellTypeConstants, 2)

End If

Click here to view code image

On Error GoTo 0

For Each oCell In RgText

Select Case UCase(Ans)

Case "L": oCell = LCase(oCell.Text)

Case "U": oCell = UCase(oCell.Text)

Case "S": oCell = UCase(Left(oCell.Text, 1)) & _

LCase(Right(oCell.Text, Len(oCell.Text) - 1))

Case "T": oCell = Application.WorksheetFunction.Proper(oCell.Text)

Case "C"

lCap = oCell.Characters(1, 1).Font.Size

sCap = Int(lCap * 0.85)

'Small caps for everything.

oCell.Font.Size = sCap

oCell.Value = UCase(oCell.Text)

strTest = oCell.Value

'Large caps for 1st letter of words.

strTest = Application.Proper(strTest)

For i = 1 To Len(strTest)

If Mid(strTest, i, 1) = UCase(Mid(strTest, i, 1)) Then

oCell.Characters(i, 1).Font.Size = lCap

End If

Next i

End Select

Next

Exit Sub

NoText:

MsgBox "No text in your selection @ " & Selection.Address

End Sub

Selecting with SpecialCells

Ivan F. Moala also submitted this handy utility.

Typically, when you want to find certain values, text, or formulas in a range, the range is selected, and each cell is tested. The following utility shows how you can use SpecialCells to select only the desired cells. Having fewer cells to check speeds up your code.

The following code ran in the blink of an eye on my machine. However, the version that checked each cell in the range (A1:Z20000) took 14 seconds—an eternity in the automation world!

Click here to view code image

Sub SpecialRange()

Dim TheRange As Range

Dim oCell As Range

Set TheRange = Range("A1:Z20000").SpecialCells(__

xlCellTypeConstants, xlTextValues)

For Each oCell In TheRange

If oCell.Text = "Your Text" Then

Click here to view code image

MsgBox oCell.Address

MsgBox TheRange.Cells.Count

End If

Next oCell

End Sub

Resetting a table’s format

Here’s another utility submitted by Zack Barresse.

Tables are great tools to use, but they’re not perfect. One issue you’ll eventually run into is a table’s formatting acting up. For example, formatting might suddenly no longer be applied to new rows. The following procedure resets a table’s format so it functions properly:

Click here to view code image

Sub ResetFormat(ByVal Table As ListObject, _

Optional ByVal RetainNumberFormats As Boolean = True)

Dim Formats() As Variant

Dim ColumnStep As Long

If Table.Parent.ProtectContents = True Then

MsgBox "The worksheet is protected.", vbExclamation, "Whoops!"

Exit Sub

End If

If RetainNumberFormats Then

ReDim Formats(Table.ListColumns.Count - 1)

For ColumnStep = 1 To Table.ListColumns.Count

On Error Resume Next

Formats(ColumnStep - 1) = Table.ListColumns(ColumnStep). _

DataBodyRange.NumberFormat

On Error GoTo 0

If IsEmpty(Formats(ColumnStep - 1)) Then

Formats(ColumnStep - 1) = "General"

End If

Next ColumnStep

End If

Table.Range.Style = "Normal"

If RetainNumberFormats Then

For ColumnStep = 1 To Table.ListColumns.Count

On Error Resume Next

Table.ListColumns(ColumnStep).DataBodyRange.NumberFormat = _

Formats(ColumnStep - 1)

On Error GoTo 0

If Err.Number <> 0 Then

Table.ListColumns(ColumnStep).DataBodyRange.NumberFormat = _

"General"

Err.Clear

End If

Next ColumnStep

End If

End Sub

Using VBA Extensibility to add code to new workbooks

Say that you have a macro that moves data to a new workbook for the regional managers. What if you need to also copy macros to the new workbook? You can use VBA Extensibility to import modules to a workbook or to actually write lines of code to the workbook.

To use any of the following examples, you must trust access to VBA by going to the Developer tab, choosing Macro Security, and checking Trust Access To The VBA Project Object Model.

The easiest way to use VBA Extensibility is to export a complete module or userform from the current project and import it to the new workbook. Perhaps you have an application with thousands of lines of code, and you want to create a new workbook with data for the regional manager and give her three macros to enable custom formatting and printing. Place all of these macros in a module called modToRegion. Macros in this module also call the frmRegion userform. The following code transfers this code from the current workbook to the new workbook:

Click here to view code image

Sub MoveDataAndMacro()

Dim WSD as worksheet

Set WSD = Worksheets("Report")

' Copy Report to a new workbook

WSD.Copy

' The active workbook is now the new workbook

' Delete any old copy of the module from C

On Error Resume Next

' Delete any stray copies from hard drive

Kill ("C:\temp\ModToRegion.bas")

Kill ("C:\temp\frmRegion.frm")

On Error GoTo 0

' Export module & form from this workbook

ThisWorkbook.VBProject.VBComponents("ModToRegion").Export _

("C:\temp\ModToRegion.bas")

ThisWorkbook.VBProject.VBComponents("frmRegion").Export _

("C:\temp\frmRegion. frm")

' Import to new workbook

ActiveWorkbook.VBProject.VBComponents.Import ("C:\temp\ModToRegion.bas")

ActiveWorkbook.VBProject.VBComponents.Import ("C:\temp\frmRegion.frm")

On Error Resume Next

Kill ("C:\temp\ModToRegion.bas")

Kill ("C:\temp\frmRegion.bas")

On Error GoTo 0

End Sub

This method works if you need to move modules or userforms to a new workbook. However, what if you need to write some code to the Workbook_Open macro in the ThisWorkbook module? There are two tools to use. The Lines method enables you to return a particular set of code lines from a given module. The InsertLines method enables you to insert code lines to a new module.

[image: Images]

Note With each call to InsertLines, you must insert a complete macro. Excel attempts to compile the code after each call to InsertLines. If you insert lines that do not completely compile, Excel might crash with a general protection fault (GPF).

Click here to view code image

Sub MoveDataAndMacro()

Dim WSD as worksheet

Dim WBN as Workbook

Dim WBCodeMod1 As Object, WBCodeMod2 As Object

Set WSD = Worksheets("Report")

' Copy Report to a new workbook

WSD.Copy

' The active workbook is now the new workbook

Set WBN = ActiveWorkbook

' Copy the Workbook level Event handlers

Set WBCodeMod1 = ThisWorkbook.VBProject.VBComponents("ThisWorkbook") _

.CodeModule

Set WBCodeMod2 = WBN.VBProject.VBComponents("ThisWorkbook").CodeModule

WBCodeMod2.InsertLines 1, WBCodeMod1.Lines(1, WBCodeMod1.countoflines)

End Sub

Next steps

The utilities in this chapter aren’t Excel’s only source of programming power. User-defined functions (UDFs) enable you to create complex custom formulas to cover what Excel’s functions don’t. In Chapter 14, “Sample user-defined functions,” you’ll find out how to create and share your own functions.

CHAPTER 14
Sample user-defined functions

In this chapter, you will:

	Learn how to create and share user-defined functions

	Review useful custom functions

Excel provides many built-in functions. However, sometimes you need a complex custom function that Excel doesn’t offer, such as a function that sums a range of cells based on their interior color.

So, what do you do? You could use the calculator next to you as you work your way down your list—but be careful not to enter the same number twice! Or, you could convert the data set to a table, set a SUBTOTAL function for visible cells in the total row, and filter by color. Both methods are time-consuming and prone to accidents. What to do?

You could write a procedure to solve this problem—after all, that’s what this book is about. However, you have another option: user-defined functions (UDFs).

Creating user-defined functions

You can create your own functions in VBA and then use them just like you use Excel’s built-in functions, such as SUM. After the custom function is created, a user needs to know only the function name and its arguments.

[image: Images]

Note You can enter UDFs only into standard modules. Sheet and ThisWorkbook modules are a special type of module. If you enter a UDF in either of those modules, Excel does not recognize that you are creating a UDF.

Building a simple custom function

To learn the basics of UDFs, you’ll build a custom function to add two values. After you’ve created it, you’ll use it on a worksheet.

Insert a new module in the VB Editor. Type the following function into the module. It is a function called ADD that totals two numbers in different cells. The function has two arguments:

Add(Number1,Number2)

Number1 is the first number to add; Number2 is the second number to add:

Click here to view code image

Function Add(Number1 As Integer, Number2 As Integer) As Integer

Add = Number1 + Number2

End Function

Let’s break this down:

	The function name is ADD.

	Arguments are placed in parentheses after the name of the function. This example has two arguments: Number1 and Number2.

	As Integer defines the variable type of the result as a whole number.

	ADD = Number1 + Number2 is the result of the function that is returned.

Here is how to use the function on a worksheet:

	Type numbers into cells A1 and A2.

	Select cell A3.

	Press Shift+F3 to open the Insert Function dialog box, or choose Formulas, Insert Function.

	In the Insert Function dialog box, select the User Defined category (see Figure 14-1).

	Select the ADD function.

	In the first argument box, select cell A1 (see Figure 14-2).

	In the second argument box, select cell A2.

	Click OK.

Congratulations! You have created your first custom function.

[image: The screenshot shows the Insert Function dialog box. User Defined is selected in the category drop-down menu. The custom function, Add, is selected in the list box.]

FIGURE 14-1 You can find your UDFs under the User Defined category of the Insert Function dialog box.

[image: The figure shows the Function Arguments dialog box. A1 is entered in the first argument box; A2 is entered in the second argument box.]

FIGURE 14-2 You can use the Function Arguments dialog box to enter your arguments.

[image: Images]

Note You can easily share custom functions because users are not required to know how the function works. See the next section, “Sharing UDFs,” for more information.

Most of the functions used on sheets can also be used in VBA and vice versa. However, in VBA you call the UDF (ADD) from a procedure (Addition), like this:

Click here to view code image

Sub Addition ()

Dim Total as Integer

Total = Add (1,10) 'we use a user-defined function Add

MsgBox "The answer is: " & Total

End Sub

Sharing UDFs

Where you store a UDF affects how you can share it:

	Personal.xlsb—Store a UDF in Personal.xlsb if it is just for your use and won’t be used in a workbook opened on another computer.

	Workbook—Store a UDF in the workbook in which it is being used if it needs to be distributed to many people.

	Add-in—Distribute a UDF via an add-in if the workbook is to be shared among a select group of people. See Chapter 26, “Creating add-ins,” for information on how to create an add-in.

	Template—Store a UDF in a template if it needs to be used to create several workbooks and the workbooks are distributed to many people.

Useful custom Excel functions

The sections that follow include a sampling of functions that can be useful in the everyday Excel world.

[image: Images]

Note This chapter shows functions donated by several Excel programmers. These are functions that they have found useful and that they hope will also be of help to you.

Different programmers have different programming styles. We did not rewrite the submissions. As you review the lines of code, you might notice different ways of doing the same task, such as referring to ranges.

Setting the current workbook’s name in a cell

The following function sets the name of the active workbook in a cell, as shown in Figure 14-3:

MyName()

[image: The figure shows the returned values of the functions MyName and MyFullname.]

FIGURE 14-3 You can use a UDF to show the file name or the file name with the directory path.

No arguments are used with this function:

Click here to view code image

Function MyName() As String

 MyName = ThisWorkbook.Name

End Function

Setting the current workbook’s name and file path in a cell

A variation of the preceding function, the following function sets the file path and name of the active workbook in a cell, as shown previously in Figure 14-3:

MyFullName()

No arguments are used with this function:

Click here to view code image

Function MyFullName() As String

 MyFullName = ThisWorkbook.FullName

End Function

Checking whether a workbook is open

There might be times when you need to check whether a workbook is open. The following function returns True if a workbook is open and False if it is not:

BookOpen(Bk)

The argument is Bk, which is the name of the workbook being checked:

Click here to view code image

Function BookOpen(Bk As String) As Boolean

Dim T As Excel.Workbook

Err.Clear 'clears any errors

On Error Resume Next 'if the code runs into an error, it skips it and

'continues

Set T = Application.Workbooks(Bk)

BookOpen = Not T Is Nothing

'If the workbook is open, then T will hold the workbook object and

'therefore will NOT be Nothing

Err.Clear

On Error GoTo 0

End Function

Here is an example of using the function:

Click here to view code image

Sub OpenAWorkbook()

Dim IsOpen As Boolean

Dim BookName As String

BookName = "ProjectFilesChapter14.xlsm"

IsOpen = BookOpen(BookName) 'calling our function - don't forget the 'parameter

If IsOpen Then

MsgBox BookName & " is already open!"

Else

Workbooks.Open BookName

End If

End Sub

Checking whether a sheet in an open workbook exists

This function requires that the workbook(s) it checks be open. It returns True if the sheet is found and False if it is not:

SheetExists(SName, WBName)

These are the arguments:

	SName—The name of the sheet being searched

	WBName—(Optional) The name of the workbook that contains the sheet

Here is the function. If the workbook argument is not provided, it uses the active workbook:

Click here to view code image

Function SheetExists(SName As String, Optional WB As Workbook) As Boolean

 Dim WS As Worksheet

 ' Use active workbook by default

 If WB Is Nothing Then

Set WB = ActiveWorkbook

 End If

 On Error Resume Next

 SheetExists = CBool(Not WB.Sheets(SName) Is Nothing)

 On Error GoTo 0

End Function

[image: Images]

Note CBool is a function that converts the expression between the parentheses to a Boolean value.

Here is an example of using this function:

Click here to view code image

Sub CheckForSheet()

Dim ShtExists As Boolean

ShtExists = SheetExists("Sheet9")

'notice that only one parameter was passed; the workbook name is optional

If ShtExists Then

MsgBox "The worksheet exists!"

Else

MsgBox "The worksheet does NOT exist!"

End If

End Sub

Counting the number of workbooks in a directory

This function searches the current directory, and its subfolders if you want, counting all Excel macro workbook files (.xlsm), including hidden files, or just the ones starting with a string of letters:

NumFilesInCurDir (LikeText, Subfolders)

These are the arguments:

	LikeText—(Optional) A string value to search for; must include an asterisk (*), such as Mr*

	Subfolders—(Optional) True to search subfolders, False (default) not to

[image: Images]

Note FileSystemObject requires the Microsoft Scripting Runtime reference library. To enable this setting, go to Tools, References and check Microsoft Scripting Runtime.

This function is a recursive function, which means it calls itself until a specific condition is met—in this case, until all subfolders are processed. Here is the function:

Click here to view code image

Function NumFilesInCurDir(Optional strInclude As String = "", _

Optional blnSubDirs As Boolean = False)

Dim fso As FileSystemObject

Dim fld As Folder

Dim fil As File

Dim subfld As Folder

Dim intFileCount As Integer

Dim strExtension As String

strExtension = "XLSM"

Set fso = New FileSystemObject

Set fld = fso.GetFolder(ThisWorkbook.Path)

 For Each fil In fld.Files

If UCase(fil.Name) Like "*" & UCase(strInclude) & "*." & _

UCase(strExtension) Then

intFileCount = intFileCount + 1

End If

Next fil

If blnSubDirs Then

For Each subfld In fld.Subfolders

intFileCount = intFileCount + NumFilesInCurDir(strInclude, True)

Next subfld

End If

NumFilesInCurDir = intFileCount

Set fso = Nothing

End Function

Here is an example of using this function:

Click here to view code image

Sub CountMyWkbks()

Dim MyFiles As Integer

MyFiles = NumFilesInCurDir("MrE*", True)

MsgBox MyFiles & " file(s) found"

End Sub

Retrieving the user ID

Ever need to keep a record of who saves changes to a workbook? With the USERID function, you can retrieve the name of the user who is logged in to a computer. Combine it with the function discussed in the “Retrieving permanent date and time” section, later in this chapter, and you have a nice log file. You can also use the USERID function to set up user rights to a workbook:

WinUserName ()

No arguments are used with this function.

[image: Images]

Note The USERID function is an advanced function that uses the application programming interface (API), which is reviewed in Chapter 23, “The Windows Application Programming Interface (API).” The code is specific to 32-bit Excel. If you are running 64-bit Excel, refer to Chapter 23 for changes to make it work.

This first section (Private declarations) must be at the top of the module:

Click here to view code image

Private Declare Function WNetGetUser Lib "mpr.dll" Alias "WNetGetUserA" _

(ByVal lpName As String, ByVal lpUserName As String, _

lpnLength As Long) As Long

Private Const NO_ERROR = 0

Private Const ERROR_NOT_CONNECTED = 2250&

Private Const ERROR_MORE_DATA = 234

Private Const ERROR_NO_NETWORK = 1222&

Private Const ERROR_EXTENDED_ERROR = 1208&

Private Const ERROR_NO_NET_OR_BAD_PATH = 1203&

You can place the following section of code anywhere in the module, as long as it is below the preceding section:

Click here to view code image

Function WinUsername() As String

'variables

Dim strBuf As String, lngUser As Long, strUn As String

'clear buffer for user name from api func

strBuf = Space$(255)

'use api func WNetGetUser to assign user value to lngUser

'will have lots of blank space

lngUser = WNetGetUser("", strBuf, 255)

'if no error from function call

If lngUser = NO_ERROR Then

'clear out blank space in strBuf and assign val to function

strUn = Left(strBuf, InStr(strBuf, vbNullChar) - 1)

WinUsername = strUn

Else

'error, give up

WinUsername = "Error :" & lngUser

 End If

End Function

Here’s an example of using this function:

Click here to view code image

Sub CheckUserRights()

Dim UserName As String

UserName = WinUsername

Select Case UserName

Case "Administrator"

MsgBox "Full Rights"

Case "Guest"

MsgBox "You cannot make changes"

Case Else

MsgBox "Limited Rights"

End Select

End Sub

Retrieving date and time of last save

This function retrieves the saved date and time of any workbook, including the current one:

LastSaved(FullPath)

[image: Images]

Note The cell must be formatted for date and time to display the date/time correctly.

The argument is FullPath, a string showing the full path and file name of the file in question:

Click here to view code image

Function LastSaved(FullPath As String) As Date

LastSaved = FileDateTime(FullPath)

End Function

Retrieving permanent date and time

Because of the volatility of the NOW function, it isn’t very useful for stamping a worksheet with the creation or editing date. Every time the workbook is opened or recalculated, the result of the NOW function is updated. The following UDF uses the NOW function. However, because you need to reenter the cell to update the function, it is much less volatile (see Figure 14-4).

No arguments are used with this function:

DateTime()

[image: The figure shows a comparison of using the NOW and DateTime functions. The NOW function shows the current time while the DateTime function reflects an earlier time.]

FIGURE 14-4 Even after forcing a recalculation, the DateTime() cell shows the time when it was originally placed in the cell, whereas NOW() shows the current system time.

[image: Images]

Note The cell must be formatted properly to display the date/time.

Here’s is the function:

Click here to view code image

Function DateTime()

DateTime = Now

End Function

Validating an email address

If you manage an email subscription list, you might receive invalid email addresses, such as addresses with a space before the “at” symbol (@). The IsEmailValid function can check addresses and confirm that they are proper email addresses (see Figure 14-5):

IsEmailValid (strEmail)

[image: The figure shows three email addresses in one column, the corresponding validity in another, and an explanation of why the address is not valid in the third. The first email address is not valid because there is a space after the @. The second email address is valid. The third email address is not valid because it contains a $, which is not a valid character in an email address.]

FIGURE 14-5 Validating email addresses.

[image: Images]

Note This function cannot verify that an email address is an existing one. It only checks the syntax to verify that the address might be legitimate.

The function’s only argument is strEmail, an email address:

Click here to view code image

Function IsEmailValid(strEmail As String) As Boolean

Dim strArray As Variant

Dim strItem As Variant

Dim i As Long

Dim c As String

Dim blnIsItValid As Boolean

blnIsItValid = True

'count the @ in the string

i = Len(strEmail) - Len(Application.Substitute(strEmail, "@", ""))

'if there is more than one @, invalid email

If i <> 1 Then IsEmailValid = False: Exit Function

ReDim strArray(1 To 2)

'the following two lines place the text to the left and right

'of the @ in their own variables

strArray(1) = Left(strEmail, InStr(1, strEmail, "@", 1) - 1)

strArray(2) = Application.Substitute(Right(strEmail, Len(strEmail) - _

 Len(strArray(1))), "@", "")

For Each strItem In strArray

'verify there is something in the variable.

'If there isn't, then part of the email is missing

If Len(strItem) <= 0 Then

blnIsItValid = False

IsEmailValid = blnIsItValid

Exit Function

End If

'verify only valid characters in the email

For i = 1 To Len(strItem)

'lowercases all letters for easier checking

c = LCase(Mid(strItem, i, 1))

If InStr("abcdefghijklmnopqrstuvwxyz_-.", c) <= 0 _

And Not IsNumeric(c) Then

blnIsItValid = False

IsEmailValid = blnIsItValid

Exit Function

End If

Next i

'verify that the first character of the left and right aren't periods

If Left(strItem, 1) = "." Or Right(strItem, 1) = "." Then

blnIsItValid = False

IsEmailValid = blnIsItValid

Exit Function

End If

Next strItem

'verify there is a period in the right half of the address

If InStr(strArray(2), ".") <= 0 Then

Click here to view code image

blnIsItValid = False

IsEmailValid = blnIsItValid

Exit Function

End If

i = Len(strArray(2)) - InStrRev(strArray(2), ".") 'locate the period

'verify that the number of letters corresponds to a valid domain

'extension

If i <> 2 And i <> 3 And i <> 4 Then

blnIsItValid = False

IsEmailValid = blnIsItValid

Exit Function

End If

'verify that there aren't two periods together in the email

If InStr(strEmail, "..") > 0 Then

blnIsItValid = False

IsEmailValid = blnIsItValid

Exit Function

End If

IsEmailValid = blnIsItValid

End Function

Summing cells based on interior color

Let’s say you have created a list of how much each of your clients owes. From this list, you want to sum just the cells to which you have applied a cell fill to indicate clients who are 30 days past due. This function sums cells based on their fill color:

SumColor(CellColor, SumRange)

[image: Images]

Note Cells colored by conditional formatting will not work with this function; the cells must have an interior color.

These are the arguments:

	CellColor—The address of a cell with the target color

	SumRange—The range of cells to be searched

Here is the function’s code:

Click here to view code image

Function SumByColor(CellColor As Range, SumRange As Range)

Dim myCell As Range

Dim iCol As Integer

Dim myTotal

iCol = CellColor.Interior.ColorIndex 'get the target color

For Each myCell In SumRange 'look at each cell in the designated range

'if the cell color matches the target color

If myCell.Interior.ColorIndex = iCol Then

'add the value in the cell to the total

myTotal = WorksheetFunction.Sum(myCell) + myTotal

End If

Next myCell

SumByColor = myTotal

End Function

Figure 14-6 shows a sample worksheet using this function.

[image: The figure shows a sheet. Some of the values in column A are colored. In C2 is a blank cell with a fill the same color as some of the cells in column A. In C3 is the sum of those colored cells. In C4 is the formula used in C3.]

FIGURE 14-6 The function sums cells based on interior color.

Counting unique values

How many times have you had a long list of values and needed to know how many were unique values? This function goes through a range and provides that information, as shown in Figure 14-7:

NumUniqueValues(Rng)

[image: The figure shows a screen of a sheet with a data set in A1:C6 consisting of numbers and letters, some duplicated. In E1 is the number 12, the number of unique values in the data set. In E2 is the formula used in E1.]

FIGURE 14-7 The function counts the number of unique values in a range.

The argument is Rng, the range to search unique values.

Here is the function’s code:

Click here to view code image

Function NumUniqueValues(Rng As Range) As Long

Dim myCell As Range

Dim UniqueVals As New Collection

Application.Volatile 'forces the function to recalculate when the range 'changes

On Error Resume Next

'the following places each value from the range into a collection

'because a collection, with a key parameter, can contain only unique

'values,there will be no duplicates. The error statements force the

'program to continue when the error messages appear for duplicate

'items in the collection

For Each myCell In Rng

UniqueVals.Add myCell.Value, CStr(myCell.Value)

Next myCell

On Error GoTo 0

'returns the number of items in the collection

NumUniqueValues = UniqueVals.Count

End Function

Removing duplicates from a range

No doubt you have also had a list of items and needed to list only the unique values. The following function goes through a range and stores only the unique values:

UniqueValues (OrigArray)

The argument is OrigArray, an array from which the duplicates will be removed.

This first section (Const declarations) must be at the top of the module:

Click here to view code image

Const ERR_BAD_PARAMETER = "Array parameter required"

Const ERR_BAD_TYPE = "Invalid Type"

Const ERR_BP_NUMBER = 20000

Const ERR_BT_NUMBER = 20001

You can place the following section of code anywhere in the module, as long as it is below the code just shown:

Click here to view code image

Public Function UniqueValues(ByVal OrigArray As Variant) As Variant

 Dim vAns() As Variant

 Dim lStartPoint As Long

 Dim lEndPoint As Long

 Dim lCtr As Long, lCount As Long

 Dim iCtr As Integer

 Dim col As New Collection

 Dim sIndex As String

 Dim vTest As Variant, vItem As Variant

 Dim iBadVarTypes(4) As Integer

'Function does not work if array element is one of the

'following types

 iBadVarTypes(0) = vbObject

 iBadVarTypes(1) = vbError

 iBadVarTypes(2) = vbDataObject

 iBadVarTypes(3) = vbUserDefinedType

 iBadVarTypes(4) = vbArray

'Check to see whether the parameter is an array

 If Not IsArray(OrigArray) Then

Err.Raise ERR_BP_NUMBER, , ERR_BAD_PARAMETER

Exit Function

 End If

 lStartPoint = LBound(OrigArray)

 lEndPoint = UBound(OrigArray)

 For lCtr = lStartPoint To lEndPoint

vItem = OrigArray(lCtr)

'First check to see whether variable type is acceptable

Click here to view code image

For iCtr = 0 To UBound(iBadVarTypes)

If VarType(vItem) = iBadVarTypes(iCtr) Or _

VarType(vItem) = iBadVarTypes(iCtr) + vbVariant Then

Err.Raise ERR_BT_NUMBER, , ERR_BAD_TYPE

Exit Function

End If

Next iCtr

'Add element to a collection, using it as the index

'if an error occurs, the element already exists

sIndex = CStr(vItem)

'first element, add automatically

If lCtr = lStartPoint Then

col.Add vItem, sIndex

ReDim vAns(lStartPoint To lStartPoint) As Variant

vAns(lStartPoint) = vItem

Else

On Error Resume Next

col.Add vItem, sIndex

If Err.Number = 0 Then

lCount = UBound(vAns) + 1

ReDim Preserve vAns(lStartPoint To lCount)

vAns(lCount) = vItem

End If

End If

Err.Clear

 Next lCtr

 UniqueValues = vAns

End Function

Here is an example of using this function:

Click here to view code image

Function nodupsArray(rng As Range) As Variant

 Dim arr1() As Variant

 If rng.Columns.Count > 1 Then Exit Function

 arr1 = Application.Transpose(rng)

 arr1 = UniqueValues(arr1)

 nodupsArray = Application.Transpose(arr1)

End Function

Finding the first nonzero-length cell in a range

Suppose you have imported a large list of data with many empty cells. Here is a function that evaluates a range of cells and returns the value of the first nonzero-length cell:

FirstNonZeroLength(Rng)

The argument is Rng, the range to search.

Here’s the function:

Click here to view code image

Function FirstNonZeroLength(Rng As Range)

Dim myCell As Range

FirstNonZeroLength = 0#

For Each myCell In Rng

If Not IsNull(myCell) And myCell <> "" Then

FirstNonZeroLength = myCell.Value

Exit Function

End If

Next myCell

FirstNonZeroLength = myCell.Value

End Function

Figure 14-8 shows the function on a sample worksheet.

[image: The figure shows a sheet with some values and some blank cells in column A. The value 2, shown in B1, is the first cell in column A that is not blank. In B2 is the formula used in B1.]

FIGURE 14-8 You can use a user-defined function to find the value of the first nonzero-length cell in a range.

Substituting multiple characters

Excel has a substitute function, but it is a value-for-value substitution. What if you have several characters you need to substitute? Figure 14-9 shows several examples of how this function works:

MSubstitute(trStr, frStr, toStr)

[image: The figure shows four phrases that have had one or more values replaced using the MSubstitute function. Column A is the original text. Column B is the corrected result. Column C is the formula used in column B.]

FIGURE 14-9 You can substitute multiple characters in a cell.

These are the arguments:

	trStr—The string to be searched

	frStr—The text being searched for

	toStr—The replacement text

Here’s the function’s code:

Click here to view code image

Function MSubsitute(ByVal trStr As Variant, frStr As String, _

 toStr As String) As Variant

Dim iCol As Integer

Dim j As Integer

Dim Ar As Variant

Click here to view code image

Dim vfr() As String

Dim vto() As String

ReDim vfr(1 To Len(frStr))

ReDim vto(1 To Len(frStr))

'place the strings into an array

For j = 1 To Len(frStr)

vfr(j) = Mid(frStr, j, 1)

If Mid(toStr, j, 1) <> "" Then

vto(j) = Mid(toStr, j, 1)

Else

vto(j) = ""

End If

Next j

'compare each character and substitute if needed

If IsArray(trStr) Then

Ar = trStr

For iRow = LBound(Ar, 1) To UBound(Ar, 1)

For iCol = LBound(Ar, 2) To UBound(Ar, 2)

For j = 1 To Len(frStr)

Ar(iRow, iCol) = Application.Substitute(Ar(iRow, iCol), _

vfr(j), vto(j))

Next j

Next iCol

Next iRow

Else

Ar = trStr

For j = 1 To Len(frStr)

Ar = Application.Substitute(Ar, vfr(j), vto(j))

Next j

End If

MSUBSTITUTE = Ar

End Function

[image: Images]

Note The toStr argument is assumed to be the same length as frStr. If it isn’t, the remaining characters are considered null (""). The function is case sensitive. To replace all instances of a, use a and A. You cannot replace one character with two characters. For example, this:

Click here to view code image

=MSUBSTITUTE("This is a test","i","$@")

results in this:

"Th$s $s a test"

Retrieving numbers from mixed text

This function extracts and returns numbers from text that is a mixture of numbers and letters:

RetrieveNumbers (myString)

The argument is myString, the text containing the numbers to be extracted.

Here’s the function’s code:

Click here to view code image

Function RetrieveNumbers(myString As String)

Dim i As Integer, j As Integer

Dim OnlyNums As String

'starting at the END of the string and moving backwards (Step -1)

For i = Len(myString) To 1 Step -1

'IsNumeric is a VBA function that returns True if a variable is a number

'When a number is found, it is added to the OnlyNums string

If IsNumeric(Mid(myString, i, 1)) Then

j = j + 1

OnlyNums = Mid(myString, i, 1) & OnlyNums

End If

If j = 1 Then OnlyNums = CInt(Mid(OnlyNums, 1, 1))

Next i

RetrieveNumbers = CLng(OnlyNums)

End Function

Converting week number into date

Have you ever received a spreadsheet report in which all the headers showed the week number? This can be confusing because you probably wouldn’t know what Week 15 actually is. You would have to get out your calendar and count the weeks. This problem is exacerbated if you need to count weeks in a previous year. In this case, you need a nice little function that converts Week ## Year into the date of a particular day in a given week, as shown in Figure 14-10.

[image: The figure shows several Week # Year dates in column E. In column D, those values have been converted to dates. One of the formula cells has been selected, and the function used is shown in the Formula Bar.]

FIGURE 14-10 You can convert a week number into a date that’s more easily referenced.

[image: Images]

Note The result must be formatted as a date.

The argument is Str, the week to be converted, in “Week ## YYYY” format.

Here’s the function’s code:

Click here to view code image

Function ConvertWeekDay(Str As String) As Date

Dim Week As Long

Dim FirstMon As Date

Dim TStr As String

FirstMon = DateSerial(Right(Str, 4), 1, 1)

FirstMon = FirstMon - FirstMon Mod 7 + 2

TStr = Right(Str, Len(Str) - 5)

Week = Left(TStr, InStr(1, TStr, " ", 1)) + 0

ConvertWeekDay = FirstMon + (Week - 1) * 7

End Function

Extracting a single element from a delimited string

Say that you need to paste a column of delimited data. You could use Excel’s Text To Columns feature, but you need only an element or two from each cell. Text To Columns parses the entire thing. In this case, you need a function that lets you specify the number of the element in a string that you need, as shown in Figure 14-11:

StringElement(str,chr,ind)

[image: The figure shows a setup using the StringElement function. Cell A3 contains the values to be extracted, delimited by a vertical bar (|). The delimiter is entered in cell B3. Cells C2:H2 contain the position of the desired value to be returned. Cells C3:H6 contain the formulas, returning the desired values based on the position. Cell C4 shows the formula used in cell C2.]

FIGURE 14-11 This function extracts a single element from delimited text.

These are the arguments:

	str—The string to be parsed

	chr—The delimiter

	ind—The position of the element to be returned

Here’s the function’s code:

Click here to view code image

Function StringElement(str As String, chr As String, ind As Integer)

Dim arr_str As Variant

arr_str = Split(str, chr)

StringElement = arr_str(ind - 1)

End Function

Sorting and concatenating

The following function enables you to take a column of data, sort it by numbers and then by letters, and concatenate it using a comma (,) as the delimiter (see Figure 14-12). Note that since the numbers are treated as strings, they are sorted lexicographically (all numbers that start with 1, then numbers that start with 2, etc.). For example, if sorting 1,2,10, you would actually get 1,10,2 because 10 starts with a 1, which comes before 2:

SortConcat(Rng)

[image: Theh figure shows a sheet with an assortment of numerical and text values in column A. In B2, the values are listed sorted, and each value separated by a comma. In B3 is the formula used in B2.]

FIGURE 14-12 This function sorts and concatenates a range of variables.

The argument is Rng, the range of data to be sorted and concatenated. SortConcat calls another procedure, BubbleSort, that must be included.

Here’s the main function:

Click here to view code image

Function SortConcat(Rng As Range) As Variant

Dim MySum As String, arr1() As String

Dim j As Integer, i As Integer

Dim cl As Range

Dim concat As Variant

On Error GoTo FuncFail:

'initialize output

SortConcat = 0#

'avoid user issues

If Rng.Count = 0 Then Exit Function

'get range into variant variable holding array

ReDim arr1(1 To Rng.Count)

'fill array

i = 1

For Each cl In Rng

arr1(i) = cl.Value

i = i + 1

Next

'sort array elements

Call BubbleSort(arr1)

'create string from array elements

For j = UBound(arr1) To 1 Step -1

If Not IsEmpty(arr1(j)) Then

MySum = arr1(j) & ", " & MySum

End If

Next j

'assign value to function

SortConcat = Left(MySum, Len(MySum) - 1)

'exit point

concat_exit:

Exit Function

'display error in cell

FuncFail:

SortConcat = Err.Number & " - " & Err.Description

Resume concat_exit

End Function

The following function is the ever-popular BubbleSort. Many developers use this program to do a simple sort of data:

Click here to view code image

Sub BubbleSort(List() As String)

' Sorts the List array in ascending order

Dim First As Integer, Last As Integer

Dim i As Integer, j As Integer

Dim Temp

First = LBound(List)

Last = UBound(List)

For i = First To Last - 1

For j = i + 1 To Last

If List(i) > List(j) Then

Temp = List(j)

List(j) = List(i)

List(i) = Temp

End If

Next j

Next i

End Sub

Sorting numeric and alpha characters

This function takes a mixed range of numeric and alpha characters and sorts them—first numerically and then alphabetically:

sorter(Rng)

The result is placed in an array that can be displayed on a worksheet by using an array formula, as shown in Figure 14-13.

[image: The figure shows a sheet with an assortment of numerical and text values in column D. The values are sorted in column E. Cell E2 is selected and shows the array formula in the Formula Bar.]

FIGURE 14-13 This function sorts a mixed alphanumeric list.

The argument is Rng, the range to be sorted.

The function uses the following two procedures to sort the data in the range:

Click here to view code image

Public Sub QuickSort(ByRef vntArr As Variant, _

 Optional ByVal lngLeft As Long = -2, _

 Optional ByVal lngRight As Long = -2)

Dim i, j, lngMid As Long

Dim vntTestVal As Variant

If lngLeft = -2 Then lngLeft = LBound(vntArr)

If lngRight = -2 Then lngRight = UBound(vntArr)

If lngLeft < lngRight Then

lngMid = (lngLeft + lngRight) \ 2

vntTestVal = vntArr(lngMid)

i = lngLeft

j = lngRight

Do

Do While vntArr(i) < vntTestVal

i = i + 1

Loop

Do While vntArr(j) > vntTestVal

j = j - 1

Loop

If i <= j Then

Call SwapElements(vntArr, i, j)

i = i + 1

j = j - 1

End If

Loop Until i > j

If j <= lngMid Then

Call QuickSort(vntArr, lngLeft, j)

Call QuickSort(vntArr, i, lngRight)

Else

Call QuickSort(vntArr, i, lngRight)

Call QuickSort(vntArr, lngLeft, j)

End If

End If

End Sub

Private Sub SwapElements(ByRef vntItems As Variant, _

ByVal lngItem1 As Long, _

ByVal lngItem2 As Long)

Dim vntTemp As Variant

vntTemp = vntItems(lngItem2)

vntItems(lngItem2) = vntItems(lngItem1)

vntItems(lngItem1) = vntTemp

End Sub

Here’s an example of using this function:

Click here to view code image

Function sorter(Rng As Range) As Variant

'returns an array

Dim arr1() As Variant

If Rng.Columns.Count > 1 Then Exit Function

arr1 = Application.Transpose(Rng)

QuickSort arr1

sorter = Application.Transpose(arr1)

End Function

Searching for a string within text

Ever needed to find out which cells contain a specific string of text? This function can search strings in a range, looking for specified text:

ContainsText(Rng,Text)

It returns a result that identifies which cells contain the text, as shown in Figure 14-14.

[image: The figure shows a sheet with several phrases in column A. Column C lists the cell addresses for the cells that include the searched-for text. A comma is used to separate results that return multiple cell addresses. Column D shows the formulas used to return the results in column C.]

FIGURE 14-14 The ContainsText function returns a result that identifies which cells contain a specified string.

These are the arguments:

	Rng—The range in which to search

	Text—The text for which to search

Here’s the function’s code:

Click here to view code image

Function ContainsText(Rng As Range, Text As String) As String

Dim T As String

Dim myCell As Range

For Each myCell In Rng 'look in each cell

If InStr(myCell.Text, Text) > 0 Then 'look in the string for the text

If Len(T) = 0 Then

'if the text is found, add the address to my result

T = myCell.Address(False, False)

Else

T = T & "," & myCell.Address(False, False)

End If

End If

Next myCell

ContainsText = T

End Function

Reversing the contents of a cell

This function is mostly fun, but you might find it useful—it reverses the contents of a cell:

ReverseContents(myCell, IsText)

These are the arguments:

	myCell—The specified cell

	IsText—(Optional) Whether the cell value should be treated as text (default) or a number

Here’s the function’s code:

Click here to view code image

Function ReverseContents(myCell As Range, _

 Optional IsText As Boolean = True)

Dim i As Integer

Dim OrigString As String, NewString As String

OrigString = Trim(myCell) 'remove leading and trailing spaces

For i = 1 To Len(OrigString)

'by adding the variable NewString to the character,

'instead of adding the character to NewString the string is reversed

NewString = Mid(OrigString, i, 1) & NewString

Next i

If IsText = False Then

ReverseContents = CLng(NewString)

Else

ReverseContents = NewString

End If

End Function

Returning the addresses of duplicate maximum values

MAX finds and returns the maximum value in a range, but it doesn’t tell you whether there is more than one maximum value. This function returns the addresses of the maximum values in a range, as shown in Figure 14-15:

ReturnMaxs(Rng)

[image: The figure shows a data set in columns D and E. Cell F1 shows the cell addresses of the cells with the largest value. The formula used in the cell is shown in the Formula Bar.]

FIGURE 14-15 This function returns the addresses of all maximum values in a range.

The argument is Rng, the range to search for the maximum values.

Here’s the function’s code:

Click here to view code image

Function ReturnMaxs(Rng As Range) As String

Dim Mx As Double

Dim myCell As Range

'if there is only one cell in the range, then exit

If Rng.Count = 1 Then ReturnMaxs = Rng.Address(False, False): _

 Exit Function

Mx = Application.Max(Rng) 'uses Excel's Max to find the max in the range

'Because you now know what the max value is,

'search the range to find matches and return the address

For Each myCell In Rng

If myCell = Mx Then

If Len(ReturnMaxs) = 0 Then

ReturnMaxs = myCell.Address(False, False)

Else

ReturnMaxs = ReturnMaxs & ", " & myCell.Address(False, False)

End If

End If

Next myCell

End Function

Returning a hyperlink address

Let’s say that you’ve received a spreadsheet containing a list of hyperlinked information. You want to see the actual links, not the descriptive text. You could just right-click a hyperlink and select Edit Hyperlink, but you want something more permanent. This function extracts the hyperlink address, as shown in Figure 14-16:

GetAddress(HyperlinkCell)

[image: The figure shows a couple of hyperlinks, one email address and one URL, in column D. In column E are the addresses behind the hyperlinks. Cell E1 is selected and the formula used is shown in the Formula Bar.]

FIGURE 14-16 You can extract the hyperlink address from behind a hyperlink.

The argument is HyperlinkCell, the hyperlinked cell from which you want the address extracted.

Here’s the function’s code:

Click here to view code image

Function GetAddress(HyperlinkCell As Range)

 GetAddress = Replace(HyperlinkCell.Hyperlinks(1).Address, "mailto:", "")

End Function

Returning the column letter of a cell address

You can use CELL("Col") to return a column number, but what if you need the column letter? This function extracts the column letter from a cell address, as shown in Figure 14-17:

ColName(Rng)

[image: The figure shows two columns. The cells in the first column contain column letters. The cells in the second column contain the formulas used in the first column.]

FIGURE 14-17 You can get the column letter of a cell address.

The argument is Rng, the cell for which you want the column letter.

Here’s the function’s code:

Click here to view code image

Function ColName(Rng As Range) As String

ColName = Left(Rng.Range("A1").Address(True, False), _

 InStr(1, Rng.Range("A1").Address(True, False), "$", 1) - 1)

End Function

Using static random

The function RAND can be very useful for creating random numbers, but it constantly recalculates. What if you need random numbers but don’t want them to change constantly? The following function places a random number, but the number changes only if you force the cell to recalculate, as shown in Figure 14-18:

StaticRAND()

[image: The figure shows several examples of the StaticRAND function being used in calculations. Column B shows the formulas used by column A.]

FIGURE 14-18 You can produce random numbers that are not quite so volatile as the numbers created with RAND.

There are no arguments for this function.

Here’s the function’s code:

Click here to view code image

Function StaticRAND() As Double

Randomize

StaticRAND = Rnd

End Function

Using Select...Case on a worksheet

At some point, you have probably nested an If...Then...Else on a worksheet to return a value. The Select...Case statement available in VBA makes this a lot easier, but you can’t use Select...Case statements in a worksheet formula. Instead, you can create a UDF (see Figure 14-19).

[image: The figure shows a partial questionnaire on a sheet. Based on the user response, a message appears instructing the user on the next step. Cell F3 is selected and the formula used is shown in the Formula Bar.]

FIGURE 14-19 The ExcelExperience function uses the Select...Case structure rather than nested If...Then statements.

This example takes the user input and returns a response, as shown in Figure 14-19. Although you could use the following formula instead, consider how long it could get if you had more options. Or what if you needed to compare the results of a calculation? You would have to do the calculation for each logical comparison.

Click here to view code image

=IF(E3="yes","Well done! Please continue to question 2",IF(E3="no","Check out Chapter 12 for some help. Please skip to question 10", "Please clarify your response in the box below"))

Because Select...Case is case sensitive, I’ve developed the habit of always using uppercase (UCase) when comparing strings. Here is the code:

Click here to view code image

Function ExcelExperience(ByVal UserResponse As String) As String

Select Case UCase(UserResponse)

Case Is = "YES"

ExcelExperience = "Well done! Please continue to question 2"

Case Is = "NO"

ExcelExperience = "Check out Chapter 12 for some help. " & _ "Please skip to question 10"

Case Is = "MAYBE"

ExcelExperience = "Please clarify your response " & _ "in the box below"

Case Else

ExcelExperience = "Invalid response"

End Select

End Function

Next steps

In Chapter 15, “Creating charts,” you’ll find out how spreadsheet charting has become highly customizable and capable of handling large amounts of data.

CHAPTER 15
Creating charts

In this chapter, you will:

	Use .AddChart2 to create a chart

	Understand chart styles

	Format a chart

	Create a combo chart, map chart, and waterfall chart

	Export a chart as a graphic

	Consider backward compatibility

Two new chart types have been introduced since Excel 2016. The filled map chart and the funnel chart join the six chart types that were added to Excel 2016.

More importantly, the macro bug that prevented Excel 2016 from creating the new charts has been fixed. Whether you are creating a new Ivy chart or a legacy chart, you can use this code:

Click here to view code image

Dim CH As Chart

Set CH = ActiveSheet.Shapes _

.AddChart2(-1, xlRegionMap).Chart

CH.SetSourceData Source:=Range("D1:E7")

' Settings specific to xlRegionMap:

With CH.FullSeriesCollection(1)

.GeoMappingLevel = xlGeoMappingLevelDataOnly

.RegionLabelOption = xlRegionLabelOptionsBestFitOnly

End With

Traditionally, the goal of VBA is to never select anything in the worksheet. Thus, you first create a chart by using the .AddChart2 method, and then you assign the data to the chart by using the .SetSourceData method. If you have co-workers who are still using the Perpetual version of Excel 2016, you will have to create the new charts using this code instead:

Click here to view code image

.Range("A1:B7").Select

ActiveSheet.Shapes.AddChart2(-1, xlWaterfall).Select

The alternative code would be needed for any of the Ivy chart types:

	xlBoxWhisker

	xlFunnel

	xlHistogram

	xlPareto

	xlRegionMap

	xlSunburst

	xlTreeMap

	xlWaterfall

[image: Images]

Note In May 2018, Microsoft announced that Office 365 would offer support for Power BI Custom Visuals. In the summer of 2018, the Excel team said that there will not initially be support for inserting these chart types using VBA. It is possible that Microsoft will add VBA support over time.

Using .AddChart2 to create a chart

Excel 2013 introduced a streamlined .AddChart2 method. With this method, you can specify a chart style, type, size, and location, as well as a property introduced in Excel 2013: NewLayout:=True. When you choose NewLayout, you can avoid having a legend in a single-series chart.

The .AddChart2 method enables you to specify the chart style, chart type, left, top, width, height, and new layout. This code takes the data from A3:G6 and creates a chart to fill B8:G20:

Click here to view code image

Sub CreateChartUsingAddChart2()

'Create a Clustered Column Chart in B8:G15 from data in A3:G6

Dim CH As Chart

Range("A3:G6").Select

Set CH = ActiveSheet.Shapes.AddChart2(_

Style:=201, _

 XlChartType:=xlColumnClustered, _

 Left:=Range("B8").Left, _

 Top:=Range("B8").Top, _

 Width:=Range("B8:G20").Width, _

 Height:=Range("B8:G20").Height, _

 NewLayout:=True).Chart

End Sub

The values for Left, Top, Width, and Height are in pixels. Here you don’t have to try to guess that column B is 27.34 pixels from the left edge of the worksheet because the preceding code finds the .Left property of cell B8 and uses that as the Left of the chart.

Figure 15-1 shows the resulting chart.

[image: This figure shows chart source data in A3:G6 and a clustered column chart that fits perfectly in B8:G20.]

FIGURE 15-1 Create a chart to fill a specific range.

Understanding chart styles

Excel 2013 introduced professionally designed chart styles that are shown in the Chart Styles gallery on the Design tab of the ribbon. These innovative designs use combinations of properties that have been in Excel for years, but they allow you to apply a group of properties in a single command. The AddChart2 method enables you to specify the style number to use when creating the chart. Unfortunately, the style numbering system is fairly complex.

Figure 15-2 shows the Chart Styles gallery for a clustered column chart.

[image: This figure shows 14 chart styles for the clustered column chart. Unfortunately, these 14 styles have different style numbers than the styles for any other type of chart.]

FIGURE 15-2 Apply a chart style to quickly format a chart.

In Figure 15-2, the chart styles are numbered 201 through 215. However, if you switch to a bar chart, the similar chart styles are numbered 216 to 230.

The styles for the old chart types run from 201 to 353. Styles 354 to 497 are for the eight new chart types.

Follow these steps to learn the style number associated with your favorite style:

	Create a chart in the Excel user interface.

	Open the Chart Styles gallery on the Design tab and choose the chart style you want to use. Keep the chart selected before moving to Step 3.

[image: Images]

Caution You might have a tendency to click away from the chart to admire the newly selected style. If you do unselect the chart, be certain to re-select the chart before continuing with the following steps.

	Switch to VBA by pressing Alt+F11.

	Open the Immediate window by pressing Ctrl+G.

	Type ? ActiveChart.ChartStyle in the Immediate window and press Enter. The resulting number shows you the value to use for the .Style argument in the .AddChart2 method.

	If you don’t care what chart style you will get, specify -1 as the .Style argument. This gives you the default style for that chart type.

It is strange that the .AddChart2 method uses an argument called Style:=201, but if you want to change the chart style later, you have to use the .ChartStyle property. Both Style and ChartStyle refer to the chart styles introduced in Excel 2013.

Table 15-1 lists the ChartType argument values.

TABLE 15-1 Chart types for use in VBA

	
Chart Type

	
Enumerated Constant

	
Clustered column

	
xlColumnClustered

	
Stacked column

	
xlColumnStacked

	
100% stacked column

	
xlColumnStacked100

	
3-D clustered column

	
xl3DColumnClustered

	
Stacked column in 3-D

	
xl3DColumnStacked

	
100% stacked column in 3-D

	
xl3DColumnStacked100

	
3-D column

	
xl3DColumn

	
Waterfall

	
xlWaterfall

	
Tree map

	
xlTreeMap

	
Sunburst

	
xlSunburst

	
Histogram

	
xlHistogram

	
Pareto

	
xlPareto

	
Box and whisker

	
xlBoxWhisker

	
Funnel

	
XlFunnel

	
Filled Region Map

	
XlRegionMap

	
Line

	
xlLine

	
Stacked line

	
xlLineStacked

	
100% stacked line

	
xlLineStacked100

	
Line with markers

	
xlLineMarkers

	
Stacked line with markers

	
xlLineMarkersStacked

	
100% stacked line with markers

	
xlLineMarkersStacked100

	
Pie

	
xlPie

	
Pie in 3-D

	
xl3DPie

	
Pie of pie

	
xlPieOfPie

	
Exploded pie

	
xlPieExploded

	
Exploded pie in 3-D

	
xl3DPieExploded

	
Bar of pie

	
xlBarOfPie

	
Clustered bar

	
xlBarClustered

	
Stacked bar

	
xlBarStacked

	
100% stacked bar

	
xlBarStacked100

	
Clustered bar in 3-D

	
xl3DBarClustered

	
Stacked bar in 3-D

	
xl3DBarStacked

	
100% stacked bar in 3-D

	
xl3DBarStacked100

	
Area

	
xlArea

	
Stacked area

	
xlAreaStacked

	
100% stacked area

	
xlAreaStacked100

	
3-D area

	
xl3DArea

	
Stacked area in 3-D

	
xl3DAreaStacked

	
100% stacked area in 3-D

	
xl3DAreaStacked100

	
Scatter with only markers

	
xlXYScatter

	
Scatter with smooth lines and markers

	
xlXYScatterSmooth

	
Scatter with smooth lines

	
xlXYScatterSmoothNoMarkers

	
Scatter with straight lines and markers

	
xlXYScatterLines

	
Scatter with straight lines

	
xlXYScatterLinesNoMarkers

	
High-low-close

	
xlStockHLC

	
Open-high-low-close

	
xlStockOHLC

	
Volume-high-low-close

	
xlStockVHLC

	
Volume-open-high-low-close

	
xlStockVOHLC

	
3-D surface

	
xlSurface

	
Wireframe 3-D surface

	
xlSurfaceWireframe

	
Contour

	
xlSurfaceTopView

	
Wireframe contour

	
xlSurfaceTopViewWireframe

	
Doughnut

	
xlDoughnut

	
Exploded doughnut

	
xlDoughnutExploded

	
Bubble

	
xlBubble

	
Bubble with a 3-D effect

	
xlBubble3DEffect

	
Radar

	
xlRadar

	
Radar with markers

	
xlRadarMarkers

	
Filled radar

	
xlRadarFilled

Excel supports a few other chart types that misrepresent your data, such as the cone and pyramid charts. For backward compatibility, these are still in VBA, but they are omitted from Table 15-1. If your manager forces you to create those old chart types, you can find them by searching for xlChartType enumeration in your favorite search engine.

Formatting a chart

After creating a chart, you will often want to add or move elements of the chart. The following sections describe code to control the myriad chart elements.

Referring to a specific chart

The macro recorder has an unsatisfactory way of writing code for chart creation. The macro recorder uses the .AddChart2 method and adds a .Select to the end of the line to select the chart. The rest of the chart settings then apply to the ActiveChart object. This approach is a bit frustrating because you are required to do all the chart formatting before you select anything else in the worksheet. The macro recorder does this because chart names are unpredictable. The first time you run a macro, the chart might be called Chart 1. But if you run the macro on another day or on a different worksheet, the chart might be called Chart 3 or Chart 5.

For the most flexibility, you should assign each new chart to a Chart object. Since Excel 2007, the Chart object has existed inside a Shape object.

Ignoring the specifics of the AddChart2 method for a moment, you could use this coding approach, which captures the Shape object in the SH object variable and then assigns SH.Chart to the CH object variable:

Click here to view code image

Dim WS as Worksheet

Dim SH as Shape

Dim CH as Chart

Set WS = ActiveSheet

Set SH = WS.Shapes.AddChart2(...)

Set CH = SH.Chart

You can simplify the preceding code by appending .Chart to the end of the AddChart2 method. The following code has one object variable fewer:

Click here to view code image

Dim WS as Worksheet

Dim CH as Chart

Set WS = ActiveSheet

Set CH = WS.Shapes.AddChart2(...).Chart

If you need to modify a preexisting chart—such as a chart that you did not create—and there is only one shape on the worksheet, you can use this line of code:

Click here to view code image

WS.Shapes(1).Chart.Interior.Color = RGB(0,0,255)

If there are many charts, and you need to find the one with the upper-left corner located in cell A4, you can loop through all the Shape objects until you find one in the correct location, like this:

Click here to view code image

For each Sh in ActiveSheet.Shapes

If Sh.TopLeftCell.Address = "A4" then

Sh.Chart.Interior.Color = RGB(0,255,0)

End If

Next Sh

Specifying a chart title

Every chart created with NewLayout:=True has a chart title. When the chart has two or more series, that title is “Chart Title.” You should plan on changing the chart title to something useful.

To specify a chart title in VBA, use this code:

Click here to view code image

ActiveChart.ChartTitle.Caption = "Sales by Region"

If you are changing the chart title of a newly created chart that is assigned to the CH object variable, you can use this:

Click here to view code image

CH.ChartTitle.Caption = "Sales by Region"

This code works if your chart already has a title. If you are not sure that the selected chart style has a title, you can ensure that the title is present first with this:

Click here to view code image

CH.SetElement msoElementChartTitleAboveChart

Although it is relatively easy to add a chart title and specify the words in the title, it becomes increasingly complex to change the formatting of the chart title. The following code changes the font, size, and color of the title:

Click here to view code image

With CH.ChartTitle.Format.TextFrame2.TextRange.Font

.Name = "Rockwell"

.Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent2

.Size = 14

End With

The two axis titles operate the same as the chart title. To change the words, use the .Caption property. To format the words, use the Format property. Similarly, you can specify the axis titles by using the Caption property. The following code changes the axis title along the category axis:

Click here to view code image

CH.SetElement msoElementPrimaryCategoryAxisTitleHorizontal

CH.Axes(xlCategory, xlPrimary).AxisTitle.Caption = "Months"

CH.Axes(xlCategory, xlPrimary).AxisTitle. _

Format.TextFrame2.TextRange.Font.Fill. _

ForeColor.ObjectThemeColor = msoThemeColorAccent2

Applying a chart color

Excel 2013 introduced a ch.ChartColor property that assigns 1 of 26 color themes to a chart. Assign a value from 1 to 26, but be aware that the order of the colors in the Chart Styles fly-out menu (see Figure 15-3) has nothing to do with the 26 values.

[image: When you create a chart, a paintbrush icon appears to the top right of the chart. The color schemes shown in this menu do not correspond to the color values in VBA.]

FIGURE 15-3 Color schemes in the menu are called Color 1, Color 2, and so on but have nothing to do with the VBA settings.

To understand the ChartColor values, consider the color drop-down menu shown in Figure 15-4. This drop-down menu offers 10 columns of colors: Background 1, Text 1, Background 2, Text 2, and then Theme 1 through Theme 6.

Here is a synopsis of the 26 values you can use for ChartColor:

	ChartColor 1, 9, and 20 use grayscale colors from column 3. A ChartColor value of 1 starts with a dark gray, then a light gray, then a medium gray. A ChartColor value of 9 starts with a light gray and moves to darker grays. A ChartColor value of 20 starts with three medium grays, then black, then very light gray, then medium gray.

	Value 2 uses the six theme colors in the top row, from left to right.

	Values 3 through 8 use a single column of colors. For example, ChartColor = 3 uses the six colors in Theme 1, from dark to light. ChartColor values of 4 through 8 correspond to Themes 2 through 6.

	Value 10 repeats value 2 but adds a light border around the chart element.

	Vaues 11 through 13 are the most inventive. They use three theme colors from the top row combined with the same three theme colors from the bottom row. This produces light and dark versions of three different colors. ChartColor 11 uses the odd-numbered themes (1, 3, and 5). ChartColor 12 uses the even-numbered themes. ChartColor 13 uses Themes 4, 5, and 6.

	Values 14 through 19 repeat values 3 through 8 but add a light border.

	Values 21 through 26 are similar to values 3 through 8, but the colors progress from light to dark.

[image: The fill color drop-down menu shows the colors used in the current theme.]

FIGURE 15-4 ChartColor combinations include a mix of colors from the current theme.

The following code changes the chart to use varying shades of Themes 4, 5, and 6:

ch.ChartColor = 13

Filtering a chart

In real life, creating charts from tables of data is not always simple. Tables frequently have totals or subtotals. The table in Figure 15-5 has quarterly total columns intermixed with monthly values. When you create a chart from this data, the total columns create a bad chart.

To filter a row or column in VBA, you set the new .IsFiltered property to True. The following code removes the total columns:

Click here to view code image

CH.ChartGroups(1).FullCategoryCollection(4).IsFiltered = True

CH.ChartGroups(1).FullCategoryCollection(8).IsFiltered = True

CH.ChartGroups(1).FullCategoryCollection(12).IsFiltered = True

CH.ChartGroups(1).FullCategoryCollection(16).IsFiltered = True

[image: A monthly column chart is interrupted with large spikes for Q1, Q2, Q3, and Q4.]

FIGURE 15-5 The subtotals in this table cause a bad-looking chart.

Using SetElement to emulate changes from the plus icon

When you select a chart, three icons appear to the right of the chart. The top icon is a plus sign. All the choices in the first- and second-level fly-out menus use the SetElement method in VBA. Note that the Add Chart Element drop-down menu on the Design tab includes all these settings, plus Lines and Up/Down Bars.

[image: Images]

Note SetElement does not cover all of the choices in the Format task pane that often appears. See the “Using the Format method to micromanage formatting options” section later in this chapter to change those settings.

If you do not feel like looking up the proper constant in this book, you can always quickly record a macro.

The SetElement method is followed by a constant that specifies which menu item to select. For example, if you want to choose Show Legend At Left, you can use this code:

Click here to view code image

ActiveChart.SetElement msoElementLegendLeft

Table 15-2 shows all the available constants you can use with the SetElement method. These constants are in roughly the same order in which they appear in the Add Chart Element drop-down menu.

TABLE 15-2 Constants available with SetElement

	
Element Group

	
SetElement Constant

	
Axes

	
msoElementPrimaryCategoryAxisNone

	
Axes

	
msoElementPrimaryCategoryAxisShow

	
Axes

	
msoElementPrimaryCategoryAxisWithoutLabels

	
Axes

	
msoElementPrimaryCategoryAxisReverse

	
Axes

	
msoElementPrimaryCategoryAxisThousands

	
Axes

	
msoElementPrimaryCategoryAxisMillions

	
Axes

	
msoElementPrimaryCategoryAxisBillions

	
Axes

	
msoElementPrimaryCategoryAxisLogScale

	
Axes

	
msoElementSecondaryCategoryAxisNone

	
Axes

	
msoElementSecondaryCategoryAxisShow

	
Axes

	
msoElementSecondaryCategoryAxisWithoutLabels

	
Axes

	
msoElementSecondaryCategoryAxisReverse

	
Axes

	
msoElementSecondaryCategoryAxisThousands

	
Axes

	
msoElementSecondaryCategoryAxisMillions

	
Axes

	
msoElementSecondaryCategoryAxisBillions

	
Axes

	
msoElementSecondaryCategoryAxisLogScaIe

	
Axes

	
msoElementPrimaryValueAxisNone

	
Axes

	
msoElementPrimaryValueAxisShow

	
Axes

	
msoElementPrimaryValueAxisThousands

	
Axes

	
msoElementPrimaryValueAxisMillions

	
Axes

	
msoElementPrimaryValueAxisBillions

	
Axes

	
msoElementPrimaryValueAxisLogScale

	
Axes

	
msoElementSecondaryValueAxisNone

	
Axes

	
msoElementSecondaryValueAxisShow

	
Axes

	
msoElementSecondaryValueAxisThousands

	
Axes

	
msoElementSecondaryValueAxisMillions

	
Axes

	
msoElementSecondaryValueAxisBillions

	
Axes

	
msoElementSecondaryValueAxisLogScale

	
Axes

	
msoElementSeriesAxisNone

	
Axes

	
msoElementSeriesAxisShow

	
Axes

	
msoElementSeriesAxisReverse

	
Axes

	
msoElementSeriesAxisWithoutLabeling

	
Axis Titles

	
msoElementPrimaryCategoryAxisTitleNone

	
Axis Titles

	
msoElementPrimaryCategoryAxisTitleBelowAxis

	
Axis Titles

	
msoElementPrimaryCategoryAxisTitleAdjacentToAxis

	
Axis Titles

	
msoElementPrimaryCategoryAxisTitleHorizontal

	
Axis Titles

	
msoEIementPrimaryCategoryAxisTitleVertical

	
Axis Titles

	
msoElementPrimaryCategoryAxisTitleRotated

	
Axis Titles

	
msoElementSecondaryCategoryAxisTitleAdjacentToAxis

	
Axis Titles

	
msoElementSecondaryCategoryAxisTitleBelowAxis

	
Axis Titles

	
msoElementSecondaryCategoryAxisTitleHorizontal

	
Axis Titles

	
msoElementSecondaryCategoryAxisTitleNone

	
Axis Titles

	
msoElementSecondaryCategoryAxisTitleRotated

	
Axis Titles

	
msoElementSecondaryCategoryAxisTitleVertical

	
Axis Titles

	
msoElementPrimaryValueAxisTitleAdjacentToAxis

	
Axis Titles

	
msoElementPrimaryValueAxisTitleBelowAxis

	
Axis Titles

	
msoElementPrimaryValueAxisTitleHorizontal

	
Axis Titles

	
msoElementPrimaryValueAxisTitleNone

	
Axis Titles

	
msoElementPrimaryValueAxisTitleRotated

	
Axis Titles

	
msoElementPrimaryValueAxisTitleVertical

	
Axis Titles

	
msoElementSecondaryValueAxisTitleBelowAxis

	
Axis Titles

	
msoElementSecondaryValueAxisTitleHorizontal

	
Axis Titles

	
msoElementSecondaryValueAxisTitleNone

	
Axis Titles

	
msoElementSecondaryValueAxisTitleRotated

	
Axis Titles

	
msoElementSecondaryValueAxisTitleVertical

	
Axis Titles

	
msoElementSeriesAxisTitleHorizontal

	
Axis Titles

	
msoElementSeriesAxisTitleNone

	
Axis Titles

	
msoElementSeriesAxisTitleRotated

	
Axis Titles

	
msoElementSeriesAxisTitleVertical

	
Axis Titles

	
msoElementSecondaryValueAxisTitleAdjacentToAxis

	
Chart Title

	
msoElementChartTitleNone

	
Chart Title

	
msoElementChartTitleCenteredOverlay

	
Chart Title

	
msoElementChartTitleAboveChart

	
Data Labels

	
msoElementDataLabelCallout (new in Excel 2019)

	
Data Labels

	
msoElementDataLabelCenter

	
Data Labels

	
msoElementDataLabelInsideEnd

	
Data Labels

	
msoElementDataLabelNone

	
Data Labels

	
msoElementDataLabelInsideBase

	
Data Labels

	
msoElementDataLabelOutSideEnd

	
Data Labels

	
msoElementDataLabelTop

	
Data Labels

	
msoElementDataLabelBottom

	
Data Labels

	
msoElementDataLabelRight

	
Data Labels

	
msoElementDataLabelLeft

	
Data Labels

	
msoElementDataLabelShow

	
Data Labels

	
msoElementDataLabelBestFit

	
Data Table

	
msoElementDataTableNone

	
Data Table

	
msoElementDataTableShow

	
Data Table

	
msoElementDataTableWithLegendKeys

	
Error Bars

	
msoElementErrorBarNone

	
Error Bars

	
msoElementErrorBarStandardError

	
Error Bars

	
msoElementErrorBarPercentage

	
Error Bars

	
msoElementErrorBarStandardDeviation

	
GridLines

	
msoElementPrimaryCategoryGridLinesNone

	
GridLines

	
msoElementPrimaryCategoryGridLinesMajor

	
GridLines

	
msoElementPrimaryCategoryGridLinesMinor

	
GridLines

	
msoElementPrimaryCategoryGridLinesMinorMajor

	
GridLines

	
msoElementSecondaryCategoryGridLinesNone

	
GridLines

	
msoElementSecondaryCategoryGridLinesMajor

	
GridLines

	
msoElementSecondaryCategoryGridLinesMinor

	
GridLines

	
msoElementSecondaryCategoryGridLinesMinorMajor

	
GridLines

	
msoElementPrimaryValueGridLinesNone

	
GridLines

	
msoElementPrimaryValueGridLinesMajor

	
GridLines

	
msoElementPrimaryValueGridLinesMinor

	
GridLines

	
msoElementPrimaryValueGridLinesMinorMajor

	
GridLines

	
msoElementSecondaryValueGridLinesNone

	
GridLines

	
msoElementSecondaryValueGridLinesMajor

	
GridLines

	
msoElementSecondaryValueGridLinesMinor

	
GridLines

	
msoElementSecondaryValueGridLinesMinorMajor

	
GridLines

	
msoElementSeriesAxisGridLinesNone

	
GridLines

	
msoElementSeriesAxisGridLinesMajor

	
GridLines

	
msoElementSeriesAxisGridLinesMinor

	
GridLines

	
msoElementSeriesAxisGridLinesMinorMajor

	
Legend

	
msoElementLegendNone

	
Legend

	
msoElementLegendRight

	
Legend

	
msoElementLegendTop

	
Legend

	
msoElementLegendLeft

	
Legend

	
msoElementLegendBottom

	
Legend

	
msoElementLegendRightOverlay

	
Legend

	
msoElementLegendLeftOverlay

	
Lines

	
msoElementLineNone

	
Lines

	
msoElementLineDropLine

	
Lines

	
msoElementLineHiLoLine

	
Lines

	
msoElementLineDropHiLoLine

	
Lines

	
msoElementLineSeriesLine

	
Trendline

	
msoElementTrendlineNone

	
Trendline

	
msoElementTrendlineAddLinear

	
Trendline

	
msoElementTrendlineAddExponential

	
Trendline

	
msoElementTrendlineAddLinearForecast

	
Trendline

	
msoElementTrendlineAddTwoPeriodMovingAverage

	
Up/Down Bars

	
msoElementUpDownBarsNone

	
Up/Down Bars

	
msoElementUpDownBarsShow

	
Plot Area

	
msoElementPlotAreaNone

	
Plot Area

	
msoElementPlotAreaShow

	
Chart Wall

	
msoElementChartWallNone

	
Chart Wall

	
msoElementChartWallShow

	
Chart Floor

	
msoElementChartFloorNone

	
Chart Floor

	
msoElementChartFloorShow

[image: Images]

Note If you attempt to format an element that is not present, Excel returns a -2147467259 Method Failed error.

Using SetElement enables you to change chart elements quickly. As an example, charting gurus say that the legend should always appear to the left or above the chart. Few of the built-in styles show the legend above the chart. I also prefer to show the values along the axis in thousands or millions, when appropriate. This is better than displaying three or six zeros on every line.

The following code handles these settings after you create the chart:

Click here to view code image

Sub UseSetElement()

Dim WS As Worksheet

Dim CH As Chart

Set WS = ActiveSheet

Range("A1:M4").Select

Set CH = WS.Shapes.AddChart2(Style:=201, _

XlChartType:=xlColumnClustered, _

Left:=[B6].Left, _

Top:=[B6].Top, _

NewLayout:=False).Chart

' Set value axis to display thousands

CH.SetElement msoElementPrimaryValueAxisThousands

' move the legend to the top

CH.SetElement msoElementLegendTop

End Sub

Using the format method to micromanage formatting options

The Format tab offers icons for changing colors and effects for individual chart elements. Although many people call the Shadow, Glow, Bevel, and Material settings “chart junk,” there are ways in VBA to apply these formats.

Excel 2019 includes an object called the ChartFormat object that contains the settings for Fill, Glow, Line, PictureFormat, Shadow, SoftEdge, TextFrame2, and ThreeD. You can access the ChartFormat object by using the Format method on many chart elements. Table 15-3 lists a sampling of chart elements you can format using the Format method.

TABLE 15-3 Chart elements to which formatting applies

	
Chart Element

	
VBA to Refer to This Chart Element

	
Chart Title

	
ChartTitle

	
Axis Title–Category

	
Axes(xlCategory, xlPrimary).AxisTitle

	
Axis Title–Value

	
Axes(xlValue, xlPrimary).AxisTitle

	
Legend

	
Legend

	
Data Labels For Series 1

	
SeriesCollection(1).DataLabels

	
Data Labels For Point 2

	
SeriesCollection(1).DataLabels(2) or SeriesCollection(1).Points(2).DataLabel

	
Data Table

	
DataTable

	
Axes–Horizontal

	
Axes(xlCategory, xlPrimary)

	
Axes–Vertical

	
Axes(xlValue, xlPrimary)

	
Axis–Series (Surface Charts Only)

	
Axes(xlSeries, xlPrimary)

	
Major Gridlines

	
Axes(xlValue, xlPrimary).MajorGridlines

	
Minor Gridlines

	
Axes(xlValue, xlPrimary).MinorGridlines

	
Plot Area

	
PlotArea

	
Chart Area

	
ChartArea

	
Chart Wall

	
Walls

	
Chart Back Wall

	
BackWall

	
Chart Side Wall

	
SideWall

	
Chart Floor

	
Floor

	
Trendline For Series 1

	
SeriesCollection(1).TrendLines(1)

	
Droplines

	
ChartGroups(1).DropLines

	
Up/Down Bars

	
ChartGroups(1).UpBars

	
Error Bars

	
SeriesCollection(1).ErrorBars

	
Series(1)

	
SeriesCollection(1)

	
Series(1) DataPoint

	
SeriesCollection(1).Points(3)

The Format method is the gateway to settings for Fill, Glow, and so on. Each of those objects has different options. The following sections provide examples of how to set up each type of format.

Changing an object’s fill

The Shape Fill drop-down menu on the Format tab enables you to choose a single color, a gradient, a picture, or a texture for the fill.

To apply a specific color, you can use the RGB (red, green, blue) setting. To create a color, you specify a value from 0 to 255 for levels of red, green, and blue. The following code applies a simple blue fill:

Click here to view code image

Dim cht As Chart

Dim upb As UpBars

Set cht = ActiveChart

Set upb = cht.ChartGroups(1).UpBars

upb.Format.Fill.ForeColor.RGB = RGB(0, 0, 255)

If you would like an object to pick up the color from a specific theme accent color, you use the ObjectThemeColor property. The following code changes the bar color of the first series to accent color 6, which is an orange color in the Office theme (but might be another color if the workbook is using a different theme):

Click here to view code image

Sub ApplyThemeColor()

Dim cht As Chart

Dim ser As Series

Set cht = ActiveChart

Set ser = cht.SeriesCollection(1)

ser.Format.Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent6

End Sub

To apply a built-in texture, you use the PresetTextured method. The following code applies a green marble texture to the second series. However, you can apply any of the 20 textures:

Click here to view code image

Sub ApplyTexture()

Dim cht As Chart

Dim ser As Series

Set cht = ActiveChart

Set ser = cht.SeriesCollection(2)

ser.Format.Fill.PresetTextured msoTextureGreenMarble

End Sub

[image: Images]

Note When you type PresetTextured followed by a space, the VB Editor offers a complete list of possible texture values.

To fill the bars of a data series with a picture, you use the UserPicture method and specify the path and file name of an image on the computer, as in the following example:

Click here to view code image

Sub FormatWithPicture()

Dim cht As Chart

Dim ser As Series

Set cht = ActiveChart

Set ser = cht.SeriesCollection(1)

MyPic = "C:\PodCastTitle1.jpg"

ser.Format.Fill.UserPicture MyPic

End Sub

In Excel 2019, you can apply a pattern by using the .Patterned method. Patterns have a type such as msoPatternPlain, as well as foreground and background colors. The following code creates dark red vertical lines on a white background:

Click here to view code image

Sub FormatWithPicture()

Dim cht As Chart

Dim ser As Series

Set cht = ActiveChart

Set ser = cht.SeriesCollection(1)

With ser.Format.Fill

.Patterned msoPatternDarkVertical

.BackColor.RGB = RGB(255,255,255)

.ForeColor.RGB = RGB(255,0,0)

End With

End Sub

[image: Images]

Caution Code that uses patterns does not work with Excel 2007. Patterns were removed from Excel 2007, but they were restored in Excel 2010 due to outcry from fans of patterns.

Gradients are more difficult to specify than fills. Excel 2019 provides three methods that help you set up the common gradients. The OneColorGradient and TwoColorGradient methods require that you specify a gradient direction, such as msoGradientFromCorner. You can then specify one of four styles, numbered 1 through 4, depending on whether you want the gradient to start at the top left, top right, bottom left, or bottom right. After using a gradient method, you need to specify the ForeColor and the BackColor settings for the object. The following macro sets up a two-color gradient using two theme colors:

Click here to view code image

Sub TwoColorGradient()

Dim cht As Chart

Dim ser As Series

Set cht = ActiveChart

Set ser = cht.SeriesCollection(1)

ser.Format.Fill.TwoColorGradient msoGradientFromCorner, 3

ser.Format.Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent6

ser.Format.Fill.BackColor.ObjectThemeColor = msoThemeColorAccent2

End Sub

When using the OneColorGradient method, you specify a direction, a style (1 through 4), and a darkness value between 0 and 1 (0 for darker gradients to 1 for lighter gradients).

When using the PresetGradient method, you specify a direction, a style (1 through 4), and the type of gradient, such as msoGradientBrass, msoGradientLateSunset, or msoGradientRainbow. Again, as you are typing this code in the VB Editor, the AutoComplete tool provides a complete list of the available preset gradient types.

Formatting line settings

The LineFormat object formats either a line or the border around an object. You can change numerous properties of a line, such as the color, arrows, and dash style.

The following macro formats the trendline for the first series in a chart:

Click here to view code image

Sub FormatLineOrBorders()

Dim cht As Chart

Set cht = ActiveChart

With cht.SeriesCollection(1).Trendlines(1).Format.Line

.DashStyle = msoLineLongDashDotDot

.ForeColor.RGB = RGB(50, 0, 128)

.BeginArrowheadLength = msoArrowheadShort

.BeginArrowheadStyle = msoArrowheadOval

.BeginArrowheadWidth = msoArrowheadNarrow

.EndArrowheadLength = msoArrowheadLong

.EndArrowheadStyle = msoArrowheadTriangle

.EndArrowheadWidth = msoArrowheadWide

End With

End Sub

When you are formatting a border, the arrow settings are not relevant, so the code is shorter than the code for formatting a line. The following macro formats the border around a chart:

Click here to view code image

Sub FormatBorder()

Dim cht As Chart

Set cht = ActiveChart

With cht.ChartArea.Format.Line

.DashStyle = msoLineLongDashDotDot

.ForeColor.RGB = RGB(50, 0, 128)

End With

End Sub

Creating a combo chart

Sometimes you need to chart series of data that are of differing orders of magnitude. Normal charts do a lousy job of showing smaller series. Combo charts can save the day.

Consider the data and chart in Figure 15-6. Here you want to plot the number of sales per month and also show two quality ratings. Perhaps this is a fictitious car dealer that sells 80 to 100 cars a month, and the customer satisfaction usually runs in the 80% to 90% range. When you try to plot this data on a regular line chart, the column for 90 cars sold dwarfs the column for 80% customer satisfaction.

[image: The data for the three series in this chart have different orders of magnitude. The first series is in the 90–110 range. The second and third series are percentages. The solution is a combo chart. The chart shows series 1 as columns. Series 2 and 3 are lines and use a secondary axis on the right side of the chart.]

FIGURE 15-6 The two small series are moved to a secondary axis.

Case study: Creating a combo chart

Let’s look at an example of the VBA needed to create a combo chart. You want to create a chart that shows the number of sales and also two percentage measurements. In this process, you have to format each of the three series. At the top of the macro, declare object variables for the worksheet, the chart, and each of the series:

Click here to view code image

Dim WS As Worksheet

Dim CH As Chart

Dim Ser1 As Series

Dim Ser2 As Series

Dim Ser3 As Series

Create the chart as a regular clustered column chart:

Click here to view code image

Set WS = ActiveSheet

Range("A1:G4").Select

Set CH = WS.Shapes.AddChart2(Style:=201, _

XlChartType:=xlColumnClustered, _

Left:=[B6].Left, _

Top:=[B6].Top, _

NewLayout:=False).Chart

To work with a series, assign FullSeriesCollection to an object variable such as Ser2. You could get away with a single object variable called Ser that you use over and over. This code enables you to come back later in the macro to refer to any of the three series. After you have the Ser2 object variable defined, assign the series to the secondary axis group and change the chart type of just that series to a line; then repeat the code for Series 3:

Click here to view code image

' Move Series 2 to secondary axis as line

Set Ser2 = CH.FullSeriesCollection(2)

With Ser2

.AxisGroup = xlSecondary

.ChartType = xlLine

End With

' Move Series 3 to secondary axis as line

Set Ser3 = CH.FullSeriesCollection(3)

With Ser3

.AxisGroup = xlSecondary

.ChartType = xlLine

End With

Note that so far, you have not had to touch Series 1. Series 1 is fine as a column chart on the primary axis. You’ll come back to Series 1 later in the macro. Because too many of the data points in Series 3 were close to 100%, the Excel charting engine decided to make the right axis span all the way up to 120%. This is silly because no one can get a rating higher than 100%. You can override the automatic settings and choose a scale for the right axis. The following code uses 0.6 (for 60%) as the minimum and 1 (for 100%) as the maximum:

Click here to view code image

' Set the secondary axis to go from 60% to 100%

CH.Axes(xlValue, xlSecondary).MinimumScale = 0.6

CH.Axes(xlValue, xlSecondary).MaximumScale = 1

When you override the scale values, Excel automatically guesses where you want the gridlines and axis labels. Rather than leave this to chance, you can use MajorUnit and MinorUnit:

Click here to view code image

' Labels every 10%, secondary gridline at 5%

CH.Axes(xlValue, xlSecondary).MajorUnit = 0.1

CH.Axes(xlValue, xlSecondary).MinorUnit = 0.05

CH.Axes(xlValue, xlSecondary).TickLabels.NumberFormat = "0%"

Axis labels and major gridlines appear at the increment specified by MajorUnit. MinorUnit, and that is important only if you plan on showing minor gridlines.

At this point, there are numbers on the left axis and numbers on the right axis. I instantly went to the percentages on the right side and tried to follow the gridlines across. But this doesn’t work because the gridlines don’t line up with the numbers on the right side. They line up with the numbers on the left side. You can’t really tell this for sure, though, because the gridlines coincidentally happen to line up with 100%, 80%, and 60%.

At this point, you might decide to get creative. You could use the following code to delete the gridlines for the left axis, add major and minor gridlines for the right axis, delete the numbers along the left axis, and replace the numbers on the axis with a data label in the center of each column:

Click here to view code image

' Turn off the gridlines for left axis

CH.Axes(xlValue).HasMajorGridlines = False

' Add gridlines for right axis

CH.SetElement msoElementSecondaryValueGridLinesMajor

CH.SetElement msoElementSecondaryValueGridLinesMinorMajor

' Hide the labels on the primary axis

CH.Axes(xlValue).TickLabelPosition = xlNone

' Replace axis labels with a data label on the column

Set Ser1 = CH.FullSeriesCollection(1)

Ser1.ApplyDataLabels

Ser1.DataLabels.Position = xlLabelPositionCenter

Now you almost have it. Because the book is printed in monochrome, change the color of the Series 1 data label to white:

Click here to view code image

' Data Labels in white

With Ser1.DataLabels.Format.TextFrame2.TextRange.Font.Fill

.Visible = msoTrue

.ForeColor.ObjectThemeColor = msoThemeColorBackground1

.Solid

End With

And because my charting mentors drilled it into my head, the legend has to be at the top or the left. Here’s how you move it to the top:

Click here to view code image

' Legend at the top, per Gene Z.

CH.SetElement msoElementLegendTop

The resulting chart is shown in Figure 15-7. Thanks to the minor gridlines, you can easily tell if each rating was in the 80%–85%, 85%–90%, or 90%–95% range. The columns show the sales, and the labels stay out of the way, but they are still readable.

[image: A combo chart shows Number of Sales as a column tied to the left axis. The two percentage ratings are shown as lines tied to the right axis.]

FIGURE 15-7 The gridlines and the two series represented by a line correspond to the axis labels on the right side.

Creating map charts

The new filled map chart offers some settings unique to map charts. Say that you have data for six states in the southeast United States. By default, the map chart shows 48 of the 50 states. Set the .GeoMappingLevel to xlGeoMappingDataOnly to limit the map to only states with data, as shown in Figure 15-8.

Click here to view code image

Sub RegionMapChart()

Dim CH As Chart

Set CH = ActiveSheet.Shapes.AddChart2(-1, xlRegionMap).Chart

CH.SetSourceData Source:=ActiveSheet.Range("A1:B7")

' the following properties are specific to filled map charts

With CH.FullSeriesCollection(1)

.GeoMappingLevel = xlGeoMappingLevelDataOnly

.RegionLabelOption = xlRegionLabelOptionsBestFitOnly

End With

End Sub

Note that Mississippi is not labeled in the chart in Figure 15-8. This is because RegionLabelOption is set to xlRegionLabelOptionsBestFitOnly. To force all labels to appear, use xlRegionLabelOptionsShowAll instead.

You can export any chart to an image file on your hard drive. The ExportChart method requires you to specify a file name and a graphic type. The available graphic types depend on graphic file filters installed in your Registry. It is a safe bet that JPG, BMP, PNG, and GIF work on most computers.

[image: A map chart shows only the six states (North Carolina, South Carolina, Georgia, Alabama, Mississippi, and Florida) with data.]

FIGURE 15-8 Limit the filled map chart to only regions with data.

Creating waterfall charts

Waterfall charts are often used to show profit on a sale or cash flow over the course of a year. A waterfall chart is composed of floating columns that raise or lower from the previous column. However, some points will be marked as Totals, such as the Net Price column in Figure 15-9. Use the .IsTotal property to force a column to not float.

Click here to view code image

Sub WaterfallChart()

Dim CH As Chart

Set CH = ActiveSheet.Shapes.AddChart2(-1, xlWaterfall).Chart

CH.SetSourceData Source:=ActiveSheet.Range("A1:B7")

' Mark certain points as totals

With CH.FullSeriesCollection(1)

.Points(1).IsTotal = True

.Points(3).IsTotal = True

.Points(7).IsTotal = True

End With

End Sub

[image: Three columns in this waterfall chart are marked as totals and do not float.]

FIGURE 15-9 Any column marked as a total will touch the x-axis.

One of the frustrations with the new Ivy charting engines is this: It is often difficult to figure out how to change the colors. In the waterfall chart in Figure 15-9, there are colors for Increase, Decrease, and Total. The only way to format those colors is to do the following:

	Click the legend to select the legend.

	Click the Increase legend entry to select that one single legend entry.

	Right-click to see a menu with a choice to change the fill for Increase.

The equivalent VBA often crashes Excel. This might be a temporary bug, and it might be fixed by the time you are reading this:

Click here to view code image

Sub FormatWaterfall()

Dim cht As Chart

Dim lg As Legend

Dim lgentry As LegendEntry

Dim iLegEntry As Long

Set cht = ActiveChart

Set lg = cht.Legend

For iLegEntry = 1 To lg.LegendEntries.Count

Set lgentry = lg.LegendEntries(iLegEntry)

lgentry.Format.Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent1 + iLegEntry - 1

Next

End Sub

[image: Images]

Note Thanks to charting legend Jon Peltier for discovering this obscure way to change the waterfall fill colors. Jon’s awesome website is PeltierTech.com.

Exporting a chart as a graphic

You can export any chart to an image file on your hard drive. The ExportChart method requires you to specify a file name and a graphic type. The available graphic types depend on graphic file filters installed in your Registry—usually JPG, BMP, PNG, and GIF.

For example, the following code exports the active chart as a GIF file:

Click here to view code image

Sub ExportChart()

Dim cht As Chart

Set cht = ActiveChart

cht.Export Filename:="C:\Chart.gif", Filtername:="GIF"

End Sub

Considering backward compatibility

The .AddChart2 method works in Excel 2013 through Excel 2019. For Excel 2007 and 2010, you have to revert to using the .AddChart method, as shown here:

Click here to view code image

Sub CreateChartIn20072010()

'Create a Clustered Column Chart in B8:G15 from data in A3:G6

Dim CH As Chart

Range("A3:G6").Select

Set CH = ActiveSheet.Shapes.AddChart(_

XlChartType:=xlColumnClustered, _

Left:=Range("B8").Left, _

Top:=Range("B8").Top, _

Width:=Range("B8:G15").Width, _

Height:=Range("B8:G15").Height).Chart

End Sub

With this method, you can specify neither a Style nor a NewLayout.

Next steps

In Chapter 16, “Data visualizations and conditional formatting,” you’ll find out how to automate data visualization tools such as icon sets, color scales, and data bars.

CHAPTER 16
Data visualizations and conditional formatting

In this chapter, you will:

	Use VBA methods and properties for data visualizations

	Add data bars to a range

	Add color scales to a range

	Add icon sets to a range

	Use visualization tricks

	Use other conditional formatting methods

Data visualization tools were introduced in Excel 2007 and improved in Excel 2010. Data visualizations appear on a drawing layer that can hold icon sets, data bars, color scales, and sparklines. Unlike with SmartArt graphics, Microsoft exposed the entire object model for the data visualization tools, so you can use VBA to add data visualizations to your reports.

[image: Images]

Note See Chapter 17, “Dashboarding with sparklines in Excel 2019,” for more information about sparklines.

Excel 2019 provides a variety of data visualizations, as described here and shown in Figure 16-1:

	Data bars—A data bar adds an in-cell bar chart to each cell in a range. The largest numbers have the largest bars, and the smallest numbers have the smallest bars. You can control the bar color as well as the values that should receive the smallest and largest bars. Data bars can be solid or a gradient. The gradient bars can have borders.

	Color scales—Excel applies a color to each cell from among a two- or three-color gradient. The two-color gradients are best for reports that are presented in monochrome. The three-color gradients require a presentation in color but can represent a report in a traditional traffic light color combination of red–yellow–green. You can control the points along the continuum where each color begins, and you can choose the two or three colors.

	Icon sets—Excel assigns an icon to each number. Icon sets can contain three icons, such as the red–yellow–green traffic lights; four icons; or five icons (as with cell-phone signal bars). With icon sets, you can control the numeric limits for each icon, reverse the order of the icons, or choose to show only the icons.

	Above/below average—These rules, which are under the Top/Bottom Rules flyout menu, make it easy to highlight all the cells that are above or below average. You can choose the formatting to apply to the cells. Note in column G of Figure 16-1 that only 30% of the cells are above average. Contrast this with the top 50% in column K.

	Duplicate values—Excel highlights any values that are repeated within a data set. Because the Delete Duplicates command on the Data tab of the ribbon is so destructive, you might prefer to highlight the duplicates and then intelligently decide which records to delete. This also can be used to highlight values that appear only once in the data. Microsoft refers to this as “Unique Values,” although I disagree with that term. I would prefer an option that highlights the values that would be left after applying Remove Duplicates. If the word “Apple” appears twice in a column, neither cell will be marked as a unique value.

	Top/bottom rules—Excel highlights the top or bottom n percent of cells or highlights the top or bottom n cells in a range.

	Highlight cells—The legacy conditional formatting rules such as greater than, less than, between, and text that contains are still available in Excel 2019. The powerful Formula conditions are also available, although you might need to use these less frequently now that you have the average and top/bottom rules.

[image: Six visualizations are shown in this figure. Data bars are tiny bar charts in a single cell. Color scales use a range of colors (green to yellow to red). Icon sets apply different icons based on the size of the number. Other visualizations include anything above average, duplicates, and top 50%.]

FIGURE 16-1 Visualizations such as data bars, color scales, icon sets, and top/bottom rules are controlled in the Excel user interface from the Conditional Formatting drop-down menu on the Home tab of the ribbon.

VBA methods and properties for data visualizations

All the data visualization settings are managed in VBA with the FormatConditions collection. Conditional formatting has been in Excel since Excel 97. In Excel 2007, Microsoft expanded the FormatConditions object to handle the new visualizations. Whereas legacy versions of Excel would use the FormatConditions.Add method, Excel 2007–2019 offer additional methods, such as AddDataBar, AddIconSetCondition, AddColorScale, AddTop10, AddAboveAverage, and AddUniqueValues.

You can apply several different conditional formatting conditions to the same range. For example, you can apply a two-color color scale, an icon set, and a data bar to the same range. Excel includes a Priority property to specify which conditions should be calculated first. Methods such as SetFirstPriority and SetLastPriority ensure that a new format condition is executed before or after all others.

The StopIfTrue property works in conjunction with the Priority property. Say that you are highlighting duplicates but want to check only text cells. Create a new formula-based condition that uses =ISNUMBER() to find numeric values. Give the ISNUMBER condition a higher priority and apply StopIfTrue to prevent Excel from ever reaching the duplicates condition for numeric cells.

Beginning with Excel 2007, the Type property was expanded dramatically. This property was formerly a toggle between CellValue and Expression, but 13 new types were added in Excel 2007. Table 16-1 shows the valid values for the Type property. Items 3 and above were introduced in Excel 2007. The Excel team must have had plans for more conditions; items 7, 14, and 15 do not exist, so they must have been on the drawing board at one time but then removed from the final version of Excel 2007. One of these was likely the ill-fated “highlight entire table row” feature that was in the Excel 2007 beta but removed in the final version.

TABLE 16-1 Valid types for a format condition

	Value

	Description

	VBA Constant

	1

	Cell value

	xlCellValue

	2

	Expression

	xlExpression

	3

	Color scale

	xlColorScale

	4

	Data bar

	xlDatabar

	5

	Top 10 values

	xlTop10

	6

	Icon set

	xlIconSet

	8

	Unique values

	xlUniqueValues

	9

	Text string

	xlTextString

	10

	Blanks condition

	xlBlanksCondition

	11

	Time period

	xlTimePeriod

	12

	Above average condition

	xlAboveAverageCondition

	13

	No blanks condition

	xlNoBlanksCondition

	16

	Errors condition

	xlErrorsCondition

	17

	No errors condition

	xlNoErrorsCondition

Adding data bars to a range

The Data Bar command adds an in-cell bar chart to each cell in a range. Many charting experts complained to Microsoft about problems in the Excel 2007 data bars. For this reason, Microsoft changed the data bars in Excel 2010 to address these problems.

In Figure 16-2, the next-to-last cell In the left column reflects changes introduced in Excel 2010. Notice that this cell, which has a value of 0, has no data bar at all. In Excel 2007, the smallest value receives a 4-pixel data bar, even if that smallest value is 0. In addition, in Excel 2019, the largest bar in the data set typically takes up the entire width of the cell.

[image: Three types of data bars are available. The bars can start solid and end in a gradient or they can be solid throughout. When you use a gradient, you can choose to outline the bar.]

FIGURE 16-2 Excel 2019 offers many variations on data bars.

In Excel 2007, the data bars would end in a gradient that made it difficult to tell where the bar ended. Versions from Excel 2010 through 2019 offer a border around the bar. You can choose to change the color of the border or even to remove the border, as shown in the right column of Figure 16-2.

Excel 2010–2019 also offer support for negative data bars, as shown in the middle column of Figure 16-2; the data bars run right to left for negative values. These allow comparative histograms.

To add a data bar, you apply the FormatConditions.AddDataBar method to a range that contains your numbers. This method requires no arguments, and it returns an object of the DataBar type.

After you add the data bar, you will most likely need to change some of its properties. One method of referring to the data bar is to assume that the recently added data bar is the last item in the collection of format conditions. This code would add a data bar, identify the data bar by counting the conditions, and then change the color:

Click here to view code image

Range("A2:A11").FormatConditions.AddDatabar

ThisCond = Range("A2:A11").FormatConditions.Count

With Range("A2:A11").FormatConditions(ThisCond).BarColor

.Color = RGB(255, 0, 0) ' Red

.TintAndShade = -0.5 ' Darker than normal

End With

A safer way to go is to define an object variable of type DataBar. You can then assign the newly created data bar to the variable:

Click here to view code image

Dim DB As Databar

' Add the data bars

Set DB = Range("A2:A11").FormatConditions.AddDatabar

' Use a red that is 25% darker

With DB.BarColor

.Color = RGB(255, 0, 0)

.TintAndShade = -0.5

End With

When specifying colors for the data bar or the border, you should use the RGB function to assign a color. You can modify the color by making it darker or lighter, using the TintAndShade property. Valid values are from -1 to 1. Negative values make the color darker, a value of 0 means no modification, and positive values make the color lighter.

By default, Excel assigns the shortest data bar to the minimum value and the longest data bar to the maximum value. If you want to override the defaults, use the Modify method for either the MinPoint or MaxPoint properties. Specify a type from those shown in Table 16-2. Types 0, 3, 4, and 5 require a value. Table 16-2 shows valid types.

TABLE 16-2 MinPoint and MaxPoint types

	Value

	Description

	VBA Constant

	0

	Number is used.

	xlConditionNumber

	1

	Lowest value from the list of values.

	xlConditionValueLowestValue

	2

	Highest value from the list of values.

	xlConditionValueHighestValue

	3

	Percentage is used.

	xlConditionValuePercent

	4

	Formula is used.

	xlConditionValueFormula

	5

	Percentile is used.

	xlConditionValuePercentile

	-1

	No conditional value.

	xlConditionValueNone

Use the following code to have the smallest bar assigned to values of 0 and below:

Click here to view code image

DB.MinPoint.Modify _

 Newtype:=xlConditionValueNumber, NewValue:=0

To give the top 20% of the bars the largest bar, use this code:

Click here to view code image

DB.MaxPoint.Modify _

 Newtype:=xlConditionValuePercent, NewValue:=80

An interesting alternative is to show only the data bars and not the value. To do this, use this code:

DB.ShowValue = False

To show negative data bars in Excel 2019, use this line:

Click here to view code image

DB.AxisPosition = xlDataBarAxisAutomatic

When you allow negative data bars, you can specify an axis color, a negative bar color, and a negative bar border color. The following code shows samples of how to change the various colors. Figure 16-3 shows the data bars in column C:

Click here to view code image

Sub DataBar2()

' Add a Data bar

' Include negative data bars

' Control the min and max point

'

Click here to view code image

Dim DB As Databar

With Range("C4:C11")

.FormatConditions.Delete

' Add the data bars

Set DB = .FormatConditions.AddDatabar()

End With

' Set the lower limit

DB.MinPoint.Modify newtype:=xlConditionFormula, NewValue:="-600"

DB.MaxPoint.Modify newtype:=xlConditionValueFormula, NewValue:="600"

' Change the data bar to Green

With DB.BarColor

.Color = RGB(0, 255, 0)

.TintAndShade = -0.15

End With

With DB

' Use a gradient

.BarFillType = xlDataBarFillGradient

' Left to Right for direction of bars

.Direction = xlLTR

' Assign a different color to negative bars

.NegativeBarFormat.ColorType = xlDataBarColor

' Use a border around the bars

.BarBorder.Type = xlDataBarBorderSolid

' Assign a different border color to negative

.NegativeBarFormat.BorderColorType = xlDataBarSameAsPositive

' All borders are solid black

With .BarBorder.Color

.Color = RGB(0, 0, 0)

End With

' Axis where it naturally would fall, in black

.AxisPosition = xlDataBarAxisAutomatic

With .AxisColor

.Color = 0

.TintAndShade = 0

End With

' Negative bars in red

With .NegativeBarFormat.Color

.Color = 255

.TintAndShade = 0

End With

' Negative borders in red

 End With

End Sub

In Excel 2019, you have a choice of showing a gradient or a solid bar. To show a solid bar, use the following:

DB.BarFillType = xlDataBarFillSolid

The following code sample produces the solid bars shown in column E in Figure 16-3:

Click here to view code image

Sub DataBar3()

' Add a Data bar

' Show solid bars

' Allow negative bars

' hide the numbers, show only the data bars

'

Dim DB As Databar

With Range("E4:E11")

.FormatConditions.Delete

' Add the data bars

Set DB = .FormatConditions.AddDatabar()

End With

With DB.BarColor

.Color = RGB(0, 0, 255)

.TintAndShade = 0.1

End With

' Hide the numbers

DB.ShowValue = False

DB.BarFillType = xlDataBarFillSolid

DB.NegativeBarFormat.ColorType = xlDataBarColor

With DB.NegativeBarFormat.Color

.Color = 255

.TintAndShade = 0

End With

' Allow negatives

DB.AxisPosition = xlDataBarAxisAutomatic

' Negative border color is different

DB.NegativeBarFormat.BorderColorType = xlDataBarColor

With DB.NegativeBarFormat.BorderColor

.Color = RGB(127, 127, 0)

.TintAndShade = 0

End With

End Sub

To allow the bars to go right to left, use this code:

DB.Direction = xlRTL ' Right to Left

[image: The figure shows three types of data bars. In column A, bars start at the left edge of the cell and end in a gradient. In column C, bars start at the midpoint of the cell and have an outline. In column E, bars start at the midpoint of the cell and are solid, and the underlying number is not shown.]

FIGURE 16-3 Data bars created by the macros in this section.

Adding color scales to a range

You can add color scales in either two-color or three-color scale varieties. Figure 16-4 shows the available settings in the Excel user interface for a color scale using three colors.

[image: The Edit Formatting Rule dialog box lets you choose a three-color or two-color style. You choose the colors, the type, and the value for each color.]

FIGURE 16-4 Color scales enable you to show hot spots in your data set.

As with data bars, you apply a color scale to a range object by using the AddColorScale method. You should specify a ColorScaleType of either 2 or 3 as the only argument of the AddColorScale method.

Next, you can indicate a color and tint for both or all three of the color scale criteria. Using the values shown previously in Table 16-2, you can also specify whether the shade is applied to the lowest value, the highest value, a particular value, or a percentage or at a percentile.

The following code generates a three-color color scale in the range A1:A10:

Click here to view code image

Sub Add3ColorScale()

 Dim CS As ColorScale

 With Range("A1:A10")

.FormatConditions.Delete

' Add the Color Scale as a 3-color scale

Set CS = .FormatConditions.AddColorScale(ColorScaleType:=3)

End With

'' Format the first color as light red

With CS.ColorScaleCriteria(1)

.Type = xlConditionValuePercent

.Value = 30

.FormatColor.Color = RGB(255, 0, 0)

.FormatColor.TintAndShade = 0.25

End With

 '' Format the second color as green at 50%

With CS.ColorScaleCriteria(2)

.Type = xlConditionValuePercent

.Value = 50

.FormatColor.Color = RGB(0, 255, 0)

.FormatColor.TintAndShade = 0

End With

'' Format the third color as dark blue

With CS.ColorScaleCriteria(3)

.Type = xlConditionValuePercent

.Value = 80

.FormatColor.Color = RGB(0, 0, 255)

.FormatColor.TintAndShade = -0.25

End With

End Sub

Adding icon sets to a range

Icon sets in Excel come with three, four, or five different icons in the set. Figure 16-5 shows the settings for an icon set with five different icons.

To add an icon set to a range, use the AddIconSet method. No arguments are required. You can adjust three properties that apply to the icon set, and you can use several additional lines of code to specify the icon set in use and the limits for each icon.

[image: The Edit Formatting Rule dialog box shows the settings for a set with five icons. For each of the five icons, you can choose an icon, then a drop-down menu offers = or >=. You can type a value and indicate whether the Type is Number, Percent, Percentile, or Formula.]

FIGURE 16-5 With additional icons, the complexity of the code increases.

Specifying an icon set

After adding an icon set, you can control whether the icon order is reversed and whether Excel shows only the icons, and you can also specify 1 of the 20 built-in icon sets, like this:

Click here to view code image

Dim ICS As IconSetCondition

With Range("A1:C10")

.FormatConditions.Delete

Set ICS = .FormatConditions.AddIconSetCondition()

End With

' Global settings for the icon set

With ICS

.ReverseOrder = False

.ShowIconOnly = False

.IconSet = ActiveWorkbook.IconSets(xl5CRV)

End With

Table 16-3 shows the complete list of icon sets.

TABLE 16-3 Available icon sets and their VBA constants

	Icon Set

	Value

	Description

	Constant

	[image:]

	1

	3 arrows

	xl3Arrows

	[image:]

	2

	3 arrows gray

	xl3ArrowsGray

	[image:]

	3

	3 flags

	xl3Flags

	[image:]

	4

	3 traffic lights 1

	xl3TrafficLights1

	[image:]

	5

	3 traffic lights 2

	xl3TrafficLights2

	[image:]

	6

	3 signs

	xl3Signs

	[image:]

	7

	3 symbols

	xl3Symbols

	[image:]

	8

	3 symbols 2

	xl3Symbols2

	[image:]

	9

	4 arrows

	xl4Arrows

	[image:]

	10

	4 arrows gray

	xl4ArrowsGray

	[image:]

	11

	4 red to black

	xl4RedToBlack

	[image:]

	12

	4 power bars

	xl4CRV

	[image:]

	13

	4 traffic lights

	xl4TrafficLights

	[image:]

	14

	5 arrows

	xl5Arrows

	[image:]

	15

	5 arrows gray

	xl5ArrowsGray

	[image:]

	16

	5 power bars

	xl5CRV

	[image:]

	17

	5 quarters

	xl5Quarters

	[image:]

	18

	3 stars

	xl3Stars

	[image:]

	19

	3 triangles

	xl3Triangles

	[image:]

	20

	5 boxes

	xl5Boxes

Specifying ranges for each icon

After specifying the type of icon set, you can specify ranges for each icon within the set. By default, the first icon starts at the lowest value. You can adjust the settings for each of the additional icons in the set, as shown here:

Click here to view code image

' The first icon always starts at 0

' Settings for the second icon - start at 50%

With ICS.IconCriteria(2)

.Type = xlConditionValuePercent

.Value = 50

.Operator = xlGreaterEqual

End With

With ICS.IconCriteria(3)

.Type = xlConditionValuePercent

.Value = 60

.Operator = xlGreaterEqual

End With

With ICS.IconCriteria(4)

.Type = xlConditionValuePercent

.Value = 80

.Operator = xlGreaterEqual

End With

With ICS.IconCriteria(5)

.Type = xlConditionValuePercent

.Value = 90

.Operator = xlGreaterEqual

End With

Valid values for the Operator property are XlGreater or xlGreaterEqual.

[image: Images]

Caution With VBA, it is easy to create overlapping ranges such as icon 1 from 0 to 50 and icon 2 from 30 to 90. Even though the Edit Formatting Rule dialog box prevents overlapping ranges, VBA allows them. However, keep in mind that your icon set will display unpredictably if you create invalid ranges.

Using visualization tricks

If you use an icon set or a color scale, Excel applies a color to all cells in the data set. Two tricks in this section enable you to apply an icon set to only a subset of the cells or to apply two different colors of data bars to the same range. The first trick is available in the user interface, but the second trick is available only in VBA.

Creating an icon set for a subset of a range

Sometimes, you might want to apply a red X only to the bad cells in a range. This is tricky to do in the Excel user interface.

In the user interface, follow these steps to apply a red X to values greater than or equal to 66:

	Add a three-symbols icon set to the range.

	Choose Home, Conditional Formatting, Manage Rules, and edit the rule. You see the default settings that appear in Figure 16-6.

	Specify no cell icon for the first two groups.

	Specify that the top group has a Type of Number and >=80.

	Specify that the second group has a Type of Number and >66. Excel defaults the Red X group to be used for <=66 (see Figure 16-7).

[image: The default settings are a green check mark when value is >= 67 percent and a yellow exclamation point when < 67 and >=33 percent. A red X is shown when < 33. Contrast this with the settings in Figure 16-7.]

FIGURE 16-6 These default rules appear when you add a three-icon set.

[image: Only items less than 66 have an icon, and that icon is a red X. In the Edit Formatting Rules dialog box, the first two icons are changed to No Cell Icon. The first icon is >=80, and the second icon is > 66.]

FIGURE 16-7 Although the first two ranges have no cell icon, use the number values to force the red X to show when the value is <=66.

The code to create this effect in VBA is straightforward. A great deal of the code makes sure that the icon set has the red X symbols on the cells with values less than or equal to 66. To hide the icons for rules 1 and 2, set the Icon property to xlIconNoCellIcon.

The code to highlight values less than or equal to 66 with a red X is shown here:

Click here to view code image

Sub TrickyFormatting()

' mark the bad cells

Dim ICS As IconSetCondition

Dim FC As FormatCondition

With Range("A1:D9")

.FormatConditions.Delete

Set ICS = .FormatConditions.AddIconSetCondition()

End With

With ICS

.ShowIconOnly = False

.IconSet = ActiveWorkbook.IconSets(xl3Symbols2)

End With

With ICS.IconCriteria(1)

.Type = xlConditionValue

.Value = 80

.Operator = xlGreater

.Icon = xlIconNoCellIcon

End With

' The threshold for this icon doesn't really matter,

' but you have to make sure that it does not overlap the 3rd icon

With ICS.IconCriteria(2)

.Type = xlConditionValue

.Value = 66

.Operator = xlGreater

.Icon = xlIconNoCellIcon

End With

End Sub

Using two colors of data bars in a range

This trick is particularly cool because it can be achieved only with VBA. Say that values greater than 90 are acceptable and those 90 and below indicate trouble. You would like acceptable values to have a green bar and others to have a red bar.

Using VBA, you first add the green data bars. Then, without deleting the format condition, you add red data bars.

In VBA, every format condition has a Formula property that defines whether the condition is displayed for a given cell. Therefore, the trick is to write a formula that defines when the green bars are displayed. When the formula is not True, the red bars are allowed to show through.

In Figure 16-8, the effect is applied to the range A1:D10. You need to write the formula in A1 style, as if it applies to the top-left corner of the selection. The formula needs to evaluate to True or False. Excel automatically copies the formula to all the cells in the range. The formula for this condition is =IF(A1>90,True,False).

[image: Images]

Note The formula is evaluated relative to the current cell pointer location. Even though it is not usually necessary to select cells before adding a FormatCondition, in this case, selecting the range ensures that the formula will work.

[image: This figure shows data bars. The ones above 90 are a different color than the ones in the 80s.]

FIGURE 16-8 The dark bars are red, and the lighter bars are green. VBA was used to create two overlapping data bars, and then the Formula property hid the top bars for cells 90 and below.

The following code creates the two-color data bars:

Click here to view code image

Sub AddTwoDataBars()

' passing values in green, failing in red

Dim DB As Databar

Dim DB2 As Databar

With Range("A1:D10")

.FormatConditions.Delete

' Add a Light Green Data Bar

Set DB = .FormatConditions.AddDatabar()

DB.BarColor.Color = RGB(0, 255, 0)

DB.BarColor.TintAndShade = 0.25

' Add a Red Data Bar

Set DB2 = .FormatConditions.AddDatabar()

DB2.BarColor.Color = RGB(255, 0, 0)

' Make the green bars only

.Select ' Required to make the next line work

.FormatConditions(1).Formula = "=IF(A1>90,True,False)"

DB.Formula = "=IF(A1>90,True,False)"

DB.MinPoint.Modify newtype:=xlConditionFormula, NewValue:="60"

DB.MaxPoint.Modify newtype:=xlConditionValueFormula, _

NewValue:="100"

DB2.MinPoint.Modify newtype:=xlConditionFormula, NewValue:="60"

DB2.MaxPoint.Modify newtype:=xlConditionValueFormula, _

NewValue:="100"

 End With

End Sub

The Formula property works for all the conditional formats, which means you could potentially create some obnoxious combinations of data visualizations. In Figure 16-9, five different icon sets are combined in a single range. No one will be able to figure out whether a red flag is worse than a gray down arrow. Even so, this ability opens interesting combinations for those with a little creativity.

[image: The figure shows a crazy mix of 25 different icons that were created via VBA.]

FIGURE 16-9 VBA created this mixture of five different icon sets in a single range. The Formula property in VBA is the key to combining icon sets.

Use the following code to create the crazy icon set shown in Figure 16-9:

Click here to view code image

Sub AddCrazyIcons()

 With Range("A1:C10")

.Select ' The .Formula lines below require .Select here

.FormatConditions.Delete

' First icon set

.FormatConditions.AddIconSetCondition

.FormatConditions(1).IconSet = ActiveWorkbook.IconSets(xl3Flags)

.FormatConditions(1).Formula = "=IF(A1<5,TRUE,FALSE)"

' Next icon set

.FormatConditions.AddIconSetCondition

.FormatConditions(2).IconSet = _

ActiveWorkbook.IconSets(xl3ArrowsGray)

.FormatConditions(2).Formula = "=IF(A1<12,TRUE,FALSE)"

' Next icon set

.FormatConditions.AddIconSetCondition

.FormatConditions(3).IconSet = _

ActiveWorkbook.IconSets(xl3Symbols2)

.FormatConditions(3).Formula = "=IF(A1<22,TRUE,FALSE)"

 ' Next icon set

.FormatConditions.AddIconSetCondition

.FormatConditions(4).IconSet = ActiveWorkbook.IconSets(xl4CRV)

.FormatConditions(4).Formula = "=IF(A1<27,TRUE,FALSE)"

' Next icon set

.FormatConditions.AddIconSetCondition

.FormatConditions(5).IconSet = ActiveWorkbook.IconSets(xl5CRV)

End With

End Sub

Using other conditional formatting methods

Although the icon sets, data bars, and color scales get most of the attention, there are still plenty of other uses for conditional formatting.

The remaining examples in this chapter show some of the other conditional formatting rules and methods available.

Formatting cells that are above or below average

Use the AddAboveAverage method to format cells that are above or below average. After adding the conditional format, specify whether the AboveBelow property is xlAboveAverage or xlBelowAverage.

The following two macros highlight cells that are above and below average:

Click here to view code image

Sub FormatAboveAverage()

 With Selection

.FormatConditions.Delete

.FormatConditions.AddAboveAverage

.FormatConditions(1).AboveBelow = xlAboveAverage

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Sub FormatBelowAverage()

With Selection

.FormatConditions.Delete

.FormatConditions.AddAboveAverage

.FormatConditions(1).AboveBelow = xlBelowAverage

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Formatting cells in the top 10 or bottom 5

Four of the choices on the Top/Bottom Rules flyout menu are controlled with the AddTop10 method. After you add the format condition, you need to set three properties that control how the condition is calculated:

	TopBottom—Set this to either xlTop10Top or xlTop10Bottom.

	Rank—Set this to 5 for the top 5, 6 for the top 6, and so on.

	Percent—Set this to False if you want the top 10 items. Set this to True if you want the top 10% of the items.

The following code highlights the top or bottom cells:

Click here to view code image

Sub FormatTop10Items()

With Selection

.FormatConditions.Delete

.FormatConditions.AddTop10

.FormatConditions(1).TopBottom = xlTop10Top

.FormatConditions(1).Rank = 10

.FormatConditions(1).Percent = False

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Sub FormatBottom5Items()

With Selection

.FormatConditions.Delete

.FormatConditions.AddTop10

.FormatConditions(1).TopBottom = xlTop10Bottom

.FormatConditions(1).Rank = 5

.FormatConditions(1).Percent = False

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Sub FormatTop12Percent()

With Selection

.FormatConditions.Delete

.FormatConditions.AddTop10

.FormatConditions(1).TopBottom = xlTop10Top

.FormatConditions(1).Rank = 12

.FormatConditions(1).Percent = True

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Formatting unique or duplicate cells

The Remove Duplicates command on the Data tab of the ribbon is a destructive command. Instead of using it, you might want to mark the duplicates without removing them. If so, you can use the AddUniqueValues method to mark the duplicate or unique cells. After you call this method, set the DupeUnique property to either xlUnique or xlDuplicate.

I do not really like either of these options. Choosing duplicate values marks both cells that contain the duplicate, as shown in column A in Figure 16-10. For example, both A2 and A8 are marked, when A8 is really the only duplicate value.

Choosing unique values marks only the cells that do not have duplicates, as shown in column C in Figure 16-10. This leaves several cells unmarked. For example, none of the cells containing 17 is marked.

[image: This figure shows three ways to mark duplicates, labeled Duplicate in column A, Unique in column B, and Wishful in column C. The Wishful column only highlights the first of each value.]

FIGURE 16-10 The AddUniqueValues method can mark cells such as those in columns A and C. Unfortunately, it cannot mark the truly useful pattern in column E.

As any data analyst knows, the truly useful option would be to mark the first unique value. In this wishful state, Excel would mark one instance of each unique value. In this case, the 17 in E2 would be marked, but any subsequent cells that contain 17, such as E8, would remain unmarked.

The code to mark duplicates or unique values is shown here:

Click here to view code image

Sub FormatDuplicate()

With Selection

.FormatConditions.Delete

.FormatConditions.AddUniqueValues

.FormatConditions(1).DupeUnique = xlDuplicate

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Sub FormatUnique()

With Selection

.FormatConditions.Delete

.FormatConditions.AddUniqueValues

.FormatConditions(1).DupeUnique = xlUnique

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

 End With

End Sub

Sub HighlightFirstUnique()

With Range("E2:E16")

.Select

.FormatConditions.Delete

.FormatConditions.Add Type:=xlExpression, _

Formula1:="=COUNTIF(E$2:E2,E2)=1"

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Formatting cells based on their value

The value conditional formats have been around for several versions of Excel. Use the Add method with the following arguments:

	Type—Because this section deals with formatting based on the cell value, the type is xlCellValue.

	Operator—This argument can be xlBetween, xlEqual, xlGreater, xlGreaterEqual, xlLess, xlLessEqual, xlNotBetween, or xlNotEqual.

	Formula1—Formula1 is used with each of the operators specified to provide a numeric value.

	Formula2—This argument is used for xlBetween and xlNotBetween.

The following code sample highlights cells based on their values:

Click here to view code image

Sub FormatBetween10And20()

With Selection

.FormatConditions.Delete

.FormatConditions.Add Type:=xlCellValue, Operator:=xlBetween, _

Formula1:="=10", Formula2:="=20"

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Sub FormatLessThan15()

With Selection

.FormatConditions.Delete

.FormatConditions.Add Type:=xlCellValue, Operator:=xlLess, _

Formula1:="=15"

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Formatting cells that contain text

When you are trying to highlight cells that contain a certain bit of text, you use the Add method, the xlTextString type, and an operator of xlBeginsWith, xlContains, xlDoesNotContain, or xlEndsWith.

The following code highlights all cells that contain an upper- or lowercase letter A:

Click here to view code image

Sub FormatContainsA()

With Selection

.FormatConditions.Delete

.FormatConditions.Add Type:=xlTextString, String:="A", _

TextOperator:=xlContains

' other choices: xlBeginsWith, xlDoesNotContain, xlEndsWith

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Formatting cells that contain dates

Conditional formatting allows you to filter to a virtual date filter. The list of available date operators is a subset of the date operators available in the pivot table filters. Use the Add method, the xlTimePeriod type, and one of these DateOperator values: xlYesterday, xlToday, xlTomorrow, xlLastWeek, xlLast7Days, xlThisWeek, xlNextWeek, xlLastMonth, xlThisMonth, or xlNextMonth.

The following code highlights all dates in the past week:

Click here to view code image

Sub FormatDatesLastWeek()

With Selection

.FormatConditions.Delete

' DateOperator choices include xlYesterday, xlToday, xlTomorrow,

' xlLastWeek, xlThisWeek, xlNextWeek, xlLast7Days

' xlLastMonth, xlThisMonth, xlNextMonth,

.FormatConditions.Add Type:=xlTimePeriod, _

DateOperator:=xlLastWeek

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Formatting cells that contain blanks or errors

Buried deep within the Excel interface are options to format cells that contain blanks, that contain errors, that do not contain blanks, or that do not contain errors. If you use the macro recorder, Excel uses the complicated xlExpression version of conditional formatting. For example, to look for a blank, Excel tests to see whether =LEN(TRIM(A1))=0. Instead, you can use any of these four self-explanatory types:

Click here to view code image

.FormatConditions.Add Type:=xlBlanksCondition

.FormatConditions.Add Type:=xlErrorsCondition

.FormatConditions.Add Type:=xlNoBlanksCondition

.FormatConditions.Add Type:=xlNoErrorsCondition

You are not required to use any other arguments with these types.

Using a formula to determine which cells to format

The most powerful conditional format is the xlExpression type. With this type, you provide a formula for the active cell that evaluates to True or False. Make sure to write the formula with relative or absolute references so that the formula is correct when Excel copies it to the remaining cells in the selection.

An infinite number of conditions can be identified with a formula. Two popular conditions are shown here.

Highlighting the first unique occurrence of each value in a range

Say that in column A in Figure 16-11, you would like to highlight the first occurrence of each value in the column. The highlighted cells will then contain a complete list of the unique numbers found in the column.

[image: Two conditional formats set up with a formula. In column A, only the first occurrence of a number is highlighted. In cells D2:F15, the rule looks for the row with the largest sales and then formats all three cells in that row of the data.]

FIGURE 16-11 A formula-based condition can mark the first unique occurrence of each value, as shown in column A, or the entire row with the largest sales, as shown in D:F.

The macro should select cells A1:A15. The formula should be written to return a True or False value for cell A1. Because Excel logically copies this formula to the entire range, you should use a careful combination of relative and absolute references.

The formula can use the COUNTIF function. Check to see how many times the range from A$1 to A1 contains the value A1. If the result is equal to 1, the condition is True, and the cell is highlighted. The first formula is =COUNTIF(A$1:A1,A1)=1. As the formula is copied down to, say A12, the formula changes to =COUNTIF(A$1:A12,A12)=1.

The following macro creates the formatting shown in column A in Figure 16-11:

Click here to view code image

Sub HighlightFirstUnique()

With Range("A1:A15")

.Select

.FormatConditions.Delete

.FormatConditions.Add Type:=xlExpression, _

Formula1:="=COUNTIF(A$1:A1,A1)=1"

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Highlighting the entire row for the largest sales value

Another example of a formula-based condition involves highlighting the entire row of a data set in response to a value in one column. Consider the data set in cells D2:F15 of Figure 16-11. If you want to highlight the entire row that contains the largest sale, you select cells D2:F15 and write a formula that works for cell D2: =$F2=MAX($F$2:$F$15). The code required to format the row with the largest sales value is as follows:

Click here to view code image

Sub HighlightWholeRow()

With Range("D2:F15")

.Select

.FormatConditions.Delete

.FormatConditions.Add Type:=xlExpression, _

Formula1:="=$F2=MAX($F$2:$F$15)"

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

 End With

End Sub

Using the new NumberFormat property

In legacy versions of Excel, a cell that matched a conditional format could have a particular font, font color, border, or fill pattern. Since Excel 2007, you have also been able to specify a number format. This can be useful for selectively changing the number format used to display the values.

For example, you might want to display numbers greater than 999 in thousands, numbers greater than 999,999 in hundred thousands, and numbers greater than 9,999,999 in millions.

If you turn on the macro recorder and attempt to record setting the conditional format to a custom number format, the Excel 2019 VBA macro recorder actually records the action of executing an XL4 macro! You can skip the recorded code and use the NumberFormat property as shown here:

Click here to view code image

Sub NumberFormat()

With Range("E1:G26")

.FormatConditions.Delete

.FormatConditions.Add Type:=xlCellValue, Operator:=xlGreater, _

Formula1:="=9999999"

.FormatConditions(1).NumberFormat = "$#,##0,""M"""

.FormatConditions.Add Type:=xlCellValue, Operator:=xlGreater,

Formula1:="=999999"

.FormatConditions(2).NumberFormat = "$#,##0.0,""M"""

.FormatConditions.Add Type:=xlCellValue, Operator:=xlGreater,

Formula1:="=999"

.FormatConditions(3).NumberFormat = "$#,##0,K"

End With

End Sub

Figure 16-12 shows the original numbers in columns A:C. The results of running the macro are shown in columns E:G. The dialog box shows the conditional format rules that are applied.

[image: By changing the number format based on number size, a value can appear at $39M or $39K as appropriate.]

FIGURE 16-12 Since Excel 2007, conditional formats have been able to specify a specific number format.

Next steps

Chapter 17 shows you how to create dashboards from tiny charts called sparklines.

CHAPTER 17
Dashboarding with sparklines in Excel 2019

In this chapter, you will:

	Create sparklines

	Scale sparklines

	Format sparklines

	Create a dashboard

A feature that’s been around since Excel 2010 is the ability to create tiny, word-size charts called sparklines. If you are creating dashboards, you will want to leverage these charts.

The concept of sparklines was first introduced by Professor Edward Tufte, who promoted sparklines as a way to show a maximum amount of information with a minimal amount of ink.

Microsoft supports three types of sparklines:

	Line—A sparkline shows a single series on a line chart within a single cell. On a sparkline, you can add markers for the highest point, the lowest point, the first point, and the last point. Each of those points can have a different color. You can also choose to mark all the negative points or even all points.

	Column—A spark column shows a single series on a column chart. You can choose to show a different color for the first bar, the last bar, the lowest bar, the highest bar, or all negative points.

	Win/loss—This is a special type of column chart in which every positive point is plotted at 100% height and every negative point is plotted at –100% height. The theory is that positive columns represent wins and negative columns represent losses. With these charts, you always want to change the color of the negative columns. It is possible to highlight the highest/lowest point based on the underlying data.

Creating sparklines

Microsoft figures that you will usually be creating a group of sparklines. The main VBA object for sparklines is SparklineGroup. To create sparklines, you apply the SparklineGroups.Add method to the range where you want the sparklines to appear.

In the Add method, you specify a type for the sparkline and the location of the source data.

Say that you apply the Add method to the three-cell range B2:D2. Then the source must be a range that is either three columns wide or three rows tall.

The Type parameter can be xlSparkLine for a line, xlSparkColumn for a column, or xlSparkColumn100 for win/loss.

If the SourceData parameter is referring to ranges on the current worksheet, it can be as simple as "D3:F100". If it is pointing to another worksheet, use "Data!D3:F100" or "'My Data'!D3:F100". If you’ve defined a named range, you can specify the name of the range as the source data.

Figure 17-1 shows a table of S&P 500 closing prices for three years. Notice that the actual data for the sparklines is in three contiguous columns: D, E, and F.

[image: The figure shows six columns of data. The sparkline data is in columns D, E, and F with headings of Close 2015, Close 2016, and Close 2017. Three columns of dates are in A:C.]

FIGURE 17-1 Arrange the data for the sparklines in a contiguous range.

In this example, the data is on the Data worksheet, and the sparklines are created on the Dashboard worksheet. The WSD object variable is used for the Data worksheet. WSL is used for the Dashboard worksheet.

Because each column might have one or two extra points, the code to find the final row is slightly different than usual:

Click here to view code image

FinalRow = WSD.[A1].CurrentRegion.Rows.Count

The .CurrentRegion property starts from cell A1 and extends in all directions until it hits the edge of the worksheet or the edge of the data. In this case, the CurrentRegion reports that row 253 is the final row.

For this example, the sparklines are created in a row of three cells. Because each cell is showing 252 points, I am going with fairly large sparklines. The sparkline grows to the size of the cell, so this code makes each cell fairly wide and tall:

Click here to view code image

With WSL.Range("B1:D1")

.Value = array(2012,2013,2014)

.HorizontalAlignment = xlCenter

.Style = "Title"

.ColumnWidth = 39

.Offset(1, 0).RowHeight = 100

End With

The following code creates three default sparklines:

Click here to view code image

Dim SG as SparklineGroup

Set SG = WSL.Range("B2:D2").SparklineGroups.Add(_

Type:=xlSparkLine, _

SourceData:="Data!D2:F" & FinalRow)

As shown in Figure 17-2, these sparklines aren’t perfect (but the next section shows how to format them). There are a number of problems with the default sparklines. Think about the vertical axis of a chart. Sparklines always default to have the scale automatically selected. Because you never really get to see what the scale is, you cannot tell the range of the chart.

[image: Three line charts are shown, one each in cells B2, C2, and D2. Labels in B1:C1 identify the years as 2015, 2016, and 2017. While the stock market index swings wildly, there is a small gap between December 31, 2015 and January 1, 2016. There is a very large gap between December 31, 2016 and January 1, 2017.]

FIGURE 17-2 Three default sparklines are shown here.

Figure 17-3 shows the minimum and maximum for each year. From this data, you can guess that the sparkline for 2015 probably goes from about 1850 to 2150. The sparkline for 2016 probably goes from 1800 to 2300. The sparkline for 2017 probably goes from 2225 to 2690.

[image: Formulas at the bottom of the sparkline data calculate the minimum and maximum for each year’s data. The maximum for 2016 is 2272, whereas 2017 runs from a minimum of 2258 to a maximum of 2690, which explains the large gap.]

FIGURE 17-3 Each sparkline assigns the minimum and maximum scales to be just outside these limits.

Scaling sparklines

The default choice for the sparkline vertical axis is that each sparkline has a different minimum and maximum. There are two other choices available.

One choice is to group all the sparklines together but to continue to allow Excel to choose the minimum and maximum scales. You still won’t know exactly what values are chosen for the minimum and maximum.

To force the sparklines to have the same automatic scale, use this code:

Click here to view code image

' Allow automatic axis scale, but all three of them the same

With SG.Axes.Vertical

.MinScaleType = xlSparkScaleGroup

.MaxScaleType = xlSparkScaleGroup

End With

Note that .Axes belongs to the sparkline group, not to the individual sparklines themselves. In fact, almost all the good properties are applied at the SparklineGroup level. This has some interesting ramifications. If you want one sparkline to have an automatic scale and another sparkline to have a fixed scale, you have to create each of those sparklines separately, or at least ungroup them.

Figure 17-4 shows the sparklines when both the minimum and the maximum scales are set to act as a group. All three lines nearly meet now, which is a good sign. You can guess that the scale runs from about 1850 up to perhaps 2700. Again, though, there is no way to tell. The solution is to use a custom value for both the minimum and the maximum axes.

[image: With the minimum and maximum scales set the same for all three sparklines, the three sparklines form a coherent trend line.]

FIGURE 17-4 All three sparklines have the same minimum and maximum scales, but you don’t know what it is.

Another choice is to take absolute control and assign a minimum and a maximum for the vertical axis scale. The following code forces the sparklines to run from a minimum of 1829 up to a maximum that rounds up to 2191:

Click here to view code image

Set AF = Application.WorksheetFunction

AllMin = AF.Min(WSD.Range("D2:F" & FinalRow))

AllMax = AF.Max(WSD.Range("D2:F" & FinalRow))

AllMin = Int(AllMin)

AllMax = Int(AllMax + 0.9)

With SG.Axes.Vertical

.MinScaleType = xlSparkScaleCustom

.MaxScaleType = xlSparkScaleCustom

.CustomMinScaleValue = AllMin

.CustomMaxScaleValue = AllMax

End With

Figure 17-5 shows the resulting sparklines. Now you know the minimum and the maximum, but you need a way to communicate it to the reader.

[image: Figure 17-5 looks pretty much the same as Figure 17-4: three sparklines that form a trendline of the S&P 500.]

FIGURE 17-5 You’ve manually assigned a minimum and a maximum scale, but it does not appear on the chart.

One method is to put the minimum and maximum values in A2. With 8-point bold Calibri, a row height of 113 allows 10 rows of wrapped text in the cell. So you could put the maximum value, then vbLf eight times, then the minimum value. (Using vbLf is the equivalent of pressing Alt+Enter when you are entering values in a cell.)

On the right side, you can put the final point’s value and attempt to position it within the cell so that it falls roughly at the same height as the final point. Figure 17-6 shows this option.

[image: Tiny labels appear in A1 and E2. The label in E2 shows the final sparkline value of 2690. In A2, two labels appear: 1829 at the bottom of the cell and 2691 at the top of the cell.]

FIGURE 17-6 Labels on the left show the minimum and the maximum. Labels on the right show the final value.

The following code produces the sparklines in Figure 17-6:

Click here to view code image

Sub SP500Macro()

' SP500 Macro

'

Dim SG As SparklineGroup

Dim SL As Sparkline

Dim WSD As Worksheet ' Data worksheet

Dim WSL As Worksheet ' Dashboard

On Error Resume Next

Application.DisplayAlerts = False

Worksheets("Dashboard").Delete

On Error GoTo 0

Set WSD = Worksheets("Data")

Set WSL = ActiveWorkbook.Worksheets.Add

WSL.Name = "Dashboard"

Click here to view code image

FinalRow = WSD.Cells(1, 1).CurrentRegion.Rows.Count

WSD.Cells(2, 4).Resize(FinalRow - 1, 3).Name = "MyData"

WSL.Select

' Set up headings

With WSL.Range("B1:D1")

.Value = Array(2015, 2016, 2017)

.HorizontalAlignment = xlCenter

.Style = "Title"

.ColumnWidth = 39

.Offset(1, 0).RowHeight = 100

End With

 Set SG = WSL.Range("B2:D2").SparklineGroups.Add(_

Type:=xlSparkLine, _

SourceData:="Data!D2:F250")

Set SL = SG.Item(1)

Set AF = Application.WorksheetFunction

AllMin = AF.Min(WSD.Range("D2:F" & FinalRow))

AllMax = AF.Max(WSD.Range("D2:F" & FinalRow))

AllMin = Int(AllMin)

AllMax = Int(AllMax + 0.9)

' Allow automatic axis scale, but all three of them the same

With SG.Axes.Vertical

.MinScaleType = xlSparkScaleCustom

.MaxScaleType = xlSparkScaleCustom

.CustomMinScaleValue = AllMin

.CustomMaxScaleValue = AllMax

End With

 ' Add two labels to show minimum and maximum

With WSL.Range("A2")

.Value = AllMax & vbLf & vbLf & vbLf & vbLf _

& vbLf & vbLf & vbLf & vbLf & AllMin

.HorizontalAlignment = xlRight

.VerticalAlignment = xlTop

.Font.Size = 8

.Font.Bold = True

.WrapText = True

End With

 ' Put the final value on the right

FinalVal = Round(WSD.Cells(Rows.Count, 6).End(xlUp).Value, 0)

Rg = AllMax - AllMin

RgTenth = Rg / 10

FromTop = AllMax - FinalVal

FromTop = Round(FromTop / RgTenth, 0) - 1

Click here to view code image

If FromTop < 0 Then FromTop = 0

 Select Case FromTop

Case 0

RtLabel = FinalVal

Case Is > 0

RtLabel = Application.WorksheetFunction. _

Rept(vbLf, FromTop) & FinalVal

End Select

 With WSL.Range("E2")

.Value = RtLabel

.HorizontalAlignment = xlLeft

.VerticalAlignment = xlTop

.Font.Size = 8

.Font.Bold = True

End With

End Sub

Formatting sparklines

Most of the formatting available with sparklines involves setting the color of various elements of the sparkline.

There are a few methods for assigning colors in Excel 2019. Before diving into the sparkline properties, you can read about the two methods of assigning colors in Excel VBA.

Using theme colors

Excel 2007 introduced the concept of a theme for a workbook. A theme is composed of a body font, a headline font, a series of effects, and then a series of colors.

The first four colors are used for text and backgrounds. The next six colors are the accent colors. The 20-plus built-in themes include colors that work well together. There are also two colors used for hyperlinks and followed hyperlinks. For now, focus on the accent colors.

Go to Page Layout, Themes and choose a theme. Next to the theme drop-down menu is a Colors drop-down menu. Open that drop-down menu and select Create New Theme Colors from the bottom of the list. Excel shows the Create New Theme Colors dialog box (see Figure 17-7). This dialog box gives you a good picture of the 12 colors associated with the theme.

Throughout Excel, there are many color chooser drop-down menus. As shown in Figure 17-8, a section of each color chooser drop-down menu is called Theme Colors. The top row under Theme Colors shows the four font and six accent colors.

[image: This figure shows the Create New Theme Colors dialog box. A theme has six accent colors, four text colors, plus colors for hyperlinks and followed hyperlinks.]

FIGURE 17-7 The current theme includes 12 colors.

[image: In the Fill Color drop-down menu, the first 10 colors are theme colors. The next five rows are variants on the theme colors. The theme colors change if the workbook theme is changed.]

FIGURE 17-8 All but the hyperlink colors from the theme appear across the top row.

If you want to choose the last color in the first row, the VBA is as follows:

Click here to view code image

ActiveCell.Font.ThemeColor = xlThemeColorAccent6

Going across that top row of Figure 17-8, these are the 10 colors:

Click here to view code image

xlThemeColorDark1

xlThemeColorLight1

xlThemeColorDark2

xlThemeColorLight2

xlThemeColorAccent1

xlThemeColorAccent2

Click here to view code image

xlThemeColorAccent3

xlThemeColorAccent4

xlThemeColorAccent5

xlThemeColorAccent6

[image: Images]

Caution The first four colors seem to be reversed. xlThemeColorDark1 is a white color. This is because the VBA constants were written from the point of view of the font color to use when the cell contains a dark or light background. If you have a cell filled with a dark color, you want to display a white font. Hence, xlThemeColorDark1 is white, and xlThemeColorLight1 is black.

On your computer, open the Fill Color drop-down menu on the Home tab and look at it in color. If you are using the Office theme, the last column is various shades of green. The top row is the actual color from the theme. Then there are five rows that go from a light green to a very dark green.

Excel lets you modify the theme color by lightening or darkening it. The values range from –1, which is very dark, to +1, which is very light. For example, the very light green in row 2 of Figure 17-8 has a tint and shade value of 0.8, which is almost completely light. The next row has a tint and shade level of 0.6. The next row has a tint and shade level of 0.4. That gives you three choices that are lighter than the theme color. The next two rows are darker than the theme color. These two darker rows have values of –.25 and –.5.

If you turn on the macro recorder and choose one of these colors, you see a confusing bunch of code:

Click here to view code image

.Pattern = xlSolid

.PatternColorIndex = xlAutomatic

.ThemeColor = xlThemeColorAccent6

.TintAndShade = 0.799981688894314

.PatternTintAndShade = 0

If you are using a solid fill, you can leave out the first, second, and fifth lines of code.

The .TintAndShade line looks confusing because computers cannot round decimal tenths very well. Remember that computers store numbers in binary. In binary, a simple number like 0.1 is a repeating decimal. As the macro recorder tries to convert 0.8 from binary to decimal, it “misses” by a bit and comes up with a very close number: 0.7998168894314. This is really saying that it should be 80% lighter than the base number.

If you are writing code by hand, you only have to assign two values to use a theme color. Assign the .ThemeColor property to one of the six xlThemeColorAccent1 through xlThemeColorAccent6 values. If you want to use a theme color from the top row of the drop-down menu, the .TintAndShade should be 0 and can be omitted. If you want to lighten the color, use a positive decimal for .TintAndShade. If you want to darken the color, use a negative decimal.

[image: Images]

Tip The five shades in the color palette drop-down menus are not the complete set of variations. In VBA, you can assign any two-digit decimal value from –1.00 to +1.00. Figure 17-9 shows 201 variations of one theme color created using the .TintAndShade property in VBA.

[image: This figure shows 201 variations on a single theme color. A value of –1.00 in B3 is almost completely black. The worksheet keeps adding 0.01 to the previous number, filling B3:K12 with 100 numbers from –1.00 to –0.01. In C14, a tint and shade value of 0 yields the theme color. The 100 cells from B18 to K27 range from +0.01 to +1.00 in 0.01 increments. The color becomes lighter until it is nearly white with a tint and shade of +1.]

FIGURE 17-9 These are shades of one theme color.

To recap, if you want to work with theme colors, you generally change two properties: the theme color, in order to choose one of the six accent colors, and the tint and shade, to lighten or darken the base color, like this:

Click here to view code image

.ThemeColor = xlThemeColorAccent6

.TintAndShade = 0.4

[image: Images]

Note One advantage of using theme colors is that your sparklines change color based on the theme. If you later decide to switch from the Office theme to the Metro theme, the colors change to match the theme.

Using RGB colors

For the past three decades, computers have offered a palette of 16 million colors. These colors derive from adjusting the amount of red, green, and blue light in a cell.

Do you remember art class in elementary school? You probably learned that the three primary colors are red, yellow, and blue. You could make green by mixing some yellow and blue paint. You could make purple by mixing some red and blue paint. You could make orange by mixing some yellow and red paint. As all of my male classmates and I soon discovered, you could make black by mixing all the paint colors. Those rules all work with pigments in paint, but they don’t work with light.

Those pixels on your computer screen are made up of light. In the light spectrum, the three primary colors are red, green, and blue. You can make the 16 million colors of the RGB color palette by mixing various amounts of red, green, and blue light. Each of the three colors is assigned an intensity from 0 (no light) to 255 (full light).

You will often see a color described using the RGB function. In this function, the first value is the amount of red, the second value is the amount of green, and the third value is the amount of blue:

	To make red, you use =RGB(255,0,0).

	To make green, use =RGB(0,255,0).

	To make blue, use =RGB(0,0,255).

	What happens if you mix 100% of all three colors of light? You get white! To make white, use =RGB(255,255,255).

	What if you shine no light in a pixel? You get black: =RGB(0,0,0).

	To make purple, you use some red, a little green, and some blue: RGB(139,65,123).

	To make yellow, use full red and green and no blue: =RGB(255,255,0).

	To make orange, use less green than for yellow: =RGB(255,153,0).

In VBA, you can use the RGB function just as it is shown here. The macro recorder is not a big fan of using the RGB function, though. It instead shows the result of the RGB function. Here is how you convert from the three arguments of the RGB function to the color value:

	Take the red value times 1.

	Add the green value times 256.

	Add the blue value times 65,536.

[image: Images]

Note Why 65,536? It is 256 raised to the second power.

If you choose a red for your sparkline, you frequently see the macro recorder assign .Color = 255. This is because =RGB(255,0,0) is 255.

When the macro recorder assigns a value of 5287936, what color does this mean? Here are the steps you follow to find out:

	In Excel, enter =Dec2Hex(5287936). You get the answer 50B000. This is the color that web designers refer to as #50B000.

	Go to your favorite search engine and search for “color chooser.” Choose a utility that allows you to type in the hex color code and see the color. Type 50B000. You see that #50B000 is RGB(80,176,0).

While at the color chooser web page, you’re offered additional colors that complement the original color. Click around to find other shades of colors and see the RGB values for those.

To recap, to skip theme colors and use RGB colors, you set the .Color property to the result of an RGB function.

Formatting sparkline elements

Figure 17-10 shows a plain sparkline. The data is created from 12 points that show performance versus a budget. You really have no idea about the scale from this sparkline.

[image: A sparkline in the fifth column plots 12 points of data from B5:B16. The data starts at 17 in January, dives to –45 in April, rebounds to 7 in July, dips to –7 in August, peaks at 22 in October and finishes at 15 in December. This example continues in Figure 17-11.]

FIGURE 17-10 This is a default sparkline.

If your sparkline includes both positive and negative numbers, it helps to show the horizontal axis so that you can figure out which points are above budget and which points are below budget.

To show the axis, use the following:

Click here to view code image

SG.Axes.Horizontal.Axis.Visible = True

Figure 17-11 shows the horizontal axis. This helps to show which months were above or below budget.

[image: Figure 17-11 adds a horizontal axis. It is easy to see which months were below zero.]

FIGURE 17-11 Add the horizontal axis to show which months were above or below budget.

Using code from the section “Scaling sparklines” earlier in this chapter, you can add high and low labels to the cell to the left of the sparkline:

Click here to view code image

Set AF = Application.WorksheetFunction

MyMax = AF.Max(Range("B5:B16"))

MyMin = AF.Min(Range("B5:B16"))

LabelStr = MyMax & vbLf & vbLf & vbLf & vbLf & MyMin

With SG.Axes.Vertical

.MinScaleType = xlSparkScaleCustom

.MaxScaleType = xlSparkScaleCustom

.CustomMinScaleValue = MyMin

.CustomMaxScaleValue = MyMax

End With

With Range("D2")

.WrapText = True

.Font.Size = 8

.HorizontalAlignment = xlRight

.VerticalAlignment = xlTop

.Value = LabelStr

.RowHeight = 56.25

End With

The result of this macro is shown in Figure 17-12.

[image: The cell to the left of the sparkline shows a label of 22 to –45.]

FIGURE 17-12 Use a nonsparkline feature to label the vertical axis.

To change the color of the sparkline, use this:

Click here to view code image

SG.SeriesColor.Color = RGB(255, 191, 0)

The Show group of the Sparkline Tools Design tab offers six options. You can further modify those elements by using the Marker Color drop-down menu. You can choose to turn on a marker for every point in the data set, as shown in Figure 17-13.

[image: Twelve dots are added to the line–one for each month.]

FIGURE 17-13 Show All Markers.

This code shows a black marker at every point:

Click here to view code image

With SG.Points

.Markers.Color.Color = RGB(0, 0, 0) ' black

.Markers.Visible = True

End With

Instead, you can use markers to show only the minimum, maximum, first, and last points. The following code shows the minimum in red, maximum in green, and first and last points in blue:

Click here to view code image

With SG.Points

.Lowpoint.Color.Color = RGB(255, 0, 0) ' red

.Highpoint.Color.Color = RGB(51, 204, 77) ' green

.Firstpoint.Color.Color = RGB(0, 0, 255) ' blue

.Lastpoint.Color.Color = RGB(0, 0, 255) ' blue

.Negative.Color.Color = RGB(127, 0, 0) ' pink

.Markers.Color.Color = RGB(0, 0, 0) ' black

' Choose Which points to Show

.Highpoint.Visible = True

.Lowpoint.Visible = True

.Firstpoint.Visible = True

.Lowpoint.Visible = True

.Negative.Visible = False

.Markers.Visible = False

End With

Figure 17-14 shows the sparkline with only the high, low, first, and last points marked.

[image: Only four dots appear on the line: one for the Min, Max, First, and Last points.]

FIGURE 17-14 This sparkline shows only key markers.

[image: Images]

Note Negative markers are particularly handy when you are formatting win/loss charts, which are discussed in the next section.

Formatting win/loss charts

Win/loss charts are a special type of sparkline for tracking binary events. A win/loss chart shows an upward-facing marker for a positive value and a downward-facing marker for any negative value. For a zero, no marker is shown.

You can use these charts to track proposal wins versus losses. In Figure 17-15, a win/loss chart shows the last 25 regular-season baseball games of the famed 1951 pennant race between the Brooklyn Dodgers and the New York Giants. This chart shows that the Giants went on a seven-game winning streak to finish the regular season. The Dodgers went 3–4 during this period and ended in a tie with the Giants, forcing a three-game playoff. The Giants won the first game, lost the second, and then advanced to the World Series by winning the third playoff game. The Giants leapt out to a 2–1 lead over the Yankees but then lost three straight.

[image: A win/loss sparkline illustrates the 1951 baseball pennant race between the Brooklyn Dodgers and the New York Giants.]

FIGURE 17-15 This win/loss chart documents the most famous pennant race in history.

[image: Images]

Note The words Regular season, Playoff, and W. Series, as well as the two dotted lines, are not part of the sparkline. The lines are drawing objects manually added with Insert, Shapes.

To create the chart, you use SparklineGroups.Add with the type xlSparkColumnStacked100, like this:

Click here to view code image

Set SG = Range("B2:B3").SparklineGroups.Add(_

Type:=xlSparkColumnStacked100, _

SourceData:="C2:AD3")

You generally show the wins and losses using different colors. One obvious color scheme is red for losses and green for wins.

There is no specific way to change only the “up” markers, so change the color of all markers to be green:

Click here to view code image

' Show all points as green

SG.SeriesColor.Color = 5287936

Then change the color of the negative markers to red:

Click here to view code image

'Show losses as red

With SG.Points.Negative

.Visible = True

.Color.Color = 255

End With

It is easier to create the up/down charts. You don’t have to worry about setting the line color, and the vertical axis is always fixed.

Creating a dashboard

Sparklines provide the benefit of communicating a lot of information in a very tiny space. In this section, you’ll see how to fit 130 charts on one page.

Figure 17-16 shows a data set that summarizes a 1.8-million-row data set. I used the Power Pivot add-in for Excel to import the records and then calculated three new measures:

	YTD sales by month by store

	YTD sales by month for the previous year

	Percent increase of YTD sales versus the previous year

A key statistic in retail stores is how you are doing now compared to the same time last year. Also, this analysis has the benefit of being cumulative. The final number for December represents whether the store was up or down compared to the previous year.

[image: Month headings of Jan through Dec in B3:M3. Store names start in A4 and continue down the column. Each cell is a percentage change from the previous year.]

FIGURE 17-16 This summary of 1.8 million records is a sea of numbers.

Observations about sparklines

After working with sparklines for a while, some observations come to mind:

	Sparklines are transparent. You can see through them to the underlying cell. This means that the fill color of the underlying cell shows through, and the text in the underlying cell shows through.

	If you make the font really small and align the text with the edge of the cell, you can make the text look like a title or a legend.

	If you turn on text wrapping and make the cell tall enough for 5 or 10 lines of text in the cell, you can control the position of the text in the cell by using vbLf characters in VBA.

	Sparklines work best when they are bigger than a typical cell. For all the examples in this chapter I made the column wider, the height taller, or both.

	Sparklines created together are grouped. Changes made to one sparkline are made to all sparklines.

	Sparklines can be created on a worksheet separate from the data.

	Sparklines look better when there is some white space around the cells. This would be tough to do manually because you would have to create the sparklines one at a time. It is easy to do here because you can leverage VBA.

Creating hundreds of individual sparklines in a dashboard

You address all the issues just listed as you are creating this dashboard. The plan is to create each store’s sparkline individually. This way, a blank row and column appear between the sparklines.

After inserting a new worksheet for the dashboard, you can format the cells in Figure 17-17 with this code:

Click here to view code image

' Set up the dashboard as alternating cells for the sparkline and then blank

For c = 1 To 11 Step 2

WSL.Cells(1, c).ColumnWidth = 15

WSL.Cells(1, c + 1).ColumnWidth = 0.6

Next c

For r = 1 To 45 Step 2

WSL.Cells(r, 1).RowHeight = 38

WSL.Cells(r + 1, 1).RowHeight = 3

Next r

Keep track of which cell contains the next sparkline with two variables:

NextRow = 1

NextCol = 1

Figure out how many rows of data there are on the Data worksheet. Loop from row 4 to the final row. For each row, you make a sparkline.

Build a text string that points back to the correct row on the Data sheet, using this code, and use that as the source data argument when defining the sparkline:

Click here to view code image

ThisSource = "Data!B" & i & ":M" & i

Set SG = WSL.Cells(NextRow, NextCol).SparklineGroups.Add(_

Type:=xlSparkColumn, _

SourceData:=ThisSource)

In this case, you want to show a horizontal axis at the zero location. The range of values for all stores was –5% to +10%. The maximum scale value here is being set to 0.15 (which is equivalent to 15%) to allow extra room for the “title” in the cell:

Click here to view code image

SG.Axes.Horizontal.Axis.Visible = True

With SG.Axes.Vertical

.MinScaleType = xlSparkScaleCustom

.MaxScaleType = xlSparkScaleCustom

.CustomMinScaleValue = -0.05

.CustomMaxScaleValue = 0.15

End With

As in the previous example with the win/loss chart, you want the positive columns to be green and the negative columns to be red:

Click here to view code image

' All columns green

SG.SeriesColor.Color = RGB(0, 176, 80)

' Negative columns red

SG.Points.Negative.Visible = True

SG.Points.Negative.Color.Color = RGB(255, 0, 0)

Remember that the sparkline has a transparent background. Thus, you can write really small text to the cell, and it behaves almost like chart labels.

The following code joins the store name and the final percentage change for the year into a title for the chart. The program writes this title to the cell but makes it small, centered, and vertically aligned:

Click here to view code image

ThisStore = WSD.Cells(i, 1).Value & " " & _

Format(WSD.Cells(i, 13), "+0.0%;-0.0%;0%")

' Add a label

With WSL.Cells(NextRow, NextCol)

.Value = ThisStore

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlTop

.Font.Size = 8

.WrapText = True

End With

The final element is to change the background color of the cell based on the final percentage so that if it is up, the background is light green, and if it is down, the background is light red:

Click here to view code image

FinalVal = WSD.Cells(i, 13)

' Color the cell light red for negative, light green for positive

With WSL.Cells(NextRow, NextCol).Interior

If FinalVal <= 0 Then

.Color = RGB(255, 0, 0)

.TintAndShade = 0.9

Else

.Color = RGB(197, 247, 224)

.TintAndShade = 0.7

End If

End With

After that sparkline is done, the column or row positions are incremented to prepare for the next chart:

Click here to view code image

NextCol = NextCol + 2

If NextCol > 11 Then

NextCol = 1

NextRow = NextRow + 2

End If

After this, the loop continues with the next store.

The complete code is shown here:

Click here to view code image

Sub StoreDashboard()

Dim SG As SparklineGroup

Dim SL As Sparkline

Dim WSD As Worksheet ' Data worksheet

Dim WSL As Worksheet ' Dashboard

On Error Resume Next

Application.DisplayAlerts = False

Worksheets("Dashboard").Delete

On Error GoTo 0

Set WSD = Worksheets("Data")

Set WSL = ActiveWorkbook.Worksheets.Add

WSL.Name = "Dashboard"

' Set up the dashboard as alternating cells for the sparkline and then blank

For c = 1 To 11 Step 2

WSL.Cells(1, c).ColumnWidth = 15

WSL.Cells(1, c + 1).ColumnWidth = 0.6

Next c

For r = 1 To 45 Step 2

WSL.Cells(r, 1).RowHeight = 38

WSL.Cells(r + 1, 1).RowHeight = 3

Next r

NextRow = 1

NextCol = 1

FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

For i = 4 To FinalRow

ThisStore = WSD.Cells(i, 1).Value & " " & _

Format(WSD.Cells(i, 13), "+0.0%;-0.0%;0%")

ThisSource = "Data!B" & i & ":M" & i

FinalVal = WSD.Cells(i, 13)

Set SG = WSL.Cells(NextRow, NextCol).SparklineGroups.Add(_

Type:=xlSparkColumn, _

SourceData:=ThisSource)

SG.Axes.Horizontal.Axis.Visible = True

With SG.Axes.Vertical

.MinScaleType = xlSparkScaleCustom

.MaxScaleType = xlSparkScaleCustom

.CustomMinScaleValue = -0.05

.CustomMaxScaleValue = 0.15

End With

' All columns green

SG.SeriesColor.Color = RGB(0, 176, 80)

' Negative columns red

SG.Points.Negative.Visible = True

Click here to view code image

SG.Points.Negative.Color.Color = RGB(255, 0, 0)

' Add a label

With WSL.Cells(NextRow, NextCol)

.Value = ThisStore

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlTop

.Font.Size = 8

.WrapText = True

End With

' Color the cell light red for negative, light green for positive

With WSL.Cells(NextRow, NextCol).Interior

If FinalVal <= 0 Then

.Color = 255

.TintAndShade = 0.9

Else

.Color = RGB(197, 247, 224)

.TintAndShade = 0.7

End If

End With

NextCol = NextCol + 2

If NextCol > 11 Then

NextCol = 1

NextRow = NextRow + 2

End If

Next i

End Sub

Figure 17-17 shows the final dashboard, which prints on a single page and summarizes 1.8 million rows of data.

[image: A page full of tiny column sparklines illustrates results for 100 stores.]

FIGURE 17-17 One page summarizes the sales from hundreds of stores.

If you zoom in, you can see that every cell tells a story. In Figure 17-18, Park Meadows in cell I33 had a great January, managed to stay ahead of last year through the entire year, and finished up 0.8%. Lakeside in cell I35 also had a positive January, but then it had a bad February and a worse March. Lakeside struggled back toward 0% for the rest of the year but ended up down seven-tenths of a percent.

[image: Images]

Note The report is addictive. I find myself studying all sorts of trends, but then I have to remind myself that I created the 1.8-million-row data set using RandBetween just a few weeks ago! The report is so compelling that I am getting drawn into studying fictional data.

[image: This is a close-up view of the sparklines for two stores.]

FIGURE 17-18 Note the detail of two sparkline charts.

Next steps

In Chapter 18, “Reading from and writing to the web,” you find out how to use web queries to automatically import data from the Internet to your Excel applications.

CHAPTER 18
Reading from and writing to the web

In this chapter, you will:

	Get data from the web

	Use Application.OnTime to periodically analyze data

	Publish data to a web page

The Internet has become pervasive and has changed our lives. From your desktop, millions of answers are available at your fingertips. In addition, publishing a report on the web enables millions of others to instantly access your information.

This chapter discusses automated ways to pull data from the web into spreadsheets, using new features from the former Power Query add-in. You’ll find out how to use VBA to call a website repeatedly to gather information for many data points. This chapter also shows how to save data from a spreadsheet directly to the web.

Getting data from the web

There is an endless variety of data on the Internet. You have two options when it comes to getting data from the web: You can use the Excel interface to build a query and then use VBA to refresh the query, or you can attempt to write the query in the M language. The Power Query add-in that Microsoft introduced for Excel 2010/2013 is built in to Excel 2019. When you use New Query in the Get & Transform group on the Data tab, you are using the former Power Query add-in to build your query in the M language.

The code for the query you would need to write to get data from the web is lengthy and difficult:

Click here to view code image

Sub CreatePowerQuery()

ActiveWorkbook.Queries.Add Name:="Table 1", _

Formula:="let" & Chr(13) & "" & Chr(10) & _

" Source = Web.Page(Web.Contents(" & _

"""http://www.flightstats.com/go/FlightStatus/" & _

"flightStatusByFlightPositionDetails.do?id=" & _

"562694389&airlineCode=AA&flightNumber=5370""))," _

Click here to view code image

& Chr(13) & "" & Chr(10) & " Data1 = Source{1}[Data]," _

& Chr(13) & "" & Chr(10) & " #""Changed Type"" = " & _

"Table.TransformColumnTypes(Data1,{{""UTC Time""," & _

"type text}, {""Time At Departure"", type text}, " & _

"{""Time At Arrival"", type text}, {""Spee" & _

"d"", type text}, {""Altitude"", type text}, " & _

"{""Latitude"", type number}, {""Longitude"", " & _

"type number}})," & Chr(13) & "" & Chr(10) & " " & _

"#""Removed Columns"" = Table.RemoveColumns" & _

"(#""Changed Type"",{""UTC Time"", ""Time At " & _

"Departure""})," & Chr(13) & "" & Chr(10) & _

" #""Split Column by Position"" = Table.Split" & _

"Column(#""Removed Columns"",""Time At Arrival""," & _

"Splitter.SplitTextByPositions({0, 6}, false),"

Formula = Formula & _

"{""Time At Arrival.1"", ""Time At Arrival.2""})," & Chr(13) & _

"" & Chr(10) & " #""Changed Type1"" = " & _

"Table.TransformColumnTypes(#""Split Column by " & _

"Position"",{{""Time At Arrival.1"", type date}," & _

"{""Time At Arrival.2"", type time}})," & Chr(13) & _

"" & Chr(10) & " #""Removed Columns1"" = " & _

"Table.RemoveColumns(#""Changed Type1"",{""Time At Arrival.1" _

"})," & _

Chr(13) & "" & Chr(10) & " #""Split Column by Delimiter"" = " & _

"Table.SplitColumn(#""Removed Columns1"",""Spe" & _

"ed"",Splitter.SplitTextByEachDelimiter({"" ""}, " & _

"null, false),{""Speed.1"", ""Speed.2""})," & Chr(13) & _

"" & Chr(10) & " #""Changed Type2"" = " & _

"Table.TransformColumnTypes(#""Split Column by Delimiter""," & _

"{{""Speed.1"", Int64.Type}, {""Speed.2"", type text}})," & _

Chr(13) & "" & Chr(10) & " #""Removed Columns2"" = " & _

"Table.RemoveColumns(#""Changed Type2"",{""Speed.2""})," & _

Chr(13) & "" & Chr(10) & " #""Split Column by Delimiter1"" " & _

"= Table.SplitColumn(#""Removed Columns2""," & _

"""Altitude"",Splitter.SplitTextByEachDelimiter({"" ""}, " & _

"null, false),{""Altitude.1"", ""Altitude.2""})," & _

Chr(13) & "" & Chr(10) & " #""Changed Type3"" = "

Formula = Formula & "Table.TransformColumnTypes(#""Split " & _

"Column by Delimiter1""," & _

"{{""Altitude.1"", Int64.Type}, {""Altitude.2"", type text}})," & _

Chr(13) & "" & Chr(10) & " #""Removed Columns3"" = " & _

"Table.RemoveColumns(#""Changed Type3"",{""Altitude.2""})" & _

Chr(13) & "" & Chr(10) & "in" & Chr(13) & "" & Chr(10) & " " & _

" #""Removed Columns3"""

Sheets.Add After:=ActiveSheet

With ActiveSheet.ListObjects.Add(SourceType:=0, _

Source:="OLEDB;Provider=Microsoft.Mashup.OleDb.1;" & _

"Data Source=$Workbook$;Location=Table1", _

Destination:=Range("A1")).QueryTable .CommandType = xlCmdSql

.CommandText = Array("SELECT * FROM [Table 1]")

.RowNumbers = False

.FillAdjacentFormulas = False

.PreserveFormatting = True

.RefreshOnFileOpen = False

.BackgroundQuery = True

Click here to view code image

.RefreshStyle = xlInsertDeleteCells

.SavePassword = False

.SaveData = True

.AdjustColumnWidth = True

.RefreshPeriod = 0

.PreserveColumnInfo = False

.ListObject.DisplayName = "Table_1"

.Refresh BackgroundQuery:=False

End With

Selection.ListObject.QueryTable.Refresh BackgroundQuery:=False

End Sub

The easier solution is to build the query in the Power Query interface and then refresh the query with this code:

Click here to view code image

Sub RefreshPowerQuery()

ActiveWorkbook.RefreshAll

End Sub

Building multiple queries with VBA

Say that you want to collect data from a website, such as historical weather statistics. Hourly weather statistics are available from http://www.wunderground.com/history/airport/KCAK/2018/6/17/DailyHistory.html. In this URL, KCAK is the location code for the Akron Canton airport (CAK). The 2018/6/17 refers to June 17, 2018. You can imagine how you can iterate through multiple cities or multiple dates.

The strategy would be to build the Power Query from scratch, refresh, copy the data to a new sheet, and then delete the Power Query and move on to the next city or date.

To gather weather data for 24 months, you have to repeat the web query process more than 700 times. Doing this manually would be tedious.

The first part can be hard-coded because it never changes:

"URL;http://www.wunderground.com/history/airport/K"

The next part is the three-letter airport code. If you are retrieving data for many cities, this part will change:

CAK

The third part is a slash, the date in YYYY/M/D format, and a slash:

/2018/6/17/

The final part can be hard-coded:

"DailyHistory.html"

Insert a new worksheet and build an output table. In cell A2, enter the first date for which you have sales history. Use the fill handle to drag the dates down to the current date.

The formula in B2 is ="/"&Text(A2,"YYYY/M/D")&"/".

Add friendly headings across row 1 for the statistics you will collect.

Finding results from retrieved data

Next, you have a decision to make. It looks as though the Weather Underground website is fairly static. The snow statistic even shows up if I ask for JHM airport in Maui. If you are positive that rainfall is always going to appear in cell B28 of your results sheet, you could write the macro to get data from there. However, to be safe, you can build some lookup formulas at the top of the worksheet to look for certain row labels and to pull that data. In Figure 18-1, eight VLOOKUP formulas find the statistics for high, low, rain, and snow from the web query.

[image: This figure shows VLOOKUP functions that locate words such as Max Temperature in the results of the web query.]

FIGURE 18-1 VLOOKUPs at the top of the web worksheet find and pull the relevant data from a web page.

[image: Images]

Note The variable web location of the web data happens more often than you might think. If you are pulling name and address information, some addresses have three lines, and some have four lines. Anything that appears after that address might be off by a row. Some stock quote sites show a different version of the data, depending on whether the market is open or closed. If you kick off a series of web queries at 3:45 p.m., the macro might work until 4:00 p.m. and then stop working. For these reasons, it is often safer to take the extra steps of retrieving the correct data from the web query by using VLOOKUP statements.

To build the macro, you add some code before the recorded code:

Click here to view code image

Dim WSD as worksheet

Dim WSW as worksheet

Set WSD = Worksheets("Data")

Set WSW = Worksheets("Web")

FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

Then add a loop to go through all the dates in the data worksheet:

Click here to view code image

For I = 2 to FinalRow

ThisDate = WSD.Cells(I, 2).value

' Build the ConnectString

CS = "URL: URL;http://www.wunderground.com/history/airport/KCAK"

CS = CS & ThisDate & "DailyHistory.html"

If a web query is about to overwrite existing data on the worksheet, it moves that data to the right. You want to clear the previous web query and all the contents:

Click here to view code image

For Each qt In WSD.QueryTables

qt.Delete

Next qt

WSD.Range("A10:A300").EntireRow.Clear

You can now go into the recorded code and change the QueryTables.Add line to the following:

Click here to view code image

With WSD.QueryTables.Add(Connection:= CS, Destination:=WSW.Range("A10"))

After the recorded code, add some lines to calculate the VLOOKUPs, copy the results, and finish the loop:

Click here to view code image

WSW.Calculate

WSD.Cells(i, 3).Resize(1, 4).Value = WSW.Range("B4:E4").Value

Next i

Step through the code as it goes through the first loop to make sure that everything is working. You should notice that the actual .Refresh line takes about 5 to 10 seconds. Gathering two or three years’ worth of web pages requires more than an hour of processing time. Run the macro, head to lunch, and then come back to a good data set.

Putting it all together

In the final macro here, I turned off screen updating and showed the row number that the macro is processing in the status bar. I also deleted some unnecessary properties from the recorded code:

Click here to view code image

Sub GetData()

Dim WSD As Worksheet

Dim WSW As Worksheet

Set WSD = Worksheets("Data")

Set WSW = Worksheets("Web")

FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

For i = 1 To FinalRow

ThisDate = WSD.Cells(i, 2).Value

' Build the ConnectString

CS = "URL;http://www.wunderground.com/history/airport/KCAK/"

CS = CS & ThisDate

CS = CS & "DailyHistory.html"

' Clear results of last web query

For Each qt In WSW.QueryTables

qt.Delete

Next qt

WSD.Range("A10:A300").EntireRow.Clear

With WSW.QueryTables.Add(Connection:=CS, _

Destination:=Range("A10"))

.Name = "DailyHistory"

.FieldNames = True

Click here to view code image

.RowNumbers = False

.FillAdjacentFormulas = False

.PreserveFormatting = True

.RefreshOnFileOpen = False

.BackgroundQuery = True

.RefreshStyle = xlInsertDeleteCells

.SavePassword = False

.SaveData = True

.AdjustColumnWidth = True

.RefreshPeriod = 0

.WebSelectionType = xlEntirePage

.WebFormatting = xlWebFormattingNone

.WebPreFormattedTextToColumns = True

.WebConsecutiveDelimitersAsOne = True

.WebSingleBlockTextImport = False

.WebDisableDateRecognition = False

.WebDisableRedirections = False

.Refresh BackgroundQuery:=False

End With

WSD.Range("K3:N3").FormulaR1C1 = _

"=VLOOKUP(R[-1]C,Web!C1:C2,2,FALSE)"

WSD.Cells(i, 3).Resize(1, 4).Value = _

WSD.Range("K3:N3").Value

Next i

End Sub

After an hour, you have data retrieved from hundreds of web pages (see Figure 18-2).

[image: Worksheet with date, high temperature, low temperature, rain, and snow. Dates go down column A.]

FIGURE 18-2 Here are the results of running the web query hundreds of times.

Examples of scraping websites using web queries

Over the years, I have used the web query trick many times. Examples include the following:

	I used a web query to get names and company addresses for all Fortune 1000 CFOs so that I could pitch my Power Excel seminars to them.

	I used a web query to find the complete membership roster for a publishing association of which I am a member. (I already had the printed roster, but with an electronic database, I could filter to find publishers in certain cities.)

	I used a web query to get a mailing address for every public library in the United States.

	I used a web query to get a complete list of Chipotle restaurants (which later ended up in my GPS, but that is a story for the [yet unwritten] Microsoft MapPoint book).

Using Application.OnTime to periodically analyze data

VBA offers the OnTime method for running any VBA procedure at a specific time of day or after a specific amount of time has passed.

You can write a macro to capture data every hour throughout the day. This macro would have times hard-coded. The following code will, theoretically, capture data from a website every hour throughout the day:

Click here to view code image

Sub ScheduleTheDay()

Application.OnTime EarliestTime:=TimeValue("8:00 AM"), _

Procedure:= "CaptureData"

Application.OnTime EarliestTime:=TimeValue("9:00 AM"), _

Procedure:= "CaptureData"

Application.OnTime EarliestTime:=TimeValue("10:00 AM"), _

Procedure:= "CaptureData"

Application.OnTime EarliestTime:=TimeValue("11:00 AM"), _

Procedure:= "CaptureData"

Application.OnTime EarliestTime:=TimeValue("12:00 AM"), _

Procedure:= "CaptureData"

Application.OnTime EarliestTime:=TimeValue("1:00 PM"), _

Procedure:= "CaptureData"

Application.OnTime EarliestTime:=TimeValue("2:00 PM"), _

Procedure:= "CaptureData"

Application.OnTime EarliestTime:=TimeValue("3:00 PM"), _

Procedure:= "CaptureData"

Application.OnTime EarliestTime:=TimeValue("4:00 PM"), _

Procedure:= "CaptureData"

Application.OnTime EarliestTime:=TimeValue("5:00 PM"), _

Procedure:= "CaptureData"

End Sub

Sub CaptureData()

Dim WSQ As Worksheet

Dim NextRow As Long

Set WSQ = Worksheets("MyQuery")

' Refresh the web query

WSQ.Range("A2").QueryTable.Refresh BackgroundQuery:=False

' Make sure the data is updated

Application.Wait Now + TimeValue("0:00:10")

' Copy the web query results to a new row

NextRow = WSQ.Cells(Rows.Count, 1).End(xlUp).Row + 1

WSQ.Range("A2:B2").Copy WSQ.Cells(NextRow, 1)

End Sub

Using ready mode for scheduled procedures

The OnTime method runs only when Excel is in Ready, Copy, Cut, or Find mode at the prescribed time. If you start to edit a cell at 7:59:55 a.m. and keep that cell in Edit mode, Excel cannot run the CaptureData macro at 8:00 a.m., as directed.

In the preceding code example, I specified only the start time for the procedure to run. Excel waits anxiously until the spreadsheet is returned to Ready mode and then runs the scheduled program as soon as it can.

The classic example is that you start to edit a cell at 7:59 a.m., and then your manager walks in and asks you to attend a surprise staff meeting down the hall. If you leave your spreadsheet in Edit mode and attend the staff meeting until 10:30 a.m., the program cannot run the first three scheduled hours of updates. As soon as you return to your desk and press Enter to exit Edit mode, the program runs all previously scheduled tasks. In the preceding code, you find that the first three scheduled updates of the program all happen between 10:30 and 10:31 a.m.

Specifying a window of time for an update

You can provide Excel with a window of time within which to make an update. The following code tells Excel to run an update at any time between 8:00 a.m. and 8:05 a.m.:

Click here to view code image

Application.OnTime EarliestTime:=TimeValue("8:00 AM"), _

Procedure:= "CaptureData ", _

LatestTime:=TimeValue("8:05 AM")

If the Excel session remains in Edit mode for the entire five minutes, the scheduled task is skipped.

Canceling a previously scheduled macro

It is fairly difficult to cancel a previously scheduled macro. You must know the exact time that the macro is scheduled to run. To cancel a pending operation, call the OnTime method and use the Schedule:=False parameter to unschedule the event. The following code cancels the 11:00 a.m. run of CaptureData:

Click here to view code image

Sub CancelEleven()

Application.OnTime EarliestTime:=TimeValue("11:00 AM"), _

Procedure:= "CaptureData", Schedule:=False

End Sub

It is interesting to note that the OnTime schedules are remembered by a running instance of Excel. If you keep Excel open but close the workbook with the scheduled procedure, it still runs. Consider this hypothetical series of events:

	Open Excel at 7:30 a.m.

	Open Schedule.xlsm and run a macro to schedule a procedure at 8:00 a.m.

	Close Schedule.xlsm but keep Excel open.

	Open a new workbook and begin entering data.

At 8:00 a.m., Excel reopens Schedule.xlsm and runs the scheduled macro. Excel doesn’t close Schedule.xlsm. As you can imagine, this is fairly annoying and alarming if you are not expecting it. If you are going to make extensive use of Application.Ontime, you might want to have it running in one instance of Excel while you work in a second instance of Excel.

[image: Images]

Note If you are using a macro to schedule a macro a certain amount of time later, you could remember the time in an out-of-the way cell to be able to cancel the update. See an example in the “Scheduling a macro to run x minutes in the future” section of this chapter.

Closing Excel cancels all pending scheduled macros

If you close Excel with File, Exit, all future scheduled macros are automatically canceled. When you have a macro that has scheduled a bunch of macros at indeterminate times, closing Excel is the only way to prevent the macros from running.

Scheduling a macro to run x minutes in the future

You can schedule a macro to run at a certain time in the future. The following macro uses the TIME function to return the current time and adds 2 minutes and 30 seconds to the time. The following macro runs something 2 minutes and 30 seconds from now:

Click here to view code image

Sub ScheduleAnything()

' This macro can be used to schedule anything

WaitHours = 0

WaitMin = 2

WaitSec = 30

NameOfScheduledProc = "CaptureData"

' --- End of Input Section -------

' Determine the next time this should run

NextTime = Time + TimeSerial(WaitHours, WaitMin, WaitSec)

' Schedule ThisProcedure to run then

Application.OnTime EarliestTime:=NextTime, Procedure:=NameOfScheduledProc

End Sub

Later, canceling this scheduled event would be nearly impossible. You won’t know the exact time that the macro grabbed the TIME function. You might try to save this value in an out-of-the-way cell:

Click here to view code image

Sub ScheduleWithCancelOption

NameOfScheduledProc = "CaptureData"

Click here to view code image

' Determine the next time this should run

NextTime = Time + TimeSerial(0,2,30)

Range("ZZ1").Value = NextTime

' Schedule ThisProcedure to run then

Application.OnTime EarliestTime:=NextTime, _

Procedure:=NameOfScheduledProc

End Sub

Sub CancelLater()

NextTime = Range("ZZ1").value

Application.OnTime EarliestTime:=NextTime, _

Procedure:=CaptureData, Schedule:=False

End Sub

Scheduling a verbal reminder

The text-to-speech tools in Excel can be fun. The following macro sets up a schedule that reminds you when it is time to go to a staff meeting:

Click here to view code image

Sub ScheduleSpeak()

Application.OnTime EarliestTime:=TimeValue("9:14 AM"), _

Procedure:="RemindMe"

End Sub

Sub RemindMe()

Application.Speech.Speak _

Text:="Bill. It is time for the staff meeting."

End Sub

If you want to pull a prank on your manager, you can schedule Excel to automatically turn on the Speak On Enter feature. Follow this scenario:

	Tell your manager that you are taking him out to lunch to celebrate April 1.

	At some point in the morning, while your manager is getting coffee, run the ScheduleSpeech macro. Design the macro to run 15 minutes after your lunch starts.

	Take your manager to lunch.

	While the manager is away, the scheduled macro runs.

	When the manager returns and starts typing data in Excel, the computer will repeat the cells as they are entered. This is slightly reminiscent of the computer on Star Trek that repeated everything Lieutenant Uhura said.

After this starts happening, you can pretend to be innocent; after all, you have a strong alibi for when the prank began to happen. Here’s the code you use to do it:

Click here to view code image

Sub ScheduleSpeech()

Application.OnTime EarliestTime:=TimeValue("12:15 PM"), _

Click here to view code image

Procedure:="SetUpSpeech"

End Sub

Sub SetupSpeech())

Application.Speech.SpeakCellOnEnter = True

End Sub

[image: Images]

Note To turn off Speak on Enter, you can either dig out the button from the QAT customization panel (look in the category called Commands Not On The Ribbon) or, if you can run some VBA, change the SetupSpeech macro to change the True to False.

Scheduling a macro to run every two minutes

Say that you want to ask Excel to run a certain macro every two minutes. However, you realize that if a macro gets delayed because you accidentally left the workbook in Edit mode while going to the staff meeting, you don’t want dozens of updates to happen in a matter of seconds.

The easy solution is to have the ScheduleAnything procedure recursively schedule itself to run again in two minutes. The following code schedules a run in two minutes and then performs CaptureData:

Click here to view code image

Sub ScheduleAnything()

' This macro can be used to schedule anything

' Enter how often you want to run the macro in hours and minutes

WaitHours = 0

WaitMin = 2

WaitSec = 0

NameOfThisProcedure = "ScheduleAnything"

NameOfScheduledProc = "CaptureData"

' --- End of Input Section -------

' Determine the next time this should run

NextTime = Time + TimeSerial(WaitHours, WaitMin, WaitSec)

' Schedule ThisProcedure to run then

Application.OnTime EarliestTime:=NextTime, _

Procedure:=NameOfThisProcedure

' Get the Data

Application.Run NameOfScheduledProc

End Sub

This method has some advantages. It doesn’t schedule a million updates in the future. You have only one future update scheduled at any given time. Therefore, if you decide that you are tired of seeing the national debt every 15 seconds, you only need to comment out the Application.OnTime line of code and wait 15 seconds for the last update to happen.

Publishing data to a web page

This chapter has highlighted many ways to capture data from the web. But you can also publish Excel data back to the web. That’s what this section is about.

The RunReportForEachCustomer macro shown in Chapter 11, “Data mining with Advanced Filter,” produces reports for each customer in a company. Instead of printing and faxing a report, it would be cool to save the Excel file as HTML and post the results on a company intranet so that the customer service reps can instantly access the latest version of the report.

With the Excel user interface, it is easy to save the report as a web page to create an HTML view of the data.

In Excel 2019, use File, Save As. Select Web Page (*.htm, *html) in the Save as Type drop-down menu. You have control over the title that appears in the window title bar. This title also gets written to the top center of your web page. Click the Change Title button to change the <Title> tag for the web page. Type a name that ends in either .htm or .html and click Publish.

The result is a file that can be viewed in any web browser. The web page accurately shows the number formats and font sizes (see Figure 18-3).

[image: This report shows a simple web page generated by Excel. Some dates in the first column area appear as ####### just as they would in Excel.]

FIGURE 18-3 The formatting is close to that of the original worksheet.

Whereas the macro from Chapter 11 did WBN.SaveAs, the current macro uses this code to write out each web page:

Click here to view code image

HTMLFN = "C:\Intranet\" & ThisCust & ".html"

On Error Resume Next

Kill HTMLFN

On Error GoTo 0

With WBN.PublishObjects.Add(_

SourceType:=xlSourceSheet, _

Filename:=HTMLFN, _

Sheet:="Sheet1", _

Source:="", _

HtmlType:=xlHtmlStatic, _

DivID:="A", _

Click here to view code image

Title:="Sales to " & ThisCust)

.Publish True

.AutoRepublish = False

End With

Although the data is accurately presented in Figure 18-3, it is not extremely fancy. For example, you don’t have a company logo or navigation bar to examine other reports.

Using VBA to create custom web pages

Long before Microsoft introduced the Save As Web Page functionality, people had been using VBA to publish Excel data as HTML. The advantage of using VBA for this is that you can write out specific HTML statements to display company logos and navigation bars.

Consider a typical web page template:

	There is code to display a logo and navigation bar at the top/side.

	There is content for the page.

	There is some HTML code to finish the page.

The following macro reads the code behind a web page and writes it to Excel:

Click here to view code image

Sub ImportHTML()

ThisFile = "C:\Intranet\schedule.html"

Open ThisFile For Input As #1

Ctr = 2

Do

Line Input #1, Data

Worksheets("HTML").Cells(Ctr, 2).Value = Data

Ctr = Ctr + 1

Loop While EOF(1) = False

Close #1

End Sub

If you import the text of a web page into Excel, even if you don’t understand the HTML involved, you can probably find the first lines that contain the page content.

Examine the HTML code in Excel. Copy the lines needed to draw the top part of the web page to a worksheet called Top. Copy the lines of code needed to close the web page to a worksheet called Bottom.

You can use VBA to write out the top, generate content from your worksheet, and then write out the bottom.

Using Excel as a content management system

Half a billion people are proficient in Excel. Companies everywhere have data in Excel and many staffers who are comfortable maintaining that data. Rather than force these people to learn how to create HTML pages, why not build a content management system to take their Excel data and write out custom web pages?

You probably already have data for a web page in Excel. Using the ImportHTML routine to read the HTML into Excel, you know the top and bottom portions of the HTML needed to render the web page. Building a content management system with these tools is simple, and I’ll show you an example. To the existing Excel data, I added two worksheets. In the worksheet called Top, I copied the HTML needed to generate the navigation bar of the website. To the worksheet called Bottom, I copied the HTML needed to generate the end of the HTML page. Figure 18-4 shows the simple Bottom worksheet.

[image: A worksheet with numbers 1 to 30 running down column A. Column B shows HTML code that would appear at the end of the web page.]

FIGURE 18-4 Companies everywhere are maintaining all sorts of data in Excel and are comfortable updating the data in Excel. Why not marry Excel with a simple bit of VBA so that custom HTML can be produced from Excel?

The macro code opens a text file called directory.html for output. First, all the HTML code from the Top worksheet is written to the file. Then the macro loops through each row in the membership directory, writing data to the file. After completing this loop, the following macro writes out the HTML code from the Bottom worksheet to finish the file:

Click here to view code image

Sub WriteMembershipHTML()

' Write web pages

Dim WST As Worksheet

Dim WSB As Worksheet

Dim WSM As Worksheet

Set WSB = Worksheets("Bottom")

Set WST = Worksheets("Top")

Set WSM = Worksheets("Membership")

' Figure out the path

Click here to view code image

MyPath = ThisWorkbook.Path

LineCtr = 0

FinalT = WST.Cells(Rows.Count, 1).End(xlUp).Row

FinalB = WSB.Cells(Rows.Count, 1).End(xlUp).Row

FinalM = WSM.Cells(Rows.Count, 1).End(xlUp).Row

MyFile = "sampleschedule.html"

ThisFile = MyPath & Application.PathSeparator & MyFile

ThisHostFile = MyFile

' Delete the old HTML page

On Error Resume Next

Kill (ThisFile)

On Error GoTo 0

' Build the title

ThisTitle = "<Title>LTCC Membership Directory</Title>"

WST.Cells(3, 2).Value = ThisTitle

' Open the file for output

Open ThisFile For Output As #1

' Write out the top part of the HTML

For j = 2 To FinalT

Print #1, WST.Cells(j, 2).Value

Next j

' For each row in Membership, write out lines of data to the HTML file

For j = 2 To FinalM

' Surround Member name with bold tags

Print #1, "" & WSM.Cells(j, 1).Value

Next j

' Close the old file

Print #1, "This page current as of " & Format(Date, "mmmm dd, yyyy") & _

" " & Format(Time, "h:mm AM/PM")

' Write out HTML code from the Bottom worksheet

For j = 2 To FinalB

Print #1, WSB.Cells(j, 2).Value

Next j

Close #1

Application.StatusBar = False

Application.CutCopyMode = False

MsgBox "web pages updated"

End Sub

Figure 18-5 shows the finished web page. This web page looks a lot better than the generic page created by Excel’s Save As Web Page option, and it maintains the look and feel of the rest of the site.

Using this approach has many advantages. The person who maintains the schedule data is comfortable working in Excel. She has already been maintaining the data in Excel on a regular basis. Now, after updating some records, she clicks a button to produce a new version of the web page.

Of course, the web designer is clueless about Excel. However, if he ever wants to change the web design, it is a simple matter of opening his new sample.html file in Notepad and copying the new code to the Top and Bottom worksheets.

[image: A web page listing upcoming seminars. The web page includes a simple form at the top.]

FIGURE 18-5 A simple content management system in Excel was used to generate this web page. The look and feel match the look and feel of the rest of the website. Excel achieved it without any expensive web database coding.

The resulting web page has a small file size—about one-sixth the size of an equivalent page created by Excel’s Save As Web Page.

[image: Images]

Note In real life, the content management system in this example was extended to allow easy maintenance of the organization’s calendar, board members, and so on. The resulting workbook made it possible to maintain 41 web pages at the click of a button.

Bonus: FTP from Excel

Even when you are able to update web pages from Excel, you still have the hassle of using an FTP program to upload the pages from your hard drive to the Internet. Again, many people are proficient in Excel, but not so many are comfortable with using an FTP client.

Ken Anderson has written a cool command-line FTP freeware utility. Download WCL_FTP from http://www.softlookup.com/display.asp?id=20483. Save WCL_FTP.exe to the root directory of your hard drive and then use this code to automatically upload your recently created HTML files to your web server:

Click here to view code image

Sub DoFTP(fname, pathfname)

' To have this work, copy wcl_ftp.exe to the C:\ root directory

' Download from http://www.softlookup.com/display.asp?id=20483

' Build a string to FTP. The syntax is

' WCL_FTP.exe "Caption" hostname username password host-directory _

' host-filename local-filename get-or-put 0Ascii1Binanry 0NoLog _

' 0Background 1CloseWhenDone 1PassiveMode 1ErrorsText

Click here to view code image

If Not Worksheets("Menu").Range("I1").Value = True Then Exit Sub

s = """c:\wcl_ftp.exe "" " _

& """Upload File to website"" " _

& "ftp.MySite.com FTPUser FTPPassword www " _

& fname & " " _

& """" & pathfname & """ " _

& "put " _

& "0 0 0 1 1 1"

Shell s, vbMinimizedNoFocus

End Sub

Next steps

Chapter 19, “Text file processing,” covers importing from a text file and writing to a text file. Being able to write to a text file is useful when you need to write out data for another system to read.

CHAPTER 19
Text file processing

In this chapter, you will:

	Import from text files

	Write text files

VBA simplifies both reading and writing from text files. This chapter covers importing from a text file and writing to a text file. Being able to write to a text file is useful when you need to write out data for another system to read or even when you need to produce HTML files.

Importing from text files

There are two basic scenarios when reading from text files. If a file contains fewer than 1,048,576 records, it is not difficult to import the file using the Workbooks.OpenText method. If the file contains more than 1,048,576 records, you have to read the file one record at a time.

Importing text files with fewer than 1,048,576 rows

Text files typically come in one of two formats. In one format, the fields in each record are separated by some delimiter, such as a comma, pipe, or tab. In the second format, each field takes a particular number of character positions. This is called a fixed-width file, and this format was very popular in the days of COBOL.

Excel can import either type of file. You can also open both types by using the OpenText method. In both cases, it is best to record the process of opening the file and then use the recorded snippet of code.

Opening a fixed-width file

Figure 19-1 shows a text file in which each field takes up a certain amount of space in the record. Writing the code to open this type of file is slightly arduous because you need to specify the length of each field. In my collection of antiques, I still have a metal ruler used by COBOL programmers to measure the number of characters in a field printed on a green-bar printer. In theory, you could change the font of your file to a monospace font and use this same method. However, using the macro recorder is a slightly more up-to-date method.

[image: This figure shows a text file. There are eight columns of data. The columns are fixed width, so they all line up nicely in the Notepad window.]

FIGURE 19-1This file is fixed width. Because you must specify the exact length of each field in the file, opening this file is quite involved.

Turn on the macro recorder by selecting Record Macro from the Developer tab. Use the default macro name. From the File menu, select Open. Change the Files Of Type to All Files and find your text file.

In the Text Import Wizard’s step 1, specify that the data is Fixed Width and click Next. Excel looks at your data and attempts to figure out where each field begins and ends. Figure 19-2 shows Excel’s guess on this particular file. Because the Date field is too close to the Customer field, Excel missed drawing that line.

[image: This figure shows the Text Import Wizard step 2 of 3. In this view, lines appear between most columns. Excel has detected where the lines should be drawn. There is a problemâ€”no line was drawn between the COGS and Profit columns.]

FIGURE 19-2 Excel guesses at where each field starts and ends. In this case, it guessed incorrectly for two of the fields.

To add a new field indicator in step 2 of the wizard, click in the appropriate place in the Data Preview window. If you click in the wrong column, click the line and drag it to the right place. If Excel inadvertently put in an extra field line, double-click the line to remove it. Figure 19-3 shows the Data Preview window after the appropriate changes have been made. Note the little ruler above the data. When you click to add a field marker, Excel is actually handling the tedious work of figuring out that the Customer field starts in position 25 and has a length of 11.

[image: Continuing from Figure 19-2, this figure is still in Step 2 of the Text to Columns wizard. Using your mouse, click to add a new line between COGS and Profit.]

FIGURE 19-3 After you add a new field marker and adjust the marker between Customer and Quantity to the right place, Excel can build the code that gives you an idea of the start position and length of each field.

In step 3 of the wizard, Excel assumes that every field is in General format. Change the format of any fields that require special handling. Click the third column and choose the appropriate format from the Column Data Format section of the dialog box. Figure 19-4 shows the selections for this file.

[image: This figure shows Step 3 of 3 of the Text Import Wizard. The third column is marked as a date in MDY format. The COGS and Profit columns are marked as Skip Column. A button named Advanced is pointed out, but it has not been clicked yet.]

FIGURE 19-4 The third column is a date, and you do not want to import the Cost and Profit columns.

If you have date fields, click the heading above that column and change the column data format to a Date format. If you have a file with dates in year-month-day format or day-month-year format, select the drop-down menu next to Date and choose the appropriate date sequence.

If you prefer to skip some fields, click those columns and select Do Not Import Column (Skip) from the Column Data Format section. This is useful in a couple of instances. If the file includes sensitive data that you do not want to show to a client, you can leave it out of the import. For example, perhaps this report is for a customer to whom you do not want to show the cost of goods sold or profit. In this case, you can choose to skip these fields in the import. In addition, occasionally you will encounter a text file that is both fixed width and delimited by a character such as the pipe character. Setting the one-character-wide pipe columns as “do not import” is a great way to get rid of the pipe characters.

If you have text fields that contain alphabetic characters, you can choose the General format. The only time you should choose the Text format is if you have a numeric field that you explicitly need imported as text. One example of this is an account number with leading zeros or a column of ZIP Codes. In this case, change the field to Text format to ensure that ZIP Code 01234 does not lose the leading zero.

[image: Images]

Note After you import a text file and specify that one field is text, that field exhibits seemingly bizarre behavior. Try inserting a new row and entering a formula in the middle of a column imported as text. Instead of getting the results of the formula, Excel enters the formula as text. The solution is to delete the formula, format the entire column as General, and then enter the formula again.

After opening the file, turn off the macro recorder and examine the recorded code, which should look like this:

Click here to view code image

Workbooks.OpenText Filename:="C:\sales.prn", Origin:=437, StartRow:=1, _

DataType:=xlFixedWidth, FieldInfo:=Array(Array(0, 1), Array(8, 1), _

Array(17, 3), Array(27, 1), Array(54, 1), Array(62, 1), Array(71, 9), _

Array(79, 9)), TrailingMinusNumbers:=True

The most confusing part of this code is the FieldInfo parameter. You are supposed to code an array of two-element arrays. Each field in the file gets a two-element array to identify both where the field starts and what type of field it is.

The field start position is zero based. Because the Region field is in the first character position, its start position is listed as zero.

The field type is a numeric code. If you were coding this by hand, you would use the xlColumnDataType constant names; but for some reason, the macro recorder uses the harder-to-understand numeric equivalents.

By using Table 19-1, you can decode the meaning of the individual arrays in the FieldInfo array. Array(0, 1) means that this field starts zero characters from the left edge of the file and is a General format. Array(8, 1) indicates that the next field starts eight characters from the left edge of the file and is General format. Array(17, 3) indicates that the next field starts 17 characters from the left edge of the file and is a Date format in month-day-year sequence.

TABLE 19-1 xlColumnDataType values

	Value

	Constant

	Used For

	1

	xlGeneralFormat

	General

	2

	xlTextFormat

	Text

	3

	xlMDYFormat

	MDY date

	4

	xlDMYFormat

	DMY date

	5

	xlYMDFormat

	YMD date

	6

	xlMYDFormat

	MYD date

	7

	xlDYMFormat

	DYM date

	8

	xlYDMFormat

	YDM date

	9

	xlSkipColumn

	Skip Column

	10

	xlEMDFormat

	EMD date (for use in Taiwan)

As you can see, the FieldInfo parameter for fixed-width files is arduous to code and confusing to look at. This is one situation in which it is easier to record the macro and copy the code snippet.

Opening a delimited file

Figure 19-5 shows a text file in which the fields are comma separated. The main task in opening such a file is to tell Excel that the delimiter in the file is a comma and then identify any special processing for each field. In this case, you definitely want to identify the third column as being a date in MDY format.

[image: This figure shows another text file; this one has a comma between each column. The columns are not lined up nicely, but the code to import will be simpler.]

FIGURE 19-5 This file is comma delimited. Opening this file involves telling Excel to look for a comma as the delimiter and then identifying any special handling, such as treating the third column as a date. This is much easier than handling fixed-width files.

[image: Images]

Note If you try to record the process of opening a comma-delimited file whose filename ends in .csv, Excel records the Workbooks.Open method rather than Workbooks.OpenText. If you need to control the formatting of certain columns, rename the file to have a .txt extension before recording the macro. You can then edit the recorded macro to change the filename back to a .csv extension.

Turn on the macro recorder and record the process of opening the text file. In step 1 of the wizard, specify that the file is delimited.

In step 2 of the Text Import Wizard, the Data Preview window might initially look horrible. This is because Excel defaults to assuming that the fields are separated by tab characters (see Figure 19-6).

[image: Initially, the Text Import Wizard Step 2 predicts a tab as the delimiter. The data preview shows a single long field.]

FIGURE 19-6 Before you import a delimited text file, the initial Data Preview window is a confusing mess of data because Excel is looking for tab characters between fields when a comma is actually the delimiter in this file.

After you’ve cleared the Tab check box and selected the proper delimiter choice, which in this case is a comma, the Data Preview window in step 2 looks perfect, as shown in Figure 19-7.

Step 3 of the wizard is identical to step 3 for a fixed-width file. In this case, specify that the third column has a date format. Click Finish, and you have this code in the macro recorder:

Click here to view code image

Workbooks.OpenText Filename:="C:\sales.txt", Origin:=437, _

StartRow:=1, DataType:=xlDelimited, TextQualifier:=xlDoubleQuote, _

ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False, _

Comma:=True, Space:=False, Other:=False, _

FieldInfo:=Array(Array(1, 1), Array(2, 1), _

Array(3, 3), Array(4, 1), Array(5, 1), Array(6, 1), _

Array(7, 1), Array(8, 1)), TrailingMinusNumbers:=True

Although this code appears longer than the earlier code, it is actually simpler. In the FieldInfo parameter, the two element arrays consist of a sequence number, starting at 1 for the first field, and then an xlColumnDataType from Table 19-1. In this example, Array(2, 1) is saying “the second field is of general type.” Array(3, 3) is saying “the third field is a date in MDY format.” The code is longer because it explicitly specifies that each possible delimiter is set to False. Because False is the default for all delimiters, you really need only the one you will use. The following code is equivalent:

Click here to view code image

Workbooks.OpenText Filename:= "C:\sales.txt", _

DataType:=xlDelimited, Comma:=True, _

FieldInfo:=Array(Array(1, 1), Array(2, 1), Array(3, 3), _

Array(4, 1), Array(5, 1), Array(6, 1), _

Array(7, 1), Array(8, 1))

[image: After changing the delimiter to a comma in Step 2 of the Text Import Wizard, the data preview shows the data split into eight columns.]

FIGURE 19-7 After the delimiter field has been changed from a tab to a comma, the Data Preview window looks perfect. This is certainly easier than the cumbersome process in step 2 for a fixed-width file. Note that Excel ignores the commas in the Customer field when there are quotation marks around the customer.

Finally, to make the code more readable, you can use the constant names rather than the code numbers:

Click here to view code image

Workbooks.OpenText Filename:="C:\sales.txt", _

DataType:=xlDelimited, _Comma:=True, _

FieldInfo:=Array(Array(1, xlGeneralFormat), _

Array(2, xlGeneralFormat), _

Array(3, xlMDYFormat), Array(4, xlGeneralFormat), _

Array(5, xlGeneralFormat), Array(6, xlGeneralFormat), _

Array(7, xlGeneralFormat), Array(8, xlGeneralFormat))

Excel has built-in options to read files in which fields are delimited by tabs, semicolons, commas, or spaces. Excel can actually handle anything as a delimiter. If someone sends pipe-delimited text, you set the Other parameter to True and specify an OtherChar parameter:

Click here to view code image

Workbooks.OpenText Filename:= "C:\sales.txt", Origin:=437, _

 DataType:=xlDelimited, Other:=True, OtherChar:= "|", FieldInfo:=...

Dealing with text files with more than 1,048,576 rows

If you use the Text Import Wizard to read a file that has more than 1,048,576 rows of data, you get this error: “File not loaded completely.” The first 1,048,576 rows of the file load correctly.

If you use Workbooks.OpenText to open a file that has more than 1,048,576 rows of data, you are given no indication that the file did not load completely. Excel 2019 loads the first 1,048,576 rows and allows macro execution to continue. Your only indication that there is a problem is if someone notices that the reports are not reporting all the sales. If you think that your files will ever get this large, it would be good to check whether cell A1048576 is nonblank after an import. If it is, the odds are that the entire file was not loaded.

Reading text files one row at a time

You might run into a text file that has more than 1,048,576 rows. When this happens, you have to read the text file one row at a time.

You need to open the file for INPUT as #1. You use #1 to indicate that this is the first file you are opening. If you had to open two files, you could open the second file as #2. You can then use the Line Input #1 statement to read a line of the file into a variable. The following code opens sales.txt, reads 10 lines of the file into the first 10 cells of the worksheet, and closes the file:

Click here to view code image

Sub Import10()

ThisFile = "C\sales.txt"

Open ThisFile For Input As #1

For i = 1 To 10

Line Input #1, Data

Cells(i, 1).Value = Data

Next i

Close #1

End Sub

Rather than read only 10 records, you want to read until you get to the end of the file. Excel automatically updates a variable called EOF. If you open a file for input as #1, checking EOF(1) tells you whether you have read the last record.

Use a Do...While loop to keep reading records until you have reached the end of the file:

Click here to view code image

Sub ImportAll()

ThisFile = "C:\sales.txt"

Open ThisFile For Input As #1

Ctr = 0

Do

Line Input #1, Data

Ctr = Ctr + 1

Cells(Ctr, 1).Value = Data

Loop While EOF(1) = False

Close #1

End Sub

After reading records with code such as this, note in Figure 19-8 that the data is not parsed into columns. All the fields are in column A of the file.

Use the TextToColumns method to parse the records into columns. The parameters for TextToColumns are nearly identical to those for the OpenText method:

Click here to view code image

Cells(1, 1).Resize(Ctr, 1).TextToColumns Destination:=Range("A1"), _

DataType:=xlDelimited, Comma:=True, FieldInfo:=Array(Array(1, _

xlGeneralFormat), Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _

Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), Array(6, _

xlGeneralFormat), Array(7,xlGeneralFormat), Array(8, xlGeneralFormat), _

Array(9, xlGeneralFormat), Array(10,xlGeneralFormat), Array(11, _

xlGeneralFormat))

[image: This figure shows an Excel file. There are 10 rows of data. All of the data for each row is in Column A.]

FIGURE 19-8 When you are reading a text file one row at a time, all the data fields end up in one long entry in column A.

[image: Images]

Note For the remainder of your Excel session, Excel remembers the delimiter settings. There is an annoying bug (feature?) in Excel. After Excel remembers that you are using a comma or a tab as a delimiter, any time that you attempt to paste data from the Clipboard to Excel, the data is parsed automatically by the delimiters specified in the OpenText method. Therefore, if you attempt to paste some text that includes the customer ABC, Inc., the text is parsed automatically into two columns, with text up to ABC in one column and Inc. in the next column.

Rather than hard-code that you are using the #1 designator to open the text file, it is safer to use the FreeFile function. This returns an integer representing the next file number available for use by the Open statement. The complete code to read a text file smaller than 1,048,576 rows is as follows:

Click here to view code image

Sub ImportAll()

ThisFile = "C:\sales.txt"

FileNumber = FreeFile

Open ThisFile For Input As #FileNumber

Ctr = 0

Do

Line Input #FileNumber, Data

Ctr = Ctr + 1

Cells(Ctr, 1).Value = Data

Loop While EOF(FileNumber) = False

Close #FileNumber

Cells(1, 1).Resize(Ctr, 1).TextToColumns Destination:=Range("A1"), _

DataType:=xlDelimited, Comma:=True, _

FieldInfo:=Array(Array(1, xlGeneralFormat), _

Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _

Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _

Array(5, xlGeneralFormat), Array(6, xlGeneralFormat), _

Array(7, xlGeneralFormat), Array(8, xlGeneralFormat), _

Array(9, xlGeneralFormat), Array(10, xlGeneralFormat), _

Array(10, xlGeneralFormat), Array(11, xlGeneralFormat))

End Sub

Reading text files with more than 1,048,576 rows

You can use the Line Input method to read a large text file. A good strategy is to read rows into cells A1:A1048575 and then begin reading additional rows into cell AA2. You can start in row 2 on the second set so that the headings can be copied from row 1 of the first data set. If the file is large enough that it fills up column AA, move to BA2, CA2, and so on.

Also, you should stop writing columns when you get to row 1048574 and leave two blank rows at the bottom. This ensures that the code Cells(Rows.Count, 1).End(xlup).Row finds the final row. The following code reads a large text file into several sets of columns:

Click here to view code image

Sub ReadLargeFile()

ThisFile = "C:\sales.txt"

FileNumber = FreeFile

Open ThisFile For Input As #FileNumber

NextRow = 1

NextCol = 1

Do While Not EOF(1)

Line Input #FileNumber, Data

Cells(NextRow, NextCol).Value = Data

NextRow = NextRow + 1

If NextRow = (Rows.Count -2) Then

' Parse these records

Range(Cells(1, NextCol), Cells(Rows.Count, NextCol)) _

.TextToColumns _

Destination:=Cells(1, NextCol), DataType:=xlDelimited, _

Comma:=True, FieldInfo:=Array(Array(1, xlGeneralFormat), _

Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _

Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _

Array(6, xlGeneralFormat), Array(7, xlGeneralFormat), _

Array(8, xlGeneralFormat), Array(9, xlGeneralFormat), _

Array(10, xlGeneralFormat), Array(11, xlGeneralFormat))

' Copy the headings from section 1

If NextCol > 1 Then

Range("A1:K1").Copy Destination:=Cells(1, NextCol)

End If

' Set up the next section

NextCol = NextCol + 26

NextRow = 2

End If

Loop

Close #FileNumber

' Parse the final section of records

FinalRow = NextRow - 1

If FinalRow = 1 Then

' Handle if the file coincidentally had 1048574 rows exactly

NextCol = NextCol - 26

Else

Range(Cells(2, NextCol), Cells(FinalRow, NextCol)).TextToColumns _

Destination:=Cells(1, NextCol), DataType:=xlDelimited, _

Comma:=True, FieldInfo:=Array(Array(1, xlGeneralFormat), _

Click here to view code image

Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _

Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _

Array(6, xlGeneralFormat), Array(7, xlGeneralFormat), _

Array(8, xlGeneralFormat), Array(9, xlGeneralFormat), _

Array(10, xlGeneralFormat), Array(11, xlGeneralFormat))

If NextCol > 1 Then

Range("A1:K1").Copy Destination:=Cells(1, NextCol)

End If

End If

DataSets = (NextCol - 1) / 26 + 1

End Sub

Usually you should write the DataSets variable to a named cell somewhere in the workbook so that later you know how many data sets you have in the worksheet.

As you can imagine, using this method, it is possible to read 660,601,620 rows of data into a single worksheet. The code you formerly used to filter and report the data now becomes more complex. You might find yourself creating pivot tables from each set of columns to create a data set summary and then summarizing all the summary tables with a final pivot table. At some point, you need to consider whether the application really belongs in Access. You can also consider whether the data should be stored in Access with an Excel front end, which is discussed in Chapter 21, “Using Access as a back end to enhance multiuser access to data.”

Using Power Query to load large files to the Data Model

If your goal is to create a pivot table from the text file, you can bypass the worksheet grid and load millions of rows directly into the Data Model. Now that Power Query is built in to Excel 2019, the macro recorder will record the process of importing data to the Data Model with Power Query. Use the following steps:

	On the Data tab, in the Power Query group, select New Query, From File, From Text File.

	Browse to the text file.

	In the Power Query Home tab, open the Close And Load drop-down menu and choose Close And Load To.

	In the Load To dialog box, choose Only Create Connection And Add This Data To The Data Model. Click OK. The data is loaded to the Power Pivot engine.

If you use the macro recorder during this process, your recorded code includes the M language statements required to define the query:

Click here to view code image

Sub ImportToDataModel()

'

' ImportToDataModel Macro

ActiveWorkbook.Queries.Add Name:="demo", Formula:= _

 "let" & Chr(13) & "" & Chr(10) & _

 " Source = Csv.Document(File.Contents(""C:\demo.txt""), " & _

 "[Delimiter="","",Encoding=1252])," & Chr(13) & "" & Chr(10) & _

 " #""First Row as Header"" = Table.PromoteHeaders(Source)," & _

Chr(13) & "" & Chr(10) & _

 " #""Changed Type"" = Table.TransformColumnTypes(" & _

 "#""First Row as Header""," & _

 "{{""StoreID"", Int64.Type}, {""Date"", type date}," & _

 "{""Division"", type text}, {""Units"", Int64.Type}," & _

 "{""Revenue"", Int64.Type}})" & Chr(13) & "" & Chr(10) & "i" & _

 """Changed Type"""

Workbooks("Book4").Connections.Add2 "Power Query - demo", _

 "Connection to the 'demo' query in the workbook.", _

 "OLEDB;Provider=Microsoft.Mashup.OleDb.1;" & _

 "Data Source=$Workbook$;Location=demo", _

 """demo""", 6, True, False

End Sub

You can now use Insert, Pivot Table and specify This Workbook Data Model as the source for the pivot table.

Writing Text Files

The code for writing text files is similar to the code for reading text files. You need to open a specific file for output as #1. Then, as you loop through various records, you write them to the file by using the Print #1 statement.

Before you open a file for output, make sure that any prior examples of the file have been deleted. You can use the Kill statement to delete a file. Kill returns an error if the file was not there in the first place. In this case, you use On Error Resume Next to prevent an error.

The following code writes out a text file for use by another application:

Click here to view code image

Sub WriteFile()

ThisFile = "C:\Results.txt"

' Delete yesterday's copy of the file

On Error Resume Next

Kill ThisFile

On Error GoTo 0

' Open the file

Open ThisFile For Output As #1

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

' Write out the file

For j = 1 To FinalRow

Print #1, Cells(j, 1).Value

Next j

End Sub

This is a somewhat trivial example. You can use this method to write out any type of text-based file. The code at the end of Chapter 18, “Reading from and writing to the web,” uses the same concept to write out HTML files.

Next steps

The next chapter steps outside the world of Excel and talks about how to transfer Excel data into Microsoft Word documents. Chapter 20, “Automating Word,” looks at using Excel VBA to automate and control Microsoft Word.

CHAPTER 20
Automating Word

In this chapter, you will:

	Use early and late binding to reference a Word object

	Use the New keyword to reference the Word application

	Use the CreateObject function to create a new instance of an object

	Use the GetObject function to reference an existing instance of Word

	Use constant values

	Be introduced to some of Word’s objects

	Control form fields in Word

Word, Excel, PowerPoint, Outlook, and Access all use the same VBA language. The only difference is their object models. For example, Excel has a Workbooks object, and Word has Documents. Any one of these applications can access the object model of another of the applications, as long as the second application is installed.

To access Word’s object library, Excel must establish a link to it by using either early binding or late binding. With early binding, the reference to the application object is created when the program is compiled. With late binding, the reference is created when the program is run.

This chapter provides an introduction to accessing Word from Excel.

[image: Images]

Note This chapter does not review Word’s entire object model or the object models of other applications. Refer to the VBA Object Browser in the appropriate application to learn about other object models.

Using early binding to reference a Word object

Code written with early binding executes faster than code with late binding. A reference is made to Word’s object library before the code is written so that Word’s objects, properties, and methods are available in the Object Browser. Tips such as a list of members of an object also appear, as shown in Figure 20-1.

The disadvantage of early binding is that the referenced object library must exist on the system. For example, if you write a macro referencing Word 2019’s object library and someone with Word 2010 attempts to run the code, the program fails because it cannot find the Word 2019 object library.

[image: The figure shows some code in the VB Editor. Variables have been declared as Word objects and IntelliSense appears to help with syntax specific to Word.]

FIGURE 20-1 Early binding allows access to a Word object’s syntax.

You add the object library through the VB Editor, as described here:

	Select Tools, References.

	Check Microsoft Word 16.0 Object Library in the Available References list (see Figure 20-2). If the object library is not found, Word is not installed. If another version is found in the list, such as 12.0, another version of Word is installed, and you should check that.

	Click OK.

[image: The figure shows the References dialog box. The Microsoft Word 16.0 Object Library is selected.]

FIGURE 20-2 Select the object library from the Available References list.

After the reference is set, Word variables can be declared with the correct Word variable type, such as Document. However, if the object variable is declared As Object, this forces the program to use late binding. The following example creates a new instance of Word and opens an existing Word document from Excel using early binding:

Click here to view code image

Sub WordEarlyBinding()

Dim wdApp As Word.Application

Dim wdDoc As Document

Set wdApp = New Word.Application

wdApp.Visible = True 'make Word visible

Set wdDoc = wdApp.Documents.Open(ThisWorkbook.Path & _

"\Automating Word.docx")

Set wdApp = Nothing

Set wdDoc = Nothing

End Sub

The declared variables, wdApp and wdDoc, are Word object types. wdApp is used to create a reference to the Word application in the same way the Application object is used in Excel. New Word.Application is used to create a new instance of Word. If you are opening a document in a new instance of Word, Word is not visible. If the application needs to be shown, it must be unhidden (wdApp.Visible = True). When the program is done, release the connection to Word by setting the object, wdApp, to Nothing.

[image: Images]

Tip Excel searches through the selected libraries to find the reference for the object type. If the type is found in more than one library, the first reference is selected. You can influence which library is chosen by changing the priority of the reference in the list of selected libraries.

When the process is finished, it’s a good idea to set the object variables to Nothing and release the memory being used by the application, as shown here:

Set wdApp = Nothing

Set wdDoc = Nothing

If the referenced version of Word does not exist on the system, an error message appears when the code is compiled. View the References list; the missing object is highlighted with the word MISSING, as shown in Figure 20-3.

[image: The figure shows the References dialog box. The Microsoft Word 16.0 Object Library is marked as missing.]

FIGURE 20-3 Excel won’t find the expected Word 2019 object library if someone opens the workbook in Excel 2010.

If a previous version of Word is available, you can try running the program with that version referenced. Many objects are the same between versions.

Using late binding to reference a Word object

When using late binding, you create an object that refers to the Word application before linking to the Word library. Because you do not set up a reference beforehand, the only constraint on the Word version is that the objects, properties, and methods must exist. When there are differences between versions of Word, the version can be verified and the correct object used accordingly.

The disadvantage of late binding is that because Excel does not know what is going on, it does not understand that you are referring to Word. This prevents the IntelliSense from appearing when referencing Word objects. In addition, built-in constants are not available. This means that when Excel is compiling, it cannot verify that the references to Word are correct. After the program is executed, the links to Word begin to build, and any coding errors are detected at that point.

The following example creates a new instance of Word and then opens and makes visible an existing Word document:

Click here to view code image

Sub WordLateBinding()

Dim wdApp As Object, wdDoc As Object

Set wdApp = CreateObject("Word.Application")

Set wdDoc = wdApp.Documents.Open(ThisWorkbook.Path & _

"\Automating Word.docx")

wdApp.Visible = True

Set wdApp = Nothing

Set wdDoc = Nothing

End Sub

An object variable (wdApp) is declared and set to reference the application (CreateObject("Word.Application")). Other required variables are then declared (wdDoc), and the application object is used to refer these variables to Word’s object model. Declaring wdApp and wdDoc as objects forces the use of late binding. The program cannot create the required links to the Word object model until it executes the CreateObject function.

Using the New keyword to reference the Word application

In the early-binding example, the keyword New was used to reference the Word application. The New keyword can be used only with early binding; it does not work with late binding. CreateObject or GetObject would also work, but New is best for this example. If an instance of the application is running and you want to use it, use the GetObject function instead.

[image: Images]

Caution If your code to open Word runs smoothly but you don’t see an instance of Word (and should because you code it to be Visible), open your Task Manager and look for the process WinWord.exe. If it exists, from the Immediate window in Excel’s VB Editor, type the following (which uses early binding):

Word.Application.Visible = True

If multiple instances of WinWord.exe are found, you need to make each instance visible and close the extra instance(s) of WinWord.exe.

Using the CreateObject function to create a new instance of an object

The earlier late-binding example uses the CreateObject function. However, you also can use this function in early binding. You use it to create a new instance of an object, in this case the Word application. CreateObject has a class parameter, which consists of the name and type of the object to be created (Name.Type). For example, the examples in this chapter have used (Word.Application), in which Word is the Name and Application is the Type.

Using the GetObject function to reference an existing instance of Word

You can use the GetObject function to reference an instance of Word that’s already running. An error is generated if no instance of the application can be found. You can use the existence of the error to include code that creates an instance of the application.

The two parameters for GetObject are optional. The first parameter specifies the full path and file name to open, and the second parameter specifies the application program. The following example leaves off the application and allows the default program, which is Word, to open the document:

Click here to view code image

Sub UseGetObject()

Dim wdDoc As Object

Set wdDoc = GetObject(ThisWorkbook.Path & "\Automating Word.docx")

wdDoc.Application.Visible = True

'more code interacting with the Word document

Set wdDoc = Nothing

End Sub

This example opens a document in an existing instance of Word, if there is one; otherwise, it creates one. It ensures that the Word application’s Visible property is set to True. Note that to make the document visible, you have to refer to the application object (wdDoc.Application.Visible) because wdDoc is referencing a document rather than the application.

[image: Images]

Note Although the Word application’s Visible property is set to True, this code does not make the Word application the active application. In most cases, the Word application icon stays in the taskbar, and Excel remains the active application on the screen.

The following example uses errors to learn whether Word is already open before pasting the selected chart at the end of a document. If Word is not open, it opens Word and creates a new document:

Click here to view code image

Sub IsWordOpen()

Dim wdApp As Word.Application 'early binding

ActiveChart.ChartArea.Copy

On Error Resume Next 'returns Nothing if Word isn't open

Set wdApp = GetObject(, "Word.Application")

If wdApp Is Nothing Then

'because Word isn't open, open it

Set wdApp = GetObject("", "Word.Application")

With wdApp

.Documents.Add

.Visible = True

End With

End If

On Error GoTo 0

With wdApp.Selection

.EndKey Unit:=wdStory

.TypeParagraph

.PasteSpecial Link:=False, DataType:=wdPasteOLEObject, _

Placement:=wdInLine, DisplayAsIcon:=False

End With

Set wdApp = Nothing

End Sub

Using On Error Resume Next forces the program to continue even if it runs into an error. In this case, an error occurs when you attempt to link wdApp to an object that does not exist. wdApp will have no value. The next line, If wdApp Is Nothing Then, takes advantage of this and opens an instance of Word, adds an empty document, and makes the application visible. Use On Error Goto 0 to return to normal VBA error-handling behavior.

[image: Images]

Tip Note the use of empty quotes for the first parameter in GetObject("", "Word.Application"). This is how you use the GetObject function to open a new instance of Word.

Using constant values

The preceding example used constants, such as wdPasteOLEObject and wdInLine, that are specific to Word. When you are programming using early binding, Excel helps by showing these constants in the member list.

With late binding, IntelliSense doesn’t appear. So what can you do? You might write your program using early binding and then change it to late binding after you compile and test the program. The problem with this method is that the program will not compile because Excel doesn’t recognize the Word constants.

The words wdPasteOLEObject and wdInLine are just terms for your convenience as a programmer. Behind each of these text constants is the real value that VBA understands. The solution to this is to retrieve and use these real values with your late-binding program.

Using the Watches window to retrieve the real value of a constant

One way to retrieve the value of a constant is to add a watch for constants. Then you step through your code and check the value of the constant as it appears in the Watches window, as shown in Figure 20-4.

[image: The figure shows a screenshot of the Watches window. The Word expression shown is wdStory, and it has a value of 6.]

FIGURE 20-4 Use the Watches window to get the real value behind a Word constant.

[image: Images]

Note See “Querying by using a Watches window” in chapter 2, “This sounds Like BASIC, so why doesn’t it look familiar?” for more information on using the Watches window.

Using the Object Browser to retrieve the real value of a constant

Another way to retrieve the value of a constant is to look up the constant in the Object Browser. However, you need the Word library to be set up as a reference to use this method. Once it is set up, right-click the constant and select Definition. The Object Browser opens to the constant and shows the value in the bottom window (see Figure 20-5).

[image: The figure shows a screenshot of the Object Browser with Word’s library selected. In the right frame, the members of the WdUnits are shown, with wdStory selected. At the bottom of the Object Browser, the value, 6, of wdStory is returned.]

FIGURE 20-5 Use the Object Browser to get the real value of a Word constant.

[image: Images]

Tip You can set up the Word reference library to be accessed from the Object Browser. However, you do not have to set up your code with early binding. When you do this, the reference is at your fingertips, but your code is still late binding. Turning off the reference library is just a few clicks away.

Replacing the constants in the earlier code example with their real values would look like this:

Click here to view code image

With wdApp.Selection

.EndKey Unit:=6

.TypeParagraph

.PasteSpecial Link:=False, DataType:=0, Placement:=0, _

DisplayAsIcon:=False

End With

However, what happens a month from now, when you return to the code and you try to remember what those numbers mean? The solution is up to you. Some programmers add comments to the code, referencing the Word constant. Other programmers create their own variables to hold the real value and use those variables in place of the constants, like this:

Click here to view code image

Const xwdStory As Long = 6

Const xwdPasteOLEObject As Long = 0

Const xwdInLine As Long = 0

With wdApp.Selection

 .EndKey Unit:=xwdStory

 .TypeParagraph

 .PasteSpecial Link:=False, DataType:=xwdPasteOLEObject, _

Placement:=xwdInLine, DisplayAsIcon:=False

End With

Understanding Word’s objects

You can use Word’s macro recorder to get a preliminary understanding of the Word object model. However, much as with Excel’s macro recorder, the results will be long-winded. Keep this in mind and use the recorder to lead you toward the objects, properties, and methods in Word.

[image: Images]

Caution Word’s macro recorder is limited in what it allows you to record. While the mouse can be used to move the cursor or select objects, it doesn’t record those movements. But there are no limits on what it records from keyboard movements.

This is what the Word macro recorder produces when you add a new, blank document by selecting File, New, Blank Document:

Click here to view code image

Documents.Add Template:="Normal", NewTemplate:=False, DocumentType:=0

You can make this more efficient in Word by using this:

Documents.Add

Template, NewTemplate, and DocumentType are optional properties that the recorder includes but that are not required unless you need to change a default property or ensure that a property is what you require.

To use the same line of code in Excel, a link to the Word object library is required, as you learned earlier. After that link is established, an understanding of Word’s objects is all you need. The next section provides a review of some of Word’s objects” enough to get you off the ground. For a more detailed listing, refer to the object model in Word’s VB Editor.

The Document object

Word’s Document object is equivalent to Excel’s Workbook object. It consists of characters, words, sentences, paragraphs, sections, and headers/footers. It is through the Document object that methods and properties affecting the entire document” such as printing, closing, searching, and reviewing” are accomplished.

Creating a new blank document

To create a blank document in an existing instance of Word, use the Add method, as shown here:

Click here to view code image

Sub NewDocument()

Dim wdApp As Word.Application

Set wdApp = GetObject(, "Word.Application")

wdApp.Documents.Add

'any other Word code you need here

Set wdApp = Nothing

End Sub

This example opens a new, blank document that uses the default template.

[image: Images]

Note You already learned how to create a new document when Word is closed: Refer to GetObject and CreateObject.

To create a new document that uses a specific template, use this:

Click here to view code image

wdApp.Documents.Add Template:="Interoffice Memo (Professional design).dotx"

This creates a new document that uses the Interoffice Memo (Professional design) template. Template can be either the name of a template from the default template location or the file path and name.

Opening an existing document

To open an existing document, use the Open method. Several parameters are available, including ReadOnly and AddtoRecentFiles. The following example opens an existing document as ReadOnly and prevents the file from being added to the Recent File List under the File menu:

Click here to view code image

 wdApp.Documents.Open _

Filename:="C:\Excel VBA 2019 by Jelen & Syrstad\" & _

"Chapter 8 - Arrays.docx", ReadOnly:=True, AddtoRecentFiles:=False

Saving changes to a document

After you’ve made changes to a document, most likely you’ll want to save it. To save a document with its existing name, use this:

wdApp.Documents.Save

If you use the Save command with a new document without a name, nothing happens. To save a document with a new name, you must use the SaveAs2 method:

Click here to view code image

wdApp.ActiveDocument.SaveAs2 _

 "C:\Excel VBA 2019 by Jelen & Syrstad\MemoTest.docx"

SaveAs2 requires the use of members of the Document object, such as ActiveDocument.

[image: Images]

Note SaveAs still works, but it isn’t an IntelliSense option. SaveAs2 offers a compatibility mode argument. If you don’t need it, you can still use SaveAs.

Closing an open document

Use the Close method to close a specified document or all open documents. By default, a Save dialog box appears for any documents that have unsaved changes. You can use the SaveChanges argument to change this. To close all open documents without saving changes, use this code:

Click here to view code image

wdApp.Documents.Close SaveChanges:=wdDoNotSaveChanges

To close a specific document, you can close the active document, like this:

wdApp.ActiveDocument.Close

or you can specify a document name, like this:

Click here to view code image

wdApp.Documents("Chapter 8 - Arrays.docx").Close

Printing a document

Use the PrintOut method to print part or all of a document. To print a document with the default print settings, use this:

wdApp.ActiveDocument.PrintOut

By default, the print range is the entire document, but you can change this by setting the Range and Pages arguments of the PrintOut method. For example, to print only page 2 of the active document, use this:

Click here to view code image

wdApp.ActiveDocument.PrintOut Range:=wdPrintRangeOfPages, Pages:="2"

The Selection object

The Selection object represents what is selected in the document, such as a word, a sentence, or the insertion point. It also has a Type property that returns the type that is selected, such as wdSelectionIP, wdSelectionColumn, or wdSelectionShape.

Navigating with HomeKey and EndKey

The HomeKey and EndKey methods are used to change the selection; they correspond to using the Home and End keys, respectively, on the keyboard. They have two parameters: Unit and Extend. Unit is the range of movement to make to either the beginning (Home) or the end (End) of a line (wdLine), document (wdStory), column (wdColumn), or row (wdRow). Extend is the type of movement: wdMove moves the selection, and wdExtend extends the selection from the original insertion point to the new insertion point.

To move the cursor to the beginning of the document, use this code:

Click here to view code image

wdApp.Selection.HomeKey Unit:=wdStory, Extend:=wdMove

To select the document from the insertion point to the end of the document, use this code:

Click here to view code image

wdApp.Selection.EndKey Unit:=wdStory, Extend:=wdExtend

Inserting text with TypeText

The TypeText method is used to insert text into a Word document. Settings, such as the ReplaceSelection setting, can affect what happens when text is typed into the document when text is selected. The following example first makes sure that the setting for overwriting selected text is turned on. Then it selects the second paragraph (using the Range object, described in the next section) and overwrites it:

Click here to view code image

Sub InsertText()

Dim wdApp As Word.Application

Dim wdDoc As Document

Dim wdSln As Selection

Set wdApp = GetObject(, "Word.Application")

Set wdDoc = wdApp.ActiveDocument

wdDoc.Application.Options.ReplaceSelection = True

wdDoc.Paragraphs(2).Range.Select

wdApp.Selection.TypeText "Overwriting the selected paragraph."

Set wdApp = Nothing

Set wdDoc = Nothing

End Sub

The Range object

The Range object uses the following syntax:

Range(StartPosition, EndPosition)

The Range object represents a contiguous area or areas in a document. It has a starting character position and an ending character position. The object can be the insertion point, a range of text, or the entire document, including nonprinting characters such as spaces or paragraph marks.

The Range object is similar to the Selection object, but in some ways it is better. For example, the Range object requires less code to accomplish the same tasks, and it has more capabilities. In addition, it saves time and memory because the Range object does not require Word to move the cursor or highlight objects in the document to manipulate them.

Defining a range

To define a range, enter a starting position and an ending position, as shown in the following code:

Click here to view code image

Sub RangeText()

Dim wdApp As Word.Application

Dim wdDoc As Document

Dim wdRng As Word.Range

Set wdApp = GetObject(, "Word.Application")

Set wdDoc = wdApp.ActiveDocument

Set wdRng = wdDoc.Range(0, 50)

wdRng.Select

Set wdApp = Nothing

Set wdDoc = Nothing

Set wdRng = Nothing

End Sub

Figure 20-6 shows the results of running this code. The first 50 characters are selected, including nonprinting characters such as paragraph returns.

[image: The figure shows a Word document with the first 50 characters, in three consecutive paragraphs, highlighted.]

FIGURE 20-6 The Range object selects everything in its path.

[image: Images]

Note In Figure 20-6 the range was selected (wdRng.Select) for easier viewing. It is not required that the range be selected in order to be manipulated. For example, to delete the range, do this:

wdRng.Delete

The first character position in a document is always zero, and the last is equivalent to the number of characters in the document.

The Range object also selects paragraphs. The following example copies the third paragraph in the active document and pastes it into Excel. Depending on how the paste is done, the text can be pasted into a text box (see Figure 20-7) or into a cell:

Click here to view code image

Sub SelectSentence()

Dim wdApp As Word.Application

Dim wdRng As Word.Range

Set wdApp = GetObject(, "Word.Application")

With wdApp.ActiveDocument

If .Paragraphs.Count >= 3 Then

Set wdRng = .Paragraphs(3).Range

wdRng.Copy

End If

End With

'This line pastes the copied text into a text box

'because that is the default PasteSpecial method for Word text

Worksheets("Sheet2").PasteSpecial

'This line pastes the copied text into cell A1

Worksheets("Sheet2").Paste Destination:=Worksheets("Sheet2").Range("A1")

Set wdApp = Nothing

Set wdRng = Nothing

End Sub

[image: The figure shows a screenshot of a text box on a sheet. The text box contains text copied from a Word document that is not shown in the figure.]

FIGURE 20-7 Paste Word text into an Excel text box.

Formatting a Range

After a range is selected, you can apply formatting to it (see Figure 20-8). The following program loops through all the paragraphs of the active document and applies bold to the first word of each paragraph:

Click here to view code image

Sub ChangeFormat()

Dim wdApp As Word.Application

Dim wdRng As Word.Range

Dim count As Integer

Set wdApp = GetObject(, "Word.Application")

With wdApp.ActiveDocument

For count = 1 To .Paragraphs.Count

Set wdRng = .Paragraphs(count).Range

With wdRng

.Words(1).Font.Bold = True

.Collapse 'unselects the text

End With

Next count

End With

Set wdApp = Nothing

Set wdRng = Nothing

End Sub

[image: The figure shows a screenshot of three paragraphs in a Word document. The first word of each paragraph is in bold font.]

FIGURE 20-8 Format the first word of each paragraph in a document.

A quick way to change the formatting of entire paragraphs is to change the style (see Figures 20-9 and 20-10). The following program finds a paragraph with the Normal style and changes it to H3:

Click here to view code image

Sub ChangeStyle()

Dim wdApp As Word.Application

Dim wdRng As Word.Range

Dim count As Integer

Set wdApp = GetObject(, "Word.Application")

With wdApp.ActiveDocument

For Count = 1 To .Paragraphs.Count

Set wdRng = .Paragraphs(Count).Range

With wdRng

If .Style = "Normal" Then

.Style = "H3"

End If

End With

Next Count

End With

Set wdApp = Nothing

Set wdRng = Nothing

End Sub

[image: The figure shows a screenshot of a paragraph in a Word document. The Styles pane is open and the Normal style is selected.]

FIGURE 20-9 Before: A paragraph with the Normal style needs to be changed to the H3 style.

[image: The figure shows a screenshot of the same paragraph shown in Figure 20-9. The Styles pane is open, and now the paragraph is shown to be formatted with the H3 style.]

FIGURE 20-10 After: Apply styles with code to change paragraph formatting quickly.

Bookmarks

Bookmarks are members of the Document, Selection, and Range objects. They can make it easier to navigate around Word. Instead of having to choose words, sentences, or paragraphs, use bookmarks to manipulate sections of a document swiftly.

[image: Images]

Note You’re not limited to using only existing bookmarks. Instead, you can create bookmarks using code.

Bookmarks appear as gray I-bars in Word documents. In Word, go to File, Options, Advanced, Show Document Content and select Show Bookmarks to turn on bookmarks.

After you have set up bookmarks in a document, you can use the bookmarks to move quickly to a range to insert text or other items, such as charts. The following code automatically inserts text and a chart after bookmarks that were previously set up in the document. Figure 20-11 shows the results.

Click here to view code image

Sub FillInMemo()

Dim myArray()

Dim wdBkmk As String

Dim wdApp As Word.Application

Dim wdRng As Word.Range

myArray = Array("To", "CC", "From", "Subject", "Chart")

Set wdApp = GetObject(, "Word.Application")

'insert text

Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(0)).Range

wdRng.InsertBefore ("Bill Jelen")

Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(1)).Range

wdRng.InsertBefore ("Tracy Syrstad")

Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(2)).Range

wdRng.InsertBefore ("MrExcel")

Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(3)).Range

wdRng.InsertBefore ("Fruit & Vegetable Sales")

'insert chart

Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(4)).Range

Worksheets("Fruit Sales").ChartObjects("Chart 1").Copy

wdRng.PasteAndFormat Type:=wdPasteOLEObject

wdApp.Activate

Set wdApp = Nothing

Set wdRng = Nothing

End Sub

[image: The figure shows the results of the code sample. Fields have been updated with values, and the chart is pasted to the body of the document.]

FIGURE 20-11 Use bookmarks to enter text or charts into a Word document.

Controlling form fields in Word

You have seen how to modify a document by inserting charts and text, modifying formatting, and deleting text. However, a document might contain other items, such as controls, that you can modify.

For the following example, a template named New Client.dotx was created, consisting of text and bookmarks. The bookmarks are placed after the Name and Date fields. Form field check boxes were also added. The controls are found under Legacy Forms in the Controls section of the Developer tab in Word, as shown in Figure 20-12. Notice in the code sample that follows that all the check boxes have been renamed so they make more sense. For example, one check box was renamed chk401k from Checkbox5. To rename a check box, right-click the check box, select Properties, and type a new name in the Bookmark field.

[image: The figure shows a screenshot of the Legacy Tools drop-down menu in Word. The Legacy Forms section at the top of the drop-down menu is circled.]

FIGURE 20-12 You can use the form fields found under the Legacy Forms to add check boxes to a document.

The questionnaire was set up in Excel, and it enables a person to enter free text in B1 and B2 but select from data validation in B3 and B5:B8, as shown in Figure 20-13.

[image: The figure shows a screenshot of a questionnaire in Excel. Customer name and the current date are entered in cells B1 and B2. Cells B3 and B5:B8 are Yes/No answers selected from a validation drop-down menu, as shown in cell B8.]

FIGURE 20-13 Create an Excel sheet to collect your data.

The following code goes into a standard module, and the name and date go straight into the document:

Click here to view code image

Sub FillOutWordForm()

Dim TemplatePath As String

Dim wdApp As Object

Dim wdDoc As Object

'Open the template in a new instance of Word

TemplatePath = ThisWorkbook.Path & "\New Client.dotx"

Set wdApp = CreateObject("Word.Application")

Set wdDoc = wdApp.documents.Add(Template:=TemplatePath)

'Place our text values in document

With wdApp.ActiveDocument

.Bookmarks("Name").Range.InsertBefore Range("B1").Text

.Bookmarks("Date").Range.InsertBefore Range("B2").Text

End With

'Using basic logic, select the correct form object

If Range("B3").Value = "Yes" Then

Click here to view code image

wdDoc.formfields("chkCustYes").CheckBox.Value = True

Else

wdDoc.formfields("chkCustNo").CheckBox.Value = True

End If

With wdDoc

If Range("B5").Value = "Yes" Then .Formfields("chk401k"). _

CheckBox.Value = True

If Range("B6").Value = "Yes" Then .Formfields("chkRoth"). _

CheckBox.Value = True

If Range("B7").Value = "Yes" Then .Formfields("chkStocks"). _

CheckBox.Value = True

If Range("B8").Value = "Yes" Then .Formfields("chkBonds"). _

CheckBox.Value = True

End With

wdApp.Visible = True

ExitSub:

Set wdDoc = Nothing

Set wdApp = Nothing

End Sub

The check boxes use logic to verify whether the person selected Yes or No to confirm whether the corresponding check box should be checked. Figure 20-14 shows a sample document that has been completed.

[image: The figures shows a screenshot of the Word document filled in by the sample code. The customer name and address have been copied over. Check boxes are checked depending on the answers that the person has provided.]

FIGURE 20-14 Excel can control Word’s form fields and help automate filling out documents.

Next steps

Chapter 19, “Text file processing,” showed you how to read from a text file to import data from another system. In this chapter, you learned how to connect to another Office program and access its object module. In Chapter 21, “Using Access as a back end to enhance multiuser access to data,” you’ll connect to an Access database and learn about writing to Access multidimensional database (MDB) files. Compared to text files, Access files are faster; in addition, Access file are indexable and allow multiuser access to data.

CHAPTER 21
Using Access as a back end to enhance multiuser access to data

In this chapter, you will:

	Understand the difference between ADO and DAOs

	Get to know the tools of ADO

	Add a record to a database

	Retrieve records from a database

	Update an existing record

	Delete records via ADO

	Summarize records via ADO

	Get to know other utilities via ADO

	Examine SQL Server examples

The example near the end of Chapter 19, “Text file processing,” proposes a method for storing 660,601,620 records in an Excel worksheet. At some point, you need to admit that even though Excel is the greatest product in the world, there is a time to move to Access and take advantage of Access multidimensional database (MDB) files.

Even before you have more than 1 million rows, another compelling reason to use MDB data files is to allow multiuser access to data without the headaches associated with shared workbooks.

Microsoft Excel offers an option to share a workbook, but you automatically lose a number of important Excel features when you do this type of sharing. After you share a workbook, you cannot use automatic subtotals, pivot tables, Group and Outline mode, scenarios, protection, or the Styles, Pictures, Add Charts, and Insert Worksheets options.

By using an Excel VBA front end and storing data in an MDB database, you have the best of both worlds. You have the power and flexibility of Excel and the multiuser access capability available in Access.

[image: Images]

Tip MDB is the official file format of both Microsoft Access and Microsoft Visual Basic. This means you can deploy an Excel solution that reads and writes from an MDB to customers who do not have Microsoft Access. Of course, it helps if you as the developer have a copy of Access because you can use the Access front end to set up tables and queries.

[image: Images]

Tip The examples in this chapter make use of the Microsoft Jet Database Engine for reading from and writing to an Access database. The Jet engine works with Access data stored in Access 97 through 2013. If you are sure that all the people running the macro will have Office 2007 or newer, you could instead use the ACE engine. Microsoft now offers a 64-bit version of the ACE engine but not the Jet engine.

ADO versus DAO

For several years, Microsoft recommended using data access objects (DAOs) for accessing data in an external database. DAOs became very popular, and a great deal of code was written for them. When Microsoft released Excel 2000, it started pushing ActiveX Data Objects (ADOs). The concepts are similar, and the syntax differs only slightly. I use ADO in this chapter. Realize that if you start going through code written a decade ago, you might run into DAO code. Other than a few syntax changes, the code for both ADO and DAO looks similar.

To use any code in this chapter, open the VB Editor. Select Tools, References from the main menu and then select Microsoft ActiveX Data Objects Library from the Available References list, as shown in Figure 21-1.

[image: This figure shows the References â€" VBAProject dialog box. In addition to the default items, find the Microsoft ActiveX Data Objects 2.8 Library and select the check box to add the reference.]

FIGURE 21-1 To read or write from an Access MDB file, add the reference for Microsoft ActiveX Data Objects Library 2.8 or higher.

[image: Images]

Note If you have Windows 7 or newer, you have access to version 6.1 of this library. Windows Vista offered version 6.0 of the library. If you will be distributing the application to anyone who is still on Windows XP, you should choose version 2.8 instead.

Case study: Creating a shared Access database

Linda and Janine are two buyers for a retail chain of stores. Each morning, they import data from the cash registers to get current information on sales and inventory for 2,000 styles. Throughout the day, either buyer may enter transfers of inventory from one store to another. It would be ideal if Linda could see the pending transfers entered by Janine and vice versa.

Each buyer has an Excel application with VBA running on her desktop. They each import the cash register data and have VBA routines that facilitate the creation of pivot table reports to help them make buying decisions.

Attempting to store the transfer data in a common Excel file causes problems. When either buyer attempts to write to the Excel file, the entire file becomes read-only for the other buyer. With a shared workbook, Excel turns off the capability to create pivot tables, and this is required in their application.

Neither Linda nor Janine has the professional version of Office, so they do not have Access running on their desktop PCs. The solution is to produce an Access database on a network drive that both Linda and Janine can see. These are the steps:

	Using Access on another PC, produce a new database called transfers.mdb and add a table called tblTransfer, as shown in Figure 21-2.

[image: This figure shows the layout of a small table in Access. The fields include ID, Style, FromStore, ToStore, Qty, TDate, Sent, and Receive.]

FIGURE 21-2 Multiple people using their own Excel workbooks will read and write to this table inside an MDB file on a network drive.

	Move the transfers.mdb file to a network drive. You might find that this common folder uses different drive-letter mappings on each machine. It might be H:\Common\ on Linda’s machine and I:\Common\ on Janine’s machine.

	On both machines, go to the VB Editor and under Tools, References, add a reference to ActiveX Data Objects Library.

	In both of their applications, find an out-of-the-way cell in which to store the path to transfers.mdb. Name this cell TPath.

The application provides nearly seamless multiuser access to both buyers. Both Linda and Janine can read or write to the table at the same time. The only time a conflict occurs is when they both happen to try to update the same record at the same time.

Other than the out-of-the-way cell reference to the path to transfers.mdb, neither buyer is aware that her data is being stored in a shared Access table, and neither computer needs to have Access installed.

The remainder of this chapter gives you the code necessary to allow the application included in the preceding case study to read or write data from the tblTransfer table.

The tools of ADO

You encounter several terms when using ADO to connect to an external data source:

	Record set—When connecting to an Access database, the record set is either a table in the database or a query in the database. Most of the ADO methods reference the record set. You might also want to create your own query on the fly. In this case, write a SQL statement to extract only a subset of records from a table.

	Connection—The connection defines the path to the database and the type of database. In the case of Access databases, you specify that the connection is using the Microsoft Jet Engine.

	Cursor—Think of the cursor as a pointer that keeps track of which record you are using in the database. There are several types of cursors and two places for the cursor to be located (described in the following bullets).

	Cursor type—A dynamic cursor is the most flexible cursor. If you define a record set and someone else updates a row in the table while a dynamic cursor is active, the dynamic cursor knows about the updated record. Although this is the most flexible, it requires the most overhead. If your database doesn’t have a lot of transactions, you might specify a static cursor; this type of cursor returns a snapshot of the data at the time the cursor is established.

	Cursor location—The cursor can be located either on the client or on the server. For an Access database residing on your hard drive, a server location for the cursor means that the Access Jet Engine on your computer is controlling the cursor. When you specify a client location for the cursor, your Excel session is controlling the cursor. On a very large external data set, it would be better to allow the server to control the cursor. For small data sets, a client cursor is faster.

	Lock type—The point of this chapter is to allow multiple people to access a data set at the same time. The lock type defines how ADO will prevent crashes when two people try to update a record at the same time. With an optimistic lock type, an individual record is locked only when you attempt to update the record. If your application will be doing 90% reads and only occasionally updating, then an optimistic lock is perfect. However, if you know that every time you read a record, you will soon update the record, you should use a pessimistic lock type. With pessimistic locks, a record is locked as soon as you read it. If you know that you will never write back to the database, you can use a read-only lock. This enables you to read the records without preventing others from writing to them.

The primary objects needed to access data in an MDB file are an ADO connection and an ADO record set.

The ADO connection defines the path to the database and specifies that the connection is based on the Microsoft Jet Engine.

After you have established the connection to the database, you usually use that connection to define a record set. A record set can be a table or a subset of records in the table or a predefined query in the Access database. To open a record set, you have to specify the connection and the values for the CursorType, CursorLocation, LockType, and Options parameters.

Assuming that you have only two users trying to access the table at a time, you should use a dynamic cursor and an optimistic lock type. For large data sets, the adUseServer value of the CursorLocation property allows the database server to process records without using up RAM on the client machine. If you have a small data set, it might be faster to use adUseClient for the CursorLocation. When the record set is opened, all the records are transferred to memory of the client machine. This allows faster navigation from record to record.

Reading data from the Access database is easy, provided that you have fewer than 1048576 records. You can use the CopyFromRecordset method to copy all selected records from the record set to a blank area of the worksheet.

To add a record to an Access table, use the AddNew method for the record set. You then specify the value for each field in the table and use the Update method to commit the changes to the database.

To delete a record from the table, you can use a pass-through query to delete records that match a certain criteria.

[image: Images]

Note If you ever find yourself frustrated with ADO and think, “If I could just open Access, I could knock out a quick SQL statement to do exactly what I need,” then the pass-through query is for you. Rather than use ADO to read through the records, the pass-through query sends a request to the database to run the SQL statement that your program builds. This effectively enables you to handle any tasks that your database might support but that are not handled by ADO. The types of SQL statements handled by the pass-through query are dependent on which database type you are connecting to.

Other tools are available that let you make sure that a table exists or that a particular field exists in a table. You can also use VBA to add new fields to a table definition on the fly.

Adding a record to a database

Going back to the case study earlier in the chapter, the application you are creating has a userform where buyers can enter transfers. To make the calls to the Access database as simple as possible, a series of utility modules handle the ADO connection to the database. This way, the userform code can simply call AddTransfer(Style, FromStore, ToStore, Qty).

Here’s how you add records after the connection is defined:

	Open a record set that points to the table. In the code that follows, see the sections commented ' Open the Connection, ' Define the Recordset, and ' Open the Table.

	Use AddNew to add a new record.

	Update each field in the new record.

	Use Update to update the record set.

	Close the record set and then close the connection.

The following code adds a new record to the tblTransfer table:

Click here to view code image

Sub AddTransfer(Style As Variant, FromStore As Variant, _

ToStore As Variant, Qty As Integer)

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

MyConn = "J:\transfers.mdb"

' Open the Connection

Set cnn = New ADODB.Connection

With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn

End With

' Define the Recordset

Set rst = New ADODB.Recordset

rst.CursorLocation = adUseServer

' Open the Table

rst.Open Source:="tblTransfer", _

ActiveConnection:=cnn, _

CursorType:=adOpenDynamic, _

LockType:=adLockOptimistic, _

Options:=adCmdTable

' Add a record

rst.AddNew

' Set up the values for the fields. The first four fields

' are passed from the calling userform. The date field

' is filled with the current date.

 rst("Style") = Style

rst("FromStore") = FromStore

rst("ToStore") = ToStore

rst("Qty") = Qty

rst("tDate") = Date

rst("Sent") = False

rst("Receive") = False

' Write the values to this record

rst.Update

' Close

rst.Close

cnn.Close

End Sub

Retrieving records from a database

Reading records from an Access database is easy. As you define a record set, you pass a SQL string to return the records you are interested in.

[image: Images]

Note A great way to generate the SQL is to design a query in Access that retrieves the records. While viewing the query in Access, select SQL View from the View drop-down menu on the Query Tools Design tab of the ribbon. Access shows you the SQL statement required to execute that query. You can use that SQL statement as a model for building the SQL string in your VBA code.

After the record set is defined, use the CopyFromRecordSet method to copy all the matching records from Access to a specific area of the worksheet.

The following routine queries the Transfer table to find all records in which the Sent flag is not yet set to True:

Click here to view code image

Sub GetUnsentTransfers()

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

Dim WSOrig As Worksheet

Dim WSTemp As Worksheet

Dim sSQL as String

Dim FinalRow as Long

Set WSOrig = ActiveSheet

'Build a SQL String to get all fields for unsent transfers

sSQL = "SELECT ID, Style, FromStore, ToStore, Qty, tDate" _

& "FROM tblTransfer"

sSQL = sSQL & " WHERE Sent=FALSE"

 ' Path to Transfers.mdb

MyConn = "J:\transfers.mdb"

Set cnn = New ADODB.Connection

With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn

End With

Set rst = New ADODB.Recordset

rst.CursorLocation = adUseServer

rst.Open Source:=sSQL, ActiveConnection:=cnn, _

CursorType:=AdForwardOnly, LockType:=adLockOptimistic, _

Options:=adCmdText

' Create the report in a new worksheet

Set WSTemp = Worksheets.Add

' Add Headings

Range("A1:F1").Value = Array("ID", "Style", "From", "To", "Qty", "Date")

' Copy from the record set to row 2

Range("A2").CopyFromRecordset rst

' Close the connection

rst.Close

cnn.Close

' Format the report

FinalRow = Range("A65536").End(xlUp).Row

' If there were no records, then stop

If FinalRow = 1 Then

Application.DisplayAlerts = False

WSTemp.Delete

Application.DisplayAlerts = True

WSOrig.Activate

MsgBox "There are no transfers to confirm"

Exit Sub

End If

' Format column F as a date

Range("F2:F" & FinalRow).NumberFormat = "m/d/y"

' Show the userform -- used in next section

frmTransConf.Show

' Delete the temporary sheet

Application.DisplayAlerts = False

WSTemp.Delete

Application.DisplayAlerts = True

End Sub

The results are placed on a blank worksheet. The final few lines display the results in a userform to illustrate how to update a record in the next section.

The CopyFromRecordSet method copies records that match the SQL query to a range on the worksheet. Note that you receive only the data rows. The headings do not come along automatically. You must use code to write the headings to row 1. Figure 21-3 shows the results.

[image: This figure shows an Excel worksheet with multiple records that match the fields listed in Figure 21-2.]

FIGURE 21-3 Range("A2").CopyFromRecord Set brought matching records from the Access database to the worksheet.

Updating an existing record

To update an existing record, you need to build a record set with exactly one record. This requires that the user select some sort of unique key when identifying the records. After you have opened the record set, use the Fields property to change the field in question and then the Update method to commit the changes to the database.

The earlier example returned a record set to a blank worksheet and then called the userform frmTransConf. This form uses a simple Userform_Initialize to display the range in a large list box:

Click here to view code image

Private Sub UserForm_Initialize()

' Determine how many records we have

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

If FinalRow > 1 Then

Me.lbXlt.RowSource = "A2:F" & FinalRow

End If

End Sub

The list box’s properties have the MultiSelect property set to True.

After the Userform_Initialize procedure is run, the unconfirmed records are displayed in a list box. The logistics planner can mark all the records that have been sent, as shown in Figure 21-4.

[image: This figure shows a userform with all of the Transfer records. The MultiSelect property is enabled. Someone has chosen four records and is about to click the Confirm button.]

FIGURE 21-4 This userform displays particular records from the Access record set. When the buyer selects certain records and then clicks the Confirm button, you have to use ADO’s Update method to update the Sent field on the selected records.

The code attached to the Confirm button follows:

Click here to view code image

Private Sub cbConfirm_Click()

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

' If nothing is selected, warn them

CountSelect = 0

For x = 0 To Me.lbXlt.ListCount - 1

If Me.lbXlt.Selected(x) Then

CountSelect = CountSelect + 1

End If

Next x

If CountSelect = 0 Then

MsgBox "There were no transfers selected. " & _

"To exit without confirming any transfers, use Cancel."

Exit Sub

End If

' Establish a connection to transfers.mdb

' Path to Transfers.mdb is on Menu

MyConn = "J:\transfers.mdb"

Set cnn = New ADODB.Connection

With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn

End With

' Mark as complete

For x = 0 To Me.lbXlt.ListCount - 1

If Me.lbXlt.Selected(x) Then

ThisID = Cells(2 + x, 1).Value

' Mark ThisID as complete

'Build SQL String

sSQL = "SELECT * FROM tblTransfer Where ID=" & ThisID

Set rst = New ADODB.Recordset

With rst

.Open Source:=sSQL, ActiveConnection:=cnn, _

CursorType:=adOpenKeyset, LockType:=adLockOptimistic

' Update the field

.Fields("Sent").Value = True

.Update

.Close

End With

End If

Next x

' Close the connection

cnn.Close

Set rst = Nothing

Set cnn = Nothing

' Close the userform

Unload Me

End Sub

Including the ID field in the fields returned in the prior example is important if you want to narrow the information down to a single record.

Deleting records via ADO

As with updating a record, the key to deleting records is being able to write a bit of SQL to uniquely identify the records to be deleted. The following code uses the Execute method to pass the Delete command through to Access:

Click here to view code image

Public Sub ADOWipeOutAttribute(RecID)

' Establish a connection to transfers.mdb

MyConn = "J:\transfers.mdb"

With New ADODB.Connection

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn

.Execute "Delete From tblTransfer Where ID = " & RecID

.Close

End With

End Sub

Summarizing records via ADO

One strength of Access is running summary queries that group by a particular field. If you build a summary query in Access and examine the SQL view, you’ll see that complex queries can be written. Similar SQL can be built in Excel VBA and passed to Access via ADO.

The following code uses a fairly complex query to get a net total by store:

Click here to view code image

Sub NetTransfers(Style As Variant)

' This builds a table of net open transfers

' on Styles AI1

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

' Build the large SQL query

' Basic Logic: Get all open Incoming Transfers by store,

' union with -1* outgoing transfers by store

' Sum that union by store, and give us min date as well

' A single call to this macro will replace 60

' calls to GetTransferIn, GetTransferOut, TransferAge

sSQL = "Select Store, Sum(Quantity), Min(mDate) From " & _

"(SELECT ToStore AS Store, Sum(Qty) AS Quantity, " & _

"Min(TDate) AS mDate FROM tblTransfer where Style='" & Style & _

"& "' AND Receive=FALSE GROUP BY ToStore "

sSQL = sSQL & " Union All SELECT FromStore AS Store, " & _

"Sum(-1*Qty) AS Quantity, Min(TDate) AS mDate " & _

"FROM tblTransfer where Style='" & Style & "' AND " & _

"Sent=FALSE GROUP BY FromStore)"

sSQL = sSQL & " Group by Store"

MyConn = "J:\transfers.mdb"

' open the connection.

Set cnn = New ADODB.Connection

With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn

End With

Set rst = New ADODB.Recordset

rst.CursorLocation = adUseServer

' open the first query

rst.Open Source:=sSQL, _

ActiveConnection:=cnn, _

CursorType:=AdForwardOnly, _

LockType:=adLockOptimistic, _

Options:=adCmdText

Range("A1:C1").Value = Array("Store", "Qty", "Date")

' Return Query Results

Range("A2").CopyFromRecordset rst

rst.Close

cnn.Close

End Sub

Other utilities via ADO

Consider the application you created for this chapter’s case study: The buyers now have an Access database located on their network but possibly no copy of Access. It would be ideal if you could deliver changes to the Access database on the fly as their application opens.

[image: Images]

Note If you are wondering how you would ever coax the person using the application to run these queries, consider using an update macro hidden in the Workbook_Open routine of the client application. Such a routine might first check to see whether a field exists and then add the field if it is missing.

[image: Images]

Note For details on the mechanics of hiding the update query in the Workbook_Open routine, see the case study, “Using a hidden code workbook to hold all macros and forms,” in Chapter 26, “Creating add-ins.”

Checking for the existence of tables

If the application in this chapter’s example needs a new table in the database, you can use the code in the next section. However, because you have a multiuser application, only the first person who opens the application has to add the table on the fly. When the next buyer shows up, the table might have already been added by the first buyer’s application. Because this code is a function instead of a sub, it returns either True or False to the calling routine.

This code uses the OpenSchema method to query the database schema:

Click here to view code image

Function TableExists(WhichTable)

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

Dim fld As ADODB.Field

TableExists = False

' Path to Transfers.mdb is on Menu

MyConn = "J:\transfers.mdb"

Set cnn = New ADODB.Connection

With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn

End With

Set rst = cnn.OpenSchema(adSchemaTables)

Do Until rst.EOF

If LCase(rst!Table_Name) = LCase(WhichTable) Then

TableExists = True

GoTo ExitMe

End If

rst.MoveNext

Loop

ExitMe:

rst.Close

Set rst = Nothing

' Close the connection

cnn.Close

End Function

Checking for the existence of a field

Sometimes you want to add a new field to an existing table. The following code does this, and it uses the OpenSchema method but this time looks at the columns in the tables:

Click here to view code image

Function ColumnExists(WhichColumn, WhichTable)

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

Dim WSOrig As Worksheet

Dim WSTemp As Worksheet

Dim fld As ADODB.Field

ColumnExists = False

' Path to Transfers.mdb is on menu

MyConn = ActiveWorkbook.Worksheets("Menu").Range("TPath").Value

If Right(MyConn, 1) = "\" Then

MyConn = MyConn & "transfers.mdb"

Else

MyConn = MyConn & "\transfers.mdb"

End If

Set cnn = New ADODB.Connection

With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn

End With

Set rst = cnn.OpenSchema(adSchemaColumns)

Do Until rst.EOF

If LCase(rst!Column_Name) = LCase(WhichColumn) And _

LCase(rst!Table_Name) = LCase(WhichTable) Then

ColumnExists = True

GoTo ExitMe

End If

rst.MoveNext

Loop

ExitMe:

rst.Close

Set rst = Nothing

' Close the connection

cnn.Close

End Function

Adding a table on the fly

The following code uses a pass-through query to tell Access to run a Create Table command:

Click here to view code image

Sub ADOCreateReplenish()

' This creates tblReplenish

' There are five fields:

' Style

' A = Auto replenishment for A

' B = Auto replenishment level for B stores

' C = Auto replenishment level for C stores

' RecActive = Yes/No field

Dim cnn As ADODB.Connection

Dim cmd As ADODB.Command

' Define the connection

MyConn = "J:\transfers.mdb"

' open the connection

Set cnn = New ADODB.Connection

With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn

End With

Set cmd = New ADODB.Command

Set cmd.ActiveConnection = cnn

'create table

cmd.CommandText = "CREATE TABLE tblReplenish " & _

"(Style Char(10) Primary Key, " & _

"A int, B int, C Int, RecActive YesNo)"

cmd.Execute , , adCmdText

Set cmd = Nothing

Set cnn = Nothing

Exit Sub

End Sub

Adding a field on the fly

If you determine that a field does not exist, you can use a pass-through query to add a field to the table, like this:

Click here to view code image

Sub ADOAddField()

' This adds a grp field to tblReplenish

Dim cnn As ADODB.Connection

Dim cmd As ADODB.Command

' Define the connection

MyConn = "J:\transfers.mdb"

' open the connection

Set cnn = New ADODB.Connection

With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn

End With

Set cmd = New ADODB.Command

Set cmd.ActiveConnection = cnn

'create table

cmd.CommandText = "ALTER TABLE tblReplenish Add Column Grp Char(25)"

cmd.Execute , , adCmdText

Set cmd = Nothing

Set cnn = Nothing

End Sub

SQL Server examples

If you have 64-bit versions of Office and if Microsoft does not provide the 64-bit Microsoft.Jet.OLEDB.4.0 drivers, you have to switch over to using SQL Server or another database technology:

Click here to view code image

Sub DataExtract()

Application.DisplayAlerts = False

'clear out all previous data

Sheet1.Cells.Clear

' Create a connection object.

Dim cnPubs As ADODB.Connection

Set cnPubs = New ADODB.Connection

' Provide the connection string.

Dim strConn As String

'Use the SQL Server OLE DB Provider.

Click here to view code image

strConn = "PROVIDER=SQLOLEDB;"

'Connect to the Pubs database on the local server.

strConn = strConn & "DATA SOURCE=a_sql_server;INITIAL CATALOG=a_database;"

'Use an integrated login.

strConn = strConn & " INTEGRATED SECURITY=sspi;"

'Now open the connection.

cnPubs.Open strConn

' Create a record set object.

Dim rsPubs As ADODB.Recordset

Set rsPubs = New ADODB.Recordset

With rsPubs

' Assign the Connection object.

.ActiveConnection = cnPubs

' Extract the required records.

.Open "exec a_database..a_stored_procedure"

' Copy the records into cell A1 on Sheet1.

Sheet1.Range("A2").CopyFromRecordset rsPubs

Dim myColumn As Range

'Dim title_string As String

Dim K As Integer

For K = 0 To rsPubs.Fields.Count - 1

'Sheet1.Columns(K).Value = rsPubs.Fields(K).Name

'title_string = title_string & rsPubs.Fields(K).Name & Chr(9)

'Sheet1.Columns(K).Cells(1).Name = rsPubs.Fields(K).Name

'Sheet1.Columns.Column(K) = rsPubs.Fields(K).Name

'Set myColumn = Sheet1.Columns(K)

'myColumn.Cells(1, K).Value = rsPubs.Fields(K).Name

'Sheet1.Cells(1, K) = rsPubs.Fields(K).Name

Sheet1.Cells(1, K + 1) = rsPubs.Fields(K).Name

Sheet1.Cells(1, K + 1).Font.Bold = "TRUE"

Next K

'Sheet1.Range("A1").Value = title_string

' Tidy up

.Close

End With

cnPubs.Close

Set rsPubs = Nothing

Set cnPubs = Nothing

'clear out errors

Dim cellval As Range

Dim myRng As Range

Set myRng = ActiveSheet.UsedRange

For Each cellval In myRng

Click here to view code image

cellval.Value = cellval.Value

'cellval.NumberFormat = "@" 'this works as well as setting

'HorizontalAlignment

cellval.HorizontalAlignment = xlRight

Next

End Sub

Next steps

In Chapter 22, “Advanced userform techniques,” you’ll discover more controls and techniques you can use in building userforms.

CHAPTER 22
Advanced userform techniques

In this chapter, you will:

	Access the UserForm toolbar

	Learn how to use CheckBox, TabStrip, RefEdit, and ToggleButton controls

	Use a collection to control multiple controls

	Select a cell on a sheet while a userform is open

	Use hyperlinks in userforms

	Add controls at runtime

	Add help to a userform

	Set up a multicolumn list box

	Create transparent forms

Chapter 10, “Userforms: An introduction,” covered the basics of adding controls to userforms. This chapter continues the topic, looking at more advanced controls and methods for making the most out of userforms.

Using the UserForm toolbar in the design of controls on userforms

In the VB Editor, under View, Toolbars, you’ find a few toolbars that do not appear unless you select them. One of these is the UserForm toolbar, shown in Figure 22-1. It has functionality useful for organizing the controls you add to a userform; for example, you can use it to make all the controls you select the same size.

[image: The figure shows the Userform toolbar. The buttons on the toolbar, from left to right, are Bring To Front, Send To Back, Group, UnGroup, Alignments, Centering, and Uniform Size.]

FIGURE 22-1 The UserForm toolbar has tools for organizing the controls on a userform.

More userform controls

The following sections cover more userform controls you can use to help obtain information from people. At the end of each of the following subsections is a table that lists that control’ events.

CheckBox controls

[image: Images]

Check boxes allow the user to select one or more options on a userform. Unlike with the option buttons discussed in Chapter 10, a person can select one or more check boxes at a time.

The value of a checked box is True; the value of an unchecked box is False. If you clear the value of a check box (CheckBox1.Value = ""), when the userform runs, the check box will have a grayed-out check in it, as shown in Figure 22-2. This can be useful for verifying that users have viewed all options and made a selection.

[image: The figure shows a userform requesting employee information. Several check boxes have been set up to select the languages known by the employee.]

FIGURE 22-2 Use the null value of the check box to verify that a person has viewed and answered all options.

You can use code like the following to review all the check boxes in the Languages group of the dialog box shown in Figure 22-2. If a value is null, the user is prompted to review the selections:

Click here to view code image

Private Sub btnClose_Click()

Dim Msg As String

Dim Chk As Control

Set Chk = Nothing

'narrow down the search to just the 2nd page's controls

For Each Chk In frm_Multipage.MultiPage1.Pages(1).Controls

'only need to verify checkbox controls

If TypeName(Chk) = "CheckBox" Then

'and just in case we add more check box controls,

'just check the ones in the group

If Chk.GroupName = "Languages" Then

'if the value is null (the property value is empty)

If IsNull(Chk.Object.Value) Then

'add the caption to a string

Msg = Msg & vbNewLine & Chk.Caption

End If

End If

End If

Next Chk

If Msg <> "" Then

Msg = "The following check boxes were not verified:" & vbNewLine & Msg

MsgBox Msg, vbInformation, "Additional Information Required"

End If

Unload Me

End Sub

Table 22-1 lists the events for CheckBox controls.

TABLE 22-1 CheckBox control events

	
Event

	
Description

	
AfterUpdate

	
Occurs after a check box has been selected/cleared.

	
BeforeDragOver

	
Occurs while the person drags and drops data onto the check box.

	
BeforeDropOrPaste

	
Occurs right before the person is about to drop or paste data onto the check box.

	
BeforeUpdate

	
Occurs before the check box is selected/cleared.

	
Change

	
Occurs when the value of the check box is changed.

	
Click

	
Occurs when the person clicks the control with the mouse.

	
DblClick

	
Occurs when the person double-clicks the check box with the mouse.

	
Enter

	
Occurs right before the check box receives the focus from another control on the same userform.

	
Error

	
Occurs when the check box runs into an error and cannot return the error information.

	
Exit

	
Occurs right after the check box loses focus to another control on the same userform.

	
KeyDown

	
Occurs when the person presses a key on the keyboard.

	
KeyPress

	
Occurs when the person presses an ANSI key. An ANSI key is a typable character such as the letter A.

	
KeyUp

	
Occurs when the person releases a key on the keyboard.

	
MouseDown

	
Occurs when the person presses the mouse button within the borders of the check box.

	
MouseMove

	
Occurs when the person moves the mouse within the borders of the check box.

	
MouseUp

	
Occurs when the person releases the mouse button within the borders of the check box.

TabStrip controls

[image: Images]

The MultiPage control allows a userform to have several pages. Each page of the form can have its own set of controls, unrelated to any other control on the form. A TabStrip control also allows a userform to have many pages, but the controls on a tab strip are identical; they are drawn only once. Yet when the form is run, the information changes depending on which tab strip is active (see Figure 22-3).

[image: Images]

Note To learn more about MultiPage controls, see “Using the MultiPage control to combine forms” in Chapter 10.

[image: The figure shows a userform with a TabStrip control and a button. Each of the four pages of the TabStrip control is named for a person. The selected page has text boxes for collecting contact information specific to that person. The Exit button for closing the form is outside the TabStrip control.]

FIGURE 22-3 A tab strip allows a userform with multiple pages to share controls but not information.

By default, a tab strip is thin, with two tabs at the top. Right-clicking a tab enables you to add, remove, rename, or move that tab. Size the tab strip to hold all the controls. Outside the tab strip area, draw a button for closing the form.

You can move the tabs around the strip, as shown in Figure 22-3, by changing the TabOrientation property. The tabs can be at the top, bottom, left, or right side of the userform.

The following lines of code were used to create the tab strip form shown in Figure 22-3. The Initialize sub calls the sub SetValuesToTabStrip, which sets the value for the first tab:

Click here to view code image

Private Sub UserForm_Initialize()

SetValuesToTabStrip 1 'As default

End Sub

These lines of code handle what happens when a new tab is selected:

Click here to view code image

Private Sub TabStrip1_Change()

Dim lngRow As Long

lngRow = TabStrip1.Value + 1

SetValuesToTabStrip lngRow

End Sub

This sub provides the data shown on each tab. A sheet was set up, with each row corresponding to a tab:

Click here to view code image

Private Sub SetValuesToTabStrip(ByVal lngRow As Long)

With frm_Staff

.lbl_Address.Caption = Cells(lngRow, 2).Value

.lbl_Phone.Caption = Cells(lngRow, 3).Value

.lbl_Fax.Caption = Cells(lngRow, 4).Value

.lbl_Email.Caption = Cells(lngRow, 5).Value

.lbl_Website.Caption = Cells(lngRow, 6).Value

.Show

End With

End Sub

The tab strip’ values are automatically filled in. They correspond to the tab’ position in the strip; moving a tab changes its value. The value of the first tab of a tab strip is 0, which is why, in the preceding code, we add 1 to the tab strip value when the form is initialized to get it to correspond with the row on the sheet.

[image: Images]

Tip If you want a single tab to have an extra control, the control could be added at runtime, when the tab is activated, and removed when the tab is deactivated.

Table 22-2 lists the events for the TabStrip control.

TABLE 22-2 TabStrip control events

	
Event

	
Description

	
BeforeDragOver

	
Occurs while the person drags and drops data onto the control.

	
BeforeDropOrPaste

	
Occurs right before the person drops or pastes data into the control.

	
Change

	
Occurs when the value of the control is changed.

	
Click

	
Occurs when the person clicks the control with the mouse.

	
DblClick

	
Occurs when the person double-clicks the control with the mouse.

	
Enter

	
Occurs right before the control receives the focus from another control on the same userform.

	
Error

	
Occurs when the control runs into an error and cannot return the error information.

	
Exit

	
Occurs right after the control loses focus to another control on the same userform.

	
KeyDown

	
Occurs when the person presses a key on the keyboard.

	
KeyPress

	
Occurs when the person presses an ANSI key. An ANSI key is a typable character, such as the letter A.

	
KeyUp

	
Occurs when the person releases a key on the keyboard.

	
MouseDown

	
Occurs when the person presses the mouse button within the borders of the control.

	
MouseMove

	
Occurs when the person moves the mouse within the borders of the control.

	
MouseUp

	
Occurs when the person releases the mouse button within the borders of the control.

RefEdit controls

[image: Images]

The RefEdit control allows a person to select a range on a sheet; the range is returned as the value of the control. You can add it to any form. When you click the button on the right side of the field, the userform disappears and is replaced with the range selection form that is used for selecting ranges with Excel’ many wizard tools, as shown in Figure 22-4. Click the button on the right of the field to show the userform once again.

[image: The figure shows the RefEdit control in selection mode on a sheet. The userform is not visible; instead, a small dialog box for the RefEdit control is visible. On the sheet, two cells are selected and the RefEdit field reflects the range’ address.]

FIGURE 22-4 Use RefEdit to enable a person to select a range on a sheet.

The following code used with a RefEdit control allows a person to select a range, which is then made bold:

Click here to view code image

Private Sub cb1_Click()

Range(RefEdit1.Value).Font.Bold = True

Unload Me

End Sub

Table 22-3 lists the events for RefEdit controls.

[image: Images]

Caution RefEdit control events are notorious for not working properly. If you run into this problem, use a different control’ event to trigger code.

TABLE 22-3 RefEdit control events

	
Event

	
Description

	
AfterUpdate

	
Occurs after the control’ data has been changed.

	
BeforeDragOver

	
Occurs while the person drags and drops data onto the control.

	
BeforeDropOrPaste

	
Occurs right before the person drops or pastes data into the control.

	
BeforeUpdate

	
Occurs before the data in the control is changed.

	
Change

	
Occurs when the value of the control is changed.

	
Click

	
Occurs when the person clicks the control with the mouse.

	
DblClick

	
Occurs when the person double-clicks the control with the mouse.

	
DropButtonClick

	
Occurs when the person clicks the drop button on the right side of the field.

	
Enter

	
Occurs right before the control receives the focus from another control on the same userform.

	
Error

	
Occurs when the control runs into an error and cannot return the error information.

	
Exit

	
Occurs right after the control loses focus to another control on the same userform.

	
KeyDown

	
Occurs when the person presses a key on the keyboard.

	
KeyPress

	
Occurs when the person presses an ANSI key. An ANSI key is a typable character, such as the letter A.

	
KeyUp

	
Occurs when the person releases a key on the keyboard.

	
MouseDown

	
Occurs when the person presses the mouse button within the borders of the control.

	
MouseMove

	
Occurs when the person moves the mouse within the borders of the control.

	
MouseUp

	
Occurs when the person releases the mouse button within the borders of the control.

ToggleButton controls

[image: Images]

A toggle button looks like a normal command button, but when it’ clicked, it stays pressed until it’ clicked again. This allows a True or False value to be returned based on the status of the button. Table 22-4 lists the events for the ToggleButton controls.

TABLE 22-4 ToggleButton control events

	
Event

	
Description

	
AfterUpdate

	
Occurs after the control’ data has been changed.

	
BeforeDragOver

	
Occurs while the person drags and drops data onto the control.

	
BeforeDropOrPaste

	
Occurs right before the person drops or pastes data into the control.

	
BeforeUpdate

	
Occurs before the data in the control is changed.

	
Change

	
Occurs when the value of the control is changed.

	
Click

	
Occurs when someone clicks the control with the mouse.

	
DblClick

	
Occurs when the person double-clicks the control with the mouse.

	
Enter

	
Occurs right before the control receives the focus from another control on the same userform.

	
Error

	
Occurs when the control runs into an error and cannot return the error information.

	
Exit

	
Occurs right after the control loses focus to another control on the same userform.

	
KeyDown

	
Occurs when the person presses a key on the keyboard.

	
KeyPress

	
Occurs when the person presses an ANSI key. An ANSI key is a typable character, such as the letter A.

	
KeyUp

	
Occurs when the person releases a key on the keyboard.

	
MouseDown

	
Occurs when the person presses the mouse button within the borders of the control.

	
MouseMove

	
Occurs when the person moves the pointer within the borders of the control.

	
MouseUp

	
Occurs when the person releases the mouse button within the borders of the control.

Using a scrollbar as a slider to select values

[image: Images]

Chapter 10 discusses using a SpinButton control to enable someone to choose a date. A spin button is useful, but it enables you to adjust up or down by only one unit at a time. An alternative method is to draw a horizontal or vertical scrollbar in the middle of the userform and use it as a slider. People can use arrows on the ends of the scrollbar as they would the spin button arrows, but they can also grab the scrollbar and instantly drag it to a certain value.

The userform shown in Figure 22-5 includes a label named Label1 and a scrollbar called ScrollBar1.

[image: A userform with a horizontal ScrollBar control. Above the scrollbar is the number reflecting the relative position of the slider.]

FIGURE 22-5 Using a ScrollBar control allows the person to drag to a particular numeric or data value.

The userform’ Initialize code sets up the Min and Max values for the scrollbar. It initializes the scrollbar to a value from cell A1 and updates the Label1.Caption:

Click here to view code image

Private Sub UserForm_Initialize()

Me.ScrollBar1.Min = 0

Me.ScrollBar1.Max = 100

Me.ScrollBar1.Value = Worksheets("Scrollbar").Range("A1").Value

Me.Label1.Caption = Me.ScrollBar1.Value

End Sub

Two event handlers are needed for the scrollbar. The Change event triggers when a person clicks the arrows at the ends of the scrollbar. The Scroll event triggers when they drag the slider to a new value:

Click here to view code image

Private Sub ScrollBar1_Change()

'This event triggers when the user touches

'the arrows on the end of the scrollbar

Me.Label1.Caption = Me.ScrollBar1.Value

End Sub

Private Sub ScrollBar1_Scroll()

'This event triggers when the user drags the slider

Me.Label1.Caption = Me.ScrollBar1.Value

End Sub

Finally, the event attached to the button writes the scrollbar value out to the worksheet:

Click here to view code image

Private Sub btnClose_Click()

Worksheets("Scrollbar").Range("A1").Value = Me.ScrollBar1.Value

Unload Me

End Sub

Table 22-5 lists the events for ScrollBar controls.

TABLE 22-5 ScrollBar control events

	
Event

	
Description

	
AfterUpdate

	
Occurs after a person has changed the control’ data.

	
BeforeDragOver

	
Occurs while someone drags and drops data onto the control.

	
BeforeDropOrPaste

	
Occurs right before the person drops or pastes data into the control.

	
BeforeUpdate

	
Occurs before the data in the control is changed.

	
Change

	
Occurs when the value of the control is changed.

	
Enter

	
Occurs right before the control receives the focus from another control on the same userform.

	
Error

	
Occurs when the control runs into an error and cannot return the error information.

	
Exit

	
Occurs right after the control loses focus to another control on the same userform.

	
KeyDown

	
Occurs when the person presses a key on the keyboard.

	
KeyPress

	
Occurs when the person presses an ANSI key. An ANSI key is a typable character, such as the letter A.

	
KeyUp

	
Occurs when the person releases a key on the keyboard.

	
Scroll

	
Occurs when the slider is moved.

Controls and collections

In Chapter 9, “Creating classes and collections,” several labels on a sheet were grouped into a collection. With a little more code, these labels were turned into help screens. Userform controls can also be grouped into collections to take advantage of class modules. The following example selects or clears all the check boxes on the userform, depending on which label someone chooses.

Place the following code in the class module, clsFormCtl. It consists of one property, chb, and two methods, SelectAll and UnselectAll.

The SelectAll method selects a check box by setting its value to True:

Click here to view code image

Public WithEvents chb As MSForms.CheckBox

Public Sub SelectAll()

chb.Value = True

End Sub

The UnselectAll method clears the check box:

Click here to view code image

Public Sub UnselectAll()

chb.Value = False

End Sub

That sets up the class module. Next, the controls need to be placed in a collection. The following code, placed behind the form frm_Movies, places the check boxes into a collection. The check boxes are part of the frame frm_Selection, which makes it easier to create the collection because it narrows the number of controls that need to be checked from the entire userform to just those controls within the frame:

Click here to view code image

Dim col_Selection As New Collection

Private Sub UserForm_Initialize()

Dim ctl As MSForms.CheckBox

Dim chb_ctl As clsFormCtl

'Go through the members of the frame and add them to the collection

For Each ctl In frm_Selection.Controls

Set chb_ctl = New clsFormCtl

Set chb_ctl.chb = ctl

col_Selection.Add chb_ctl

Next ctl

End Sub

When the form is opened, the controls are placed into the collection. All that’ left now is to add the code for labels to select and clear the check boxes:

Click here to view code image

Private Sub lbl_SelectAll_Click()

Dim ctl As clsFormCtl

For Each ctl In col_Selection

ctl.SelectAll

Next ctl

End Sub

The following code clears the check boxes in the collection:

Click here to view code image

Private Sub lbl_unSelectAll_Click()

Dim ctl As clsFormCtl

For Each ctl In col_Selection

ctl.Unselectall

Next ctl

End Sub

All the check boxes can be selected and cleared with a single click of the mouse, as shown in Figure 22-6.

[image: A userform with multiple check boxes in a frame. The pointer is over the Select All label and all the check boxes have been selected.]

FIGURE 22-6 Use frames, collections, and class modules together to create quick and efficient userforms.

[image: Images]

Tip If your controls cannot be placed in a frame, you can use the Tag property to create an improvised grouping. Tag is a property that holds more information about a control. Its value is of type String, so it can hold any type of information. For example, you can use it to create an informal group of controls from different groupings.

Modeless userforms

Have you ever had a userform active but needed to manipulate something on the active sheet or switch to another sheet? Forms can be modeless, in which case they don’t have to interfere with the functionality of Excel. A person can type in a cell, switch to another sheet, copy/paste data, and use the ribbon—as if the userform were not there.

By default, a userform is modal, which means that there can be no interaction with Excel other than with the form. To make the form modeless, change the ShowModal property to False. For example, to make Userform1 modeless when it’ opened, do this:

Userform1.Show False

After it is modeless, someone can select a cell on the sheet while the form is active, as shown in Figure 22-7.

[image: The figure shows a userform with a sheet in the background. Part of the text in a cell on the sheet is selected, showing that even though the userform is active, the sheet can be interacted with.]

FIGURE 22-7 A modeless form enables a person to enter a cell while the form is still active.

Using hyperlinks in userforms

In the userform example shown in Figure 22-3, there is a field for email and a field for website address. It would be nice to click these and have a blank email message or web page appear automatically. You can do this by using the following program, which creates a new message or opens a web browser when someone clicks the corresponding label:

Click here to view code image

Private Declare PtrSafe Function ShellExecute Lib "shell32.dll" Alias _

"ShellExecuteA"(ByVal hWnd As Long, ByVal lpOperation As String, _

ByVal lpFile As String, ByVal lpParameters As String, _

ByVal lpDirectory As String, ByVal nShowCmd As Long) As LongPtr

Const SWNormal = 1

The application programming interface (API) declaration and any other constants go at the very top of the module.

This sub controls what happens when the email label is clicked, as shown in Figure 22-8:

Click here to view code image

Private Sub lbl_Email_Click()

Dim lngRow As Long

lngRow = TabStrip1.Value + 1

ShellExecute 0&, "open", "mailto:" & Cells(lngRow, 5).Value, _

vbNullString, vbNullString, SWNormal

End Sub

[image: The figure shows a userform with an email address field. The email address is a hyperlink. When someone clicks the hyperlink, a new Outlook message opens, as shown in the image.]

FIGURE 22-8 Turn email addresses and websites into clickable links by using a few lines of code.

This sub controls what happens when someone clicks a website label:

Click here to view code image

Private Sub lbl_Website_Click()

Dim lngRow As Long

lngRow = TabStrip1.Value + 1

ShellExecute 0&, "open", Cells(lngRow, 6).Value, vbNullString, _

vbNullString, SWNormal

End Sub

Adding controls at runtime

It’ possible to add controls to a userform at runtime. This is convenient if you’re not sure how many items you’ be adding to a form.

Figure 22-9 shows a plain form with only one button. This plain form is used to display any number of pictures from a product catalog. The pictures and accompanying labels appear at runtime, as the form is being displayed.

A sales rep making a sales presentation uses this form to display a product catalog. She can select any number of SKUs from an Excel worksheet and press a hotkey to display the form. If she selects six items on the worksheet, the form displays with a small version of each picture, as shown in Figure 22-10.

If the sales rep selects fewer items, the images are displayed larger, as shown in Figure 22-11.

A number of techniques are used to create this userform on the fly. The initial form contains only one button, cbClose. Everything else is added on the fly.

[image: The figure shows a userform that’ blank except for a button to close it.]

FIGURE 22-9 You can create flexible forms if you add most controls at runtime.

[image: In the figure, the blank userform from Figure 22-9 now has six images on it.]

FIGURE 22-10 The sales rep asked to see photos of six SKUs. The UserForm_Initialize procedure adds each picture and label on the fly.

[image: In the figure, the userform from Figure 22-10 now has two images on it instead of six. The form is the same size as it was previously. Because there are fewer images, the two images are larger.]

FIGURE 22-11 The logic in Userform_Initialize decides how many pictures are being displayed and adds the appropriately sized image controls.

Resizing the userform on the fly

Giving the best view of the images in the product catalog involves having the form appear as large as possible. The following code uses the form’ Height and Width properties to make sure the form fills almost the entire screen:

Click here to view code image

'resize the form

Me.Height = Int(0.98 * ActiveWindow.Height)

Me.Width = Int(0.98 * ActiveWindow.Width)

Adding a control on the fly

For a normal control added at design time, such as a button called cbClose, it is easy to refer to the control by using its name:

Me.cbClose.Left = 100

However, for a control that’ added at runtime, you have to use the Controls collection to set any properties for the control. For this reason, it’ important to set up a variable, such as LC, to hold the name of the control. Controls are added with the .Add method. The important parameter is bstrProgId. This property dictates whether the added control is a label, a text box, a command button, or something else.

The following code adds a new label to the form. PicCount is a counter variable used to ensure that each label has a unique name. After the form is added, specify a position for the control by setting the Top and Left properties. You should also set Height and Width properties for the control:

Click here to view code image

LC = "LabelA" & PicCount

Me.Controls.Add bstrProgId:="forms.label.1", Name:=LC, Visible:=True

Me.Controls(LC).Top = 25

Me.Controls(LC).Left = 50

Me.Controls(LC).Height = 18

Me.Controls(LC).Width = 60

Me.Controls(LC).Caption = Cell.Value

[image: Images]

Caution You lose some of the AutoComplete options with this method. Normally, if you would start to type Me.cbClose., the AutoComplete options would present the valid choices for a command button. However, when you use the Me.Controls(LC) collection to add controls on the fly, VBA does not know what type of control is referenced. In this case, it is helpful to know you need to set the Caption property rather than the Value property for a label.

Sizing on the fly

In reality, you need to be able to calculate values for Top, Left, Height, and Width on the fly. You do this based on the actual height and width of a form and based on how many controls are needed.

Adding other controls

To add other types of controls, change the ProgId used with the Add method. Table 22-6 shows the ProgIds for various types of controls.

TABLE 22-6 Userform controls and corresponding ProgIds

	
Control

	
ProgId

	
CheckBox

	
Forms.CheckBox.1

	
ComboBox

	
Forms.ComboBox.1

	
CommandButton

	
Forms.CommandButton.1

	
Frame

	
Forms.Frame.1

	
Image

	
Forms.Image.1

	
Label

	
Forms.Label.1

	
ListBox

	
Forms.ListBox.1

	
MultiPage

	
Forms.MultiPage.1

	
OptionButton

	
Forms.OptionButton.1

	
ScrollBar

	
Forms.ScrollBar.1

	
SpinButton

	
Forms.SpinButton.1

	
TabStrip

	
Forms.TabStrip.1

	
TextBox

	
Forms.TextBox.1

	
ToggleButton

	
Forms.ToggleButton.1

Adding an image on the fly

There is some unpredictability in adding images to a userform. Any given image might be shaped either landscape or portrait. An image might be small or huge. The strategy you might want to use is to let an image load at full size by setting the .AutoSize parameter to True before loading it:

Click here to view code image

TC = "Image" & PicCount

Me.Controls.Add bstrProgId:="forms.image.1", Name:=TC, Visible:=True

Me.Controls(TC).Top = LastTop

Me.Controls(TC).Left = LastLeft

Me.Controls(TC).AutoSize = True

On Error Resume Next

Me.Controls(TC).Picture = LoadPicture(fname)

On Error GoTo 0

After the image has loaded, you can read the control’ Height and Width properties to determine whether the image is landscape or portrait and whether the image is constrained by available width or available height:

Click here to view code image

'The picture resized the control to full size

'determine the size of the picture

Wid = Me.Controls(TC).Width

Ht = Me.Controls(TC).Height

'CellWid and CellHt are calculated in the full code sample below

WidRedux = CellWid / Wid

HtRedux = CellHt / Ht

If WidRedux < HtRedux Then

Redux = WidRedux

Else

Redux = HtRedux

End If

NewHt = Int(Ht * Redux)

NewWid = Int(Wid * Redux)

After you find the proper size for the image so that it draws without distortion, set the AutoSize property to False and use the correct height and width to have the image not appear distorted:

Click here to view code image

'Now resize the control

Me.Controls(TC).AutoSize = False

Me.Controls(TC).Height = NewHt

Me.Controls(TC).Width = NewWid

Me.Controls(TC).PictureSizeMode = fmPictureSizeModeStretch

Putting it all together

This is the complete code for the picture catalog userform:

Click here to view code image

Private Sub UserForm_Initialize()

'Display pictures of each SKU selected on the worksheet

'This may be anywhere from 1 to 36 pictures

PicPath = "C:\qimage\qi"

'resize the form

Me.Height = Int(0.98 * ActiveWindow.Height)

Me.Width = Int(0.98 * ActiveWindow.Width)

'determine how many cells are selected

'We need one picture and label for each cell

CellCount = Selection.Cells.Count

ReDim Preserve Pics(1 To CellCount)

'Figure out the size of the resized form

TempHt = Me.Height

TempWid = Me.Width

'The number of columns is a roundup of SQRT(CellCount)

'This will ensure 4 rows of 5 pictures for 20, etc.

NumCol = Int(0.99 + Sqr(CellCount))

NumRow = Int(0.99 + CellCount / NumCol)

'Figure out the height and width of each square

'Each column will have 2 points to left & right of pics

CellWid = Application.WorksheetFunction.Max(Int(TempWid / NumCol) - 4, 1)

'each row needs to have 33 points below it for the label

CellHt = Application.WorksheetFunction.Max(Int(TempHt / NumRow) - 33, 1)

Click here to view code image

PicCount = 0 'Counter variable

LastTop = 2

MaxBottom = 1

'Build each row on the form

For x = 1 To NumRow

LastLeft = 3

'Build each column in this row

For Y = 1 To NumCol

PicCount = PicCount + 1

If PicCount > CellCount Then

'There is not an even number of pictures to fill

'out the last row

Me.Height = MaxBottom + 100

Me.cbClose.Top = MaxBottom + 25

Me.cbClose.Left = Me.Width - 70

Repaint 'redraws the form

Exit Sub

End If

ThisStyle = Selection.Cells(PicCount).Value

ThisDesc = Selection.Cells(PicCount).Offset(0, 1).Value

fname = PicPath & ThisStyle & ".jpg"

TC = "Image" & PicCount

Me.Controls.Add bstrProgId:="forms.image.1", Name:=TC, _

Visible:=True

Me.Controls(TC).Top = LastTop

Me.Controls(TC).Left = LastLeft

Me.Controls(TC).AutoSize = True

On Error Resume Next

Me.Controls(TC).Picture = LoadPicture(fname)

On Error GoTo 0

'The picture resized the control to full size

'determine the size of the picture

Wid = Me.Controls(TC).Width

Ht = Me.Controls(TC).Height

WidRedux = CellWid / Wid

HtRedux = CellHt / Ht

If WidRedux < HtRedux Then

Redux = WidRedux

Else

Redux = HtRedux

End If

NewHt = Int(Ht * Redux)

NewWid = Int(Wid * Redux)

'Now resize the control

Me.Controls(TC).AutoSize = False

Me.Controls(TC).Height = NewHt

Me.Controls(TC).Width = NewWid

Me.Controls(TC).PictureSizeMode = fmPictureSizeModeStretch

Me.Controls(TC).ControlTipText = "Style " & _

ThisStyle & " " & ThisDesc

Click here to view code image

'Keep track of the bottommost & rightmost picture

ThisRight = Me.Controls(TC).Left + Me.Controls(TC).Width

ThisBottom = Me.Controls(TC).Top + Me.Controls(TC).Height

If ThisBottom > MaxBottom Then MaxBottom = ThisBottom

'Add a label below the picture

LC = "LabelA" & PicCount

Me.Controls.Add bstrProgId:="forms.label.1", Name:=LC, _

Visible:=True

Me.Controls(LC).Top = ThisBottom + 1

Me.Controls(LC).Left = LastLeft

Me.Controls(LC).Height = 18

Me.Controls(LC).Width = CellWid

Me.Controls(LC).Caption = ThisDesc

'Keep track of where the next picture should display

LastLeft = LastLeft + CellWid + 4

Next Y ' end of this row

LastTop = MaxBottom + 21 + 16

Next x

Me.Height = MaxBottom + 100

Me.cbClose.Top = MaxBottom + 25

Me.cbClose.Left = Me.Width - 70

Repaint

End Sub

Adding help to a userform

You have already designed a great userform in this chapter, but there is one thing missing: guidance for users. The following sections show four ways you can help people fill out the form properly.

Showing accelerator keys

Built-in forms often have keyboard shortcuts that allow actions to be triggered or fields selected with a few keystrokes. These shortcuts are identified by an underlined letter on a button or label.

You can add this same capability to custom userforms by entering a value in the Accelerator property of the control. Pressing Alt + the accelerator key selects the control. For example, in Figure 22-12, Alt+T selects the Streaming check box. Repeating the combination clears the box.

[image: The figure shows a userform with check boxes with accelerator keys assigned. The Streaming check box label has the t underlined. The check box has been selected.]

FIGURE 22-12 Use accelerator key combinations, like Alt+T to select Streaming, to give userforms the power of keyboard shortcuts.

Adding control tip text

When a cursor passes over a ribbon control, tip text appears, hinting at what the control does. You can also add tip text to userforms by entering a value in the ControlTipText property of a control. In Figure 22-13, tip text has been added to the frame surrounding the various categories.

[image: The figure shows a userform with several option buttons. The pointer is over the Comedy option button, and you can see tip text that says “Select one category”.]

FIGURE 22-13 Add tips to controls to provide help to people.

Creating the tab order

People can tab from one field to another. This is an automatic feature in a form. To control which field the next tab goes to, set the TapStop property value for each control.

The first tab stop is 0, and the last tab stop is equal to the number of controls in a group. Remember that you can create a group can with a frame. Excel doesn’t allow multiple controls within a group to have the same tab stop. After tab stops are set, a person can use the Tab key and spacebar to select or deselect various options.

[image: Images]

Tip If you right-click a userform (not one of its controls) and select Tab Order, a form appears, listing all the controls. You can reorder the controls on this form to set the tab order.

Coloring the active control

Another method for helping a person fill out a form is to color the active field. The following example changes the color of a text box or combo box when it is active. RaiseEvent is used to call the events declared at the top of the class module. The code for the events is part of the userform.

Place the following code in a class module called clsCtlColor:

Click here to view code image

Public Event GetFocus()

Public Event LostFocus(ByVal strCtrl As String)

Private strPreCtr As String

Public Sub CheckActiveCtrl(objForm As MSForms.UserForm)

With objForm

If TypeName(.ActiveControl) = "ComboBox" Or _

TypeName(.ActiveControl) = "TextBox" Then

strPreCtr = .ActiveControl.Name

On Error GoTo Terminate

Do

DoEvents

If .ActiveControl.Name <> strPreCtr Then

If TypeName(.ActiveControl) = "ComboBox" Or _

TypeName(.ActiveControl) = "TextBox" Then

RaiseEvent LostFocus(strPreCtr)

strPreCtr = .ActiveControl.Name

RaiseEvent GetFocus

End If

End If

Loop

End If

End With

Terminate:

Exit Sub

End Sub

Place the following code behind the userform:

Click here to view code image

Private WithEvents objForm As clsCtlColor

Private Sub UserForm_Initialize()

Set objForm = New clsCtlColor

End Sub

This sub changes the BackColor of the active control when the form is activated:

Click here to view code image

Private Sub UserForm_Activate()

If TypeName(ActiveControl) = "ComboBox" Or _

TypeName(ActiveControl) = "TextBox" Then

ActiveControl.BackColor = &HC0E0FF

End If

objForm.CheckActiveCtrl Me

End Sub

This sub changes the BackColor of the active control when it gets the focus:

Click here to view code image

Private Sub objForm_GetFocus()

ActiveControl.BackColor = &HC0E0FF

End Sub

This sub changes the BackColor back to white when the control loses the focus:

Click here to view code image

Private Sub objForm_LostFocus(ByVal strCtrl As String)

Me.Controls(strCtrl).BackColor = &HFFFFFF

End Sub

This sub clears the objForm when the form is closed:

Click here to view code image

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

Set objForm = Nothing

End Sub

Case study: Setting up multicolumn list boxes

You’ve created several spreadsheets containing store data. The primary key of each set is the store number. The workbook is used by several people, but not everyone memorizes stores by store numbers. You need some way of letting people select a store by its name. At the same time, you need to return the store number to be used in the code. You could use VLOOKUP or MATCH, but there is another way.

A list box can have more than one column, but not all the columns need to be visible. In addition, a person can select an item from the visible list, but the list box can return the corresponding value from another column.

Draw a list box and set the ColumnCount property to 2. Set the RowSource to a two-column range called Stores. The first column of the range is the store number; the second column is the store name. At this point, the list box is displaying both columns of data. To change this, set the ColumnWidths to 0, 100—and the text automatically updates to 0 pt;100 pt. The first column is now hidden. Figure 22-14 shows the list box properties as they need to be.

[image: The figure shows a userform and the Properties window. The list box in the userform is selected. The Properties window reflects the properties of the list box.]

FIGURE 22-14 Setting the list box properties creates a two-column list box that appears to be a single column of data.

The appearance of the list box has now been set. When someone activates the list box, she sees only the store names. To return the value of the first column, set the BoundColumn property to 1. You can do this through the Properties window or through code. This example uses code to maintain the flexibility of returning the store number (see Figure 22-15):

Click here to view code image

Private Sub UserForm_Initialize()

lb_StoreName.BoundColumn = 1

End Sub

Private Sub lb_StoreName_Click()

lbl_StoreNum.Caption = lb_StoreName.Value

End Sub

[image: The figure shows a userform with the name of a store selected in a list box and the corresponding store number shown in the label below the list box.]

FIGURE 22-15 Use a two-column list box to allow the user to select a store name but return the store number.

Creating transparent forms

Have you ever had a form that you had to keep moving out of the way so you could see the data behind it? The following code sets the userform at a 50% transparency (see Figure 22-16) so that you can see the data behind it without moving the form somewhere else on the screen (and blocking more data).

[image: The figure shows a screenshot of a userform on top of a sheet. The cells behind the userform are visible through it.]

FIGURE 22-16 Create a 50% transparent form to view the data on the sheet behind it.

Place the following code in the declarations section at the top of the userform:

Click here to view code image

Private Declare PtrSafe Function GetActiveWindow Lib "USER32" () As LongPtr

Private Declare PtrSafe Function SetWindowLongPtr Lib "USER32" Alias _

"SetWindowLongA" (ByVal hWnd As LongPtr, ByVal nIndex As Long, _

ByVal dwNewLong As LongPtr) As LongPtr

Private Declare PtrSafe Function GetWindowLongPtr Lib "USER32" Alias _

"GetWindowLongA" (ByVal hWnd As LongPtr, ByVal nIndex As Long) As Long

Private Declare PtrSafe Function SetLayeredWindowAttributes Lib "USER32" _

(ByVal hWnd As LongPtr, ByVal crKey As Integer, _

ByVal bAlpha As Integer, ByVal dwFlags As LongPtr) As LongPtr

Private Const WS_EX_LAYERED = &H80000

Private Const LWA_COLORKEY = &H1

Private Const LWA_ALPHA = &H2

Private Const GWL_EXSTYLE = &HFFEC

Dim hWnd As Long

Place the following code behind a toggle button. When the button is pressed in, the transparency is reduced 50%. When a person toggles the button back up, the transparency is set to 0.

Click here to view code image

Private Sub ToggleButton1_Click()

If ToggleButton1.Value = True Then

'127 sets the 50% semitransparent

SetTransparency 127

Else

'a value of 255 is opaque and 0 is transparent

SetTransparency 255

End If

End Sub

Private Sub SetTransparency(TRate As Integer)

Dim nIndex As Long

hWnd = GetActiveWindow

nIndex = GetWindowLong(hWnd, GWL_EXSTYLE)

SetWindowLong hWnd, GWL_EXSTYLE, nIndex Or WS_EX_LAYERED

SetLayeredWindowAttributes hWnd, 0, TRate, LWA_ALPHA

End Sub

Next steps

This chapter showed you how to use more advanced userform controls. It also reviewed various methods to maximize the use of userforms. In Chapter 23, “The Windows Application Programming Interface (API),” you’ discover more about how to access these functions and procedures that are hidden in files on your computer.

CHAPTER 23
The Windows Application Programming Interface (API)

In this chapter, you will:

	Understand the parts of an API declaration

	Learn how to use an API declaration

	Make 32-bit- and 64-bit-compatible API declarations

	Review some API function examples

With all the wonderful things you can do in Excel VBA, there are some things that are out of VBA’s reach or that are just too difficult to do, such as finding out what the user’s screen resolution setting is. This is where the Windows application programming interface (API) can help.

If you look in the Windows System directory \Windows\System32 (Windows NT systems), you will see many files with the extension .dll. These files, which are dynamic link libraries (DLLs), contain various functions and procedures that other programs, including VBA, can access. They give the user access to functionality used by the Windows operating system and many other programs.

[image: Images]

Caution Keep in mind that Windows API declarations are accessible only on computers running the Microsoft Windows operating system.

This chapter does not teach you how to write API declarations, but it does teach you the basics of interpreting and using them. Several useful examples are also included. Jan Karel Pieterse of JKP Application Development Services (www.jkp-ads.com) is working on an ever-growing web page that lists the proper syntax for the 64-bit declarations. You can find it at www.jkp-ads.com/articles/apideclarations.asp.

Understanding an API declaration

The following is an example of an API function:

Click here to view code image

Private Declare PtrSafe Function GetUserName _

Lib "advapi32.dll" Alias "GetUserNameA" _

(ByVal lpBuffer As String, nSize As Long) _

As LongPtr

There are two types of API declarations, which are structured similarly:

	Functions—Return information

	Procedures—Do something to the system

Basically, you can tell the following about this API function:

	It is Private; therefore, you can use it only in the module in which it is declared. Declare it Public in a standard module if you want to share it among several modules.

[image: Images]

Caution API declarations in standard modules can be public or private. API declarations in class modules must be private.

	It will be referred to as GetUserName in a program. This is the variable name assigned in the code.

	The function being used is found in advapi32.dll.

	The alias, GetUserNameA, is what the function is referred to in the DLL. This name is case sensitive and cannot be changed; it is specific to the DLL (dynamic link library). There are often two versions of each API function. One version uses the ANSI character set and has aliases that end with the letter A. The other version uses the Unicode character set and has aliases that end with the letter W. When specifying the alias, you are telling VBA which version of the function to use.

	There are two parameters: lpBuffer and nSize. These are two arguments that the DLL function accepts.

[image: Images]

Caution The downside of using APIs is that there may be no errors when your code compiles or runs. This means that an incorrectly configured API call can cause your computer to crash or lock up. For this reason, it is a good idea to save often.

Using an API declaration

Using an API is no different from calling a function or procedure you created in VBA. The following example uses the GetUserName declaration in a function to return the Windows user name to Excel:

Click here to view code image

Public Function UserName() As String

Dim sName As String * 256

Dim cChars As Long

cChars = 256

If GetUserName(sName, cChars) Then

UserName = Left$(sName, cChars - 1)

End If

End Function

Sub ProgramRights()

Dim NameofUser As String

NameofUser = UserName

Select Case NameofUser

Case Is = "Administrator"

MsgBox "You have full rights to this computer"

Case Else

MsgBox "You have limited rights to this computer"

End Select

End Sub

Run the ProgramRights macro, and you learn whether you are currently signed on as Administrator. The result shown in Figure 23-1 indicates that Administrator is the current username.

[image: The figure shows a message box stating the rights of the user. In this case, the username is set to Administrator, which means the person has full rights.]

FIGURE 23-1 The GetUserName API function can be used to get a user’s Windows login name—which is more difficult to edit than the Excel username. You can then control what rights a user has with your program.

Making 32-bit- and 64-bit-compatible API declarations

With Excel 2010, Microsoft increased the compatibility between 32-bit and 64-bit API calls by allowing 64-bit calls to work on 32-bit systems but not vice versa. This is not the case with Excel 2007, so if you’re writing code that might be used in Excel 2007, you need to check the bit version and adjust accordingly.

The examples in this chapter are 64-bit API declarations and might not work in older versions of 32-bit Excel. For example, say that in a 64-bit version you have this declaration:

Click here to view code image

Private Declare PtrSafe Function GetWindowLongptr Lib "USER32" Alias _

"GetWindowLongA" (ByVal hWnd As LongPtr, ByVal nIndex As Long) As LongPtr

It will need to be changed to the following to work in the 32-bit version:

Click here to view code image

Private Declare Function GetWindowLongptr Lib "USER32" Alias _

"GetWindowLongA" (ByVal hWnd As Long, ByVal nIndex As Long) As LongPtr

The difference is that PtrSafe needs to be removed from the declaration. You might also notice that there is a new variable type in use: LongPtr. Actually, LongPtr isn’t a true data type; it is LongLong for 64-bit environments and Long in 32-bit environments. This does not mean that you should use it throughout your code; it has a specific use, such as in API calls. But you might find yourself using it in your code for API variables. For example, if you return an API variable of LongPtr to another variable in your code, that variable must also be LongPtr.

If you need to distribute a workbook to Excel 2007 32-bit and 64-bit users, you don’t need to create two workbooks. You can create an If...Then...Else statement in the declarations area and set up the API calls for both versions. So, for the preceding two examples, you could declare them like so:

Click here to view code image

#If VBA7 Or Win64 Then

Private Declare PtrSafe Function GetUserName Lib "advapi32.dll" _

Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As Long) _

As LongPtr

#Else

Private Declare Function GetUserName Lib "advapi32.dll" _

Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As Long) _

As LongPtr

#End If

The pound sign (#) is used to mark conditional compilation. The code compiles only the line(s) of code that satisfy the logic check. #If VBA7 Or Win64 checks to see whether the current environment is using the new code base (VBA7, in use only since Office 2010) or whether the environment (Excel, not Windows) is 64-bit. If true, the first API declaration is processed; otherwise, the second one is used. For example, if Excel 2007 64-bit or Excel 2010 or newer is running, the first API declaration is processed, but if the environment is 32-bit Excel 2007, the second one is used. Note that in 64-bit environments, the second API declaration will be colored as an error but will compile just fine.

API function examples

The following sections provide more examples of helpful API declarations you can use in your Excel programs. Each example starts with a short description of what the function can do, followed by the actual declarations and an example of its use.

Retrieving the computer name

This API function returns the computer name (that is, the name of the computer found under Computer, Computer Name):

Click here to view code image

Private Declare PtrSafe Function GetComputerName Lib "kernel32" Alias _

"GetComputerNameA" (ByVal lpBuffer As String, ByRef nSize As Long) _

As LongPtr

Private Function ComputerName() As String

Dim stBuff As String * 255, lAPIResult As LongPtr

Dim lBuffLen As Long

lBuffLen = 255

lAPIResult = GetComputerName(stBuff, lBuffLen)

If lBuffLen > 0 Then ComputerName = Left(stBuff, lBuffLen)

End Function

Sub ComputerCheck()

Dim CompName As String

CompName = ComputerName

If CompName <> "BillJelenPC" Then

MsgBox _

"This application does not have the right to run on this computer."

ActiveWorkbook.Close SaveChanges:=False

End If

End Sub

The ComputerCheck macro uses an API call to get the name of the computer. In this example, the workbook refuses to open on any computer except the hard-coded computer name of the owner.

Checking whether an Excel file is open on a network

You can check whether you have a file open in Excel by trying to set the workbook to an object. If the object is Nothing (empty), you know that the file is not open. However, what if you want to see whether someone else on a network has the file open? The following API function returns that information:

Click here to view code image

Private Declare PtrSafe Function lOpen Lib "kernel32" Alias "_lopen" _

(ByVal lpPathName As String, ByVal iReadWrite As Long) As LongPtr

Private Declare PtrSafe Function lClose Lib "kernel32" _

Alias "_lclose" (ByVal hFile As LongPtr) As LongPtr

Private Const OF_SHARE_EXCLUSIVE = &H10

Private Function FileIsOpen(strFullPath_FileName As String) As Boolean

Dim hdlFile As LongPtr

Dim lastErr As Long

hdlFile = -1

hdlFile = lOpen(strFullPath_FileName, OF_SHARE_EXCLUSIVE)

If hdlFile = -1 Then

lastErr = Err.LastDllError

Else

lClose (hdlFile)

End If

FileIsOpen = (hdlFile = -1) And (lastErr = 32)

End Function

Sub CheckFileOpen()

If FileIsOpen("C:\XYZ Corp.xlsx") Then

MsgBox "File is open"

Else

MsgBox "File is not open"

End If

End Sub

You can call the FileIsOpen function with a particular path and file name as the parameter to find out whether someone has the file open.

Retrieving display-resolution information

The following API function retrieves the computer’s display size:

Click here to view code image

Declare PtrSafe Function DisplaySize Lib "user32" Alias _

"GetSystemMetrics" (ByVal nIndex As Long) As LongPtr

Public Const SM_CXSCREEN = 0

Public Const SM_CYSCREEN = 1

Function VideoRes() As String

Dim vidWidth as LongPtr, vidHeight as LongPtr

vidWidth = DisplaySize(SM_CXSCREEN)

vidHeight = DisplaySize(SM_CYSCREEN)

Select Case (vidWidth * vidHeight)

Case 307200

VideoRes = "640 x 480"

Case 480000

VideoRes = "800 x 600"

Case 786432

VideoRes = "1024 x 768"

Case Else

VideoRes = "Something else"

End Select

End Function

Sub CheckDisplayRes()

Dim VideoInfo As String

Dim Msg1 As String, Msg2 As String, Msg3 As String

VideoInfo = VideoRes

Msg1 = "Current resolution is set at " & VideoInfo & Chr(10)

Msg2 = "Optimal resolution for this application is 1024 x 768" & Chr(10)

Msg3 = "Please adjust resolution"

Select Case VideoInfo

Case Is = "640 x 480"

MsgBox Msg1 & Msg2 & Msg3

Case Is = "800 x 600"

MsgBox Msg1 & Msg2

Case Is = "1024 x 768"

MsgBox Msg1

Case Else

MsgBox Msg2 & Msg3

End Select

End Sub

The CheckDisplayRes macro warns the client that the display setting is not optimal for the application.

Customizing the About dialog box

If you go to File, Help, About Windows in File Explorer, you get a nice little About dialog box with information about the File Explorer and a few system details. With the following code, you can get that window to pop up in your own program and customize a few items, as shown in Figure 23-2.

[image: The figure shows an About Windows 10 dialog box that has been customized with the author’s name.]

FIGURE 23-2 You can customize the About dialog box used by Windows for your own program.

Click here to view code image

Declare PtrSafe Function ShellAbout Lib "shell32.dll" Alias "ShellAboutA" _

(ByVal hwnd As LongPtr, ByVal szApp As String, ByVal szOtherStuff As _

String, ByVal hIcon As Long) As LongPtr

Declare PtrSafe Function GetActiveWindow Lib "user32" () As LongPtr

Sub AboutThisProgram()

Dim hwnd As LongPtr

On Error Resume Next

hwnd = GetActiveWindow()

ShellAbout hwnd, Nm, "Developed by Tracy Syrstad", 0

On Error GoTo 0

End Sub

Disabling the X for closing a userform

A person can use the X button located in the upper-right corner of a userform to shut down the form. You can capture the close event with QueryClose, but to prevent the button from being active and working at all, you need an API call. The following API declarations work together to disable that X and force the person to use the Close button. When the form is initialized, the X button is disabled. After the form is closed, the X button is reset to normal:

Click here to view code image

Private Declare PtrSafe Function FindWindow Lib "user32" Alias _

"FindWindowA" (ByVal lpClassName As String, ByVal lpWindowName _

As String) As Long

Private Declare PtrSafe Function GetSystemMenu Lib "user32" _

(ByVal hWnd As LongPtr, ByVal bRevert As Long) As LongPtr

Private Declare PtrSafe Function DeleteMenu Lib "user32" _

(ByVal hMenu As LongPtr, ByVal nPosition As Long, _

ByVal wFlags As Long) As LongPtr

Private Const SC_CLOSE As Long = &HF060

Private Sub UserForm_Initialize()

Dim hWndForm As LongPtr

Dim hMenu As LongPtr

'ThunderDFrame is the class name of all userforms

hWndForm = FindWindow("ThunderDFrame", Me.Caption)

hMenu = GetSystemMenu(hWndForm, 0)

DeleteMenu hMenu, SC_CLOSE, 0&

End Sub

The DeleteMenu macro in the UserForm_Initialize procedure causes the X in the corner of the userform to be grayed out, as shown in Figure 23-3. The client must therefore use your programmed Close button.

[image: The figure shows a userform with the X button grayed out, which forces the person using the application to use the Close button on the form.]

FIGURE 23-3 Disable the X button on a userform to force users to use the Close button to shut down the form properly and prevent them from bypassing any code attached to the Close button.

Creating a running timer

You can use the NOW function to get the time, but what if you need a running timer that displays the time as the seconds tick by? The following API declarations work together to provide this functionality. The timer is placed in cell A1 of Sheet1:

Click here to view code image

Public Declare PtrSafe Function SetTimer Lib "user32" _

(ByVal hWnd As Long, ByVal nIDEvent As Long, _

ByVal uElapse As Long, ByVal lpTimerFunc As LongPtr) As LongPtr

Public Declare PtrSafe Function KillTimer Lib "user32" _

(ByVal hWnd As Long, ByVal nIDEvent As LongPtr) As LongPtr

Public Declare PtrSafe Function FindWindow Lib "user32" _

Alias "FindWindowA" (ByVal lpClassName As String, _

ByVal lpWindowName As String) As LongPtr

Private lngTimerID As Long

Private datStartingTime As Date

Public Sub StartTimer()

StopTimer 'stop previous timer

datStartingTime = Now

lngTimerID = SetTimer(0, 1, 10, AddressOf RunTimer)

End Sub

Public Sub StopTimer()

Dim lRet As LongPtr, lngTID As Long

If IsEmpty(lngTimerID) Then Exit Sub

lngTID = lngTimerID

lRet = KillTimer(0, lngTID)

lngTimerID = Empty

End Sub

Private Sub RunTimer(ByVal hWnd As Long, _

ByVal uint1 As Long, ByVal nEventId As Long, _

ByVal dwParam As Long)

On Error Resume Next

Sheet1.Range("A1").Value = Format(Now - datStartingTime, "hh:mm:ss")

End Sub

Run the StartTimer macro to have a running timer update in cell A1.

Playing sounds

Have you ever wanted to play a sound to warn users or congratulate them? To do this, you can add a sound object to a sheet and then call that sound. However, it would be easier to use the following API declaration and specify the proper path to a sound file:

Click here to view code image

Public Declare PtrSafe Function PlayWavSound Lib "winmm.dll" _

Alias "sndPlaySoundA" (ByVal LpszSoundName As String, _

ByVal uFlags As Long) As LongPtr

Public Sub PlaySound()

Dim SoundName As String

SoundName = "C:\Windows\Media\Chimes.wav"

PlayWavSound SoundName, 0

End Sub

Next steps

In Chapter 24, “Handling errors,” you find out about error handling. In a perfect world, you want to be able to hand off your applications to a coworker, leave for vacation, and not have to worry about an unhandled error appearing while you are on the beach. Chapter 24 discusses how to handle obvious and not-so-obvious errors.

CHAPTER 24
Handling errors

In this chapter, you will:

	Find out what happens when an error occurs

	Do basic error handling with the On Error GoTo syntax

	Get to know generic error handlers

	Find out how to train your clients

	Compare errors while developing with errors months later

	Understand the ills of protecting code

	Find out more about problems with passwords

	Examine errors caused by different versions

Errors are bound to happen. Even when you test and retest your code, after a report is put into daily production and used for hundreds of days, something unexpected eventually happens. Your goal should be to try to head off obscure errors as you code. For this reason, you should always be thinking of what unexpected things could happen someday that could make your code not work.

What happens when an error occurs?

When VBA encounters an error and you have no error-checking code in place, the program stops and presents you or your client with the 1004 runtime error message, as shown in Figure 24-1.

[image: A Microsoft Visual Basic dialog box says “Run-Time Error 1004. Sorry, we couldn’t find C:\NotHere.xls. Is it possible it was moved, renamed or deleted?” Buttons at the bottom offer End, Debug, or Help. A fourth button, Continue, is grayed out.]

FIGURE 24-1 With an unhandled error in an unprotected module, you get a choice to end or debug.

When presented with the choice to end or debug, you should click Debug. (If Debug is grayed out, then someone has protected the VBA code, and you will have to call the developer.) The VB Editor highlights in yellow the line that caused the error. When you hover the cursor over any variable, you see the current value of the variable, which provides a lot of information about what could have caused the error (see Figure 24-2).

[image: When viewing the code in Debug mode, an arrow appears to the left of the line with an error. Also while in debug mode, hover the mouse pointer over any variable, and a tooltip will appear with that variable’s current value. Alternatively, you could press Ctrl+G to open the Immediate pane. In the Immediate pane, type Debug.Print i and press Enter. The current value of the “i” variable will appear the same as it appears in the tooltip.]

FIGURE 24-2 After clicking Debug, the macro is in break mode. Hover the cursor over a variable; after a second, the current value of the variable is shown.

Especially in older versions, Excel has been notorious for returning error messages that are not very meaningful. For example, dozens of situations can cause a 1004 error. Seeing the offending line highlighted in yellow and examining the current value of any variables helps you discover the real cause of an error. However, many error messages in Excel 2019—including the VBA error messages—are more meaningful than the equivalent message in Excel 2010.

After examining the line in error, click the Reset button to stop execution of the macro. The Reset button is the square button under the Run item in the main menu, as shown in Figure 24-3.

[image: The figure shows a portion of the standard toolbar in VBA, which offers three icons called Play, Pause, and Reset. The Reset icon takes you out of Debug mode, and the code stops running.]

FIGURE 24-3 The Reset button looks like the Stop button in the set of three buttons that resembles a DVD control panel.

If you fail to click Reset to end the macro and then attempt to run another macro, you are presented with the annoying error message shown in Figure 24-4. The message is annoying because you start in Excel, but when this message window is displayed, the screen automatically switches to display the VB Editor. You can see the Reset button in the background, but you cannot click it due to the message box being displayed. However, immediately after you click OK to close the message box, you are returned to the Excel user interface instead of being left in the VB Editor. Because this error message occurs quite often, it would be more convenient if you could be returned to the VB Editor after clicking OK.

[image: The message shown in the figures, “Can’t execute code in break mode,” means that you forgot to exit Debug mode and have now tried to run another macro.]

FIGURE 24-4 This message appears if you forget to click Reset to end a debug session and then attempt to run another macro.

A misleading debug error in userform code

After you click Debug, the line highlighted as the error can be misleading in some situations. For example, suppose you call a macro that displays a userform. Somewhere in the userform code, an error occurs. When you click Debug, instead of showing the problem inside the userform code, Excel highlights the line in the original macro that displayed the userform. Follow these steps to find the real error:

	After the error message box shown in Figure 24-5 is displayed, click the Debug button.

[image: The dialog box shows Run-Time Error 13: Type mismatch. Click Debug and continue to Figure 24-6.]

FIGURE 24-5 Select Debug in response to this error 13.

You see that the error allegedly occurred on a line that shows a userform, as shown in Figure 24-6. Because you have read this chapter, you know that this is not the line in error.

[image: The debug arrow says the Error 13 happened on a line of code that says frmChoose.Show. That is a simple line of code. The problem is not with this line of code.]

FIGURE 24-6 The line in error is indicated as the frmChoose.Show line.

	Press F8 to execute the Show method. Instead of getting an error, you are taken into the Userform_Initialize procedure.

	Keep pressing F8 until you get the error message again. Stay alert because as soon as you encounter the error, the error message box is displayed. Click Debug, and you are returned to the frmChoose.Show line. It is particularly difficult to follow the code when the error occurs on the other side of a long loop, as shown in Figure 24-7.

[image: As you start pressing the F8 key to step through the code to get to the error 13, you might have to press F8 through dozens of lines of code inside the UserForm code.]

FIGURE 24-7 With 25 items to add to the list box, you must press F8 53 times to get through this three-line loop.

Imagine trying to step through the code in Figure 24-7. You carefully press F8 5 times with no problems through the first pass of the loop. Because the problem could be in future iterations through the loop, you continue to press F8. If there are 25 items to add to the list box, 48 more presses of F8 are required to get through the loop safely. Each time before pressing F8, you should mentally note that you are about to run some specific line.

At the point shown in Figure 24-7, the next press of the F8 key displays the error and returns you to the frmChoose.Show line back in Module1. This is an annoying situation.

At that point, you need to start pressing F8 again. If you can recall the general area where the debug error occurred, click the mouse cursor in a line right before that section and use Ctrl+F8 to run the macro up to the cursor. Alternatively, right-click that line and choose Run to Cursor.

Sometimes an error will occur within a loop. Add Debug.Print i inside the loop and use the Immediate pane (which you open by pressing Ctrl+G) to locate which time through the loop caused the problem.

Basic error handling with the On Error GoTo syntax

The basic error-handling option is to tell VBA that in case of an error, you want to have code branch to a specific area of the macro. In this area, you might have special code that alerts users of the problem and enables them to react.

A typical scenario is to add the error-handling routine at the end of the macro. To set up an error handler, follow these steps:

	After the last code line of the macro, insert the code line Exit Sub. This makes sure that the execution of the macro does not continue into the error handler.

	After the Exit Sub line, add a label. A label is a name followed by a colon. For example, you might create a label called MyErrorHandler:.

	Write the code to handle the error. If you want to return control of the macro to the line after the one that caused the error, use the statement Resume Next.

In your macro, just before the line that might likely cause the error, add a line reading On Error GoTo MyErrorHandler. Note that in this line, you do not include the colon after the label name.

Immediately after the line of code that you suspect will cause the error, add code to turn off the special error handler. Because this is not intuitive, it tends to confuse people. The code to cancel any special error handling is On Error GoTo 0. There is no label named 0. Instead, this line is a fictitious one that instructs Excel to go back to the normal state of displaying the debug error message when an error is encountered. This is why it is important to cancel the error handling.

[image: Images]

Note The following code includes a special error handler to handle the necessary action if the file has been moved or is missing:

Click here to view code image

Sub HandleAnError()

Dim MyFile as Variant

' Set up a special error handler

On Error GoTo FileNotThere

Workbooks.Open Filename:="C:\NotHere.xls"

' If we get here, cancel the special error handler

On Error GoTo 0

MsgBox "The program is complete"

' The macro is done. Use Exit sub; otherwise, the macro

' execution will continue into the error handler

Exit Sub

' Set up a name for the error handler

FileNotThere:

MyPrompt = "There was an error opening the file. " & _

"It is possible the file has been moved. " & _

"Click OK to browse for the file, or click " & _

"Cancel to end the program"

Ans = MsgBox(Prompt:=MyPrompt, Buttons:=vbOKCancel)

If Ans = vbCancel Then Exit Sub

' The client clicked OK. Let him browse for the file

MyFile = Application.GetOpenFilename

If MyFile = False Then Exit Sub

' If the 2nd file is corrupt, do not recursively throw

' back into this error handler. Just stop the program.

On Error GoTo 0

Workbooks.Open MyFile

' If we get here, then return to the original

' macro, to the line after the error.

Resume Next

End Sub

You definitely do not want this error handler invoked for another error later in the macro, such as a divide-by-zero error.

[image: Images]

Note It is possible to have more than one error handler at the end of a macro. Make sure that each error handler ends with either Resume Next or Exit Sub so that macro execution does not accidentally move into the next error handler.

Generic error handlers

Some developers like to direct any error to a generic error handler to make use of the Err object. This object has properties for error number and description. You can offer this information to the client and prevent her from getting a debug message. Here is the code to do this:

Click here to view code image

On Error GoTo HandleAny

Sheets(9).Select

 Exit Sub

HandleAny:

Msg = "We encountered " & Err.Number & " - " & Err.Description

MsgBox Msg

Exit Sub

Handling errors by choosing to ignore them

Some errors can simply be ignored. For example, suppose you are going to use VBA to write out an index.html file. Your code erases any existing index.html file from a folder before writing out the next file.

The Kill (FileName) statement returns an error if FileName does not exist. This probably is not something you need to worry about. After all, you are trying to delete the file, so you probably do not care whether someone already deleted it before running the macro. In this case, tell Excel to just skip over the offending line and resume macro execution with the next line. The code to do this is On Error Resume Next:

Click here to view code image

Sub WriteHTML()

MyFile = "C:\Index.html"

On Error Resume Next

Kill MyFile

On Error Goto 0

Open MyFile for Output as #1

' etc...

End Sub

[image: Images]

Note Be careful with On Error Resume Next. You can use it selectively in situations in which you know that the error can be ignored. You should immediately return error checking to normal after the line that might cause an error with On Error GoTo 0.

If you attempt to have On Error Resume Next skip an error that cannot be skipped, the macro immediately steps out of the current macro. If you have a situation in which MacroA calls MacroB, and MacroB encounters a nonskippable error, the program jumps out of MacroB and continues with the next line in MacroA. This is rarely a good thing.

VBA code to handle printer settings runs much faster if you turn off PrintCommunication at the beginning of the preceding code and turn it back on at the end of the code. This trick was new in Excel 2010. Before that, Excel would pause for almost a half-second during each line of print setting code. Now the whole block of code runs in less than a second.

Case study: Overlooking page setup problems

When you record a macro and perform page setup, even if you change just one item in the Page Setup dialog box, the macro recorder records two dozen settings for you. These settings notoriously differ from printer to printer. For example, if you record the PageSetup on a system with a color printer, it might record a setting for .BlackAndWhite = True. This setting will fail on another system on which the printer does not offer the choice. Your printer might offer a .PrintQuality = 600 setting. If the client’s printer offers only a 300 resolution setting, this code fails. For this reason, you should surround the entire PageSetup with On Error Resume Next to ensure that most settings happen but the trivial ones that fail do not cause runtime errors. Here is how to do this:

Click here to view code image

On Error Resume Next

Application.PrintCommunication = False

With ActiveSheet.PageSetup

.PrintTitleRows = ""

.PrintTitleColumns = ""

End With

ActiveSheet.PageSetup.PrintArea = "A1:L27"

With ActiveSheet.PageSetup

.LeftHeader = ""

.CenterHeader = ""

.RightHeader = ""

.LeftFooter = ""

.CenterFooter = ""

.RightFooter = ""

.LeftMargin = Application.InchesToPoints(0.25)

.RightMargin = Application.InchesToPoints(0.25)

.TopMargin = Application.InchesToPoints(0.75)

.BottomMargin = Application.InchesToPoints(0.5)

.HeaderMargin = Application.InchesToPoints(0.5)

.FooterMargin = Application.InchesToPoints(0.5)

.PrintHeadings = False

.PrintGridlines = False

.PrintComments = xlPrintNoComments

.PrintQuality = 300

.CenterHorizontally = False

.CenterVertically = False

.Orientation = xlLandscape

.Draft = False

.PaperSize = xlPaperLetter

.FirstPageNumber = xlAutomatic

.Order = xlDownThenOver

.BlackAndWhite = False

.Zoom = False

.FitToPagesWide = 1

.FitToPagesTall = False

.PrintErrors = xlPrintErrorsDisplayed

End With

Application.PrintCommunication = True

On Error GoTo 0

Suppressing Excel warnings

Some messages appear even if you have set Excel to ignore errors. For example, try to delete a worksheet using code, and you still get the message “You can’t undo deleting sheets, and you might be removing some data. If you don’t need it, click Delete.” This is annoying. You do not want your clients to have to answer this warning; it gives them a chance to choose not to delete the sheet your macro wants to delete. In fact, this is not an error but an alert. To suppress all alerts and force Excel to take the default action, use Application.DisplayAlerts = False, like this:

Click here to view code image

Sub DeleteSheet()

Application.DisplayAlerts = False

Worksheets("Sheet2").Delete

Application.DisplayAlerts = True

End Sub

Encountering errors on purpose

Because programmers hate errors, this concept might seem counterintuitive, but errors are not always bad. Sometimes it is faster to simply encounter an error.

Suppose, for example, that you want to find out whether the active workbook contains a worksheet named Data. To find this out without causing an error, you could use the following eight lines of code:

Click here to view code image

DataFound = False

For Each ws in ActiveWorkbook.Worksheets

If ws.Name = "Data" then

DataFound = True

Exit For

End if

Click here to view code image

Next ws

If not DataFound then Sheets.Add.Name = "Data"

If your workbook has 128 worksheets, the program loops through 128 times before deciding that the data worksheet is missing.

An alternative is to try to reference the Data worksheet. If you have error checking set to Resume Next, the code runs, and the Err object is assigned a number other than zero:

Click here to view code image

On Error Resume Next

X = Worksheets("Data").Name

If Err.Number <> 0 then Sheets.Add.Name = "Data"

On Error GoTo 0

This code runs much faster. Errors usually make programmers cringe. However, in this case and in many other cases, the errors are perfectly acceptable.

Training your clients

Suppose you are developing code for a client across the globe or for the administrative assistant so that he can run the code while you are on vacation. In both cases, you might find yourself trying to debug code remotely while you are on the telephone with the client.

For this reason, it is important to train clients about the difference between an error and a simple MsgBox. Even though a MsgBox is a planned message, it still appears out of the blue with a beep. Teach your users that error messages are bad, but not everything that pops up is an error message. For example, I had a client who kept reporting to her boss that she was getting an error from my program. In reality, she was getting an informational MsgBox message. Both debug errors and MsgBox messages beep at the user, and this user didn’t know that there’s a difference between them.

Train clients to call you while any debug messages they get are still onscreen. This way you can get the error number and description. You also can ask the client to click Debug and tell you the module name, the procedure name, and which line is in yellow. Armed with this information, you can usually figure out what is going on. Without this information, it is unlikely that you will be able to resolve the problem. Getting a call from a client saying that there was a 1004 error is of little help because 1004 is a catchall error that can mean any number of things.

Errors that won’t show up in debug mode

This problem is happening more frequently today. You write a macro that does stuff. When you run the macro, you get an error. But then you click Debug and start stepping through code with F8. The macro runs fine without errors.

Every time you step through the code one line at a time, the macro works. Every time you run the code using the Run button, you get the error.

Here is what is happening. It used to be that one line of macro code would run and Excel would pause until that line is complete. But now, it seems that sometimes the command will return control to the macro before the command actually completes. Charting guru Jon Peltier reports that this frequently happens when inserting new charts. Say you have a macro where line 1 is insert a chart, and line 2 is do something to the chart. It can be really bad if line 2 tries to run before the chart fully exists.

Of course, when you are running code one line at a time, the routine is to see what line is in yellow. Press F8. See that the next line is in yellow. Press F8. You might be pressing F8 just one second later, but that one second is enough for the chart to finish rendering.

The workaround is to liberally apply a bunch of lines that say:

DoEvents

DoEvents is supposed to make the macro pause long enough for all current events to finish. Sometimes this does not work and you have to use Application.Wait to pause the macro for a second or two.

Errors while developing versus errors months later

When you have just written code that you are running for the first time, you expect errors. In fact, you might decide to step through code line by line to watch the progress of the code the first time through.

It is another thing to have a program that has been running daily in production suddenly stop working because of an error. That can be perplexing. The code has been working for months, so why did it suddenly stop working today? It is easy to blame the client. However, when you get right down to it, it is really the fault of developers for not considering the possibilities.

The following sections describe a couple of common problems that can strike an application months later.

Runtime error 9: Subscript out of range

You set up an application for a client and you provided a Menu worksheet where some settings are stored. Then one day this client reports getting the error message shown in Figure 24-8.

[image: The figure shows the Microsoft Visual Basic dialog box, which is showing the Run-Time Error 9: Subscript Out Of Range error.]

FIGURE 24-8 Runtime error 9 often occurs when you expect a worksheet to be there, but it has been deleted or renamed by the client.

Your code expected a worksheet named Menu. For some reason, the client either accidentally deleted the worksheet or renamed it. When the client then tried to select the sheet, she received an error:

Click here to view code image

Sub GetSettings()

ThisWorkbook.Worksheets("Menu").Select

x = Range("A1").Value

End Sub

This is a classic situation where you cannot believe that the client would do something so crazy. After you have been burned by this one a few times, you might go to lengths like implementing this code to prevent an unhandled debug error:

Click here to view code image

Sub GetSettings()

On Error Resume Next

x = ThisWorkbook.Worksheets("Menu").Name

If Not Err.Number = 0 Then

MsgBox "Expected to find a Menu worksheet, but it is missing"

Exit Sub

End If

On Error GoTo 0

ThisWorkbook.Worksheets("Menu").Select

x = Range("A1").Value

End Sub

Runtime error 1004: Method range of object global failed

You have code that imports a text file each day. You expect the text file to end with a Total row. After importing the text, you want to convert all the detail rows to italic.

The following code works fine for months:

Click here to view code image

Sub SetReportInItalics()

TotalRow = Cells(Rows.Count,1).End(xlUp).Row

FinalRow = TotalRow - 1

Range("A1:A" & FinalRow).Font.Italic = True

End Sub

Then one day, the client calls with the error message shown in Figure 24-9.

[image: The figure shows the error code 1004: Method â€˜Range’ Of Object “_Global” Failed. When a client tells you they have a 1004 error, you need to get the description that goes with the error.]

FIGURE 24-9 Runtime error 1004 can be caused by a number of things.

Upon examining the code, you discover that something bizarre went wrong when the text file was transferred via FTP to the client that day. The text file ended up as an empty file. Because the worksheet was empty, TotalRow was determined to be row 1. If you assume that the last detail row was TotalRow - 1, the code is set up to attempt to format row 0, which clearly does not exist.

After an episode like this, you find yourself writing code that preemptively looks for this situation:

Click here to view code image

Sub SetReportInItalics()

TotalRow = Cells(Rows.Count,1).End(xlUp).Row

FinalRow = TotalRow - 1

If FinalRow > 0 Then

Range("A1:A" & FinalRow).Font.Italic = True

Else

MsgBox "It appears the file is empty today. Check the FTP process"

 End If

End Sub

The ills of protecting code

It is possible to lock a VBA project so that it cannot be viewed. However, doing so is not recommended. When code is protected and an error is encountered, your user is presented with an error message but no opportunity to debug. The Debug button is there, but it is grayed out and useless in helping you discover the problem.

Further, the Excel VBA protection scheme is horribly easy to break. Programmers in Estonia offer $40 software that lets you unlock any project. Therefore, you need to understand that office VBA code is not secure—and then get over it.

If you absolutely need to truly protect your code, invest $100 for a license to Unviewable+ VBA Project from Esoteric Software. This crowd-funded software allows you to create a compiled version of a workbook where most people will be able to view the VBA. For more details, visit http://mrx.cl/hidevba.

Case study: Password cracking

Password-hacking schemes were very easy in Excel 97 and Excel 2000. The password-cracking software could immediately locate the actual password in the VBA project and report it to the software user.

Then, in Excel 2002, Microsoft offered a brilliant protection scheme that temporarily appeared to foil the password-cracking utilities. The password was tightly encrypted. For several months after the release of Excel 2002, password-cracking programs had to try brute-force combinations. The software could crack an easy password like blue in 10 minutes. However, given a 24-character password like *A6%kJJ542(9$GgU44#2drt8, the program would take 20 hours to find the password. This was a fun annoyance to foist upon other VBA programmers who would potentially break into your code.

However, the next version of the password-cracking software was able to break a 24-character password in Excel 2002 in about 2 seconds. When I tested my 24-character password-protected project, the password utility quickly told me that my password was XVII. I thought this was certainly wrong, but after testing, I found the project had a new password of XVII. Yes, this latest version of the software resorted to another approach. Instead of using brute force to crack the password, it simply wrote a new random four-character password to the project and saved the file.

Now, this causes an embarrassing problem for whoever cracked the password, and I’ll explain why.

The developer has a sign on his wall reminding him that the password is *A6%kJJ542(9$GgU44#2drt8. However, in the cracked version of the file, the password is now XVII. If there is a problem with the cracked file and it is sent back to the developer, the developer can no longer open the file. The only person getting anything from this is the programmer in Estonia who wrote the cracking software.

There are not enough Excel VBA developers in the world, and there are more projects than there are programmers. In my circle of developer friends, we acknowledge that business prospects slip through the cracks because we are too busy with other customers. Therefore, the situation of a newbie developer is common. In this scenario, this new developer does an adequate job of writing code for a customer and then locks the VBA project.

The customer needs some changes. The original developer does the work. A few weeks later, the developer delivers some requested changes. A month later, the customer needs more work. Either the developer is busy with other projects or has underpriced these maintenance jobs and has more lucrative work he is attending to instead. The client tries to contact the programmer a few times before realizing he needs to get the project fixed by someone else and calls another developer—you!

You get the code. It is protected. You break the password and see who wrote the code. You have no interest in stealing the new developer’s customer. In fact, you prefer to do this one job and then have the customer return to the original developer. However, because of the password hacking, you have created a situation in which the two developers—you and the original one—have different passwords. Your only choice is to remove the password entirely. This will tip off the other developer that someone else has been in his code. Maybe you could try to placate the other developer with a few lines of comment that the password was removed after the customer could not contact the original developer.

More problems with passwords

Office 2013 introduced a new SHA-2 class SHA512 algorithm to calculate encryption keys. This algorithm causes significant slowdowns in macros that protect or unprotect sheets.

The password scheme for any version of Excel from 2002 forward is incompatible with Excel 97. If you protected code in Excel 2002, you cannot unlock the project in Excel 97. As your application is given to more employees in a company, you will invariably find an employee using Excel 97. Of course, that user will come up with a runtime error. However, if you locked the project in Excel 2002 or newer, you are not able to unlock the project in Excel 97, which means you cannot debug the program in Excel 97.

Bottom line: Locking code causes more trouble than it is worth.

[image: Images]

Note If you are using a combination of Excel 2003 through Excel 2019, the passwords transfer easily back and forth between versions. This holds true even if the file is saved as an .xlsm file and opened in Excel 2003 using the file converter. You can change code in Excel 2003, save the file, and successfully round-trip back to Excel 2019.

Errors caused by different versions

Microsoft improves VBA in every version of Excel. Pivot table creation was improved dramatically between Excel 97 and Excel 2000. Sparklines and slicers were new in Excel 2010. The Data Model was introduced in Excel 2013. Power Query was built in to the object model in Excel 2016.

The TrailingMinusNumbers parameter was new in Excel 2002. This means that if you write code in Excel 2016 and then send the code to a client with Excel 2000, that user gets a compile error as soon as she tries to run any code that’s in the same module as the offending code. For this reason, you need to consider this application in two modules.

Module1 has macros ProcA, ProcB, and ProcC. Module2 has macros ProcD and ProcE. It happens that ProcE has an ImportText method with the TrailingMinusNumbers parameter.

The client can run ProcA and ProcB on the Excel 2000 machine without problem. As soon as she tries to run ProcD, she gets a compile error reported in ProcD because Excel tries to compile all of Module2 when she tries to run code in that module. This can be incredibly misleading: An error being reported when the client runs ProcD is actually caused by an error in ProcE.

One solution is to have access to every supported version of Excel and test the code in all versions.

Macintosh users will believe that their version of Excel is the same as Excel for Windows. Microsoft promised compatibility of files, but that promise ends in the Excel user interface. VBA code is not compatible between Windows and the Mac. Excel VBA on the Mac in Excel 2019 is close to Excel 2019 VBA but annoyingly different. Further, anything you do with the Windows API is not going to work on a Mac.

Next steps

In this chapter you’ve learned how to make your code more bulletproof for your clients. In Chapter 25, “Customizing the ribbon to run macros,” you find out how to customize the ribbon to allow your clients to enjoy a professional user interface.

CHAPTER 25
Customizing the ribbon to run macros

In this chapter, you will:

	Learn where to add ribbon code: the customui folder and file

	Add controls to a ribbon

	Understand the RELS file

	Use images on buttons

	Troubleshoot error messages

	Learn other ways to run a macro

Unlike the command bars of old, a ribbon isn’t designed via VBA code. Instead, if you want to modify the ribbon and add your own tab, you need to modify the Excel file itself, which isn’t as impossible as it sounds. The new Excel file is actually a zipped file, containing various files and folders. All you need to do is unzip it, make your changes, and you’re done. Okay, it’s not that simple—a few more steps are involved—but it’s not impossible.

Before beginning, go to the File tab and select Options, Advanced, General and select Show Add-In User Interface Errors. This allows error messages to appear so that you can troubleshoot errors in your custom toolbar.

[image: Images]

Note See the “Troubleshooting error messages” section later in this chapter for more details.

[image: Images]

Caution Unlike when programming in the VB Editor, you won’t have any assistance with automatic correction of letter case; and the XML code—which is what the ribbon code is—is very particular. Note the case of the XML-specific words; for example, for, using will generate an error.

One thing to keep in mind is that with the change to the single-document interface (SDI) that was made to Excel 2013 (and later versions), the custom ribbon tab attached to a workbook is visible only when that workbook is active. When you activate another workbook, the tab will not appear on the ribbon. The exception is with an add-in; its custom ribbon is visible on any workbook open after the add-in is opened.

[image: Images]

Note see Chapter 26, “Creating add-ins,” for more information on creating an add-in.

[image: Images]

Note The original CommandBars object in legacy Excel still works, but the customized menus and toolbars are now all placed on the Add-Ins tab.

Where to add code: The customui folder and file

Create a folder called customui. This folder contains the elements of your custom ribbon tab. Within the folder, create a text file and call it customUI14.xml, as shown in Figure 25-1. Open the XML file in a text editor; either Notepad or WordPad work.

[image: /]The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder." />

FIGURE 25-1 Create a customuUI14.xml file within a customui folder.

[image: Images]

Tip My favorite text editor is Notepad ++ by Don Ho (see www.notepad-plus-plus.org). Like the VB Editor, it colors XML-specific syntax after you choose XML as the language you’re typing. It also has a lot of other useful tools.

Insert the basic structure for the XML code, shown here, into your XML file. For every opening tag grouping, such as <ribbon>, there must be a closing tag, </ribbon>:

Click here to view code image

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="false">

 <tabs>

<!-- your ribbon controls here -->

</tabs>

 </ribbon>

</customUI>

startFromScratch is optional and has a default value of false. You use it to tell the code the other tabs in Excel will not be shown; only yours will be shown. true means to show only your tab; false means to show your tab and all the other tabs.

[image: Images]

Caution Note the case of the letters in startFromScratch—the small s at the beginning followed by the capital F in From and capital S in Scratch. It is crucial that you not deviate from this.

The <!-- your ribbon controls here --> you see in the previous code is commented text. Just enter your comments between <!-- and -->, and the program ignores the line when it runs.

[image: Images]

Note If you’re creating a ribbon that needs to be Excel 2007 compatible, you need to use the following schema: http://schemas.microsoft.com/office/2006/01/customui. Also, where you see customUI14, use customUI.

Creating a tab and a group

Before you can add a control to a tab, you need to identify the tab and group. A tab can hold many different controls, which you can group together, like the Font group on the Home tab.

Name your tab My First Ribbon and add a group called My Programs to it, like this (see Figure 25-2):

Click here to view code image

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="false">

<tabs>

<tab id="CustomTab" label="My First Ribbon">

<group id="CustomGroup" label="My Programs">

<!-- your ribbon controls here -->

</group>

</tab>

</tabs>

</ribbon>

</customUI>

id is a unique identifier for the control (in this case, the tab and group). label is the text you want to appear on your ribbon for the specified control.

Adding a control to a ribbon

After you’ve set up the ribbon and group, you can add controls. Depending on the type of control, there are different attributes you can include in your XML code. (Refer to Table 25-1 for more information on various controls and their attributes.)

The following code adds a normal-sized button with the text Click to Run to the Reports group and runs the sub HelloWorld when the button is clicked (see Figure 25-2):

Click here to view code image

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="false">

<tabs>

<tab id="CustomTab" label="My First Ribbon">

<group id="CustomGroup" label="My Programs">

<button id="button1" label="Click to run"

onAction="Module1.HelloWorld" size="normal"/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

[image: This figure shows the recorded example macro.]

FIGURE 25-2 Run a program with a click of a button on your custom ribbon.

The properties of the button include id, a unique identifier for the control button, and label, which holds the text you want to appear on your button. size, which is the size of the button, has a default value of normal; the other option is large. onAction is the sub, HelloWorld, to call when the button is clicked. The sub, shown here, goes in a standard module, Module1, in the workbook:

Click here to view code image

Sub HelloWorld(control As IRibbonControl)

MsgBox "Hello World"

End Sub

Notice the argument control As IRibbonControl. This is the standard argument for a sub, and it is called by a button control via the onAction attribute. Table 25-2 lists the required arguments for other attributes and controls.

TABLE 25-1 Ribbon control attributes

	Attribute

	Type or Value

	Description

	description

	String

	Specifies description text displayed in menus when the itemSize attribute is set to Large.

	enabled

	true, false

	Specifies whether the control is enabled.

	getContent

	Callback

	Retrieves XML content that describes a dynamic menu.

	getDescription

	Callback

	Gets the description of a control.

	getEnabled

	Callback

	Gets the enabled state of a control.

	getImage

	Callback

	Gets the image for a control.

	getImageMso

	Callback

	Gets a built-in control’s icon by using the control ID.

	getItemCount

	Callback

	Gets the number of items to be displayed in a combo box, drop-down menu, or gallery.

	getItemID

	Callback

	Gets the ID for a specific item in a combo box, drop-down menu, or gallery.

	getItemImage

	Callback

	Gets the image of a combo box, drop-down menu, or gallery.

	getItemLabel

	Callback

	Gets the label of a combo box, drop-down menu, or gallery.

	getItemScreentip

	Callback

	Gets the screentip for a combo box, drop-down menu, or gallery.

	getItemSupertip

	Callback

	Gets the enhanced screentip for a combo box, drop-down menu, or gallery.

	getKeytip

	Callback

	Gets the keytip for a control.

	getLabel

	Callback

	Gets the label for a control.

	getPressed

	Callback

	Gets a value that indicates whether a toggle button is pressed or not pressed. Gets a value that indicates whether a check box is selected or cleared.

	getScreentip

	Callback

	Gets the screentip for a control.

	getSelectedItemID

	Callback

	Gets the ID of the selected item in a drop-down menu or gallery.

	getSelectedItemIndex

	Callback

	Gets the index of the selected item in a drop-down menu or gallery.

	getShowImage

	Callback

	Gets a value that specifies whether to display the control image.

	getShowLabel

	Callback

	Gets a value that specifies whether to display the control label.

	getSize

	Callback

	Gets a value that specifies the size of a control (normal or large).

	getSupertip

	Callback

	Gets a value that specifies the enhanced screentip for a control.

	getText

	Callback

	Gets the text to be displayed in the edit portion of a text box or edit box.

	getTitle

	Callback

	Gets the text to be displayed (rather than a horizontal line) for a menu separator.

	getVisible

	Callback

	Gets a value that specifies whether the control is visible.

	id

	String

	Acts as a user-defined unique identifier for the control (and is mutually exclusive with idMso and idQ—so specify only one of these values).

	idMso

	Control id

	Acts as a built-in control ID (and is mutually exclusive with id and idQ—so specify only one of these values).

	idQ

	Qualified id

	Acts as a qualified control ID, prefixed with a namespace identifier (and is mutually exclusive with id and idMso—so specify only one of these values).

	image

	String

	Specifies an image for the control.

	imageMso

	Control id

	Specifies an identifier for a built-in image.

	insertAfterMso

	Control id

	Specifies the identifier for the built-in control after which to position this control.

	insertAfterQ

	Qualified id

	Specifies the identifier of a control whose idQ property was specified after which to position this control.

	insertBeforeMso

	Control id

	Specifies the identifier for the built-in control before which to position this control.

	insertBeforeQ

	Qualified id

	Specifies the identifier of a control whose idQ property was specified before which to position this control.

	itemSize

	large, normal

	Specifies the size for the items in a menu.

	Keytip

	String

	Specifies the keytip for the control.

	label

	String

	Specifies the label for the control.

	onAction

	Callback

	Called when the user clicks the control.

	onChange

	Callback

	Called when the user enters or selects text in an edit box or combo box.

	screentip

	String

	Specifies the control’s screentip.

	showImage

	true, false

	Specifies whether the control’s image is shown.

	showItemImage

	true, false

	Specifies whether to show the image in a combo box, drop-down menu, or gallery.

	showItemLabel

	true, false

	Specifies whether to show the label in a combo box, drop-down menu, or gallery.

	showLabel

	true, false

	Specifies whether the control’s label is shown.

	size

	large, normal

	Specifies the size for the control.

	sizeString

	String

	Indicates the width for the control by specifying a string, such as “xxxxxx”.

	supertip

	String

	Specifies the enhanced screentip for the control.

	tag

	String

	Specifies user-defined text.

	title

	String

	Specifies the text to be displayed, rather than a horizontal line, for a menu separator.

	visible

	true, false

	Specifies whether the control is visible.

TABLE 25-2 Required arguments for other attributes and controls

	Control

	Callback Name

	Signature

	Various controls

	getDescription

	Sub GetDescription(control as IRibbonControl, ByRef description)

	
	getEnabled

	Sub GetEnabled(control As IRibbonControl, ByRef enabled)

	
	getImage

	Sub GetImage(control As IRibbonControl, ByRef image)

	
	getImageMso

	Sub GetImageMso(control As IRibbonControl, ByRef imageMso)

	
	getLabel

	Sub GetLabel(control As IRibbonControl, ByRef label)

	
	getKeytip

	Sub GetKeytip (control As IRibbonControl, ByRef label)

	
	getSize

	Sub GetSize(control As IRibbonControl, ByRef size)

	
	getScreentip

	Sub GetScreentip(control As IRibbonControl, ByRef screentip)

	
	getSupertip

	Sub GetSupertip(control As IRibbonControl, ByRef screentip)

	
	getVisible

	Sub GetVisible(control As IRibbonControl, ByRef visible)

	button

	getShowImage

	Sub GetShowImage (control As IRibbonControl, ByRef showImage)

	
	getShowLabel

	Sub GetShowLabel (control As IRibbonControl, ByRef showLabel)

	
	onAction

	Sub OnAction(control As IRibbonControl)

	checkBox

	getPressed

	Sub GetPressed(control As IRibbonControl, ByRef returnValue)

	
	onAction

	Sub OnAction(control As IRibbonControl, pressed As Boolean)

	comboBox

	getItemCount

	Sub GetItemCount(control As IRibbonControl, ByRef count)

	
	getItemID

	Sub GetItemID(control As IRibbonControl, index As Integer, ByRef id)

	
	getItemImage

	Sub GetItemImage(control As IRibbonControl, index As Integer, ByRef image)

	
	getItemLabel

	Sub GetItemLabel(control As IRibbonControl, index As Integer, ByRef label)

	
	getItemScreenTip

	Sub GetItemScreenTip(control As IRibbonControl, index As Integer, ByRef screentip)

	
	getItemSuperTip

	Sub GetItemSuperTip (control As IRibbonControl, index As Integer, ByRef supertip)

	
	getText

	Sub GetText(control As IRibbonControl, ByRef text)

	
	onChange

	Sub OnChange(control As IRibbonControl, text As String)

	customUI

	loadImage

	Sub LoadImage(imageId As string, ByRef image)

	
	onLoad

	Sub OnLoad(ribbon As IRibbonUI)

	dropDown

	getItemCount

	Sub GetItemCount(control As IRibbonControl, ByRef count)

	
	getItemID

	Sub GetItemID(control As IRibbonControl, index As Integer, ByRef id)

	
	getItemImage

	Sub GetItemImage(control As IRibbonControl, index As Integer, ByRef image)

	
	getItemLabel

	Sub GetItemLabel(control As IRibbonControl, index As Integer, ByRef label)

	
	getItemScreenTip

	Sub GetItemScreenTip(control As IRibbonControl, index As Integer ByRef screenTip)

	
	getItemSuperTip

	Sub GetItemSuperTip (control As IRibbonControl, index As Integer, ByRef superTip)

	
	getSelectedItemID

	Sub GetSelectedItemID(control As IRibbonControl, ByRef index)

	
	getSelectedItemIndex

	Sub GetSelectedItemIndex(control As IRibbonControl, ByRef index)

	
	onAction

	Sub OnAction(control As IRibbonControl, selectedId As String, selectedIndex As Integer)

	dynamicMenu

	getContent

	Sub GetContent(control As IRibbonControl, ByRef content)

	editBox

	getText

	Sub GetText(control As IRibbonControl, ByRef text)

	
	onChange

	Sub OnChange(control As IRibbonControl, text As String)

	gallery

	getItemCount

	Sub GetItemCount(control As IRibbonControl, ByRef count)

	
	getItemHeight

	Sub getItemHeight(control As IRibbonControl, ByRef height)

	
	getItemID

	Sub GetItemID(control As IRibbonControl, index As Integer, ByRef id)

	
	getItemImage

	Sub GetItemImage(control As IRibbonControl, index As Integer, ByRef image)

	
	getItemLabel

	Sub GetItemLabel(control As IRibbonControl, index As Integer, ByRef label)

	
	getItemScreenTip

	Sub GetItemScreenTip(control As IRibbonControl, index as Integer, ByRef screen)

	
	getItemSuperTip

	Sub GetItemSuperTip (control As IRibbonControl, index as Integer, ByRef screen)

	
	getItemWidth

	Sub getItemWidth(control As IRibbonControl, ByRef width)

	
	getSelectedItemID

	Sub GetSelectedItemID(control As IRibbonControl, ByRef index)

	
	getSelectedItemIndex

	Sub GetSelectedItemIndex(control As IRibbonControl, ByRef index)

	
	onAction

	Sub OnAction(control As IRibbonControl, selectedId As String, selectedIndex As Integer)

	menuSeparator

	getTitle

	Sub GetTitle (control As IRibbonControl, ByRef title)

	toggleButton

	getPressed

	Sub GetPressed(control As IRibbonControl, ByRef returnValue)

	
	onAction

	Sub OnAction(control As IRibbonControl, pressed As Boolean)

Accessing the file structure

Excel files are actually zipped files that contain various files and folders to create the workbook and worksheets you see when you open the workbook. To view this structure, rename the file, adding a .zip extension to the end of the filename. For example, if your filename is Chapter 25 - Simple Ribbon.xlsm, rename it Chapter 25 - Simple Ribbon.xlsm.zip. You can then use your zip utility to access the folders and files within.

Copy into the zip file your customui folder and file, as shown in Figure 25-3. After placing them in the .xlsm file, you need to let the rest of the Excel file know that they are there and what their purpose is. To do that, you need to modify the RELS file, as described in the next section.

[image: /]The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder." />

FIGURE 25-3 Using a zip utility, open the .xlsm file and copy in the customui folder and file.

Understanding the RELS file

The RELS file, found in the _rels folder, contains the various relationships of an Excel file. Extract this file from the zip file and open it using a text editor.

The file already contains existing relationships that you do not want to change. Instead, you need to add one for the customui folder. Scroll all the way to the right of the <Relationships line and place your cursor before the </Relationships> tag, as shown in Figure 25-4. Insert the following code:

Click here to view code image

<Relationship Id="rAB67989"

Type="http://schemas.microsoft.com/office/2007/relationships/ui/_

extensibility"

Target="customui/customUI14.xml"/>

Id is any unique string to identify the relationship. If Excel has a problem with the string you enter, it might change it when you open the file. Target is the customui folder and file. Save your changes and add the RELS file back to the zip file.

[image: Images]

Note See the section “Found a problem with some content,” later in this chapter for more information.

[image: /]The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder." />

FIGURE 25-4 Place your cursor in the correct spot for entering your custom ribbon relationship.

[image: Images]

Caution Even though the previous code appears as four lines in this book, it should appear as a single line in the RELS file. If you want to enter it as three separate lines, do not separate the lines within the quoted strings and do not use a continuation character as you would in VBA. The preceding examples are correct breaks (not including the line break with the continuation character). The following would be an example of an incorrect break of the fourth line:

Target = "customui/
customUI14.xml"

Renaming an Excel file and opening a workbook

Rename the Excel file back to its original name by removing the .zip extension. Open your workbook.

[image: Images]

Note If any error messages appear when you open the Excel file, see “Troubleshooting error messages” later in this chapter.

It can be a little time-consuming to perform all the steps involved in adding a custom ribbon, especially if you make little mistakes and have to keep renaming your workbook, opening the zip file, extracting your file, modifying, adding it back to the zip, renaming, and testing. To aid in this, check out the Custom UI Editor tool, which you download at http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2009/08/07/7293.aspx. This tool updates the RELS file, helps with using custom images, and has other useful aids to customizing the ribbon. Another tool I like to use is the RibbonX Visual Designer by Andy Pope, available at www.andypope.info/vba/ribboneditor_2010.htm.

Using images on buttons

The image that appears on a button can be either an image from the Microsoft Office icon library or a custom image you create and include in the workbook’s customui folder. With a good icon image, you can hide the button label but still have a friendly ribbon with images that are self-explanatory.

Using Microsoft Office icons on a ribbon

Microsoft has made it fairly easy to reuse Microsoft’s button images in custom ribbons. Select File, Options, Customize Ribbon. Place your mouse pointer over any menu command in the list, and a screentip displays, providing more information about the command. Included at the very end, in parentheses, is the image name, as shown in Figure 25-5.

[image: /]The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder." />

FIGURE 25-5 Placing your pointer over a command, such as Hyperlink, brings up the icon name, HyperlinkInsert.

To place an image on your button, you need to go back into the customUI14.xml file and tell Excel what you want. The following code uses the HyperlinkInsert icon for the HelloWorld button and makes it large, as shown in Figure 25-6. (Note that the icon name is case sensitive.)

Click here to view code image

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

<ribbon startFromScratch="false">

<tabs>

<tab id="CustomTab" label="My First Ribbon">

<group id="CustomGroup" label="My Programs">

<button id="button1" label="Click to run"

onAction="Module1.HelloWorld"

imageMso="HyperlinkInsert" size="large"/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

[image: /]The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder." />
FIGURE 25-6 You can apply the image from any Microsoft Office icon to your custom button.

You aren’t limited to just the icons available in Excel. You can use the icon for any installed Microsoft Office application. You can download a Word document from Microsoft with two galleries showing the icons available (and their names) from http://www.microsoft.com/en-us/download/details.aspx?id=21103.

Adding custom icon images to a ribbon

What if the icon library just doesn’t have the icon you’re looking for? You can create your own image file and modify the ribbon to use it. Follow these steps:

	Create a folder called images in the customui folder. Place your image in this folder.

	Create a folder called _rels in the customui folder. Create a text file called customUI14.xml.rels in this new folder, as shown in Figure 25-7. Place the following code in the file (and note that the Id for the image relationship is the name of the image file, helloworld_png):

Click here to view code image

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships xmlns="http://schemas.openxmlformats.org/package/2006/_

relationships"><Relationship Id="helloworld_png"_

Type="http://schemas.openxmlformats.org/officeDocument/2006/ _

relationships/image"

Target="images/helloworld.png"/></Relationships>

[image: The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder.]
FIGURE 25-7 Create a _rels folder and an images folder within the customui folder to hold files relevant to your custom image.

	Open the customUI14.xml file and add the image attribute to the control, as shown here, before you save and close the file:

Click here to view code image

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

<ribbon startFromScratch="false">

<tabs>

<tab id="CustomTab" label="My First Ribbon">

<group id="CustomGroup" label="My Programs">

<button id="button1" label="Click to run"

onAction="Module1.HelloWorld" image="helloworld_png"

size="large" />

</group>

</tab>

</tabs>

</ribbon>

</customUI>

	Open the [Content_Types].xml file and add the following at the very end of the file but before </Types>:

Click here to view code image

< Default Extension="png" ContentType="graphics/.png"/>

[image: Images]

Note If your image is a jpg, you would use the following:

<Default Extension="jpg" ContentType="application/octet-stream"/>

	Save your changes, rename your folder, and open your workbook. The custom image appears on the button, as shown in Figure 25-8.

[image: The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder.]
FIGURE 25-8 With a few more changes to your customui folder, you can add a custom image to a button.

Troubleshooting error messages

To be able to see the error messages generated by a custom ribbon, go to File, Options, Advanced, General and select the Show Add-In User Interface Errors option.

The attribute “Attribute Name” on the element “customui ribbon” is not defined in the DTD/schema

As noted in the section “Where to add code: The customui folder and file” earlier in this chapter, the case of attributes is very particular. If an attribute is “mis-cased,” the error shown in Figure 25-9 might occur.

[image: The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder.]

FIGURE 25-9 Mis-cased attributes can generate errors. Read the error message carefully; it might help you trace the problem.

The code in the customUI14.xml file that generated the error had the following line:

<ribbon startfromscratch="false">

Instead of startFromScratch, the code contained startfromscratch (all lowercase letters). The error message even helps you narrow down the problem by naming the attribute with which it has a problem.

Illegal qualified name character

For every opening <, you need a closing >. If you forget a closing >, the error shown in Figure 25-10 might appear. The error message is not specific at all, but it does provide a line and column number to indicate where it’s having a problem. Still, it’s not the actual spot where the missing > would go. Instead, it’s the beginning of the next line. You have to review your code to find the error, but you have an idea of where to start.

[image: The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder.]

FIGURE 25-10 For every opening <, you need a closing >.

The following code in the customUI14.xml file generated the error:

Click here to view code image

<tab id="CustomTab" label="My First Ribbon">

<group id="CustomGroup" label="My Programs"

<button id="button1" label="Click to run"

onAction="Module1.HelloWorld" image="helloworld_png"

size="large" />

Note the missing > for the group line (the second line of code). The line should have been this:

Click here to view code image

<group id="CustomGroup" label="My Programs">

Element “customui Tag Name” is unexpected according to content model of parent element “customui Tag Name”

If your structure is in the wrong order, such as the group tag placed before the tab tag, as shown here, a chain of errors appears, beginning with the one shown in Figure 25-11.

[image: The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder.]

FIGURE 25-11 An error in one line can lead to a string of error messages because the other lines are now considered out of order.

Click here to view code image

<group id="CustomGroup" label="My Programs">

<tab id="CustomTab" label="My First Ribbon">

Found a problem with some content

Figure 25-12 shows a generic catchall message for different types of problems Excel can find. If you click No, the workbook doesn’t open. If you click Yes, you then receive the message shown in Figure 25-13. While creating ribbons, though, I found it appearing most often when Excel doesn’t like the Relationship ID I have assigned to the customui relationship in the RELS file. What’s nice is that if you click Yes in the “Found a Problem” dialog box, Excel assigns a new ID, and the next time you open the file, the error should not appear.

[image: The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in the customui folder.]

FIGURE 25-12 This rather generic message could appear for many reasons. Click Yes to try to repair the file.

[image: The figure shows an error message that offers information on the repairs Excel completed on the workbook.]

FIGURE 25-13 Excel lets you know whether it has succeeded in repairing the file.

Here’s the original relationship:

Click here to view code image

<Relationship Id="rId3"

Type="http://schemas.microsoft.com/office/2007/relationships/ui/ _

extensibility"

Target="customui/customUI14.xml"/>

Here’s the Excel-modified relationship:

Click here to view code image

<Relationship Id="rE1FA1CF0-6CA9-499E-9217-90BF2D86492F"

Type="http://schemas.microsoft.com/office/2007/relationships/ui/ _

extensibility"

Target="customui/customuUI14.xml"/>

In the RELS file, the error also appears if you split the relationship line within a quoted string. You might recall that you were cautioned against this in the “Understanding the RELS File” section, earlier in this chapter. In this case, Excel could not fix the file, and you must make the correction yourself.

Wrong number of arguments or invalid property assignment

If there is a problem with the sub being called by a control, you might see the error message in Figure 25-14 when you try to run code from your ribbon. For example, the onAction of a button requires a single IRibbonControl argument such as the following:

Sub HelloWorld(control As IRibbonControl)

It would be incorrect to leave off the argument, as shown here:

Sub HelloWorld()

[image: The figure shows an error message stating there is a problem with the arguments of the macro attached to the ribbon control.]

FIGURE 25-14 It’s important for the subs being called by your controls to have the proper arguments. Refer to Table 25-2 for the various control arguments.

Invalid file format or file extension

The error message shown in Figure 25-15 looks rather drastic, but it could be deceiving. You could get it if you’re missing quotation marks around an attribute’s value in the RELS file. For example, look carefully at the following line, and you’ll see that the Type value is missing its quotations marks:

Type=http://schemas.microsoft.com/office/2007/relationships/ui/extensibility

The line should have been this:

Type="http://schemas.microsoft.com/office/2007/relationships/ui/extensibility"

[image: The figure shows an error message stating the workbook cannot be opened due to an invalid file format or extension. The error, though, is actually in the ribbon XML code.]

FIGURE 25-15 A missing quotation mark can generate a drastic message, but it’s easily fixed.

Nothing happens

If you open your modified workbook and your ribbon doesn’t appear, but you don’t get an error message, double-check your RELS file. It’s possible that you forgot to update it with the required relationship to your custumUI14.xml file.

Other ways to run a macro

Using a custom ribbon is the most elegant way to run a macro; however, if you have only a couple of macros to run, it can be a bit of work to modify the file. You could have the client invoke a macro by going to the View tab, selecting Macros, View Macros, and then selecting the macro from the Macros dialog box and clicking the Run button, but this is a bit unprofessional—and tedious. Other options are discussed in the following sections.

Using a keyboard shortcut to run a macro

The easiest way to run a macro is to assign a keyboard shortcut to it. Open the Macro dialog box by selecting the Developer or View tab and clicking Macros or by pressing Alt+F8. Then select the macro and click Options. Assign a shortcut key to the macro. Figure 25-16 shows the shortcut Ctrl+Shift+H being assigned to the RunHello macro. You can now conspicuously post a note on the worksheet, reminding the client to press Ctrl+Shift+H to clean the first column.

[image: The figure shows a screenshot of the Macro and Macro Options dialog boxes. In the Macro dialog box, the RunHello macro has been selected. The Macro Options dialog box lists the name of the selected macro, RunHello, and the shortcut key assigned to it. A description of the macro can be entered in the Description field.]

FIGURE 25-16 The simplest way to enable a client to run a macro is to assign a shortcut key to the macro. Ctrl+Shift+H now runs the RunHello macro.

[image: Images]

Caution Be careful when assigning keyboard shortcuts. Many of the keys are already mapped to important Windows shortcuts. If you would happen to assign a macro to Ctrl+C, for example, anyone who uses this shortcut to copy the selection to the Clipboard will be frustrated when your application does something else in response to this common shortcut. The letters J, M, and Q are usually good choices because as of Excel 2019, they had not yet been assigned to Excel’s menu of “Ctrl+” shortcut combinations. Ctrl+L and Ctrl+T used to be available, but these are now used to create tables.

Attaching a macro to a command button

Two types of buttons can be embedded in a sheet: the traditional button shape that you can find in the Form Controls section and an ActiveX command button. (You can access both on the Developer tab under the Controls, Insert option.)

To add a form control button with a macro to your sheet, follow these steps:

	On the Developer tab, click the Insert button and select the button control from the Form Controls section of the drop-down, as shown in Figure 25-17.

[image: The figure shows the Insert Controls drop-down menu on the Developer tab. The drop-down menu is split into two sections: with the top section showing the Form Controls and the bottom section showing the ActiveX controls.]

FIGURE 25-17 The form controls are found under the Insert icon on the Developer tab.

	Place your cursor in the worksheet where you want to insert the button and then click and drag to create the shape of the new button. When you release the mouse button, the Assign Macro dialog box displays.

	In the Assign Macro dialog box, select a macro to assign to the button and click OK.

	Highlight the text on the button and type new meaningful text.

	To change the font, text alignment, and other aspects of the button’s appearance, right-click the button and select Format Control from the pop-up menu.

	To reassign a new macro to the button, right-click the button and select Assign Macro from the pop-up menu.

Attaching a macro to a shape

The previous method assigned a macro to an object that looks like a button. You can also assign a macro to any drawing object on the worksheet. To assign a macro to an Autoshape (which you get by selecting Insert, Illustrations, Shapes), right-click the shape and select Assign Macro, as shown in Figure 25-18.

This method is useful because you can easily add a drawing object with code and use the OnAction property to assign another macro to the object. There is one big drawback to this method: If you assign a macro that exists in another workbook, and the other workbook is saved and closed, Excel changes the OnAction for the object to be hard-coded to a specific folder.

[image: The figure shows a star shape and the corresponding pop-up window. Assign Macro is highlighted in the pop-up window.]
FIGURE 25-18 Macros can be assigned to any drawing object on the worksheet.

Attaching a macro to an ActiveX control

ActiveX controls are newer than form controls and slightly more complicated to set up. Instead of simply assigning a macro to a button, you have a button_click event where you can either call another macro or have the macro code actually embedded in the event. Follow these steps:

	On the Developer tab, click the Insert button and select the Command Button icon from the ActiveX Controls section.

	Place your cursor in the worksheet where you want to insert the button, and then click and drag to create the shape of the new button.

	To format the button, right-click the button and select Properties or select Controls, Properties from the Developer tab. You can now adjust the button’s caption and color in the Properties window, as shown in Figure 25-19. If nothing happens when you right-click the button, enter Design mode by clicking the Design Mode button on the Developer tab.

[image: The figure shows an ActiveX button on a sheet and its corresponding Properties window.]

FIGURE 25-19 Use the Properties window to adjust aspects of the ActiveX button.

	To assign a macro to the button, right-click it and select View Code. This creates the header and footer for the button_click event in the code window for the current worksheet. Type the code you want to have run or the name of the macro you want to call.

[image: Images]

Note There is one annoying aspect of this Properties window: It is huge and covers a large portion of your worksheet. Eventually, if you want to use the worksheet, you’re going to have to resize or close this Properties window. When you close the Properties window, it is also hidden in the VB Editor. I would prefer to be able to close this Properties window without affecting my VB Editor environment.

Running a macro from a hyperlink

There is a trick you can use to run a macro from a hyperlink. Because many people are used to clicking a hyperlink to perform an action, this method might be the most intuitive for your clients.

The trick is to set up placeholder hyperlinks that simply link back to themselves. Select the cell with the text you want to link to, and from the Insert tab, select Links, Link (or press Ctrl+K). In the Insert Hyperlink dialog, click Place In This Document. Figure 25-20 shows a worksheet with four hyperlinks. Each hyperlink points back to its own cell.

[image: The figure shows a worksheet with cell D8 selected. The Insert Hyperlink dialog box is open with Place In This Document selected. The selected reference is to D8 and the selected place in the document is Menu.]

FIGURE 25-20 To run a macro from a hyperlink, you must create placeholder hyperlinks that link back to their cells. Then, using an event handler macro in the worksheet’s code module, you can intercept the hyperlink and run any macro.

When a client clicks a hyperlink, you can intercept this action and run any macro by using the FollowHyperlink event. Enter the following code in the code module for the worksheet:

Click here to view code image

Private Sub Worksheet_FollowHyperlink(ByVal Target As Hyperlink)

Select Case Target.TextToDisplay

Case "Quarter 1"

RunQuarter1Report

Case "Quarter 2"

RunQuarter2Report

Case "Quarter 3"

RunQuarter3Report

Case "Quarter 4"

RunQuarter4Report

End Select

End Sub

Next steps

From custom ribbons to simple buttons or hyperlinks, there are plenty of ways to ensure that your clients never need to see the Macro dialog box. In Chapter 26, you find out how to package your macros into add-ins that you can easily distribute to others.

CHAPTER 26
Creating add-ins

In this chapter, you will:

	Learn what a standard add-in is

	Learn how to create, install, and uninstall an add-in

	Use a hidden workbook as an alternative to an add-in

You can create standard add-in files for your clients to use by employing VBA. After the client installs your add-in on her PC, the program will be available to Excel and will load automatically every time she opens Excel. This chapter discusses standard add-ins.

Be aware that there are two other kinds of add-ins: COM add-ins and Office add-ins. Neither of these can be created with VBA. You need either Visual Basic.NET or Visual C++ to create COM add-ins. You use HTML, CSS, and JavaScript to create Office add-ins. Chapter 27, “An introduction to creating Office add-ins,” familiarizes you with the basics of creating Office add-ins.

Characteristics of standard add-ins

If you are going to distribute an application, you might want to package the application as an add-in. Typically saved with an .xlam extension, an add-in offers several advantages:

	Usually, clients can bypass your Workbook_Open code by holding down the Shift key while opening the workbook. With an add-in, they cannot bypass the Workbook_Open code in this manner.

	After you use the Add-ins dialog box to install an add-in (by selecting File, Options, Add-Ins, Manage Excel Add-Ins, Go), the add-in will always be loaded and available.

	Programs in an installed add-in can still run even if the macro security level is set to disallow macros.

	Generally, custom functions work only in the workbook in which they are defined. A custom function added to an add-in is available to all open workbooks.

	The add-in does not show up in the list of open files in the Window menu item. The client cannot unhide the workbook by choosing View, Window, Unhide.

[image: Images]

Caution There is one strange rule for which you need to plan. An add-in is a hidden workbook. Because the add-in can never be displayed, your code cannot select or activate any cells in the add-in workbook. You are allowed to save data in your add-in file, but you cannot select any part of the file. Also, if you do write to your add-in file data that you want to be available in the future, your add-in code needs to handle saving the file. Because your clients will not realize that the add-in is there, they will never be reminded or asked to save an unsaved add-in. You might, therefore, add ThisWorkbook.Save to the add-in’s Workbook_BeforeClose event.

Converting an Excel workbook to an add-in

Add-ins are typically managed using the Add-Ins dialog box. This dialog box presents an add-in name and description, which you control by entering two specific properties for the file before you convert it to an add-in.

[image: Images]

Note If you’re modifying an existing add-in, you must make it visible before you can edit the properties. See the section “Using the VB Editor to convert a file to an add-in” later in this chapter.

To change the title and description shown in the Add-Ins dialog box, follow these steps:

	Select File, Info. Excel displays the Document Properties pane on the right side of the window.

	From the Properties drop-down menu, select Advanced Properties.

	Enter the name for the add-in in the Title field.

	Enter a short description of the add-in in the Comments field (see Figure 26-1).

	Click OK to save your changes.

	Click the back arrow at the top left of the screen to return to your workbook.

There are two ways to convert a file to an add-in. The first method, using Save As, is easier but has an annoying byproduct. The second method uses the VB Editor and requires two steps, but it gives you some extra control. The sections that follow describe the steps for using these methods.

[image: The figure shows the Properties dialog box on an add-in.]
FIGURE 26-1 Fill in the Title and Comments fields before converting a workbook to an add-in.

Using Save As to convert a file to an add-in

Select File, Save As. In the Save As Type field, scroll through the list and select Excel Add-In (*.xlam).

As shown in Figure 26-2, the file name changes from filename.xlsm to filename.xlam. Also note that the save location automatically changes to an AddIns folder. The location of this folder varies by operating system, but it will be something along the lines of C:\Users\username\AppData\Roaming\Microsoft\AddIns. It is also confusing that, after the .xlsm file is saved as an .xlam type, the unsaved .xlsm file remains open. It is not necessary to keep an .xlsm version of the file because it is easy to change an .xlam back to an .xlsm for editing.

[image: The figure shows the Save As dialog box. The Save As Type is set for add-ins. The file name is updated to have an xlam extension and the save to folder is now the AddIns folder.]
FIGURE 26-2 The Save As method changes the IsAddin property, changes the name, and automatically saves the file in your AddIns folder.

[image: Images]

Tip If, before selecting the add-in file type, you are already in the folder to which you want to save, just click the back arrow in the Save As window to return to that folder.

[image: Images]

Caution When the Save As method is being used to create an add-in, a worksheet must be the active sheet. The add-in file type is not available if a chart sheet is the active sheet.

Using the VB Editor to convert a file to an add-in

The Save As method is great if you are creating an add-in for your own use. However, if you are creating an add-in for a client, you probably want to keep the add-in stored in a folder with all the client’s application files. It is fairly easy to bypass the Save As method and create an add-in using the VB Editor:

	Open the workbook that you want to convert to an add-in.

	Switch to the VB Editor.

	In the Project Explorer, click ThisWorkbook.

	In the Properties window, find the property called IsAddin and change its value to True, as shown in Figure 26-3.

[image: The figure shows the ThisWorkbook module’s Properties window. The IsAddin property is highlighted, and its value is set to True.]

FIGURE 26-3 Creating an add-in is as simple as changing the IsAddin property of ThisWorkbook.

	Press Ctrl+G to display the Immediate window.

	In the Immediate window, save the file, using an .xlam extension, like this:

Click here to view code image

ThisWorkbook.SaveAs FileName:="C:\ClientFiles\Chap26.xlam", _

FileFormat:= xlOpenXMLAddIn

You’ve now successfully created an add-in in the client folder that you can easily find and email to your client.

[image: Images]

Tip If you ever need to make an add-in visible—for example, to change the properties or view data you have on sheets—repeat the previous steps except select False for the IsAddin property. The add-in becomes visible in Excel. When you are done with your changes, change the property back to True.

Having a client install an add-in

When you email an add-in to a client, have her save it on her desktop or in another easy-to-find folder. You should tell her to follow these steps:

	Open Excel and select File, Options. The Excel Options dialog appears.

	In the left navigation pane, select Add-Ins.

	At the bottom of the window, select Excel Add-Ins from the Manage drop-down menu (see Figure 26-4).

[image: A screenshot of the Add-Ins options in the Excel Options dialog box. The Manage drop-down menu is open and the Excel Add-ins option is selected.]
FIGURE 26-4 Make sure to select Excel Add-Ins, not COM Add-Ins, from the drop-down menu.

	Click Go. Excel displays the familiar Add-Ins dialog box, shown in Figure 26-5.

	In the Add-Ins dialog box, click the Browse button.

	Browse to where you saved the file. Highlight the add-in and click OK.

[image: Images]

Note Excel might prompt you to copy the add-in to its AddIns folder. I do not do this because the folder is hard to find, especially if I need to update the file.

The add-in is now installed. If you allow it, Excel copies the file from where you saved it to the default AddIns folder. In the Add-ins dialog, the title of the add-in and comments as specified in the File Properties dialog box are displayed (see Figure 26-5).

[image: The figure shows the Add-Ins dialog box. The add-in, TextToValues, is selected. Information about the add-in is shown at the bottom of the dialog box.]
FIGURE 26-5 The add-in is now available for use.

Standard add-ins are not secure

Remember that anyone can go to the VB Editor, select your add-in, and change the IsAddin property to False to unhide the workbook. You can discourage this process by locking the .xlam project for viewing and protecting it in the VB Editor, but be aware that plenty of vendors sell a password-hacking utility for less than $40. To add a password to your add-in, follow these steps:

	Go to the VB Editor.

	Select Tools, VBAProject Properties.

	Select the Protection tab.

	Select the Lock Project for Viewing check box.

	Enter the password twice for verification.

[image: Images]

CAUTION If you protect the code and don’t include error handling, people won’t be able to click the Debug button if an error message appears. See Chapter 24, “Handling errors,” for more information on handling errors in code so that the program ends properly and still provides customers with error information they can pass to you.

Closing add-ins

Add-ins can be closed in three ways:

	Clear the add-in from the Add-Ins dialog box. This closes the add-in for this session and ensures that it does not open during future sessions.

	Use the VB Editor to close the add-in. In the VB Editor’s Immediate window, type this code to close the add-in:

 Workbooks("YourAddinName.xlam").Close

	Close Excel. All add-ins are closed when Excel is closed.

Removing add-ins

You might want to remove an add-in from the list of available add-ins in the Add-Ins dialog box. There is no effective way to do this within Excel. Follow these steps:

	Close all running instances of Excel.

	Use Windows Explorer to locate the file. The file might be located in %AppData%\Microsoft\AddIns\.

	In Windows Explorer, rename the file or move it to a different folder.

	Open Excel. You get a note warning you that the add-in could not be found. Click OK to dismiss this warning.

	Select Excel Add-Ins on the Developer tab. In the Add-Ins dialog box, clear the name of the add-in you want to remove. Excel notifies you that the file cannot be found and asks whether you want to remove it from the list. Click Yes.

Using a hidden workbook as an alternative to an add-in

One cool feature of an add-in is that the workbook is hidden. This keeps most beginners from poking around and changing formulas. However, it is possible to hide a workbook without creating an add-in.

It is easy enough to hide a workbook by selecting View, Window, Hide In Excel. The trick is to then save the workbook as Hidden. With a file that is hidden, the normal File, Save choice does not work. You can save the file from the VB Editor’s Immediate window. In the VB Editor, make sure that the workbook is selected in the Project Explorer. Then, in the Immediate window, type the following:

ThisWorkbook.Save

There is a downside to using a hidden workbook: A custom ribbon tab will not be visible if the workbook it is attached to is hidden.

Case study: Using a hidden code workbook to hold all macros and forms

Access developers routinely use a separate database to hold macros and forms. They place all forms and programs in one database and all data in a second database. These database files are linked through the Link Tables function in Access.

For large projects in Excel, I recommend using the same method. You use a little bit of VBA code in the Data workbook to open the Code workbook.

The advantage to this method is that when it is time to enhance the application, you can mail a new code file without affecting the client’s data file.

I once encountered a single-file application rolled out by another developer that the client had sent out to 50 sales reps. The reps replicated the application for each of their 10 largest customers. Within a week, there were 500 copies of this file floating around the country. When they discovered a critical flaw in the program, patching 500 files was a nightmare.

We designed a replacement application that used two workbooks. The data workbook ended up with about 20 lines of code. This code was responsible for opening the code workbook and passing control to the code workbook. As the files were being closed, the data workbook would close the code workbook.

There were many advantages to this method. First, the customer data files were kept to a very small size. Each sales rep now has 1 workbook with program code and 10 or more data files for each customer. As enhancements are completed, we distribute new program code workbooks. The sales rep opens his or her existing customer data workbook, which automatically grabs the new code workbook.

Because the previous developer had been stuck with the job of trying to patch 500 workbooks, we were extremely careful to have as few lines of code in the customer workbook as possible. There are maybe 10 lines of code, and they were tested thoroughly before being sent out. By contrast, the code workbook contains 3,000-plus lines of code. If something goes wrong with the application, I am almost certain that the bad code is in the easy-to-replace code workbook.

In the customer data workbook, the Workbook_Open procedure has this code:

Click here to view code image

Private Sub Workbook_Open()

On Error Resume Next

Click here to view code image

X = Workbooks("Code.xlsm").Name

If Not Err = 0 then

On Error Goto 0

Workbooks.Open Filename:= _

ThisWorkbook.Path & Application.PathSeparator & "Code.xlsm"

End If

On Error Goto 0

Application.Run "Code.xlsm!CustFileOpen"

End Sub

The CustFileOpen procedure in the code workbook could also handle adding a custom menu for the application. Because custom tabs for hidden workbooks are not visible, you have to use the legacy CommandBars method to create a menu that appears on the Add-Ins tab.

This dual-workbook solution works well and allows updates to be seamlessly delivered to the client without touching any of the 500 customer files.

Next steps

Microsoft has introduced a new way of sharing applications with customers: Office add-ins. These are programs that, simply put, use JavaScript, HTML, and XML to put a web page in a frame on a sheet. Chapter 27 introduces you to what is involved in creating these apps and deploying them over a network.

CHAPTER 27
An introduction to creating Office add-ins

In this chapter, you will:

	Create an Office add-in

	Add interactivity to an Office add-in

	Learn the basics of HTML and JavaScript

	Use XML to define an Office add-in

With Office 2013, Microsoft introduced Office add-ins, applications that provide expanded functionality to a sheet, such as a selectable calendar, or an interface with the web, such as retrieving information from Wikipedia or Bing. Like Excel add-ins, once Office add-ins are installed, they’re always available. But unlike Excel add-ins, the Office add-ins have limited interaction with sheets and do not use VBA.

An Office add-in consists of an HTML file that provides the user interface on a task or content pane, a CSS file to provide styles for the HTML file, a JavaScript file to provide interactivity to the HTML file, and an XML file to register the Office add-in with Excel. This might sound like a lot of new programming skills, but it’s not. I’ve designed only the most basic web pages, and that was years ago, but I was able to apply my VBA programming skills to JavaScript, which is where the bulk of the programming goes. The language is a little different, but it’s not so different that you can’t create a simple, useful app.

This chapter introduces you to creating an Office add-in to distribute locally and to the basics of the various programming languages. It is not meant to provide in-depth instruction, especially for JavaScript.

[image: Images]

Note JavaScript custom functions are user-defined functions (UDFs) you create for use with Excel Online. They use the same JavaScript API as Office add-ins. This book doesn’t cover creating them. For more information, see Excel JavaScript UDFs Straight to the Point by Suat M. Ozgur (ISBN 978-1-61547-247-5).

[image: Images]

Tip You don’t need a fancy program to write the code for any of the files in an Office add-in. The Notepad program that comes with Windows does the job. But when you consider the case sensitivity of some programming languages, like JavaScript, using a program that provides some help is a good idea. I spent a couple of hours in frustration over some of the samples in this chapter, wondering why they didn’t work when the code was perfect. Except the code wasn’t perfect. Again and again I missed the case sensitivity in JavaScript and XML, and, in one case, I had a curly apostrophe instead of a straight one.

Switching to Notepad++ (www.notepad-plus-plus.org) was a quick and easy solution because it highlights keywords and grays out strings (which is how I found the incorrect apostrophe around a string).

Creating your first Office add-in—Hello World

Hello World is probably the most popular first program for programmers to try out. It’s a simple program, just outputting the words “Hello World,” but it introduces the basics required by the application. So, with that said, it’s time to create a Hello World Office add-in.

[image: Images]

Caution A network is used to distribute the Office add-in locally. You cannot use a local drive or a network drive mapped to a drive letter. If you do not have access to a network, you will not be able to test your Office add-in.

[image: Images]

Note In the following steps, you enter text into a text editor. Unlike with the VB Editor, there isn’t a compiler to point out mistakes before you run the program. It is very important that you enter the text exactly as written, including the case of text within quotation marks.

To open a file for editing, such as with Notepad, right-click the file and select Open With. If you see Notepad, select it; otherwise, select Choose Another App. From the dialog box that opens, find Notepad. Make sure that Always Use This App To Open filetype Files is not selected and then click OK. The next time you need to edit the file, Notepad appears in the quick list of available programs in the Open With option.

Follow these steps to create your Office add-in:

	Create a folder and name it HelloWorld. This folder can be on your local drive while you are creating the program. All the program files will be placed in this folder. When you’re finished, you’ll move it to the network.

	Create the HTML program by inserting a text file in the folder and naming it HelloWorld.html. Then open the HTML file for editing and enter the following code in it:

Click here to view code image

<!DOCTYPEhtml>

<html>

<head>

<meta charset="UTF-8"/>

<meta http-equiv="X-UA-Compatible" content="IE=Edge"/>

<link rel="stylesheet" type="text/css" href="program.css"/>

</head>

<body>

<p>Hello World!</p>

</body>

</html>

Save and close the file.

	Create the CSS file to hold the styles used by the HTML file by inserting a text file into the folder and naming it program.css. Note that this is the same file name used in the HTML file in the <link rel> tag. Open the CSS file for editing and enter the following code in it:

Click here to view code image

body

{

position:relative;

}

li :hover

{

text-decoration: underline;

cursor:pointer;

}

h1,h3,h4,p,a,li

{

font-family: "Segoe UI Light","Segoe UI",Tahoma,sans-serif;

text-decoration-color:#4ec724;

}

Save and close the file.

	Create the XML file by inserting a text file in the folder and naming it HelloWorld.xml. Then open the XML file for editing and enter the following code in it.

[image: Images]

Caution The following code sample and others that follow include lines that extended beyond the width of the page, so I needed to add a _ to indicate a line that is continued. Unlike in VBA, in this case you should not type the underscores. Instead, when you get to an underscore, just ignore it and continue inputting the code after it on the same line.

Click here to view code image

<?xml version="1.0" encoding="utf-8"?>

<OfficeApp xmlns="http://schemas.microsoft.com/office/appforoffice/1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="TaskPaneApp">

<Id>08afd7fe-1631-42f4-84f1-5ba51e242f98</Id>

<Version>1.0</Version>

<ProviderName>Tracy Syrstad</ProviderName>

<DefaultLocale>EN-US</DefaultLocale>

<DisplayName DefaultValue="Hello World app"/>

<Description DefaultValue="My first app."/>

<IconUrl DefaultValue=

"http://officeimg.vo.msecnd.net/_layouts/images/general/ _

officelogo.jpg"/>

 <Capabilities>

<Capability Name="Document"/>

<Capability Name="Workbook"/>

 </Capabilities>

 <DefaultSettings>

 <SourceLocation DefaultValue="\\workpc\MyApps\HelloWorld\ _

HelloWorld.html"/>

 </DefaultSettings>

 <Permissions>ReadWriteDocument</Permissions>

</OfficeApp>

Do not close the XML file yet.

	While the XML file is still open, note the ID 08afd7fe-1631-42f4-84f1-5ba51e242f98. This is a globally unique identifier (GUID). If you are testing on a private network and not distributing this file, you can likely use this GUID. But if you’re on a business network with other programmers or if you’re distributing the file, you must generate your own GUID. See the section “Using XML to define an Office add-in,” later in this chapter, for more information on GUIDs.

[image: Images]

Note GUID stands for globally unique identifier. A GUID is a unique reference number that identifies software. It’s usually displayed as 32 alphanumeric digits separated into five groups (8-4-4-4-12) by hyphens. A GUID has so many digits that it's rare for identical ones to be generated.

	Move the HelloWorld folder to a network share folder if it’s not already there. Note the path to the folder and to the HTML file because you will be making use of this information. The path to the folder should be \\myserver\myfolder. For example, my HelloWorld folder is located at \\workpc\MyApps\HelloWorld.

	Open the XML file for editing and change <SourceLocation> (located near the bottom of the code) to the location of the HTML file on your network. Save and close the file.

	Configure your network share as a Trusted Catalog Address by following these steps:

	Start Excel and go to File, Options, Trust Center and click Trust Center Settings.

	Select Trusted Add-In Catalogs.

	Enter your folder path in the Catalog URL field and click Add Catalog. The path is added to the list box.

	Select the Show In Menu box.

	Click OK. You should see a prompt indicating that the Office add-in will be available the next time Excel starts (see Figure 27-1). Click OK twice.

	Restart Excel.

[image: Images]

Caution Only one network share at a time can be configured to show in the catalog. If you want users to have access to multiple Office add-ins at once, the XML for the Office add-ins must be stored in the same network share. Otherwise, users will have to go into their settings and select which catalog to show.

	Insert the Office add-in you just created into Excel by selecting Insert, Add-Ins, Store. Then, in the Office Add-Ins dialog box, select Shared Folder. If you don’t see anything when you’ve selected the link, click Refresh. The Hello World Office add-in should be listed, as shown in Figure 27-2.

[image: Images]

Note If you still do not see anything after refreshing, there is something incorrect in the files or the setup. Carefully review all the code and steps. If you do not see anything incorrect, try changing the GUID.

[image: The figure shows the Trusted Add-In Catalogs page of the Trust Center. The path to the HelloWorld folder has been added to the Trusted Catalogs Table. Also shown is the message box confirming the addition and informing the user Excel must be restarted for the change to be applied.]

FIGURE 27-1 Configure the location of your Office add-ins under Trusted Add-In Catalogs.

[image: The figure shows the Office Add-Ins dialog box. The Hello World app is listed. On the right side of the dialog box is a Refresh link.]

FIGURE 27-2 The Shared Folder lists any Office add-ins available in the active catalog.

	Select the Office add-in and click Insert. A task pane on the right side of the Excel window opens, as shown in Figure 27-3, and displays the words “Hello World!”

[image: The figure shows a task pane displaying the results of the Hello World app.]

FIGURE 27-3 By creating Hello World, you take a first step in creating interactive Office add-ins.

Adding interactivity to an Office add-in

The Hello World Office add-in created in the preceding section is a static one; it doesn’t do anything except show the words in the code. But as you browse the web, you run into dynamic web pages. Some of those web pages use JavaScript, a programming language that adds automation to elements on otherwise static websites. In this section, you modify the Hello World Office add-in by adding a button to write data to a sheet and another button that reads data from a sheet, performs a calculation, and writes the results to the task pane.

[image: Images]

Tip You don’t have to restart Excel if you are editing the code of an installed Office add-in. Instead, right-click in the Office add-in’s task pane and select Reload.

To add these interactive features to the Hello World Office add-in, follow these steps:

	To create the JavaScript file that will provide the interactivity for the two buttons Write Data To Sheet and Read & Calculate Data From Sheet, first insert a text file in the Hello World folder and name the file program.js. Then open the JavaScript file for editing and enter the following code in it:

Click here to view code image

Office.initialize = function (reason) {

//Add any needed initialization

}

//declare and set the values of an array

var MyArray = [[234],[56],[1798], [52358]];

//write MyArray contents to the active sheet

function writeData() {

Office.context.document.setSelectedDataAsync(MyArray, _

{coercionType: 'matrix'});

}

/*reads the selected data from the active sheet

so that we have some content to read*/

function ReadData() {

Office.context.document.getSelectedDataAsync("matrix", _

function (result) {

//if the cells are successfully read, print the results in the task pane

if (result.status === "succeeded"){

sumData(result.value);

}

//if there was an error, print the error in the task pane

else{

document.getElementById("results").innerText = _

result.error.name;

}

});

}

/*the function that calculates and shows the result

in the task pane*/

function sumData(data) {

var printOut = 0;

//sum together all the values in the selected range

for (var x = 0 ; x < data.length; x++) {

for (var y = 0; y < data[x].length; y++) {

printOut += data[x][y];

}

}

//print the results in the task pane

document.getElementById("results").innerText = printOut;

}

Save and close the file.

[image: Images]

Note In JavaScript, lines prefixed by // and /* are comments.

	Edit the HelloWorld.html file so that it points to the JavaScript file program.js, and add the two buttons used by the JavaScript code. To do this, replace the existing code with the following:

Click here to view code image

<!DOCTYPEhtml>

<html>

<head>

<meta charset="UTF-8"/>

<meta http-equiv="X-UA-Compatible" content="IE=Edge"/>

<link rel="stylesheet" type="text/css" href="program.css"/>

<!--begin pointer to JavaScript file-->

<script src = "https://appsforoffice.microsoft.com/lib/1.0/ _

hosted/office.js"></script>

<script src= "program.js"></script>

<!--end pointer to JavaScript file-->

</head>

<body>

<!--begin replacement of body-->

<button onclick="writeData()">Write Data To Sheet</button></br>

<button onclick="ReadData()">Read & Calculate Data From Sheet _

</button></br>

<h4>Calculation Results: <div id="results"></div> </h4>

<!--end replacement of body-->

</body>

</html>

In this new code, you’ve added <script> tags and replaced the code between the <body> tags. Comment tags, <!--comments-->, are included to show where the changes are.

	Save and close the file.

After creating the JavaScript file and updating the HTML file, reload the Office add-in and test it by clicking the Write Data To Sheet button. It should write the numbers from MyArray onto the sheet. With those cells selected, click Read & Calculate Data From Sheet, and the results of adding the selected numbers together will appear in the Calculation Results line of the task pane, as shown in Figure 27-4.

[image: The figure shows the app’s task pane. It consists of two buttons—Write Data To Sheet and Read & Calculate Data From Sheet. Below them is the label Calculation Results followed by the calculated result of the values selected on the sheet.]

FIGURE 27-4 Use JavaScript to create an Office add-in that can perform a calculation with data from a sheet.

A basic introduction to HTML

The HTML code in an Office add-in controls how the task or content pane will look, such as the text and buttons. If you open the HTML file from either of your Hello World files, it opens in your default browser and looks as it did in Excel’s task pane (though without any functionality). You can design the Office add-in as you would a web page, including adding images and links. The following sections review a few basics to get you started in designing your own Office add-in interface.

Using tags

HTML consists of elements, such as images, links, and controls, that are defined by the use of tags enclosed in angle brackets. For example, the starting tag <button> tells the code that what follows, inside and outside the tag’s brackets, relates to a button element. For each start tag, you have an end tag, which is usually the same as the opening tag but with a slash—like </button>—but some tags can be empty—like />. A browser does not display tags or anything within a tag’s brackets. Text that you want displayed needs to be outside the tag's brackets.

Comments have a tag of their own and don’t require your typical end tag. As in VBA, commented text doesn’t appear on the screen. Add comments to your HTML code like this:

<!--This is a comment-->

A multiline comment would appear like this:

Click here to view code image

<!--This is a multiline comment.

Notice that nothing special is needed -->

Adding buttons

To create the code for a button, you need to label the button and link it to a function in the JavaScript file that will run when the button is clicked. Here’s an example:

Click here to view code image

<button onclick="writeData()">Write Data To Sheet</button>

The first part, <button onclick="writeData()">, identifies the control as a button and assigns the function writeData to the click event for the button. Notice that the function name is in quotation marks and includes argument parentheses, which are empty. The second part, Write Data To Sheet, is the text of the label on the button. The label name is not in quotation marks. The line ends with the closing tag for the button.

To change other attributes of the button, you just need to specify those attributes. For example, to change the button text to red, add the style attribute for color, like this:

Click here to view code image

<button onclick="writeData()" style="color:Red">Write Data To Sheet</button>

To add a tooltip that appears when the mouse is placed over the button, as shown in Figure 27-5, use the title attribute, like this:

Click here to view code image

<button onclick="writeData()" style="color:Red"

title = "Use to quickly add numbers to your sheet">

 Write Data To Sheet</button></br>

Use a space to separate multiple attributes. After an attribute name, such as style, put an equal sign and then the value in quotation marks. Also notice that HTML is rather forgiving about where you put your line breaks. Just don’t put them within a string, or you might also get a line break on the screen in that position.

[image: The figure shows the app’s task pane. The mouse pointer is over the Write Data To Sheet button, and the tooltip is visible.]

FIGURE 27-5 Add other attributes to your button to change colors or add tooltip text for users.

Using CSS files

CSS stands for Cascading Style Sheets. You create styles in Excel and Word to make it easy to modify how text looks in an entire file without changing every occurrence. You can do the same thing with an Office add-in by creating a separate style file (CSS) that your HTML code references. In the file, you set up rules for various elements of the HTML file, such as layout, colors, and fonts.

The CSS file provided in the Hello World example can be used for a variety of projects. It includes styles for h1, h3, and h4 headings, hyperlinks (a), paragraph tags (p), and bullets (li).

Using XML to define an Office add-in

XML defines the elements needed to display and run an Office add-in in Excel, including the GUID, Office add-in logo, and location of the HTML file. XML also configures how the Office add-in will appear in the Office Add-Ins store and can provide a version number for the program.

[image: Images]

Caution XML tags are case sensitive. When you make changes to the provided Hello World sample, be sure you don’t change any of the tags but only their values.

Two types of user interfaces are available for an Office add-in: a task pane or a content pane. A task pane starts off docked on the right side of the Excel window, but a user can undock it and move it around the window. A content pane appears as a frame in the middle of the Excel window. Which type you use is up to you. To tell an Office add-in which type of pane to use, set the xsi:type value to either TaskPaneApp or ContentApp.

You should always use a unique identifier when creating an Office add-in. Websites such as http://www.guidgen.com generate GUIDs for you.

In the Hello World sample, the store icon used is an online icon that Microsoft has made available. But you can also use your own .jpg file. The image should be small, about 32×32 pixels. Update IconURL with the full path to the image, like this:

Click here to view code image

<IconUrl DefaultValue="\\workpc\MyApps\HelloWorld\mrexcellogo.jpg"/>

The SourceLocation tag is used to set the full path to the HTML file. If the HTML file cannot be found when the Office add-in is being installed, an error message appears, stating that the file couldn’t be found.

[image: Images]

Note If you make changes to XML after you’ve already configured the location of the catalog or installed the Office add-in, be sure to click the Refresh link in the Office Add-Ins dialog box. For example, if you switch between TaskPaneApp and ContentApp, the change might not be reflected even if you select to install the Office add-in again. To be safe, refresh the Office Add-Ins dialog box.

Using JavaScript to add interactivity to an Office add-in

JavaScript provides the wow factor behind an Office add-in. You can create a very useful reference with just HTML, but to make an interactive Office add-in, such as a function calculator, you need JavaScript.

The following sections provide a basic introduction to JavaScript. If you are already familiar with JavaScript, you can go ahead to “JavaScript changes for working in the Office add-in.”

[image: Images]

Note The document.getElementById("results").innerText command used in the following examples is the command for the code to put the returned value in the place reserved by the “results” variable in the HTML file.

[image: Images]

Note Microsoft is always making improvements to the JavaScript API, expanding its capabilities to handle Excel’s objects. You can keep up with these changes at the API reference site at https://docs.microsoft.com/en-us/javascript/api/excel?view=office-js.

The structure of a function

JavaScript code consists of functions called by HTML code and by other JavaScript functions. Just as in VBA, each JavaScript function starts with function followed by the name of the function and any arguments in parentheses. But unlike in VBA, there is no End Function at the end; instead, you use curly braces to group the function. See the following subsection, “Curly braces and spaces,” for more information.

JavaScript is case sensitive, including variable and function names. For example, if you create a function called writeData but then try to call WriteData from another function, the code does not work because in one case, write is in lowercase, and in the other it has a capital W. JavaScript recognizes these as different functions. Create case rules for yourself, such as initial caps for each word in a variable, and stick to them. This helps reduce troubleshooting of JavaScript code issues.

Curly braces and spaces

Curly braces ({}) are characters used in JavaScript but not in VBA. You use them to group blocks of code that should be executed together. You can have several sets of braces within a function. For example, you would use them to group all the code in a function; then, within the function, you would use them to group lines of code such as within an if statement.

After you’ve finished typing a line in VBA and gone to another line, you might notice that the line adjusts itself, adding or removing spaces. In JavaScript, spaces don’t usually matter; the exceptions are spaces in strings and spaces between keywords and variables in the code. In the code samples in this section, notice that sometimes I have included spaces (a = 1) and sometimes I have not (a=1).

Semicolons and line breaks

You’ve probably noticed the semicolons (;) used in JavaScript code. They might have appeared at the end of every line, or maybe only on some lines. Perhaps you’ve noticed a line without a semicolon or noticed a semicolon in the middle of a line. The reason the use of semicolons appears inconsistent is that, under normal circumstances, semicolons are not required. A semicolon is a line break. If you use hard returns in your code, you are already placing line breaks, so the semicolon is not needed. If you combine multiple lines of code onto one line, though, you need a semicolon to let the code know that the next piece of code is not part of the previous code.

Comments

There are two ways to comment out lines in JavaScript. To comment out a single line, place two slashes (//) at the beginning of the line, like this:

//comment out a single line in the code like this

If you want to comment out multiple lines in VBA, you have to preface each line with an apostrophe. JavaScript has a cleaner method. At the beginning of the first line you want to comment out, place a slash and an asterisk (/*). At the end of the last line of the comment, place an asterisk and a slash (*/). It looks like this:

/* Comment out

multiple lines of code

like this */

Variables

In VBA, you have the option of declaring variables. If you do declare them, you don’t have to declare the variable type, but after a value is assigned to a variable, it’s not always easy to change the type. In JavaScript, you don’t declare variables, except for arrays. (See the later subsection “Arrays” for more information.) When a value is assigned to a variable, it becomes that type, but if you reference the variable in another way, its type might change.

In the following example, the string “123” is assigned to myVar, but in the next line, a number is subtracted:

myVar = "123"

myVar = myVar-2

JavaScript just goes with it, allowing you to change the variable from a string to a number. If you ran this code, myVar would be 121. Note that myVar+2 would not deliver the same result. See the next subsection, “Strings,” for more information.

If you need to ensure that a variable is of a specific type, use one of these functions to do so: Boolean, Number, or String. For example, you have a function that is reading in numbers imported onto a sheet. As is common in imports, the numbers could be stored as text. Instead of having to ensure that the user converts the data, use the Number keyword when processing the values like this to force the number to be a number:

Number(importedValue)

Strings

As in VBA, in JavaScript you reference strings by using double quotations marks (“string”), but, unlike in VBA, you can also use single quotation marks ('string'). The choice is up to you; just don’t start a string with one type of quotations marks and end with another. The capability to use either set can be useful. For example, if you want to show quoted text, you use the single quotes around the entire string, like this:

Click here to view code image

document.getElementById("results").innerText = 'She heard him shout, "Stay away!"'

This would be the result in the pane:

She heard him shout, "Stay away!"

To concatenate two strings, use the plus (+) sign. You also use the plus to add two numbers. So what happens if you have a variable hold a number as text and add it to a number, as in this example:

myVar = "123"

myVar = myVar+2

You might think that the result would be 125. After all, in the previous example, with -2, the result was 121. In this case, concatenation has priority over addition, and the answer is actually 1232. To ensure that the variable is treated like a number, use the Number function. If the variable it is holding cannot be converted to a number, the function returns NaN, for “not a number.”

Arrays

Arrays are required for processing multiple cells in JavaScript. Arrays in JavaScript are not very different from arrays in VBA. To declare an unlimited-size array, do this:

var MyArray = new Array ()

[image: Images]

Note If you are unfamiliar with using arrays in VBA, see Chapter 8, “Arrays.”

To create an array of limited size, such as 3, do this:

var MyArray = new Array(3)

You can also fill an array at the same time that you declare it. The following creates an array of three elements, two of which are strings and the third of which is a number:

Click here to view code image

var MyArray = ['first value', 'second value', 3]

The array index always starts at 0. To print the second element, second value, of the preceding array, do this:

Click here to view code image

document.getElementById("results").innerText = MyArray[1]

If you’ve declared an array with a specific size but need to add another element, you can add the element by specifying the index number or by using the push() function. For example, to add a fourth element, 4, to the previously declared array, MyArray, do this (because the count starts at 0, the fourth element has an index of 3):

MyArray [3] = 4

If you don’t know the current size of the array, use the push() function to add a new value to the end of the array. For example, if you don’t know the index value for the last value in the preceding array, you can add a new element, fifth value, like this:

MyArray.push('fifth value')

Refer to the section “How to do a For each..next statement in JavaScript” if you need to process the entire array at once. JavaScript has other functions for processing arrays, such as concat(), which can join two arrays, and reverse(), which reverses the order of the array’s elements. Because this is just a basic introduction to JavaScript, those functions are not covered here. For a tip on applying a math function to an entire array with a single line of code, see the section “Math functions in JavaScript.”

JavaScript for loops

When you added interactivity to the Hello World Office add-in earlier in this chapter, you used the following code to sum the selected range:

Click here to view code image

for (var x = 0 ; x < data.length; x++) {

for (var y = 0; y < data[x].length; y++) {

printOut += data[x][y];

}

}

The two for loops process the array, data, that is passed into the function, with x as the row and y as the column.

A for loop consists of three separate sections separated by semicolons. When the loop is started, the first section, var x=0, initializes any variables used in the loop. Multiple variables would be separated by commas. The second section, x < data.length, tests whether the loop should be entered. The third section, x++, changes any variables to continue the loop, in this case incrementing x by 1 (x++ is shorthand for x=x+1). This section can also have more than one variable, with commas separating them.

[image: Images]

Tip To break out of a loop early, use the break keyword.

How to do an if statement in JavaScript

The basic if statement in JavaScript has this syntax:

if (expression){

//do this

}

Here, expression is a logical function that returns true or false, just as in VBA. If the expression is true, the code continues and runs the lines of code in the //do this section. To execute code if the expression is false, you need to add an else statement, like this:

if (expression){

//do this if true

}

else{

//do this if false

}

How to do a Select..Case statement in JavaScript

Select..Case statements are very useful in VBA as an alternative to using multiple If..Else statements. In JavaScript, similar functionality is in the switch() statement. Typically, this is the syntax of a switch() statement:

Click here to view code image

switch(expression){

case firstcomparison : {

//do this

break;

}

case secondcomparison : {

//do this

break;

}

default : {

//no matches, so do this

break;

}

}

Here, expression is the value you want to compare to the case statements. The break keyword is used to stop the program from comparing to the next statement, after it has run one comparison. That is one difference from a Select statement: Whereas in VBA, after a comparison is successful, the program leaves the Select statement, in JavaScript, without the break keyword, the program continues in the switch statement until it reaches the end. Use default as you would a Case Else in VBA—to cover any comparisons that are not specified.

The preceding syntax works for one-on-one comparisons. If you want to see how an expression fits within a range, the standard syntax won’t work. You need to replace the expression with true to force the code into running the switch statement. The case statements are where you use the expression compared to the range. The following code is a BMI calculator UDF converted to JavaScript. It compares the calculated BMI to the various ranges and returns a text description to post to the task pane:

Click here to view code image

Office.initialize = function (reason) {

//Add any needed initialization.

}

function calculateBMI() {

Office.context.document.getSelectedDataAsync("matrix", function (result) {

//call the calculator with the array, result.value, as the argument

myCalculator(result.value);

});

}

function myCalculator(data){

var calcBMI = 0;

var BMI="";

//Perform the initial BMI calculation to get the numerical value

calcBMI = (data[1][0] / (data[0][0] *data [0][0]))* 703

/*evaluate the calculated BMI to get a string value because we want to evaluate range, instead of switch(calcBMI), we do switch (true) and then use our variable as part of the ranges */

switch(true){

//if the calcBMI is less than 18.5

case (calcBMI <= 18.5) : {

BMI = "Underweight"

break;

}

//if the calcBMI is a value between 18.5 and (&&) 24.9

case ((calcBMI > 18.5)&&(calcBMI <= 24.9)):{

BMI = "Normal"

break;

}

case ((calcBMI > 24.9)&&(calcBMI <= 29.9)) : {

BMI = "Overweight"

break;

}

//if the calcBMI is greater than 30

case (calcBMI > 29.9) : BMI = "Obese"

default : {

BMI = 'Try again'

break;

}

}

document.getElementById("results").innerText = BMI;

}

How to use a For each..next statement in JavaScript

If you have a collection of items to process in VBA, you might use a For each..next statement. One option in JavaScript is for (... in ...). For example, if you have an array of items, you can use the following code to output the list:

Click here to view code image

//set up a variable to hold the output text

arrayOutput= ""

/*process the array

i is a variable to hold the index value.

Its count starts as 0*/

for (i in MyArray) {

/*create the output by adding the element

to the previous element value.

\n is used to put in a line break */

arrayOutput += MyArray[i] + '\n'

}

//write the output to the screen

document.getElementById("results").innerText = arrayOutput

You can do whatever you need to each element of the array. In this example, you’re building a string to hold the element value and a line break so that when it prints to the screen, each element appears on its own line, as shown in Figure 27-6. The MyArray variable used in this code was filled in the earlier section, “Arrays.”

[image: The figure shows the results in the app’s task pane. The value of each element in the array is outputted to its own line.]

FIGURE 27-6 JavaScript has its own equivalents to many VBA looping statements, such as for..in loop, which was used to output each result to its own line.

Mathematical, logical, and assignment Operators

JavaScript offers the same basic operators as VBA plus a few more to shorten your code. Table 27-1 lists the various operators. Assume here that x = 5.

TABLE 27-1 JavaScript Operators

	Operator

	Description

	Example

	Result

	+

	Addition

	x+5

	10

	-

	Subtraction

	x-5

	0

	/

	Division

	x/5

	1

	*

	Multiplication

	x*5

	25

	%

	Remainder after division

	11%x

	1

	()

	Override the usual order of operations

	(x+2)*5

	35, whereas x+2*5=15

	-

	Unary minus (for negative numbers)

	-x

	-5

	==

	Values are equal

	x=='5'

	true

	===

	Values and types are equal

	x==='5'

	false since the types don’t match. x is a number being compared to a string.

	>

	Greater than

	x>10

	false

	<

	Less than

	x<10

	true

	>=

	Greater than or equal to

	x>=5

	true

	<=

	Less than or equal to

	x<=4

	false

	!=

	Values are not equal

	x!='5'

	false

	!==

	Values and types are not equal

	x!=='5'

	true

	&&

	And

	x==5 && 1==1

	true

	||

	Or

	x=='5' || 1==2

	false

	!

	Not

	!(x==5)

	false

	++

	Increment

	++x or x++

	6

	--

	Decrement

	--x or x--

	4

	+=

	Equal to with addition

	x += 11

	16

	-=

	Equal to with subtraction

	x-=22

	-17

	*=

	Equal to with multiplication

	x*=2

	10

	/=

	Equal to with division

	x/=30

	6

	%=

	Equal to with the remainder

	x%=11

	1

The increment and decrement operators are two of my favorites; I wish we had them in VBA. Not only do they reduce your code, but they offer a flexibility that VBA lacks (post- and pre-increments). You might remember the use of x++ in the Hello World program earlier in this chapter. You used this in place of x=x+1 to increment the for loop. But it doesn’t just increment the value. It uses the value and then increments it. This is called a post-increment. JavaScript also offers a pre-increment, which means the value is incremented and then used. So if you have x=5, both of the following lines of code return 6:

Click here to view code image

//would increment x and then post the value

document.getElementById("results").innerText = ++x //would return 6

//would post the value of x (now 6 after the previous increment) then increment

document.getElementById("results2").innerText = x++ //would return 6

Math functions in JavaScript

JavaScript has several math functions available, as shown in Table 27-2. Using these functions is straightforward. For example, to return the absolute value of the variable myNumber, do this:

result = Math.abs(myNumber)

TABLE 27-2 JavaScript math functions

	Function

	Description

	Math.abs(a)

	Returns the absolute value of a.

	Math.acos(a)

	Returns the arc cosine of a.

	Math.asin(a)

	Returns the arc sine of a.

	Math.atan(a)

	Returns the arc tangent of a.

	Math.atan2(a,b)

	Returns the arc tangent of a/b.

	Math.ceil(a)

	Returns the integer closest to a and not less than a.

	Math.cos(a)

	Returns the cosine of a.

	Math.exp(a)

	Returns the exponent of a (Euler’s number to the power a).

	Math.floor(a)

	Rounds down, and returns the integer closest to a.

	Math.log(a)

	Returns the log of a base e.

	Math.max(a,b)

	Returns the maximum of a and b.

	Math.min(a,b)

	Returns the minimum of a and b.

	Math.pow(a,b)

	Returns a to the power b.

	Math.random()

	Returns a random number between 0 and 1 (but not including 0 or 1).

	Math.round(a)

	Rounds up or down and returns the integer closest to a.

	Math.sin(a)

	Returns the sine of a.

	Math.sqrt(a

	Returns the square root of a.

	Math.tan(a)

	Returns the tangent of a.

[image: Images]

Tip If you need to apply a math function to all elements of an array, you can do so by using the map() function and the desired Math function. For example, to ensure that every value in an array is positive, use the Math.abs function. The following example changes each element in an array to its absolute value and then prints the results to the screen, as shown in Figure 27-7:

Click here to view code image

result = 0

arrayOutput = ""

arrNums = [9, -16, 25, -34, 28.9]

result = arrNums.map(Math.abs)

for (i in result){

arrayOutput += result[i] +'\n'

}

document.getElementById("results").innerText = arrayOutput

[image: The figure shows the absolute value of the array values in the code.]

FIGURE 27-7 Using arrays is a common way of storing data in JavaScript, which offers many functions for simplifying working with those arrays.

Writing to the content pane or task pane

After you’ve processed a user’s data, you need to display the results. This can be done on the sheet or in the Office add-in’s pane. Assuming that arrayOutput holds the data you want to write to the pane, do this:

Click here to view code image

document.getElementById("results").innerText = arrayOutput

This code writes data to the Office add-in’s pane, specifically to the results variable reserved in the HTML code. To write to the sheet, see the later subsection “Reading from and writing to a sheet.”

JavaScript changes for working in an Office add-in

Not all JavaScript code will work in an Office add-in. For example, you cannot use the alert or document.write statements. There are also some new statements for interacting with Excel provided in a JavaScript API that you link to in the HTML file with this line:

Click here to view code image

<script src = "https://appsforoffice.microsoft.com/lib/1.0/hosted/office.js">

</script>

Like the APIs used in VBA, the JavaScript API gives you access to objects, methods, properties, and events that JavaScript can use to interact with Excel. You’ve now seen some of the most commonly used objects. For more information on these and other available objects, go to http://msdn.microsoft.com/en-us/library/office/apps/fp142185.aspx.

Initializing an Office add-in

The following event statement must be placed at the top of the JavaScript script:

Click here to view code image

Office.initialize = function (reason) { /*any initialization*/}

It initializes the Office add-in to interact with Excel. The reason parameter returns how the Office add-in was initialized. If the Office add-in is inserted into the document, then reason is inserted. If the Office add-in is already part of a workbook that’s being opened, reason is documentOpened.

Reading from and writing to a sheet

Office.context.document represents the object that the Office add-in is interacting with—the sheet. It has several methods available, most importantly the two that enable you to read selected data and write to a range.

The following line uses the setSelectedDataAsync method to write the values in MyArray to the selected range on a sheet:

Click here to view code image

Office.context.document.setSelectedDataAsync(MyArray, {coercionType: 'matrix'});

The first argument, MyArray, is required. It contains the values to write to the selected range. The second argument, coercionType, is optional. Its value, matrix, tells the code that you want the values treated as a one-dimensional array.

The method for reading from a sheet, getSelectedDataAsync, is similar to the write method:

Click here to view code image

Office.context.document.getSelectedDataAsync("matrix", function (result) {

//code to manipulate the read data, result

});

The first argument, matrix, is the coercionType and is required. It tells the method how the selected data should be returned—in this case, in an array. The second argument shown is an optional callback function, with result being a variable that holds the returned values (result.value) if the call was successful and an error if not.

To find out whether the call was successful, use the status property, result.status. To retrieve the error message, use this:

result.error.name

Next steps

Read Chapter 28, “What’s new in Excel 2019 and what’s changed,” to learn about more features that have changed significantly in Excel 2019.

CHAPTER 28
What’s new in Excel 2019 and what’s changed

In this chapter, you will:

	Understand ways to purchase Excel 2019

	Get to know newer features of Excel

	Learn how to look up information about the new objects and methods

	Ensure your code works in different versions of Excel

This chapter reviews changes since Excel 2007—2016. In conjunction with reviewing those sections, you should also review information in this book on tables, sorting, and conditional formatting.

Office 365 subscription versus Excel 2019 perpetual

There are two ways you can purchase Excel 2019. One way is with an Office 365 subscription, which will always provide you with the latest and greatest changes in Excel. The other way is a one-time payment for Excel 2019. Although you will still receive patches, Microsoft might choose not to provide certain new features. Keep in mind that if you have an Office 365 subscription but are writing programs for Excel 2019 users, they may not have access to a feature you are coding.

If it has changed in the front end, it has changed in VBA

If you were using Excel 2003 (or older) before Excel 2019, almost everything you knew about programming Excel objects has changed. Basic logic still works (For loops, for example), but most objects have changed.

If you have been using Excel 2007, 2010, 2013, or 2016, there are still a few changes to consider, and they are noted in this chapter. For most items, the changes are obvious because if the Excel user interface has changed, the VBA has changed.

The ribbon

If you have been working with a legacy version of Excel, the ribbon is one of the first changes you’ll notice when you open Excel 2019. Although the CommandBars object does still work to a point, if you want to flawlessly integrate your custom controls into the ribbon, you need to make some major changes.

[image: Images]

Note see Chapter 25, “Customizing the ribbon to run macros,” for more information.

Single-document interface

For years, if you had multiple documents open in Word, you could drag each document to a different monitor. This capability was not available in Excel until Excel 2013. With Excel 2013, Excel changed from a multiple-document interface to a single-document interface (SDI). This means the individual workbook window no longer resides within a single application window. Instead, each workbook is in its own standalone window, separate from any other open workbook.

Changes to the layout of one window don’t affect any previously opened windows. To see this in action, open two workbooks. In the second workbook, enter and run the following code, which adds a new item, Example Option, to the bottom of the right-click menu:

Click here to view code image

Sub AddRightClickMenuItem()

Dim cb As CommandBarButton

Set cb = CommandBars("Cell").Controls.Add (Type:=msoControlButton, temporary:=True)

cb.Caption = "Example Option"

End Sub

Right-click a cell in the second workbook, and Example Option appears right where it should. Right-click a cell in the first workbook, and the option does not appear. Return to the second workbook and press Ctrl+N to add a new workbook. Right-click a cell in this third workbook, and the menu item appears. Go to the first workbook, create a new workbook, and check the right-click menu. The option does not appear.

Now delete the custom menu. Go to the third workbook and paste and run the following code:

Click here to view code image

Sub DeleteRightClickMenuItem()

CommandBars("Cell").Controls("Example Option").Delete

End Sub

The menu item is removed from the third workbook, but when you check the right-click menu of the second workbook, the item is still there. Although Excel copied the menu from the active workbook when creating new workbooks, the logic to remove the menu item does not propagate.

[image: Images]

Note Don’t worry about having to delete all instances of the sample menu item. It was created to be temporary and will be gone when you restart Excel.

Another change to keep in mind is that making a change to the window of one workbook, such as minimizing it, doesn’t affect the other workbooks. If you want to minimize all windows, you need to loop through the application’s windows, like this:

Click here to view code image

Sub MinimizeAll()

Dim myWin As Window

For Each myWin In Application.Windows

myWin.WindowState = xlMinimized

Next myWin

End Sub

Modern array formulas

With the introduction to Office 365 of SEQUENCE, SORT, SORTBY, UNIQUE, FILTER, SINGLE, and RANDARRAY, creating array formulas becomes easier. You will not need to use .FormulaArray for these functions. Simply use .Formula or .FormulaR1C1 to build the array formulas. For example, to fill A1:A10 with the numbers 1 to 10, use this code:

Click here to view code image

Range("A1").Formula = "=SEQUENCE(10)"

Note that only cell A1 will report having a formula. The other cells will report having a value.

Quick Analysis tool

Introduced in Excel 2013, the Quick Analysis tool appears in the lower-right corner when a range of data is selected. This tool suggests what the user could do with the data, such as apply conditional formatting or create a chart. You can activate a specific tab, such as Totals, when the user selects a range, like this:

Click here to view code image

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

Application.QuickAnalysis.Show (xlTotals)

End Sub

Charts

Charts have gone through a few incarnations since Excel 2003, and with those changes to the interface there have also been changes to the object model. In Excel 2013, Microsoft introduced a completely new interface and a new method, AddChart2, which is not backward compatible—not even to Excel 2010. With Excel 2019, Microsoft introduced two new chart styles: funnel charts and filled map charts. In early 2019, Office 365 will begin supporting custom visuals from Power BI. As this book goes to press, there is no VBA code available for these charts, but it will likely be offered.

In Excel 2016, there was a bug so only new charts introduced in Excel 2016 would use the new Ivy charting engine. If you were creating an old style chart, you had to use the old programming method. This bug has been fixed in Excel 2019 and for Office 365 subscription users, but if you are an Excel 2016 Perpetual user, it has not been fixed. see Chapter 15, “Creating charts,” for more information on this chart compatibility issue.

Excel 2010 introduced a type of minichart, called a sparkline. A sparkline is different from a standard chart in that it can be inserted within a cell. Sparklines are not backward compatible.

Pivot tables

Excel 2007, 2010, 2013, 2016, and 2019 have offered many new features in pivot tables. If you use code for a new feature, the code works in the current version but crashes in previous versions of Excel.

In Excel 2019, you can change cell formatting for a specific cell in a pivot table, and Excel will remember that formatting even if the shape of the pivot table changes. There is no special property introduced for this—simply format the cell as usual.

Excel 2019 offers pivot table defaults. These can be set in VBA using Application.DefaultPivotTableLayoutOptions. For example, to build future pivot tables in classic drag-and-drop mode, use this:

Click here to view code image

Application.DefaultPivotTableLayoutOptions.InGridDropZones = True

[image: Images]

Note see Chapter 12, “Using VBA to create pivot tables,” for more information.

Slicers

Slicers were a new feature in Excel 2010 for use on pivot tables. They aren’t backward compatible—not even to Excel 2007. They’re useful in pivot tables because they allow for easy-to-see and -use filtering options. If you open a workbook with a slicer in an older version of Excel, the slicer is replaced with a shape that includes text explaining what the shape is there for and that the feature is not available.

In Excel 2013, slicers were added to tables. The functionality is the same as that of slicers for pivot tables, but these new slicers are not backward compatible—not even to Excel 2010.

[image: Images]

Note see Chapter 12 for more information on pivot table slicers.

Icons

Microsoft added the Icons button to the Insert tab of the ribbon between Excel 2016 and Excel 2019. Although it is a new command in the ribbon, the code to insert an icon uses Pictures.Insert with the download argument being a location from Office.net. Use the Macro recorder to discover the correct path to the particular icon.

3D Models

Support for displaying and rotating 3D Models was introduced in June 2017. You can insert and rotate most files used by 3D Printers. Support for VBA was added later. You can apply new methods .IncrementRotationX, .IncrementRotationY, and .IncrementRotationZ to the Model3D object. The following code rotates an object called Bennu by 10 degrees along the X axis.

Click here to view code image

ActiveSheet.Shapes.Range(Array("Bennu")).Model3D.IncrementRotationY 10

SmartArt

SmartArt was introduced in Excel 2007 to replace the Diagram feature in legacy versions of Excel. Recording is very limited, but it helps you find the correct schema. After that, the recorder doesn’t capture text entry or format changes.

The following example created the art shown in Figure 28-1. The name of the schema used is hChevron3. In this code, I changed SchemeColor for the middle chevron and left the other two with the default colors:

Click here to view code image

Sub AddDiagram()

With ActiveSheet

Call .Shapes.AddSmartArt(Application.SmartArtLayouts(_

"urn:microsoft.com/office/officeart/2005/8/layout/hChevron3")) .Select

.Shapes.Range(Array("Diagram 1")).GroupItems(1).TextEffect.Text = "Bill"

.Shapes.Range(Array("Diagram 1")).GroupItems(3).TextEffect.Text = "Tracy"

With .Shapes.Range(Array("Diagram 1")).GroupItems(2)

.Fill.BackColor.SchemeColor = 7

.Fill.Visible = True

.TextEffect.Text = "Barb"

End With

End With

End Sub

[image: The figure shows a SmartArt object on a sheet. The object consists of three chevrons. The first and third chevrons are the same color. The one in the middle is of a different color.]

FIGURE 28-1 The macro recorder is limited when recording the creation of SmartArt. You need to trace through the object’s properties to find what you need.

Learning the new objects and methods

When you click the Help button in Excel’s VB Editor, you’re brought to Microsoft’s online Help resource. Select Excel VBA Reference, Object Model to view a list of all objects, properties, methods, and events in the Excel 2019 object model.

Compatibility mode

With the changes in Excel 2019, it’s important to verify an application’s version. Two properties you can use to do this are Version and Excel8CompatibilityMode.

Dealing with compatibility issues

Creating a Compatibility mode workbook can be problematic. Most code will still run in legacy versions of Excel, as long as the program doesn’t run into an item from the Excel 2007 or newer object models. If you use any items from the newer object models, however, the code will not compile in legacy versions. To work around this, comment out the specific lines of code, compile, and then comment the lines back in.

If your only Excel compatibility issue is the use of constant values, partially treat your code as if you were doing late binding to an external application. If you have only constant values that are incompatible, treat them like late-binding arguments, assigning a variable the numeric value of the constant. The following section shows an example of this approach.

[image: Images]

Note See “Using constant values,” in Chapter 20 for more information on using constant values.

Using the Version property

The Version property returns a string that contains the active Excel application version. For 2016 and 2019, this is 16.0. This can prove useful if you’ve developed an add-in to use across versions, but some parts of it, such as saving the active workbook, are version specific:

Click here to view code image

Sub WorkbookSave()

Dim xlVersion As String, myxlOpenXMLWorkbook As String

myxlOpenXMLWorkbook = "51" 'non-macro enabled workbook

xlVersion = Application.Version

Select Case xlVersion

Case Is = "9.0", "10.0", "11.0"

ActiveWorkbook.SaveAs Filename:="LegacyVersionExcel.xls"

Case Is = "12.0", "14.0", "15.0", "16.0" '12.0 is 2007, 14.0 is 2010

ActiveWorkbook.SaveAs Filename:="Excel2019Version", _

FileFormat:=myxlOpenXMLWorkbook

End Select

End Sub

[image: Images]

Caution Note that for the FileFormat property of the Excel 12.0 and newer Case, I had to create my own variable, myxlOpenXMLWorkbook, to hold the constant value of xlOpenXMLWorkbook. If I were to try to run this in a legacy version of Excel just using the Excel constant xlOpenXMLWorkbook, the code would not even compile.

Using the Excel8CompatibilityMode property

The Excel8CompatibilityMode property returns a Boolean to let you know whether a workbook is in Compatibility mode—that is, saved as an Excel 97—2003 file. You use this, for example, if you have an add-in that uses conditional formatting that you don’t want the user to try to use on the workbook. The CompatibilityCheck function returns True if the active workbook is in Compatibility mode and False if it is not. The procedure CheckCompatibility uses the result to inform the user of an incompatible feature:

Click here to view code image

Function CompatibilityCheck() As Boolean

Dim blMode As Boolean

Dim arrVersions()

arrVersions = Array("12.0", "14,0", "15.0", "16.0")

If Application.IsNumber(Application.Match(Application.Version, arrVersions, 0)) Then

blMode = ActiveWorkbook.Excel8CompatibilityMode

If blMode = True Then

CompatibilityCheck = True

ElseIf blMode = False Then

CompatibilityCheck = False

End If

End If

End Function

Sub CheckWorkbookCompatibility()

Dim xlCompatible As Boolean

xlCompatible = CompatibilityCheck

If xlCompatible = True Then

MsgBox "You are attempting to use an Excel 2007 or newer function " & _

Chr(10) & "in a 97-2003 Compatibility Mode workbook"

End If

End Sub

Next steps

If we as authors have done our job correctly, you now have the tools you need to design your own VBA applications in Excel. You understand the shortcomings of the macro recorder yet know how to use it as an aid in learning how to do something. You know how to use Excel’s power tools in VBA to produce workhorse routines that can save you hours of time each week. You’ve also learned how to have your application interact with others so that you can create applications to be used by others in your organization or in other organizations.

If you have found any sections of the book confusing or thought they could have been spelled out better, we welcome your comments and will give them consideration as we prepare the next edition of this book. Write to us:

Pub@MrExcel.com to contact Bill or

ExcelGGirl@gmail.com to contact Tracy

Whether your goal is to automate some of your own tasks or to become a paid Excel consultant, we hope that we’ve helped you on your way. Both are rewarding goals. With 500 million potential customers, we find that being Excel consultants is a friendly business. If you are interested in joining our ranks, you can use this book as your training manual. Master the topics, and you will be qualified to join us.

For assistance with any Excel VBA questions, post your question as a New Thread at the MrExcel Message Board. It's free to post, and the passionate community answers about 10,000 Excel VBA questions every year. To get started, use the Register link at the top right of the page at https://www.mrexcel.com/forum/index.php.

Index

Symbols

:= (colon-equal sign), 30

{ } (curly braces), in JavaScript, 536

-- (decrement operator), in JavaScript, 543

++ (increment operator), in JavaScript, 543

+ (plus sign), in JavaScript, 537

“” (quotation marks) in JavaScript, 537

; (semicolons), in JavaScript, 536

[] (square brackets), as Evaluate method, 103

3D Models, 551

24-hour clocks, formatting cells as, 115-116

32-bit API declarations, compatibility, 471-472

64-bit API declarations, compatibility, 471-472

9 runtime error (subscript out of range), 488-489

1004 runtime error

method range of object global failed, 489-490

troubleshooting, 199-200

VB Editor actions, 479-480

A

A1 references

copying formulas, 89-91

R1C1 references versus, 87-88

replacing multiple with single R1C1 reference, 93-95

toggling, 88-89

About dialog box, customizing, 475

above average conditional formatting, 344

above/below average rules, 330

absolute references

in recorded macros, 19-20

with R1C1 references, 92

accelerator keys in userforms, 461-462

Access

database connection terminology, 428-429

fields

checking for existence, 438-439

creating, 440

MDB files, 425

creating shared databases, 427-428

pass-through queries, 429

records

adding, 430-431

deleting, 435

retrieving, 431-433

summarizing, 436-437

updating, 433-435

tables

checking for existence, 437-438

creating, 439

accessing file structure, 501

ACE engine, 426

Activate event (userforms), 155

active control, coloring, 463-464

ActiveCell property, 45

ActiveX controls, running macros from, 512-513

ActiveX Data Objects (ADOs), 426-429

ActiveX labels, minimizing duplicate code, 144-146

Add method

array names, 104

Document object, 415

formula names, 101

number names, 103

string names, 101-103

tables, 103-104

Add Watch dialog box, 43

add-ins. see also Office add-ins

advantages of, 515

closing, 521

converting workbooks to, 516-517

with Save As, 517

with VB Editor, 518

hidden workbooks versus, 521-523

installing, 519-520

removing, 521

saving data in, 516

security, 520

types of, 515

viewing, 519

AddAboveAverage method (FormatConditions object), 344

AddChart method, 328

AddChart2 method, 306-307

AddControl event

frames, 163

MultiPage controls, 168

userforms, 155

AddFields method (pivot tables), 218

adding

button images (on ribbon), 503-505

buttons in HTML, 533-534

color scales to ranges, 336-337

comments to names, 100

controls

to ribbon, 496-500

at runtime, 455-461

to userforms, 157

data bars to ranges, 331-335

Data Model fields to pivot tables, 243

fields in pivot table data area, 212-215

icon sets to ranges, 337-340

images to userforms, 458-459

interactivity to Office add-ins, 530-532, 535

names, 98-99

records (database), 430-431

tables to Data Model, 242

trusted locations, 6-7

value fields to Data Model pivot tables, 243-244

VBA code to workbooks with VBA Extensibility, 276-277

addresses (cell)

of duplicate max values, returning, 301-302

column letter of, returning, 302-303

addresses

email, validating, 287-289

hyperlink, returning, 302

AddTop10 method (FormatConditions object), 345

AddUniqueValues method (FormatConditions object), 346

ADOs (ActiveX Data Objects), 426-429

Advanced Filter, 181

criteria ranges, 189-190

clearing, 198

formula-based conditions, 191-198

joining with logical AND, 191

joining with logical OR, 190-191

in Excel interface, 182

extracting unique list of values, 182

with Excel interface, 183-184

for multiple fields, 187-188

with VBA code, 184-187

filter in place, 199

no records returned, 199-200

viewing all records after, 200

returning all matching records, 200

copying all columns, 200-201

copying subset of columns, 201-203

creating individual reports, 203-207

AfterUpdate event

list boxes/combo boxes, 162

option buttons, 163-164

spin buttons, 166

text box control, 159

alerts, suppressing, 486

alphanumeric data, sorting, 298-300

AND, joining criteria ranges with, 191

API (application programming interface) declarations, 469

32-bit and 64-bit compatibility, 471-472

calling, 470-471

checking open network files, 473

creating running timer, 476-477

customizing About dialog box, 475

disabling X button in userforms, 475-476

explained, 469-470

playing sounds, 477

returning computer name, 472-473

returning display resolution, 474

application events

in class modules, 118, 132-133

list of, 119, 122

Application object, 38, 45

application states, enabling/disabling, 263, 265

Application.EnableEvents = False events, preventing recursive procedure calling, 116

applying math functions to arrays, 544

Areas collection (Range object), selecting noncontiguous ranges, 66

arguments

for ribbon controls, 499-500

troubleshooting, 508-509

arranging VBA and Excel windows, 39

array formulas, R1C1 references with, 96

arrays, 123

applying math functions to, 544

data, retrieving, 126-127

declaring, 123-124

dynamic arrays, declaring, 128-129

filling, 125-126

formulas, 549

functions, passing to, 130

in JavaScript, 538

multidimensional, declaring, 124-125

names, creating, 104

optimizing code with, 128

values, passing to/from, 130

assigning

macros to form controls, 12-13

shortcut keys to macros, 9

assignment operators in JavaScript, 542-543

associating column names with numbers in R1C1 references, 95

attributes

for ribbon controls, 497-498

troubleshooting, 506

author contact information, 554

AutoFilter

avoiding when copying data, 257-258

dynamic filters, 178-179

filtering

by color, 177

by icon, 178

replacing loops with, 173-176

on selected columns only, 207-208

selecting

multiple items, 176-177

with Search box, 177

visible cells only, 179-180

AutoShow, filtering pivot tables, 232-234

AutoSort in pivot tables, 224

AutoSum in recorded macros, 23-26

B

backward compatibility, creating charts, 328

backward in code, moving, 40

BASIC, Visual Basic versus, 2

BeforeDragOver event

frames/option buttons, 163

graphics, 165

label/text box/command button control, 159

list boxes/combo boxes, 162

MultiPage controls, 168

spin buttons, 166

userforms, 155

BeforeDropOrPaste event

frames/option buttons, 163

graphics, 165

label/text box/command button control, 159

list boxes/combo boxes, 162

MultiPage controls, 168

spin buttons, 166

userforms, 155

BeforeUpdate event

list boxes/combo boxes, 162

option buttons, 164

spin buttons, 166

text box control, 159

below average conditional formatting, 344

blank cells

highlighting, 348-349

in pivot table value areas, eliminating, 223-224

bookmarks (Word), 421-422

breaking out of loops, 539

breakpoints, 40

in Watches window, 43

Browse dialog box, 6

building multiplication tables, 93-95

buttons

adding in HTML, 533-534

command buttons, running macros, 510-511

on ribbon, adding images to, 503-505

C

calculated fields in pivot tables, 246-247

calculated items in pivot tables, 247

calculations in pivot tables, changing to percentages, 221-223

calling

API declarations, 470-471

userforms, 154

canceling scheduled macros, 382-383

Cascading Style Sheets (CSS), 534

Case Else statements in Select Case...End Select constructs, 83

case of text, changing, 273-274

case sensitivity

of JavaScript, 526, 536

in text editors, 526

of XML, 526

Case statements in Select Case...End Select constructs, 83-84

CBool function, 284

cell ranges.See ranges

cell references.See references

cells

comments

charts in, 260-262

resizing, 259-260

finding first nonzero-length in range, 292-293

formatting as military time, 115-116

highlighting

above/below average, 344

blank/error cells, 348-349

by date, 348

first unique value, 349-350

formula-based, 349-350

by text, 348

top/bottom values, 345

unique/duplicate, 346-347

by value, 347

progress indicators, creating, 269-270

in ranges

finding empty cells, 62-63

selecting specific cells with SpecialCells method, 63-65

returning

addresses of duplicate max values, 301-302

column letter of address, 302-303

hyperlink addresses, 302

reversing contents, 300-301

selecting with SpecialCells, 274-275

summing based on color, 289-290

visible selecting, 179-180

Cells object, as array, 124

Cells property (Range object), selecting ranges, 57-58

Change event

formatting cells as military time, 115

list boxes/combo boxes, 162

MultiPage controls, 168

option buttons, 164

spin buttons, 166

text box control, 159

tracking user changes, 262-263

changing

colors in waterfall charts, 327-328

default file type, 5

names.See renaming

part of pivot table, 215

pivot table calculations to percentages, 221-223

pivot table layout, 248

rows/formulas to variables in recorded code, 49

shortcut keys for macros, 18

text case, 273-274

characters, substituting multiple, 293-294

chart colors, applying, 312-313

chart events, 116

for embedded charts, 116-117, 134-135

list of, 117-118

chart styles, list of, 307-310

chart titles, specifying, 311-312

ChartColor property, 312-313

ChartFormat object, 319-320

charts

combo charts, creating, 323-325

in comments, 260-262

creating, 305

with AddChart2 method, 306-307

backward compatibility, 328

chart styles, 307-310

exporting as graphics, 328

filtering, 313

formatting

chart colors, 312-313

chart titles, 311-312

fill color, 320-322

with Format method, 319-320

line settings, 322

referring to specific chart, 310-311

with SetElement method, 314-319

map charts, creating, 326

new features, 549-550

new types, 305

Power BI Custom Visuals, 306

version compatibility, 549

waterfall charts, creating, 326-328

check box controls (Word), 422-424

check boxes, 444-446

class modules, 131

application events in, 118, 132-133

collections, creating, 140-142

custom objects

creating, 135-137

referencing, 137-138

embedded chart events in, 116-117, 134-135

enabling/disabling application states, 263, 265

inserting, 131-132

minimizing duplicate ActiveX label code, 144-146

cleaning up recorded code, tips for, 46, 50-52

copy/paste statements, 49

deleting selections, 46-47

finding last data row, 47-48

R1C1 formulas, 49

range references, 47

variables for rows/formulas, 49

With...End With statements, 50

ClearAllFilters method (pivot tables), 229

clearing

Advanced Filter criteria ranges, 198

conceptual filters (pivot tables), 229

Click event

frames/option buttons, 164

graphics, 165

list boxes/combo boxes, 162

MultiPage controls, 168

userforms, 155

clients, training in error handling, 487

clip art, assigning macros to, 12

Close method (Document object), 416

closing

add-ins, 521

documents (Word), 416

Excel, canceling scheduled macros, 383

Properties window, 513

userforms

disabling X button, 475-476

illegally, 169-170

code optimization with arrays, 128

collections, 131, 138

creating, 138

in class modules, 140-142

in standard modules, 139-140

dictionaries, compared, 142-144

grouping controls into, 451-453

minimizing ActiveX label code, 144-146

objects versus, 29

colon-equal sign (:=), 30

color scales, 329

adding to ranges, 336-337

coloring active control, 463-464

colors

changing in waterfall charts, 327-328

chart colors, applying, 312-313

for data bars, 333

fill color, formatting charts, 320-322

filtering by with AutoFilter, 177

multiple colors for data bars, 341-343

RGB colors, 362, 364

summing cells based on, 289-290

theme colors, 359-362

column sets, importing text files into, 402-403

column sparklines, 353

ColumnGrand property (pivot tables), 248

columns

associating names with numbers in R1C1 references, 95

copying all with Advanced Filter, 200-201

copying subset with Advanced Filter, 201-203

referencing with R1C1 references, 93

reordering with Advanced Filter, 201-203

returning letter of address, 302-303

selected columns, AutoFilter on, 207-208

sorting and concatenating, 296-298

Columns property (Range object), referencing ranges, 61

combining

userforms, 167-169

workbooks, 256-257

combo boxes

events, 162

list boxes versus, 160-161

combo charts, creating, 323-325

command button controls, 157-159

events, 159

running macros, 510-511

comments, 18

adding to names, 100

charts in, 260-262

in HTML, 533

in JavaScript, 531, 536

resizing, 259-260

Compatibility mode, troubleshooting, 552

complex expressions in Case statements, 84

computer name, returning, 472-473

concatenating

columns, 296-298

in JavaScript, 537

conceptual filters for pivot tables, 228-231

conditional compilation, 472

conditional formatting. see also data visualizations

above/below average cells, 344

blank/error cells, 348-349

custom number formats, 350-351

date-based, 348

with formulas, 349-350

progress indicators, creating, 269-270

text-based, 348

top/bottom values, 345

unique/duplicate cells, 346-347

value-based, 347

conditions

formula-based in Advanced Filter, 191-198

in If...Then...Else constructs, 81-82

in Select Case...End Select constructs, 83-84

configuring pivot tables, 211-212

connections, 428-429

constant values

compatibility, 552

retrieving when referencing Word, 412-414

constants

defined, 35-37

for SetElement method, 314-318

content management system, Excel as, 388-390

content panes (Office add-ins), 534, 544

content problem error message, 507-508

controls

active control, coloring, 463-464

adding

to ribbon, 496-500

at runtime, 455-461

check boxes, 444-446

combo boxes, 160-162

command buttons, 157-159

frames, 163-164

graphics, 164-165

grouping into collections, 451-453

labels, 157-159

list boxes, 160-162

multicolumn list boxes, 464-465

MultiPage, 167-169, 446

option buttons, 163-164

organizing on UserForm toolbar, 443-444

ProgIDs for, 458

programming, 156

RefEdit, 448-449

renaming, 156

scrollbars as sliders, 450-451

spin buttons, 165-167

tab order, setting, 462-463

TabStrip, 446-448

text boxes, 157-159

toggle buttons, 449-450

troubleshooting new controls, 157

in Word, 422-424

converting

formulas to R1C1 style, 96

pivot tables to values, 215-217

week numbers to dates, 295-296

workbooks to add-ins, 516-517

with Save As, 517

with VB Editor, 518

copying

all columns with Advanced Filter, 200-201

data to worksheets, 257-258

formulas, 89-91

in recorded code, 49

subset of columns with Advanced Filter, 201-203

counting

records in pivot tables, 219

unique values, 290-291

workbooks in directory, 284-285

cracking passwords, 490-491

Create New Theme Colors dialog box, 359

CreateObject function, referencing Word, 411

CreatePivotTable method, 211-212

creating

array names, 104

arrays, 123-124

charts, 305

with AddChart2 method, 306-307

backward compatibility, 328

chart styles, 307-310

combo charts, 323-325

custom sort order, 268-269

customui folder/file, 494-495

custom web pages, 387

dashboards, 368-373

documents (Word), 415-416

dynamic arrays, 128-129

fields (database), 440

formula names, 101

icon sets for subset of range, 340-341

individual reports with Advanced Filter, 203-207

macro buttons

on Quick Access Toolbar, 11

on ribbon, 10

map charts, 326

multidimensional arrays, 124-125

named ranges, 98-99

number names, 103

Office add-ins, 526-530

pivot tables, 211-212

progress indicators, 269-270

ranges from overlapping ranges, 62

ribbon tabs/groups, 495-496

running timers, 476-477

shared Access databases, 427-428

sparklines, 353-355

for dashboard, 369-373

string names, 101-103

table relationships in Data Model, 242

tables, 103-104

tables (database), 439

transparent userforms, 465-466

UDFs (user-defined functions), 279-281

userforms, 153-154

waterfall charts, 326-328

criteria ranges in Advanced Filter, 189-190

clearing, 198

formula-based conditions, 191-198

joining

with logical AND, 191

with logical OR, 190-191

Criteria reserved name, 105

CSS (Cascading Style Sheets), 534

CSV (comma-separated values) files, importing and deleting, 254

.csv file extension, opening files with, 397

curly braces ({ }), in JavaScript, 536

CurrentRegion property (Range object), 175

selecting ranges, 63

cursor locations, 428

cursor types, 428

cursors, 428

custom functions in JavaScript, 525. see also UDFs (user-defined functions)

custom icons, adding to buttons (on ribbon), 504-505

custom number formats, 350-351

custom objects, 131. see also class modules

creating, 135-137

referencing, 137-138

custom properties, creating, 146-149

custom sort order, creating, 268-269

Custom UI Editor tool, 502

custom web pages, creating, 387

customizing

About dialog box, 475

ribbon, 493

accessing file structure, 501

adding button images, 503-505

adding controls, 496-500

creating customui folder/file, 494-495

creating tabs/groups, 495-496

RELS file, 501-502

renaming/opening workbooks, 502

troubleshooting error messages, 493, 505-509

visibility of ribbon, 494

customui folder/file, creating, 494-495

D

daily dates, grouping in pivot tables, 219-221

DAOs (data access objects), 426

dashboards, creating, 368-373

data

in arrays, retrieving, 126-127

web data

retrieving, 375-381

scheduling retrieval, 381

data access objects (DAOs), 426

data area for pivot tables, adding fields, 212-215

data bars, 329

adding to ranges, 331-335

multiple colors for, 341-343

Data field (pivot tables), 218-219

Data Model, 241

importing text files into, 403-404

pivot cache, defining, 243

pivot tables

adding text fields, 243

adding value fields, 243-244

example code, 244-246

tables

adding, 242

creating relationships, 242

data sets for pivot tables, replicating reports, 224-227

data types for input boxes, 152

data visualizations, 329. see also conditional formatting

color scales, adding to ranges, 336-337

data bars

adding to ranges, 331-335

multiple colors for, 341-343

icon sets

adding to ranges, 337-340

creating for subset of range, 340-341

mixing, 343-344

in pivot tables, 249-250

types of, 329-330

VBA methods/properties for, 330-331

Database reserved name, 105

databases, SQL Server, 440-442. see also Access; MDB files

dates

converting week numbers to, 295-296

daily dates, grouping in pivot tables, 219-221

highlighting cells based on, 348

retrieving

permanent, 287

saved, 286

DblClick event

frames/option buttons, 164

graphics, 165

label/text box/command button control, 159

list boxes/combo boxes, 162

MultiPage controls, 168

userforms, 155

Deactivate event (userforms), 155

Debug mode, errors not showing up, 487-488

debugging tools. see also error handling

breakpoints, 40

Immediate window, 41-42

moving forward/backward in code, 40

running code while stepping, 41

stepping through code, 38-40

ToolTips, 42

Watches window, 43-45

declarations (API)

32-bit and 64-bit compatibility, 471-472

calling, 470-471

checking open network files, 473

creating running timer, 476-477

customizing About dialog box, 475

disabling X button in userforms, 475-476

explained, 469-470

playing sounds, 477

returning computer name, 472-473

returning display resolution, 474

declaring

arrays, 123-124

dynamic arrays, 128-129

multidimensional arrays, 124-125

variables, 14, 79

decrement operator (--), in JavaScript, 543

default file type, changing, 5

defined constants in Help topics, 35-37

defining

pivot cache, 210-211

in Data Model, 243

ranges (Word), 418-419

slicer cache, 235

deleting

add-ins, 521

CSV files, 254

duplicate values, 291-292

names, 100

part of pivot table, 215

pivot cache, 216

records (database), 435

selections in recorded code, 46-47

delimited strings, extracting elements from, 296

delimited text files, 393

opening, 397-399

delimiter settings, 401

Design tab (pivot tables), Layout group, 248

Developer tab, enabling, 3-4

dictionaries, collections versus, 142-144

Dim statements, declaring variables, 79

directories

counting workbooks in, 284-285

listing files in, 251-253

disabling

application states, 263, 265

events, 111

macros, 7-8

displaying File Open dialog box, 170-171

display resolution, returning, 474

DLLs (dynamic link libraries), 469

Document object (Word), 415

closing documents, 416

creating documents, 415-416

opening documents, 416

printing documents, 417

documents (Word)

bookmarks, 421-422

closing, 416

creating, 415-416

form fields, 422-424

opening, 416

printing, 417

selections in, 417

inserting text, 417-418

navigating, 417

ranges, 418-421

DoEvents syntax, 488

Do...Loop loops, 75-77

exiting, 76-77

Until clause in, 77-78

While clause in, 77-78

drilling down pivot tables, 265-266

drop-down menus (AutoFilter), hiding, 207-208

DropButtonClick event

combo boxes, 162

text box control, 159

duplicate ActiveX label code, minimizing, 144-146

duplicate cells, highlighting, 346-347

duplicate max values, returning addresses of, 301-302

duplicate values, removing, 291-292

duplicate values rules, 330

dynamic arrays, declaring, 128-129

dynamic cursors, 428

dynamic filters in AutoFilter, 178-179

dynamic link libraries (DLLs), 469

E

early binding, 407-409

Edit Watch dialog box, 43

editing macros

Project Explorer, 14-15

Properties window, 15

VB Editor interface, 13-14

VB Editor settings, 14

either/or decisions in If...Then...Else constructs, 82

Else statements, 81-82

ElseIf statements, 82

email addresses, validating, 287-289

embedded charts, events for, 116-118, 134-135

empty cells in ranges, finding, 62-63

empty files, checking for, 489-490

enabling

application states, 263, 265

Developer tab, 3-4

events, 111

macros, 7-8

End If statements, 81

EndKey method (Selection object), 417

Enter event

frames/option buttons, 164

list boxes/combo boxes, 162

MultiPage controls, 169

spin buttons, 166

text box/command button control, 159

Err object, 484

Error event

frames/option buttons, 164

graphics, 165

label/text box/command button control, 159

list boxes/combo boxes, 162

MultiPage controls, 169

spin buttons, 166

userforms, 155

error handling. see also troubleshooting

checking for empty files, 489-490

with Err object, 484

errors not in Debug mode, 487-488

by Excel version, 492

ignoring errors, 484-486

method range of object global failed (error 1004), 489-490

multiple error handlers, 484

with On Error Go To, 482-483

pausing macro, 487-488

purposely encountering errors, 486-487

subscript out of range (error 9), 488-489

suppressing alerts, 486

training clients in, 487

userforms, 481-482

VB Editor actions, 479-482

error messages, troubleshooting on ribbon, 493, 505-509

errors. see also runtime errors

with filter in place, 199-200

highlighting cells with, 348-349

Evaluate method, avoiding, 103

events. see also procedures

application events

in class modules, 118, 132-133

list of, 119, 122

chart events, 116

for embedded charts, 116-117, 134-135

list of, 117-118

for check boxes, 445-446

for combo boxes, 162

for command button controls, 159

enabling/disabling, 111

for frames, 163-164

for graphic controls, 165

for label controls, 159

levels of, 109

for list boxes, 162

in MultiPage controls, 168-169

for option buttons, 163-164

parameters, 110

for RefEdit controls, 448-449

for scrollbars, 451

for spin buttons, 166-167

for TabStrip controls, 447-448

for text box controls, 159

for toggle buttons, 449-450

in userforms, 155-156

viewing and inserting, 110

where to use, 109

workbook events, list of, 111-113

workbook-level sheet events, list of, 113-114

worksheet events, list of, 114-115

examining recorded macro code, 33-34

breakpoints, 40

defined constants, 35-37

in Immediate window, 41-42

moving forward/backward in code, 40

optional parameters, 34

properties returning objects, 38

running code while stepping, 41

stepping through code, 38-40

with ToolTips, 42

in Watches window, 43-45

Excel

checking if open on network, 473

as content management system, 388-390

interface

Advanced Filter in, 182

extracting unique list of values, 183-184

formula-based conditions, 193-194

pivot tables, history in, 209-210

referencing Word from, 407

CreateObject function, 411

early binding, 407-409

GetObject function, 411-412

late binding, 410

New keyword, 410

retrieving constant values, 412-414

Excel 97-2003 Workbook (.xls) file type, 5

Excel 2019

file types, 4-5

changing default, 5

help features, object model, 551

new features, 547

3D Models, 551

array formulas, 549

charts, 549-550

icons, 550

pivot tables, 550

Quick Analysis tool, 549

ribbon, 548

single-document interface (SDI), 548-549

slicers, 550

SmartArt, 551

Office 365 subscription versus, 547

Excel Binary Workbook (.xlsb) file type, 5

Excel Macro-Enabled Workbook (.xlsm) file type, 4-5

Excel versions

backward compatibility when creating charts, 328

error handling in, 492

password schemes in, 491-492

verifying

with Excel8CompatibilityMode property, 553

with Version property, 552

Excel Workbook (.xlsx) file type, 4

Excel8CompatibilityMode property, 553

existence of names, checking for, 106

Exit Do statement, 76

Exit event

frames/option buttons, 164

list boxes/combo boxes, 162

MultiPage controls, 169

spin buttons, 166

text box/command button control, 159

Exit For statements, 73-74

exiting

Do...Loop loops, 76-77

For...Next loops early, 73-74

exporting

charts as graphics, 328

tables to XML, 258-259

Extract reserved name, 105

extracting

elements from delimited strings, 296

unique list of values, 182

with Excel interface, 183-184

for multiple fields, 187-188

with VBA code, 184-187

F

F1 shortcut key (Help topics), 32-33

FieldInfo parameter, values in, 396-397

fields

calculated fields in pivot tables, 246-247

Data Model fields, adding to pivot tables, 243

database fields

checking for existence, 438-439

creating, 440

multiple value fields

extracting unique list of values, 187-188

in pivot tables, 218-219

in pivot table data area, adding, 212-215

requiring in userforms, 169

row fields in pivot tables, suppressing subtotals, 249

skipping during imports, 395

value fields, adding to Data Model pivot tables, 243-244

file formats, troubleshooting, 509

file names, setting in cells, 282

File Open dialog box, displaying, 170-171

file path, setting in cell, 282

file structure, accessing, 501

file types in Excel 2019, 4-5

files

CSV files, importing and deleting, 254

empty files, checking for, 489-490

listing in directory, 251-253

opening in Notepad, 526

saving, changing default file type, 5

selecting in userforms, 170-171

text files, reading/parsing in memory, 254-255

fill color, formatting charts, 320-322

filling arrays, 125-126

Filter. See AutoFilter

filter in place in Advanced Filter, 199

no records returned, 199-200

viewing all records after, 200

filtering. see also Advanced Filter

charts, 313

OLAP pivot tables, 266-268

pivot tables

with AutoShow, 232-234

with conceptual filters, 228-231

manually, 227-228

with Search box, 232

with slicers, 234-238

with Timeline slicers, 238-241

record sets in pivot tables, 247

finding

empty cells in ranges, 62-63

first nonzero-length cell in range, 292-293

last data row in recorded code, 47-48

pivot table size, 215-217

results in web data, 378-379

fixed-width text files, opening, 393-397

flow control. see also loops

If...Then...Else constructs, 81-82

conditions in, 81-82

either/or decisions in, 82

ElseIf statements in, 82

End If statements in, 81

nesting If statements, 84-86

Select Case...End Select constructs, 83-84

for (... in ...) statement in JavaScript, 541-542

For Each...Loop loops, 79-80

For each..next statements in JavaScript, 541-542

for loops in JavaScript, 539

For statements in For...Next loops, 69-71

Step clause in, 72-73

variables in, 71-72

For...Next loops, 69-71

exiting early, 73-74

nesting, 74

Step clause in For statement, 72-73

variables in For statement, 71-72

form controls, assigning macros to, 12-13

form fields (Word), 422-424

Format method (formatting charts), 319-320

FormatConditions collection, 330

formatting

cells as military time, 115-116

charts

chart colors, 312-313

chart titles, 311-312

fill color, 320-322

with Format method, 319-320

line settings, 322

referring to specific chart, 310-311

with SetElement method, 314-319

conditional formatting. see also data visualizations

above/below average, 344

blank/error cells, 348-349

custom number formats, 350-351

date-based, 348

with formulas, 349-350

text-based, 348

top/bottom values, 345

unique/duplicate cells, 346-347

value-based, 347

ranges (Word), 419-421

rows with AutoFilter, 173-176

slicers, 238

sparklines, 359

with RGB colors, 362-364

sparkline elements, 364-366

with theme colors, 359-362

win/loss charts, 366-367

tables, resetting formatting, 275

forms in hidden workbooks, 522-523. see also userforms

formula-based conditions in Advanced Filter criteria ranges, 191-198

formulas

array formulas, R1C1 references with, 96

for arrays, 549

changing to variables in recorded code, 49

conditional formatting with, 349-350

converting to R1C1 style, 96

copying, 89-91

names, creating, 101

R1C1, in recorded code, 49

in text fields, troubleshooting, 396

forward in code, moving, 40

found a problem error message, 507-508

frame controls, 163-164

FreeFile function, 401

FTP, publishing web data via, 390-391

Function Arguments dialog box, 281

functions. see also declarations (API); UDFs (user-defined functions)

arrays, passing to, 130

in JavaScript, 535

math functions in JavaScript, 543-544

names, checking for existence, 106

recursive, 284

G

GetObject function, referencing Word, 411-412

GetUserName API function, 470-471

globally unique identifiers (GUIDs), 528

global names, 97-98

Go To dialog box, 21-22

Go To Special dialog box, 63-65

hiding rows, 180-181

selecting visible cells only, 179-180

gradients, formatting charts, 321-322

graphic controls, 164-165

graphics, exporting charts as, 328

grouping

controls into collections, 451-453

daily dates in pivot tables, 219-221

GroupName property (option buttons), 163

groups (on ribbon), creating, 495-496

GUIDs (globally unique identifiers), 528

H

Hello World example (Office add-ins), 526-530

help features

in Excel 2019

Help topics, 32-37

macro recorder as, 32

Object Browser, 45-46

object model, 551

in userforms

accelerator keys, 461-462

coloring active control, 463-464

tab order, 462-463

tip text, 462

Help topics, 32-33

defined constants, 35-37

OpenText method, 33

optional parameters, 34

properties returning objects, 38

hiding

drop-down menus (AutoFilter), 207-208

names, 105

rows with Go To Special dialog box, 180-181

userforms, 154

workbooks, 521-523

highlight cells rules, 330

highlighting

cells

above/below average, 344

blank/error cells, 348-349

by date, 348

first unique value, 349-350

formula-based, 349-350

by text, 348

top/bottom values, 345

unique/duplicate, 346-347

by value, 347

rows, 350

HomeKey method (Selection object), 417

horizontal axis in sparklines, viewing, 364-365

hovering, querying variables by, 42

HTML

creating custom web pages, 387

in Office add-ins, 532

buttons, 533-534

CSS files, 534

tags, 533

saving workbooks as, 386-387

hyperlinks

returning addresses of, 302

running macros from, 513-514

in userforms, 454-455

I

icon sets, 329

adding to ranges, 337-340

creating for subset of range, 340-341

mixing, 343-344

icons

custom icons, adding to buttons (on ribbon), 504-505

filtering with AutoFilter, 178

Microsoft Office icons, adding to buttons (on ribbon), 503-504

new features, 550

if statements

Exit Do statements in, 76

in If...Then...Else constructs, 81-82

in JavaScript, 539

nesting, 84-86

If...Then...Else constructs, 81-82

conditions in, 81-82

either/or decisions in, 82

ElseIf statements in, 82

End If statements in, 81

ignoring errors, 484-486

illegal qualified name character error message, 506-507

illegally closing userforms, 169-170

images, adding

to buttons (on ribbon), 503-505

to userforms, 458-459

Immediate window, 41-42

importing

CSV files, 254

from text files, 393

into column sets, 402-403

into Data Model with Power Query, 403-404

delimited files, 397-399

file types available, 393

fixed-width files, 393-397

more than 1,048,576 rows, 399-404

reading one row at a time, 400-401

improving. See optimizing

inactive worksheets, referencing ranges in, 55-56

increment operator (++) in JavaScript, 543

Initialize event (userforms), 155

initializing Office add-ins, 545

input boxes, 151-152

return data types, 152

secure password input, 270-273

InputBox function, 151-152

Insert Function dialog box, 280

inserting

class modules, 131-132

comments for names, 100

events, 110

modules, 15

text in selections (Word), 417-418

installing add-ins, 519-520

interactivity, adding to Office add-ins, 530-532, 535

interface

Excel

Advanced Filter in, 182

extracting unique list of values, 183-184

formula-based conditions, 193-194

Office add-ins, 534

interrupting macros, 111

Intersect method (Range object), creating ranges from overlapping ranges, 62

invalid file format error message, 509

IsEmpty function (Range object), finding empty cells, 62-63

Ivy charts, creating, 305

J

JavaScript

adding interactivity with, 530-532, 535

arrays, 538

case sensitivity, 526, 536

changes for Office add-ins, 544-545

comments, 531, 536

curly braces ({ }) in, 536

custom functions, 525

For each..next statements, 541-542

for loops, 539

functions, 535

if statements, 539

initializing Office add-ins, 545

line breaks, 536

math functions, 543-544

operators, 542-543

reading/writing to worksheets, 545

Select...Case statements, 540-541

semicolons (;) in, 536

spaces in, 536

strings, 537-538

variables, 537

writing to content/task panes, 544

Jet engine, 426

joining

criteria ranges

with logical AND, 191

with logical OR, 190-191

ranges with Union method, 61

K

keyboard shortcuts, running macros, 510

KeyDown event

frames/option buttons, 164

list boxes/combo boxes, 162

MultiPage controls, 169

spin buttons, 166

text box/command button control, 159

userforms, 155

KeyPress event

frames/option buttons, 164

list boxes/combo boxes, 162

MultiPage controls, 169

spin buttons, 167

text box/command button control, 159

userforms, 155

KeyUp event

frames/option buttons, 164

list boxes/combo boxes, 162

MultiPage controls, 169

spin buttons, 167

text box/command button control, 159

userforms, 155

L

label controls, 157-159

labels in sparklines, viewing, 365

last data row, finding in recorded code, 47-48

late binding, 407, 410

Layout event

frames, 164

MultiPage controls, 169

userforms, 155

Layout group (Design tab) for pivot tables, 248

layout settings for pivot tables, 248-249

libraries for object models, setting priority, 409

line breaks in JavaScript, 536

line continuation, 18

line settings, formatting charts, 322

line sparklines, 353

list boxes

combo boxes versus, 160-161

events, 162

ListCount property, 162

multicolumn, 464-465

MultiSelect property, 161-162

ListCount property (list boxes), 162

listing files in directory, 251-253

listings

Data Model pivot table, 245-246

pivot table generation, 214-215

pivot table slicers, 236-238

pivot table static summary, 216-217

pivot table timelines, 239-241

replicating pivot table reports, 224-227

local names, 97-98

creating, 98

reserved, 104-105

lock types, 428

logical AND, joining criteria ranges with, 191

logical operators in JavaScript, 542-543

logical OR, joining criteria ranges with, 190-191

loops. see also flow control

breaking out, 539

Do...Loop, 75-77

exiting, 76-77

Until clause in, 77-78

While clause in, 77-78

For Each...Loop, 79-80

for loops in JavaScript, 539

For...Next, 69-71

exiting early, 73-74

nesting, 74

Step clause in For statement, 72-73

variables in For statement, 71-72

Go To Special dialog box versus, 180-181

replacing with AutoFilter, 173-176

While...Wend, 79

Lotus 1-2-3 macro recorder, Excel macro recorder versus, 1, 24

M

M language, 375

Macintosh computers, compatibility, 492

macro buttons, creating

on Quick Access Toolbar, 11

on ribbon, 10

macro recorder, 8

cleaning up code, tips for, 46-52

Developer tab icons, 4

examining code, 33-34

breakpoints, 40

defined constants, 35-37

in Immediate window, 41-42

moving forward/backward in code, 40

optional parameters, 34

properties returning objects, 38

running code while stepping, 41

stepping through code, 38-40

with ToolTips, 42

in Watches window, 43-45

fields in Record Macro dialog box, 9

as help resource, 32

limitations of, 1-2, 15-16

absolute references, 19-20

AutoSum, 23-24

preparations for recording, 16-17

Quick Analysis, 24-25

recording macro, 17

relative references, 20-24

viewing code in Programming window, 17-19

tips for, 25-26

macros

assigning

to form controls, 12-13

to shortcut keys, 9

editing

Project Explorer, 14-15

Properties window, 15

VB Editor interface, 13-14

VB Editor settings, 14

in hidden workbooks, 522-523

interrupting, 111

pausing, 487-488

restarting, 111

running

with ActiveX controls, 512-513

with command buttons, 510-511

with form controls, 12-13

with hyperlinks, 513-514

with keyboard shortcuts, 510

with macro button on Quick Access Toolbar, 11

with macro button on ribbon, 10

with shapes, 511-512

with shortcut keys, 10

saving, 9

scheduling, 381

canceling scheduled, 382-383

for every two minutes, 385

for x minutes in future, 383-384

Ready mode, 382

verbal reminders, 384-385

windows of time for, 382

security, 5

adding trusted locations, 6-7

enabling/disabling macros, 7-8

shortcut keys, changing, 18

testing, 19

manually filtering pivot tables, 227-228

map charts, creating, 326

map() function (JavaScript), 544

markers in sparklines, viewing, 365-366

matching records, returning all with Advanced Filter, 200

copying all columns, 200-201

copying subset of columns, 201-203

creating individual reports, 203-207

math functions in JavaScript, 543-544

mathematical operators in JavaScript, 542-543

matrix. See arrays

max values, returning addresses of duplicates, 301-302

MDB (multidimensional database) files, 425

creating shared databases, 427-428

database connection terminology, 428-429

fields

checking for existence, 438-439

creating, 440

records

adding, 430-431

deleting, 435

retrieving, 431-433

summarizing, 436-437

updating, 433-435

tables

checking for existence, 437-438

creating, 439

memory, reading/parsing text files in, 254-255

message boxes, 152

errors versus, 487

method range of object global failed (error 1004), 489-490

methods, 28

parameters, 29-30

Microsoft Access. See Access

Microsoft ActiveX Data Objects Library, 426

Microsoft Jet Database Engine, 426

Microsoft Office icons, adding to buttons (on ribbon), 503-504

Microsoft Office Trusted Location dialog box, 6

Microsoft Scripting Runtime reference library, 284

military time, formatting cells as, 115-116

minimizing duplicate ActiveX label code, 144-146

minutes in future, scheduled macros for, 383-384

mixed alphanumeric data, sorting, 298-300

mixed references with R1C1 references, 92-93

mixed text, retrieving numbers from, 294-295

mixing icon sets, 343-344

modeless userforms, 453-454

modules, inserting, 15

MouseDown event

frames/option buttons, 164

graphics, 165

label/text box/command button control, 159

list boxes/combo boxes, 162

MultiPage controls, 169

userforms, 155

MouseMove event

frames/option buttons, 164

graphics, 165

label/text box/command button control, 159

list boxes/combo boxes, 162

MultiPage controls, 169

userforms, 155

MouseUp event

frames/option buttons, 164

graphics, 165

label/command button control, 159

label/text box/command button control, 159

list boxes/combo boxes, 162

MultiPage controls, 169

userforms, 155

moving

forward/backward in code, 40

part of pivot table, 215

MsgBox function, 152

multicolumn list boxes, 464-465

multidimensional arrays, declaring, 124-125

multidimensional database files. See MDB

MultiPage controls, 167-169, 446

multiple A1 references, replacing with single R1C1 reference, 93-95

multiple actions in recorded code, 50

multiple characters, substituting, 293-294

multiple colors for data bars, 341-343

multiple error handlers, 484

multiple fields, extracting unique list of values, 187-188

multiple items, selecting with AutoFilter, 176-177

multiple queries for web data, 377-378

multiple value fields in pivot tables, 218-219

multiplication tables, building, 93-95

MultiSelect property (list boxes), 161-162

N

Name Manager dialog box, 97-98

name of workbook, setting in cell, 282

named ranges

creating, 98-99

referencing, 54-55

for VLOOKUP() function, 106-108

names

adding, 98-99

of arrays, creating, 104

capabilities of, 100

checking for existence, 106

comments, adding to, 100

deleting, 100

of formulas, creating, 101

global, 97-98

hiding, 105

local, 97-98

of numbers, creating, 103

renaming, 99

reserved, 104-105

of strings, creating, 101-103

of tables, creating, 103-104

values, storing with, 102

navigating

documents (Word) with bookmarks, 421-422

selections (Word), 417

navigation keys in recorded macros, 26

nesting

For...Next loops, 74

If statements, 84-86

network files, checking if open, 473

network requirements for Office add-ins, 526-529

new features, 547

3D Models, 551

array formulas, 549

charts, 549-550

icons, 550

pivot tables, 209-210, 550

Quick Analysis tool, 549

ribbon, 548

single-document interface (SDI), 548-549

slicers, 550

SmartArt, 551

New keyword, referencing Word, 410

Next statements in For...Next loops, 69-71

noncontiguous ranges, selecting, 66

nonzero-length cells, finding first in range, 292-293

Notepad, 526

Notepad++, 494, 526

NOW function, 287

NumberFormat property (FormatConditions object), 350-351

numbers

names, creating, 103

retrieving from mixed text, 294-295

week numbers, converting to dates, 295-296

O

Object Browser, 45-46

retrieving constants, 413-414

object models, 407, 551

priority of libraries, setting, 409

Word, 414-415

bookmarks, 421-422

CreateObject function, 411

Document object, 415-417

early binding, 407-409

GetObject function, 411-412

late binding, 410

New keyword, 410

Range object, 418-421

retrieving constant values, 412-414

Selection object, 417-418

object variables, 79-80

object-oriented languages

parts of speech analogy, 28-31

procedural languages versus, 27-28

objects, 28

collections versus, 29

custom. See custom objects

properties, 31

returned by properties, 38

watches on, 44-45

Office 365 subscription

Excel 2019 versus, 547

Power BI Custom Visuals support, 306

Office add-ins, 525

adding interactivity, 530-532, 535

case sensitivity, 526

content/task panes, writing to, 544

creating, 526-530

HTML in, 532

buttons, 533-534

CSS files, 534

tags, 533

initializing, 545

interface types, 534

JavaScript changes for, 544-545. see also JavaScript

network requirements, 526-529

XML in, 534-535

Office Add-Ins dialog box, refreshing, 535

Office icons, adding to buttons (on ribbon), 503-504

Offset property (Range object), 175

referencing ranges, 58-59

OLAP pivot tables, filtering, 266-268

On Error Go To syntax, 482-483

On Error Resume Next syntax, 484-485

online data. See web data

OnTime method, 381

canceling scheduled macros, 382-383

for every two minutes, 385

for x minutes in future, 383-384

Ready mode, 382

verbal reminders, 384-385

windows of time in, 382

Open method (Document object), 416

open network files, checking for, 473

open workbooks, checking for, 282-283

opening

delimited text files, 397-399

documents (Word), 416

files in Notepad, 526

fixed-width text files, 393-397

VB Editor, 18

workbooks when customizing ribbon, 502

OpenText method, 33, 35, 37, 393

delimited text files, 397-399

file types for, 393

fixed-width text files, 393-397

importing more than 1,048,576 rows, 399

operators in JavaScript, 542-543

optimistic lock types, 428

optimizing code with arrays, 128

option buttons, 163

events, 163-164

GroupName property, 163

optional parameters in Help topics, 34

OR, joining criteria ranges with, 190-191

organizing controls on UserForm toolbar, 443-444

overlapping ranges, creating ranges from, 62

P

Page Setup dialog box, ignoring errors, 485-486

parameters, 29-30

for events, 110

optional, 34

parsing text files in memory, 254-255

parts of speech analogy (object-oriented languages), 28-31

pass-through queries, 429

passing

arrays to functions, 130

values to/from arrays, 130

passwords

for add-ins, 520

cracking, 490-491

in Excel versions, 491-492

secure password input, 270-273

pasting in recorded code, 49

patterns, formatting charts, 321

pausing macros, 487-488

percentages, changing pivot table calculations to, 221-223

performance of code, optimizing with arrays, 128

permanent date/time, retrieving, 287

Personal Macro Workbook, 9

pessimistic lock types, 429

pictures, formatting charts, 321

pivot cache

defining, 210-211, 243

deleting, 216

pivot table events (workbook-level), list of, 113-114

pivot tables, 209

AutoSort, 224

calculated fields in, 246-247

calculated items in, 247

calculations, changing to percentages, 221-223

configuring, 211-212

converting to values, 215-217

creating, 211-212

daily dates, grouping, 219-221

data area, adding fields, 212-215

Data Model example code, 244-246

Data Model fields, adding, 243

data sets, replicating reports for, 224-227

data visualizations in, 249-250

drilling down, 265-266

filtering

with AutoShow, 232-234

with conceptual filters, 228-231

manually, 227-228

with Search box, 232

with slicers, 234-238

with Timeline slicers, 238-241

finding size of, 215-217

history in Excel, 209-210

Layout group (Design tab), 248

moving/changing part of, 215

new features, 550

OLAP pivot tables, filtering, 266-268

pivot cache

defining, 210-211, 243

deleting, 216

record sets, filtering, 247

reports, layout settings, 248-249

subtotals, suppressing, 249

value fields

adding to Data Model, 243-244

multiple, 218-219

values area, eliminating blank cells, 223-224

VBA terminology for, 210

playing sounds, 477

plus sign (+) in JavaScript, 537

Power BI Custom Visuals, 306

Power Query add-in, 375

importing text files into Data Model, 403-404

preparing to record macros, 16-17

Preserve keyword, 129

Print_Area reserved name, 105

Print_Titles reserved name, 105

printing documents (Word), 417

PrintOut method (Document object), 417

priority of libraries, setting, 409

private variables, 135

procedural languages, object-oriented languages versus, 27-28

procedures, preventing recursive calling, 116. see also events

ProgIDs for controls, 458

programming

controls, 156

userforms, 154-156

Programming window, viewing code in, 17-19

progress indicators, creating, 269-270

Project Explorer, 14-15

properties, 31, 135. see also variables

custom, creating, 146-149

returning objects, 38

Properties window, 15

closing, 513

Property Get procedures, 137

Property Let procedures, 136

Property Set procedures, 137

protecting

code

disadvantages of, 490

Excel password versions, 491-492

password cracking, 490-491

hidden names, 106

public variables, 135

publishing web data

Excel as content management system, 388-390

via FTP, 390-391

saving as HTML, 386-387

writing macro for, 387

purposely encountering errors, 486-487

Q

QueryClose event (userforms), 155, 169-170

querying

variables

in Immediate window, 41-42

with ToolTips, 42

in Watches window, 43

web data, 375, 377

cleaning up macro, 379-380

examples of, 380-381

finding results in, 378-379

with multiple queries, 377-378

scheduling retrieval, 381

Quick Access Toolbar, macro buttons on, 11

Quick Analysis tool, 549

in recorded macros, 24-25

quotation marks (““) in JavaScript, 537

R

R1C1 references

A1 references versus, 87-88

absolute references with, 92

with array formulas, 96

associating column numbers with column names, 95

converting formulas to, 96

copying formulas, 89-91

for entire columns/rows, 93

mixed references with, 92-93

in recorded code, 49

relative references with, 91-92

replacing multiple A1 references, 93-95

toggling, 88-89

RAND function, 303

random numbers, generating static, 303

Range object, 541

Areas collection, selecting noncontiguous ranges, 66

Cells property, selecting ranges, 57-58

Columns property, referencing ranges, 61

CurrentRegion property, selecting ranges, 63

Intersect method, creating ranges from overlapping ranges, 62

IsEmpty function, finding empty cells, 62-63

Offset property, referencing ranges, 58-59

referencing, 53-54

named ranges, 54-55

in other worksheets, 55-56

relative to other ranges, 56

syntax, 54

Resize property, resizing ranges, 60-61

Rows property, referencing ranges, 61

SpecialCells method, selecting specific cells, 63-65

Union method, joining ranges, 61

in Word, 418

defining ranges, 418-419

formatting ranges, 419-421

ranges, 53

adding

color scales to, 336-337

data bars to, 331-335

icon sets to, 337-340

creating from overlapping ranges, 62

finding

empty cells in, 62-63

first nonzero-length cell in, 292-293

joining with Union method, 61

multiple data bar colors in, 341-343

named ranges

creating, 98-99

for VLOOKUP() function, 106-108

referencing

with Columns property, 61

named ranges, 54-55

with Offset property, 58-59

in other worksheets, 55-56

in recorded code, 47

relative to other ranges, 56

with Rows property, 61

syntax, 54

resizing with Resize property, 60-61

selecting

with Cells property, 57-58

with CurrentRegion property, 63

noncontiguous ranges, 66

specific cells with SpecialCells method, 63-65

sorting

by custom sort order, 268-269

numerically then alphabetically, 298-300

subsets of, creating icon sets for, 340-341

tables

creating, 103-104

referencing, 66-67

selecting, 66

reading. see also importing

from worksheets with JavaScript, 545

text files into memory, 254-255

Ready mode, scheduled macros and, 382

Record Macro dialog box, 8-9, 17

record sets, 428

filtering in pivot tables, 247

recording macros, 8

cleaning up code, tips for, 46-52

Developer tab icons, 4

examining code, 33-34

breakpoints, 40

defined constants, 35-37

in Immediate window, 41-42

moving forward/backward in code, 40

optional parameters, 34

properties returning objects, 38

running code while stepping, 41

stepping through code, 38-40

with ToolTips, 42

in Watches window, 43-45

fields in Record Macro dialog box, 9

as help resource, 32

limitations of, 1-2, 15-16

absolute references, 19-20

AutoSum, 23-24

preparations for recording, 16-17

Quick Analysis, 24-25

recording macro, 17

relative references, 20-24

viewing code in Programming window, 17-19

tips for, 25-26

records

copying to worksheets, 257-258

counting in pivot tables, 219

database

adding, 430-431

deleting, 435

retrieving, 431-433

summarizing, 436-437

updating, 433-435

recursive functions, 284

recursive procedure calling, preventing, 116

RefEdit controls, 448-449

references

R1C1

A1 versus, 87-88

absolute references with, 92

with array formulas, 96

associating column numbers with column names, 95

converting formulas to, 96

copying formulas, 89-91

for entire columns/rows, 93

mixed references with, 92-93

relative references with, 91-92

replacing multiple A1 references, 93-95

toggling, 88-89

to ranges in recorded code, 47

referencing

custom objects, 137-138

Range object, 53-54

with Columns property, 61

named ranges, 54-55

with Offset property, 58-59

in other worksheets, 55-56

relative to other ranges, 56

with Rows property, 61

syntax, 54

tables, 66-67

Word, 407

CreateObject function, 411

early binding, 407-409

GetObject function, 411-412

late binding, 410

New keyword, 410

retrieving constant values, 412-414

refreshing Office Add-Ins dialog box, 535

relationships, creating between tables in Data Model, 242

relative references

with R1C1 references, 91-92

to ranges, 56

in recorded macros, 20-25

RELS file, 501-502

reminders (verbal), scheduling, 384-385

RemoveControl event

frames, 164

MultiPage controls, 169

userforms, 155

removing. See deleting

renaming

controls, 156

names, 99

workbooks when customizing ribbon, 502

reordering columns with Advanced Filter, 201-203

replacing

loops with AutoFilter, 173-176

multiple A1 references with single R1C1 reference, 93-95

replicating reports in pivot tables, 224-227

reports

creating individual with Advanced Filter, 203-207

from pivot tables, layout settings, 248-249

replicating in pivot tables, 224-227

required fields in userforms, 169

requiring variable declarations, 14

reserved names, 104-105

Reset button (VB Editor), 480

Reset command (stopping code), 40

resetting table formatting, 275

Resize event (userforms), 156

Resize property (Range object), 60-61

resizing

comments, 259-260

ranges with Resize property, 60-61

userforms, 457

resolution (of display), returning, 474-475

resources for information. See help resources

restarting macros, 111

Restore Down icon (arranging window), 39

retrieving

array data, 126-127

constant values when referencing Word, 412-414

numbers from mixed text, 294-295

permanent date/time for workbooks, 287

records (database), 431-433

saved date/time for workbooks, 286

user IDs, 285-286

web data, 375, 377

cleaning up macro, 379-380

examples of, 380-381

finding results in, 378-379

with multiple queries, 377-378

scheduling retrieval, 381

return data types for input boxes, 152

returning

all matching records with Advanced Filter, 200

copying all columns, 200-201

copying subset of columns, 201-203

creating individual reports, 203-207

cell addresses of duplicate max values, 301-302

column letter of cell addresses, 302-303

computer name, 472-473

display resolution, 474

hyperlink addresses, 302

reversing cell contents, 300-301

RGB colors, 362, 364

RGB function, 333-364

ribbon

customizing, 493

accessing file structure, 501

adding button images, 503-505

adding controls, 496-500

creating customui folder/file, 494-495

creating tabs/groups, 495-496

RELS file, 501-502

renaming/opening workbooks, 502

troubleshooting error messages, 493, 505-509

visibility of ribbon, 494

macro buttons on, 10

new features, 548

RibbonX Visual Designer, 503

row fields in pivot tables, suppressing subtotals, 249

RowGrand property (pivot tables), 248

rows

changing to variables in recorded code, 49

formatting with AutoFilter, 173-176

hiding with Go To Special dialog box, 180-181

highlighting, 350

referencing with R1C1 references, 93

Rows property (Range object), referencing ranges, 61

running

code while stepping, 41

macros

with ActiveX controls, 512-513

with command buttons, 510-511

with form controls, 12,-13

with hyperlinks, 513-514

with keyboard shortcuts, 510

with macro button on Quick Access Toolbar, 11

with macro button on ribbon, 10

with shapes, 511-512

with shortcut keys, 10

running timers, creating, 476-477

runtime, adding controls, 455-461

runtime errors

subscript out of range, 488-489

method range of object global failed, 489-490

troubleshooting, 199-200

VB Editor actions, 479-480

S

Save As command, converting workbooks to add-ins, 517

saved date/time, retrieving, 286

saving

add-in data, 516

files, changing default file type, 5

macros, 9

workbooks as HTML, 386-387

scaling sparklines, 355-359

scheduling macros, 381

canceling scheduled, 382-383

for every two minutes, 385

for x minutes in future, 383-384

Ready mode, 382

verbal reminders, 384-385

windows of time for, 382

Scroll event

frames, 164

MultiPage controls, 169

userforms, 156

scrollbars, as sliders, 450-451

SDI (single-document interface), 548-549

Search box

filtering pivot tables, 232

selecting with in AutoFilter, 177

searching for strings, 300

secure password input, 270-273

security

add-ins, 520

macros, 5

adding trusted locations, 6-7

enabling/disabling macros, 7-8

passwords

for add-ins, 520

cracking, 490-491

in Excel versions, 491-492

secure password input, 270-273

protecting code

disadvantages of, 490

Excel password versions, 491-492

password cracking, 490-491

Select Case...End Select constructs, 83-84

Select...Case statements

in JavaScript, 540-541

in worksheets, 303-304

selecting

cells with SpecialCells, 274-275

files in userforms, 170-171

multiple items with AutoFilter, 176-177

ranges

with Cells property, 57-58

with CurrentRegion property, 63

noncontiguous ranges, 66

specific cells with SpecialCells method, 63-65

with Search box in AutoFilter, 177

tables, 66

visible cells, 179-180

Selection object (Word), 417

inserting text, 417-418

navigating, 417

Selection property, 38

selections, deleting in recorded code, 46-47

semicolons (;) in JavaScript, 536

separating worksheets into workbooks, 255-256

Set statements for object variables, 80

SetElement method (formatting charts), 314-319

shapes

assigning macros to, 12

running macros from, 511-512

shared Access databases, creating, 427-428

sharing

UDFs (user-defined functions), 281

workbooks, 425

sheet events, workbook-level, 113-114

shortcut keys

assigning to macros, 9

changing for macros, 18

running macros, 10

ShowAllData method, 200

ShowDetail property (pivot tables), 247

single rows, importing text files by, 400-401

single-document interface (SDI), 548-549

size of pivot tables, finding, 215-217

skipping fields during imports, 395

slicer cache, defining, 235

slicers

filtering pivot tables, 234-238

formatting, 238

new features, 550

Timeline slicers, 238-241

sliders, scrollbars as, 450-451

SmartArt

assigning macros to, 12

new features, 551

sorting

columns, 296-298

pivot tables, 224

ranges

by custom sort order, 268-269

numerically then alphabetically, 298-300

sounds, playing, 477

spaces in JavaScript, 536

SparklineGroup object, 353

sparklines, 353, 550

creating, 353-355

for dashboard, 369-373

formatting, 359

with RGB colors, 362, 364

sparkline elements, 364-366

with theme colors, 359-362

win/loss charts, 366-367

scaling, 355-359

tips for, 368-369

types of, 353

Speak On Enter feature, 384

SpecialCells method (Range object), selecting specific cells, 63-65, 274-275

speeding up. See optimizing

spin buttons, 165-167

SpinDown event (spin buttons), 167

SpinUp event (spin buttons), 167

spreadsheets. See worksheets

SQL Server, 440-442

SQL statements

pass-through queries, 429

viewing, 431

square brackets ([]), as Evaluate method, 103

standard add-ins. See add-ins

standard modules, creating collections, 139-140

states, enabling/disabling, 263, 265

static cursors, 428

static random numbers, generating, 303

Step clause in For statement in For...Next loops, 72-73

stepping through code, 38-41

storing values with names, 102

strings

delimited strings, extracting elements from, 296

in JavaScript, 537-538

names, creating, 101-103

searching text for, 300

styles (chart), list of, 307-310

subscript out of range (error 9), 488-489

subset of columns, copying with Advanced Filter, 201-203

subsets of ranges, creating icon sets for, 340-341

substituting multiple characters, 293-294

SubtotalLocation property (pivot tables), 248

subtotals, suppressing in pivot tables, 249

summarizing records (database), 436-437

summing cells based on color, 289-290

suppressing

alerts, 486

subtotals in pivot tables, 249

switch() statement in JavaScript, 540-541

switching to SQL Server, 440-442

T

tab order in userforms, 462-463

tables

adding to Data Model, 242

creating, 103-104

creating relationships in Data Model, 242

database

checking for existence, 437-438

creating, 439

exporting to XML, 258-259

referencing, 66-67

resetting formatting, 275

selecting, 66

tabs (on ribbon), creating, 495-496

TabStrip controls, 446-448

Tag property, 453

tags (HTML), 533

task pane (Office add-ins), 534, 544

Terminate event (userforms), 156

test expressions, 83

testing macros, 19

text

changing case, 273-274

highlighting cells based on, 348

inserting in selections (Word), 417-418

retrieving numbers from, 294-295

searching for strings, 300

text box controls, 157-159

text boxes, assigning macros to, 12

text editors, case sensitivity in, 526

text fields, troubleshooting formulas in, 396

text files

importing from, 393

into column sets, 402-403

into Data Model with Power Query, 403-404

delimited files, 397-399

file types available, 393

fixed-width files, 393-397

more than 1,048,576 rows, 399-404

reading one row at a time, 400-401

reading/parsing in memory, 254-255

writing, 404-405

Text Import Wizard, 16, 35, 37

textures, formatting charts, 320

theme colors, 359-362

Then statements in If...Then...Else constructs, 81-82

time formats, military time, 115-116

time windows for scheduled macros, 382

Timeline slicers, 238-241

timers, creating running, 476-477

tip text in userforms, 462

titles (chart), specifying, 311-312

toggle buttons, 449-450

toggling R1C1 references, 88-89

ToolTips in VB Editor, 42

Top 10 AutoShow, filtering pivot tables, 232-234

top/bottom rules, 330, 345

tracking user changes, 262-263

training clients in error handling, 487

transparency of userforms, 465-466

TrapAppEvent procedure, 133

troubleshooting. see also error handling

1004 runtime error, 199-200

Compatibility mode, 552

error messages on ribbon, 493, 505-509

formulas in text fields, 396

new controls, 157

trusted locations, adding, 6-7

two minutes, scheduled macros for, 385

Type...End Type statements, 146

TypeText method (Selection object), 417-418

U

UDFs (user-defined functions)

cells

finding first nonzero-length in range, 292-293

returning addresses of duplicate max values, 301-302

returning column letter of address, 302-303

returning hyperlink addresses, 302

reversing contents, 300-301

summing based on color, 289-290

characters, substituting multiple, 293-294

columns, sorting and concatenating, 296-298

creating, 279-281

delimited strings, extracting elements from, 296

email addresses, validating, 287-289

in JavaScript, 525

random numbers, generating static, 303

ranges, sorting numerically then alphabetically, 298-300

sharing, 281

text

retrieving numbers from, 294-295

searching for strings, 300

user IDs, retrieving, 285-286

values

counting unique, 290-291

removing duplicates, 291-292

week numbers, converting to dates, 295-296

workbooks

checking for worksheet existence, 283-284

checking if open, 282-283

counting in directory, 284-285

retrieving permanent date/time, 287

retrieving saved date/time, 286

setting file path in cell, 282

setting name in cell, 282

worksheets, Select...Case statements in, 303-304

UDTs (user-defined types), 146-149

Union method (Range object), joining ranges, 61

unique cells, highlighting, 346-347

unique list of values, extracting, 182

with Excel interface, 183-184

for multiple fields, 187-188

with VBA code, 184-187

unique values

counting, 290-291

highlighting first, 349-350

Until clause in Do...Loop loops, 77-78

Unviewable+ VBA Project software, 490

updating records (database), 433-435

user changes, tracking, 262-263

user IDs, retrieving, 285-286

user-defined functions (UDFs). See UDFs

user-defined types (UDTs), 146-149

UserForm toolbar, 443-444

userforms, 151

calling, 154

closing illegally, 169-170

controls

adding at runtime, 455-461

check boxes, 444-446

combo boxes, 160-162

command buttons, 157-159

frames, 163-164

graphics, 164-165

grouping into collections, 451-453

labels, 157-159

list boxes, 160-162

multicolumn list boxes, 464-465

MultiPage, 167-169, 446

option buttons, 163-164

ProgIDs for, 458

programming, 156

RefEdit, 448-449

renaming, 156

scrollbars as sliders, 450-451

spin buttons, 165-167

TabStrip, 446-448

text boxes, 157-159

toggle buttons, 449-450

troubleshooting new controls, 157

creating, 153-154

disabling X button, 475-476

error handling, 481-482

help features

accelerator keys, 461-462

coloring active control, 463-464

tab order, 462-463

tip text, 462

hiding, 154

hyperlinks in, 454-455

images, adding, 458-459

input boxes, 151-152

message boxes, 152

modeless, 453-454

programming, 154-156

required fields, 169

resizing, 457

selecting files in, 170-171

transparency, 465-466

UserForm toolbar, 443-444

V

validating email addresses, 287-289

value fields in pivot tables

adding in Data Model, 243-244

multiple fields, 218-219

values

arrays

filling, 125-126

passing to/from, 130

converting pivot tables to, 215-217

counting unique, 290-291

custom number formats, 350-351

extracting unique, 182

with Excel interface, 183-184

for multiple fields, 187-188

with VBA code, 184-187

first unique, highlighting, 349-350

highlighting cells based on, 347

removing duplicates, 291-292

storing with names, 102

values area of pivot tables, eliminating blank cells, 223-224

variables. see also properties

arrays. See arrays

changing rows/formulas to in recorded code, 49

declaring, 14, 79

in For statement in For...Next loops, 71-72

in JavaScript, 537

object variables, 79-80

querying

in Immediate window, 41-42

with ToolTips, 42

in Watches window, 43

VB Editor

converting workbooks to add-ins, 518

debugging tools

breakpoints, 40

Immediate window, 41-42

moving forward/backward in code, 40

running code while stepping, 41

stepping through code, 38-40

ToolTips, 42

Watches window, 43-45

error handling in, 479-482

interface, 13-14

Object Browser, 45-46

opening, 18

Programming window, viewing code in, 17-19

Project Explorer, 14-15

Properties window, 15

settings, 14

VBA (Visual Basic for Applications)

barriers to entry, 1

macro recorder limitations, 1-2

Visual Basic versus BASIC, 2

data visualization methods/properties, 330-331

Developer tab, enabling, 3-4

help resources

Help topics, 32-33

macro recorder, 32

Object Browser, 45-46

learning curve, 2-3

new features, 547

3D Models, 551

array formulas, 549

charts, 549-550

icons, 550

pivot tables, 550

Quick Analysis tool, 549

ribbon, 548

single-document interface (SDI), 548-549

slicers, 550

SmartArt, 551

object models, 407

as object-oriented language

parts of speech analogy, 28-31

procedural languages versus, 27-28

pivot table terminology, 210

power of, 1

protecting code

disadvantages of, 490

Excel password versions, 491-492

password cracking, 490-491

VBA Extensibility, adding code to workbooks, 276-277

verbal reminders, scheduling, 384-385

verifying workbook version

with Excel8CompatibilityMode property, 553

with Version property, 552

Version property, 552

versions of Excel

error handling, 492

password schemes in, 491-492

pivot tables in, 209-210

verifying

with Excel8CompatibilityMode property, 553

with Version property, 552

viewing

add-ins, 519

all records after filter in place, 200

custom ribbon, 494

Developer tab, 3-4

events, 110

horizontal axis in sparklines, 364-365

macro code in Programming window, 17-19

Project Explorer, 14

sparkline labels, 365

sparkline markers, 365-366

SQL statements, 431

VBA and Excel windows, 39

Word instances, 411

visible cells, selecting, 179-180

Visual Basic, BASIC versus, 2

Visual Basic for Applications. See VBA (Visual Basic for Applications)

visualizations. See data visualizations

VLOOKUP() function

finding results in web data, 378

named ranges for, 106-108

W

warnings, suppressing, 486

Watches window, 43-45

retrieving constants, 413

waterfall charts, creating, 326-328

WCL_FTP utility, 390-391

web data

publishing

Excel as content management system, 388-390

via FTP, 390-391

saving as HTML, 386-387

writing macro for, 387

retrieving, 375, 377

cleaning up macro, 379-380

examples of, 380-381

finding results in, 378-379

with multiple queries, 377-378

scheduling retrieval, 381

week numbers, converting to dates, 295-296

Wend statements in While...Wend loops, 79

While clause in Do...Loop loops, 77-78

While...Wend loops, 79

win/loss sparklines, 353, 366-367

windows (VBA and Excel), viewing, 39

Windows API. See API (application programming interface)

Windows computers, compatibility, 492

windows of time for scheduled macros, 382

WinWord.exe, 411

With...End With statements in recorded code, 50

Word

object model, 414-415

bookmarks, 421-422

Document object, 415-417

Range object, 418-421

Selection object, 417-418

referencing from Excel, 407

CreateObject function, 411

early binding, 407-409

GetObject function, 411-412

late binding, 410

New keyword, 410

retrieving constant values, 412-414

viewing instances, 411

workbook events, list of, 111-113

workbook-level sheet events, list of, 113-114

workbooks

adding code with VBA Extensibility, 276-277

checking if open, 282-283

combining, 256-257

Compatibility mode, troubleshooting, 552

converting to add-ins, 516-517

with Save As, 517

with VB Editor, 518

counting in directory, 284-285

file structure, accessing, 501

hiding, 521-523

renaming/opening when customizing ribbon, 502

retrieving permanent date/time, 287

retrieving saved date/time, 286

saving as HTML, 386-387

setting file path in cell, 282

setting name in cell, 282

sharing, 425

user changes, tracking, 262-263

verifying version

with Excel8CompatibilityMode property, 553

with Version property, 552

worksheets. See worksheets

worksheet events, list of, 114-115

worksheets

as arrays, 124

checking for existence, 283-284

combining into single workbook, 256-257

copying data to, 257-258

inactive worksheets, referencing ranges in, 55-56

reading/writing with JavaScript, 545

Select...Case statements in, 303-304

separating into workbooks, 255-256

user changes, tracking, 262-263

writing

to content/task panes with JavaScript, 544

text files, 404-405

to worksheets with JavaScript, 545

X-Y-Z

X button in userforms, disabling, 475-476

.xlsb (Excel Binary Workbook) file type, 5

.xls (Excel 97-2003 Workbook) file type, 5

.xlsm (Excel Macro-Enabled Workbook) file type, 4-5

.xlsx (Excel Workbook) file type, 4

XML

case sensitivity, 526

exporting tables to, 258-259

in Office add-ins, 534-535

Zoom event

frames, 164

MultiPage controls, 169

userforms, 156

Code Snippets

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Hear aboutit first.

Since 1984, Microsoft Press has helped IT professionals, developers, and home office users advance their technical skills and knowledge with books and learning resources.

Sign up today to deliver exclusive offers directly to your inbox.

	New products and announcements

	Free sample chapters

	Special promotions and discounts

	... and more!

microsoftpressstore.com/newsletters

[image: Images]

Plug into learning at microsoftpressstore.com

The Microsoft Press Store by Pearson offers:

	Free U.S. shipping

	Buy an eBook, get three formats – Includes PDF, EPUB, and MOBI to use with your computer, tablet, and mobile devices

	Print & eBook Best Value Packs

	eBook Deal of the Week – Save up to 50% on featured title

	Newsletter – Be the first to hear about new releases, announcements, special offers, and more

	Register your book – Find companion files, errata, and product updates, plus receive a special coupon* to save on your next purchase

Discounts are applied to the list price of a product. Some products are not eligible to receive additional discounts, so your discount code may not be applied to all items in your cart. Discount codes cannot be applied to products that are already discounted, such as eBook Deal of the Week, eBooks that are part of a book + eBook pack, and products with special discounts applied as part of a promotional offering. Only one coupon can be used per order.

[image: Images]

images/00981.jpeg
Sub GetSettings()
ThisWorkbook.Worksheets("Menu").Select
x = Range("A1").Value

End Sub

images/00980.jpeg
On Error Resume Next

X = Worksheets("Data").Name

If Err.Number <> O then Sheets.Add.Name = "Data”
On Error GoTo 0O

images/00503.jpeg
Property Let EmployeeName(RHS As String)
m_employeename = RHS
End Property

Property Let EmployeeID(RHS As String)
m_employeeid = RHS
End Property

Property Let EmployeeHourlyRate(RHS As Double)
m_employeehourlyrate = RHS
End Property

Property Let EmployeeWeeklyHours(RHS As Double)
m_employeeweeklyhours = RHS
m_normalhours = WorksheetFunction.Min(40, RHS)
m_overtimehours = WorksheetFunction.Max(0, RHS - 40)
Fnd Property

images/00987.jpeg
>ub HelloWorld(control As IRibbonControl)
MsgBox "Hello World"
EFnd Sub

images/00502.jpeg
Private
Private
Private
Private
Private
Private

m_emp loyeename As String
m_employeeid As String
m_employeehourlyrate As String
m_employeeweeklyhours As String
m_normalhours As Double

m overtimehours As Double

images/00986.jpeg
<customUI xmins="http://schemas.microsoft.com/oft1ce/2009/07/customul =
<ribbon startFromscratch="false">
<tabs>
<tab id="CustomTab™ label="Vy First Ribbon">
<group id="CustonGroup” Tabel="My Programs"s

<l== your ribbon controls here -->

</groups
</tab>
</tabs>
</ribbon>
N — .

images/00505.jpeg
Public Function EmployeeWeek lyPay() As Double
EmployeeheeklyPay = (m_normalhours * m_employeehourlyrate) + _
(m_overtimchours * m_cwployechourlyrate * 1.5)
End Funcrion

images/00989.jpeg
<Relationship ld="rABb6/389"
Type="htLp://schemas.microsof t.com/of Fice/2007/relationships/ui/_
extensibiTity"

Target="customui/custonUIld.xml" />

images/00504.jpeg
Property Get EmployeeName() As String
EmployeeName = m_employeename
End Property

Property Get EmployeeID() As String
EmployeelD = m_employeeid
End Property

Property Get EmployeeWeeklyHours() As Double
EmployeeWeeklyHours = m_employeeweeklyhours
End Property

Property Get EmployeeNormalHours() As Double
EmployeeNormalHours = m_normalhours
End Property

Property Get EmployeeOverTimeHours() As Double
EmployeeOverTimeHours = m_overtimehours
Fnd Property

images/00988.jpeg
<customUl xmins="http://schemas.microsott.com/att1ce/2009/07/customul
<ribbon startFromscratch="false">

<tabs>
<tab id="CustonTab" Tabel="My First Ribbon">
<group id="CustonGroup" label="My Prograns">

button1” Tabel="Click to run"
ModuleL.Helloor1c" size="normal”/>

<button i
onActions’

</aroup>
</1ab>
</tabs>
</ribbon>
</customUI>

images/00983.jpeg
Sub SetReportInItalics()

TotalRow = Cells(Rows.Count,1).End(x1Up).Row
FinalRow = TotalRow - 1

Range("A1l:A" & FinalRow).Font.Italic = True
End Sub

images/00982.jpeg
Sub GetSettings()

On Error Resume Next

x - ThisWorkbook.Worksheets("Venu") . Nane

If Not Err.Number = O Then
MsgBox "Expected to find a Menu worksheet, but it is missing"
Exit Sub

End If

On Error GoTo O

ThisWorkbook.Worksheets{"Menu").Select
x = Range("Al").value
Fnd Sub

images/00501.jpeg
Sub TrapChartEvent()
Set myChartEvent.x1Chart = Worksheets("EmbedChart"). _
ChartObjects("Chart 2").Chart
cnd Sub

images/00985.jpeg
<customUl xmins="http://scnemas.microsott.com/oT1ce,/2008/07/customu
<ribbon startFronScratch="false">

<tabss

your ribbon controls here

</tabs>
</ribbonx
el euekbalits.

images/00500.jpeg
Public myChartEvent As New clsEvents

images/00984.jpeg
Sub SetReportinItalics{)
TotalRow = Cells(Rows.Count,1).End(x1Up) .Row
FinalRow = lotalRow - 1
LF FinalRow > O [hen
Range("AL:A" & FinalRow).Font.Italic = True
Else
MsgBox "It appears the file is empty today. Check the FTP process”
Fnd TF
Eid Qb

images/00979.jpeg
Next ws
If not DataFound then Sheets.Add.Name = "Data"

images/00970.jpeg
Private Declare PtrSafe Function FindWindow Lib "user32" Alias _
"FindWindowA” (Byval 1pClassName As Strira, Byal lpWindowName
As String) As Long

Private Declare PtrSafe Function GetSystemMenu Lib "userd2" _
(ByVal hidnd As LongPtr, ByVal bRevert As Long) As LongPtr
Private Declare PtrSafe Function DeleteMenu Lib "user32" _
(Byval hMenu As LongPtr, Byval nPosition As Long, _

Byval wFlags As Long) As LongPtr

Private Const SC_CLOSE As Long = &HF060

Private Sub UserForm_Initialize()

Dim hiindForm As LongPtr

Dim h¥lenu As LongPtr

'ThunderDFrame is the class name of all userforms
hndForm = FindWindow("ThunderDFrame”, Me.Caption)
hMenu = GetSystemMenu(hiindForm, 0)

DeleteMenu hMenu, SC_CLOSE, 0&

End Sub

images/00976.jpeg
On Error Resume Next
Applicarion.PrintCommunication = False
With ActiveSheet.PageSetup
_PrintTirleRows = ""
-PrintTitleColumns = "
End With
ActiveSheet.PageSetup.PrintArea - "$ASL:$L527"
With ActiveSheet.PageSetup
-LeftHeader
.CenterHeader - "*
-RightHeader = ""
_Leftrooter
-Centerfooter = "
-RightFooter = ""
-LeftMargin = Application.InchesToPuints (0.25)
.RightMargin = Application.InchesToPcints(0.25)
TopMargin = Application.InchesToPoints(0.75)
-BottomMargin = Application.InchesToPoints(0.5)
-HeaderMargin = Application. InchesToPoints(0.5)
-FooterMargin = Application.InchesToPoints(0.5)
-PrintHaadings = False
.PrintGridlines = False
.PrintComrents — x1PrintNoComments
_PrintQuality = 300
.CenterHorizontally = False
.Centervertically = False
.Orientation = xlLandscape
.Draft = False
.PaperSize = xlPaperletter
.FirstPagehumber — x1Automatic
.Order = x1DownThenOver
-Blackanduhite = False
.Zoom = False
.FitToPageslide = 1
.FitToPagesTall = False
.PrintErrors = xIPrintErrorsDisplayed
End With
Application.PrintComunication = True
On Freor CoTo O

images/00975.jpeg
Sub WriteHIMLO)

MyFile = "C:\Index.htm1"

On Error Resume Next

Kill MyFile

On Error Goto 0

Open MyFile for Output as #1
" etc...

End Sub

images/00978.jpeg
DataFound = False

For Each ws in ActiveWorkbook.Worksheets
If ws.Name = "Data" then

DataFound = True

Exit For

End if

images/00977.jpeg
Sub DeleteSheet()
Application.DisplayAlerts = False
Worksheets("Sheet2").Delete
Application.DisplayAlerts = True
End Sub

images/00972.jpeg
Public Declare PtrSafe Function PlayWavSound Lib "winmm.d11" _
Alias "sndPlaySoundA" (8yVal LpszSoundName As String, _
ByVal uFlags As Long) As LongPtr

Public Sub PlaySound()
Dim SoundName As String

SoundName = "C:\Windows\Media\Chimes.wav"
PlayWavSound SoundName, 0

End Sub

images/00971.jpeg
Public Declare PtrSafe Function SetTimer Lib "user32" _

(ByVal Hind As Long, ByVal nIDEvent As Long, _

Byval uFlapse As long, ByVal IpTimerFunc As LangPrr) As LongPrr
Public Ceclare PtrSafe Function KillTimer Lib "user32" _

(Byval hund As Long, ByVal nICEvent As LongPtr) As LongPtr
Public Ceclare PurSafe Function FindWindow Lib "user32” _

Alias "FindWindowA" (ByVal 1pClasshame As String, _

Byval TpwindoaName As String) As LongPrr

Private IngTimerID As Long

Private datstartinglime As Date

Public Sub StartTimer()

StopTimer 'stop previous timer

datStartingTime = Now

IngTimerID = SetTiner(0, 1, 10, AddressOf RunTimer)

End Sub

Public Sub StapTimer()
Dim Ret As LongPtr, TngTID As Long
If IsEmpty(IngTimerID) Then Exit Sub
TngTID = IngTinerID

TRet = KillTimer(0, 1ngTID)
TngTimerTd = Empry

Cnd Sub

Private Sub RunTimer(ByVal hilnd As Long, _

ByVal uintl As Long, ByVal nEventld As Long, _

Byval dwparam As Long)

On Crror Resume Next

Sheetl.Ranga("A1").Value = Format(Now - datStartinglime, "hh:mm:ss")
End Sub

images/00974.jpeg
On Error GoTo HandleAny
Sheets(9).Select

Exit Sub

Hand1eAny:
Msg = "We encountered " & Err.Number & " - " & Err.Description
MsgBox Msg
Exit Sub

images/00973.jpeg
Sub HandleAnError(J

Dim MyFile as Variant

' Set up a special error handler

On Error GoTo FileNotThere

Workbooks.Open Filename:="C:\NotHere.x1s"

' If we get here, cancel the special error handler
On Error GoTo 0

MsgBox "The program is complete”

' The macro is done. Use Exit sub; otherwise, the macro

* execution will continue into the error handler
Fxit Sub

' Set up a name for the error handler

FileNotThere:

MyPrompt = "There was an error opening the file. " &
"It is possible the file has been moved. " & _
"Click OK to browse for the file, or click "
“Cancel to end the program”

Ans = MsgBox(Prompt:=MyPrompt, Buttons:=vbOKCancel)
If Ans = vbCancel Then Exit Sub

' The client clicked OK. Let him browse for the file
MyFile = Application.GetOpenFilename
If MyFile = False Then Exit Sub

' If the 2nd file is corrupt, do not recursively throw
" back 1into this error handler. Just stop the program.
on Error GoTo 0

Workbooks.Open MyFile

' If we get here, then return to the original

" macro, to the line after the error.

Resume Next

End Sub

images/00969.jpeg
Declare PtrSafe function ShellAbout Iib "shell32.d11" Alias "ShellAboutA’
(Byval twnd s LongPer, ByVal szipp As String, ByVal szOtherStuff As
String, Byval hIcon As Long) As LongPtr

Declare PrSafe Function GetActiveWindon Lib "user32” () As LongPr

Sub AboutThisProgram()

Dim hund As LongPtr

on Error Resume Next

hwnd = GetActiveWindow()

ShellAbout himd, hm, "Developed by Tracy Syrstad”, 0
0n Lrror Golo 0

End Sub

images/00968.jpeg
Declare Ptrsafe Function DisplaySize Lib "user32” Alias _
“GetsystemMetrics” (ByVal nlndex As Long) As LongPtr

Public Const SH_CKSCRLIN = 0
Public Const SH_CYSCREEN = 1

Function Vidzoles() As String
Pim vidWidrh as longPrr, vidHeight as longPrr

vidWidth = DisplaySize(SY_CKSCREEN)
vidHeight — Disnlaysize(SV_CYSCRFEN)

Select Case (viddidth * vidHeight)
Case 307200
VideoRes = "640 x 480"
Case 480000
VideoRes - "800 x 600"
Case 783432
VideoRes = "1024 x 768"
Case Else
Videches = "Something else”
End Select
End Function

Sub CheckDisplayRes ()
Dim VigeoInfo As String
Dim Msgl As String, Vsg2 As String, Msg3 As String

VideoInfo = VideoRes
¥sgl = "Current resolution is set at " & Videolnfo & Chr(10)

¥sg2 = "Oprimel rasolution for this applicarion 15 1024 x 768" & Chr(10)
Psy3 = "Please adjust resolution”

Seleer Case VideoTnfo
Case Is = "610 x 480"
MsgBox Msal & VsgZ & Msq3
Case Is = "800 x 600"
MsgBox Msyl & Msy2
Case Is = "102¢ x 768"
Msghox Msgl
Case Elsz
MsgBox Msy2 & Vsg3
Eng Select
End Sub

images/00965.jpeg
#IT VBA/ Or Winkd Then

Private Declare Ptrsafe Function GetUserName Lib "advapi3z.d11”
alias "GetUserNameA” (ByVal IpBuffer As String, nSize As Long) _
As LongPtr

#Else

Private Declare Function GetUserName Lib “advapi32.d11" _

Alias "GetUserNameA" (ByVal 1pduffer As String, nSize As Long) _
as longPrr
#End IF

images/00964.jpeg
Private Declare Function GetWindowlongptr Lib "USER32™ Alias _
"GetWindoaLongA” (ByVal hwnd As Long, ByVal nIndex As Long) As LongPtr

images/00967.jpeg
Private Declare PrrSafe Function 10pen Lib "kernel32” Alias ®_Topen™ _
(Byval 1pPathNane As String, Byval iReadwrite As Long) As LongPtr
Private Declare Ptrsafe Function 1Close Lib "kerne132" _

Alias "_1close” (Byval hFile As LongPtr) As LongPtr

Private Const OF_SHARE_EXCLUSIVE = EH10

Private Function FileIsOpen(strFullPath_FileName As String) As Boolean
Dim hd1File As LongPer
Dim TastErr As Long

hd1File = -1
hd1File = T0pen(strfullPath_FileName, OF_SHARE_EXCLUSIVE)

If hd1file - -1 Then
TastErr = Err.LastD11Error
F1se
1Close (hd1File)
End If
FileIsOpen = (hd1File = -1) And (lastErr = 32)
tnd Function

Sub Checkr 4 1e0pen()

If FilelsOpen("C:\XYZ Corp.x1sx") Then
MsgBox "File is open”

Flse
MsgBox “File is not open”

End If

End Sub

images/00966.jpeg
“kernel327 Alias _

Frivate Declare Ptr3afe Function GetComputerName
“GetComputerNameA” (Byval IpBuffer As String. ByRef nSize As Long) _
As LongPtr

Private Function ComputerName() As String
Dim STBUFf As String * 255, TAPIResult As LongPtr
Dim 1BuffLen As Long

16ufflen = 255

1APTResult = GetComputerName(stBuff, 1Bufflen)

If 16uffLen > O Then ComputerName = Left(stBuff, 1BuffLen:
End Function

Sub ComputerCheck()
Din Compeme As String

ConpName = ComputerNare

Tf CompName <> "Bi11JelenPC" Then
MsgBox
"This applicarion does not have the right to run on this computer.’
ActiveWorkbook.Close SaveChanges:=False

End If

End Sub

images/00961.jpeg
Private Declare PtrSafe Function GetUserName _

Lib "advapi32.d11" Alias "GetUserNameA" _
(Byval TpBuffer As String, nSize As Long) _
As LongPtr

images/00960.jpeg
Private Sub ToggleButtonl Click()

If ToggleButtonl.Value = True Then
"127 sets the 50% semitransparent
SetTransparency 127

Else
*a value of 255 is opaque and 0 is transparent
SetTransparency 255

End If

End Sub

Private Sub SetTransparency(TRate As Integer)

Dim nIndex As Long

hiind = GetActiveWindow

nIndex = GetWindowLong(hWnd, GWL_EXSTYLE)

SetWindowLong hWnd, GWL_EXSTYLE, nIndex Or WS_EX_LAYERED
SetLayeredWindowAttributes hWnd, 0, TRate, LWA_ALPHA
End Sub

images/00963.jpeg
Private Declare Ptrsafe Function GetWindowlengptr Lib "USER32" Alias _
ethindowLongA” (BwWal hwnd As LongPtr. BvVal nIndex As Long) As LongPir

images/00962.jpeg
Public Function UserName() As String

Dim sName As String * 256

Dim cChars As Long

cChars = 256

If GetUserName(sName, cChars) Then
UserName = Left$(sName, cChars - 1)

End If

End Function

Sub ProgramRights()
Dim NameofUser As String
NameofUser = UserName
Select Case NameofUser
Case Is = "Administrator”
MsgBox "You have full rights to this computer”
Case Else
MsgBox "You have limited rights to this computer”
End Select
End Sub

images/00958.jpeg
Private Sub UserForm_Initialize()
Tb_StoreName.BoundColumn = 1
End Sub

Private Sub Tb_StoreName_Click()
1b1_StoreNum.Caption = 1b_StoreName.Value
End Sub

images/00957.jpeg
Private Sub UserForm QueryClose(Cancel As Integer, CloseMode As Integer)
set obiForm = Nothing
End Sub

images/00959.jpeg
Private Declare Ptrsafe function GetActiveWindow Lih "USFR3?" () As langPtr
Private Declare PrrSafe Function SetindosiongPtr Lib "USER32" Alias _
“SetifindowLongh" (ByVal hind As LangPtr, Byval nindex As Long, _

Byval cnNewlong As LongPtr) As LongPrr

Private Declare PrrSafe Function CedindoslonaPtr Lib "USER32" Alias _
"GetwindowLongA" (ByVal hnd As LongPtr, Byval nlndex As Long) As Long
Private Declare PtrSafe Function SetlayeredWindowAttributes Lib “USER32" _
(ByWal hiind As LongPtr, ByVal criey As Integer,

Byval halpha 4s Tnteger, ByVal cnllags As |angPtr) As longPtr

Private Const WS_EX_LAYERED — &HS0000

Private Const LWA_COLORKEY = &H1

Private Const LWA_ALPIIA = &II2

Private Const GWL_EXSTYLE = SHFFEC
Dim hWnd As Long

images/00954.jpeg
Private Sub UserForm_Activate()

If TypeName(ActiveControl) = "ComboBox" Or _
TypeName(ActiveControl) = "TextBox" Then
ActiveControl.BackColor = &HCOEOFF

End If

objForm. CheckActiveCtrl Me

End Sub

images/00953.jpeg
Private WithEvents objForm As clsCtlColor

Private Sub UserForm_Initialize()
Set objForm = New clsCt1Color
end Sub

images/00956.jpeg
Private Sub objForm_LostFocus(ByVal strCtrl As String)
Me.Controls(strCtr1).BackColor = &HFFFFFF
End Sub

images/00955.jpeg
Private Sub objForm_GetFocus()
ActiveControl.BackColor = &HCOEOFF
End Sub

images/00950.jpeg
PlcCount = 0 "Caunter variable
LastTop = 2
¥axgotton 1
"BuiTd each rom on the form
For x 1 To Naron
Lastlefr - 3
“BuiTd each colum in this ron
For ¥ - 1 Ta Nuncol
Fi<Count = FicCount + 1
It PicCount > CelICount Then
"hsre 4% nor an sven nuiber of pierures To F11
“out the last ron
He.Hetght = VasBarron + 100
He_cbClase.Top = MaxEotton | 25

He.cbClase. Left ~ MeWidth - 70
Repaint redraws the farn
Leit Sub

End TF

Thisstyle = Selection. Cells(Pictount) Value

Thisese = Selecrion. Cells(PicCaunt).OFfser (0, 1).Value

fuame = Pickath & Thisstyle & *.jpg’

1€ = "lneye” & PicCount

He.Controls.Add bstrProgTd
Visible:=Iruz

Me..Conerols(TC) Tap = LastTop

Me Controls(TC). Left = Lastlert

Ne.Controls(TC). Autosize True

n Error Resume Next

We.Controls(TC) . Piccure LoadPicrured frane)

on Error GoTe 0

forns 4

rage. 1", Nan

"The picture resized the cantrol to full size
‘determine the size of the pieture
Wid - Me.Control sCTC Width
He = Me. Conrrol s(Te) Helghr
WidRedux - Se1Hid / Wid
Heedux = CaTlHr
I7 WidRedux < HRedux Then
Redur — Widkedux
Eise
Redux = Hekedux
End 1f
NewhL = Tnt(L ¥ Redux)
Newrid Incekid = Redux)

“Wow resize the concrol
He.Conero1s(TC) AuroSize = False
Fe Contruls(1C).Haight = NewHs
Me.Controls(TC).Width = Newdid
Mo Contruls(1C). Piccuresizalode = P icouresizevodestretch
We.Controls(TC). Concra I TipText “Style ™ & _

Thistryle & " " & Thishesc

images/00952.jpeg
Public Event GetFocus()
Public Event LostFocus(ByVal strCtrl As String)
Private strPreCtr As String

Public Sub CheckActiveCtrl1(objForm As M5Forms.UserForm)
With objForm
If TypeName(.ActiveControl} = "ComboBox" Or _
TypeName(.ActiveControl) = "TextBox" Then
strPreCtr = .ActiveControl.Name
On Error GoTo Terminate
Do
DoEvents
If .ActiveControl.Name <> strPreCtr Then
If TypeName(.ActiveControl) — "ComboBox" Or _
TypeName(.ActiveControl) = "TextBox" Then
RaiseEvent LostFocus(strPreCtr)
strPreCtr = .ActiveControl.Name
RaiseEvent GetFocus

End If
tnd 1If
Loop
End If
End With
Terminate:
Exit Sub

End Sub

images/00951.jpeg
"Keep track of the bottommost & rightmest picture
ThisRight = Me.Controls(TC).l eft + Me.Controls(TC).Width
ThisBotzom = Me.Controls(TC).Top + Me.Controls(TC).Height
If ThisBottom > MaxBotton Then MaxBottom = ThisBoLiom

'Add a Tabel below the picture
LC = "LabelA" & PicCount
Ve.Controls.Add bstrProgId:
Visible:=True
Ve.Controls(LC).Top = ThisBottom + 1
Ve.Contrals(LO).Left = Lastleft
Ve.Controls(LO) . Height = 18
Ve.Controls(LO) .Width = CellWid
Ve.Controls(LC).Caption = ThisDesc

forms.label.1", Name:=LC, _

*Keep track of where the next picture should display
Lastleft = Lastleft + CellWid + 4

Next Y ' end of this row
LastTop = MaxBottom + 21 + 16
Next x

Me.Height = MaxBottom + 100
Me. cbClose.Top = MaxBottom + 25
Me.cbClose.Left = Me.Width - 70
Repaint

End Sub

images/00947.jpeg
~I'he picture resized the control to Tull size
'determine the size of the picture
Wid = Me.Controls(TC).Width

Ht = Me.Controls(TC).keight
'CellWid and CellHt are calculated in the full code sample below
WidRedux = Cellwid / wid
HtRedux = CellHt / Ht
If WidRedux < HtRedux Then
Redux = WidRedux
Else
Redux = HtRedux
End If
NewHt - Int(Ht * Redux)
NewwWid = Int(Wid * Redux)

images/00946.jpeg
TC = "Image” & PicCount
Me.Controls.Add bstrProgld:
Me.Controls(TC).Top — LastTop
Me.ConTrols(TC).1efr = lasrlefr
Me.Controls(TC) . AutoSize - True

On Error Resume Next
Me.ConTrols(TC).Picrure = LoadPicrure (fname)
Db BrraP CoTs O

orms.image.1", Name:=TC, Visibl

images/00949.jpeg
vate Sub lserForm_Initialize()

"Display pictures of each SKU selacted on the worksheet
'This may be anywhere from 1 to 36 pictures

PicFath = "Ci\gimage\qi”

"resize the form
Me.Height = Int(0.98 * Activel/indow.Height)
Me.Width = Inz(0.98 * ActiveWindow Width)

“determine how many cells are selected

"We need ane picture and lahel for each cell
CellCount — Selection.Cells.Count

ReDin Freserve Pics(l To CellCount)

"Figure out the size of the resized form
TempHt = Ve, Height
TempWid = Me.Widch

"The nunber of calums is a roundup of SQRT(Ce11Count)
"This will ensure 4 rows of 5 pictures for 20, erc.
NunCol — Int(0.99 + Sqr(CellCount))

NunRow = Int(0.99 + CellCount / NumCold

*Figure out the height and width of each square
"Each column will have 2 points to left & right of pics
CellWid = Appl ication.WorksheetFunction. Max(Inc(TengWid / NunCol) - 4, 1)
"each row nesds to have 33 points below it for the label
CellHt = Applicatian.worksheetFunctian.Max(Tnt{TempHt / NumRaw) - 33, 1)

images/00948.jpeg
"Now resize the control
Me.Controls(TC).AutoSize = False
Me.Controls(TC).Height = NewHt

Me.Controls(TC).Width = NewWid
Me.Controls(TC).PictureSizeMode = fmPictureSizeModeStretch

images/01029.jpeg
Sub Minim zeAll()

Dim myWin As Window

For Each myWin In Application.Windows
myWin.WindowState = x1Minimized

Next myWin

Fnd Sub

images/01028.jpeg
>ub DeleteRightClickMenultem()
CommandBars("Ce11") .Controls("Example Option").Delete
End Sub

images/00943.jpeg
Private Sub 1b1_Website _Click()
Dim IngRow As Long

TngRow = TabStripl.Value + 1

ShellExecute 0&, "open”, Cells(IngRow, 6).Value, vbNullString, _
VbNUT1String, SWNormal

cod Cub

images/00942.jpeg
Private Sub Tbl1_Email_Click()
Dim TngRow As Long

IngRow = TabStripl.Value + 1

ShellExecute 0%, "open®, "mailto:" & Cells(IngRow, 5).Value, _

VbNi11String, vBNul1String, SWNorma
End: ‘Sub

images/00945.jpeg
= "LabelA” & PicCount

-Controls.Add
L Controls(LC)
L Controls(LC)
- Controls(Ley
. Controls(LC)
. Controls(LC)

orms.label.1", Name:=LC, Visible:=True

bstrerogl
\Top = 25
.Left = 50
_Height
Width

18
50
.Caption = Cell.Value

images/00944.jpeg
‘resize the form
Me.Height = Int(0.98 * ActiveWindow.Height)
Me.Width = Int(0.98 * ActiveWindow.Width)

images/00941.jpeg
Frivate Declare Prroafe function Shellbxecute Lib “shell3c.dil™ Alias _

“Shel1ExecuteA” (ByVal hiind As Long, ByVal TpOperation As String, _
ByVal Ipkile As String, Byval IpParameters As String, _
ByVal TpDirectory As String, ByVal nShawCnd As Leng) As LongPtr

Gouod iy F

images/00940.jpeg
Private Sub 1bl1_unSelectAl1_Click()
Dim ctl As clsFormCtl

For Each ct1 In col_Selection
ctl.Unselectall

Next ctl

End Sub

images/00939.jpeg
Private Sub 1bl1_SelectAT1_Click()
Dim ctl As clsFormCt]

For Each ctl In col_Selection
ctl.SelectAll

Next ctl

End Sub

images/01030.jpeg

images/00936.jpeg
Public Withtvents chb As MSForms.CheckBox
Public Sub SelectA11()

chb.value = True

End Sub

images/00935.jpeg
Private Sub btnClose_Click()
Worksheers("Scrollbar").Range("A1").value = Me.Scrol1Barl.value
Unload Me

cod Sub

images/00938.jpeg
Dim col_Selection As New Collection

Private Sub UserForm Initialize()
Dim ctl As MSForms.CheckBox
Dim chb_ct] As clsFornCtl

'Go through the members of the frame and add them to the collectior
For Each ctl In frm_Selection.Controls
Set chb_ct1 = New clskormCtl
Set chb_ctl.chb = ctl
col_Selection.Add chb_ct]
Next cL1
Ewed ik

images/00937.jpeg
Public Sub UnselectA11()
chb.value = False
End Sub

images/01036.jpeg
runction Compatiaiiitylaecki) A5 bootean
Dim bMode As Boolean
Dim arrversions()
arrVersians = Array("12.0", 14,07, "15.0%, "15.0")
If Application. Ishunber(apalication.Match(dpplicarion.Version, arrversions, 0)) Ther
blMode — Acti veWorkbook . ExceECompatibil i tyMade
TF biMade - Trus Then
Compatibi litycheck = True
Elself blNode - False Then
CompatibiTityCheck = False

End If
End If
End Function

Sub CheckllorkbookConpatibility ()

Dim x1Compatible As Boolean

«IConpatible = Cowpatibi HtyCheck

If x1Compatible = True Then
VegBox "You are attempring to use an Excel 2007 or newer funcrion &
Chr(10) & "in a 37-2003 Compatibility Mode workbaok”

End I

A

images/01035.jpeg
Sub Workbooksave()
Dim x1Version As String, myx10penX¥luorkbook As String
myx10penXMl orkbook = "S17 "non-macro enabled workbook
X1Version = Application.Version
Selact Case x1Version
Case Is - "9.0", "10.0", "11.0"
Activellorkbook.SaveAs Filename:="LegacyVersionExcel.x1s"
Case Is - "12.0", "14.0", "15.0", "16.0" '12.0 is 2007, 14.0 is 201C
Activellorkbook.Saveds Filename:="Exce|2019Version”,
FileFormat:=myx10penXMLborkbook

End Select
Fnd Sub

images/01037.jpeg
@ Pearson

images/01032.jpeg
JTrue

LPefaultPivotliablelLayoutOptions. InGridDropfones

images/01031.jpeg
Private Sub Worksheet_SelectionChange(ByVal larget As Range)
Application.QuickAnalysis.Show (x1Totals)
EFnd Sub

images/01034.jpeg
Sub Addbiagram()
With ActiveSheet
Call .Shapes.AddSmartArt(Application.SmartArtlayouts(_
urt crasoft.com/office/officeart/2005/8/1ayout/hChevron3™)) .Select
.Shapes.Range(Array("Diagram 1")).GroupItens (1) TextEffect.Text = "Bi11"
Shapes.Ranqe(Array("Diagram 1")).GroupItems(3) .TextEffect.Text - "Tracy"
With .Shapes Range(Array("Diagran 1")).GroupTtens (2)
.Fi11.BackColor.5chemeColor = 7

Fill.Visible = True
.TextEffect.Text = "Barb"

End With

End With

End Sub

images/01033.jpeg
ActiveSheet . Shapes . Range(Array(Bennu) . MoceliD. IncrementRotationy 10

images/00932.jpeg
Private Sub cbl_Click()
Range(RefEditl.Value).Font.Bold = True
Unload Me

End Sub

images/00931.jpeg
Private Sub SetValuesToTabStrip(ByVal lIngRow As Long)

With frm_Staff
.1b1_Address.Caption = Cells(IngRow, 2).Value
.1b1_Phone.Caption = Cells(IngRow, 3).Value
.1b1_Fax.Caption = Cells(IngRow, 4).Value
.1b1_Email.Caption = Cells(IngRow, 5).Value
.1b1_Website.Caption = Cells(IngRow, 6).Value
.Show

End With

End Sub

images/00934.jpeg
Private Sub ScrollBarl_Change()
"This event triggers when the user touches
"the arrows on the end of the scrollbar
Me.Labell.Caption = Me.Scrol1Barl.Value
End Sub

Private Sub ScrollBarl_Scrol1()
'This event triggers when the user drags the slider
Me.Labell.Caption = Me.Scrol1Barl.Value

End Sub

images/00933.jpeg
Pri
Me
Me
Me
Me

End

vate Sub UserForm_Initialize()

.Scrol1Barl.Min = ¢

.ScrollBarl.Vax = 100

.Scrol1Barl.Value = Worksheets("Scrollbar"”).Range("A1").Value
.Labell.Caption = Me.Scrol18arl.Value

Sub

images/00930.jpeg
Private Sub TabStripl_Change()
Dim IngRow As Long

IngRow = TabStripl.Value + 1
SetValuesToTabStrip TngRow
End Sub

images/00929.jpeg
Private Sub UserForm_Initialize()
SetValuesToTabStrip 1 'As default
End Sub

images/00928.jpeg
Private Sub btnClose C11ck(}
Dim Msg As String
Dim Chk As Control
Set Chk — \athing

"narrow down the search to just the 2nd page's controls
For Each Clik In frm_Mul Uipage.MulLiPagel. Pages (13 - ControTs
“only need to verify checkbox controls
If TypeName(Chk) = "CheckBox" Then
"and just in case we add more check box controls,
‘just check the ones in the group
L Chk.GroupName = “Languages” Ihen
'if the value is null (the property value is empty)
It IsNull(Chk.Object.Value) Then
‘add the caplion Lo 2 string
Msq - Msg & vbllenLine & Chk.Caption
End If
End If
End If
Next Chk

TF sg * Then
Msg = "The following check boxes were not verified:" & vbNenline & Msg

MsgBox sg, vbInformation, "Additional Information Required”
End If
Unload He
End Sub

o

images/00925.jpeg
2Ub batacxtracti)
Application.DisplayAlerts = False

"clear out all previous data
Sheet1.Cells.Clear

' Create a connection object.
Dim cnPubs As ADODB.Connection
Set cnPubs = New ADODB.Connection

' Provide the connection string.
Dim strConn As String

"Use the SQL Server OLE DB Provider.

images/00924.jpeg
Sub ADDAddField()

' This adds a grp field to tbIReplenish
Dim cnn As ADODE. Connection

Dim cmd As ADODE.Command

' Define the connection
Myconn = “1:\rransfers.mdb”

cpen the connection

Set cnn — New ADODB.Connection

With cnn
.Provider
.Open MyConn

End With

"Microsott.Jet.OLEDB.4.0"

Set cnd = New ADODB.Comrand

Set cnd.ActiveConnection — cnn

‘create table

cnd. CommandText = "ALTER TABLE thReplenish Add Column Grp Char(25)"
cnd.Execute , , adandText

set cnd = Nothing

set can = Nothing

images/00927.jpeg
cellval.Value = cellval.Value
cellval.NumberFormat = "@" *this works as well as setling
"HorizontalAlignment
cellval.HorizontalAlignment = xIRight
Next

End Sub

images/00926.jpeg
stroonn = " PROVIDES

QLOLECR; ™

‘Conrect to tre pubs datatase ¢n the local server

Strcorn = strconn & “DATA SCURCE=a_sql_server | INTTTAL CATALOG=a_database:

"lse an ntegrated login.
- StrConn & " INTEGRATED SECURTTYsspi i

"Now apen the connection.
caPubs.Ooen strConn

* Create a record set ohject.
Dim rspuss As ADODB.Recordser
St repins - New AR Recordser

Witn rapbs
* asaign the Comecricn abject.
ActiveCurnection = ciPubs,

" Oxtract the requied records.

pen “exce a_databasc. .a_szared_procedure”
*Cuny the records inte cell AL on Sheeil.
Sheetl Rarge(42" .CopyTroaRecordser rsfuhs

Dim mgcolimn A5 Range
“Dim title sering A St
Dim A Incecer

For K = 0 To rsPubs.Fields.Cours - 1

"Sneetl Columns (K).Value = rsFubs. Fields{k) Nane
*eitle_string = Title_string & rsfubs.FIclds(K) .Nane & Chr(g)
*$1 we T Columns (K). CeTls (1) are = rsPubs. FieTds (K Nane
*Sheetl.Columns.Column (k) = rsPubs. Fields(K) Name

*ser myColuan = Sheetl.ColurnsCK)

"y Colum - Cells (1, K).Value = sPubs. Fields(K) N
"Sheerl CUISCL, K) - rspubs.Mialdsck) ane
Sheetl.Cells(l, K 1 1) = rsPubs.Fieldsck) .Nane

ing

Sheet].Cells(, K + 1).Font.Bold = "TRUE"
Newt

et Aange (ALY Value = ticle string

* Tiey v
LClase
Wit

enpubs.Close
St rsPuos - Nothing
Set enpias - Nothing

“claar out srrors
Dim ce1lual 23 Range

Dim myArg s Range.

Set myine = Activeshect. UsedRange
‘Par-keh caldved Y4 Bying

images/01007.jpeg
<:LOCTYFERTmI>
<html>
<head>
<meta chars
<meta http-equiva"X-UA-Compatible” content="IE=Edge"/>
<link rel="stylesheet” type="text/css" hraf="program.css"/>
<!--begin pointer to JavaScript file-->
<script src = "https://appsforoffice.microsoft.con/1ib/1.0/ _
hasted/office. js"s</scripts
<script src= “program.js"></script>
<1--end pointer to lavaScript file
</head>
<hody>
<1--begin replacement of body-->
<button onclick-"writeDatal
<button onclick="ReacData(
</buttons</brs
<hé>Caleulation Results: <div
<t--end replacement of body--»
</body>
</html>

sUrite Data To Sheete/buttons</brs
>Read & Calculate Data From Sheet _

results"s</divs </hd>

images/01006.jpeg
LrTice.intialize = TUNCTION Lreason) {
//Add any neaded initialization

}

//deciare and set the values of an array
var MyArray = [[234],[56], [1798], [5235811;

/fwrite MyArray contents to the active sheet

function writeData() {
Office.context.document. setSe] ectedDatasync (MyArray .

fcoercionType: "matrix'D;

]

f#reads the selected data from the active sheet
so that we have some content to read*/
function ReadDara() {
OfFice.context . document . getSel ectedDatadsync("matrix”, _
function (result) {
//if the cells are successfully read, print the results in the task panc
if (result.status "succeeded"){
sunbata(result.value);

//if there was an error, print the error in the task pane
elsef
document. getElementByTd("results") . innerText =
result.error.name;
1
b;
4

f*the function that calculates and shows the result
in the task pane¥/

function sunDataidata) {

var printOut =

//sun together all the values in the selected range
for (var x = 0 ; x < data.length; x++) {
for (var y = 0; y « datalx].length; y+=) {
printOut +- datalx1[¥]:
1

1
f/print the results in the task pane
docunent . getElenentByTd(" results") . innerText = print0ut;
1

images/01009.jpeg

images/01008.jpeg
<!--This 1s a multiline comment.
Notice that nothing special is needed -->

images/00921.jpeg
Function TableExists(WhichTable)
Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset

Dim f1d As ADODB.Field
TableExists = False

' Path to Transfers.mdb is on Menu
MyConn = "J:\transfers.mdb"

with cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn

End With

Set rst = cnn.OpenSchema(adSchemaTables)

Do Until rst.EOF
If LCase(rst!Table_Name) = LCase(WhichTable) Then
TableExists = True
GoTo ExitMe
End If
rst.MoveNext
Loop

ExitMe:

rst.Close

Set rst = Nothing

' Close the connection
cnn.Close

End Function

images/00920.jpeg
Sub NetTransfers(Style As Variant)

* This builds a table of ret open transfers
* on Styles ATL

Din can As ADODE.Conrection

Din rst As ADODE.Recordset

Build the Targe SCL query

Basic Logic: Get all open Tncowing Transfers by store,

unfon with 1% ouzgoing rransfers by store

Sum that umon by store, and give us nin date as well

A single call to zhis racro will replace 50

calls to GetTransferIn, GetTransferOut, Transfarage

SSOU = "Select Store, Sur((uantity), Min(rDate) From " & _
“(SELECT ToSzore AS Stors, Sum(Qty) &5 Quantity, " & _
“Min(TDate) A5 nbate FROM th1Transfer where Style="" & Style & _

"% " AND Receve-FALSE GRCUP BY Tostore *

S50L - sS0L & " Union A1l SELECT Fromstore &S Store, " &
“SuR(-1%0Ly) 25 Quantity, Min(TDate) AS mdate " &
“FRON th1Trans fer where Styles' & Style & * AND & _
“SenteFALSE CROUP BY FromStore:

5501 - sSQL & " Group by Store”

MyConn - "J:\transfers.ndb’
* open the connectian
Set can - New ADODB.Connection

With <o

Provider = "Microsoft. Jet.0LEDB.4.0"
~Gpen yConn

 With

Set rst = New ADODB. Recoruset.

rsr.Cursorl acation = adUseServer

* open the first query

Fst.Cpen Source:-ssal, _
Activecannection:—cnn, _
CursorType:=AdForwardorly, _
Lock|ype:-adLockCptinistic, _
Options :-adend ext

Range ("ALiCL™) VaTue = Array("Store”, "0ry”, "Tate")
* Return Query Results

Range("Az") . CopyFromRecordsat. rst

rst.Close

enn.Clese

o e

images/00923.jpeg
Sub ADOCreateReplenish()
" This creates tb1Replenish

" There are five fields:

' Style

' A = Auto replenishment for A

' B = Auto replenishment level for B stores
' C = Auto replenishment level for C stores
' RecActive = Yes/No field

Dim cnn As ADODB.Connection

Dim cmd As ADODB.Command

* Define the connection
MyConn = "J:\transfers.mdb"

' open the connection

Set cnn = New ADODB.Connection

With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn

End With

Set cmd = New ADODB.Command

Set cmd.ActiveConnection = cnn

"create table

cmd. CommandText = "CREATE TABLE tblReplenish " & _
"(Style Char(10) Primary Key, " & _
"A int, B int, C Int, RecActive YesNo)"

cmd.Execute , , adCmdText
Set cmd = Nothing
Set cnn = Nothing

Exit Sub
End Sub

images/00922.jpeg
Function ColumExists{WhichColumn, WhichTable)
Dim can As ADODB.Connection

Dim rst As ADODB.Recordset

Dim WsOrig As Worksheet

Dim WSTemp As Worksheet

Dim fld As ADDDB.Field

ColumnExists = False

* Path to Transfers.ndb is on menu
MyConn - ActiveWarkbook .worksheets("Menu") .Range("TPath").Value
TF Right(MyConn, 1) = "\" Then
MyConn = VyCann & "transfers.mdb”
Else
HMyConn = VyConn & “\transters.mdp
End If

Set cnn = New ADODB.Connection

With cnn
.Provider
~Open MyConn

End with

"Vicrosoft.Jet.OLEDB.4.0"

Set rst = cnn.OpenSchema(adSchemaColumns)

Do Until rst.EOF

IF LCase(rst!Colum Name) = LCase(WhichColumn) And _
LCase(rstiTabla_Name) = LCase(whichTable) Then
ColumnExists = True
GoTo Exitve
End If

rst.MoveNext

Loop

Exithe:
rst.Close
Set rst = Nothing
* Close the connection
cnn.Close

B b P st

images/00918.jpeg
TAvES SohehConfmm] LY.
i enn As ADOU. Lonnecticn
Din rst As ADODE Rucordset

* IF nothing is selected, warn them

Comeselecs = 0

far x - 0 To Ne.1KIr L istCount - 1

L e
Countselect - Countselect + 1

tnd 1

Next x

I GountSelect = © Than
Vsgbox "There ere no transfers selected. " &

“lo oK without confirming any transfers, use Cancel.”
Exit S0

End 1

* Establish a comection to cransfars.db
* path to Transfers.ndb 15 on Menu
FyComn = "1:\eracsfrs. wk”

Set: cnn = Hew 42008 Connzcion

With enn
Provider - "Micosofe Jor FDR.4.07
Open VyCom

End with

* Vark 2 comluc
For x = 0 To He. IBXIE. ListCount - 1
2 Mo, IXTC_Selected(x) Then
THISID = Cellsc2 + x, D) Value
*ark ThisIE s connlere
BT QL S
SS0L = "SELECT = FROM thTransfer whore T0-" & ThisTD
See “t < New ADDDLL Secordset

“Gpen Source:=ssal, Acrivessnnector
CursorTypei-addpéikevset, LockTyp

* Update che Field

Lerelds (e e lue < T
Updat

“Close

0 it

* Close the comection
em.Close

Set st - Notring

Sex cnn = Nothing

Closa the user o
nloas e

W

images/00917.jpeg
Private Sub UserForm_Initialize()

' Determine how many records we have
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
If FinalRow > 1 Then
Me.1bX1t.RowSource =
End If

"A2:F" & FinalRow

End Sub

images/00919.jpeg
Public Sub ADOWipeOutAttribute(RecID)
' Establish a connection to transfers.mdb
MyConn = "J:\transfers.mdb"

With New ADODB.Connection
.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn
.Execute "Delete From tbiTransfer Where ID = " & RecID
.Close
End With
End Sub

images/00914.jpeg
wecDoc. formfields("chkCustYes) .CheckBox.Value - True

Else

wdboc. formfields("chkCustNo").CheckBox.value =

Fnd Tf

With wdDoc
If Ranga("B5").Value -
CheckBox.Value = True
Tf Range("B6").Value =
CheckBox.Value = True
If Range("B7").Value =
CheckBox.Value - True
If Ranga("B8").Valve =
CheckBox.Value = True

End With

wdApp.Visible = True

ExitSub:
Set wdDoc = Nothing
Set wdAop = Nothing
End Sub

“"Yes" Then

"Yes" Then

"Yes" Then

"Yes" Then

True

.Formfields ("chkdo1k"). _

Formfields("chkRoth"). _

.Formfields ("chkStocks"). _

.Formfields (" chkBonds") .

images/00913.jpeg
Sub F1110utWordForm()

Dim TemplatePath As String
Dim wdApp As Object

Dim wdDoc As Object

'Open the template in a new instance of Word
TemplatePath = ThisWorkbook.Path & "\New Client.dotx"
Set wdApp = CreateObject("Word.AppTlication™)

Set wdDoc = wdApp.documents.Add(Template:=TemplatePath)

"Place our text values in document
With wdApp.ActiveDocument
.Bookmarks ("Name") .Range . InsertBefore Range("B1").Text
.Bookmarks ("Date") .Range. InsertBefore Range("B2").Text
End With

'Using basic logic, select the correct form object
If Range("B3").vValue Yes" Then

images/00916.jpeg
PRI INIRIDIL).
Din cnr A 30508 Comsccicn
0In WSSria As Voksheer
Din Fiatien 3¢ Lora

g = deriusthoer

14 3 50 Scring <o qon 11 HaTd o e cranctors
S = TELECT IO, Suy12. Froiore, Toktore, Ay, (0ate”
S50 S50 e ” MMERE SIMFALSE”

e o Trensters.aat
o+ "3 s ors s

Sox can = N 42008, Cormacrion
i cm
o

Set rat = New 10008 Accordic
Frx.Gurmoriocation - scthaservar
e O BorceioaS Aetoetonrectioni=crn,
Carsoetyoes Adtorardn 5. Lockiycer-sclaAdptimstic, _
Gpttonssedcadian

Sox WeTenp - orkehest

FandeC AL L -l = Array (IO, Senle “Fren”

Fanae(12" CopsFronteconsscs st

rotCloce
“n.Clors

Fina o~ RnaSC AGSSEE), ERCKIR)

15 Eeralhon - 1 ron
Serlicasion cisplamalaree - Friza
Spiication creplayslerts = Irue
Exit St

16

RangeCF21F" & Firalon) NanbarFsrmac = Tnfdry

Fratranetons v

ao01cation Diszlcmlerss = False
STy et
Syt earion Disoapklorcs

o, "au, e

images/00915.jpeg
Sub AddTransfer(Style As Variant, FromStore As Variant,
ToStore As Variant, Oty As Integer)

Dim cnn As ALODR.Connccrion

Dim rst As ACODB. Recordset

MyConn

cransfers.mdb”
* Gpen the Connection
Set cnn = New ADDB. Connzcion
with cnn
Provider =
~Open MyConn
End With

Microsoft.Jet,OLED. . 0"

* Define the Recordset
Set rsr = New ADODR.Recordser
Fst.CursorLocation = aduseServer

* Gpen the Table

Fst.Open Source
ActiveConnectioni=can, _
CursorType:=adOpenDynanic, _
LockType: -adLockOptimistic
Gptions :=adCndTable

thITransfer”

' M & record
Fst.AddNew

* Ser up the values for the Ficlds. The First four ficlds
* are passed from the calling userfomn. The date field

* s filled with the current date,

rst(’Style) = Style

rst("Fromstore") = Fromstore

rst("ToStore") = ToStore

rseC'QEy) - Qry

rst('thate") = Date

rst('sent”) = False

rat("Receive”) = False

* Write the values to this recorc
rst.lpdace

* Close
rst.Close

can.Close

g Euk

images/01014.jpeg

images/01013.jpeg
"S5he hearc him shout, " Sray away!' '’

images/01016.jpeg
for (var x 5 X < data.length; X++) {

for (var y = 0; y < data[x].length; y++) {
printOut += data[x][y];

}

1

images/01015.jpeg

images/01010.jpeg
<pBurron oncliicl

calor:Reada ' >Write Dara 1o Sheer</dDurron:

images/01012.jpeg
\\workpch\vApps'\He |l lovor id\mrexce |l logo.jpg />

images/01011.jpeg
<button onclick="writeData() style="color:Red"
title = "Use to quickly add numbers to your sheet"s
Write Data To Sheet</button></brs>

images/01018.jpeg
OTTice.initialize = function (reascn) {
/fAcd any neeced nitialization.
}

function calevlatedMiO) [
Office. context.document . getSe lectedDataAsync ("ratrix”, function (result) i
/fcall the calcvlator with the array, result.value, as the argurent
myCalculator(resuls.value)
ni
3

function myCalculator(data){
var calcBUT = 0;
var BMI"";
/7Perform the initial BMT calculation to get the nunerical value
€alcBNT = (datal1](0] / (datal0][0] *daca [0][0]))* 703

/tevaluate the calculated NI to get a string value because we want to
evaluate range, instead of switch(calcBHI), we do switch (true) and then
use our variable as part of the ranges */
switehCrrue) {
J/9F the calcBNI s less than 16.5
case (calcBI <= 16.5)
= "Underseight

case ((calcBVI > 16.5)8&(calcBUT <=
BN = "Narmal®
break;
3
casa ((calcBMT > 24.8)88(calcBUT <= 20.9)) : {
BMI = "Overwesgh
break;
3
J/3F the calcBNT is greater
case (calcBWT > 29.8) : BMT =
default @ {
BNT = 'Try again'
oreak;

}

i
document. getElementBy[d("results") . inrerText = BHT;

images/01017.jpeg
switch(expression){
case firstcomparison : {

//do this
break;
}
case secondcomparison : {
//do this
break;
3
default : {
//no matches, so do this
break;
¥

images/01019.jpeg
//set up a variaople to nholc the output text

arrayOutout = "

/*process the array
i is a variable to hold the index value.
Its count starts as 0%/
for (i in MyArray) {
/%create the output by adding the element
to the previous element value.
\n is used to put in a line break */
arrayOutput += MyArray[i] = '\n'
}
//write the output to the screen
document.getElementById("results”).innerText

arrayQutput

images/00910.jpeg
Sub ChangeFormat()

Dim wdApp As Word.Application

Dim wdRng As Word.Range

Dim count As Integer

Set wdApp = GetObject(, "Word.Application™)

With wdApp.ActiveDocument
For count = 1 To .Paragraphs.Count
Set wdRng = .Paragraphs(count) .Range
With wdRng
Words (1) .Font.Bold = True
.Collapse 'unselects the text

End With
Next count
End With
Set wdApp = Nothing

Set wdRng = Nothing
End Sub

images/00912.jpeg
Sub F111InMemo()

Dim myArray()

Dim wdBknk As String

Dim wdApp As Word .AppTication
Dim wdRng As Word .Range

myArray = Array("To", "CC", "From", "Subject", "Chart")
Set wdApp = GetObject(, "word.Application™)

‘insert text

Set wdRng = wdApp .ActiveDocument . Bookmarks (myArray(0)) . Range
wdRng . Insert3efore ("Bill Jelen")

Set wdRng = wdApp .ActiveDocument . Bookmarks (myArray (1)) . Range
wdRng . Insert3efore ("Tracy Syrstad")

Set wdRng = wdApp .ActiveDocument . Bookmarks(myArray(2)) . Range
wdRng . Insert3efore ("MrExcel")

set wdRng = wdApp.ActiveDocument.Bookmarks (myArray(3)).Range
wdRng. InsertBefore ("Fruit & Vegetable Sales")

"insert chart

Set wdRng - wdApp.ActiveDocument. Bookmarks (myArray(4)) .Range
Worksheets("Fruit Sales").ChartObjects("Chart 1").Copy
wdRng . PasteAndFormat Type:=wdPasteOLEObject

wdApp . Activate
Set wdApp = Nothing
Set wdRng = Nothing

End Sub

images/00911.jpeg
Sub ChangeStyle()

Dim wdApp As Word.Application

Dim wdRng As Word.Range

Dim count As Integer

Set wdApp = GetObject(, “Word.Application™)

With wdApp.ActiveDocument
For Count = 1 To .Paragraphs.Count
Set wdRng = .Paragraphs(Count) .Range
With wdRng
If .Style = "Normal" Then
.Style = "H3"
End If
End With
Next Count
End With

Set wdApp = Nothing
Set wdRng = Nothing
End Sub

images/00907.jpeg
Sub InsertText()

Dim wdApp As Word.Application

Dim wdDoc As Document

Dim wdSTn As Selection

Set wdApp = GetGbject(, "Word.Application")

Set wdDoc = wdApp.ActiveDocument

wdDoc . App1i cation.Options.ReplaceSelection = True

wdDoc. Paragraphs (2) .Range. Select

wdApp.Selection.Typelext "Overwriting the selected paragraph.”

Set wdApp = Nothing
Set wdDec = Nothing
End Sub.

images/00906.jpeg

images/00909.jpeg
Sub SelectSentence()

Din wdApp As Word.Application

Dim wdRng As Word.Range

Set dApp = GetUbject(, "Word.Application")

With wdApp.ActiveDocument
If .Paragraphs.Count »= 3 Then
Set wiRng = .Paragraphs(3).Range
wdRng.Copy
End If
End With

"This Tine pastes the copied text into a text box
‘because that is the default Pastespecial method for Word text
Worksheets (" Sheet2") . Pas teSpecial

"This Tine pastes the copied text into cell Al
worksheets("Sheet2"] . Paste Destination:-Worksheets("Sheet2").Range("A1"

Set wdApp = Nothing
set wdRng = Nothing
End Sub

images/00908.jpeg
Sub
Dim
Dim
Dim
Set
Set
Set

RangeText()

wdApp As Word.Application

wdDoc As Document

wdRng As Word.Range

wdApp = GetObject(, "Word.Application"
wdDoc = wdApp.ActiveDocument

wdRng = wdDoc.Range(0, 50)

wdRng.Select

Set
Set
Set
End

wdApp = Nothing
wdDoc = Nothing
wdRng = Nothing
Sub

images/00903.jpeg

images/00902.jpeg

images/00905.jpeg

images/00904.jpeg

images/01025.jpeg
Office.1nitialize = function (reason) {4 /“any initialization™/}

images/01024.jpeg
OfTice.context.document.getselectedDataAsync(matrix”, function (result) {
//code to manipularte the read data, result
1)

images/01027.jpeg
UG ARG ILCLT CRBEn L Lems).
Din cb As ConmandBarButton

Set cb - CommandRars("Cell").Controls.add (Type:-msoControlRutton, temporary:
cb.Caprion - "Example Option
Y

images/01026.jpeg
Office.context.document.getSelectecbatadsync("matrix™, function (result) {
//code to manipulate the read cata, result

images/01021.jpeg
result = 0
arrayoutput
arrNuns = [9, -16, 25, -34, 28.9]
result = arrNums.map(Math.abs)
for (i in result){

arrayOutput += result[i] +'\n'

}
document.getElementById("results

LinnerText

rrayOutput

images/01020.jpeg
//would increment x and then post the value
docunent .getElementayTd("results") innerText - +ax //would return &
/fwould post the value of x (now 6 after the previous increment) then increment
document .getElementByTd("results2”).innerText = x++ //would return 6

images/01023.jpeg
<SCPIPE BIC = "hitps!//AppsroroTiice. microsolt.com/ 11h/3. O/ nostad/of T1ca. J&
e PR

images/01022.jpeg

images/00901.jpeg
wdApp .ActiveDocument.SaveAs2 _
"C:\Excel VBA 2019 by Jelen & Syrstad\MemoTest.docx"

images/00900.jpeg
wdApp . Documents. Open _
Filenane:="C:\Excel VEA 2019 by Jelen & Syrstad\" & _
"Chapter 8 - Arrays.docx”. ReadOnly:=True. AddtoRecentFile

images/00187.jpeg
~E[+

How dol change these colors?

images/00186.jpeg
Pagelmout Fomulss Data Review View Devloper _ PowerPiot Fomat

W i et | B U O

1 won [l v wan

images/00189.jpeg
| ARG N GRS [D | W E B G X 8 Y K | W | MR N BN O N | PR K]
Tonreb o o1 spr ey n G2l _ug_5ep 65 ot v bec ot | |
‘Sles] 1683 1164 1103 3970 1640 1733 1614 5367 1330 1542 1022 3654 1546 1905 1451 450%]

[
v

A4

oe

i Fes Mot Q1 e Moy in G2 I A S O3 O New Dcc Q4

images/00188.jpeg
A -
Automatic
Theme Colors
N EEEEEEE

Standard Colors,
EEN EEEEEE
NoFill i

@ More Colors.

images/00183.jpeg
99.67826 =StaticRAND()*100

58.00789

UM(AT:A2)'StaticRAND()

images/00182.jpeg

images/00185.jpeg
Al e Lo LG LG |l 9 |

IBE B EEEEHEEEENGEERNEN

(Create a Clustered Column Chart in B8:G20 from data in A3:G6

Jan Feb Mar Apr May Jun

East 178 187 103 178 163 181

central 163 19 159 180 193 138

west 194 189 121 156 150 132
CHART TITLE

mEox mCenal mWest

images/00184.jpeg
£ || =ExcelExperience(E3)
) E E s H 1

1. Have you ever created a Pivot Table with VBA?
Yes |Well donelPlease continue to question

images/00181.jpeg
£ | =getaddress(o1)

D E
Tracy Syrstad [racy@mrexcel.com

The Best site for Excel Answers httpy//ww mrexcel.com/

images/00180.jpeg
£

aumame o

=ReturnMaxs(D1:E8)

F

images/00176.jpeg
A |BlclplE|F|Gc|H

1 ind
2] w123 & 5 6
3 [AIBICIOEIF sTcloler
3 ingElement(SAS3.5853,.C2)
5

images/00175.jpeg
% | =convertweekpay(en)

L D (e =)

pril 6,2015 _|Week 152015

June 23,2018 _ Week 26 2014

December 13,2015 Week 512015
February 15,1965 Week 8 1965

images/00178.jpeg
| (=sorter(sps2:50$14))
) E 3
stortdata data sorted
€ 2
s B
v 5
T s
R 4
. 5
s)
) €
s ;
s 3
2 ss
s 5
4 v

images/00177.jpeg
A [}

Unsorted List sorted string
q 1,14,50,9,2,4,88 17T
r =sortConcat(A2:A11)
f
a
&
1
9
50
1

images/00172.jpeg
~ oW

< amr

<p<pr~@

<amlo

123

D

E
12
=NumUniqueValues(A1:C6)

images/00171.jpeg

images/00174.jpeg
awN -

A B
1introduction Introduction
This wam a test This was a test
123abc456 abc
Adnothyer Tuiest Another Test

images/00173.jpeg
o~ 3o s W

B c
2
rstNonZerolength(ALA7)

D

images/00179.jpeg
A
1 [This is an apple
2 [This is an orange
3 Here is 2 banana.
7

B
"
a2

D
=ContainsText(AT-A3 "banana’)
=ContainsText(A1:A3 "This is")

images/00170.jpeg
Tracy@ MrExcel.com FALSE <-a space after the @
ExcelGGirl@gmail. com TRUE
consuttS@MrExcel. com FALSE <invalid characters

images/00165.jpeg
YOU CAN EASILY CHANGE WORD CASE IN EXCEL
[With the rifht program

Typeina Letter

[owercase
Ulppercase
[Sentence.
[iies
(Qapssmait

£l

images/00164.jpeg
Password Required

Please enter password

o]
Lol |

images/00167.jpeg
Function Arguments.

Add
Numbert |1
Number2 |2

No help avaiable.

Formularesult = 1458

Help on this fundion

] - a7
st

- 1458

ok

Cancel

images/00166.jpeg
Insert Function

‘Search for a function:

Ty i et it youwant o donaten | [0
e ocn
or et tegry Uiroeinea o

Select a fundtion:

Add(Numbert,Number2)
Nohelp available.

Helo on this fundion ok | [cance

images/00161.jpeg
8

1803

5037

1803

So37

29 [Grand Total GEre0_F0ss seerz 117
£

31 Region _Guarter_item __Color___Sales
32[im Eest 03 Hals Beck =
33 [1m Souh 03 Hals Yelow 161,
34 [1im Souh 03 Heis Yelow 7400
35 [im West Q3 Wt Res o1
28

images/00160.jpeg

images/00163.jpeg
A B
Progress Progress.
made required
15
20
s
10
10
1

10
10

NN

c
Visual representation of
progress made vs progress completed
EEEEEEREE0000
EEEEEEEEEEEECOO000
moooo
LT Tatalalulas]
mEO00000
mEEEEEER
mEmEEECOD
oooooooooo

images/00162.jpeg
NO oA -

A B
Date category

1/1/2018 Belts
1/1/2018 Wallets
1/2/2018 Belts
1/2/2018 Wallets
1/3/2018 Wallets
1/3/2018 Handbags

C DI E[FIG|H
#sold

15

7

17

18

19

20

Belts
Handbags
‘Watches
Wallets
Everything Else

images/00169.jpeg
7/9/2018 15.01 =NOW()
7/9/2018 14-59 =DateTime()

images/00168.jpeg
ProjectFilesChapter1d.xlsm
\VBA 2019\Sample Workbooks\ProjectFilesChapter1d.

=MyName()
MyEullname()

images/00154.jpeg
4 a 5 © 3 LG G
1 Top 5 Customers

2

3 customer o2 w2 caw o5 EasssandTotl

Iy —
5 uniaue MableCompony

& [perssverate o

7 [ste e arporaon

i [remendons oied copartion
5 TopsTotl

10
11 Total Company.
12

145010 1404742 1,889,149 1,842,751
1600347 1,581,665 1,765,305 1,707,140
1565368 1,389 1,443,434 1,584,759
o659 875m 70463 103837
s TLes a7 0303
5623163 5801102 6,705,598 675,324

230203 8,888,775
2179202 8833699
2030578 8009435
1,053,369 4,326,235
1,035,229 4007464
8,660,541 34,105,708

12,397,778 12,683,061 14,101,763 14,569,960 17,411,966 71,104,528

images/00153.jpeg
6248 4689,
41 Sort Oldest to Newest
AL SontNewestto Oldest
More Sort Options...

Clear Fiter From "Date’

Value Fiters

% ClearFilter

Eaquas..
Before..
atter..
Betueen.
Tomorrow
Tadsy
Vesterdoy

Next Week

images/00156.jpeg
Year %

2018 VeaRs -

ms 200
[e—

<

Row Labels

‘Agile Glass Supply

Enhanced Toothpick Corporation
Excellent Glass Traders

images/00155.jpeg
| customer

[Agietassupsly

| Enhanced Toothpick o Excllent issTaders

(Functionalshngle cor.-

=] Guarded et Corpor..Innovative ven Corpor:

[inventve Clpboard Co.. | MagnificentPati Traders) Matcless Yardstiknc.

(Mouthwateringewelr.

- MouthwateringTipod... | PersuasiveKetleinc.

[Persuasv Yordsicko.

- Remarkable UmbrelaC..) SafeSadde Cororation

[emendous Bobsled ... | Tremendous Flagpole ... | Trouble-Free ggbeater.

| Unique Marble company | Unique addle ne. | Vibrat Tripod Corporat.

*

)

images/00150.jpeg
4l A 018 [0 E

1 Product report for A292

2 —P;

s

o s o1

5 customer ol Orders Revenue S of Total ot Orders
& (Unigue Marle Compony. s Tees 2% i)
7 pursusse Kot nc. 5 s0s s 5
& Guaded Ktte Goporation & nor nw u
B 5 i 37%] %

images/00152.jpeg
Filter drop-down

[o N |
[Row Labels T*]5um of Revenue
21 SotAtoz 3877138
] 258920
il setzoa et
More o Opios 2152903
- sageTS
235217
o [l % cor
oloeFiter +] e
[escch B
@iseleann Begins Wigh..
Acite los Supply
 Ennanced Toothick orporati Does ot Begin With,
@ Exclent G Toders ——
Functiona shinle Corportion
4 Guarded et Corpartion. TSR
imnontue Oven Corparstion o
imente Cipboord Corparstion —_—
@ogntcentptoTaders | Does Nt Contin..
< E Grester Than.
())| ST
LessThen.

Less Than Or Egual To..
Between...
Notgetween.

— Search filter

T Manual filters

t— Conceptual filters

images/00151.jpeg
Product

Customor
‘Guarded Kol Corporation
Unique Marble Company.
Persuasie Ketls Inc

‘Sale Saddle Corporation

@
Date EData
18

& of Ordors Rovenuo %
3164501310
307 4416320
2683870414
13 1979144

Total

132%
130%
T

5.8%

& of Or

23
3
28
58

images/00158.jpeg
[Tracy:

[Excel doesn't
jautomaticay resze cel
|comments. In addtion,
[vou have several on a

[Tracy:
Excel doesn't automaticaly resze cel comments. In additon, f you have
[severalon a sheet, as shown n Fgure 13.1, & in be 3 hassle to resze
e Tha falouinn cxrenle ey

images/00157.jpeg
©® N oM E W N e

A B

Sector |~ Total Revenue Customer Count Median Sales

‘Apparel $758K
chemical $569K
‘Consumer $2,195K
Electronics s222¢
Food $750K
Hardware $2,179
Textiles $35K

Grand Total * $6,708K

c [)
2 51075250

1 $10,137.50

7 $12756.00

4 $14550.00)

1 $12,743.50

1 $11,547.50

1 $8,308.00

27 $11,858.00)

images/00159.jpeg
[Tracy:
[Excel doesn't automaticaly resze
lcell comments. In addton, you
Ihave several on a sheet, as shown
I Figure 13.1, & can be 3 hassle to|
restze them one at a time. The
folowing sample code restzes al
the comment boxes on a sheet so
that, when selected, the entre
|comment is easdy viewable, 3s
jshown in Figure 13.2.

[Tracy:

[Excel doesn't automaticaly resze
cell comments. In addicon, you
lhave several on a sheet, as shown
I Figure 13.1, & can be 3 hassle to|
resze them one at a time. The
folowing sample code resizes al
the comment boxes on a sheet so
that, when selected, the entre
|comment i easly viewable, s
[shown in Figure 13.2.

images/00143.jpeg
A] G) E F

1 |Report of Sales to Cool Saddle Traders
2
3 |Date Quantity Product Revenue

4| 2921 a00Rs37 9152
5| 250021 600 Rs37 13806
6 |16Aug21 400 M556 7136
7 (23Sep21 100 R537 2258
8 |295ep21 100 Rs37 1819
9210021 100 Rs37 288
10| 3Mar22 200 wazs 4270
11[18Ag22 700 Wa3s 12145

12 |Total 2600 53170
13

images/00142.jpeg
J K| L M]
Customer Date Product Quantity Revenue
Cool Saddie Traders 22.Jul-21 RE37 400 9152
25Jul21 R837 600 13806
16-Aug-21 M556 400 7136
23:8ep21 REYT 100 2358
29.Sep21 REI7 100 1819
21.0ct-21 RE37 100 2484
3Mar-22 W435 200 4210
18-Aug-22 W435 700 12145

images/00145.jpeg
D £ F

1 Date Customer Quantity Revenue
2 /472021 Guarded Ketlle Corparatic 430 10937
3 /412021 Mouthwaterirg Jewelry Ci 400 8517
4 1412021 Agile Glass Supply w0 23188
5 412021 Persuaswe Kelll Inc)
6 472021 Safe Sadele Corporation 130 3333
7 “14/2021 Agile Glass Supdly 440 11304

G
coas
620
4564
11703
2958
2024
5936

H

Profit
4609
3953

11485
262
1909
5368

images/00144.jpeg
A B c D =
1 |Region| - | Produd - | Date Customer ~|_Quantity
2 [East REY 1921 Trustworthy Flagpole Partners 1000
3 East Mss6 204ul-21 Amazing Shoe Company 500
4 |Central W435 20Jul-21 Amazing Shoe Company 100
5 [Contral R537 21Jul-21 Mouthwatering Notebook Inc. 500
6 [East RS 22ul21 Cool Saddle Traders 400
7 [East W435 22Jul-21 Tasty Shovel Company 800

images/00141.jpeg
J K[L
customer Region
Trustworthy Flagpole East

East
West
Central

Product Date Cust

RE37
i35
MS56
W435

199ul-21 Trust
3:Sep21 Trust
7-Sep21 Trust
9.Sep-21 Trust

images/00140.jpeg
=NOT(ISNA(MATCH($D2,0$2:50$11,0)))

) K L MN o 3 Q

TRUE | FALSE TRUE Amazing Shoe Company Ms86 Central
Distinctive Wax Company W435 East
First-Rate Notebook Inc.
Handy Juicer Inc.
Improved Doghouse Traders
Refined Radio Company
Sure Door Inc
Tasty Shovel Company
Tremendous Paint Corporation
Trustworthy Flagpole Partners

images/00147.jpeg
Fiisssseegeeee

Enhanced Toothpick Corgoration
Imente Cligboard Corporation
Matchioss Yardstick nc
Nouthuatering Jewelry Company
Persuasie Ketle nc.
Remarkabie Unbrells Company.
Tramendous Bobsled Corporaion
Excellnt lass Tradors
Magniicent Patio Traders
Mouthvatering Tipod Corporation
‘Saf Saddie Corporaton

Unigue Martle Company.

Uriue Saddefnc

Vibran Topod Corpraton

~Aghe Giass Supply

Funcional Shingl Corporation
Gurded Kt Corporation
Innovatie Oven Corporation
Persuasie Yardstck Corporaion
Tremendous Flagpole Traders
Tioubl Free Egabeate nc

|- o

Productkd

B2
403,764
sa097
32550
6250
1,385,296 1.4

293,017
$10.968
T6223
374000
165,368
2851
560759
aarm
395,186
37100
i659
100,347
08,114
317883
o220
504818
1,450,110 14
230
268354
446759557376
390917520048

images/00146.jpeg
PivotTable Fields =z
Choose fiddstosdd toreport: | 4

[Search 5
Region o]
Product
Date -

Drag felds between aress below:

Y AuTERS 1 COLUMNS.

= rows = vawes

images/00149.jpeg
Exclude top row using Offset

Revenue _[Region —
entral _East West
}A292 (4,043,186 4,153,030 4,141,562}
8722 |4,165,988 4,301,310 4,215,763
C409 4,309,384 4,983,303 4,809,0761
0625 4,619,765 5,167,376 4,762,819

5,854,458 5.726.406 5.831.102)

— Copied data includes an extra row

images/00148.jpeg
e can't make this change for the selected cels because it wil afect a
PivotTable. Use the fild st to change the report. If you are rying to
nsert o delte cels, move the PrvotTable and ry again.

Conive] (oo]

images/00132.jpeg
Advanced Filter

Adion
© Eiter the st in-place

Capyto another loation
Utrange: [sastsustiz
Griteria range: [sis1:5152
Copyto: stst [

[Uniaue recerds oniy

o) (Lo

images/00131.jpeg
Enhanced Eggbeater Corporation

J K
Customer Product
Cool Saddle Traders 556
Cool Saddle Traders R537
Cool Saddle Traders W43
Distinctive Wax Company M556
Distinctive Wax Company R537

Distinctive Wax Company W435

FirstRate Glass Corporal M556
First-Rate Glass Corporal RE37
First-Rate Glass Corporal W435

images/00134.jpeg

images/00133.jpeg
J Kl L

Customer Product
Cool Saddle Traders RE37
MB56

Wa3s

images/00130.jpeg
=SUMIF(SDS2:D1127,12,F2:87$1127)

J K LM
Customer _Revenue

Enhanced Egg|
First-Rate G

images/00139.jpeg
1. Wit Customer Choices to a Range in O

2. Assign Name MyCust to Range

3. Criteria Formula in J2: =NOT(ISNA(MATCH(D2,MyCust,0)))

4 Wite Product Choices to column P

8 Assign Name MyReg to Range

9. Criteria Formula in L2: =NOT(ISNA(MATCH(82,MyRegion0)))

10. Advanced Filter using J1:L2 as Criteria

images/00136.jpeg

images/00135.jpeg
J K

Product |Region

images/00138.jpeg
[customer Product
First-Rate Glass Corporation R37
First-Rate Glass Corporation M556
| Guarded Aerobic Corporation R37

|Guarded Aerobic Corporation_ M556

images/00137.jpeg
SeectRepont)

o

o] cexns

images/00121.jpeg
Personnel Files

Employee Informatin Personl Information

address
Phone Number
Emergency

Contact

008

images/00120.jpeg
Personnel Files

Employee Information Personl Information

Advess [9567anst, Omaba, N 56052
Fhone tumber [025550100

Energency
Contact [obmsyrsiad rssom
oos [

[=]

images/00123.jpeg
) Choose Fileto Copy. x

[VB » Wokbooks V16 | senchvionboots »
Ogie ~ Newlotdr -oe
* Qo @ Mome . Omemoties e A
Wockoy #| GhAmyim sissaom il
§ Oounonts # 05 Chptrs- Clo otectionstsm snoseaTom wicr
% oemens ¢ 05 Chptrd- e LeGestm sneossom wicer
S G oot sz asem i
3 5 Chaper 10- penistim [
[S)Picues £ G5 Chuptr 10- serforms - tboncom.. 6142015 40PM Mo
W PLgaee = et Y

Fiename: o] [Exce s o)
oo~ [_Open Concel

images/00122.jpeg
Microsoft Excel 2.3

€ s e Or ottt e o

images/00129.jpeg
J K LM
Customer

Trustworthy Flagpole Partners
Amazing Shoe Company
Mouthwatering Notebook Inc.

Cool Saddle Traders

Tasty Shovel Company

Distinctive Wax Company
‘Guarded Aerobic Corporation
Tasty Yogurt Corporation

‘Agile Aquarium Inc.

Magnificent Eggbeater Corporation
User-Friendly Luggage Corporation
Guarded Umbrella Traders

images/00128.jpeg
Advanced Filter

Action
) Eiterthe st in-place
Capy to another location

Ustrnge: [sasuswsuzy
Gitera ange:
)

Copyt Saleskeportsist

(Onique records oniy

o) o

images/00125.jpeg
A
1
2 amows
3 wAmowsGray
4 |t3Fiags
5 |sSTrangles
6 st
z tsigns

8 |sSymbols
9 [assymbols2

v
>

4

ROO:

10 i3TracLights! @
1 iSTrcLights @

12|t Amows

13 st AmowsGray
14 4RV

15 |siRedToBlack
16 x4 TraficLights
A7 |5 Amows

18 xSAmowsGray
19 SRV

20 45Quarters

21 |usBoses

BORecoOREE

>
>
P
%
A
)
1

°
o
a
a
4
)
°
@
)
4
(]
8

3
L3
)
>
a
*
°
o
v
°
(]
a
a
d
e
(]
>
2>
d
(]
&

)
L)
d
(]
(]
a
]
4
Ll
B

L]
L]
d
o

images/00124.jpeg
83 Central
04 Cast

85 East

8

80 Central
85 West
89 Central

ISE==)
Product Date Customer

R537 10-Sep21 Nagifcent Eggbeater Corporation
R637 11-5ep21 Mouthwalering Notesook Inc

537 12-Sep2! Trustwortny Flagpole Partners
k63 13-Sep21 Listinctve Wax Company

M856 13-Sep21 Guarded Aerotic Carporation
R637 13-Sep-21 Magnificent Eqqbeater Corporation

E
Quantity Revenue COGS Profit

500
1000
100

w
700
1000

E—Ea -5l
11525 5620 594
20940 11262 9630
2257 1082 1175

106l (869 943
12145 6522 5623
26140 11242 13838

images/00127.jpeg
Using Advanced Filter in VBA

Joet Uniaue st of ustomers
led Output Range

i Outpt
Range Chosse Fiakdl JLoop Through Each Customer_
Advancedfier [Hesdngetor g0 (T
i kil Range Delete Criteria &

Re-sequence
Feld Headings | ovanced Fiter | Output Ranges

Copy Records to
New Worksheet

images/00126.jpeg
GoTo Special (-)

Comments © Row differences
canstants Column differences
omulas Brecedents
Numbers Dependents
Text © Direct only
Logiaals Allevels
Errors tagtcell
Blanks @ (Visible cels any]
Cunent region © Conditional formats
Cunent amay Data yalidation
Opjects ®an
Same
ok Cancel

images/00110.jpeg

images/00594.jpeg
W50.5elect

clear the output range, etc.
Range("J:Z").Clear

cnd Sub

images/00593.jpeg
D e A& Rafige:
Din CRange 4s Range
Dim uEK As dorkbook
Dim K As Workshest
Din S0 As Worksheer

Set WSO - Activeshest
" Find the size of taday's data set

FinalRow = Cal1s (Rows Coune, 1) Fnd(x1Up).Row

KextCol = CeTls(1, Coluans.Count) . EndGxTToLsfe) . column + 2

' Set up the criterda range with one cuscomer
CeTNs(2, NextCol).Value = Range("D1") Valus
Cells(2, NextCol).Value - WhichCust

Set CRange - Cells(1, NextCol).Resize(2, 1)

' Set up the output range. We want Date, Quantity, Product, Revene
* Tnese colums are i C, £, B, and I

Cells(a, Nextcol + 2).Resiza(l, 4) value

Array(Cells (2, 3, Cells@,), Cells@, 2, Cells(, 6)

Set ORange - Cells(l, NextCal © 2).ResizeCl, 43

* Define the Snput range
Set TRange - Range("A1").Resize (FinalRu, NextCol - 2)
* Use the Advanced Filter to get a unique 1ist of custoners & products
TRange. AdvancadFiTtar Actioni=x1F11terCopy,
Criter!atanga:—CRange, CopyTaRange -ORange

* Create a new workhaok with one blank sheet to hold the output.
* XIuBATWorksheat is the tewplate nane for a single worksheet
Set uEN = Uorkbaoks AdG(xIWBATWorksheat)

Set NS — UEN.Worksheets (1)

" Set up a Title on WSK
WSN.CeT1s(3, 2).VaTue = "Report of Sales to © & thichCust

" Copy data fron WSO to WN
WS0.CeT15(1, NextCol + 2) Currentheg
Destination!Ws\.CeT1s(3, 1)
ToralRew = WSN.Cel1s(Rons . Caurt, 1) End(x1Up) Row + 1
WSN.Cel1s(TotalRon, 1).¥alus = “Total"

WSN. 15 CTotaTRon, 2) . FormuTaR1CL ~ "~SUMCRZCR[-110)"
WSN.Ce1s (Tota Rom, 4. FormuTaR1CL - "SUNGR2C:RL-110)"

n Copy _

! Fornat the new regort with bold
WSN.CeT1(3, 1) Resize(d, 4). Font.Bold = True
WSN.Cel15(Tora Rom, 1).Resiza(l, 4).Font.Bold = True
WS, Cel1s (1, 2).Font.Sice = 18

WBN. Savess Tniskorkiook.Pach & Application.PathSeparator & _
Whichtuse & " xlax"
Wil Elosa Savechanges afalse.

images/00112.jpeg
CortiCorp Employee List

Enployee Name.
Position

images/00596.jpeg
>et ORange = (ells(l, NextCol)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

" Use the Advanced Filter to get a unique Tist of customers

IRange.AdvancedriTter Action:=x1FilterCopy, CriteriaRange
CopyToRange : =ORange, Unicue:=True

images/00111.jpeg
CortiCorp Employee List - Search

Enployee Name.

X

Cort Crdontioft
JohnDoe

Developer
7120/2003

_I_I

images/00595.jpeg
© Set up the output range. Copy the heading from D1 there
Range ("D1") .Copy Destinatiol e11s(1, NextCol)

images/00590.jpeg
Sub AllColumnsOneCustomer()
Dim IRange As Range

images/00592.jpeg
Sub RunCustReport(WhichCust As Variant)
Dim IRange As Range

images/00591.jpeg
Dim ORange As Range
Din CRange As Range

' Find the size of tocay's cata set
FinalRow = Cel1s(Rows.Count, 1).End(x1Up).Row
NextCol = Cells(1, Colurns.Count).End(x1ToLeft) .Column - 2

! Set up the criteria range with one customer
Cells(1, NextCol) .Value = Range("D1").Value
' Tn reality, this value should be passed from the userform
Cel15(2, NextCol).Value = Range("D2").Value
set CRange = Cells(l, NextCol).Resize(2, 1)

' Set up the output range. It is a single blank cell
Set ORange = Cells(1, NextCol + 2)

! Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique Tist of customers & procuct
IRange. AdvancedFilter Action:—xIFilterCopy, _
CriteriaRange:=CRange, CopyToRange:

-

images/00118.jpeg

images/00117.jpeg

images/00119.jpeg
Personnel Files

Employee Information | personal Information |

images/00114.jpeg

images/00598.jpeg
© Set up the criteria range with one customer

Cel1s(1, NextCol + 2).Value = Range("D1").Value

Cells(2, NextCol + 2).Value = ThisCust
Set CRange = Cells(l, NextCol + 2).Resize(2, 1)

images/00113.jpeg

images/00597.jpeg
* Loop through each customer
FinalCust = Cells(Rows.Count, NextCol).End(x1Up) .Row

For Each cell In Cells(2, NextCol).Resize(FinalCust - 1, 1)
ThisCust = cell.Value

' ... Steps 3 through 7 here

Next Cell

images/00116.jpeg

images/00115.jpeg
e List
CortiCorp Employe

images/00599.jpeg
© Set up the output range. We want Date, Quantity, Product, Revenue
' These columns are in C, E, B, and F

Cells(L, NextCol + 4).Resize(l, 4).Value =

Array(Cel1s(1, 3), Cells(l, 5), Cells(1, 2), Cells(L, 6))

o Oanas o Callets: Nexscsl s > Ractzgtl . 4V

images/00583.jpeg
Private Sub OKButton_Click()
Dim CRange As Range, TRange As Range, ORange As Range
' Build a complex criteria that ANDs al11 choices together
NextCCol = 10
NextTCol = 15

For { =17To 3
Select Case j
Case 1
MyControl = "TbCust”
MyColumn = 4
Case 2
MyControl = "TbProduct”
MyColumn — 2
Case 3
"TbRegion"

MyControl
MyColumn = 1
End Select
NextRow = 2
' Check to see what was selected
For i = 0 To Me.Controls(MyControl).ListCount - 1
If Me.Controls(MyControl).Selected(i) = True Then
Cells(NextRow, NextTCol).Value = _
Me.Controls(MyCantrol).List(i)
NECHROW < NexeRow a1

images/00582.jpeg
Me. IbProduct.Selected(1) = False
Next i
End Sub

Private Sub CommandButton2 Click()
' Mark all products
For i = 0 To 1bProduct.ListCount - 1
Me.1bProduct.Selected(i) = True
Next 1
End Sub

Private Sub CommandButton3_Click()
' Clear all regions
For i = 0 To 1bRegion.ListCount - 1
Me.1bRegion.Selected(i) = False
Next i

End Sub

Private Sub CommandButton4_Click()
' Mark all regions
For i = 0 To 1bRegion.ListCount - 1
Me.1bRegion.Selected(i) = True
Next 1

cnd Sub

images/00101.jpeg

images/00585.jpeg
IRange.Advancedl lter Action:-xll1lterInFlace, Criterialange

Unique:=False

images/00100.jpeg
CortiCorp Employee List

images/00584.jpeg
End IT
Next 1
' If anything was selected, build a new criteria formula
If NextRow > 2 Then
' the reference to Row 2 must be relative in order to work
MyFormula = "=NOT(ISNACMATCH(RC" & MyColumn & *,R2C" & _
NextTCol & ":R" & NextRow - 1 & "C" & NextTCol & ",0)))"
Cel1s(2, NextCCol).FormulaR1Cl = MyFormula
NextTCol = NextTCol + 1
NextCCol = NextCCol + 1
End Tf
Next j
Unload Me

' Figure 11-17 shows the worksheet at this point
' If we built any criteria, define the criteria range
If NextCCol » 10 Then

Set CRange = Range(Cells(l, 10), Cells(2, NextCCol - 1))
Set IRange = Range("A1").CurrentRegion
Set ORange = Cells(1, 20)

IRange.AdvancedFilter xTFilterCopy, CRange, Orange
" Clear out the criteria
Cells(l, 10).Resize(l, 10).EntireColumn.Clear
End If

* At this point, the matching records are in T1

Frnd Sub

images/00581.jpeg
Private Sub CancelButton_Click()
Unload Me
End Sub

Private Sub cbSubA11_Click()
For i = 0 To 1bCust.ListCount - 1
Me.1bCust.Selected(i) = True
Next i

End Sub

Private Sub cbSubClear_Click()
For i = 0 To TbCust.ListCount - 1
Me.TbCust.Selected(i) = False
Next i

End Sub

Private Sub CommandButtonl Click()
' Clear all products
For 1 = 0 To 1bProduct listCount - 1

images/00580.jpeg
-RowSource
* The Tist has to go across, so transpose the vertical data.
_List - Application.Transpose(_

Cel15(2,NextCel) .Resize(LastRow-1,1))

End With

' Erase the temporary 1ist of customers
Cells(l, NextCol).Resize(LastRow, 1).Clear

' Set up the output range for Region. Copy the heading from AL there
Range("AL").Copy Destination:=Calls(L, NextCol)
Set ORange = Cells(1, NextCol)

* Use the Advanced Filter to get a unique 1ist of customers
IRange . AdvancedFilter Action:=xFilterCopy, CopyToRange:=ORange, _
Unique:=True

' Determine how many unique customers we have
LastRow = Cells(Rows.Count, NextCol).End(x1Up).Row

' Sort the data
Cel1s(1, NextCol).Resize(LastRow, 1).Sort Keyl:=Cells(1, NextCol), _
Orderl:-xlAscending, Header:-x1ves

With Me.1bRegion
-Rowsource = ™"
-List - Applicatrion.Transpose(_
Cells(2, NextCol).Resize(LastRaw-1,1))
End With

' Erase the temporary Tist of customers
Cells(l, NextCol).Resize(LastRew, 1).Clear
End Sub

images/00107.jpeg
CortiCorp Employee List

Enployee Name | Cort Childon toff
Positon | CEO

Heevate | /603

S |

images/00106.jpeg

images/00109.jpeg

images/00108.jpeg
Name ~ Position ~ Hire Date
Tracy Syrstad Developer 20-ul03
Cort Childon_Hoff CEQ 6-Aug-03.

images/00103.jpeg
[otn_EmpCancer E]

Privace sub ben_EmpCancel Click()
£na s

images/00587.jpeg
Ctr = Application.Counta(Range ("A2:A" & _
FinalRow) .SpecialCells(x1Cel1TypeVisible))

images/00102.jpeg
[vserform] o

“oprien Eaplicst

Pravace Sub Userform Click()

s
[eyooun
eyprss
[cetp
avod
ovseiore

images/00586.jpeg
For Each cell In Range(A
Ctr=Ctr+ 1

Next call

Nuolon tere 8 ool e matoh: tho: Eritaria

" & FinalRow).SpecialCells(xiCellTypeVisible)

images/00105.jpeg
5]

images/00589.jpeg
NOReCs :
MsgBox "No records match the criteria"
End Sub

images/00104.jpeg

images/00588.jpeg
On Error Golo NoRecs
For Each cell In
Range("A2:A" &
Ctr = Ctr + 1
Next cell
On Error GoTo O
MsgBox Ctr & " cells match the criteria”
Exit Suhk

aTRow) . SpecialCel1s (x1Ce11TypeVisible)

images/00572.jpeg
~ Ada a SUMIF formula to get totals

Cells(1, NextCol + 1).Value = "Revenue"

Cel1s(2, NextCol + 1).Resize(LastRow - 1).FormulaR1Cl — _
"=SUMIF(R2C4:R" & FinalRow & _
“C4,RC[-1],R2C6:R" & FinalRow & "C6)"

End Sub

images/00571.jpeg
Sub RevenueByCustomers()
Din IRange As Range
Dim ORange As Range

' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(x1Up).Ron
NextCel = Cells(l, Columns.Count).End(x1ToLeft) .Column + 2

' Set up the output range. Copy the heading from D1 there
Range("D1").Copy Destination:=Cells(1, NextCol)
Set ORange = Cells(1, NextCol)

" Define the input range
Set IRange = Range("AL").Resize(FinalRow, NextCol - 2

! Use the Advanced Filter to get a unique list of customers
TRange .AdvancedFilter Action:—x1FilterCopy, _
CopyToRange:=0Range, Unique:=True

' Determine how many unique custoners we have
LastRow = Cells(Rows.Count, NextCol).End(x1Up).Rou

' Sort the data
Cells(1, NextCol).Resize(LastRom, 1).Sort Keyli=Cells(1, NextCol), _
Orderl:=x1Ascending. Header:=x1Yes

images/00574.jpeg
Unload Me
End Sub

Private sub Userform Initizlize()
Dim IRange As Range
Dim ORange As Range

' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
NextCol = Cells(1, Columns.Count).End(x1ToLeft).Column + 2

! Set up the output rang
Ranga("D1").Copy Destination
Set ORange = Cells(1, NextCol)

Copy the heading from D1 there
€115(1, NextCol)

' Define the input range
Set IRange = Range("AL").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique Tist of customers
TRange . AdvancedFiTter Action:=xIFilterCopy, _
CopyToRange:=ORange, Unique:=True

* Determine how many unique customers we have
LastRon = Ce11s(Rows .Count, NextCol).End(x1Up) .Row

' Sort the data
Cells(1, NextCol).Resize(LastRow, 1).Sort Keyl
Orderl:=xlAscending, Header

=Cells(1, NextCel), _

With Me.lbCust
RowSource =
.List = Cells(2, NextCol).Resize(LastRow - 1, 1).Value

End With

' Erase the temporary Tist of customers
Cells(1, NextCol).Resize(LastRow, 1).Clear
End Sub

Launch this form with a simple module, like this
Sub ShowCustForm()

FriReport . Show
End Sub

images/00573.jpeg
Private Sub CancelButton Click()
Unload Me
End Sub

Private Sub cbSubA11_Click()
For i = 0 To ThCust.ListCount - 1
Me.1bCust.Selected (i) = True
Next i

End Sub

Private Sub cbSubClear Click()
For i = 0 To TbCust.ListCount - 1
Me.1bCust.Selected(i) = False
Next i

End Sub

Private Sub OKButton Click()
For i = 0 To 1bCust.ListCount - 1
If Me.lbCust.Selected(i) = True Then
' Call a routine (discussed later) to produce this report
RunCustReport WhichCust:=Ve.lbCust.List(i)
End IF
e

images/00570.jpeg
sub Un1iqueCustomerRedux()
' Copy a heading to create an output range

Range("11").Value = Ranga("D1") .Value
' Use the Advanced Filter
Range ("A1").CurrentRegion.AdvancedFilter x1FilterCopy, _

CopyToRange:=Range("11"), Unique:=True
End Sub

images/00579.jpeg
TTTVRLE. DS Vst om0y L1el 2wl
Din TRange As Range
Din ORange &s Range

* Find the size of taday's data set
FinalRow — Co115(Rous. Count, 13, End(<TUp) Ron
NextCol = Cells(1, Columns. Count) . End(<1ToL eft) .Column + 2

" Define the input range
Ranga("AL

“Resize(FiralRon, NextCol - 2)

" Set up the output range for Custorer. Copy the heading From D1 there
Range("01") . Capy Destination:=CeTls(1, NextCol)
Set ORange = Cells(z, NextCol)

! Use the Advanced Filter to get a unique Tist of customers
IRange. Advancedi{Tter Action:-x1Filtarcany, CriceriaRange:-"",
CopyloRange i=DRange, Unique;=True

* Determine how nany unique custoners we have
LastRow = Cel1s(Rows. Count, NextCol).End(x]Lp) .Row

! Sort the data
CeTTs(1, NextCol) Kesize(LastRon, 1).Sort Keyl
OrderL:i=xlscending, Header.

11501, NextCol),

With Ye.lacust
_Rousource
List = Acplication. Transpose(_
Cel1s(2 NextCol) Resize(lastRow-1,2))
End ith

" Erase the temporary list of custorers
Cells(1, NexcCal).Resize(LastRaw, 1).Cl

2ar

" Set up an output range for the product. Copy the heading from D1 there
Range("E1") . Cooy Destination:=Cells(l, NextCol)

Set ORanga = Cells(L, NextCol)

! Use the Advanced Filter to get a uniqus 195t of custoners
TRange _AdvancedFi Tter Action:=xIFilterCopy, _
CopyToRange =0Range, Unique:=True

Determine how many unique custoners we have
LastRow = Cells(Rows . Count, NextCol).End(x1Up) .Row

" Sort the data
CelisCL, NextCol).Resize(Lasthon, 1).Sort Keyli-Cells{l, NextCol), _
OrderL:-x Ascending, Header:-xIYes

G dh il o

images/00576.jpeg
Dim ORange As Range

' Find the size of today's data set
FinalRow = Cel1s(Rows.Count, 1).End(x1Up).Row
NextCol = Cells(1, Columns.Count).End(x1ToLeft).Column - 2

! Set up the output range. Copy headings from D1 & BL
Range("D1") .Copy Destination:=Cel15(1, NextCol)
Range("31") .Copy Destination:=Cells(1, NextCol = 1)
Set ORange = Cells(1, NextCol).Resize(1, 2)

' Define the input range
Set IRange - Range("Al").Resize(FinalRow, NextCol - 2)

! Use the Advanced Filter to get a unique list of customers & product
TRange . AdvancedFilter Action:-x1FilrerCopy, _
CopyTaRange :=0Range, Unique:=True

* Determine how many unique rows we have
LastRaw = Cel1s(Rows.Count, NextCol).End(xTUp).Row

! Sort the data

Ce115(1, NextCol) .Resize(lastRow, 2).Sort Keyl:=Calls(1, KextCol), _
Ordar1:=x1Ascending, Key2:=Calls(1, NextCol + 1), _
Order?:=xTAscending, Keader :=xT¥es

cnd Sub

images/00575.jpeg
Sub UniqueCustomerProauct()
Dim IRange As Range

images/00578.jpeg
Lol isliows Connt, 1).Endix)Un).Row
Cells(1, Columns.Count).End(x]Toleft).Column - 2

" Set up the output range with one custoner
Cells(1, NextCol).Value = Range("D1").value
' In reality, this value should be passed frem the userform
Cells(2, NextCol).Value = Range("D2").value
Set CRange = Cells(l, NextCol).Resiza(2, 1)

' Set up the output range. Copy the heading from B1 thera
Range("B1") .Copy Destination:=Cells(l, NextCol + 2)
Set ORange = Cells(l, NextCol + 2)

' Define the input range
Set IRange = Range("AL").Resize(FinalRow, NextCol - 2)

' Use the Advancad Filter to get a unique Tist of custorers & procuct
TRange. AdvancedFiTter Action:=xIFilterCopy, _
CriteriaRange:=CRange, CopyToRange:=0Range, Unique:
' The above could also be written as
!IRange . Advanced=ilter x1FilterCopy, CRange, OKange, True

rue

" Determine how many unique rows we have
LastRow = Cells(Rows.Count, NextCol + 2).End(x1Up).Row

' Sort the data
Cells(1, NextCol + 2).Resiza(lastRow, 1).Sort Keyl
NextCol 1 2), Orderl:axlAscending, Header :=x1Yes

11sC1, _

cnd Sub

images/00577.jpeg
Sub UniqueProductsOneCustomer()
Dim IRange As Range
Dim ORange As Range
Dim CRange As Range

' Find the size of today's data set

images/00561.jpeg
Sub FilterByF1liColor()

Range("A1").AutoFilter Field:=6, _

Criterial:=RGB(255, 0, 0), Operator:=x1FilterCellColor
End <ub

images/00560.jpeg
Sub F1lterNoFontColor()
Range("Al").AutoFilter Field:=6, _
Operator:=x1FilterAutomaticFontColor

End Sub

images/00563.jpeg
Sub DynamicAutoFiiter()
Range("A1") .AutoFilter Field:
Criterial:=x1FilterNextYear,

images/00562.jpeg
Sub F1iterBylcon()
Range("AL") .AutoFilter Field:=6, _
Criterial:=Activenorkbook . IconSets (x15ArrowsGray) . Iten(5) ,
operator:=x1FilterIcon
End Sub

images/00569.jpeg
Sub GetUnigueCustomers()
Dim IRange As Range
Dim ORange As Range

' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
NextCol = Cells(1, Columns.Count).End(x1ToLeft).Column + 2

* Set up the output range. Copy heading from D1 there
Range("D1").Copy Destination:-Cel1s(1, NextCol)
Set ORange = Cells(1, NextCol)

' Define the input range
Set IRange - Range("AL").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique Tist of customers

IRange. AdvancedFilter Action:=x1FilterCopy, CopyToRange:=ORange, _

Unique:=True

End cub

images/00568.jpeg
Range ("H10:R/7507) _
.SpecialCells(x1CelTTypeFormulas, x1TextValues) _
Entd raRow Hidden = True

images/00565.jpeg

images/00564.jpeg
Operator:=xIF1lterDynamic
cnd Sub

images/00567.jpeg
Application.5creenUpdating = False
Application.Calculation = x1CalculationManual
For Each cell In Range("H10:H750")

If cell.value = "HIDE" Then
cell.EntireRow.Hidden = True

End If

Next cell

Application.Calculation = x1CalculationAutomatic
Application.ScreenUpdating = True

images/00566.jpeg
For Each cell In Range(H10:H/50")
If cell.value = "HIDE" Then
cell.EntireRow.Hidden = True

End If

Next cell

images/00550.jpeg

images/00552.jpeg
Sub DeleteFord()
' skips header, but also deletes blank row below
Range("A1").AutoFilter Field:=4, Criterial:="Ford"
Range ("A1").CurrentRegion.Offset(1).EntireRow.Delete
Range ("A1") .AutoFilter

Fnd Sub

images/00551.jpeg

images/00558.jpeg

images/00557.jpeg
Range(Al") .AutoFilter Field:=4, _
Criterial:=Array("Ceneral Motors", "Ford", "Fiat"), _
Operato 1Filtervalues

images/00559.jpeg
Sub F1lterByFontColor()

Range("A1").AutoFilter Field:=6, _

Criterial:=RGB(255, 0, 0), Operator:=x1FilterFontColor
Fnd Sub

images/00554.jpeg
With Range("Al").CurrentRegion.Otfset(1).Resize(Datait - 1)

" No need to use VisibleCel1sOnly for formatting
.Interior.Color - RGB(C,255,0)
.Font.Bold = True

End With

' Clear the AutoFilter & remove drop-downs

Range ("A1") . AutoFiTter

Fnd Sub

images/00553.jpeg
Sub ColorFord()
DataHt = Range("Al").CurrentRegion.Rows.Coun
Range("A1") .AutoFilter Field Criterial

images/00556.jpeg
Sub ToplOF1iter()
' Top 12 Revenue Records

Range("A1") .AutoFilter Field:=6, _

Criterial:="12", _
Operator:=x1Top10Items
End Sub

images/00555.jpeg
ge("Al") .AutoF1lter Field:=4,
Cr1ter1a1 ="Ford",

:=x10r, _
"Ceneral Motors"

images/00541.jpeg
e e LT AT
i Expround As Range
oin WlEmployees A5 ListObject

et ieaployees - Horkshests(Taployees™) List0biects -ehlEaployees”
ditn thiceplepecs
Sot Eeprown - _ListColumnsClase
OacsBohRange Find(1b Eptan.
16 Enpround 1 Nothing Then
Higgox C“eaplopee not foundi®)

Wk DaeasodyRange.Cell ExpFound. o -
istColumnsChame™ Tnder)
o Emgponition - 0FF360, D
@ Hirebace - offset(d, B
On Error Resums Nt
Tng Exployee.Picturs = Lodpicrure _
CTnisworkbook.7ath & "\ & Expround Value & *-3p07)
e wien
a1t
s e
et Expfound = Nothing
et thiEaployees « Nothing

images/00540.jpeg
Private Sub Lbl_Bldgl Click()
Obtn_Bldgl.Value = True
End Sub

images/00547.jpeg
>ub ManyFiles()
Dim x As Variant
x = Application.GetOpenFilename(_

FileFilter:="Excel Files (*.x1s*), *.x1s*", _

Title:="Choose Files", MultiSelect:=True)
On Error Resume Next
If Ubound(x) > 0 Then

For i = 1 To UBound(x)

MsgBox "You selected " & x(i)

Next i

ElseIf x = "False" Then
Exit Sub

End If

On Error GoTo 0
Fnd Sub

images/00546.jpeg
Sub Selectrile()

"Ask which file to copy

x = Application.GetOpenFilename(_
FileFilter:="Excel Files (*.x1s*), *.xIs*", _
Title:="Choose File to Copy", MultiSelect:=False)

"check in case no files were selected

If x = "False" Then Exit Sub

MsgBox "You selected " & x

End Sub

images/00549.jpeg
Sub OldLoopToDelete()
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
For i = FinalRow To 2 Step -1
If Cells(i, 4) = "Ford" Then
Rows(i).Delete
End If
Next i
End Sub

images/00548.jpeg
sub OldLoop()
FinalRow = Cells(Rows.Count, 1).End(xIUp).Row
For i = 2 To FinalRow
If Cells(i, 4) = "Ford" Then
Cells(i, 1).Resize(1, 8).Interior.Color = RGB(0,255,0)
End T1f
Next i
End Sub

images/00543.jpeg
Private Sub btn_tmpOK _Click()
Dim LastRaw As Integer, 1 As Integer
Dim thlEmpleyees As ListObject

Set thlEnployees = Worksheets("Employees”) . ListObjects("tolEmployees”)
Tf th_FrpNare.Value - " Then

Frm_AddEnp. Hide

Msgbox ("Please enter an Enployee Name™)

Frm_AddCup. Show

Exit Sub
End If

With thiEnployees
ListRons.Add "add a nen row
With .DatalocyRange
LastRow - _lows.Count 'get The new raw
JCells(LastRow, 1).Value = th_EmpNare Value
For i = 0 To 1b_EwpPosi tion.ListCount - 1
IF 1b_EmpPosition. Selected(i) = True Then
+Cells(LastRon, 2).Value = _
+Cells(LastRon, 2).Value & Ib_EmpPosition.List(i) &
End If
Kext i
“Concatenate the values fron the textboxes to create the date
_Cells(Lastiow, 3).Value = th_Month Value & "/ & tb_Day.Value & _
/" & th_Year.Value
End \ith
End With
Y

images/00542.jpeg
Private Sub SpBtn_Month_Change()
tb_Month.Value = SpBtn_Month.Value
Fnd Sub

images/00545.jpeg
Private Sub Userform_QueryClose((ancel As Integer, (loseNode As Integer)
Tf CloseMode = vbFormCont rolkenu Then
MsgRox "Please use the OK or Cancel buttons to close the form'
vbCritical
Cancel = True 'prevent the form from closing
tnd If
o Sl

images/00544.jpeg
1T tb_EmpName.Value Then
frm_AddEmp. Hide

MsgBox "Please enter an Employee Name'
frm_AddEmp . Show

Exit Sub

cnd TF

images/00539.jpeg

images/00530.jpeg
“Create a report on a new sheet

Sheets . Add

Range("AL") .Resiza(, 5).Value = Array("Store ID", "Units Sold", _
"Dollars Sold”, "Units Un Hand”, "Dollars On Hand™)

CurrRow = 2

"loop Through the outer array
For ThisStore = LBound(Stores) To UBound(Stores)
With Stores(ThisStore)
Totalballarssold = 0
Totalunitssold = 0
TotalDallarsOnHand = O
TotalUnitsOnHand = 0
"Co through the inner array of procuct styles within the array
'of stores to sumarize information
For ThisStyle - LBound(.Styles) To UBound(.Styles)
With Styles(ThisStyle)
TotalDollarssold = Totalbollarssold + .Unitssold *.Price
lotalUnitssold = TotalUnitssold + .UnitsSold
TotalDolTarsOnlland = TotalDollarsOniland + .UnitsOniland * _
Price
TotalUnitsOnHand = TotalunitsonHand + .UnitsOnHand
End With
Next ThisStyle
Range ("A" & CurrRow) .Resize(, 5) Value = _
Array(.I0, TotalUnitsSold, TotalDollarsSold, _
TotalUnitsOnHand, TotalDollarsOrHand)
End With
CurrRow = CurrRow + 1
Next ThisStore
Set th1Stores - Nothing
End Sub

images/00536.jpeg
Frivate aub Desrromm_initiaiizall
Dim thltmployees As ListUbject

Set thiEmployees = Worksheets("Enployees”). ListObjects("th1Employzes”)
Me.1b_EmpNane, RowSource = thlEmployees, Listcolumns (1) .DataBodyRange. Address
Set tblEmsloyees = Nothing

End Sub

images/00535.jpeg
Private oub btn_LmpUR_CI1ck()
Dim EmpFound As Range
Dim tblkmployees As ListObject

Set tblEmployees = Worksheets("Employees™) .ListObjects("tb1Employees™
With th1Enployees.ListCol unns ("Name™) .DataBodyRange
Set EnpFound - .Find(th_EmpHame.Value)
If EmpFound Is Nothing Then
Msghox (“Employze not found!")
th_EmpName .Valuz = ™"

Clse
With .Cel1s(EvpFound.Row - 1, 1)
th_CmpPosition = .0Ffset(0, 1)
th_HireDate = .0ffset(0, 2)
End With
End If
End With
Set FmpFound = Nothing
Set th1Employees = Nothing
Fnd Sub

images/00538.jpeg
Private Sub btn_tmpUOK_C11ck()
Din LastRow As Integer, i As Integer
Din th1Employees As ListObject

Set thlEmployees = Worksheets("Enployees").ListObjects("tolEmploveas”)
With th1Enployees
_ListRows.Add 'add a new row
With .DataBodyRange
LastRow = .Rows.Count 'get the new ron
.Cells(LastRow, 1).Value - tb_EnpName.Value
For i = 0 To Tb_EmpPosition.ListCount - 1
'if the item is selected, add it to the sheet
If 1b_EmpPosition.Selected(i) = True Then
-Cells(LastRow, 2).Velue = .Cells(LastRow, 2).Value & _
Tb_EmpPosition. List(i) & "

End Tf
Next 1
.CeTls(LastRow, 3).Value
"renove excess comma
.CeTls(LastRow, 2).Value = Left(.Cells(LastRow, 2).Value, _

Len(.Cells(LastRow, 2).Value) - 1)
End With

End With

Set: thiCrployees = Nothing

Ead Euli

th_llireDate.Value

images/00537.jpeg
Private Sub 1b_tmpName_Click()
Dim EmpFound As Range
Dim tolEmplovees As ListObject

Set tolEmployees - Worksheets("Employees”).ListCbjects("tolEmployees”)
With tolEmployees.LstColumns("Name") .DataBocyRange
Set EwpFound - .Find(1b_EmpName.Value)
With .Cells(EmpFound.Row - 1, 1)
th_EnpPosition.Value = .0fFset(0, 1)
th_HireDate.Value = .0ffset(0, 2)
End With
End With

Set EmpFound = Nothing
Set tb1Employees = Nothing
cnd <ub

images/00532.jpeg
mylitie = "Report Finalized™
MyMsg = "Do you want to save changes and
Response = MsgBox (myMsg, vbExclamation +
Select Case Response
Case Is = vhYes
ActiveWorkbook.Close SaveChanges:
Case Is = vbNo
ActiveWorkbook.Close SaveChanges:
Case Ts = vhCancel
Exit Sub
Fnd Select

close’
vbYesNoCancel, myTitle)

=True

=False

images/00531.jpeg
nter the number
b3y

Avelios
Title:

InputBox(Prompt::
Enter Months®. Defaul

of months to average', _

images/00534.jpeg
Private oub btn_LtmpUR_Cl1ck()
Dim LastRow As Long
Dim th1Employees As ListObject

Set tb1Employees = Worksheets("Enployees™) .LictObjects("th1Employees
With th1Enployees
~ListRows.Add 'add a new row
With .DataBodyRange
LastRow = .Rows.Count 'get the new row
-Cells{LastRow, 1).Value = tb_EmpName.Value
-Cells{LastRow, 2).Value = tb_CmpPosition.Value
.Cells(LastRow, 3).Value = tb_EmpHireDate.Value
End With
End With
Set tb1Employees = Nothing
Fnd Sub

images/00533.jpeg
Private Sub btn_EmpCancel_Click()
UnToad Me
tnd Sub

images/00529.jpeg
WIEIF D tatores:
“Sort. Sortkields Add ListColumns (1) DatabiodyRange, _
Tsoronvalues, x1Ascercing

Sort.foply
SortSartFields Claar
tnd Wich

'pur the data Tnto an array s it's faszer o process
arrStores - WIStores DatadodsRange

“The follawing For Tosp 115 both arrays.
“The outer array 1s FiTled with the
'store nane and an inner erray consisting of prodict details.
“To accowplish this. the store nane 15 cracked, and vhen 17 changes,
"zhe cuter array 1s expanded
“The inner array for cach cuter array expards with each new prodct
For 1 - LBound(arrstores) To UoundGarrscores)
StoreId = arrStorescs, 1)
"checks whesher this s the First entey in the outer array
1F Llund(cores) = O Then
Thisstare - 1
ReDin Scorestd To 1 s Store
Storas(1).10 = Storem
ReDin Scores(1).55yles(0 To 0) As Style
Eise
I it's ot the first entry, see if the store has alreacy been addsc
For ThisStore - (Rourd(Stares) To Uound{Srores)
<the stors has already beer adeed: o need to 2dd agatn
TF Stares(ThizSzore).I0 - Scoreld Then Exit For
Nexr Trissro
*the store hasn't been adied, so ac T now
IF TrisStore » UBound(Stores) Then
Rabin Preserve Stores(Lsourd(Stures) To_
UBoun(Stares) + 1) As Store.
Stores (Thisstore). I = Store!
Rein Stores(Trisstore) Styles(@ To 0) As Style
End 1F
Erd 1%
Thow add the stere details
Wich Stores(Thisstara)
‘check 1% the style alreacy exists n the fmer array
17 Lsound(Siyles) = 0 71
Relin _StylesC: To 1) As Seyle
Flze
ReDin Preserve . Seyles (LBouné(.Sty1es) To _
Ubound(_SeyTes) + 13 A5 Style

tnd 1f
*add the rest of Tre detatls for the Sty
With Seyles(UBound(Seyles))
“Styletame — arstorestl, 2)
Price - arrstores(i, 1)
Unitssols = arrstorests, 4
Ui esOnitand arrstores
End with
End With

9

images/00528.jpeg
ub UDTMain()

Dim ThisStore As Long, ThisStyle As Long

Dim CurrRow As Long, 1 As Long

Dim Tote1DollarsSold As Double, TotalDollarsOnHand As Double

Nim Totallni tsSold As Long, TotalUnitsOnHand As Long

Dim StoreTd As String

Dim th1Stores As Listobject

Dim arrStores 'to hold the data from the table

ReDim Stores(0 To 0) As Store 'The UDT is declared as the outer array

Set thlStores = Worksheets("sales Data").ListObjects(’tb1stores")
rensure data is sorted by name

images/00525.jpeg
Dim collabels As Collection

Sub Workbook_Open()
Dim wks As Worksheet
Dim clsLb] As cLabel
Din 01€0b7 As OLEDbject

Set collabels= New Collection
For Each wks Tn Thiskorkbook.Worksheets
For Each 0ledbj In wks.OLEOhjects
If 0le0bj.OLEType = x10LEControl Then
in case you have other controls on the sheet, include only the Tabels
I TypeName(0leObj.Object) = "Label” Then
Set clsLbl = New clabel
Set clsLbl.Helplabel = OTe0bj.Object
colLabels.Add clsLbl
End If
End If
Next 01e0bi
Next wks
Fnd Subk

images/00524.jpeg
Private Sub HelplLabel_Click()
Dim Ronhunber As Long

RowNumber = Right(HelpLabel.Name, Len(HelpLabel.hame) - 5)

Tf Helplabel.Caption - "2 Then
HelpForm.Caption = “Label in cell " & "
HelpForm HelpText Caption = Worksheets("
HelpForu. Show

End If

End Sub

& RonNunber
le1p Text").Cells(RowNumber, 1

images/00527.jpeg
Public Type Store
ID As String
Styles() As Style

End Type

images/00526.jpeg
Public Type Style
StyleName As String
Price As Single
UnitsSold As Long
UnitsOnHand As Long

End Type

images/00521.jpeg
Dim arrData, arrReport, arrHeaders
Din 1 As Long
Din g As Range

‘create the dictionary object
Set dictData - CreateObject("Scripting.Dictionary”)
Set thisales = Worksheets("Table").ListObjects("tbIsales™)

'put the data into an array for faster processing
arrData = th15ales.DataBodyRange

“Toop through the array
For i = 1 To UScund(arrData)
*if key exists, add to it
‘else create and add to Tt
If dictdata.Exists(arrbata(i, 2)) Then
dictbata. Iten(arrData(i, 2)) = dictData.Item(arrbata(i, 2)) +
arrData(i. 53
Else
dictData.Add arrbatai, 2), arrbatai, 5)
End If
ext

‘renzme a key, just for the heck of it
"the only way to rename a key is to know the name of it
dictData.Key("Tools™ = "Electrical Tools"

"the Tocation 2 rows beneath the table
Set rng = thl5ales Range OfFset(tblSales Range Rows. Count + 2) Resize(l, 1)

'put the dictionary keys and values each into an array

"then dunp them on the sheet

arrieaders - dictbata.Keys

rng.Resize(dictiara.Count, 1) Value = Application.iranspose(arrileaders)

arrReport = dictbata. Ttems

rng.0ffset(, 1).Resize(dictData.Count, 1) .Value - _
Application. Transpose (arrReport)

St dictbata = Nothing

Set tb1Sales = Nothing

Set rng = Nothing

Bl g g

images/00520.jpeg
Sub UsingADictionary()
Dim dictData As Object
Dim bItemExists As Boolean
Dim tb1Sales As ListObject

images/00523.jpeg
bl1c WithEvents HelplLabel As MSForms.Label

images/00522.jpeg
Private Sub CloseHelp_Click()
UnToad Me
fnd Sub

images/00518.jpeg
Sub

EmployeesPayUsingCol lection()

"using a collection in a class module

Dim
Dim
Dim
Din
Dim
Dim

Set.
Sat

colEnployees As cEmployees
clsEnployee As cEmployes
arremployees

th1Enployees As Listobjact
i As Long

FullNare as String

colEmployees = New cEnployees 'sel 2 new instance of the collection
tb1Emplovees - Worksheets (" Employvee Info").ListObiects("tb1Employees")

images/00517.jpeg
Pubiic Property Get Item(myItem As Variant) As cEmployee
Set Item = AlTEmployees(myItem)
End Property

images/00519.jpeg
arrtmployees = thilmployees.DataBodyRange

"loop through each employee
"assign values to the custom object properties
"then place the custon object into the collection
'using the enployee id as the unique key
For i = 1 To UBcund(arrEmployees)
set clsemployee = New cEmployee
With ¢1sEmployee
EnployesName = arrEnployees(i, 1
.EmployealD = arrEmployees(i, 2)
.EmployecHourlyRate = arrEmployees(i, 3)
.EnoloyeeWeeklyHours = arrEnoloyees(i, 4)
"the key is added by the class module Add method
colEmployees . Add clsEmployee
End With
Next 1

‘retrieve information from the custon object in the collection

"specitically, the second member of the collection

Set clsCmployee = collmployees.Tten(2)

MsgBox "Number of Employees: " & colEmployees.Count & Chr(10) & _
"Employee(2) Name: " & clsEmployee.EmployeeName

"retrieve information using the key

FullName = colEmployees("1651"). EmployeeName

MsgBox Left(FullName, Len(FullName) - InStr(l, FullMame, " ") - 2) & _
"'s Weekly Pay: §" & colEmployees("1651").EnployeeNeek]yPay

Set colEmployees = Nothing
Set th1Employees = Nothing
Set clsEmployee - Nothing
s

images/00990.jpeg
<customUI xmins="http://schemas.microsoft.com/att1ce/2009,/07/customut =
<ribbon startFromscratch="false">
<tabs>
<tab id="CustonTab" label="My First Risbon">
<group id="CustonGroup" label="My Progran.

<button id="butzonl" label="Click to run”
onAction-"Modulel.kelloWorld"
imageMso-"HyperlinkInsert” size-"Targe"/»

</group>
</tab>
</tabs>
</ribbon>
ifcmstomtiD>-

images/00992.jpeg
<customUI xmins="http://schemas.microsotft.com/oftice/2009/07/customul
<ribbon startFromscratch="false">
<tabs>
<tab id="CustomTab" label="Hy First Ribbon">
<group id="CustonGroup" label="My Programs">

<button i
onActior
size=

buttonl” label="Click to run"
Modulel.HelloWor1d" image="hellowor1d_png"
arge" />

</group>
</tab>
</tabs>
</ribbon>
</custonIs

images/00991.jpeg
<?xml version="1.0" encoding="UTF-8 " standalone="yes 7>
<Relationships xmlns="http://schemas openxn]formats . org/package/2005/_
relationships"><elationship Id-"hellosor1d_png"_

Type="http: //schemas openxn| formats.org/of iceDocurent/2006/ _
relationships/inage"

images/hel Taworld.pna" /></Relationshins>

images/00514.jpeg
Public Sub Remove(myltem As Variant)
Al1Employees . Remove (myItem)
End Sub

images/00998.jpeg
<Relationship Id="rE1FALCFO-6CA9-499E-9217-90BF2D86492F"
Type="nttp: //schenas.microsoft . can/office/2007/ralationships/ui/ _
extensibility"

customui /customuUI14. xm1" />

images/00513.jpeg
Public Sub Add(reckmployee As clskmployee)
Al1Employees.Add recEmployee, CStr(recEmployee.EmployeelD)
End Sub

images/00997.jpeg
<Relationship la-"rld3™
Type-"http: //schemas.microsoft. con/office/2007/relationships/ui/ _
extensibility”

Target="customui/custom/T14.xm1" />

images/00516.jpeg
Pubiic Property Cet Items() As Collection
Set Items = Al1Employees
End Property

images/00515.jpeg
Public Property Cet Count() As Long
Count = AT1Employees.Count
End Property

images/00999.jpeg
Private Sub Worksheet_FollowHyoer 11nk(ByV:
Select Case Target.TextToDisplay
Case "Quarter 1"
RunQuarter1Report
Case "Quarter 2"
RunQuarter2Report
Case "Quarter 3"
RunQuarter3Report
Case "Quarter 4"
RunQuarterdReport
End Sclect
End Sub

Target As Hyperlink)

images/00510.jpeg
>Ub Employeeskaylsingtol lectiond)
Dim colEnnloyees As Collaction 'declare a var
Nim clsEnployee As cEmployee
Dim arrEmsloyees

Dim ti1Enployees As ListObje
Dim i As Long

Dim FullName As String

on 'set a new instance of the collection
Employee Info™).ListObiects("tb1Employees”)

Set colEmployees = New Colle
Set tolEmployees = Worksheets(’

arrEmployees = thlEmployees.DataBodyRange

"loop through each employee
"assign values to the custom object properties
"then place the custom onject irto the callaction
'using the employee id as the unique key
For i = 1 To UBound(arrimployees)
Set clsiaployee = New cCwployee
With clsEmployee
EnployeeNane = arrEnaloyees(i, 1)
EnployeeID = arrEmployees(i, 2)
EnployeetourTyRate = arrEnployees(i, 3)
EuployeeNeeklyHours - arrEmployees(i, 4)
colEmnlovess - Add cisEsploves. £Strl.Balovesil)

images/00994.jpeg
<group 1d="CustomGroup” label="My Programs”>
"My First Ribbon"

images/00993.jpeg
<tab 1d= My First Ribbon™>
<group id My Programs"
<button id="buttonl" label="Click to run"

ustomTab™ label=

onAction="Modulel.HelloWor1d" image="hellowor1d_png"
size="large" />

images/00512.jpeg

images/00996.jpeg

images/00511.jpeg
Lnd With
Next i

‘retrieve information from the custon object in the collection
"specifically, the second member of tne collection

Set clsEmployee = colEnployses(2)

MsgBox “Numbar of Employees: " & colEmployees.Count & Chr(10) & _
"Employee(2) Name: " & clsEmployee.EmployeeNane

"retrieve information using the key

FullName - colEmployees("1651") .EmployeeName

MsaBox Left(Ful IName, Len(FullName) - InStr(l, FullName, ") - 2) & _
"'s Weekly Pay: $" & colfmployees("1651") .EnployeeNeek]yPay

Set: colEmployees = Nothing

Set th1Employees - Nothing

Set clstmployee = Nothing

Frd Cub

images/00995.jpeg

images/00507.jpeg

images/00506.jpeg
Sub SingleEmployeePayTime()
"declare a variable as the class module/object
Dim clsEmployee As cEmployee
"set a new instance ta the object
set clsEmployee = New cEwployee
with clsEmployee
-LmployeeNane = "Iracy Syrstad”
-Employecld = "1651"
EmployeeHourlyRate = 35.15
.EmployeelieeklyHours = 45
MsgBox . EnployesNane & Chr(10) & Chr(9) & _
“Normal Hours: " & .EmployeeNorralHours & Chr(10) & Chr(9) &
“0verTime Hours: " & .FmployesOverTineHours & Chr(10) & Chr(9) & _
“Weekly Pay : §" & .EmployeeWzeklyPay
Fad With
End Sub

images/00509.jpeg

images/00508.jpeg
Dim myFirstCollection as Collection

Set MyFirstCollection = New Collection
MyFirstCollection.Add Tteml, "Keyl” 'with a key
MyFirstCollection.Add Item2 'without a key

images/00860.jpeg
-RowNumbers = False
.Fil1AdjacentFormulas = False
.PreserveFormatting = True
.RefreshOnFileOpen = False
.BackgroundQuery = True
.RefreshStyle = x1InsertDeleteCells
.SavePassword = False
.SaveData = True
.AdjustColumnWidth = True
-RefreshPeriod = 0
.WebSelectionType = x1EntirePage
.WebFormatting = xTWebFormattingNone
-WebPreFormattedTextToColumns = True
-WebConsecutiveDelimitersAsOne = True
.WebSingleBlockTextImport = False
.WebDisableDateRecognition = False
-WebDisableRedirections = False
.Refresh BackgroundQuery:=False

End With

WSD.Range("K3:N3") .FormulaR1Cl = _
"=VLOOKUP(R[-1]C,Web!C1:C2,2,FALSE)"

WSD.Cel1s(i, 3).Resize(1, 4).Value = _
WSD.Range ("K3:N3") .Value

Next i

End Sub

images/00866.jpeg
- Determine the next time this should run
NextTime = Time + TimeSerial(0,2,30)
Range("ZZ1").Value = NextTime

' Schedule ThisProcedure to run then
Application.OnTime EarliestTime:=NextTime, _
Procedure:=NameOfScheduledProc

End Sub

Sub CancellLater()
NextTime = Range("zZ1").value
Application.OnTime EarliestTime:=NextTime, _

Procedure:=CaptureData, Schedule:=False
End Sub

images/00865.jpeg
Sub ScheduleWithCancelOption
NameOfScheduledProc

images/00868.jpeg
Sub ScheduleSpeech()
Application.OnTime EarliestTime

images/00867.jpeg
Sub ScheduleSpeak()

Application.Onlime karliestlime:=Timevalue("9:14 AN"), _
Procedure:="RemindMe"

End Sub

Sub RemindMe ()
Application.Speech.Speak _

Text:="Bill. It is time for the staff meeting."
Frd Sub

images/00862.jpeg
Application.OnTime EarliestTime:=TimeValue("8:00 AM"), _
Procedure:= "CaptureData ", _

LatestTime:=TimeValue("8:05 AM")

images/00861.jpeg
Sub SchecduleTheDay()
Application.OnTime Earlies<Time

Procedure:- "CaptureData"
Application.OnTime Earlies

imeValue('"8:00 AM"), _

imeValue("9:00 AM™), _

Procedure:= "CaptureData”

Application.OnTime Earlies imevalue("10:00 AN, _
Procedure:= "CaptureData”

Application.OnTime Earlies :=TimeValue("11:00 AM"), _
Procedure:= "CaptureData”

Application.OnTime Earlies :=TimeValue("12:00 AM"), _

Procedure:= "CaptureData"
Application.OnTime Earlies
Procedure:= “"CaptureData”
Application.OnTime FarliestTime:=TimaValue("
Procedure:= "CaptureData"
Application.OnTime Earlies
Procedure:= "CaptureData"
Application.OnTime Earlie:

imeValue("1:00 PM"), _

00 PM"), _

imeValue(3:00 PM"), _

imeValue("4:00 PM"), _

Procedure:= "CaptureData"

Application.OnTime Earlies :=TimeValue("5:00 PM"),
Procedure:= "CaptureData”

End Sub

Sub CaptureData()

Dim W5Q As Worksheet

Dim NextRow As Long

Set WSQ = Worksheets("MyQuery™)

* Refresh the web query

WSQ.Range("A2") .QueryTable .Refresh BackgroundQuery:=False
' Make sure the data is updated

Application.Wait Now + TimeValue("0:00:10")

' Copy the web query results to a new row

NextRow = WSQ.Cel1s(Rows.Count, 1).End(x1Up).Row + 1
WSQ.Range("A2:82") .Copy WSQ.Cells(NextRow, 1)

End <ub

images/00864.jpeg
Sub ScheduleAnything()
' This macro can be used to schedule anything
VaitHours = 0
Waitiin = 2
aitsec = 30
NameOfSchedu] ecProc = "CaptureDat

- End of Input Section

! Deternine the next time this should run
NextTime = Time + TimeSerial(WaitHours, WaitMin, WaitSec)

* Schedule ThisProcedure to run then
Application.Onlime Earliestline:=Nextiire, Procedure:

ame0fscheduledProc

End Sub

images/00863.jpeg
Sub CancelEleven()

Application.OnTime EarliestTime:=TimeValue(*11:00 AM"), _

Procedure:= "CaptureData", Schedule:=False
Fnd Sub

images/00859.jpeg
Sub CetData()

Dim WSD As Worksheet

Dim WSW As Worksheet

Set WSD = Worksheets("Data")

Set WSW = Worksheets("Web")

FinalRow = WSD.Cel1s(Rows.Count, 1).End(x1Up).Row

For i = 1 To FinalRow
ThisDate = WSD.Cells(i, 2).Value
' Build the ConnectString
€S = "URL;http://www.wunderground. con/history/ai rport/KCAK/"
Cs - CS & Thisbate
€S = €S & "DailyHistory.htr1"
' Clear results of last web query
For Each gt In WSW.QueryTables
qt.Delete
Next gt
WSD.Range("A10:A300") .EntireRow.Clear

"

With WSN.QueryTables.Add(Connection
Destination nga(”$A4$10"))
Name = "DailyHistory”
e

S,

images/00858.jpeg
WSW.Calculate
WSD.Cel1s(i, 3).Resize(1, 4).Value = WSW.Range("B4:E4").Value
Next 1

images/00855.jpeg
For 1 = 2 to FinalRow

ThisDate = WSD.Cel1s(I, 2).value

' Build the ConnectString

€5 = "URL: URL;http://www.wunderground.com/history/airport/KCaK’
CS - CS & ThisDate & "DailyHistorv.html

images/00854.jpeg
Dim WSD as worksheet

Dim WSW as worksheet

Set WSD = Worksheets("Data")

Set WSW = Worksheets("Web™)

FinalRow = WSD.Cells(Rows.Count, 1).End(xT1Up).Row

images/00857.jpeg
With WSD,Queryiables. . Add (Connection.—= LS, DesLinalion

images/00856.jpeg
For Each qt In WSD.QueryTables
qt.Delete

Next qt

WSD.Range ("A10:A300") .EntireRow.Clear

images/00851.jpeg
Fohidrpi

& Chr(13) & " & Chr(10) & * " Changed Typs

“Table. Trans ornColumnTypes (batal, { {"UIC Tine™
ire At Departure

Time At Arrival™, type

.+ type texth, £UR de™, type text),

Latitude™”, type nuber}, {*'Longitude’

e nunger}}).” & Chr(13) & & Chr(10) &

Renoved Columns™ = Table. RenoveColumns

“Changed Type™, {"UTC Time™, " Time AL " &

“Departura™),” & Chrild) & ™ & CArC10) & _

“ £7Splic Coluan by Position™ = Table.plie" &

“Clumn (¥ Removed Columrs®", " Tine At Arrival ™" &

“salizter.SplizTextoyPosizions({0, o}, false)

Formula - Formula & _

“[""Tine At Arrival 1, “*Time Az Arrival.2"1)," & Chr(13) &

" & Chr(10) & * #* Changed Typel™ - " & _

“Table. TransfornCalumnTypes (4”"Spl it Column by * & _

“Fosition™, ([""Tire At Arrival.1"", type date],” &

“("Tine AU ArTival.2", type tine} 1), & Chr(13) &

" & CNr10) & " 4™ Renoved Columnsi = * & _
“Table. RenaveColunns (¥ Changed Typel™, 1" Tine At Arrival.1" _
H e

CAr(13) & " & Che(10) & " #7Split Column by Deldmiter™ = " &

Table. 5517 tColun (4" Renoved Colums1™, " 5pa” & _
“ed"" Spl txer. S i tTexctyEachbel initer({™* ™}, " &
"mul1, fa1se) {""Speed 1", Speed.2"))," & CheC13) & _
"4 Chr(10) & * W™ Changed Type2™ -

“Table. TransfornCo umTypes (#°"Spl1it Colum by Delimiter™,” &
“{{""Speed. 1", Int6t Type}, [Speed.2"", type text}))," & _
CARCL3) & ™" & Chr(10) & " #""Renoved Colmns2™ = * &
“Table. RenaveCoTunns(#""Changed Typaz ™", " 5peed.2""1)," & _
Car(13) & " & Chr(10) & " £Split Column by Dolimiter)
"= Table.SplixColum(s" Reroved Columsz'"," & _
“"UATeitude’ Splter. Sp1 i eTaxtByEachDel iniar ({
“na1, false).{"Alticude. 1™, ""Altitude.2’
€OrQI) & "k Che(10) & 7 o changed Types™ =
Formua - Formila & "Table. TransfornColusnTynss(#'Sa1ie * & _
“Column by Delimitart’™," &
“CCTATE tude 177, Tn64. Type), {"*ATtitude 2, type text3)," &
€Ar(13) & " & Che(10) & " £ Renoved Columns3™ = *
"Table. RenaveCoTunns ¥ Changed Typa3™",{"Altitude 2" 1)" & _
CArC13) & " & Cr10) & Min' & Chr(L3) & 8 CheC10) &t %
* #'enoved Colunns3™"
Shests.Add Afteri-Acrivasheet
Vith ActiveSheet. ListObjects. Add (SourceType:=0,
Sourca:="OLED; Provi der-Hicrosof L Hashup. 01e0b. 1
‘Data SourconSHorkbooks il ocarioneTablel", _
Destinavion:-Range("$AS1")) .QueryTable —.CommandType - ¥1Cudsq)
CommarcText = Array("SELECT * FROW [Table 1]°)
Rownbers = False
FiTlacjacentrormulas = False
PreserveFormating = True
Refreshonkileopen = False
el o R

images/00850.jpeg
S>ub CreatePowerQuery()

ActiveWorkbook.Queries.Add Name:="Table 1", _
Formula:="let" & Chr(13) & "" & Chr(10)
" Source = Web.Page(Web.Contents(" & _
"""http://www.flightstats.com/go/FlightStatus/" & _
“flightStatusByFlightPositionDetails.do?id=" & _
"562694389&a1ir1ineCode=AA&f1ightNumber=5370""))."

images/00853.jpeg
Sub RefreshPowerQuery()
ActiveWorkbook.RefreshAll
End Sub

images/00852.jpeg
«RetreshStyle = xiInsertDeleteCells
.SavePassword = False
.SaveData = True
.AdjustColumniidth = True
RefreshPeriod = 0
.PreserveColumnlInfo = Fals:
.Listobject .DisplayName
Refresh BackgroundQuery
End With
Selection.listObject .QueryTanle.Refresh BackgroundQuery:-False
End Sub

‘Tabl
alse

1

images/00848.jpeg
SRl BRarabeanbodratd.

Din SG As SearklineGrov

Din SL As Sparkline

Din KSD As Worksneet ' Data worksheet
Din KSL As Vorksaeet ' Dashboard

on Crror Resume Next
Application.bisslaylerts = False
Horksheets ("Dashboard”) .Delate
on Error GoTo 0

Set WD - Worksheets ("Data")
Set WS = ActiveWorkbook.Worksheets. Add
H5L.Nane - “Dashboard”

* Set up the dashboard as alternating cells for the sparkline and then Blank
For ¢ - 1To 11 Sten 2

uSL.CelTs(1, ©).Columiidth - 15

uSLCelTa(1, ¢ + 1).Columidideh = 0.6
Next ¢
For =1 To 45 Sten 2

uSL.Calls(r, 1).RowHeight = 36

WSL.CelTa(r + 1, 1).Roueigh
Next v

NextRow
Nextol

1
1

Finalhaw ~ WSD.Ce1s Rows . Courc, 13, Fnd G TUp) . Raw

For 1 = 4 To Finalaow
ThisStore = WSD.Cells(i, 1).Value & " *
Format (WsD.CelTs (i, 13), *10.0%;-0.0%;0%")
ThisSource ~ "Datald” & | & "V & 1§
Finalval - WSD.Cel15(i, 19)

Set SG - WSL.Cells (NextRaw, NextCol). SparklineCroups . Ade(_
Type: X1 SparkColumn,
Sourcebata:=Thissource)

5G.Axes. Horizortal Axis Visible = True
With SC.Axes.Vertical
_MinScaleType - xISparkscalecuston
_Maxsealelyse = xIsearkscaleCuston
Custorinscalevalue - -0.05
CustonbaxscaleValus = 0.15
End Hith

* K11 columns green
56.5erfesColor.Calor = RGB(O, 176, 80)
* Megative colums red

S Poiwts. Reaetive Visikile = Tiues

images/00847.jpeg
NextCol = NextCol + 2
If NextCol > 11 Then
NextCol = 1

NextRow = NextRow + 2
End If

images/00849.jpeg
RGB(255, 0, O)

5G.Points.Negative.Color.Color

' Add a label

With WSL.Cel1s(NextRow, NextCol)
.value = Thisstore
.Horizontalalignment = x1center
.Verticalalignment = x1Top
.Font.Size = 8
.WrapText = True

End With

* Color the cell Tight red for negative, Tight green for positive
With WSL.Cells(NextRow, NextCol).Interior
If FinalVal <= 0 Then
.Calor = 255
.TintAndShade - 0.9
Else
.Color = RGB(L97, 247, 224)
.TintAndshade = 0.7
End If
End With

NextCol = NextCol + 2
If NextCol > 11 Then

NextCol = 1
NextRow = NextRow + 2
Fnd TF
Next i

crd Sub

images/00844.jpeg
" All columns green
SG.SeriesColor.Color = RGB(0, 176, 80)

' Negative columns red
SG.Points.Negative.Visible = True
SG.Points.Negative.Color.Color = RGB(255, 0, 0)

images/00843.jpeg
5G.Axes.Horizontal.Ax1s.Visible = True

With SG.Axes.Vertical
MinScaleType = x1SparkScaleCustom
.MaxScaleType = x1SparkScaleCustom
.CustomMinScalevValue = -0.05
.CustomMaxScaleValue = 0.15

End With

images/00846.jpeg
Finalval = W5D.Cells(y, 13)
' Color the cell Tight red for negative, light green for positive
With WSL.Cells(NextRow, NextCol).Interior
If FinalVal <= 0 Then
-Color = RGB(25S, 0, O
_TintAndShade = 0.9
Else
-Color = RGB(197, 247, 224)
.TintAndshade - 0.7
End IF
Frd With

images/00845.jpeg
ThisStore = WSD.Cells(1, 1).Value & © = &
Format (WSD.Cel1s(i, 13), "+0.0%;-0.0%;0%"
' Add a label
With WSL.Ce1ls(NextRow, NextCol)
.Value = ThisStore
.HorizontalAlignment = x1Center
.VerticalAlignment = x1Top
.Font.Size = 8
WrapText = True
End With

images/00840.jpeg
"'Show losses as red
With SG.Points.Negative
.Visible = True
.Color.Color = 255
End With

images/00842.jpeg
ThisSource = DatalB” &1 & S &

Set SG = WSL.Cells(NextRow, NextCol).SparklineGroups.Add(_
Type:=x1SparkColumn, _

SourceData:=lhisSource)

images/00841.jpeg
~ el up the dashuoard as alternating cells for the sparkiine and then blank
For ¢ = 1 To 11 Step 2

WSL.CeT1s(1, ¢ .ColurnMticth = 15

WSL.Cel1s5(1, ¢ + 1).Columidth = 0.5

Next ¢

For r = 1 To 45 Step 2

WSL.CelTs(r, 1).Rowlieight = 35

WSL.Cells(r + 1, 1).RowHeignt = 3

G

images/00837.jpeg
With 5G.Points

.Lowpoint.Color.Color = RGB(255, 0, 0) ' red
_Highpoint.Color.Color = RGB(51, 204, 77) ' green
.Firstpoint.Color.Color = RGB(0, 0, 255) ' blue
.Lastpoint.Color.Color = RGB(0, 0, 255) ' blue
.Negative.Color.Color = RGB(127, 0, 0) ' pink
.Markers.Color.Color = RGB(0, 0, 0) ' black

' Choose Which points to Show
.Highpoint.Visible = True

.Lowpoint.Visible = True

.Firstpoint.Visible = True

.Lowpoint.Visible = True

.Negative.Visible = False

.Markers.Visible = False

End With

images/00836.jpeg
With 5G.Points
-Markers.Color.Color = RGB(0, 0, 0) ' black
.Markers.Visible = True

End With

images/00839.jpeg
* Show all points as green
SG. SeriesColor Color = 5287936

images/00838.jpeg
Set 5C = Range('B2:B3").5parklineCGroups.Add(_
Type :=x1SparkColumnStacked100, _
SourceDat: AD3™)

images/00833.jpeg

images/00832.jpeg
-ThemeColor = xlThemeColorAccent6
TintAndShade = 0 4

images/00835.jpeg

images/00834.jpeg
Set AF = Application.WorksheetFunction

MyMax = AF.Max(Range (" 16"))

MyMin = AF.Min(Range(" B16™))

LabelStr = MyMax & vbLf & vbLf & vbLf & vbLf & MyMin

With SG.Axes.Vertical
.MinScaleType = x1SparkScaleCustom
.MaxScaleType = x1SparkScaleCustom
.CustomMinScalevalue = MyMin
.CustomMaxScalevalue = MyMax

End With

With Range("D2")
.WrapText = True
.Font.Size = 8
.HorizontalAlignment = x1Right
.VerticalAlignment = x1Top
.Value = Labelstr
.RowHeight = 56.25

End With

images/00831.jpeg
-Pattern = xI5ol1d
PatternColorIndex = x1Automatic
ThemeColor = x1ThemeColorAccent6
.TintAndShade = 0.799981688894314
PatternTintAndShade = 0

images/00830.jpeg
X 1ThemeColorAccent3
x1ThemeColorAccent4
x1ThemeColorAccents5
v1ThemeColorAccent6

images/00829.jpeg
X 1ThemeColorDarkl
x1ThemeColorLightl
x1ThemeCoTlorDark2
x1ThemeColorLight2
x1ThemeColorAccentl
v1ThemeColorAccent?

images/00826.jpeg
PR = WAL GRL IREL. B, ST PTG 0L G - LD
WSD.Cul15(2, 4).Resize(FinalRow - 1, 3).Nane - “MyData”

sL.Selact.
" set up headings
With WSL.Range(51:01")
“value = AFray(2015, 2016, 2017)
HorizancalAligrmens = x1Center
Style - "Ticle"
_Columbvidth = 39
-offset(1, 0).Rowleight = 100
Erd With

Set SG = Wl Range ("62:D2").5parkl ineGroups .Add(_
Typa:=xISparkLine, _
Sourcebata;

Set SL - 56.Tten(1)

et i = Appl ication. korksheetFunction
AT1Min = AF Nin(WSD Range("D2:F" & FinalRom)]
Al1ax = AF.Max (WSD.Range("D2:F" & FinalRom))
ATlirin = Inc(Al1Min)

AlTMax = Tnc(A1TMax + 0.9)

* Ao autonatic axis scale, but a1l three of them the sane
With SC.Axes Vertical

-inscaleTyps = XIsparkscaleCuston

VaxScaleType — x1Sparksealecuston

_CustontlinScalavalue - AlINin

_CustontiaxScalevalue - AlNzx
Erd With

" Add tho Tabels to shou mininun and Taxinum
with wsL.RangeC"Az")
Value = AlIMax & VBLF & vbLF & VLY & vBLF _
& VDLF & VOLF & VELT & vbLF & A11Min
ForizontalAligment - x1Right
VerticalaTignent = x1Top
Fant.Size = §
Font.0old = Trus
_WrapText = True
Erd With

" Put the Final value an the right
FinaTval = Round(WSD. CeT1s (Rows Count , 63 End(x1UB) . Value, 0]
Rg = Alllax - A1Min

RaTenth - Ry / 10

Frontop = A1TMax = Finalval

FronTop = RoundCFromTop / RaTenth. G} = 1

images/00825.jpeg
Sub SP500Macro()

' SP500 Macro

Dim SG As SparklineGroup

Dim SL As Sparkline

Dim WSD As Worksheet ' Data worksheet
Dim WSL As Worksheet ' Dashboard

On Error Resume Next
Application.DisplayAlerts = False
Worksheets("Dashboard") .Delete

on Error GoTo 0

Set WSD = Worksheets("Data")
Set WSL = ActiveWorkbook.Worksheets.Add
WSIL Name = "Dashboard"

images/00828.jpeg

images/00827.jpeg
1T FromTop < 0 Then FromTop = 0O

Select Case FromTop
Case 0

RtLabel = Finalval
Case Is > 0

RtLabel = Application.WorksheetFunction. _

Rept(vbLf, FromTop) & Finalval
End Select

With WSL.Range("E2")
.Value = RtLabel
.HorizontalATlignment = x1Left
.VerticalAlignment = x1Top
.Font.Size = 8
.Font.Bold = True

End With
cnd Sub

images/00822.jpeg
Dim SG as SparkliineGroup
Set SG = WSL.Range("B2:D2").SparklineGroups.Add(_
Type:=x1SparkLine, _

& FinalRow)

images/00821.jpeg
With WSL.Range("B1:D1")
.Value = array(2012,2013,2014)
.HorizontalATignment = xT1Center
.Style = "Title"
.ColumnWidth = 39
.0ffset(1, 0).RowHeight = 100
End With

images/00824.jpeg
Set AF = Application.WorksheetFunction
AT1Min = AF.Min(WSD.Range("D2:F" & FinalRow))
Al1Max = AF.Max(WSD.Range("D2:F" & FinalRow))
Al1TMin = Int(A11Min)
AllMax = Int(Al1Max + 0.9)
With SG.Axes.Vertical
.MinScaleType = x1SparkScaleCustom
.MaxScaleType = x1SparkScaleCustom

.CustomMinScaleValue = A11Min
.CustomMaxScaleValue = Al1Max
End With

images/00823.jpeg
~ Allow automatic axis scale, but all three of them the same
With SG.Axes.Vertical

_MinScaleType = x1SparkScaleGroup

_MaxScaleType = x1SparkScaleGroup

End With

images/00820.jpeg

images/00819.jpeg
Sub NumberFormat()
With Range("EL:G26")
.FormatCondi tions.Delete
.FormatConditions.Add Type:=x1CellValue, Operator:=xlGreater, _
Formulal:="=9999999"
.FormatConditions(1) .Numberformat = "S#,##0,
.FormatConditions.Add Type:=x1CellValue, Operator:=x1Greater,
Formulal: 199999
FormatCanditions(2) .NumherFormat = "$#,##0.0,
FormatConditions.Add Type:=xICellValue, Operator:
Formulal:="=399"
.FormatConditions(3).NurberFormat =
£nd With
End Sub

IGreater,

#0,K"

images/00818.jpeg
Sub HighlightWnholeRow()
With Range("D2:F15")
Select
.FormatConditions.Delete
.FormatConditions.Add Type:=x1Expression, _
Formulal F2=MAX(F2:F15)"
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With
Fnd Sub

images/00815.jpeg
Sub FormatDateslLastWeek()
With Selection
.FormatConditions.Delete
' DateOperator choices include x1Vesterday, x1Today, xITomorron.
' xllastWeek, x1ThisWeek, xINextWeek, x1last7Days
" xllastéenth, x1ThisMonth, xTNextMonth,
-FormatConditions.Add Type:=x1TimePeriod, _
DateGperator:-x1lastWeek
.FormatConditions(1) . Interior.Color = RGE(25S, 0, 0)
End With
End Sub

images/00814.jpeg
sub FormatContainsA()
With Selection
_FormatConditions.Delete
_FormatConditions.Add Type:=xITextString, String
TextOperator:=x1Contains
' other choices: xlBeginsWith, x1DoesNotContain, x1EndsWith
.FormatConditions(1).Interior.Color = RCB(255, 0, 0)
End With
Frd Sub

"

images/00817.jpeg
Sub HighlightFirstUnique()
With Range("A1:A15")
-Select
.FormatConditions.Delete
.FormatConditions.Add Type:=x1Expression, _
Formulal: COUNTIF(A$1:A1,A1)=1"
.FormatConditions(1) .Interior.Color = RGB(255, 0, 0)
End With
Fnd Sub

images/00816.jpeg
.FormatConditions.Add Type:=xIBlanksCondition
.FormatConditions.Add Type:=x1ErrorsCondition
FormatConditions.Add Type:=x1NoBlanksConditior
.FormatConditions.Add Typ¢

x1NoErrorsCondition

images/00811.jpeg
Sub FormatToplOItems()

With Selection
.FormatConditions.Delete
.FormatConditions.AddTop10
.FormatConditions(1).TopBottom = x1Top10Top
.FormatConditions(1).Rank = 10
.FormatConditions(1).Percent = False
.FormatConditions(1).Interior.Color = RGB(255, 0, O
End With

End Sub

Sub FormatBottomSItems()

With Selection
.FormatConditions.Delete
.FormatConditions.AddTop10
.FormatConditions(1).TopBottom = x1Topl0Bottom
.FormatConditions(1).Rank = 5
.FormatConditions(1).Percent = False
.FormatConditions(1).Interior.Color = RGB(255, 0, O)

End With

End Sub

Sub FormatTopl2Percent()

With Selection
.FormatConditions.Delete
.FormatConditions .AddTop10
.FormatConditions(1).TopBottom = x1Top10Top
.FormatConditions(1).Rank = 12
-FormatConditions(1).Percent = True
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

Fnd Sub

images/00810.jpeg
Sub FormatAboveAverage()

With Selection
.FormatConditions.Delete
.FormatConditions .AddAboveAverage
.FormatConditions(1).AboveBelow = x1AboveAverage
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With

End Sub

Sub FormatBelowAverage()

With Selection
.FormatConditions.Delete
.FormatConditions.AddAboveAverage
.FormatConditions(1).AboveBelow = x1BelowAverage
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With
Fnd Sub

images/00813.jpeg
Sub FormatBetweenl0And20()

with Selection
.FormatConditions.Delete
_FormatConditions.Add Type

Formulal:="-10", Formula2:="-20"
.FormatCongitions (1) . Interior.Color = RGB(25S5, 0,
fnd with
End Sub

Sub FormatLessThan15()
With Selection
.FormatConditions.Delete

.FormatConditions.Add Type:=x1CellValue, Operator:

Formulal 5
.FormatConditions (1) . Interior.Color = RGB(255, 0,
End With
End <ub

ICel1Value, Operator::

=x1Between, _

03

=xXlLess, _

0)

images/00812.jpeg
Sub FormatDuplicate()

With Selection
.FormatConditions.Delete
.FormatConditions.AddUniqueValues
.FormatConditions(1) .DupeUnique = x1Duplicate
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Sub FormatUnique()

With Selection
.FormatConditions.Delete
.FormatConditions.AddUniquevalues
.FormatConditions(1).DupeUnique = x1Unique
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With

End Sub

Sub HighlightFirstUnique()

With Range("E2:E16")
.Select
.FormatConditions.Delete
.FormatConditions.Add Type:=x1Expression, _
Formulal:="=COUNTIF(E$2:E2,E2)=1"
.FormatConditions(1).Interior.Color = RGB(255, 0, O)

End With

Fnd Sub

images/00808.jpeg
Sub AddTwoDataBars()

" passing values in green, failing in red

Dim DB As Databar

Dim DB2 As Databar

With Range("A1:D10")
.FormatConditions.Delete
' Add a Light Green Data
Set D8 = .FormatConditions.AddDatabar()

DB.BarColor.Color = RGB(O, 255, 0)
DB.BarColor.TintAndShads = 0.25
' Add a Red Data Bar
Set D32 = .FormatConditions.AddDatabar()
DB2.BarColor.Color = RG3(255, 0, 0)
! Vake the green bars only
.Select ' Requirad to make the next Tine work
.FormatConditions(1).Formula = "=TF(A1>90,True False)"
DB.Formula = "~LF(A1>80, Irue, False)
DB.MinPoint.Modify newtype:-x1Conditionformula, Newvalue:
DB.MaxPoint.Modify newtype:-x1Conditionvaluefornula, _
Newvalue:="100"
DB2.MinPoint.Modify newtype:=x1ConditionFormula, Newvalue:="60"
DB2.MaxPoint.Modify newtyoe:-x1ConditionvalueFormula, _
Newvalue:="100"
End With

End <ub

images/00807.jpeg
Sub TrickyFormatting()
* nark the bad cells
Dim ICS As IconSetCondition
Dim FC As FormatCondition
With Range("A1:09")
-FormatConditions.Delete
Set ICS .FormatConditions.AddIconSetCondition()
End With
With ICS
.ShowIconOnly = False
.IconSet = ActiveWorkbook.IconSets(x13Symbols2)
End With
With ICS.IconCriteria(l)
.Type = x1Conditionvalue
.value = 80
.Operator = xIGreater
.Icon = x1IconNoCellIcon
End With
' The threshold for this icon doesn't really matter,
* but you have to make sure that it does not overlap the 3rd icor
With ICS.IconCriteria(2)
.Type = x1Conditionvalue
.value = 66
.Operator = xIGreater
.Icon = x1IconNoCellIcon
End With
End Sub

images/00809.jpeg
Sub AddCrazylcons()

With Range("A1:C10")
.select ' The .Formula lines below require .Select here
_FormatConditions.Delete

' First icon set
.FormatConditions.AddIconSetCondition
.FormatConditions(L).IconSet = ActiveWorkbook.IconSets(x13Flag
.FormatConditions(1).Formula = "=IF(A1<5,TRUE,FALSE)"

' Next icon set
.FormatConditions .AddIconSetCondition
.FormatConditions(2).Iconset

ActiveWorkbook. IconSets (x13ArrowsGray)
.FormatConditions(2) .Formula F(A1<12, TRUE, FALSE)"

' Next icon set

.FormatConditions .AddIconSetCondition
.FormatConditions(3).IconSet = _

ActiveWorkbouk. IconSets (x13Symbols2)
-FormatConditions(3) .Formula = "=IF(Al<2?2, TRUE, FALSE)"

" Next icon set

.FormatConditions.AddIconSetCondition
.FormatConditions(4).IconSet = ActiveWorkbook.LconSets(x14CRV)
-FormatConditions(4) .Formula = "=IF(A1<27,TRUE,FALSE)"

' Next icon set
.FormatCongitions.AddIconsetCondition
-FormatConditions(5).IconSet = ActiveWorkbook.IconSets(x15CRV)
End With

End Sub

images/00804.jpeg
Sub Add3CaolorscaleQ
Dim Cs As Colerscale

With Range("A1:A10")

.FormatConditions.Delete

' Add the Color Scale as a 3-color scale

Set (S = .FormatConcitions.AddColorscale(ColorScaleType:=3)
End With

"' Format the first color as light red
With CS.ColorScaleCriteria(l)
.Type = x1ConditionValuePercent
.Value = 30
.FormatColor.Color = RGB(255, 0, 0)
.FormatColor. TintAndShade = 0.25
End With

"' Format the second color as green at 50%
With CS.ColorScaleCriteria(2)
.Type = x1Condi tionvaluepercent
.value = 50
.FormatColor.Color = RGB(O, 255, 0)
.FormatColor. TintAndShade = 0
End With

' Format the third color as dark blue

With €S.ColorScaleCriteria(3)
.Type = x1Condi tionValuePercent
.Value - 80
.FormatColor.Color = RGB(O, 0, 255)
.FormatColor.TintAndshade = -0.25

End with

Frnd Sub

images/00803.jpeg
>ub DataBar3()
' Add a Data bar
" Show solid bars
" Allow negative bars
" hide the numbers, show only the data bars
Dim DB As Databar
With Range("E4:E11")
.FornatConditions.Delete
' Add the data bars
Set DR = .FormatConditions.AddDatabar()
End With

With DB.BarColor
.Color = RCB(D, 0, 255)
.TintAndshade = 0.1
End With
' Hide the numoers
DB.Showvalue = False

DB.BarFi11Type = x1DataBarFillSolid
DB.NegativeBarFormat.ColorType = x|DataBarColor
With DB.NegativeBarFormat.Color

.Color = 255
.TintAndShade - 0
End With

' Allow negatives
DB.AxisPosition = x1DataBarAxisAutomatic
' Negative border color is different
DB.NegativeBarFormat.BorderColorType = x1DataBarColor
With DB.NegativeBarFormat.BordarColor

-Color = RG3(127, 127, O)

.TintAndShade - 0
End With

End &5l

images/00806.jpeg
- The first 1con always starts at 0

' Settings for the second icon - start at 50%
With ICS.IconCriteria(2)
.Type = x1ConditionValuePercent
.value = 50
.Operator = x1GreaterEqual
End With
With ICS.IconCriteria(3)
.Type = x1ConditionValuePercent
.value = 60
.Operator = x1GreaterEqual
End With
With ICS.IconCriteria(4)
.Type = x1ConditionValuePercent
.value = 80
.Operator = x1GreaterEqual
End With
With ICS.IconCriteria(s)
.Type = x1ConditionValuePercent
.value = 90
.Operator = x1GreaterEqual
End with

images/00805.jpeg
Dim ICS As IconSetCondition
With Range("A1:C10")

.FormatConditions.Delete

Set ICS = .FormatConditions.AddIconSetCondition()
End With

' Global settings for the icon set

With ICS
-ReverseOrder = False
.ShowIconOnly = False

.IconSet = ActiveWorkbook.IconSets(x15CRV)
End With

images/00800.jpeg
DR _AxI1sPosT1tion = ¥ lDDataBarAxisAutomatic

images/00802.jpeg
Dim DB As Databar
With Range("C1:C11")
.FormatConditions.Delete
" Add the data bars
Set DB = .FormatConditions.Addbatabar ()
End With
' Ser the Touer Tinit
DB.MinPoint Hodi fy newtype:
0B.MaxPoint Hodi fy newtype:

=x1Condi tienFormula, NedValve:="-600"
Tcondi tionvalueFormula, Newvalue

00"

" Change the data bar to Green

With DB.BarColor

-Color - RGB(O, 255, 0)
TintAndshade = -0.15

End With

witn D3
* Use a gradient
-Barfi17Type - x1DataBarfil1Gradiens

Left to Right for direction of bars
Direction = xILTR
" Assign 2 di Fferent color to negative bars
_Negat iveRarFormat .ColorType = xIDataiarColor
" Use a border around the bars
_BarBorder. Type = x1DatabarBordersolid
" Assign a different border color to negative
NegativeBarFormat .BordercolorType = x1DatadarSaneAsPosi tive
" A1 borders are solid black
With _BarBorder.Color
~Color = RGBCO, 0, 0)
End With
* axis where it naturally vould fall, in black
_AxisPosition = xIDataBarAxi shutomatic
With .AxisColor

.Color -~ ©
_TintAndshade - 0
End With

" Negative bars in red
With .NegativeRarForma. Colar
.Color = 255
Tintandshade
End With
" Negative borders in red
End With

S B

images/00801.jpeg
Sub DataBarz()
' Add a Data bar
" Include negative data bars

' Control the min and max point

cover.jpeg
BB Microsoft

Microsoft
Excel 2019

VBA and Macros

images/00002.jpeg

images/00001.jpeg
= Microsoft

images/00004.jpeg

images/00003.jpeg

images/00006.jpeg
e

Steticn % [S) |t b7 Eririn
B B £ & vercos

Vo s A Fat COM | et g
e Macio ety s A s At foey

images/00005.jpeg

images/00008.jpeg
SECURITY WARNING Macros have been disabled,

Enable Content

images/00007.jpeg
Microsoft Offce Trusted Location e o L2

‘Warning: This focation will be treated as a trusted source for opening file. I
You change or add a location, make sure that the new location i secure.
Bath:

CAUsers\BilnDocuments ExcelMacros

[9] subfolders of this location are also trusted
Description:
Folder to store trusted macros].

Date and Time Created: 4/6/2015 540 AM.

(o] Cana]

images/00009.jpeg
Record Macro

Macro name:
Macrol]

Shorteut ke
e

Store macro in:
s Workbook

Description:

oK

|

images/00495.jpeg
Public cisAppEvent As New cApptvents

Sub TrapAppEvent()
Set myAppEvent.x1App = Application
tnd Sub

images/00494.jpeg
Private Sub x1App_Newlorkbook(3yval Wo As Workbook)
Dim wks As Worksheet
With Wb
For Each wks In .Worksheet:
wks.Pagesetup. LeftFooter = "Created by:
wks. PageSetup. RightFooter = Now
Next wks
End With
Fnd Sub

& Application.UserName

images/00497.jpeg
Private Sub xlChart_SeforeDoubleClick(Byval ElementlD As Long, _
ByVal Argl As Long, ByVal Arg2 As Long, Cancel As Beolean)
Cancel = True

cod Cub

images/00496.jpeg

images/00491.jpeg
Sub MySheets ()
Dim myArray() As String
Dim myCount As Integer, NumShts As Integer

NumShts = ActiveWorkbook.Worksheets.Count

'Size the array
ReDim myArray(1 To NumShts)

For myCount = 1 To NumShts

myArray(myCount) = ActiveWorkbook.Sheets(myCount).Name
Next myCount

cnd Sub

images/00490.jpeg
Sub QuickkillAveragerast()

'Writes the data to the sheet once

"Also more flexible with dynamic range

Dim myArray As Variant, MyAverage As Variant

Dim myCount As Long, LastRow As Long

Dim wksData As Worksheet

Set wksData = Worksheets("EveryOther")

With wksData
LastRow = .Range("A" & .Rows.Count) .End(x1Up) .Row
myArray = .Range("B2:C" & LastRow)

ReDim MyAverage(UBound(myArray))
For myCount = LBound(myArray) To UBound(myArray)
MyAverage(myCount) = _

WorksheetFunction.Average(myArray(myCount, 1), _

myArray(myCount, 2))
Next myCount
.Range("E2") . Resize(UBound (MyAverage)) .Value = _

Application.Transpose(MyAverage)

End With

End Sub

images/00493.jpeg
2D FasSANAITayL)
Dim myArray() As Variant
Dim myRegion As String

nyArray = Range("mySalesData") 'named range containing all the data
nyRegion = InputBox(“Enter Region - Central, East, West")

MsgBox myRegion & " Sales are: " & Format(RegionSales(uyArray, _
myRegion), "'5#,#00.00")

End Sub

Function RegionSales(ByRef BigArray As Variant, sRegion As String) As Lonc
Dim myCount As Integer
Regionsales = 0
For myCount = LBound(BigArray) To Uound(BigArray)
"The regions are 1isted in colum 1 of the data,
‘hence the st column of the array
If Bighrray(myCount, 1) = sRegion Then
'The data to sum is the Eth colurn in the data
Regionsales = BigArray(myCount, &) + Regionsales
tnd Lf
Next myCount
Sl pha el

images/00492.jpeg
Sub XLF1les()

Dim FName As String
Dim arNames() As String
Dim myCount As Integer

FName = Dir("C:\Excel VBA 2019 by Jelen & Syrstad*.x1s*")
Do Until FName = "
myCount = myCount + 1
ReDim Preserve arNames(1 To myCount)
arNames (myCount) = FName
FName = Dir
Loop
cnd Sub

images/00499.jpeg
Private Sub xlChart_MouseDown(ByVal Button As Long, _
Byval Shift As Long, ByVal x As Long, ByVal y As Long)
If Button = 1 Then 'left mouse button
x1Chart.Axes(x1Value) .MaximumScale = _
x1Chart.Axes(x1Value) .MaximumScale - 50
End If

If Button = 2 Then 'right mouse button
x1Chart.Axes(x1Value) .MaximumScale = _
x1Chart.Axes(x1Value) .MaximumScale + 50
End If
End Sub

images/00498.jpeg
Private Sub xlChart_BeforeRightClick(Cancel As Boolean)
Cancel = True
End Sub

images/00484.jpeg
Option Base 1
Sub Columnlleaders ()

Din myArray As Variant 'Variants can hold any type of data, including arrays
Din myCount As Integer

"Fi11 the variant with array data
mvArray = Array("Name”, "Address”, "Phone”, "Email")

"UnToad the array onto a sheet by placing it in a range of the same size

f not using Option Base 1, then add 1 to LBound

Worksheets("Sheet2") Range("A1") .Resize(l Bound(myArray), _
UBound(myArray)) .Value = myArray

End With

Elr s

images/00483.jpeg
Dim myArray(l to 10)
Dim BigArray(100 to 200)

images/00486.jpeg
Sub EveryOtherRow()

"there are 16 rows of data, but we are only filling every other rox
"half the table size, so our array needs only 8 rows

Dim myArray(1 To 8, 1 To 2

Dim 1 As Integer, j As Integer, myCount As Integer

"Fi11 the array with every other row
For i=1To8
For j=1To2
"i%2 directs the program to retrieve every other row
myArray(i, §) = Worksheets("Sheet1").Cells(i # 2, § + 1).Valus
Next j
Next 1

"Calculate contents of array and transfer results to sheet

For myCount - LBound(myArray) To UBound(yArray)
Worksheets("Sheetl").CellsmyCount * 2, 4).Value =
WorksheetFunction. Sun(uyArrayCnyCount, 1), myArray(myCount, 2))

Next myCount

Fod Sk

images/00485.jpeg
Dim myArray As Variant
nyArray = Worksheets("Sheet1").Range("B2:C17")

images/00480.jpeg
Dim myAppEvent As New cl_AppEvents
Sub InitializeAppEvent()

Set myAppEvent.AppEvent = Applicatior
End Sub

images/00482.jpeg
Option Base 1
Sub MyFirstArray)
Dim myArray(2)

images/00481.jpeg
myArray(0)
myArray (1)
avArray (2)

images/00488.jpeg
myArray = Worksheets(sheetl’).Range('B2:ClZ2").Value
MsgBox "Maximum Integer is: " & WorksheetFunction.MaxCuyArray)

End Sub

images/00487.jpeg
Sub QuickF111Max()
Dim myArray As Variant

images/00489.jpeg
Sub QuickFil lAverage()
Dim myArray As Varian
Dim myCount As Integer

"FI1 the array

myArray = Worksheets("Sheet1").Range("B2:C12"

"Average the data in the array just as it is placed on the sheet

For myCount = LEound(myArray) To UBound(nyArray)

"calculate the average and place the result in column F
Worksheets("shectl ™). Cells(myCount + 1, 5).Value =
WorksheetFunction.Average(nyArray (myCount, 1), myArray(myCount, 2))

Next myCount

Cod il

images/00473.jpeg
Wol.Range("AAc:AA™ & Finalstore).Formulaklll - _
"=ISNACVLOOKUP(RC[-1], th1Storelookup[#411],1,False))”

"Loop throuh the Tist of today's stores. If they are shown
" as missing, then add them at the bottom of the Sterelist
For i = 2 To FinalStore
TF WSD.Cells(d, 27).Value = True Then
‘get the next available ro in the table
Set NewRow - tblStores. ListRows.Add
ThisStore = Cells(i, 26).Value
With NewRow.Range
-Columns(1) = ThisStore
-Columns(2) = _
InpuzBox(Prompt
& ThisStare, Title
End With
End If
Next 1

Enter name of store
New Store Faund")

"Delete the tenporary Tist of stores in 7 & AA
WSD.Range("ZL:AA" & FinalStore).Clear

*Use VLODKUP to add StoreName Lo column B of the data set
WsD.Range("BL") . EntireColumn. Insert

WSD. Range("B1" "StoreNane”

WSD.Ranga("B2:B" & FinalRow).FormulaR1Cl = _
"=VLOUKUP(KCL, tblStoreLookup[#A11],2,False)”

*Change Formulas to Values
WSD.Range("B2:B" & FinalRon].Value - Rance("B2:B" & FinalRow).vValue

"Fix columnwidths
WSD.Range("A1") . CurrentRegion. Frti raColumn. AutoFit

"Release variables to free system memory
Set NewRow = Nothing

Set tblStores = Nothing

Set WB - Nothing

Set WSD = Nothing

Set WSk = Nothing

Erd Cyl

images/00472.jpeg
Sub ImportDatal)

'This routine imports sales.csv to the data sheet
'Check to see whether any stores in column A are new
‘If any are new, then add them to the StorelList table
Dim WSD As Worksheet, WSM As Worksheet

Dim WE As Workbook

Dim th1Stores As ListObject

Dim NewRow As ListRow

Set W = Thishorkbook
"Data is stored on the Data worksheet

Set WSD = WB.Workshests("Data")

'StoreList is stored on a menu worksheet

Set WSM = WB.Worksheests("Menu")

Set th1Stores = WSM.ListObjects(" th1StoreLookup”)

‘Open the file. This makes Lhe csv file active
Workbooks .Open Filename:="C:\Sales.csv"

"Copy the data to WSD and close

ActiveWorkbook .Range("AL"). CurrentRegion. Copy _
Destination:=NSD.Range("A1")

ActiveWorkbook.Close SaveChanges:=False

‘Create a 1ist of unique stores from colunn A and place in Z
FinalRow = WSD.Cel1s(WSD. Rows. Count, 1).End(x1Up).Row
WSD.Range("AL") .Resize(FinalRow, 1).AdvancedFilter _
Action:=x1FilterCopy, CopyToRange:=WSD.Range("Z1"), Unique:=True

‘For all the unique stores, see whether they are in the
'current store Tist

"ISNA returns True for missing store because the VLOOKUP will
*return an error

FinalStore - WSD.Range("Z" & WSD.Rows.Count) .End (x1Up) .Row
WSD.Range("AAL").Value = "There?'

images/00475.jpeg
Private Sub Worksheet_Change(ByVal Target As Range)
Application.EnableEvents = False
Range("A1").Value = Target.Value
Application.EnableEvents = True

End Sub

images/00474.jpeg
Private Sub Worksheet_BeroreRightClick(ByVal Target As Range, _

Cancel As Boolean)
Cancel = True
Fnd Sub

images/00471.jpeg
Function Nametxists(Byval FindName As String, _
Optional TargetBook As Workbook) As Beolean
If TargetBook Is Nothing Then
If ActiveWorkbook Is Nothing Then
NameExists = False
Exit Function
End If
Set TargetBook = ActiveWorkbook
End If

On Error Resume Next

NameExists = CBool(Len(TargetBook.\Names(FindName).Name) <> 0)
On Error GoTo O

EFnd Function

images/00470.jpeg

images/00477.jpeg
bl1c WithEvents myChartClass As Chart

images/00476.jpeg
Private Sub Worksheet_Change(ByVal Target As Range)
Dim ThisColumn As Integer
Dim UserInput As String, NewInput As String

ThisColum = Target.Colum
If ThisColumn < 3 Then
If Target.Count > 1 Then Exit Sub 'more than 1 cell selected
If Len(Target) = 1 Then Exit Sub 'only 1 character entered
UserInput = Target.Value
If IsNumeric(Userinput) Then
If UserInput > 1 Then
NewInput = Left(UserInput, Len(UserTnput) - 2) & ":" &
Right(UserInput, 2)

Application. EnableEvents = False
Target = NewInput
Application. EnablcEvents = Truc
End If
End Tf

End If

=4 <uh

images/00479.jpeg
Ibl1c Withkvents Apptvent

As Application

images/00478.jpeg
Dim myClassModule As New cl_ChartEvents
Sub InitializeChartQ
Set myClassModule.myChartClass = _

Worksheets (1) .ChartObjects(1).Chart
cnd Sub

images/00462.jpeg
Sub NoNames(ByRet Currentlop As >tring)
TopSeller = Worksheets("Variables").Range("A1").Value
If CurrentTop = TopSeller Then

MsgBox “Top Producer is " & TopSeller & " again."
Else

MsgBox “New Top Producer is " & CurrentTop
End If
End Sub

images/00461.jpeg

images/00464.jpeg
Numotsales = 5123
Names .Add Name

TotalSales", RefersTe

images/00463.jpeg
S>ub WithNames ()
If Evaluate("Current”) = Evaluate("Previous™ Then
MsgBox "Top Producer is " & Evaluate("Previous") & " again.'
Clse
MsgBox "New Top Producer is " & Evaluate("Current")
End If
Cod Sub

images/00460.jpeg
Names .Add Name:="Productlist™,

FFSET(Sheet?2! !AiZ 0.0.COUNTA(Sheet2!$A:SA))"

images/00469.jpeg

images/00466.jpeg

images/00465.jpeg

images/00468.jpeg
>ub NamedArray ()
Dim myArray(10, 5)
Dim i As Integer, j As Integer
"The following For loops fill the array myArray
For i = 0 To 10 'by default arrays start at 0O
For j=0To S
myArray (i, 3) =i + 3j
Next j
Next i
"The following Tine takes our array and gives it a name
Names.Add Name:="FirstArray", RefersTo:=myArray
End Sub

images/00467.jpeg
ActivesSheer L1srObhlects Add xlSrclange, Raage($ASS

., X1Yes).Name

images/00451.jpeg
Suo MultiplicationTable(l
* Build @ multiplication table using a single formula
Range("B1:M1"J.Value = Array(l, 2, 3, 4, 5, 5, 7, 8, 9, 10, 11, 12)
Range("B1:M1").Font.Bold = True
Range("B1:M1").Copy
Renge("A2:413").PasteSpecial Transpose:-True
Range("B2:M13").FormulaRCl =
Cells.EntireColumn. AutoFit
red Sub

images/00450.jpeg
Sub MixedReterencel)
ToralRow = Cells(Rows.Count, 1).Enc(x1Un).Row + 1
Cells(TotalRow, 1).Value = "Tozal"
Cells(TotalRow, 5).Resize(1, 3).FornularlCl =
Frnd Sub

"=SUN(R2C:R[-1]C)

images/00453.jpeg
Sub EnterArrayFormulas()

Cells(4, 6).FormulaArray = “=SUM((WEEKDAY(ROWCINDIRECT(" & _
"R[-31C[-1]& "":""&R[-2]1C[-1])), 3)=53 (DAY (ROW(INDIRECT(" & _
"(R[-3]C[-1]&"": ""@R[-2]C[-1])))=13)"

i ke

images/00452.jpeg
Sub Macrol()
ActiveCell.FormulaR1Cl = "=R[-5]C[-5]"
cnd Sub

images/00459.jpeg
Activehorkoook.Worksheets(Sheet7").Names("LocalOffice’).Comment =
B e R A S R A P

images/00458.jpeg

images/00455.jpeg
ActiveWorkbook.Names.Add Name:
RefersToR1C1: heet?2!R1C1:R6C6"

- SheetZiFruits”, _

images/00454.jpeg
ActivelWorkbook . Names Add Name:= Fruits | RefersioRflCli="=5Sheet? |R1C1:R6C6

images/00457.jpeg
ActiveWorkbook.Names.Add Name:="Citrus”, _

images/00456.jpeg
Worksheets ("Sheet2”
Refer<ToR1C1 heet? |R1C1:R6CE"

images/00440.jpeg
Sub ColorkruitRedBold()
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
For i = 2 To FinalRow
If Cells(i, 1).Value = "Fruit" Then
Cells(i, 1).Resize(1, 3).Font.Bold = True
Cells(i, 1).Resize(1, 3).Font.ColorIndex
End If
Next i

MsgBox "Fruit is now bold and red"
tnd Sub

"

images/00442.jpeg
Sub Multiplelt()
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row

For i = 2 To FinalRow
If Cells(i, 1).value = "Fruiz" Then
Cells(i, 1).Resize(1, 3).Font.ColorIndex
ElseIf Cells(i, 1).value = "Vegetable" Then
Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50
ElseIf Cells(i, 1).Value = "Herbs" Then
Cells(i, 1).Resize(1, 3).Font.ColorIndex
Else
' This must be a record in error
Cells(i, 1).Resize(1, 3).Interior.ColorIndex = 6

[
w

End If
Next i
MsgBox "Fruit is red / Veggies are green / Herbs are blue'

End Sub

images/00441.jpeg
Sub FruitRedVegGreen()
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row

For i = 2 To FinalRow
If Cells(i, 1).value = "Fruit" Then
Cells(i, 1).Resize(1, 3).Font.ColorIndex
Else
Cells(i, 1).Resize(1, 3).Font.ColorIndex
End If
Next i

MsgBox "Fruit is red / Veggies are green"
cnd Sub

50

images/00448.jpeg
Sub R1C1Style()
' Locate the FinalRow
FinalRow = Cells(Rows.Count, 2).End(x1Up).Row
' Enter the first formula
Range("D4:D" & FinalRow).FormulaR1Cl = "=RC[-1]*RC[-2]"'
Range("F4:F" & FinalRow).FormulaR1Cl
"=IF(RC[-1],ROUND(RC[-2]#R1C2,2),0)"
Range("G4:C" & FinalRow).FormulaR1Cl = "=RC[-1]+RC[-3]"
' Enter the Total Raw
Cells(FinalRow + 1, 1).value = "Total"
Cells(FinalRow + 1, 6).FormulaR1Cl = "=SUM(R4C:R[-1]10)"
Fnd Sub

images/00447.jpeg
e e
Finalhon - (e thons.Count, 1) £ndCA103) Ko

For 1= 2 To Sinathon
Thisclass - GallaC, 2 valus
TSPt = Ca1sCE, 3) Vol
ey - Cr 11803, 5 valie

Firse, Figure out IF e feen 12 on sele
select Case “hisroduce
Gass *Scradbarry”, “Laveues”, “Torstoes®
Suls = Toow
G E1ae
ens stlect

Figure oue the discoune
E1zef Triediess - “Fruie’ Tren
selace Gase Thisaey
e a5
Discnunt - 0
Discount - .15
£ selace
15l Tuisdlans = Mrla® Trem
EH1ac Cose Thisaty
e 1070 s

x5
nd select

El5eRf Triscless - “Vezotbles” Then

*Tnera 15 2 spacia’ cordicion for asparzau

12 Thispradce - “hoparsgun® Then
11 Tristiy < 20 Then
e

1M Thisdiy < 5 Ther

D scnine
Dhzcaume - 0,22
0 17 " 2 the preducs ssparsgen or moct

5 e prod o st
01, 9.aTke - Discne
3 276 “han

GG,). For.Bold - Trow
err

AanaeC o1 alue < Discoin

baggon “Discrcs have e 43

images/00449.jpeg
Range("D4

& FinalRow).Formula

images/00444.jpeg
Case "Strawberry”, "Blueberry”,
AdCode = 1

images/00443.jpeg
Sub SelectCase()
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row

For i = 2 To FinalRow
Select Case Cells(i, 1).Value
Case "Fruit"
Cells(i, 1).Resize(1, 3).Font.ColorIndex
Case "Vegetahle"
Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50
Case "Herbs"
Cells(i, 1).Resize(1, 3).Font.ColorIndex = 5
Case Else
Cells(i, 4).value = "Unexpected value!"
End Select
Next i

"
w

MsgBox “Fruit is red / Vecgies are green / Herbs are blue"
Fnd Sub

images/00446.jpeg
(ase 1s < 10
Discount = 0
Case Is > 100
Discount = 0.2
Case Else
Di<count = 0 10

images/00445.jpeg
(ase 1 to 20
Discount = 0.0

Case 21 to 100
Discount = 0.1

images/00431.jpeg
- Read a text tile, skipping the Total lines
Open "C:\Invoice.txt" For Input As #1
R=1
Do While Not EOF(1)
Line Input #1, Data
If Not Left (Data, 5) =
' Import this row
r=r+1
Cells(r, 1).Value = Data
End If
Loop
Close #1

"TOTAL" Then

images/00430.jpeg
Sub LoopUnt1 IDone()

Do
If Selection.value = "" Then Exit Do
ActiveCell.0ffset(1, 0).Range("Al").Select
Selection.Cut
ActiveCell.0ffset(-1, 1).Range("Al").Select
ActiveSheet.Paste
ActiveCell.0ffset(2, -1).Range("Al").Select
Selection.Cut
ActiveCell.0ffset(-2, 2).Range("Al").Select
ActiveSheet.Paste
ActiveCell.0ffset(l, -2).Range("AL1:A3").Select
Selection.EntireRow.Delete
ActiveCell.Select

Loop

cnd Sub

images/00437.jpeg
For Each cell 1n Range("Al").CurrentRegion.Resize(, 1)
If cell.value = "Total" Then
cell.Resize(1,8).Font.Bold = True
End If
Next cell

images/00436.jpeg
Sub Test()

Dim WSD as Worksheet

Dim MyCell as Range

Dim PT as PivotTable

Set WSD = ThisWorkbook.Worksheets("Data")

Set MyCell = WSD.Cel1s(Rows.Count, 1).End(x1Up).0ffset(1, 0)
Set PT = WSD.PivotTables(1)

images/00439.jpeg
For Each pt 1n ActiveSheet.PivotTables
pt.TableRange2.Clear
Next pt

images/00438.jpeg
For Each wb 1n Workbooks
If wb.Worksheets(1).Name = "Menu" Then
WBFound = True
WBName = wb.Name
Exit For
End If
Next wh

images/00433.jpeg
TotalSales = 0
Do
x = InputBox(_
Pronpt;="Enter Amount of Next Invoice. Enter O when done.”,
Type:=1)
TotalSales = TotalSales + x
Loop Until x = 0
MecBAY. *The voka] For vodevi 1% ¢ & Tocilsiles:

images/00432.jpeg
- Read a text file, skipping the Total Iines
Open "C:\Invoice.txt" For Input As #1
r=1
Do Until EOF(1)
Line Input #1, Data
If Not Left(Data, 5) = "TOTAL" Then
' Import this row
r=r+1
Cells(r, 1).value = Data
End If
Loop.
Cloce #1

images/00435.jpeg
- Read a text file, adding the amounts
Open "C:\Invoice.txt" For Input As #1
TotalSales = 0
While Not EOF(1)

Line Input #1, Data
TotalSales = TotalSales + Data
Wend
MsgBox "Total Sales=" & TotalSales
Close #1

images/00434.jpeg
 Ask Tor the amount of check received. Add zerc to convert to numeric.
AMTToAPPly = InputBox(“Enter Amount of Check™ 1 0
" Loop through the Tist of open invaices.
Apply the check Lo the oldest open invoices and Decrement AntTopply
NextRow = 2
Do While AwtToApnly > O
OpenAnt = Cells(NextRow, 3)
If Openint > AntToApaly Then
* apply total check to this invoice
CellsiNextRow, 4).Value = AmtToApply
AntToApply = 0
Else

Cells(NextRow, 4).Value = OpenAnt

AntToApply = AntToApply - Opendnt

End If

NextRow - NextRow + 1
Looo

images/00429.jpeg
Sub FixAllRecords()

Do
ActiveCell.0ffset(1, 0).Range("Al").Select
Selection.Cut
ActiveCell.0ffset(-1, 1).Range("Al").Select
ActiveSheet.Paste
ActiveCell.0ffset(2, -1).Range("Al").Select
Selection.Cut
ActiveCell.0ffset(-2, 2).Range("Al").Select
ActiveSheet.Paste
ActiveCell.0ffset(1, -2).Range("ALl:A3").Select
Selection.EntireRow.Delete
ActiveCell.Select

Loop

End Sub

images/00420.jpeg
to 10
Cells(i, i).value =
Next 1

For 1

images/00426.jpeg
~ Are there any special processing situations 1in the data’
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
ProblemFound = False
For i = 2 to FinalRow
If Cells(i, 6).Value > O Then
If cells(i, 5).Value = 0 Then
Cells(i, 6).Select

ProblemFound = True
Exit For
End If
End If
Next i
If ProblemFound Then
MsgBox "There is a problem at row " & i
Exit Sub
End If

images/00425.jpeg
~ Delete all rows where column C s the lInternal rep - 3554
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
For i = FinalRow to 2 Step -1
If Cells(i, 3).Value = "S54" Then
Rows (1) .Delete
End If
Mass 4

images/00428.jpeg
Sub FixOneRecord()

' Keyboard Shortcut: Ctrl+Shift+A
ActiveCell.0ffset(1, 0).Range("Al").Select
Selection.Cut
ActiveCell.0ffset(-1, 1).Range("Al").Select
ActiveSheet.Paste
ActiveCell.0ffset(2, -1).Range("Al").Select
Selection.Cut
ActiveCell.0ffset(-2, 2).Range("Al").Select
ActiveSheet.Paste
ActiveCell.0ffset(1, -2).Range("Al:A3").Select
Selection.EntireRow.Delete
ActiveCell.Select

Fnd Sub

images/00427.jpeg
* Loop through each row and column
' Add a checkerboard format
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
FinalCol = Cells(1, Columns.Count).End(x1ToLeft).Column
For I = 2 To FinalRow
' For even numbered rows, start in column 1
' For odd numbered rows, start in column 2
If I Mod 2 = 1 Then ' Divide I by 2 and keep remainder
StartCol = 1
Else
StartCol = 2
End If
For J = StartCol To FinalCol Step 2
Cells(I, J).Interior.ColorIndex = 35
Next J
Next T

images/00422.jpeg
FinalRow = Cells(Rows.Count, 1).End(xIUp).Row
For i = 2 to FinalRow
If Cells(i, 6).value > O Then
Cells(i, 8).value = "Service Revenue"
Cells(i, 1).Resize(l, 8).Interior.ColorIndex = 4
End If
Next 3

images/00421.jpeg
For 1 to 10

If Cells(i, 6).Value > 0 Then

Cells(i, 8).value = "Service Revenue"

Cells(i, 1).Resize(1, 8).Interior.ColorIndex = 4

End If
Next 3

images/00424.jpeg
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row

NextRow = FinalRow + §

Cells(NextRow-1, 1).Value = "Random Sample of Above Data"

For i - 2 to FinalRow Step 10
Cells(i, 1).Resize(1, &) .Copy Destination:=Cells(NextRow, 1)
NextRow = NextRow + 1

Next

images/00423.jpeg
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row

For i = 2 to FinalRow Step 2

Cells(i, 1).Resize(1, 7).Interior.ColorIndex = 35
Next 3

images/00419.jpeg
Worksheets(1).ListObjects("Tablel"”).ListColumns("Qty")_
.DataBodyRange.Select

images/00418.jpeg
sheets(l).ListObjects(lablel”)

.Range.Select

images/00891.jpeg
Sub WordEarlyBinding()

Dim wdApp As Word.Application

Dim wdDoc As Document

Set wdApp = New Word.Application

wdApp.Visible = True 'make Word visible

Set wdDoc = wdApp.Documents.Open(ThisWorkbook.Path & _
"\Automating Word.docx")

Set wdApp = Nothing

Set wdDoc = Nothing

End Sub

images/00890.jpeg
>ub Writekile()
ThisFile = "C:\Results.txt"

' Delete yesterday's copy of the file
On Error Resume Next

Kill ThisFile

on Error GoTo 0

' Open the file

Open ThisFile For Output As #1

FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
" Write out the file

For j = 1 To FinalRow

Print #1, Cells(j, 1).Value

Next j

crd Sub.

images/00893.jpeg
Sub UseGetOnject()
Dim wddoc As Object

Set wdloc = GetObject(ThisWorkhook.Path & "\Automating Word.docx")
wioc .Application.Visible = True

‘more code interacting with the Word document

Set wddoc = Nothing

Frd Sub

images/00892.jpeg
Sub WordLateBinding()

Dim wdApp As Object, wdDoc As Object

Set wdApp = CreateObject("Word.Application™)

Set wdDoc = wdApp.Documents.Open (Thi sWorkbook.Path & _
"\Automating Word.docx")

wdApp.Visible = True

Set wdApp = Nothing

Set wdDoc = Nothing

End Sub

images/00415.jpeg
Sub FillIn()

On Error Resume Next 'Need this because if there aren't any blank
*cells, the code will error

Range("AL") .CurrentRegion.SpecialCells(x1Cel1Typeslanks) . FormulaR1cl _
[-1]¢”

Range("A1") .CurrentRegion.Value - Range("A1™).CurrentRegion.Value

Cnd Sub

images/00899.jpeg
nreroftice Memo (Professicnal design).cotx

images/00414.jpeg
Set rngCond = ActiveSheet.Cells.SpecialCells(xliCel1TypeAl1FormatConditions)
Tf Not rngCond Ts Nothing Then

rnoCond.Borderaround x1Continuous

End T

images/00898.jpeg
Sub NewDocument()
Dim wdApp As Word.Application

Set wdApp = GetObject(, "Word.Application™)
wdApp .Documents . Add
‘any other Word code you need here

Set wdApp = Nothing
End Sub

images/00417.jpeg
sheets(l).ListObjects(Tablel")

images/00416.jpeg
Range("A:D"
Range("

-SpecialCells(x1Cel1TypeConstants, x1Numbers).Copy _
G s ¥

images/00411.jpeg
LastRow = Cells(Rows.Count, 1).End(x1Up).Row
For i = 1 To LastRow
If IsEmpty(Cells(i, 1)) Then
Cells(i, 1).Resize(1, 4).Interior.ColorIndex = 1
End If
Next i

images/00895.jpeg
With wdApp.Selection
.EndKey Unit:=6
.TypeParagraph
.PasteSpecial Link:-False, DataType:-0, Placement:-0, _
DisplayAsIcon:-False
End With

images/00410.jpeg
Set IntersectRange = Intersect(Ranga("Rangel”), Range("Rangez™))
IntersectRange.Interior.ColorIndex = 6

images/00894.jpeg
Sub IsWordOpen(Q)
Dim wdApp As Word.Application 'early binding
ActiveChart.ChartArea.Copy
On Error Resume Next 'returns Nothing if Word isn't open
Set wdApp = GetDbject(, "Word.Application”)
If wdApp Is Nothing Then
‘because Word isn't open, open it
Set wdApp = GetObject("", "Word.Application”)
With wdApp
_Documents. Add
_Visible = True
End With
Fnd Tf
On Error Golo O

with wdApp.Selection
.EndKey Unit:=wdStory
.TypeParagraph
.PasteSpecial Link:=False, Datalype:=wdPasteOLEObject, _
Placement:=wdInLine, DisplayAsicon:=False
End With
Set wdApp = Nothing
End sub

images/00413.jpeg
x1Logical
XINumbers
1TextValues

images/00897.jpeg
Documents.Add Template:="Narmal ', NewTemplate:=False, DocumentType

images/00412.jpeg

images/00896.jpeg
Const xwdStory As Long = 6
Const xwdPasteOLEObject As Long = 0
Const xwdInLine As Long = 0

with wdApp.Selection
.EndKey Unit:=xwdStory
.TypeParagraph

.PasteSpecial Link:=False, DataType:=xwdPasteOLEObject, _

Placement:=xwdInLine, DisplayAsIcon:=False

Erd With

images/00408.jpeg
Set UnionRange
With UnionRange
.Formula = "=RANDQ)"
.Font.Bold = True
End With

Union(Range("Rangel™), Range("Range2”))

images/00407.jpeg

images/00409.jpeg

images/00880.jpeg
Workbocks.OpenText Filename:= "C:\sales.txt”, _
x1Delimited, Comma:=True, _

rray(Array(1, 1), Array(2, 1), Array(3, 3), _
Array(4, 1), Array(5, 1), Array(6, 1), _

Array(7. 1), Array(8, 1))

images/00882.jpeg
Workbooks.OpenText Filename:-
DataType:x1Delinited, Othe

Cilsales.txt’, Origin:=437, _
True, DtherChar:- "|", FieldInft

images/00881.jpeg
Workbooks.OpenText F1lename sales.tx
» _Comma:=True, _
=Array(Array(1, x1GeneralFormat), _

Array(2, x1CeneralFormat), _

Array(3, xIMDYFormat), Array(4, x1GeneralFormat), _
Array(5, xlICeneralFormat), Array(6, xlGeneralFormat), _
Array(7, x1CeneralFormat), Array(8, x1GeneralFormat))

images/00404.jpeg

images/00888.jpeg
Array(2, xIMDYFormat), Array(3, XlCeneralFormat), _
Array(4, x1GeneralFormat), Array(5, x1GeneralFormat), _
Array(6, x1GeneralFormat), Array(7, x1GeneralFormat), _
Array(8, xlGeneralFormat), Array(9, x1GeneralFormat), _
Array(10, x1GeneralFormat), Array(1l, x1GeneralFormat))
If NextCol > 1 Then
Range("A1:K1").Copy Destination:=Cells(1, NextCol)
End If
End If

DataSets = (NextCol - 1) / 26 + 1

cnd Sub

images/00403.jpeg
Set Rng = Range("B1:B16").Find(What
LookIn:=x1Values)
Rna.Offset(. -1).Resize(. 23.Interior.ColorIndex = 15

images/00887.jpeg
Sub ReadlargeFile()
ThisFile = "C:\sales.txt"

FileNunber = FreeFile

Open ThisFile For Tnput As #FileNumber

NextRow = 1
KextCol - 1
To While Not EOF(1)
Line Tnput #FileNunber, Data
CelTs (NextRow, NextCol).Value = Data
NextRox = NextRow + 1
TF NextRow = (Rows.Count -2) Then
! Parse these records
Range(Ce115(1, NextCol), Cells(Rows.Count, NextCol)) _
TextToColumns _
Destination:=Cells(1, NextCol), DataType:=xIDelimited,
Comma:=Truz, FieldTrfo:=Array(Array(, xlGeneralFormat), _
Array(2, XIMDYFormat), Array(3, xIGeneralFormat), _
Array(4, xICeneralFormat), Array(5, xlGeneralFormat), _
Array(6, x1GeneralFormat), Array(7, xlGeneralFormat), _
Array(8, x1GeneralFormat), Array(9, xlGeneralformat),
Array(10, x1Ceneralfarmar), Array(11, x1CGeneralFormar))
! Copy the headings from section 1
If NextCol > 1 Then
Range ("AL:K1") .Copy Destinarion
End If
' Set up the next section
KextCol = NextCol + 26
KextRow = 2
End If
Loop
Close #FileNunber
! Parse the final section of records
FinalRow = NextRow - 1
If FinalRow = 1 Then
" Handle if the file coincidentally had 1048574 rows exactly
KextCol = NextCol - 26
Flse

e115(1, NextCol)

Range(Cel1s(2, NextCol), Cells(Finaliow, NextCol)).TextToColumns _

Destination:=Cells(1, NextCol), Datalype:=xlDelimited,
Comma:=True, FieldInfo:=Array(Array(l. x1Ceneralformat).

images/00406.jpeg

images/00405.jpeg

images/00889.jpeg
Sub ImportToDataMade ()

InportToDataModel Macro

ActiveWorkbook.Queries.Add Name:="demo", Formula:
"let” & Chr(13) & " & Chr(10) & _

" Source ocument (File.Contents(""C:\demo.txt""), " & _
"[Delimite Encoding=1252])," & Chr(13) & "" & Chr(10) & _
" §""First Row as Header"" = Table.PromoteHeaders(Source)," & _
Chr(13) & "" & Chr(10) & _

" #""Changed Type"" = Table.TransformColumnTypes(” &

"#'"First Row as Header""," &

"{{""StoreID"", Int64.Type!
"{""Division
"{""Revenue™

type date},” & _
, type text}, {"'Units"", Int64.Type},
. Int64.Type}:)" & Chr(13) & "" & Chr(10) &
Changed Type'
Workbooks ("Book4") . Connections.Add2 "Power Query - demo", _
“Connection to the 'demo’ query in the workbook.", _
"OLEDB; ProvideraMicrosoft.Mashup.0leDb.1;" &

“Data Source=$Workbook$;Location=demo”, _

""idemo""™, 6, True, False

EFnd Sub

images/00400.jpeg
Range.Resize(RowSize, ColumnSize)

images/00884.jpeg
Sub ImportAll()
ThisFile = "C:\sales.txt"
Open ThisFile For Input As #1
Ctr =0
Do

Line Input #1, Data

Ctr = Ctr + 1

Cells(Ctr, 1).Value = Data
Loop While EOF(1) = False
Close #1
End Sub

images/00883.jpeg
Sub Importl0()
ThisFile = "C\sales.txt"
Open ThisFile For Input As #1
For i =1 To 10
Line Input #1, Data
Cells(i, 1).value = Data
Next i
Close #1
End Sub

images/00402.jpeg

images/00886.jpeg
Sub ImportAlle)

ThisFile = "C:\sales.txt"

FileNumber = FreeFile

Open ThisFile For Input As #FileNumher

ctr =0

Do
Line Input #FileNumber, Data
Cur=Cr+ 1
Cells(Ctr, 1).Value = Data

Loop While EOF(FileNumber) = False

Close #FileNumber

Cells(l, 1).Resize(Ctr, 1) .TextToColumns Destination:-Range("Al"), _
DataType:=x1Delimited, Comma:=True, _
FieldInfo:=Array(Array(1, x1GeneralFormat), _
Array(2, xMDYFormat), Array(3, x]GeneralFormat), _
Array(4, xIGeneralFormat), Array(5, xIGeneralFormat), _
Array(5, x1GeneralFornat), Array(6, xlGeneralFormat), _
Array(7, x1GeneralFormat), Arrav(8, x1GeneralFormat), _
Array(9, x1GeneralFormat), Array(10, x1GeneralFormat), _
Array(10, X1CeneralFormat), Array(ll, x1GeneralFormar))

End Sub

images/00401.jpeg
Range("B3").Resize(RowS1 ze

images/00885.jpeg
Cells(1l, 1).Resize(Ctr, 1).TextToColumns Destination:=Range("Al"), _
DataType:=xIDelimited, Comma:=True, FieldInfoi=Array(Array(l, _
x1GeneralFormat), Array(2, xIMDYFormat). Array(3, x]GeneralFormat), _
Array(4, xICeneralFormat), Array(S, x|GeneralFormat), Array(6, _
xICeneralFormat), Array(7,x1GeneralFormat), Array(3, xIGeneralformaty, _

Array(9, xlGeneralrormat), Array(10,x1Generalfornat), Array(il, _
x1Generalformat))

images/00871.jpeg
HTMLFN = AIntranet\” & ThisCust & ".html"
On Error Resume Next

Ki1l HTMLFN

On Error GoTo 0

With WBN.PublishObjects.Add(_
SourceType:=x1SourceSheet, _

images/00870.jpeg
oub ScheduleAnything()
" This macro can be used to schedule anything
' Enter how often you want to run the macro in hours and minutes
VaitHours = 0
waitvin = 2
WaitSec = 0
NameOfThisProcedure = "ScheduleAn
NameofScheduledProc = "CaptureDa
" --- End of Input Section --

' Determine the next time this should run
NextTime = Time + TimeSerial(WaitHours, WaitMin, WaitSec)

' Schedule ThisProcedure to run then
Application.OnTime EarliestTime:=NextTime, _
Procedure :=Name0FThisProcedure

' Get the Data
Application.Run NameOfscheduledProc

Fnd Sub

images/00877.jpeg
1T Not Worksheets(Menu).Range("I1").Value — True Then EX1t Suo

] A\wcl_fep.exe
& ""Upload File to websit
& "ftp.MySite.com FTPUser FTPPassword v
& fname & " "

& "™ pathfname & "M

& "put " _

&"000111"

Shell s, vbMinimizedNoFocus
Fnd Sub

images/00876.jpeg
Sub DoFTP(tname, pathfname)

To have this work, copy wcl_ftp.exe to the C:\ root directory
Downlcad from http://wwi. soft]ookup.con/display.asp?id=20483

Build a string to FTP. The syntax is

WCL_FTP.exe "Caption” hostname username password host-directory _
host-filename local-filename get-or-put UAsciilBinanry ONolog _
OBackground 1CloseWhenDone 1PassiveMode 1ErrorsText

images/00879.jpeg
30 o

Workbooks .CpenText Filename:-"C:\sales.txt’, Orig1

StartRow:=1, Datalype:=x1Delimited, TextQualifier:=xIDoubleQuote, _

ConsecutiveDelimiter:=False, Tan:=False, Semicolon:-False, _
Comma:=True, Space:=False, Other:=False, _
FieldInfo:=Array(Array(1, 1), Array(2, 1), _

Array(3, 3), Array(4, 1), Array(5, 1), Array(6, 1), _
Array(7. 1). Array(8. 1)). TrailingMinusNumbers:=True

images/00878.jpeg
Workbooks .OpenText F1lename:="C:\sales.prn’, Origin:=437, StartRow
DataType:=xIFixedidth, FieldInfoi=Array(Array(0, 1), Array(8, 1),
Array(17, 3), Array(27. 1), Array(s4, 1), Array(€2, 1), Array(7L, 9), _
Array(79. 6)). TrailingMinusNumbers:=True

images/00873.jpeg
Sub ImportHTML()

ThisFile = "C:\Intranet\schedule.html"
Open ThisFile For Input As #1

Ctr =2

Do

Line Input #1, Data

Worksheets ("HTML") .Ce11s(Ctr, 2).Value = Data
Ctr = Ctr + 1

Loop While EOF(1) = False

Close #1

End Sub

images/00872.jpeg
ntl ales to © & ThisCust)
-Publish True

.AutoRepublish = False
cnd With

images/00875.jpeg
FYESER S SN RN T

Linectr - 0

FinalT = WST.CelTs (Rous . Count, 13.Ead(x1Up). Rom
Finalb = wsB.Cel1s(Rous.Count, 1 .End(x1Up)..Rom
Finalh = WS¥.Cel1s(Rous. Count, 1).End(x Up)..Row

WFile = “sanpleschedule. html*
THisFiTe - MyPath & applbcation. PathSeparator & MyFiTe
ThisHostEile - MyFiTe

" Delete the old KTVL page
On Error Resime Next

KiTl (ThisFile)

on Error Goto 0

" Build the vitle
TafsTitle - "<TitlesLTCC Merbership Directarye/Titles"
UST.CeT1s(3, 21.Value = ThisTitle

* open the File for output
Open Thisfile For Output As #1

' Write out the top part of the HIKL
For i - 2 To FinalT

Print #1, WST.Cells(3, 2).Value
Hext 3

* For each row in Merbershiz, write out Tines of data ta the KTHL File
For § = 2 To Finalh

* Surround Nenber nane with bald Lags

Print £1, "<lix" & WSM.Cells(j, 1).Value

Hext §

! Close the o1d File
Print #1, "This page current as of * & Formas(Date, “wmmm dd, yyyy') & _
& Fornac(Tine, "him AH/PK")

* Write out HTML code From the Botcom worksheet
For i - 2 To Finalg

Print #1, wSB.Cel1s(], 2) Value

Hext j

Close 21

Aoplication. statustar = False
fpplication. CutCopytiode = False
NsgBox “neb pages upcated

& s

images/00874.jpeg
Sub WriteMembershipHTML ()
' Write web pages
Dim WST As Worksheet
Dim WSB As Worksheet
Dim WSM As Worksheet
Set WSB = Worksheets("Bottom")
Set WST = Worksheets("Top")
Set WSM = Worksheets ("Membership")

' Figure out the path

images/00869.jpeg
Procedure
End Sub

SetUpSpeech™

Sub SetupSpeech())
Application.Speech.SpeakCel10nEnter = True
End Sub

images/00745.jpeg
FUNCEION RELrIGVENmDers(my L
Dim 4 As Tnteger, j As Tnteger
Din 0nlyNews As String
‘starting at the END of the string and moving backwards (Step -1}
For i = Len(nyScring) To 1 Step -1
*IsNumeric is a VBA function that returns True if a variable is a number
"When a nunber is found, it is added to the OnlyNums string
I IsNuneric(Mid(nystring, i, 1)) Then

Ing As arring)

i=j+1
OnlyNuns = Mid(myString, 1, 1) & OnlyNums
End If
If j = 1 Then OnyNuws = CInt(Mid(OnlyNuns, 1, 1))
Next 1

Retrievekunbers = CLng(OnlyNuns)
R Sy

images/00744.jpeg

images/00747.jpeg
Function Stringtlement(str As String, chr As String, 1nd As Integer)
Dim arr_str As Variant

arr_str = Split(str, chr)

StringElement = arr_str(ind - 1)

Fnd Function

images/00746.jpeg
Function ConvertWeekDay(5tr As String) As Date
Dim Week As Long

Dim FirstMon As Date

Dim TStr As String

FirstMon = DateSerial(Right(Str, 4), 1, 1)
FirstMon = FirstMon - FirstMon Mod 7 + 2

TStr = Right(Str, Len(Str) - 5)

Week = Left(Tstr, InStr(l, TStr, " ", 1)) + 0
ConverthWeekDay = FirstMon + (Week - 1) * 7
End Function

images/00741.jpeg
Function FirstNonZeroLength(Rng As Range)
Dim myCell As Range

FirstNonZeroLength = 0#
For Each myCell In Rng
If Not IsNull(myCell) And myCell <> "" Then
FirstNonZeroLength = myCell.Value
Exit Function
End If
Next myCell
FirstNonZeroLength = myCell.Value
End Function

images/00740.jpeg
Function nodupsArray(rng As Range) As Variant
Dim arrl() As Variant

If rng.Columns.Count > 1 Then Exit Function
arrl = Application.Transpose(rng)

arrl = Uniquevalues(arrl)

nodupsArray = Application.Transpose(arrl)
End Function

images/00743.jpeg
Dim vir() As String
Din vto() As String
ReDim vfr(L To Len(frstr))
ReDim vto(L To Len(frstr))
‘place the strings into an array
For j = 1 To Len(frstr)
vfr(3) = mid(frser, j, 1)
If MidCtostr, j, 1) <> "" Then
vto(3) = MidCtostr, 3, 1)
Else
vto(j) = "
End If
Next 3
"compare each character and substitute if needed
If IsArray(trstr) Then
Ar = trstr
For iRow - LBound(Ar, 13 To UBound(Ar, 1)
For iCol = LBound(Ar, 2) To UBound(Ar, 2)
For j = 1 To Len(frstr)
ArCiRow, iCol) = Application.Substitute(Ar(iRow, iCol), _
VEr(i), Vo3
Next
Next icol
Next iRow
Else
Ar = trstr
For § = 1 To Len(frstr)
Ar = Application. Substiture(Ar, vfr(j), vro(3))
Next j
Fnd TF
VSUBSTITUTE = Ar
Eod Eicoadis

images/00742.jpeg
Function MSubsitute(ByVal tr3tr As Variant, frdtr As 5String, _

ToStr As String) As Variant
Din iCol As Integer

Din j As Integer

N Ar A< Variant

images/00738.jpeg
Public Function UniqueValues(ByVal OrigArray As Variant) As Variant
Dim vAnsQ) As Variant

Dim 1StartPoint As Long

Dim IEndPoint As Long

Dim 1Ctr As Long, 1Count As Long

Dim iCtr As Integer

Dim col As New Collection

Dim sIndex As String

Dim vTest As Variant, vItem As Variant

Dim iBadvarTypes(4) As Integer

'Tunction does not work if array element is one of the
*following types

iBadVarTypes(0) = vhObject

iBadVarTypes(1) = vbError
iBadvarTypes(2) = vbDataObject
iBadvariypes(3) = vbUserDefinediype
iBadVarTypes(4) = vbArray

‘Check to see whether the parameter is an array
Lf Not IsArray(DrigArray) Then
Err.Raise ERR_BP_NUMBER, , ERR_BAD_PARAMETER
Exit Function
End If
1StartPoint = LBound(OrigArray)
1EndPoint = UBound(OrigArray)
For 1Ctr = 1startPoint To 1EndPoint
vItem = OrigArray(1Ctr)
SEledr ihack o sad shettier variabTe e s secsbrall

images/00737.jpeg
Const ERR_BAD_PARAMETER = "Array parameter required
Const ERR_BAD_TYPE = "Invalid Type"

Const ERR_BP_NUMBER = 20000

Const ERR BT NUMBER = 20001

images/00739.jpeg
For 1Ctr = 0 To UBound(1BadVarTypes)
If VarType(vItem) - iBadVarTypes(iCtr) Or _
VarType(vItem) = iBadVarTypes(iCzr) + vbVariant Ther
Err.Raise ERR_BT_NUMBER, , ERR_BAD_TYPE
Exit Function
End Tf
Next iCtr
"Add element to a collection, using it as the index
"if an error occurs, the element already exists
sIndex = CStr(vItem)
"first element, add automatically
If 1Ctr = 1StartPoint Then
col.Add vItem, sIndex
ReDim vAns(1StartPoint To 1StartPoint) As Variant
vAns(1StartPoint) = vItem
Else
On Error Resume Next
col.Add vItem, sIndex
If Err.Number = O Then
1Count = UBound(vAns) + 1
ReDim Preserve vAns(1StartPoint To 1Count)
vAns(1Count) = vItem
knd 1f
End If
Err.Clear
Next 1Ctr
Uniquevalues = vAns
End Function

images/00734.jpeg
binlsltValid = False
IsEmailvalid = bInIsItvalid
Exit Function
End T
i = Len(strArray(2)) - InStrRev(strarray(2), ".") 'lacate the perioc
'verify that the number of letters corresponds to a valid domain
‘extension
Tf 1 <> 2 And i <> 3 And 1 <> 4 Then
binIsItvalid = False
IsEmailValid = blnIsItvValid
Exit Funcrion
End If
"verify that there aren't two periods together in the email
If InStr(strémail, “) > 0 Then
binIsItvalid = False
Istmailvalid - blnlsItvalid
Exit Funcrion
End If
IsEmailValid = binIsItvalid
Fnd Function

images/00733.jpeg
Function Istmallvalid(strEmail As String) As Boolean
in strarray As Variant
Din striten As Variant

Din i As Long

Din < As String

Din hInTsIrvalid As Baolean

Inisievalid = True

"count the @ in the string

i = Len(strémail) ~ len(Applicarion.Substiture(strfmail,

'if there is more than one 0, invalid email

IF < 1 Then IsEmailvalid - ralse: Exit Function

ReDim strirray(l To 2)

"the following two Tines place the text to the left and right

"of the @ in their own variables

strarray(l) = Left(sirbmail, Tostr(l, strémail, *@*, 1) - 1)
strarray(2) - Application. substitute(Right(stremail, Len(stremail) - _
LenGstrarray (1)), "0, ")

For Each strltem In strArray
“verify there is something in the variable.
'If thers isn't, then part of the email is missing
Tf Len(stritem) <= 0 Then
blalsItvalid = False
IsEmailvalid = binIsItvalid
Exit Funcrion
End If
"verify only valid characters fn the email
For i =1To Len(strTtem)
“lowercases a1l Tetters for easier checking
© = ICase(Mid(strItem, 1, 1)
Tf TnSer(abedefghi jkImopgrs tuviyz_-
And Kot TsNumeric(c) Then
blnTsTrvalid = False
Iskmailvalid - bInisltvalid
Exit Function
End I
Next i
'varify that the first character of the Teft and right aren't periods
If LeftistrItam, 13 = "." Or Right{strItem, 1) = "." Then
blnlsItvalid = False
TsFmailValid = bInTsTtValid
Exit Function
End If
lext steTtem
'verify there is a period in the right half of the address
TF TnStr(strArray(2). ".") <= 0 Then

HESIREE

images/00736.jpeg
ramcTian NusLniquelatiesiing As fanges. Ry Long
Uin myCell As Range
Dir Uniquevals As New Collection
Aoplication.Volatile 'forces the function to recalculate when the range 'changes
0n Crror Resume Yext
“the following places each value from the range into a collection
"because a collection, with a key parameter, can contain only unique
*values, there will be no duplicates. The errar statements farce The
"orogran to continue vhen the error messages appear for duplicate
"{zems 4n the collaction
For Each myCell In Rng
Uniquevals_Add mycell Value, Ctr(nyCell.value)

Next myCell
on Error GoTo 0

‘returns the nunber of items in the collection
Kumliniquevalues - Uniquevals.Count

S TR

images/00735.jpeg
Function SumByColor(CellColor As Range, SumRange As Rangel
Dim myCell As Range
Dim iCol As Integer
Dim myTotal
iCol - CellColor.Interior.ColorIndex 'get the target color
For Each myCell In SumRange 'look at each cell in the cesignated range
'if the cell color matches the target color
If myCell.Interior.ColorIndex = iCol Then
‘add the value in the cell to the total

myTatal = WorksheetFunction. Sun(myCell) - myTotal
End If
Next myCell
SunByColor - myTotal
Fnd Functian

images/00730.jpeg
Sub CheckUserRights()
Dim UserName As String
UserName = WinUsername
Select Case UserName
Case "Administrator”
MsgBox "Full Rights"
Case "Guest”
MsgBox "You cannot make changes"
Case Else
MsgBox "Limited Rights"
End Select
End Sub

images/00732.jpeg
Function DateTime()
DateTime = Now
End Function

images/00731.jpeg
Function LastSaved(FullPath As 5tring) As Date
LastSaved = FileDateTime(FullPath)
End Function

images/00727.jpeg
Sub CountMyWkbks ()
Dim MyFiles As Integer

MyFiles = NumFilesInCurDir("MrE*",

MsgBox MyFiles & " file(s) found"
End Sub

True)

images/00726.jpeg
Function NumFiiesInCurDir(Optional strinclude As String
Optional binSubDirs As Boolean = False)
Dim fso As FileSystemObject

Dim f1d As Folder

Dim £il As File

Din subfld As Folder

Dim intFileCount As Integer

Din strExtension As String

strExtension = "XLSM"

Set fso = New FileSystemObject

set 1d = fso.GetFolder (ThisWorkbook.Path)

For Each fil In f1d.Files
If UCase(fil.Name) Like "*" & UCase(
UCase(strExtension) Then
intFileCount = intFileCount + 1
End If
Next fil
If binSubDirs Then
For Each subfld In 1d.Sudfolcers
intFileCount = intFileCount + NumFile:
Next subfld
End If
NunFilesInCurDir = intFileCount
Set fso = Nothing
R TR

Include & "%

CurDir(strinclude, True]

images/00729.jpeg
Function WinUsername() As 5tring
'variables
Dim strBuf As String, IngUser As Long, strUn As String
"clear buffer for user name from api func
strBuf = Space$(255)
'use api func WNetCetllser to assign user value to Ingliser
'will have Tots of blank space
IngUser = WNetGetUser("™, strBuf, 255)
'if no error fron function call
If TngUser = NO_ERROR Then
‘clear out blank space in strBuf and assign val to functior
strun = Left(strBuf, Instr(stréuf, vbNullchar) - 1)
WinUsername = strin
Else
‘error, give up
WinUsername = "Error :" & IngUser
End If
Ernd Function

images/00728.jpeg
Private Declare Function WNetGetllser Lib "mpr.dil™ Alias "WNetCetUserA™ _

(ByVal IgNave As String, ByVal IpUserName As String

TpnLength As
Private Const
Private Const
Private Const
Private Const

Private Const
B VaTE CONST:

Long) As Long

NO ERROR = O
ERROR_NOT_CONNECTED = 2250&
ERROR_MORE_DATA - 234
ERROR_NO_NETWORK = 1222&

ERROR_EXTENDED ERROR = 12088
ERROR NO NET OR BAD PATH = 1203&

images/00723.jpeg
A Dot s Doail
im TsOpen As Boolean
Din BaokName As String
BooiName = "ProjectFilesChapterls, xlsn”
Tsopen = BookOpen(BookName) 'calling our function - don't forget the ‘paraneter
If IsOpen Then

MsgBox BookName &
Flse

uorkbooks.Open BookName
end 1f
e g

is already opent

images/00722.jpeg
Function BookCpen(Bk As String) As Boolean

Uim T As Excel.Workbook

Err.Clear 'clears any errors

on Error Resume Next 'if the code runs into an error, it skips it anc
*continues

Set T = Application.Workbooks(Bk)

BookCpen — Not T Ts Nothing

"IF the workbook is open, then T will hold the workbook chject and
“therefore will NOT be Nothing

Err.Clear

on Error GoTo 0

gl gl

images/00011.jpeg
nsent

Y a2

D Page Lyout

&

QAT Custamization

Ribbon Customization

TR B
o copy -

e w

M o Formatpareer | B T U0 E

s | bt oo

m - »

I

1]

2 Run Macro Button Form Control

:

o -

5| [3

¢

. B E——

h

s

© E—

TEER

images/00725.jpeg
Sub CheckForSheet()
Din ShtExists As Boalean
ShtExists = SheetExists("Sheet9")
‘notice that only one parameter was passed; the workbook name is optiona
T Shelxists Then

Vsgiox "The workshest exists!
L1se

Vsgdox "The workshest does NOT exist!”
Fnd TF
Erd Sub

images/00010.jpeg
e Optons.

—
P
= &
sy
s [o
=
i e
Cutomae Atbon e
B AhbomeRighDsan
T
Addte #h mporinioe.
o pas
£ B
B Relselectil
B OR D IMSOIFRADD.
Do
x «I{OW hp
PISLBEACLAVEE

Enter the ToolTip here

images/00724.jpeg
Function SheetExists(SName As String, Optional WB As Workbook) As Boolean
Dim WS As Worksheet

' Use active workbook by default

If WB Is Nothing Then

Set WB = ActiveWorkbook

End Tf

On Error Resune Next

SheetExists = CBool(Not WR.Sheets(SName) Ts Nothing)

n Frror GoTo 0
End Func+ian

images/00013.jpeg
) mwicesee Netepd

(i e fome Ve o

iInvbate, InvNbr Rephbr,Custbr, ProdRevenue,ServRevenue, Prodcost
6/05/2021,123813,582,C8754, 716100,12000, 423986
6/0572021,123814,,€4854,224200,0,131243
6/05/2021,123815,543,C7278,277000,0,139208
6/057/2021,123816,554,C6425, 746100, 15000, 350683
6/05/2021,123817,543,C6291,928300,0,488988
6/05/2021,123818,543,€1000,723200,0, 383069

6/0572021,123819 582,C6025,982600,0,544025
6/057/2021,123820,517 ,C8025,490100, 45000, 243808
6/05/2021,123821,543,C4244 6158000300579

images/00012.jpeg
4 Be [t Veu it fomst Dewg Bn ook Addes Undow Hip

»uaRIES 2]]
x|

Generan
==

+ aczot Maczo

Selecrion. FormulaRict = "Hello Worla®
£n Sup

images/00015.jpeg
Sib Inporclsvoice ()

+ Topore Tavesce.cxe. AdS T

Repossd snoreese: Cries

Hexkmssks OperTens Fiistane s -rCH\E01EA SumpieFii s\ smvasce. e, Oeigins
437, StariRowiel, DitaTypesexibelimited, Texcgualifieixidowsiequote,
ConsecuciveDeliniceriaraise, Tabi-Fulse, Semicolon:+Faise, Comai+True
. Spacuiniaise, OtheritTaise, Fieidingsi-aceas (erar(is 3], Aeeas(d, 1)

Reray(s, 3, RemrQl, 5, ATy (s, 1), Armay(6, 1, Aerar(, 1)), Treaindmasimbers

e
Fange (Aiir) sedect
Bane (\1114) Selece
Selection. FormAaRIC] = "STM(RI-S]CIRI-1IC) "
Seaccion auceriil Dessinatiohi-Rangs (-11icH
Rene ("L111611%) Selact
Fows("1:17) Sexes
Bowa(vii:iim) Select
Seleccion. font.Beid = True
Seleccion. cotimme. AutaFis

ra s

1, TipeimmEve s

images/00721.jpeg
Function MyFullName() As 5tring
MyFulIName = ThisWorkbook.Ful1Name
Fnd Function

images/00014.jpeg
Record Macro

Macro name:
Importinvoice

Shortcut key:
ctne[i

e
[workooak =

Descrption:
Imports Invoice.txt. Adds total row. Format|

images/00720.jpeg
Function MyName() As >String
MyName = ThisWorkbook .Name
cod Functon

images/00719.jpeg
Sub Addition ()

Dim Total as Integer

Total = Add (1,10) 'we use a user-defined function Add
MsgBox "The answer is: " & Total

Fnd Sub

images/00716.jpeg
Sub MoveDataAndMacrol)
Dim WSD as warksheet
Set WSD = Worksheets("Report”)
" Copy Report to a new workbock
W50 Cony
" The active workbook is now the new workhook
" Delete any old copy of The module from C
On Crror Resume Next
" Delete any stray copies from hard drive
K11 ("C:\temp\YodToRegion. ha
KiT1 C'C:\temp\FruRegion. fr
On Error GoTo 0
" Export module & form from this workbook
Thi sWorkbook . VEProject . VBCompanents ("odToRegion™) .Export _
("C:\teng\MadToRegion. bas™)
Thi siorkbook . VBPro ject . VBCamponents (" rRegian") . Fxport _
"C:\eemp\ FraRegion. fra")
" Inport to new workbook
ActiveWor kbool.VBPrarject . VBComponents. Impart ("C:\temp\VodToRegion. has')
Activellor kbook .VBProject. VBComponents. Import €'C:\zemp\FrmRegion. frm")
0n Error Resume Next
Ki11 ("C:\temp\YodToRegion
Kil1 ("C:\temp\frmRegion.bas")
on Error GoTo 0
oo @ih

)

images/00715.jpeg
Sub ResetFormat(Byval Table As ListObject, _

Optional Byval RetainNumberformats As Boolean - True)
Dim Formats() As Variant

Dim ColumnStep As Long

If Table.Parent.ProtectContents = True Then
MsgBox "The worksheet is protected.”, vbExclamation, “Whoops!"
Exit Sub

Fnd TF

If RetainNumberFormzts Then
ReDim Formats(Tzble.ListColumns.Count - 1)
For Columnstep = 1 To Table.ListColumns.Count
on Error Resume Next
Formats(ColunnStep - 1) = Table.ListColumns(Columnstep)
DatabodyRange NurberFormat
on Error GoTo 0
If Iskmpty(Fornats(ColumsStep - 1)) Then
Formats (CalurnStep - 1) = "General”
End IF
Next ColumnStep
End I

Table.Range.Style = "Normal®
If RetainNumberFormats Then
For ColumnStep - 1 To Table.ListColumns.Count
On Error Resume Next
Table.ListColums (Columnstep) . DataodyRange. NumberFormat
Formats(Columnstep - 1)
on Error GoTa 0
I Err.Nunber <> 0 Then

TahTe. ListColumns(ColunnStep) .DataBodyRange NumberFormat = _

General”
Err.Clear
tnd If
Next ColumnStep
End I
Sl Tt

images/00718.jpeg
Function Add(Numoerl As Integer, NumberZ As Integer) As Integer
Add = Numberl + Number2
Eil Einetdon

images/00717.jpeg
Sub MoveDataAndMacro()

Dim WSD as worksheet

Dim WBN as Workbook

Dim WBCodeModl As Object, WECodeHod2 As Object

Set WSD - Worksheets("Report")

' Copy Report to a new workbook

WD, Copy

" The active workbook is now the new workbook

Set WEN - Activellorkbook

" Copy the Workbook Tevel Event handlers

Set WBCodeModl = Thisiorkbook.VBProject.vBComponents ("ThisWorkbook™) _
.Codettodule

Set WBCodeMod2 = WBN.VBProject.VBCompanents (ThisWorkbook") . CodeModule

WBCodeModz. Insertlines 1, WECodeHodl.Lines(1, WECodeModl.countoflines)
End Sub

images/00712.jpeg
HIErens gt b

For Each ocell In RgText
Select Case UCase(Ans)

Case "L": oCell - ICase(oCel].Text)

Case "0": oCell = UCase(ocell.Text)

Case "S": oCell = UCase(left(olell. Text, 1)) &
Lcase(Right(oCell Texe, Len(oCell.Text) - 1))

Case "T": oCell = Application.WorkshearFuncrion. Proper(oCall. Text)

Case "C

cap - otell.Characters(l, 1).Font.Size
sCap = Inc(1cap * 0.85)
"Snall caps for everytaing.
oCell.Font.Size = sCap
oCell.Value = UCase(ocell . Text)
strTest = ocell.value
"Large caps for 1st letter of words.
striest = Application. Proper(striest)
For i = 170 Len(striest)
If MidGstrTest, 1, 1) = UasedMid(strTest,
ocell.Characters(i, 1).Font.Size = 1Cas

1) Then

End If
Next |
End select
Noxt
Exit Sub
NoText:

isgBox "Ne text in your selection @ " & Selection.Address

& Yol

images/00711.jpeg
sub TextCaseChange()
Dinm RgText As Range
Dim oCell As Range

Dim Ans As String

Din striest As String
Din sCap As Integer, _
Cap As Integer, _

i As Tnteger

'// You need to select a range to alter first

Agatn
Ans = Application. Tnputsox (" [L Jovercase” & vbCr & "[U]ppercase® & vbCr & _
"[Slentence” & vkCr & "[T]itles” & vbCr & "[Clapssmall”,
"Type in a Letter”, Typei=2)

If Ans - "False" Then Exit Sub
If Instr(1, "LUSTC", UCase(Ans), voTextConpare) = 0 _
Or Len(Ans) > 1 Then GoTo Acain

On Error Golo NoText
If Selection.Count - 1 Then

Set RgText = Selection
Flse

Set RgText = Selection.SpecialCells(x1Cel1TypeConstants, 2)
end T¢

images/00714.jpeg
MsgBox oCell.Address
MsgBox TheRange.Cells.Count
End If
Next oCell
End Sub

images/00713.jpeg
Sub SpecialRange()
Dim TheRange As Range
Dim oCel1l As Range

Set TheRange = Range("A1:220000").SpecialCells(__

x1Ce11TypeConstants, x1TextValues)

For Each oCell In TheRange
If oCell Text = "Your Text" Then

images/00710.jpeg
MsgBox “Correct Password! Come on
End If
cnd Sub

.

images/00709.jpeg
FRIVREE THRoR-As. Lohg

Public Function NewProc(Byval IngCofe As Long, _
Ryval wParan As Long, Syal TParam As Long) As Lang
oin Retial

Din srrClasstare & String, TngBuffer As Long

T IngCode « HC_ACTION Then
NouProc = Cal INaxthookFx(fhaok, TngCode, wParaw, 1paran)
Exit unction

end 1f

strClasshane - Sering$(256,
IngBuFter - 255

If IngCore - HCBT_ACTIVATE Then 'A wirdow has been activated
Retial = GetClass\anaqwParan, strClasshane, Tngbuffer)

“Check for class nane of the Tnputbox
IF Lefts(strClassiana, Rowal) = "432770" Then
"Change the adit control to ¢isalay the password charactar *.
"You can change the Asc(*+") 25 you please.
SencllgLtorMessage wParan, &K1324, CH_SLTPASSMORDCHAR, Asc(’*"), HO

g If
tn 1F
“This Tine will ensure that any other hooks that nay be in place are

“called correctly.
CalINextiookEx hiiaok, TngCode, wharan, TParan
end Eunction

PuUbTicC Function TopucBoXOK (Prompt, Option
optional Defaulc, Optional XPos,
Optional Yeos, Oprional HelpFile, Optional Concext) As String
Dim Inghodkinad As Lang. IngThreatTD as Long

Tivle,

TngThreadId - GetCurrentThraadTe
Tnyockund = CotfoduleHandle(bRuT15tring)

ook = SethindonsHookEx (WH_CBT, AddressOF Newproc, TngHodbnd, _
TnyThreadID)

on Error Resare Next

InputBoxK - Tnoutsox(Prompt, Title, Default, XPos, YPos, HelpFile,
Context)

Unhooks donsHookEx. hoak

End Function

If Tnputhoxk("Please enter passinrd”
passuord” Then
Meghox “Sorry, that was ot 3 correct passward.”
2 2

sword Raquired”) < _

images/00708.jpeg
Private Declare Function CallNextHookkEx Lib “user32™ _
(ByVal hHook As Long, _
ByVal ncode As Long, ByVal wParam As Long, 1Param As Any) As Long

Private Declare Function GetModuleHandle Lib "kernel32" _
Alias "GetloduleHandleA” (ByVal lpModuleName As String) As Long

Private Declare Function SetWindowsHookEx Lib "user32" _
Alias "SetWindowsHookExA" _

(ByVal idHook As Long, ByVal Tpfn As Long, _

Byval hmod As Long,ByVal dwThreacId As Long) As Long

Private Declare Function UnhookWindowsHookEx Lib “user32" _
(ByVal hilook As Long) As Long

Private Declare Function SendDlgItenMessage Lib "user32" _
Alias "SendDlgltenMessageA” _

(ByVal hD1g As Long, _

Byval nIdDlgItem As Long, Byval whsg As Long,

ByVal wparam As Long, ByVal 1Param As Long) As Long

Private Declare Function Get(lassName Lib "user32" _
Alias "GetClassNaneA” (ByVal hund As Long, _

ByVal TpClassName As String, _

ByVal nMaxCount As Long) As Long

Private Declare Function GetCurrentThreadId
Lib "kernel32" O As Long

"Constants to he used in our APL functions
Private Const EM_SETPASSWORDCHAR = &HCC
Private Const WH_CBT = §

Private Const HCBT_ACTIVATE = §

Privata Const HC ACTION = O

images/00705.jpeg
Sub CustomSort()

' add the custom list to Custom Lists
Application.AddCustomList ListArray:-Range("11:15")
' get the Tist number

nIndex = Application.GetCustomlistNum(Range("I1:15") .Value)

' Now, we could sort a range with the custom Tist

' Note, we should use nIndex + 1 as the custom Tist number here,
* for the first one is Normal order

Range ("A2:C16") .Sort Keyl:-Range("B2"), Orderl:-x1Ascending, _
Header:=x1No, Orientation:=xIsortColumns, _
OrderCustom:=nIndex + 1
Range ("A2:C16").Sort Keyl
Header

ange("A2"), Orderl
x1No, Orientation:-x]SortColumns

IAscending, _

' At the end, we should remove this custom Tist...
Aoplication.DeleteCustomList nIndex
Frd Sub

images/00704.jpeg
‘store existing visible items
vSaveVisibleTtemsList = puf.V

bleltensl

If Not (TsArray(vItemsToBeVisible)) Then _
vItensToReVisible = Array(vITemsToReVisible)

ReDim vFilterarray(1 To _

UBound (v TremsToBevisible) - IRound(yTremsToBeVisible) + 1)
pvf.Parent Manualupdate = True

"check if pivotitem exists then build array of itens that exist
For INdx = LBound(vItensToBevisible) To UBound(vItersToBevisible)
'create MDX format pivotitem reference by substituting item into
*pattern
sPivotItenName = Replace(sItenPattern, "ThisIter”,
vItemsToBevisible(INdx))

*attempt Lo make specified iten the only visible iten
On Error Resume Next

pvf.VisibleItemsList = Array(sPivotItemName)

on Error GoTo O

*if item doesn't exist in field, this will be false
If LCaseS(sPivotTtemName) = LCase$(pvf.VisibleTtemsList(1)) Then
1FilrerTtenCount = 1FilterTrencount + 1
VFilrerarray(1FilterTremCount) = sPivorTremName
End TF
Next TN

'if at least one existing item found, filter pivot using array
If 1FiTterItenCount > O Then
ReDim Preserve vFilterArray(1 To 1FilterTtemCount)
pvf.VisibleItemsList = vFilterArray
Else
sReturnisg = "No matching itens found."
pvf.VisibleItensList = vSaveVisibleItemsList
End If
pvf.Parent.ManualUpdate = False
SOLAP_FilterBylItenlist = sReturnVisg
Ernd Function

images/00707.jpeg
Application.Undo
Application. EnableEvents - True

MsgBox "Value in colutn A may not be Targer than value
"4n column B."
Exit Sub
tnd If

Case 2

If Target.value < Target.Offset(o, -1) .Value Then
Application. FnableFvents = False
#Application.Undo
Application. CnableCvents = True
MsgBox “Value in column B may not be smallar

“than value in colum A."
Exit Sub
End If

End Select

Dim x As Long

x = Target.Row

Dim 2 As String

z = Range("B" & x).Value - Range("A" & x).Value
With Range("C" & 0

For

val

mula F(RC[-1]<=RCT-2] REPT ("
REPTC™n"™ RC[-2]-RC[-1]),REPTC" 0!
EPT(" 0" RC[-1]-RE[-21))"

ue - .value

C[-11)8" & _
RC[-2D08 &

Font.Name = "Wingdings"
Font.Colorindex = 1

_Fon
If L

t.size = 10
en(Range("A" & X)) <> 0 Then

&

.Characters(1, (.Characters.Count - 2)).Font.ColorIndex - 3

-Characters(1, (.Characters.Count - z)).Font.Size =

End If

End With
End <ub

12

images/00706.jpeg
Private Sub Worksheet_Change(ByVal Target As Range)
If Target.Column > 2 Or Target.Cells.Count > 1 Then Exit Sub
It Application.IsNumber(Target.Value) = False Then
Application.Enablevents = False
Application.Undo
application.EnableEvents = True
MsgBox “Numbers anly please.”
Exit Sub
End If
Select Case Target.Column
Case 1
If Target.Value > Target.0ffset(0, 1).Value Then
Application.EnableEvents = False

images/00031.jpeg

images/00701.jpeg
Private Sub Worksheet_BetoreDoubleClick(ByVal Target As Range, _
Cancel As Soolean)

Application.ScreenUpcating — False

Dim LPTR&

With Activesheer.PivorTablas(1).DaraRedyRange
LPTR = .Rows.Count + .Row - 1
End With

Dirt PTT As Integer
On Error Resume Next
TT = Target.PivotCell.PivotCellType
If Err.Number = 1004 Then
Err.Clear
If Not IsCmpty(Target) Then
Tt Target.Row > Range("A1") .CurrentRegion.Rows.Count + 1 Then
Cancel = True
With Target.CurrentRegion
_Resize(.Rows.Count + 1).EntireRow.Delete
End With
Fnd TF
Else
Cancel = True
End Tf
Else
S = ActiveSheet.Name
End If
Application. Screenlpdating = True
End Sub

images/00030.jpeg
e e Litmog B e

(R(-S1CHR(-110)

Range ("E11:G11%) .Select

images/00700.jpeg
Sub RunFasterCode

Dim appState As CAppState

Set appState = New CAppState

appState.SetState None

'run your code

'if you have any formulas that need to update, use
'Application.Calculate

"to force the workbook to calculate

Set appState = Nothing

End Sub

images/00033.jpeg
Selection.End (x1Down) .Select

Aetivecell . FormalaRici = "Toral"
Range ("E117) Select
Selection. FormalaRicl = "=SUHM(R(-9)CiR(-110)"
Selecrion AuraFill Descinationt-Range ("E11iGI1"), Typ
Range ("E11:611%) . Select.
Rows (11:17) Se1ece
Selecrion. Font.B0ld = True
Rows (F11:117) Setece
Selecrion. Font.B0ld = True
Seecrion.Curzenchzgion, Select
Seecrion.Columns . AutoFiE

£ns sun

Sub Teporsinveicaskeiacive ()

FiI0etanle

Izporcinvoicasialative Maczo
Inpore Tnveice.ck:, Total Rov. Formac.

+ Keyponra soxceuc: Cexles
Horkbooks .CpanText Filenama:=rG:\2016VEA\SampleFiles\invoice. cct, Origi
337, StartRowiel, Datalype:-xiDelimited, TextQualifiesi-iDeubleguoce
ConsecutiveDelimiceriaFaloe, Tabinfalse, Semicoloniefalss, CommareTrs

| Spacaiefalse, OtherieFalse, Fieldlntol=heray(heray(l, 5), Array (2,
eray(s, 1), Aexay(s, 1), Aseay(s, 1), Aesay(s, 1), Aeray(, 1)), Tes

Sereceion.End (xiewm) .Select
Aceivacell.Ofeser (1, O) -Range (A1) .Selece

images/00703.jpeg
EFRULIBCAARE 1B, W AL ERTRrhang ter:
“Screentpdating - False
Displaystatussar = False
“EnableEvents - False

nd With

"raad Tilter ftens fron worksheet Lable
VTtensTageVisilie — AppTicat fon. TranspaseC
ksPivots. L1 sT0bjocts (" th1¥isibleTtanst 151"} DataRadyRange. Value)

Sec put = wksPivous PivotTables¢"PiuorTablel")
“eall funcrion
SErcsg = SOLAP_Filterbyltenliss{ _
PUri-put FivotFields ("LtbIsales] . [product_nane] . product_nave] "), _
VIcensToBevisible:~vItensTosevisible, _
stenpattern:=" [b15ales] . [oroduct_nane] & Thislten] ")

Exitprac

on Error Resume hext

wish Apel ication
~EnabeEvents - True
“DisplayStatusgar = True
_screenUpdating = True

Fnd with

TF Len(sErritig) > O Then Nagkox sErritsg

Exit Sua

Ereproc:
sErraq = Err.Murber & * - & Err.Description
Resune CxitProc

End Sub

Private Funceion sOLAP_FilterByLcenLisc(8val pvf As Pivotrisld,
ByVal VItensToBevisible As Variant, _
ByVal stenPatiern 4s String) As String

Tters an OLAP pivat table to displey a list of itens,
whera sone of the ftens might not exist

'warks by testing whether each pivoticen exists, then buileing an
" array of existing fiens to be used with the visibleIvarslisc *

property

‘Input Parancrars:
“puF - pivoLField object to be filtered
“uTtensTaeVisible - 1-D array of strings represencing itens ta be
'sTtenPattern - string that has MOK pttern of pivatiten reference
*‘where the text "Thislten” #ill be replaced by each

Tten in vitersToBevisible Lo wake pivotiten references.
2.0.: "[tbisales]. (product_nawe] &lThisIten "

visthle

Diw IFilterTtencount As Lang, T4dx As Long
Di vFilterarray As Variant

Die vsavevisibleltensiise as Variant

Bl sbaburadioy AL ferdne. sBluntiim Hant At Stefag

images/00032.jpeg
WViatches

e

Tane

Te

[corer.

images/00702.jpeg
Sub F1lterOLAP_PTCQ)
"example showing call to function sOLAP_FilterByItemlList

Dim pvt As PivotTable
Dim sErrMsg As String, sTemplate As String
Dim vItemsToBeVisible As Variant

on Error GoTo ErrProc
With Application

images/00035.jpeg
Range ("E11:G11") .Select

Rows ("1:17) .Select.

Selection.Font.Bold = True

Rows ("11:117)

Selection DUMESTIE SN
Selection.CurrentRegion.Select
Selection.Columns.AutoFiT

R e

images/00034.jpeg

images/00037.jpeg
4R 8 c [
1 [Heading Heading Heading Heading
2 [pata Data Data Data
3|pata Data Data Data
4lpata Data Data Data
5|pata Data Data Data
6|pata Data Dpata Data
7|pata Data Data Data
8| Data Data Data
o|pata Data Data Data
10[pata Data Dpata Data

images/00036.jpeg
Selection.End (x1Down) .Select
Selectionoftaec (i, 0] .selece
| Range("Alin) FormulaRici = "Tocal®
Range ("E11%) | FormulaRiC1 = "=SUM(R(-91CHR(-11C)"
Range ("E11%) AuCoFi1l Descinacioni-Range ("ELLIGIL), Type:=xiFiliDefaulc
Rows (*1:1) .Font.Bold = True
Rows (*11:11%) Fonc.Bold = True
Range (i) .CurzentRegion. Column
P o

e

images/00028.jpeg
Selection.End (x1Down) .Select
| Range("arin) .Select
ReviveCell. FormulaRiCl = "Tocal®
ange s

L ection AMCaFiis Dereietion nebge (TLHIGHT), Typesmat

Range ("E11:611") . Select

images/00027.jpeg
(General)

Inporcinvoice Macro

Inport Invoice.txt. Add Total Row. Formac.

Keyboard Shortcus: Corlss

Wozkbooks .OpenText Filename:="G:\2016VBA\SampleFiles\inve

437, StartRow:=1,

DataTypei=xiDelimived, TextQualifit

images/00029.jpeg
edte

Princ Selection.address
sase

Princ Selection.Value
6/8/2017

Princ ActiveSheet.Name

images/00020.jpeg
M| MsgBiax Hinction.

anexpression. To omit some positionzl argumerts, you must include the
cortesgonding comma delimiter.

Example

Tis example uses the MsgBox function tc display a criticsl-error message in a
dialag box vith Yes and N buttons. The No button is specified as the default
response. The value returned by the MsgBox function depends on the buttan
chosen by the user. This example assumes that DEN0.HI P is 2 Help fila that contains
a topic with a Help contayt number equal to s 2 Help fila that contains 3 topic with 2
Help context number ecual to 1260,

Din flsg, Style, Title, Hielp, Cixt, Response, lyString
fag = "Do you vant to contirue ¥ ' Defins message.
Style = vbresto + vecritical + voDefoultButcon2 Define buttors.
Title = "Megeox Damsnctration” ' Dafins title
Help = "DEX0.ALP" ° Define Help File.
Coxt - 2000 Cefine topic

* context

Display message.

Rezponca - llegsox(iizg, Styls, Titls, Help, Ctnt)

If Response = bies Then * User chose Yes..
IyString = "ves' * Perform some sction.
Flte ' licar chosa tin
Mystring = “Ne™ * perforn some action.

End 17

images/00022.jpeg
Fiename.

origin

TextQualifer

ConsecutiveDetimicer

Required.

Optional

Optional

Optional

Optional

Optional

String

Variant

Variant

Variant

XTextQualifier

Variant

Specifis the file name of the text fl o be opened and
parsed.

Specifies the riginof the text ile.Can be one of the
folowing XIPlatform constans: xIMacintosh, xIWindows.or
XIMSDOS. Additionally. this could be an integer representing
the code page number of the desired code page. For

example, “1256" would specify that the encoding of the
sourcetext fileis Arabic (Windows).If this argumentis
omitted. the method uses the current stting of the File
Origin option in the Text Import Wizard.

The row number at which tostart parsing text. The default
valueis 1

Specifies the column format of the data n the fil. Can be one
of the folowing XiTextParsingType constants: xDelimited or
iFixedWidth. I ths argument s not specified. Microsoft
Excelattempts to determine the column format when it opens
the ik

Specifes thetext quaifer

True to have consecutive delimiters considered one delmiter.
The default i False.

images/00021.jpeg
(Generan -

Sib Tmpereimaien ()

.
Irpore Tavesce.the. Add Toral Rew. Forear.

PRIE—

Weskuosks cperTaxs Fileane =G\ 2016VSR Sampher e oo, exc7, Srizinie
oy rasetonits Daeviiperomietinsiad, ToneRtifiats bRty
L iavaar-iden, OimatrTates, Fieiiiarei-ceay (umar(ls 87, Acear(ts 317 _
Reear (3, 10, Rerar (s, 21, Aueoy (5, 25 Aeey(6s 1 Aeayi3, 11, Feetlirpismotinbes
A (ra 1oy et
Range ("E11%) Selace
Selection. fomulaRic: = "eSMIR-SICIRI-11E)"
Selection utoFill DescinaciorioRancs (ELLIGILY), TypeieiEiliDetaule.
Range (E111611) Selase
Rous(1:17) Sedece
Seleccion, fore Batd = True
Rawa(nLi11) fetece
Selection. ort Beta = True
Seieccion. CursintRegaon Seicct
Seitcrion. Colume Aueatie
2od 5

images/00024.jpeg
XlIColumnDataType Enumeration (Excel)
g office 365 devaccount | Last Updated: 6/12/2017 | 1 Contributor @B

Specifies how 2 column is to be parsed.

Name Value Descr
XDMYFormat 4 DMY cate format.
xIDYMFormat 7 DYM cate format.
XEEMDFormat 10 EMD date format.
xiGeneralformat 1 General
xIMDYformat 3 MDY cate format.
xIMYDFormat 6 MYD cate format.
xiSkipColumn 9 Column is not parsed.
TextFormat 2 Tex.

xIYDMFormat & DM cate format.

xIYMDFormat 5 YMD cate format.

images/00023.jpeg
Imedate

Print xlFixedWidch
2

Princ xldelimited
4

images/00026.jpeg
Edit View Insert Format | Debug
Compile VBAProject
Steplto "
¥ ,
52 BunTocursor cuiers
Add Watch,
&9 QuickWatch.. ShiftsF9
@ Toggle Breakpaint "
G ClesrAllBreskpoints CtrleShiftsFo

images/00025.jpeg
Range.End Property (Excel)

Retuns o Range ubject et g esens the el ot Uhe e1ud of e region thal contas e source ange, Equivalent
© pessing END+U? ARROW, END+DCWI ARROW, END~LSFT ATROW, or END+RIGHT ARRC. Reas-o1y Range
object.

Updsed 6122017 1 3 Conibuir @

Syntax

engression . Endl Direction)

vprecsien A varabie that represents 3 Range o0
Parameters
Name | Required/Cptionsl | Data Type | Descrption

Direction | Required XiDirection | The direction in which to mate.

images/00017.jpeg
A I o 3 e 9 H
1 [invbate InvNbr RepNbr Custhbr ProdRevenue ServRevenue ProdCost
2 [6/6/2021 123829521 ca7s4 21000 o o7
3 | 6/6/2021 123830545 3390 188100 0 85083
4 |6/6/2021 123831 554 €2523 510600 0 281158
5 |6/6/2021 123832521 5519 86200 o 4997
6 |6/6/2021 123833545 C3245 800100 o 388277
7 |6/6/2021 123834554 C779 339000 0 195298
8 |6/6/2021 123835 521 C1654 161000 0 90761
o |6/6/2021 123836 545 o460 275500 10000 146341
10|6/6/2021 12383754 C5143 925400 0 47515
1iTotal 123838521 c7868. 3306900 10000 1720275
12(6/6/2021/123839'585 3310 830200 0 68333
13|6/6/2021 123840 S54 C2959 1986000 0 528980
14|6/6/2021 123841521 C8361 94400 0 53180
15|6/6/2021 123842545 C1842 36500 55000 20696
16(6/6/2021 123343554 C4107 599700 0 276718
176/6/2021 123844 521 €5205 244300 0 143393
18| 6/6/2021 123845 545 C7745 63000 0 35102
19|6/6/2021 123846 554 C1730 212600 o 117787
20| 6/6/2021 123847521 C6292 974700 o a7
21(6/6/2021 123848545 C2008 327700 0 170968
226/6/2021 123849 54 CA096 30700 0 18056)
2

images/00016.jpeg
AT D 3 e s
InvDate [InvNbr RepNbr CustNbr ProdRevenue ‘ServRevenue ProdCost
6/5/2021 123813 s82 12000 423986
6/5/2021 123814, 131243
6/5/2021 123815 543
6/5/2021 123816 554
6/5/2021 123817 543
6/5/2021 123818543
6/5/2021 123819 582
6/5/2021 123820 517
6/5/2021 123821 543
Total

)
0

images/00019.jpeg
A 8

6/7/2021 123850
6/7/2021 123851
6/7/2021 123852
6/7/2021 123853
6/7/2021 123854
[Total

@

fe | =sUM(E6:E1048574)

[) 3 9
InvDate InvNbr RepNbr CustNbr ProdRevenue ServRevenue ProdCost
clesa 161000 o so7s1
cea60 275500 10000 146341
o143 525400 o a7sis
868 148200 o 7570
ca10 890200 o ass3z
o] 0 o

images/00018.jpeg
A 50 o | F s | H
1 [InvDate InvNbr RepNbr CustNbr ProdRevenue ServRevenue ProdCost
2 6/6/2021 123829521 (8754 21000 o 9875
3 |6/6/2021 123830 45 C3390 188100 0 85083
4 6/6/2021 123831554 C2523 510600 0 281158
5 |6/6/2021 123832521 C5519 86200 o 9967
6 |6/6/2021 123833 545 €324 800100 o a7
7 6/6/2021 123834 554 C7796 339000 0 195298
8 6/6/2021 123835521 C1654 161000 0 0761
9 |6/6/2021 123836 545 C6460 275500 10000 146381
10 6/6/2021 123837554 C5143 925400 0 473515
11 6/6/2021 123838 521 C7868 148200 0 75700
12|6/6/2021 123839 545 €3310 890200 0 468333
13| 6/6/2021 123840 554 C2959 986000 0 528380
14|6/6/2021 123881521 c8361 94400 0 53180
15 6/6/2021 123842545 C1842 36500 55000 20696
16 |6/6/2021 123843 554 C4107 599700 0 276718
17 6/6/2021 12388 521 5205 204500 o 143393
18| 6/6/2021 123845545 CT745 63000 o 3100
19 |6/6/2021 123846 554 C1730 212600 o 17787
20 |6/6/2021 123847 521 C6292 974700 0 a78731
21|6/6/2021 123848545 C2008 327700 0 170968
22 6/6/2021 123849 $54 CA096 0 18056
23 Total [55000 1314631

images/00051.jpeg
prex}
=

4 Fle Edt View Inset Fomat Debug
H&-d BAI9

(General)

Sub Cheprerda()
Fori=1To 10
Cells(s, 1).Value =
Next 1

| Endswb |

images/00050.jpeg
Sub Chapterda()
For i =1 To 10

LS

il

images/00053.jpeg

images/00052.jpeg
sazte
e
sate
swtE
sa21e
e
s
s21E
ez

8

173828 S
7 s
12383 1
12383 SI6
123537 5%
123841521
12342815
123843 554
123844 521

s
e
e
cete
e
cezs
ciai2
cior
ci20s

[E

200
w00
151000
215600
25400

35500
S50
209

8 s imocaune SinRepumit Coenatintt P Sancibeatis P

£ I3
o
e
0___ovet

10000 145341 Seia Riveroe
0 e
F—T

S6000" 20696 Swniee Rée
0 e
0 ume

images/00055.jpeg
gl tem January
Pl Hardware Revenve 1,972,637
N Softvare Revenue 236,716
8 Serice Revenue 473433
[l Cost of Good Sold 1,084,951
[l Seling Expense 394,527
[l G&A Expense 150,000
FllRsD 125,000

February

March

1,655,321 1,765,234

198,639
397,277
910427
331,064
150,000
125,000

210,628
421,256
965,379
351,047
150,000
125,000

“Apil
153,060
183,727
367,454
842,083
306.212
150,000
125,000

images/00054.jpeg
il invoiceDate Invoiceflumber SalesRephiumber Customerhiumber ProductRevenue

62011
6712011
6772011
6712011
6772011
6712011
672011

123829 521
123830 45
123831 554
123832 521
123833 45
123834 54
123835 S21

ca74.
3390
€253
5519
3245
c71%
C1654

21000
188100
510600

86200
800100
339000
161000

images/00057.jpeg
123 Main Stuest Akaon OH 4308

images/00056.jpeg

images/00059.jpeg
Language

Ease of Access.
Advanced

Customize Ribbon
Quick Access Toolbar

Add-ins

Trust Center

—
/;‘ Change options related to formula calculation,

Calculation options
Workbook Calculation®
Automatic
© Avtomatic xceptfordatatables
Manuat

Recalculate workbook before saving
‘Working with formulas
00 BIC reference style © €

2 Eormula AutoComplete ©
[Use table names in formulas
[Use GetpivotData functions for PivotTable references

images/00058.jpeg
Mcioss Product Quantity
PAFuit Apples 1
ElFuit Apricats 3
8 Vegetable Asparagus 62
BlFut Bananas 55

[t Blusbery 17
gl Vegetable Broccol 56
[l Vegetable Cabbage 35
(lFut Cheries 59
Gl Herbs DIl 91
Gl Vegetable Eggplant u
Bl Fit Kiwi 36

images/00049.jpeg
Sub Chaptersa()
For i=1To 10
Cells(i, i).Value = i

s

End Sub.

images/00040.jpeg
1 Apples
2 oranges

4 [Lemons.

s
12

26

images/00042.jpeg
A B [)
‘Apples | Oranges | Grapefruit | Lemons
& 53 85 7
6% 6% 0% 7%
Tomatoes Cabbage Lettuce Green Peppers
82 0 60 o8

images/00041.jpeg
A B c D
1 Apples. Oranges Grapefruit Lemons
2 a5 12 BE 15
3 71% 52%
&
5 | Tomatoes Cabbage lLettuce Green Peppers
6| 58 2 31)
7 30%
8 _
9| potatoes Yams Onions
10 51 26
18% 0% | 2%

A
1

images/00044.jpeg
£ F [

GoTospecil wX

O omments O o ateences

O canstans O Conen aterences
ormoi) Opeesents
4 moers Oepensents
@res ® Ovectony
g evs
@grons Ousteen

O O v cas oo

O cumentegion O Conatonatormts

O cunentaray O st eation

Oopes o

o et

images/00043.jpeg
c o = E
Gupetedt temons
wet 5 :
3 e
Tomwtons | cotboge | tettce | reeneppers |
2 e
ot
1% L] .
1 Carrots fatees
2 2
= 4% Spedal.. et

images/00046.jpeg
~ o B w

Region
North
North
North
East
East
[East

c)
Sales
766,469
77699
832410
703255
891,793
897,949

images/00045.jpeg
~ oo s

Region
North

Eost

G

Sales.
766,469
77699
832410
703,255
891,799
897.949

images/00048.jpeg
25 Microsoft Viual Basc fo Applcations - 4-Loopingadsm [rg

4 Fle Edit View Inset Fomat Debug Run Io
M&-d BRI9CI> 1 a
P! [Generai)

= Sub Chaprerda ()
Fori=1To 10
Cells(i, 1).Value

images/00047.jpeg
A_| B8 | € | 0 [EFIGH
Ounees_Grapeiuit__temons

N

T

e
EEEEEEES
e e
= —
10 BTSN M- N

w5 %

GreenBeams ool pew _carros

BEEE

TR T ©%

images/00039.jpeg

images/00038.jpeg
A B8 c
1 |Apples s
2 |oranges 12
3 | Grapefruit 86
/| |[— o LOW

images/00071.jpeg
Name Manager
Hew.. Edt.. Delete Erer |
Name Value Reters To scope Commen|

<

Retestor
XV [=sneetions =

images/00070.jpeg
Nome Manager

New.. Eot.. Detete

Name Volue RetersTo
Pl sope hectiisase

@ apples pples Sheetisas2

 gananas oranges asneetiisass

 Company. Companya Companya”

@ cument NewTopper ~NewTopper”

D Fistamay) R3ASEIASET.

Druts CProguct DAt =SheetlSASTSGSE

s IR IRR.. wSheet2SASISESS

D Lemons. ~sheetiisiss

Betersto:

KV [sneetisasz

Cose

images/00073.jpeg
RefersTo Scope.

2005, 1., =Sheet2SASTSFSS Sheet2
[7Oranges’ L., =SheetdSASTSESS Sheetd

[Apples’ Oran.. ='Sheetd QIISAST:.. Sheetd 2]
D print_area =Sheetsisas2 Sheets
0 print Ties [, Oranges’, L. Sheetd
 pi Apples”
e Proguctuist—¢.1
T Tablet CADPIES’ 1/1/2... =SheetlISAS2:SCS26 Workbook
Apples ‘Workbook v
>

[oFFseTiheetzisas2,00,coUNTASheetaisisa)

images/00072.jpeg
et
X [t

o

images/00075.jpeg
Table1

%

A B c
1 Product __Date aty
2 [apples 12012 J274
3 [Bananas /12012 (228
4 ki 1/1/2012 160
5 |lemons /1/2012 478
6 [oranges 1712012 513

images/00074.jpeg
[mew.][got.][puee | [o |

Value RefersTo Scope. Comment
Apples =Sheetiisasz Sheett

[“2345634567... Workbook
(Product Dat... =Sheet1SAST:SGSS Sheett

/12003, 1. =Sheet2SASTISFSS Workbook

Lemons =Sheettisass Sheett v

Betesto:
X /[="Companya”

images/00077.jpeg
Object drop-down Procedure drop-down

Pravace sub Werksnees_Followypes.

£na S ProfTabeseteacsscrarses

images/00076.jpeg
print_Area f | Apples

A B {0 D E
[Apples | Oranges | Lemons | Kiwis | Bananas
2| onm 28 160 4718 513

3 a2 76 183 724 43

P) 344 502 755 600

5[314 245 583 618 456

6| 8 487 100 78]

7

images/00079.jpeg
[mychartCiass

Pubiic winEvents

images/00078.jpeg
[worksneet =] [Fotowttypertink

[prion Expiicec =

Private Sub Norksheet_followiyperlink(8yVal Target As Hyperlink)

images/00060.jpeg
Numbers

images/00062.jpeg
Taxabie?

Tax
=IF(E4ROUNDIDH'S851.2)0)

images/00061.jpeg
[- £

A B d E
1 [TaxRate 6.25%
2
Unit Total

3|SKU Quantity Price Price Taxable?
apr 12 1245 1494] TRUE

23 18 187 TRUE
6329 18 19.95 TRUE
7 [616 1 642 FALSE
8 [809 64 175 TRUE
9 fEa1 822 012 TRUE

10/ Total

images/00064.jpeg
Same Row, Two Columns to the Left

RI2IC
REAICH) R

One Row Above, Same Column

images/00063.jpeg

images/00066.jpeg
=RC1°RIC

4 8121620242832 36 40 44 48
510152025 30 35 40 45 50 55 60
6121824 30 36 42 48 54 60 66 72
7142128354249 56 63 70 77 84
816243240 48 56 64 72 80 88 96
918127 36 45 54 63 72 81 90 99 108
REl 10 10 20 30 40 50 60 70 80 90 100 110 120
{71 11 11 22 33 44 55 66 77 88 99 110 121 132
€]l 12 12 24 36 43 60 72 84 96 108 120 132 144

images/00065.jpeg
InoiceDate Imoicellumber SalesReptiumber Customerhiumber ProduciRevenue SeniceRevenue, ProductCost

92010
o920t
s9201
s9201s

92010
a9t
92018
92018
92014
Total

123629 S21
123630 845
123631 554
12383 s21
123633 545
123634 554
123835 S21
12363 845
123637 854

Carsa
4056
a3
Coozs
a2
cass3
cis0e
crse
csm

530400
s88600
62200
830500
673600
966300
67100
658500
191700
s197300

10001

2580
307563
a7z
asu031
3nasy
s2ss75
27342)
308719
109534

[SSUMR2C (1)

images/00068.jpeg
= : —cowmNy)

DGT | DGU_| DGV_| DGW | DGX

images/00067.jpeg
£

=XFA1048572

E

images/00069.jpeg
| (UMI(WEEKOAYIROW(NDIRECT(E18"*822), 3126 "(OAY(ROW(INDIRECTIEL&""£E2)-13))
e f .

K u

I F I3 H |
Star Date. 21771965,
EndDate 6172017

#atFidaythe 13 [90]

images/00091.jpeg
Microsoft Excel X

Tracy's Weekly Pay: S1669.625

images/00090.jpeg
coEmployees
Stemt

EmployeeD
Emplyeetiame
Emplyeetiormatiours
EmployeeOverTmetiours
EmployeeieekyHours
m_employeehouryrate
m_employeeid
m_employeename.
m_employeeweekyhours
m_normahours
m_overtimehours.

Collection/Collection
VariantObjectcEnph
Stang

Stang

Double

Double

Double

staing

sting

staing

staing

Double

Double
VarianyObjecycEmph

images/00093.jpeg
How to use collections

images/00092.jpeg
East Tools 1/1/2015 Exclusive Shovel Trad

central Accessories 1/2/2015 Bright Hairpin Compa
east Jewelry 1/4/2015 Cool Jewelry Corpora
East Food 1/4/2015 Tasty Kettle Inc.

East Tools 1/7/2015 Remarkable Meter Cc
East sewelyy 1/7/2015 Wonderful Jewelry In
central Tools 1/9/2015 Remarkable Meter Cc
central Tools 1/10/2015 safe Flagpole Supply
Central Tools. 1/12/2015 Reliable Tripod Comg.
east Tools 1/1/2015 Matchless Vise Inc.
East Accessories 1/15/2015 Bright Hairpin Compa
east Tools 1/16/2015 Appealing Calculator
Wwest Accessories 1/19/2015 Bright Hairpin Compa
east Food 1/21/2015 Best Vegetable Comg

electrical Tools 4100
Accessories 700
lewelry 1800

Food 1200

1000)
100

sz88zs888sss

images/00095.jpeg
Lebelin cell A1

You can eate a colecton of ustom helpbuttons.

images/00094.jpeg
A B c D E
1 You can create a collection of custom help buttons.

2_|it makes it much easier for someane to update the help text
3 |And the buttons are easy to see.

0

F

images/00097.jpeg
Vae Type

Expression
Sorss Sore(1 1567
Stores(t) =

“Store 340001" Strng
Styie1 10 500)

images/00096.jpeg
Option Explicit

Public Type Style
StyleName As Scring
Price As Single
UnictsSold As Long
UnictsOnHand As Long

End Type

Public Type Store
1D Ae String
Styles() As Style

End Type

Sub myUDT ()

Dim mystyle As Style
myscyle.s

End S\ price.

SED
£ UnitsOnHand
£ unitssolg

images/00099.jpeg
Report Finaized X

A\, Doyeuwantto save changes and close?

o Cone

images/00098.jpeg
Enter Months

Enterthe number of months to average.

images/00080.jpeg
Appevent =] [Hewvorkbook- -]
Pubiic winEvents

images/00082.jpeg
A B c D
1 Name Address Phone Email
2

images/00081.jpeg
Watches

Expression [Vaue
o6 & myaray
myarray(1)
myAray(1,1) 0
myAmay(12) 20

images/00084.jpeg
A
i
2 | Apples
5 [Oranges
4 |Grapeuit
5 |Lemons
6 Tomatoes
7 |Cabbage
8 |Letiuce
9 |Peppers
10 Potatoes

| B | ¢

Dec 17 Jan 18
50
210
8 12
515
5 101
2 %
]
0 3
10 45

Maximum nteger is: 101

images/00083.jpeg
EXEIETNINE

A B ® D

Dec'17 Jan'18 Sum
Apples 45 0 45
Oranges 21

Grapefuit 86 12 %
Lemons B 15
Tomatoes 58 101 159

images/00086.jpeg
5]

=]

Project - VBAProje X

s

5 & VBAProject (Book1)

555 Mosoft Excel Objects

) Sheets (reety)
£) Mook
55 Moddes
A2 Modue1
53 Coss Modes

Clos1]

images/00085.jpeg
A B | c) E
1 Dec'i7 Jan'18 Sum Average
2 | Apples 45 0 45 25
3 Oranges 2 10 1
4| Grapefit 8 12 % 49
5 |Lemons 515 15
6 [Tomatoes 58 | 101 159 795
7 |Cabbage 24 2 25

images/00088.jpeg
Gprion Expricic

Pubic HichEvents xiChae hs Ca

Privace Sub xichare_Activace()

End sun

images/00087.jpeg
Gprion Beptiei

Bubise wisnEvencs x1app As App:

Private Sub x1App_Newtorkbook (3

images/00089.jpeg
Option Explicic

Sub SingleEmployeePayTime ()
Dim clsEmployee As cEmplovee

Sec clsEmployee = New cEmployee
Wich clsEmployee
_ExployeeName = "Tracy Syrstad"
Emp
P
&5 EmployeelD
E2¢ES EmployeeName

50 & EmployeeNomalHours
S8 EmplojesOuemerious
D, B8 EmployeeeekiyHours
DparS EmplojeeWeekiyPay
Dim thlEmployees As ListObject
Dim 1 As Long

on ()
n 'decl

images/00396.jpeg
Range("A1").0ffset(ColumnOffset:=1)
Range("Al1").0ffset(,1)

images/00395.jpeg

images/00398.jpeg
Set Rng = Range("B1:B16").Find(What
LookIn:=x1Values)
Rng.Offset(, 1).Value = "LOW"

images/00397.jpeg
Range("B2").0ffset(RowOffset:=-1)
Range("B2").0ffset(-1)

images/00392.jpeg
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
For i = 1 to FinalRow

Range("A" & i & ":E" & i).Font.Bold = True
Next i

images/00391.jpeg

images/00394.jpeg

images/00393.jpeg
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
For i = 1 to FinalRow

Cells(i,"A") .Resize(,5).Font.Bold = True
Next i

images/00399.jpeg
sub FindLow()
With Range("B1:B16")
Set Rng - .Tind(What:-"0", LookAt:-xIWhole, LookIn:-xIValues)
If Not Rng Is Nothing Then
firstAddress — Rng.Address
Do
Rng.0ffset(, 1).Value = "LON"
Set Rng = .FindNext(Rna)
Loop While Not Rna Is Nothing And Rng.Address <> firstAddress
End If
End With
End Sub

images/00390.jpeg
With Worksheets("Sheet2"”)
WorksheetFunction.Sum(.Range(.Range("A1"), .Range("A7")))
End With

images/00385.jpeg

images/00384.jpeg
Range("D57)

[ps]

Range("B3").Range("C3")

Cells(5,4)

Range("A1").0ffset(4,3)

Range("MyRange”) 'assuming that D5 has a 'Name of MyRange

images/00387.jpeg

images/00386.jpeg

images/00381.jpeg
workbooks .Openlext F1lename:="C:\Data\invoice.txt", Origi
StartRow:=1, DataType:=x1Delinited, TextQualifie
ConsecutiveDelimiter:=False, Tab:=False, Semicolon
Comma:=True, Space:=False, Other:=False, FieldInfo
Array(1, 3), Array(2, 13, Array(3, 1), Array(4, 1), _
Array(5, 1), Array(§, 1), Array(7, 1))
FinalRow = Cel1s(Rows.Count, 13.Fnd(x1lIn) . Row
TotalRow = FinalRow + 1
Cells(TotalRow, 1).Value = "Total”
Cells(TotalRow, 5).Resize(1, 3).FormulaR1Cl =
Cells(TotalRow, 1).Resize(1, 7).Font.Bold = True
Cells(1, 1).Resize(l, 7).Font.Rold = True
Cells(1, 1).Resize(TotalRow, 7).Columns.AutoFit
End Sl

437, -

alse, _
rray(

N (R2C:RL-11C)"

=x1DoubleQuote, _

images/00380.jpeg
Sub FormatInvoiceFixed()
" Written by Bi11 Jelen. Import invoice.txt and add totals.

images/00383.jpeg
Application > Worl

Kbook > Worksheet > Range

images/00382.jpeg
Range("A1")
Worksheets(1).Range("A1")

images/00389.jpeg
WorksheetFunction. Sum(Worksheets ("Sheet2™) . Range (Worksheets ("Sheer2®). _
Range("A1"), Workshests("Sheer2").Range("A7")))

images/00388.jpeg
worksheetrFunction.sum(Worksheets("Sheets”).Range(Range("Al"), _
Range("A7")))

images/00374.jpeg
ActiveCell.Offset(0, 4).Range("Al").Select
Selection.FormilaRICL = "=SUM(RZC:R[-1]C)"

Selection.AutoFi1l Destination:=ActiveCel1.Range("A1:C1"), Type
x1Fi11Default

ActiveCell.Range("A1:C1").Select

images/00373.jpeg
- Build a Total row below this
Cells(TotalRow,1).Value = "Total"

images/00376.jpeg
ActiveCell.Rows("1:1").EntireRow.Select
ActiveCell.Activate

Selection.Font.Bold = True
Application.Goto Reference:="R1C1:R1C7"

Selection.Font.Bold = True

images/00375.jpeg
Cells(TotalRow,S).Resize(l, 3).FormulaR1Cl

UM(R2C:R[-1]O)"

images/00370.jpeg
UL FOIRRELE] SN

Workbooks.OpenText Filenane: ata\invoice. oxe
StartRow:=1, DataType:=xiDelited, TextQualifier:
Consecutivebelimiter:=False, Tab:=False, Semicolon:
Comaz=True, Space:=False, Other:=False, FieldInfo!
Array(1, 3, Array@@, 1), ArrayG, 1, Array(, 1), _
Array(s, 1, Array(6, 1), Array(7, 1)

Selection. End(xI0own) . Select
ActiveCell.Of fset(1, 0).Range("Al
ActiveCell . FormulaRicl = "Total"
ActiveCell 0ffsec(0, 4).Range("A1").select

Selection. FormuTaRLCL = "=SIM(RXC:R-110)"
Selection,AutoFi11 Destination:=ActiveCell Range("AL:C1"), Typ
FDefane

ActiveCel.Range("AL:C1"). Select

ActiveCell Rows(*1:1") EntireRow.Select

ActiveCell Activate
Selection. Font.Bold = True
Appication.Goto Reference:
Selection. Font.Bold = True
Selection. Currencheglon. Select
Selection. Colums. AutoFit

End Sub

origin:=a37,

select

ac

acr”

images/00372.jpeg
ActiveCell.Offset(1,0).Select
ActiveCell.FormulaR1Cl Total"”

images/00371.jpeg
" Find the Tast row with data. This might change every day
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row
TotalRow = FinalRow + 1

images/00378.jpeg

images/00377.jpeg
Cells(TotalRow, 1).Resize(1l, 7).Font.Bold = True
Cells(1l, 1).Resize(l, 7).Font.Bold = True

images/00379.jpeg

images/00363.jpeg
FinalRow = Cells(Rows.Count, 1).End(x1Up).Row

images/00362.jpeg
FinalRow = 0

For i =1 to 7

ThisFinal = Cells(Rows.Count, 1).End(x1Up).Row
If ThisFinal > FinalRow then FinalRow = ThisFinal
Next i

images/00365.jpeg
Cells(FinalRow + 1, 5).Formula

UM(EZ:E" & FinalRow & ")"

images/00364.jpeg
Cells(FinalRow + 1, 1).Value = "Total"

images/00361.jpeg
FinalRow = Cells.Find("*", SearchOrder
SearchDirection:=x1Previous).Row

images/00360.jpeg

images/00367.jpeg

images/00366.jpeg
Cells(FinalRow+1l, 5).Resize(l, 3).FormulaR1Cl = "=SUM(R2C:R[-1]O)"

images/00369.jpeg
With Range("A14:G14").Font

.Bold = True

.Size = 12

.ColorIndex = 5

.Underline = x1UnderlineStyleDoubleAccounting
End With

images/00368.jpeg
Range("A14:G14").Select

Selection.Font.Bold = True

Selection.Font.Size = 12

Selection.Font.ColorIndex = 5

Selection.Font.Underline = x1UnderlineStyleDoubleAccounting

images/00352.jpeg
jorksheets (1)

images/00351.jpeg
Balls("Soccer").Kick Direction
Balls("Soccer").Kick Left, Elevatiol

Left, Elevation:
High

images/00354.jpeg
ActiveCell.Interior.Color = Range("Al").Interior.Color

images/00353.jpeg

images/00350.jpeg
ActiveSheet.Shapes.AddShape 1, 10, 20, 100, 200

images/00359.jpeg

images/00356.jpeg
FinalColletter = MID(TABCDEFGHLJKLMNOPQRSTUVWXYZ™, FinalCol, 1)
Range(FinalCollLetter & "2").Select

images/00355.jpeg
Range("E" & TotalRow).Formula = "=SUM(E2:E" & TotalRow-1 & "

images/00358.jpeg
FinalRow

Cells(Rows.Count, 1).Ena(xiUp.

images/00357.jpeg
FinalColletter = CHR(64 + FinalCol)
Range(FinalColLetter & "2").Select

images/00341.jpeg
Application.MacroOptions Macro

Importlnvoice”, _
Descriptiol . ShortcutKey:="j"

images/00340.jpeg

images/00343.jpeg
Sub ImportInvoicesRelative()
' ImportInvoicesRelative Macro

" Import. Total Row. Format.

" Keyboard Shortcut: Ctrl+)

Workbooks.OpenText Filename:="C:\data\invoice.txt", _
Origin:- 437, StartRow:-1, DataType:-x1Delimited, _
TextQualifier:=x1DoubleQuote, ConsecutiveDelimitel
Tab:=False, Semicolon:=False, Comma:=True, Space
Other:=False, FieldInfo:=Array(Array(l, 3), Array(2, 1), _
Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), _
Array(7, 1)), TrailingMinusNumbers:=True
Selection.End(x1Down).Select

ActiveCell.0ffset(1, 0).Range("Al").Select
ActiveCell.FormulaR1Cl = "Total"”

ActiveCell.Offser(0, 4).Range("A1:C1").Select
Selection.FormulaR1Cl = "=SUM(R[-9]C:R[-1]O)"
ActiveCell.Rows("1:1").EntireRow. Select

ActiveCell.Activate
Selection.Font.Bold = True
Application.Goto Reference
Selection.Font.Bold = True
Selection.CurrentRegion.Select
Selection.Columns.AutoFitSelection.Font.Bold = True
End Sub

R1C1:R1C7"

images/00342.jpeg
workbooks.Openlext Filename:="(:\somepath\invoice.txt", _
Origin:=437, StartRow:=1, DataType:=x1Delimited, _
TextQualifier:=xT1DoubleQuote, ConsecutiveDelimiter:
Tab:=True, Semicolon:=False, Comma:=True, Space:=False, _
Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), _
Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), _
Arrav(7. 1)). TrailingMinusNumbers:=True

False, _

images/00349.jpeg
ActiveSheet.Shapes.AddShape type:=1, Left:=10, Top:=20, _
Width:=100, Height:=200

images/00348.jpeg

images/00345.jpeg
sSelection.End(x1Down).5elect
Range("A11").Select
ActiveCell.FormulaR1C1l = "Total”
Range("E11").Select
Selection.FormulaR1Cl = _
"=SUM(R[-9]C:R[-110)"
Selection.AutoFill _
Destination:=Range("E11:G11"), _
Type:=x1Fil1Default

images/00344.jpeg
Sub FermatInvoice3()

' FormatInvoice3 Macro

" Import. Total. Format.

' Keyboard Shortcut: Ctrl+K

Workbooks.OpenText Filename \Data\invoice.txt",
Origini=437, StartRow:=1, DataType:=xIDelimited, _
TextCualifier:=x1DoubleQuote, ConsecutiveDelimiter:=False, _
Tab:=False, Semiccloni=False, Comma:=True, Space:=False, _
Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), _
Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), _
Array(7, 1), TrailingMinusNumbers:=True

Selection.Cnd(x1Down) . Select

ActiveCell.0ffset(1, 0).Range("A1").Select

ActiveCell.formu1aR1C1 - "Total"

ActiveCell.0ffset(0, 4).Range("A1").Select

Selection. FornulaR1C1 UM(R2C:R[-110)"

Selection.AutoFill Destination:=ActiveCell.Range("A1:C1"), _
Type:=x1Fil1Default

ActiveCell.Range("A1:C1").Select

ActiveCell.Rows("1:1") .CntireRow. Select

ActiveCell.Activate

Selection.font.Bold — True

Application.Goto Reference:="R1C1:R1C7"

Selection.Font.Bold — True

Selection.CurrentRegion.Select

Selection. Columns . AutoFit

End Sub

images/00347.jpeg
occar").Kick Directiol

images/00346.jpeg

images/00330.jpeg
roperties - ThisWorkbook
e —

uphabets | catepored |

images/00332.jpeg
Add-lns

Addins available:

[CJ Anaiysis ToolPak.

L] Analysis ToolPak - VBA.

[euro Currency Tools
RibbonX Visual Designer

TexTovalues
Converts 3 range containing text to values.

Cancel
Browse..

Automation.

images/00331.jpeg
ey View and manage Microsoft Office Add-ins.
Formelas
Deta e
proating [Name ~ Tiocaten [nype o|
G Inactive Application Add-ins]
o Analysis ToolPak. CLYSIZXIL Excel Ado-in T
g Bniysis ToolPak - V3A CLENXUAM Excel Adc-i e
Ease of Accass Add Anasis Toolpak
Publisrer: Micrcsoft Corporation
i Compatibily: NG compaibiliy information availzble
Custormize Ribbér Location: CAFrogram Files\Vicrosort Office\foctOffice \LIbranh
Analysis\ ANALYS220L
Quick Access Toalbar Desciption: Prowdes cata analysis ool for staistcal and engineering
[rere | sl
Trst Conter. Manage: [Excel Adins o
(oM Adains ok || cance
T T —{Actions - T T i
| XML Expansion Packs
 Dlsabled ltems

images/00338.jpeg
Calculation Results:
first value

second value

3

images/00337.jpeg
Hello World app
Write [ﬁu To Sheet

1§ Use to quickly 2dd numbers to your sheet

Calculation Results:

images/00339.jpeg
Calculation Results:
9

16

25

34

289

images/00334.jpeg
Office Add-ins
MYADDNS | SHARED FOLOER | STORE

ey

L

images/00333.jpeg
Tust Center

7 X
THE P Trsted Web AddinCatogs
TrtedLocatons
e Usetheseseting o manage our e s catog.
il 3 ot lowamy web s ins o
0 et ot ain o the Office Streto st
daim
Trsted oo Table
ActvekStings
T R ——
MacoSetings <o oo ype o show i et i . W wi sttty st
v g oyt i i il when o documints
proed Coogut
Messge b — bt |
Toted Csog ddress Cataog Ty Showinbens
o \workpelWyAppi Heltord - Networkshre =]
e BlckSetings
oy Opins.
‘Monage Add-in Catalogs % Bemove |

v e g et Lo]

e [Cox e |

images/00336.jpeg
1793

(!

Hello World app
Wiite Data To Sheet

Read & Calculate Data From Sheet

Calculation Results:
54446

images/00335.jpeg
|| Hello World app

Hello World!

images/00321.jpeg
Microsoft Visual Basic for Applications

A\, Wrong number of arguments orinvald property assignment

Help

images/00320.jpeg
Repairs to ‘Simple Ribbonsm’ 7 X

Excel was able to open the il by repairing of removing the.
unreadable content.

Excel completed il evel validation and repair. Some parts of this workbook may have
been repaired or discarded.

Click to view log il lsting

CAUsersTracn AppData\LocalTemp\error025880 O1umi

images/00327.jpeg
1 Consolicated Acticn Py

2 Ingplcation taurerer

po——y

Lottt e

e e
o

Caracece

x|

o

images/00326.jpeg

images/00329.jpeg
@) savers

« ~ A [« Microsoft > Addns v o
Organize v Newfolder
Name = Date maiied

Noitems match your search.

Search Addins

Type

File name: | Convert Values xlam|

Save as type: | Excel Add-In ("aam)

Authors: Tracy. Tegs Addateg

= Hide Folders Tools

Save

Cancel

©

images/00328.jpeg
26-ConvertVeluesadam Properties
General| Summary | tatiscs | Contents | Custom

e [TextTovalves

Author: [Tracy Syrstad|

Comments: [Converts a range containing textto vaues.

Properties *
Size

Title

Tags
Categories

Related Dates
Last Modifed
Created

Last Printed

Related People
Author

images/00323.jpeg
[Runtieto

Macrosin Tris iombosk.
Decaption

[ane

Nocro Opiens
Maco e
unvero
Shotater
curmsne]
Dcrtion:

oK

| e |

images/00322.jpeg
MicrosoftExcel

vl ot openth s Sl Bk bt the e fermat s tension ot i Ve tht 1
o 1nd ksl oaanon ke e ot o 1 1.

|

images/00325.jpeg
2

]

ik
SmartLookup.
AssignMacro.. [y
it At Tex.

Set as Default Shape

Size and Properties.

Format Shape.

images/00324.jpeg
& e Ereeis | (2]

7 & View Code
Insert Design
= Mode [3]RunDialog
Form Controls

= moe

[Button (Form Control)

ofEvEE 3
BloalREl

images/00319.jpeg
Moot bl *

@ sty et s . s o ot s oy natin e

s wordoek arx
w] [w]

images/00792.jpeg
Sub FormatWatertall()
Din ch As Chart
Din 10 As Legend
Din Tgentry As LagensEntry
Din iLegEntry As Long

Set cht = ActiveChart
Set 1o = che. Legend
For iLegEntry = 1 T 1g.Legendénsries. Count
Set 1gentry - 1g.Legendnzries(ilegCnery)
Igentry.Format. i 1. ForeColor.ObjectTherecolor msoThemeColorAccant + iLegEntry - 1
Next
e

images/00791.jpeg
Sub WaterfallChart()
Dim CH As Chart
Set CH = ActiveSheet.Shapes.AddChart2(-1, x1Waterfall).Chart
CH.SetSourceData Source:=ActiveSheet.Range("A1:B7")
' Mark certain points as totals
With CH.FullSeriesCollection(1)
.Points(1).IsTotal = True
.Points(3).IsTotal = True
.Points(7).IsTotal = True
End With
Fnd Sub

images/00310.jpeg
Sitems 1 item selected

(8114 [= | Chapter 25-SimpleRi... Compressed Folder Tools = B X
Wome st view btd)
« “ 4 [§ « Cha.. > Chapter25-Sim.. v & Search Chapter 25-SimpleRib... £
— Name e comp
e e folder
e File folder
T docprops e folder
Bo File folder
Content Typesham AL Document

images/00794.jpeg
Sub CreateChartIn200720100)

'Create a Clustered Column Chart in B8:G15 from data in A3:Gé
Dim CH As Chart

Range ("A3:G6") . Select

Set CH = ActiveSheet.Shapes.AddChart(_
X1ChartType:=x1ColumnClustered, _

Left:=Range("B8").Left, _

Range("B8").Top, _

Range("B8:G15").Width, _

ange ("B8:G15") . Height) . Chart

images/00793.jpeg
Sub ExportChart()

Dim cht As Chart

Set cht = ActiveChart
cht.Export Filename
cnd Sub

“C:\Chart.gif", Filtername:="GIF"

images/00790.jpeg
Sub RegionMapChart()
Dim CH As Chart
Set Cll = ActiveSheet.Shapes.AddChart2(-1, xIRegionMap).Chart
CH.SetSourceData Source:=Activesheet.Range("A1:87")
' the following properties are specific to filled nap charts
With CH.Ful1SeriesCollection(1)
.GeoMappinglevel = x1GeoMappinglevelDataOnly
.RegionLabelGption = x1RegionLabelOptionsBestFitonly
End With
cod Sk

images/00316.jpeg
ot 490 1 <5 205 s S

=]

images/00315.jpeg
Click
toRun

(.

images/00799.jpeg
DB .MaxPoint.Modity _
Newtype:=x1ConditionValuePercent, NewValu

images/00318.jpeg
Cusorn LI Ratime Face ' Simple Fikbon lsm x

(Wi schemis ol com A 20007 csomii i
Eipbing (e A i S oS U099 e 3

C=— [==a

images/00317.jpeg
Custom Ul Runtime Error in Simple Ribbon.dsm
Emor found in Custom UI XML of “C:\Chapter 25\Simple Ribbon.

Q i
o
e .

oK OKto Al

images/00312.jpeg
.
s
G
i
[
kot
o
Totcans

[——

Chons ot rom®

Gumemicte Fson®

@ Ehode
Wl
@ oo
@0

e
st ptnie |

T — [——
i = i
H e
H b
& ey L e rorinon
wid a

v reug

pre—

images/00796.jpeg
Range(A2:Al1l") .FormatConditions.AddDatabar

ThisCond = Range("A2:A11").FormatConditions.Count

With Range("A2:A11").FormatConditions(ThisCond).BarColor
.Color = RGB(255, 0, 0) ' Red
.TintAndShade = -0.5 ' Darker than normal

Fnd With

images/00311.jpeg
& Cusers\irac/\esktop).rels - Notepade+ o X
Fie Edt Sexch View Fncocing liguge Setngs Micm R Phigin: Window

cOHBREER| JmbkDe|ay| e BRIE
R 5]

T veroion10" secedin UEe" sendatore e B

L e
"Necps/ {Schemas CRAREBEOTRALS. OXS/PASKaTe 2006/ FeLAT100S0IPS ><RE LS TAORSLD
Taretasn Topes
"htp:/ fschomns -opeDsRLLorRALS. aTafcEiceDosument 2006/ relatiorships extended
—proper iea® Tesgeiandouiops/abi e’ (~Releriouship I 302" Tspme
Fedyirt g SRS S S e
roparties” Targete-aaoProRs/core. " /><ReIACIONsnIp TamFIGL" T7pen
i cbomes AL eS8 L 50 rormont JLMIE feas S snaizs oEBios,
cuneat” Tazgetergl porkbock i+ oK/Re1at:onships>

lngth:500 Gnes:z iz Col: 516 el 0[O DorWindows UTF-Ow/cDOM NS

images/00795.jpeg

images/00314.jpeg
p

M sl el
vome shue view e

Compressed Folder Tools

o 1 [H < costomtt > ses Vo

1 customiold
(3 Chapter25 - Simple
e

v custombl

s

Titem

) images
1] dochrops

A Name B

customUItami.rels

v

Search _rels

Type

XML Document

images/00798.jpeg
DB.MinPoint.Modity _
Newtype:=x1ConditionValueNumber, NewValue

images/00313.jpeg
Q

My Programs.

My First Ribbon

x

Hello World

images/00797.jpeg
Dim DB As Databar

' Add the data bars
Set DB = Range("A2:A11").FormatConditions.AddDatabar

' Use a red that is 25% darker
With DB.BarColor
.Color = RGB(255, 0, 0)
.TintAndShade = -0.5
End With

images/00309.jpeg
[Nl My First Ribbon

images/00308.jpeg
4 [= | customui

EIW e e e

« v A [« Chapter25 > customui
o Quick access L
& Oneore customUitaami
@ Thise
& Network

& Homegroup

Titem

vo

Sesrch customui

Date modified

s

15 7:59 PM

Type

XML Document

images/00781.jpeg
Sub FormatBorder()

Dim cht As Chart

Set cht = ActiveChart

With cht.ChartArea.Format.Line
.DashStyle = msoLineLongDashDotDot
.ForeColor.RGB = RGB(50, 0, 128)
End With

End Sub

images/00780.jpeg
Sub FormatLineOrBorders()

Dim cht As Chart

Set cht = ActiveChart

With cht.SeriesCollection(1).Trendlines(1).Format.Line
.DashStyle = msoLineLongDashDotDot
.ForeColor.RGB = RGB(50, 0, 128)
.BeginArrowheadLength = msoArrowheadShort
.BeginArrowheadStyle = msoArrowheadOval
.BeginArrowheadwidth = msoArrowheadNarrow
.EndArrowheadlength = msoArrowheadLong
.EndArrowheadStyle = msoArrowheadTriangle
.EndArrowheadWidth = msoArrowheadwide

End With

End Sub

images/00783.jpeg
Set WS = ActiveSheet
Range("A1:G4").Select

Set CH = WS.Shapes.AddChart2(Style:=201, _
X1ChartType:=x1ColumnClustered, _
Left:=[B6].Left, _

Top:=[B6].Top, _

images/00782.jpeg
Dim
Dim
Dim
Dim
Dim

WS As Worksheet
CH As Chart

Serl As Series
Ser2 As Series
Ser3 As Series

images/00305.jpeg
Userform

Privace sub Comandburton Click()
Untosd e
£na s

Privace sup Userrorm Instialsze()
i §S 3o Wozksncer
Set WS = Worksneats ("Sheeri®)

Finalfow = ¥S.Cells (Rows.Count, 1) .ERd (X10p) .Rox
For 4 = 2 To FinalRew

e Listox: AdaTten HS.Cella(t, 1)
Nexs 1

The nexs line 1s actuslly the line that cavses an exsor

images/00789.jpeg
' Legend at the top, per Gene Z.
CH.SetElement msoElementLegendTop

images/00304.jpeg
Sub PrepazernaDispiar()
+ sonezines an erzor happens in & userfom
* yet che editer zeporcs ic as the nexc line
Din §S As Workeneer
Sec WS = Horksneets ("Sheetin)

FinalRow = HS.Cells (Rows.Count, 1) .End (x10p) -Row

wS.cenls (2, 1) Sore _
RegiioNs.Calls (s 1), Orderiimxihscending, Header:

HagBox macro complese”

Ena s

images/00788.jpeg
' Data Labels in white

With Serl.Datalabels.Format.TextFrame2.TextRange.Font.Fill
.Visible = msoTrue

.ForeColor.0bjectThemeColor = msoThemeColorBackgroundl
.Solid

End With

images/00307.jpeg
Microsoft Visual Basic

Run-tme error '1004:
Method Range' of object'_Global faied

= ()

images/00306.jpeg
Microsoft Visual Basic

Run-tme eror '
‘Subscriptoutof range:

([Ccontrne]

images/00301.jpeg
Debug Run Tool:
» o [@]e)
Xl =

BT T sub can

images/00785.jpeg
' Set the secondary axis to go from 60% to 100%
CH.Axes(x1Value, x1Secondary).MinimumScale = 0.6
CH.Axes(x1Value, x1Secondary).MaximumScale = 1

images/00300.jpeg
(General)

Sub Causernzrror ()
k-2
@| Workbaoks.Open Filename:="C:\NotHere.x1s"
MegBox "The program is complece

Ena o1}

images/00784.jpeg
" Move Series 2 to secondary axis as Tline
Set Ser2 = CH.FullSeriesCollection(2)
With Ser2

.AxisGroup = x1Secondary

.ChartType = xILine

End With

* Move Series 3 to secondary axis as line
Set Ser3 = CH.FullSeriesCollection(3)
With Ser3

.AxisGroup = x1Secondary

.ChartType = xILine

End With

images/00303.jpeg
Microsoft Visual Basic

Run-tme error ‘13
Type mismatch

(Ceonue]

images/00787.jpeg
' Turn off the gridlines for left axis

CH.Axes (xValue) .HasMajorGridlines = False

' Add gridlines for right axis

CH.SetElement msoElementSecondaryValueGridLinesMajor
CH.SetElement msoElementSecondaryValueGridLinesMinorMajor

" Hide the labels on the primary axis
CH.Axes(x1Value) .TickLabelPosition = xINone

' Replace axis labels with a data label on the column
Set Serl = CH.FullSeriesCollection(1)
Serl.ApplyDatalabels

Ser1l Datal abels Position = x1l abelPositionCenter

images/00302.jpeg
\er
Microsoft Visual Basic for Applications o

A Can't execute code in break mode proaca
| -

| N

e

Tksheet

images/00786.jpeg
' Labels every 10%, secondary gridline at 5%
CH.Axes(xIValue, x1Secondary) .MajorUnit = 0.1
CH.Axes(xIValue, x1Secondary).MinorUnit = 0.05
CH.Axes(x1Value, x1Secondary).TickLabels.NumberFormat = "0%"

images/00770.jpeg
With CH.ChartTitle.Format.TextFrame2.TextRange.Font
.Name = "Rockwell"

.Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent2
.Size = 14
EFnd With

images/00772.jpeg
CH.ChartGroups(1).FullCategoryCollection(4).IsFiltered = True
CH.ChartGroups(1).FullCategoryCollection(8).IsFiltered = True
CH.ChartGroups(1).FullCategoryCollection(12).IsFiltered - True
CH. ChartGroups(1) . FullCategoryCollection(16).IsFiltered = True

images/00771.jpeg
CH.SetElement msoElementPrimaryCategoryAxisTitleHorizontal
CH.Axes(x1Category, x1Primary).AxisTitle.Caption = "Months"
CH.Axes(x1Category, x1Primary).AxisTitle. _
Format.TextFrame2.TextRange.Font.Fill. _
ForeColor.ObjectThemeColor = msoThemeColorAccent2

images/00778.jpeg
Sub
Dim
Dim
Set
Set

FormatWithPicture()

cht As Chart

ser As Series

cht = ActiveChart

ser = cht.SeriesCollection(1)

With ser.Format.Fill
.Patterned msoPatternDarkVertical

.BackColor.RGB
.ForeColor.RGB

RGB(255,255,255)
RGB(255,0,0)

End With

End

Sub

images/00777.jpeg
Sub FormatWithPicture()

Dim cht As Chart

Dim ser As Series

Set cht = ActiveChart

Set ser = cht.SeriesCollection(1)
MyPic = "C:\PodCastTitlel.jpg"
ser.Format.Fil1.UserPicture MyPic
End Sub

images/00779.jpeg
Sub TwoColorGradient()

Dim cht As Chart

Dim ser As Series

Set cht - ActiveChart

Set ser = cht.SeriesCollection(l)
ser.Format.Fi11.TwoColorGradient msoGradientFromCorner, 3
ser.Format.Fi11.ForeColor.ObjectThemeColor = msoThemeColorAccenté
ser.Format.Fi11.BackColor.ObjectThemeColor = msoThemeColorAccent?
End Sub

images/00774.jpeg
Dim cht As Chart

Dim upb As UpBars

Set cht = ActiveChart

Set upb = cht.ChartGroups(1).UpBars
upb.Format.Fill.ForeColor.RGB = RGB(0O, 0, 255)

images/00773.jpeg
Sub UseSetElement()
Dim WS As Worksheet
Dim CH As Chart

Set WS = ActiveSheet
Range("AL:M4").Select
Set CH = WS.Shapes.AddChart2(Style:=201, _
X1ChartType:=x1ColumClustered, _
Left:=[B6].Lefr, _

Top:=[B61.Top, _

NewLayout:=False).Chart

' Set value axis to display thousands
CH. SetElement msoElementPrimaryValueAxisThousands

' move the legend to the top
CH. SetElement msoElementLegendTop
End Sub

images/00776.jpeg
Sub ApplyTexture()

Dim cht As Chart

Dim ser As Series

Set cht = ActiveChart

Set ser = cht.SeriesCollection(2)
ser.Format.Fill.PresetTextured msoTextureGreenMarble
End Sub

images/00775.jpeg
Sub ApplyTheneColor ()

Dim cht As Chart

Dim ser As Series

Set cht = ActiveChart

Set ser = cht.SeriesCollection(1)

ser.Format .Fi11.ForeColor.OhjectThemeColor = msoThemeColorAccent
End Sub

images/00761.jpeg
-Range("A1:B7").Select
ActiveSheet.Shapes.AddChart2(-1, xlWaterfall).Select

images/00760.jpeg
Dim CH As Chart
Set CH = ActiveSheet.Shapes _
.AddChart2(-1, x1RegionMap).Chart
CH.SetSourceData Source:=Range("D1:E7")
' Settings specific to xTRegionMap:
With CH.FullSeriesCollection(1)
.GeoMappingLevel = x1GeoMappingLevelDataOnly
.RegionLabelOption = x1RegionLabelOptionsBestFitOnly
End With

images/00767.jpeg
ActiveChart.ChartTitle.Caption = "Sales by Region"

images/00766.jpeg
For each Sh in ActiveSheet.Shapes
If Sh.TopLeftCell.Address = "SAS4" then
Sh.Chart.Interior.Color = RGB(0,255,0)
End If
Next Sh

images/00769.jpeg
CH.SetElement msoElementChartTitleAboveChart

images/00768.jpeg
CH.ChartTitle.Caption = "Sales by Region"

images/00763.jpeg
Dim WS as Worksheet

Dim SH as Shape

Dim CH as Chart

Set WS = ActiveSheet

Set SH = WS.Shapes.AddChart2(. ..
Set CH = SH.Chart

images/00762.jpeg
Sub CreateChartUsingAddChart2()

"Create a Clustered Column Chart in B8:G1S from data in A3:G6
Dim CH As Chart

Range("A3:G6").Select

Set CH = ActiveSheet.Shapes.AddChart2(_

Style
X1ChartType:=x1ColumnClustered, _
ange("BS").Left, _
:=Range("B8").Top, _

NewLayout:=True) .Chart
End Snfy

images/00765.jpeg
WS.Shapes(1).Chart.Interior.Color = RGB(0,0,255)

images/00764.jpeg
Dim WS
Dim CH
Set WS
Set CH

as Worksheet
as Chart

ActiveSheet
WS. Shapes .AddChart2(.

).Chart

images/00759.jpeg
Function Excelkxperience(ByVal UserResponse As String) As String
Select Case lCasa(UserResponse)
Case Is = "VES"
ExcelExperience = “Well done! Please continue to guestion 2"
Case Is = "NO"
Excelbxperience = "Check out Chapter 12 for some help. " &
“"Please skip to question 10"
Case Ts = "MAYRE"
ExcelCxperience = "Please clarify your response " & _
“in the box below"
Case Flse
ExcelExperience - "Invalid response”
End Selact
EFnd Functicn

images/00750.jpeg
PRETIc Saly QUICKIOTLAByRRt Yok 88 Variaht,. .
Optional Byval TngLeft As Long = -2, _
Optional Gyval TngRight As Long = -2)
Din i, j, TngMid &s Long
Dim vncTestval As Variant
If IngLeft = -2 Then TngLeft = Lbound(vntArr)
If TngRight - -2 Then TnaRight - USound(vrtArr)
If IngLeft < IngRight Then
Tnghid - CIngleft + IngRightd \ 2
vitTestVal = vathrr(TngMid)
i = Inglefr
j = IngRight
0o
Do Wnile vntarr(4) < vntTestval
i=ial
Loop
Do Wnile vntarr(§) > vntTestval
j=i-1
Loop
If 1 <= j Then
Call SwapElements(vitArr, i, j)
ieitl
jei-1
End Tf
Loop Until i > 3
If § <= Ingtid Then
Call QuickSort(vntArr, Tngleft, i)
Call Quicksort(vntarr, 1, TngRight)
£lse
Call QuickSort(vnthrr, i, TnaRicht)
call quicksort(vntarr, Ingleft, 33
End 1f
End If
End Sub

Private Sub SwapElements(ByRefl vntItems As Variant, _

ByVal TngIteml As Long, _

ByVal IngIten2 As Long)
Dim vntTemo As Variant
vntTemp = vntTtems(IngTten2)
vntItens(IngIten2) = vntItens(lngItenL)
vntItens(IngItent) = vntTerp
End Sub

images/00756.jpeg
Function ColName(Rng As Range) As String

ColName = Left(Rng.Range("A1").Address(True, False), _
InStr(l, Rng.Range("Al").Address(True, False), "$", 1) - 1)
O G e

images/00755.jpeg
Function GetAddress(HyperlinkCell As Range)
GetAddress = Replace(HyperTinkCell.Hyperlinks(1).Address, “mailz
gy Sl

images/00758.jpeg
REFARIRTYNR "y ML SONET) 1 URS0-SORELIDE O AURSEVON, & aY Lee Ra "CHICE TUE SMPoN
for 'scne help. Please skip to cuestion 107, "Please clarify your response in the box
below™))

images/00757.jpeg
Function StaticRAND() As Double
Randomize

StaticRAND = Rnd

tnd Function

images/00752.jpeg
Function ContainsText(Rng As Range, Text As 3tring) As String
Din T As String
Nin myCell As Range
For Each myCell In Rng 'lock in each cel
If InStr(myCell.Text, Text) » O Then 'lock in the string for the text
If Len(T) - O Then
'iF the text is found, add the ad:
T - myCell.address(False, False)
Else
T-T&"," &myCell.address(False, False)
End TF
End If
Next myCell
ContainsText = T
Frnd Fumetsnn

s to my result

images/00751.jpeg
Function sorter(Rng As Range) As Variant
'returns an array

Dim arrl() As Variant

If Rng.Columns.Count > 1 Then Exit Functior
arrl = Application.Transpose(Rng)

QuickSort arrl
sorter = Application.Transpose(arrl)
Fnd Function

images/00754.jpeg
Function ReturnMaxs(Rng As Range) As String
Din Mx As Double
Dim myCell As Range
'if there is only one cell in the range, then exit
[f Rng.Count = 1 Then ReturnMaxs = Rng.Address(False, False): _
Exit Function
x = Application Max(Rng) 'uses Lxcel's MAX to Find the max in the rang
‘Because you now know what the max value is,
'search the range to find matches and return the address
For Each myCell In Rng
If myCell = Mx Then
Tf Len(ReturnMaxs) = 0 Then
ReturnMaxs = myCell.Adcress(False, False)
Else
ReturnMaxs = ReturnMaxs & “, " & myCell.Address(False, False)
End If
End If
Next myCell
Fnd Function

images/00753.jpeg
Function ReverseContents(myCell As Range, _
Oprional IsText As Boolean = True)
Dim i As Integer
Dim OrigString As String, NewString As String
Origstring = Trim(nyCel1) 'remove leading and trailing spaces
For i = 1 To Len(0rigString)
'by adding the variaole Newstring to the character,
‘instead of adding the character to NewString the string is reversec
NeaString = Mid(OrigString, i, 1) & NewString
Next 1
If IsText = False Then
ReverseContents = CLng(NewString
Else
ReverseContents = NewString
End If
Frd Fumcetsan

images/00749.jpeg
Sub BubbleSort(List() As 5tring)
' Sorts the List array in ascending order
Dim First As Integer, Last As Integer
Dim i As Integer, j As Integer
Dim Temp
First = LBound(List)
Last = UBound(List)
For i = First To Last - 1
For j =i + 1 To Last
If List(i) > List(j) Then
Temp = List(j)

List(3) = List()
List(i) = Temp
End If
Next j
Next i

End Sub

images/00748.jpeg
Function SortConcat(Rng As Range) As Variant
Dim MySum As String, arrl() As String
Dim j As Integer, i As Integer
Dim c1 As Range
Dim concat As Variant
On Error GoTo FuncFail:
'initialize output
SortConcat = O#
'avoid user issues
If Rng.Count = O Then Exit Function
"get range into variant variable holding array
ReDim arrl(1l To Rng.Count)
“Fi11 array
i=1
For Each c1 In Rng
arrl(i) = cl.value
i=di+1
Next
'sort array elements
Call BubbleSort(arrl)
'create string from array elements
For j = UBound(arrl) To 1 Step -1
If Not IsEmpty(arrl(j)) Then
MySum = arrl(j) & ", " & MySum
End If
Next j
'assign value to function
SortConcat = Left(MySum, Len(MySum) - 1)
‘exit point
concat_exit:
Exit Function
"display error in cell
FuncFail:
SortConcat = Err.Number & " - " & Err.Description

images/00624.jpeg
~ Set up Running Total
.Calculation = x1RunningTota
" RaceField "NDate"

images/00623.jpeg
~ Group dailly dates up to years
PT.PivotFields("Date").LabelRange.Group , Periods:= _
Array(False, False, False, False, False, False, True)

images/00626.jpeg
© Show revenue as a percentage of California
With PT.PivotFields("Revenue")
.Orientation = x1DataField
.Function = x1Sum
.Caption = "% of West"
.Calculation = x1PercentDifferenceFrom
.BaseField = "State"
.BaseItem = "California”
.Position = 3
.NumberFormat = "#0.0%"
Fnd With

images/00625.jpeg
' Set up % change from prior month
With PT.PivotFields("Revenue™)
.Orientation = x1DataField

.Function = x1Sum

.Caption = "%Change"

.Calculation = x1PercentDifferenceFronm
.BaseField = "Date"

.BaseItem = "(previous)"

.NumberFormat = "#0.0%"
End With

images/00620.jpeg
PT.PivotFields("Date’).LabelRange.CGroup , Periods:=
Array(False, False, False, False, True, True, True)

images/00622.jpeg
With PT.PivotFields("Date’)
-LabeTRange. Group _
Start:=DareSerial (2018, 1, 1), _
End:-DateSerial(2020, 1, 4), _
By
Periods:=Array(False, False, False, True, False, False, False]
On Error Resume Next
.PivotTtems("<1/1/2018").Visible = False
.PivotItems("~1/2/2020").Visible = False
On Error Goto 0
End With

images/00621.jpeg
PT.PivotFields("Date
Start:=True, End
Period:

«-LabelRange.Group _
rue, By:=7, _
Array(False. False. False., True. False, False, False)

images/00617.jpeg
~ Define Tnput area and set up a pivot cache
FinalRow = WSD.Ce11s(AppTication.Rews. Count, 13 .End(x1Up).Ron
FinalCol = WSD.Cells (L, ApplicaLion.Columns. Comt). _
End(x1ToLeft) . Column

Set PRange = WsD.Cel1s(1, 1).Resize(FinalRow, FinalCol)

Set PICache = Act iveWorkboak. PivatCaches. Createl _
SourceType:= xIDatabase,

SourceData:=PRange.Acdress, _
Versian:=x1PivatTanleVersion|s)

! Create the pivot tadle from the pivot cache
Set PT = PlCache. CreatepivotTable(TableDestination:mnsD. _
Cells(2, FinalCol + 2J, TabloNama:="Pivotiablel")

* Set up the row fields
PT.AdE e1ds RawF 1elds

Praduct”, ColumFields:="Region”

' Set up the data fields
With PT.PivotFields("Revenue”)
Orientation - x1Datarield
JFunction = x15un

Position = 1

Nuroer Format = “#,##0

Nane = “Revenue "

End With

with PT
~ColumGrand = False
RewGrand = False
HullString = "0"
End With

' PT.TableRange2 contains the results. Move these to 112
' as just values and not a real pivet table.

b1 Tab] sRange2.0f fset (1, 0).Copy

VSD.CeTTs(5 + PT.TableRange2.Rows.Count, FinalCol + 2). _
Pastespecial x1Pastevalues

* At this point, tne worksheet locks Iike Ficure 125

* Delete the ariginal pivel table and the pival cache
PT.Tab] eRange2.Clear
Set PTCache - Nothing

WD Activate
Range(")12'
AL

Select

images/00616.jpeg
>ub Create>ummaryReportUsingPivot()
' Use a pivot table to create a static summary report
' with product going down the rows and regions across
Dim WSD As Worksheet

Dim PTCache As PivotCache

Dim PT As PivotTable

Dim PRange As Range

Dim FinalRow As Long

Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables
PT.TableRange2.Clear

Next PT

WSD.Range("J1:Z1") .EntireColumn.Clear

images/00619.jpeg
With PT.PivotFields("Region’)
.Orientation = x1DataField
-Function = x1Count
.Position = 1
.NumberFormat = "#,##0"
.Name = "# of Orders "

Fnd With

images/00618.jpeg
Set up the row fields
PT.AddFields RowFields:="Customer",
ColumnFields:=Array("Date", "Data"
PageFields

images/00613.jpeg
with PT

.ColumnGrand = False

.RowGrand = False

.RepeatAllLabels xRepeatLabels ' New in Excel 2010
End With
PT.PivotFields("Region").Subtotals(1) = True
PT.PivotFields("Region").Subtotals(1l) = False

images/00612.jpeg
- Format the pivot table
PT. ShowTableStyTleRowStripes = True
PT. TableStyle2 = "PivotStyleMediuml0"

images/00615.jpeg
«Function = xl5um
.Position = 1
.NumberFormat = "#,##0"
.Name = "Revenue "

End With

'Format the pivot table
PT.ShowTableStyleRowStripes = True
PT.TableStyle2 = "PivotStyleMedium10"

With PT

.ColumnGrand = False

.RowGrand = False

.RepeatAlllLabels xIRepeatlabels

End With

PT.PivotFields("Region™) .Subtotals(l) = True
PT.PivotFields("Region™).Subtotals(1) = False
WSD.Activate

Range("J2").Select

End Sub

images/00614.jpeg
>ub CreatePivot()

Dim WSD As Worksheet

Dim PTCache As PivotCache

Dim PT As PivotTable

Dim PRange As Range

Dim FinalRow As Long

Set WSD = Worksheets("PivotTable

' Delete any prior pivot tables
For Each PT In WSD.PivotTables
PT.TableRange2.Clear

Next PT

' Define input area and set up a pivot cache

FinalRow = WSD.Ce11s(Application.Rows.Count, 1).End(x1Up).Row

FinalCol = WSD.Cel1s(1, Application.Columns.Count). _

End(x1ToLeft) .Column

Set PRange = WSD.Cel1s(L, 1).Resize(FinalRow, FinalCol)

Set PTCache = ActiveWorkbook.PivotCaches.Create(_
SourceType:= x1Database, _
SourceData:=PRange .Address, _
Version:-x1PivotTableVersionl4)

" Create the pivot table rom the pivot cache
Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _
Cel1s(2, FinalCol + 2), TableName:="PivotrTablel")

' Set up the row and column fields
PT.AddFields RowFields:=Array("Region”, "Customer"), _
ColunnFields:="Preduct

' Set up the data fields
With PT.PivotFields("Revenue")
e aEEEr YR e IDaEsEYaTd

images/00611.jpeg
~ Set up the data fields
With PT.PivotFields("Revenue")
.Orientation = x1DataField
.Function = x1Sum
.Position = 1
.NumberFormat = "#,##0"
.Name = "Revenue "
End With

images/00610.jpeg
Set up the row & column fields
PT.AddFields RowFields:=Array("Region”, "Customer™), _
ColumnFields:="Product"

images/00609.jpeg
et P = Pllache.CreatePivotiable(lableDestination:=Wol.Cells(2, _
FinalCol + 2). TableMName:="PivotTablel®. Version:=x1PivotTableVersionid)

images/00606.jpeg
Sub Autori IterCustom()
Range("A1") .AutoFilter Field
Range("A1") .AutoFilter Field
Range("A1").AutoFilter Field
Range("A1").AutoFilter Field
Range("A1") .AutoFilter Field:=i
EFnd Sub

VisibleDropDown:=False
VisibleDropDown:
VisibleDropDow:
VisibleDropDowr
VisibleDropDown:=False

images/00605.jpeg
Next cell

Cells(1, NextCol).EntireColumn.Clear
MsgBox FinalCust - 1 & " Reports have been created!"
End Sub

images/00608.jpeg
Dim WSD As Worksheet

Dim PTCache As PivotCache

Dim PT As PivotTable

Dim PRange As Range

Dim FinalRow As Long

Dim FinalCol As Long

Set WSD = Worksheets("PivotTable")

* Delete any prior pivot tables

For Each PT In WSD.PivotTables
PT.TableRange2.Clear

Next PT

* Define input area and set up a pivot cache

FinalRow = WSD.Cel1s(Rows.Count, 1).End(x1Up).Row

FinalCol = WSD.Cel1s(1, Columns.Count).End(x1ToLeft).Colunr

Set PRange = WSD.Cel1s(1, 1).Resize(FinalRow, FinalCol)

Set PTCache = Activelorkbook.PivotCaches.Create(_
SourceType
SourceData
Version:

1PivotTableVersionl4)

images/00607.jpeg
Sub SimpleFilter()
Worksheets("SalesReport™).Select
Range("A1") .AutoFilter
Range("A1l") .AutoFilter Field:=4
End Sub

images/00602.jpeg
WEN.SaveAs ThisWorkbook.Path & Application.FathSeparator & _
WhichCust & ".xTsx"
WBN.Close SaveChanges:=False

Ws0.Select

' Free up memory hy setting ohject variahles to nothing
Set WSN = Nothing

Set WBN = Nothing

' clear the output range, etc.

Cells(l. NextCol + 2).Resize(l. 10).EntireColumn.Clear

images/00601.jpeg
- Set up a title on WSN
WSN.Ce11s(1, 1).Value = "Report of Sales to " & ThisCust

TotalRow = WSN.Cells(Rows.Count, 1).End(x1Up).Row + 1
WSN.Cells(TotalRow, 1).Value = "Total”
WSN.Ce11s(TotalRow, 2).FormulaR1C1
WSN.Cel1s(TotalRow, 4).FormulaR1C1

UM(R2C:R[-110)"
M(R2C:R[-1]O"

' Format the new report with bold

WSN.Ce11s(3, 1).Resize(1l, 4).Font.Bold = True
WSN.Cells(TotalRow, 1).Resize(l, 4).Font.Bold = True
WSN.Cells(1, 1).Font.Size = 18

images/00604.jpeg
NSRSV, E PN OB K SRTIN T S IR,
IRange. AdvancedriTter Action:=xIFiTterCasy, CriterizRangei="", _
CopyTaRange: =ORanye, Unique:<True

" Loop through sach custoner
FinalCust = Cells(Rons .Count, NextCol) .End(x1Ua) Ron

For Fach cell Tn Cel1s(2, HextCol) Resize(FinaiCust - 1, 1)
Thiscust = cell Value

' Set up the criteria range with ore custoner
CallsCl, NextCol + 2) Value = Range("D1") Value
Cells(2, HextCol + 2).Value = Thistust

et CRange = Colla(l, NextCol + 2) Resize2, 1)

 Sex up the output range. We want ate, Quantity, Praduct, Revenu
" Thuse colums are in C, E, B, and £

Colls(1, NextCol + 4) Resize(1, 4).value

Array(CaTls(1, 3), Cells(l, 5, Cellscl, 23 CelTsd, 6)

et Okange = Coll3(L, Nexe(ol + &) Kesiza(l, 4

| Adv. Filter for unique cuscoters & product
TRange. AdvancedFiTeer Action:-x1FiterCoy,
Critertakange:CRange

Capy ToRange: =Oranye

" Cruate a new warkboak with one blank sheet o hold the aurpur
Sec BN = Workbooks . Acc(xIMBATHr ksheet)

Sec WSH = WY Uarksheers (1)

 Copy data fron WSO o WSY

WS0.CeTT5 (1. NextCal + 4) CarrentRegion.Copy

Destination: W1, o132, 1)

 Sec up a title on wEn
SN.CeTTs (1, 1).¥alue = “Repors of Sales ©

" & ThisCust

TocalRow = WSN.CoTls (Rows.Count, 1. End(x1Ug) Row = 1
WSN.CeTTs (Totalfon, 1) Value = “Total
SN Ce1s (TotalRon, 2).FormTa1Ct -
VSN.CeTTs (TotalRon, 4) . FormuTaR1C

SUICRCRI-110)"
IRZCR{-110"

" Fornat the nex report with bold
WSN.CeT15(3, 1).Resize(l, £).Font.Bold - True

SN.CeTTs (TotalRon, 1) Resize(l, 41.Fons.Bold = Trus
VSN.CeTTs (1, 1).Fanc.Size - 18

WIN. Savers Thiskarkbeok.Path & fppication. PathSeparator &
Whichcust & *.x1sx

WIN.Close SaveChanges
S0, Select

Sec sk

Tse

Hothing

Nothing

" clear the output cange, et
Cellsl. NextCol ¢+ 3. Rasizell. 103,

i i

images/00603.jpeg
Sub RunReportrortachCustomer()
Dim LRange As Range
Dim ORange As Range
Dim CRange As Range
Dim WBN As Workbook
Dim WSN As Worksheet
Dim WSO As Worksheet

Set WSO = ActiveSheet

' Find the size of today's data set

FinalRow = Cells(Rows.Count, 1).End(x1Up).Row

NextCol Cells(1, Columns.Count).End(x1ToLeft).Column - 2
' First - get a unique list of customers in J

' Set up the output range. Copy the heading from D1 there

Range ("D1").Copy Destination:=Cel1s(1, NextCol)
Set ORange = Cells(1, NextCol)

' Define the input range
Set IRange = Range("Al") .Re:

ze(FinalRow., NextCol - 2)

images/00600.jpeg
~ Create a new workbook with one blank sheet to hcld the output
Set WBN = Workbooks .Add (x1WBATWorksheet)

Set WSN = WBN.Worksheets(1)
' Copy data from WSO to WSN
WSO.Cel1s(1, NextCol + 4).CurrentRegion.Copy _

Destination:=wWSN.Cells(3, 1)

images/00198.jpeg
=
(3N
88

o4

BRRRE

s38358

5888838888

[SNSNNNN NN

= Format ol e tht contin
= Format ol top 1 betem nked oues

= Format oy ues that r e o belw uerage
= Format oy unque o duptate lues

= Use s formula o detemine et o formst

ot e RuleDescipion:

Format o cetsbased on thei vatues:

e

onsiie Snowtconony

Dty ach o sccangto mes e

on ke e

[l T2 wmenones e[l s] e)

wenesoms 2[5 [0 et 5]

[CllB) weocwms =G @ o (3]

Lol) weneioms = o e

[|
Ce)

images/00197.jpeg
Kou Edit Formatting Rule.

pure T Copy || seecta Rue v
¥ fomt

Capponta ||| = Format o et contan

= Formst oy tep o bt rnved iues
= Forma ol lues that e sbove orbeow aversge
~ Fomst only unique or duplcte lues
= Use s formut to determine which el o

g6t ine R Descrtion:

fomat s cts b on e e
Famat s [3.coor e
oe [pecent

images/00199.jpeg
4> 3

images/00194.jpeg
N

A B ¢ p| E |f G H 1

Blo[@|No|ae wn=

Color Above
Data Bar Scale lconSet Average Duplicates
- 3 a 7 65
] o E O o 2 7
) 20 @ 33 8 10
= = 0 & 2 0
[© 1 38
s 0O n 10 s
I 38 27 Q © En 7
B s a3 Q 3 17 a
|y 9 n 12 £
0 n o u 5 %

images/00193.jpeg
4 A | o | ¢ o | ¢ L s | w [1t | 3

Listprice 1000

2|oscours 20 Viaterfell Chart Example
3 |Netprice 80
Bl B e Dacame ot
5 |uabor .

ETR

2

§ 228

II =

Litorce Dscout Netprice lbor Owrresd Proft

images/00196.jpeg
o

LS LESASER

argg
.--mmmm

“wnwonrwagd

images/00195.jpeg
R¥BBRRRR2RE

89888

k88 m»»»wo
mmmm mmmm

images/00190.jpeg
A s [¢ [o [e | & [6]

Jn Feb Mar Apr May Jun

wof sales 0 s s s s s

SatstactionRating | s% 1% sk e:% % e

(Quality score % s s sex so% e
—oisies —Swishcionfatng —QuityScore

0%

o

o

o

m ke we A My ke

images/00192.jpeg
P

A e

7
il
&
4
=
L
7

GRERESe .

State Rating
Florida 1
Georgia

Alabama

South Can
North Car
Mississipp

258888

Rating
100

2

images/00191.jpeg
—auiyscore

—ofSales ——Satisfaction Ratng

100%

0%

0%

0%

0%

images/00297.jpeg
B Windows10

Microsoft Windows.
Version 1803 (05 Buld 17134.165)

© 2018 Microsoft Corporation. Al ights reserved.

The Windows 10 Pro operating system and s userinterface are protected
by brademark and other pending or existng ntelectual property rights
the United States and other counties regns.

This roduct s heensed under the irosof Softvare Lcense
Tems tox

images/00296.jpeg
Microsoft Excel X

You have fullrightsto this computer

images/00299.jpeg
Microsoft Visual Basic

Run-tme error ' 1004:

Srry, we coudn'tfind C: Wotere. . s it possble it wos moved,
renamed or deleted?

(Ceonue

images/00298.jpeg
Information

images/00293.jpeg

images/00292.jpeg
X

Select All Unselect All
F Syeaming I server I Loser
T suray rop I over

© Horor

© Myl

images/00295.jpeg
MiExcel Stff

m 1338 My Ave 0.
= (30) 7152675
ey

s

fe of the form

You can se text o g other|
without having to mfove it out of the way

e form

images/00294.jpeg
Store Name Search X

images/00291.jpeg
X

Select All Unselect All
Fsever T laser
row T oter

€ Conedy Cu € Horor
© orama € sai € myscal

images/00290.jpeg
PictureDisplay - Clickany Picture o Enlarge

Lodes Sl urse Red

Lodes Sl urse, Bromn

images/00286.jpeg
Store # Store Name
340001 Santa Ana

340002

erman Oaks

340003 Brea
340004 Tucson

340005 Rosevile

340006 Mission Viejo
340007 Corona del Mar
340008 San Francisco
340009 Keiand

340010 Scattsdale F.S.
340011 Valley Fair
340012 Seattle - Bellewe
340013 Atlanta - Perimeter
340014 Santa Barbara
340015 Topanga

340016 Walnut Creek
340017 Westlake Village

=

Color Invoices

-
. Correctons|
o

images/00285.jpeg
X

Selectjll Unselect All
¥ server ¥ Laser
¥ suray 7 op ¥ other
€ Comedy © peton € toger
© orema © soBl © msal

L= |

images/00288.jpeg

images/00287.jpeg
B awhries P
 manens |t

PN

Sutiee [poeneant

images/00282.jpeg

images/00281.jpeg
1 i S

2

3| 3400

4 340 P —
o U0 reeansssisost

images/00284.jpeg

images/00283.jpeg

images/00289.jpeg
Picture Display - Clck any Picture to Enlarge.

Lodes edur viter, Ton

Loges et vite, Back

Lades g Vilet, Red

Key o, Sher, TrgleFeort

ey Fob, Leater, B

[E=5]

images/00280.jpeg

images/00275.jpeg
Bring to front Uniform Size

Alignments

% e iy 12 - - 5 -] 100%

f

send Centering
to back

UnGroup

images/00274.jpeg
7
s
7
1
2
1
5
5
1
s
1
s
i
5
0
1
H

images/00277.jpeg
Personnel Files

Employee Information Persona Information

address

Phone Number
Emergency
‘Contact

o8

Languages

13386 Judy Ave. W
(605)9833923

John Syrstad [teosyies3a23

4/14/1973
[

FRusson [Chinese

images/00276.jpeg

images/00271.jpeg
Mrosoft ActiveX Data Objects 2.8 Livary
Location: C:\Program Fes\Common Fies\System\ado\sado2s. tb
Language: Standard

images/00270.jpeg
Name: Tracy Syrstad
Date: 7/13/2018
New customer: Rlves [Tno

Interestedin the folowing:

Moo 8

s

Roonis

images/00273.jpeg
A B c D E S

D de Fom To Qy Date
1935 BI2TS | 340000 340000 s 6908
1936 BI0IS3 340000 340000 4 6904
1957BIS2 340000 340000 5 6904
1938 BI0SSS 340000 340000 9 6908
1939B10049 340000 340000 36908
1991 BIST2 | 340000 340000 10 6901
1944 BI2SSS 340000 340000 10 6901
1997 BI79S7 340000 340000 7 6908
1950 BI631 340000 340000 9 6908
1953 BISSST 340000 340000 7 6908
1954 BISE | 340000 340000 16908
1955 BI94I3 | 340000 340000 2 690

images/00272.jpeg
=

DataType
AutoNumber

style short Text
Fromstore Number
Tostore Number
aty Number
Toate Date/Time
sent Yes/No

Receive Yes/No

images/00279.jpeg
Address: 45 State Drive

phone: [(605)483-3423

images/00278.jpeg

images/00264.jpeg
“This chapter is an inzoduction to accessing Word from Excel.

‘Word, Excel, PowerPoint, Outlook, and Acses: all use the same VBA
object models. For example, Fxcel has a fior knoska object and Wor
applications can access another application’s object model as long as t
‘To access Word's object library, Excel must estabiish a lnk (0 itby us

‘With early binding, the reference to the application bject is created
binding, the reference is created when the program is rua.

images/00263.jpeg
oaccess Word's bject Lbriey, Tl muse estabich ik to ity wing eithe ely Siading o Lto inding
Vit ey biding, e xferencste e zpplicascn objctis cresed waen the progra is compiled. Wit oty
I.ms i rerence s ceaied when th progra i<

images/00266.jpeg
Word, Excel, PowerPoint, Outlook, and Access all
use the same VBA language. The only difference
is their object models. For example, Excel has a
Workbooks object and Word has Docunents. Any
ane of these applications can access another
application’s object model as long as the second
application is installed.

s

HEADFIRST

1. NL_FIRST

T

images/00265.jpeg
Word, Exvel, PuwerPoint, Outloot, and Access alluse U same VBA = MLITRST ¥
anguage. Irecriy dfference s T object models.bor example, bxeel| |

hasa erkbooks object and Word has Documents. Any one of

these applications can access ancther appication's cbiect modsl & wn w

long = tha zacond agplicationis inctallac.
ey W

images/00260.jpeg
Watches

Expressin__[Vale |

& wistoy &

images/00262.jpeg
k)
Automating Word
‘Word, Excel, PowerPoin, Qutiook, and Access 21l se the sz

‘object models. For examle, Excel has 2 Wozkbooxs objec
applications can access another application’s object model as

images/00261.jpeg
[Wora <] <] Bfs] |
<] #lv
Ciasses embers o Waunis'
WoUnderine ~ [@ wosecton A

@ woserence
WaboseorEeen o ST

WdUseFormatingFrom || (@ wdTable
WavVericalAignment , |@ waWindow 5

Sonst wdStory = 6
Member of iord VidUnit

images/00268.jpeg
B4 Design Mode.
[Propetties

images/00267.jpeg
To: Bil Jelen
From: Mixcel

ce Tracy Syrstad

Date: July 13,2018

Ret Fruit& Vegetable Sales

‘iow, i the el reprtof it e,

« Apples =Omnges xGrapefut = Lemons
sTomatces xCabbage slemie = GreenPeppers
sPoumoes xYams wOnions wGarkc

"GreenBeans = Broccol + peas = Garrots

images/00269.jpeg
A B

1 Name Tracy Syrstad

2 oate 7/13/2018

3 |Are youa new customer? Yes

4 |are you interested in the following options:

5 401K Yes

O Roth No

7 stocks Yes

5| Bonds[Yes

B _
No.

images/00253.jpeg
Regior,Product,Date,Customer,Quantity,Revenue,COGS,Profit
East,xvz,7/24/2018 QRS INC.,1000,22810,10220,12590
Central,DEF,7/25/2018, "KL, c0",100,2257,984,1273
East,ABC,7/25/2018,"IKL, CO",500,10245,4235,6010
Centrz1,Xyz,7/26/2018, "wxy, co",500,11240,5110,6130
East,Xyz,7/27/2018,"FGH, C0",400,9152,4088,5064
Centrzl,Xvz,7/27/2018, "wxy, C0",400,9204, 40&5 5116
East,DEF, T ,800,18552,78

images/00252.jpeg
Advanced

Text Import Wizard - Sep3 of 3 S 12 i

I scresn fts you select each column ana set tne D3ta Fornat.
Column data fomat

Genent
Genera converts numericvlues] numbers, dae vlues to dates and
ot il enaining vlues to text.
et [wor avonce
[0 not import coramn (kip]
Ostapreview

Date in MDY

images/00255.jpeg
TextImport Wizard - Step2 of 3

ERL_x_1}
This sceenlets you set the delimiters your data contains. You can see how yourtext i affected I the
preview below.
Detimters
b
[Isemicolon [JTreat conseautie cetimters 3s one

Tot e [=

e astoner fuasticy
P/z4/201e RS Tc. frooo
pr2s/a0ie frr, oo froo

Gnet] [<z | [o> | [omen

images/00254.jpeg
| Textlmport Wizard - Step 20f 3

Ea_x_}

This sceen lets you set the celimiters your cate contains. You can ses how your textis affected In the
preview below.

| ostmters

m
(] semicolon [] Treat consecutive deimiters as one
Do o s - &
[other.

Data previen

gion, Product, Date, Customer, Quantity, Revenue, COGS, Profic
+,%¥2,7/24/2013, QRS INC., 1000, 22810, 10220, 12590
7/25/2018, "3, €O, 190,

Goreel) [<zear | [CHBG]) [oo

images/00251.jpeg
Data preview

1 2 » w)

eqion [roduct | Date |uscomsr | Qusncicy | Revemus
asc foz 7/24/10Rs TNC. tocgl 2ze10)
enczal prx 7725150, co 109 2257
asc c /2518w, o soo 102es
enzzas oz wzsep, o so| 1nzad

images/00250.jpeg
TextImport Wizard - Step2 of 3

This screen lets you set fied wickhs (column bresks
Lines with artows signiy 2 colunn break.

To CREATE & break line, clck t the desired positor.
To DELETE a break e, double dick on the line,
To MOVEa breakline, dlick and drog it

Data preview

n B) @ »

+ +
Date Cusvomer | guansisy oGs profic -
7/24/1608s THC. 100 022012550

7/25/169KC, €O
72511675, co
77268, co

ses 1273

images/00257.jpeg
E
Din
pin

sec
sec

WordEarlyBinding ()
wdkpp A2 Word.Application
wdboc As Document

wazpp
waboe

wapp . Do|
fpoomens

&' DontResetinsertionFointProparties.

B8 EmailOptions.

B EmailTempiate

B EnableCancelkey

B Featurelnstall

B FileCanverters

.App1ication

images/00256.jpeg
Cell A1 contains data for eight columns

T
a - 7| Region Product Date Customer Quantity Revenue COGS Profit

A Bl c o 3 Ellc H ' 4
[Region Pbduct_Date Customer Quantty Revenue COGS Proft

East W2 T24180RSINC. 1000 2810102201250
Conial DEF 7T2SBIKL.CO 100 2257 984 1213
East ABC T2NMBKLCO 500 10215 42356010
ConialXYZ T26/1GWIY,CO 500 1124051106130
East XYZ T2U16FGHCO 410 91524038 5064
ComvalXYZ TZU1GWIY.CO 400 9204 4088 5116
East OEF 7T21MGRSTINC. 800 18552 767210680
ComialABC TZBMBEFGSA 400 6860338 472
East DEF 7T301BUVW,INC. 1000 21730 984011850

images/00259.jpeg
Reference: - VBADroject [

Avalable References:

[V VisualBasic For Appicaiors — B Cancel
| MosoftExcel 14,0 Object ibrary e
| 0= Automaton

IEAMISSING: Migosof: Word 16,0 Oblect Livary.
I Microsoft Foms 2.0 Object Lirary +
= Maosoft Srptng Funime

= Microzoft Windons Conmen Cantrls .0 (°6)

= Microsaftxi, 3.0

I Rbbon¥VisuaiDesigner20 13

I vBrproject

I vesproject

| AcassibityColadimin 1.0 Type Lirary

[Arohat Acrees 3.0 Tune liesry

3 i 0

NISSING: Microsoft Word 16,0 Object Ubrary.
Location: C:lprogram Fles (x35) Migrosaft Offce Root Offce 16 MSWoI
Language: Siandard

[Mascof Ofice 14 Cbiect Lbrar Browse,

images/00258.jpeg
References - VBAPrject

svaieble References:

[Voual Basic For Appleations

~ Cancel
[V icraoft Fucel 1£.0 Object Lbrary _

¥ OLE Automaten

|V irosoft Office 15.0 Obect Lirary
llVicrsoft Viord 1.0 ObrectLibrary

| AccessiitCrladnin 1.0 Tyoe Lbrary
| Actve DS Type Lirary

| I ActeNovie controltrpelbrary. Prioity
| | AdracRepartingExceClentib

|| AP Clent 10 HelpPare Type Litrary

|14 clent 10 Type Lbrary

| AppidPoliyEngineAp 1.0 Type Lbrary

| stance laforn Cliert 1.0 Date Senices Type L
14T 20T ieary,

<

>
Mzosoftwerd 16,0 Object Lbrary.
Location:

C:\procran Fiks (x86) Wicroso’t Office RootOFce 6 WISWO!
Language: Standard

images/00242.jpeg
e oy

et ss o T e

. L L e L L

s uindconmun | onaasurunen Wi 056 St ot S Pt 034

. L ot L .

L x " L x x
T

A B ¢ Fg & H§ ¢

1)

3

images/00241.jpeg
A

<

o

e

3

s

H

1| YTD Sales - % Change from Previous Year

2
3
s
B
6

store
Sherman
Breamall
Parklace
Galleriaat
& [missionv.
9 (corona De
10 San Franci

sn
19%
3%
%

03%

73%
2%
0.6%

feb
3%
0%
0%
5%
0%
0%
18%

war
-os%
0%
0%
2%
2%
0%
2.0%

apr
0%

0%
5%
8%
8%
0%
0.5%

ay
1%

01%
0%
20%
0%

L06%

un
0%
8%
0%
0%
0%

6%
L0.3%

ol
0%
0%
0%
0%
o0o%
oass
L05%

v
1%
0%
0s%

1%

04%

L05%

images/00244.jpeg
H ')

High

Low

Words inweb page resuls:[Max Temperatars

Twin Temparstore

Result: 81°F

Formula: =/

WeblSA:s:

images/00243.jpeg
ParkMeadows 0.8%

| PR

Lakeside 07%

images/00240.jpeg
A 5
1951 Pennant Race i
Brooklyn Dodgers —.-.-.-.-.-.-.-Ll.

N o v e w N e

Y Gt et

Regular season

W, Series

3
2

images/00249.jpeg
Region Product Date Customer Ouantity Revenue CCGS Profit

xvz 7/21/18GRS TnC 1000 228101022012590
DEF 7/25/18KL, €O 100 2257 984 1273
Aec 7/25/183KL, co 500 10245 4235 6010
Xz 7/26/18wxy, Co 500 11240 5110 6130
Xz 7/27/18FGH, O 100 9152 4088 5064

cenlral XYz 227 718WxY. O 400 9202 4088 5116

images/00246.jpeg
Sales to Honest Shoe Supply

Report of Sales to Honest Shoe Supply

Date quantity Product Revenue
sAugl4 BOOMSSE 14420
s 1008537 2409
415 1o00wass 22100
7dun-is 1000RS37 24420
9Jun-15 500435 11550
14015 5008537 11680
s 90011556 19161
§Jan16 1000MSSE 24220

Total 5800 130220

images/00245.jpeg
A B =
Date Format High
6/27/2018 /2018/6/27/ 70°F
6/26/2018 /2013/6/26/ 82°F
6/25/2018 /2018/6/25/ 80 °F
6/24/2018 /2018/6/24/ 81°F
6/23/2018 /2018/6/23/ 79°F
7 |6/22/2018 1201876722/ 73°F
5 [6/21/2018 /2018/6/21/ 81°F
9 |6/20/2018 /2018/6/20/ 81°F
10 | 6/19/2018 /2018/6/19/ 81°F

0w e w N -

Low
66°F
s5°F
60°F
63°F
66°F
65°F
59°F
65°F
68°F

Rain

Snow

images/00248.jpeg
MiEico Apposancos

Yoot Pleaue ot mo i 81 Ik vl b <o a sorinas iy aroa

Witin[s o zpcod Jeat [Sigve st

e dey o Vour skt il LiveLescons Feme Excel OVD.

wesday - Ihursda, Cetobsr 1521 2015 Excel Powsr Analystostcamp
Foty, Sepiamte 11, 5015 WExcel atminas ot e Eult S Counll WA i Crange Beach, AL

Thursday, Sepramber 16, 2015 - Serina:fo the INA Fegrland Cour il n €prinnfild. MO

Viodncsiay Ju15 16 2015 - Powr Excel in Trnidsd & Tebago, Wee Indios

Monnay & Toenday. Je 7 6.0, 015 A S1at Annal Lo saen B Lapesion o Jalisrs, MD

Tuesiy. My 7 4015 Power Cxcl and Cical fon Bitors saminas Trthe | Chica Wit Chater i Chicago, 1L
Fiday, fioy 21,2015 - oo £l Seminars fo 11 1WA I Fieida Chaper in Griando, FL

ThutSiay. oy 20,2013 Fowor EXC Tt e A Chicago Chapter n Chcago 1L

images/00247.jpeg
¥ O (55 O - S S S X 0 O O S 7l I
Seqmence Conent
it
2
 Contoct Bill I 0. s £, Urioniowr, O 44685, >
5 onine t wrwamesceLcon; ind by e t B @meencel come>
sep
e ————

5
0

n

Do

13 <Aon>

s e
Ty
15 <o
0

18] <t

5 e

n

21 <p s cemte> ot sie="1coler="EMEY SErc s n e e
22 o eV etosolt® Comporaton <beoAGEsceis esstned ok of Ticing Ky o < fonc<ip
25 % shon center><dont 551" colo="+ E2465 -1 sntent Copyrght.

3

35 19982015 by Nelsel Coming <p>

28 on>op

HEUBSREZREE DN

images/00231.jpeg
Min

- o o e
iy

At WP
v

Eil 4

7o

images/00230.jpeg

images/00233.jpeg
Font colors

(1T

Standard Colors.
EEN NEEEEE

[] NoFin

¥ More Colors...

Theme colors

images/00232.jpeg
Create New Theme Colors:

Theme colas
Totacground a1
TotBacground-lght1
TeBackground -Dork2
Totsacground- oht2
At
Atz
hent
soveng
Acnts
Acents
v
Eollowed Hyperlink

Nome: [Customa

images/00239.jpeg
q

images/00238.jpeg
il

images/00235.jpeg
ELEBREBO®NOGawN

Jan
Feb
Mar
Apr
May
Jun
ul
Avg
Sep.
oct
Nov
Dec

Over/under Plan
7

2

1

45

32

-5

B

LERE

images/00234.jpeg
Blclojelelelulr[ulk
Darker (Negative Tint & Shade)

-0.92
082
on
-0.62
-0.52
-0.42 -0.41]

zero |G
Lighter (Positive Tint & Shade)

40,01 +0.02 +0.03 #0.04 +0.05 +0.06 +0.07 +0.08 +0.09 +0.10
40,11 40.12 40,13 40.14 4015 40,16 40,17 40,18 +0.19 +0.20
40.21 40.22 40.23 40,24 40.25 +0.26 +0.27 +0.28 +0.29 +0.30
40.31 4032 0,33 40,34 40,35 +0.36 +0.37 +0.38 40.39 40.40
+0.41 40,42 +0.43 40,44 +0.45 +0.46 +0.47 +0.48 +0.49 +0.50
40,51 40,52 0,53 40,54 +0.55 +0.56 +0.57 +0.58 +0.59 +0.60
40,61 40,62 40,63 40.64 +0.65 +0.66 +0.67 +0.68 +0.69 +0.70
0.7140.72 40.73 40,74 +0.75 +0.76 +0.77 +0.78 40.79 +0.80
+0.81 40,82 0,83 +0.84 +0.85 +0.86 +0.87 +0.88 +0.89 +0.90
+0.91 +0.92 +0.93 +0.94 +0.95 +0.95 +0.97 +0.98 +0.99 +1.00

images/00237.jpeg
2

images/00236.jpeg

images/00220.jpeg
Settne s oecrpton:

Fama e onsets o]
S ey

o b g
@ e e
rocaan] s [@] oo 5]

(mcaionls] wncsoma [+) @ &) (e)
(RG] i =%

images/00222.jpeg
il
2 [0
s>
2
5|
6 [0
711
o ld
o[l
10/

17>
4
79
il
201
1%
sd
1BY
2¢

2zl

£
199
4

ERYBEER0RR

images/00221.jpeg
S

©®|Njo s wN e

5

sl 97

89

59 I

]

87]

82]

BERBLE

8
9
8
85

images/00228.jpeg
£ | =max(ezes3)

(] c) 3 F

1| Date20ls Date2016 Date2017 Close20l5 Close2016 Close2017
249| 12/24/2015 12/23/2016 12/26/2017 2060.99 2263.79
250| 12/28/2015 12/27/2016 12/27/2017 205650 2268.88

251/12/29/2015 12/28/2016 12/28/2017 207836 2249.92
252/ 12/30/2015 12/29/2016 12/29/2017 206336 2249.26
253 12/31/2015 12/30/2016 04398 22388

Min 1868 1829
Max

images/00227.jpeg
e
2015

Ay
Mﬂ/ q "'\‘

Gaps because vertical scales are different
2016

/ ‘I’W‘ ”%“'“‘N/f\

W
v ﬁﬂ‘

P'\v ! et

images/00229.jpeg
2015 2016

R A v o

Vi W

images/00224.jpeg
LEBREBO® NG GAWN R

(] o | E F
Region Invoice Sales

West 00 12

East 002 31

7 7is duplicate of A3 central 003 332

west 004 5%

10 10is duplicate of AS East 005 642

17 17appearsin AL West 006 700

11 11appearsin A2 west 007 253

central 008 529

10 10is duplicate East 008 12

West 00 601

14 Duplicate of A9 central 011450

West 03 763

Central 0168 193

images/00223.jpeg
A
Duplicate
17]

1

7

7

10

10

17

1

14

10

12

1

2

18

4

8| ¢
Unique
17

un

7

7

10

10

17

1

14

10

1

14

2

18

4

o E
Wwishful

17

1

10
10
17
11
1
10
12
14

18

images/00226.jpeg
A B

=

[

E

F

Date2015 _Date 2016
1/2/2015| 1/4/2016
1/5/20151/5/2016
1/6/2015 1/6/2016
1/7/2015 1/7/2016
1/8/2015 1/8/2016
1/3/20151/11/2016
1/12/2015 1/12/2016

© N oo e w e

Date2017 Close2015 Close 2016 Close 2017

1/3/2017
1/4/2017
1/5/2017
1/6/2017
1/9/2017
1/10/2017
1/11/2017

201266
201671
19%0.26
1943.09
1922.03
1923.67
1938.68.

2257.83]
2270.75|
2269.00)
2276.98]
2268.90)
2268.90)
2275.32

images/00225.jpeg
A B | ¢ | b | € F G .
308 957 16120718 308 957 $16121M
508703 908 17530178 $909K 908 $17,530M
19520474 536510 682 $19,520M $537K 682
517 919134 1100234 517 $919K $1,100.2M

e

o s o R

[(Enewrues] [Reatnuen] [Xpsnenue]

2]

Rule (applied in order shown) _Format
el Value > 9999999 $39M
el Value > 999999 $38.7M

Cell Value > 999 $39K

Appliesto
=sesuisas2s

-sesisaszs

-sesisaszs

images/00693.jpeg
Sub PlaceGraph()
Dim x As String, z As Range
Application.ScreenUpdating = False

'assign a temporary location to hold the image

images/00692.jpeg
Sub CommentFitter()
Application.ScreenUpdating = False
Dim x As Range, y As Long

For Each x In Cells.SpecialCells(x1Cel1TypeComments)
Select Case True
Case Len(x.NoteText) <> 0
With x.Comment
.Shape.TextFrame.AutoSize = True
If .Shape.Width > 250 Then
y = .Shape.Width * .Shape.Height
_Shape.Width = 150
.Shape.Height = (y / 200) * 1.3
End If
End With
End Select
Next x
Application.ScreenUpdating = True
End Sub

images/00211.jpeg
000

images/00695.jpeg
Private Sub Worksheet_Change(ByVal Target As Range)
'Code goes in the Worksheet specific module

Dim ws As Worksheet

Dim 1r As Long

Dim rng As Range

"Sat the Destination worksheet

images/00210.jpeg

images/00694.jpeg
x = "C:i\temp\XWMJGraph.g1t"

'assign the cell to hold the comment
Set z = Worksheets(“ChartInComment™) .Range("A3")

"delete any existing comment in the cell
On Error Resume Next

z.Coment.Delete

on Error GoTo 0

"select and export the chart
Activesheet.ChartObjects("Chart 1").Activate
ActiveChart.Export x

'add a new comment to the cell, set the size and insert the chart
With z.AddComment

with .Shape
Height = 322
Width = 465
LFill.UserPicture x
End With
End With

"delete the temporary image
ki1l x

Range("AL") .Activate
Application.ScreenUpdating = True

Set z = Nothing
End <ub

images/00691.jpeg
Sub CreateXmL()
Dim xm1_DOM As NSXML2.DOMDocument60
Dim xm1_E1 As MSXML2, IXVLDOME] ement
Dim xRow As Long
Dim xCcl As Long
Set xml_DOM = CreateObject("MsXL2.DOMDocunent.6.0")
xi11_DOM. appendChild xml_DOM. createE] ement (ROOT_ELEMENT_NAME)
With Sheet1.listObjects("TanleFmplayees")
For xRow = 1 To .1istRows.Count
CREATE_APPEND_ELEMENT xm1_DOM, ROOT_ELEMENT_NAYE, GROUPS_NAME, _
0, NODE_ELEMENT
For xCol = 1 To .ListColumns. Count
CREATE_APPEND_ELEVENT xm1 DOV, GROUPS_NAME,
-HeaderRowRanga (L, xCol).Text, (xRow - 1), NODE_ELEMENT
CREATE_APPEND_ELEVENT xm1_DOM, .HeaderRowRange(l, xCol).Text, _
.DataBodyRange(xRow, xCo).Text, (xRow - 1), NODE_TEXT
Next xCol
Kext xRow

End With
xr1_DOM. Save XML_EXPORT_PATH
HsgBox "File Created: " & XHL EXPORT PATH, vbInformation
End Sub

Private Sub CREATE_APPEND_ELENENT (xm1DOM As MSXML2.DOMDocumentco,
FarentEName As String,
KewElName As String, _
FarentelIndex As Long, _
ELType As MSKHL2. taghOMNodel ype)
Dim xml_ELEMENT As Object
Tf ELType = NODE_ELEMENT Then
Set xml_ELEMENT = xm1DOM. createE T ement (NewETNarme)
ElseIf ELType = NODE_TEXT Then
Set xml ELENCNT = ximlDOM. createTexthode (NewETName)
End If
xr11DOM . getCementsByTaghame(ParentC1Name) (ParentE1Index) . appendchild _
m1_ELEMENT
Erd <ub

images/00690.jpeg
Const ROOT_ELEMENT_NAME = “SAMPLEDATA™
Const GROUPS_NAME = "EMPLOYEES"
Const XML_EXPORT_PATH temp\myXMLFile.xm1"

images/00217.jpeg

images/00216.jpeg
* L w

images/00219.jpeg
A8 || Estmerucosapton:
v S

1 B —

v s £ rowtanom

L ot ginossice

] = e =

x wawss EH P) e
7 2y oYl R e EEE ==t

Bl N o vewene,

images/00218.jpeg
D 0o 0o 0O
88 80 00

images/00213.jpeg
AN G

images/00697.jpeg
Private
Private
Private
Private
Private
Private

m_su As Boolean

m_ee As Boolean

m_da As Boolean
m_calc As Long
m_cursor As Long
m_except As StateEnum

images/00212.jpeg
*A3N$

images/00696.jpeg
Set ws = Sheets('Log Sheet’)

‘Get the first unused row on the Log sheet

Tr = ws.Cells(Rows . Count, "A").End(x1Up) . Row

'Set Target Range, i.e. Range("Al, B2, C3"), or Range("A1:B3")
Set rng = Target.Parent.Range("A:A")

‘Only Took at single cell changes

It Target.Count > 1 Then Exit Sub

‘only Took at that range

If Intersect(Target, rng) Is Nothing Then Exit Sub
‘Action if Condition(s) are met (do your thing here...)
'Put the Target cell's Address in Column A

ws.Cel1s(1r + 1, "A").Value = Target.Address

‘Put the Target cell's value in Column B

ws.Cel1s(Ir + 1, "B").Value = Target.Value
'Put the Date in Column C
ws.Cells(Ir + 1, "C").Value = Date

'Put the Time in Column D
ws.Cel1s(Ir + 1, "D").Value
'Put the Date in Column E
ws.Cells(Ir + 1, "E™).Value
End Sub

Format(Now, "HH:MM:SS AM/PM")

Environ(“UserName")

images/00215.jpeg
[X* X(XCXO)

images/00699.jpeg
It Not m_except And StateEnum.DisplayAlerts Then
.DisplayAlerts = m_da
End If

If Not m_except And StateEnum.Calculation Then
.Calculation = m_calc
End If

If Not m_except And StateEnum.Cursor Then
.Cursor = m_cursor
End If
End With
cnd Sub

images/00214.jpeg

images/00698.jpeg
PRORYE EOON SEapretinm.
None - 0
ScreenUpdating = 1
Frablefvents — 2
Displayalerts = 4
calaulacion - &
Cursor - 16

Fnd Fnum

Public Sub SetState(Optional ByVal except 4s Statefrur - StateFrum.tone)
w_except - except
with Apolication
IF Not m_except And StateEnun.Screenlpdating Then
Scresnupdating — False
End I

IF Not r_except And StaceEnun. EnableEverts Then
_Enabletvents = False
Ena I

If Not m_except And StateEnun.Displaylerts Then
DisplayAlerts - False
Enc If

TF Not m_except And StateFnun.Calculation Ther
“Galeulation - xICalculationtanual
End 1

I Not r_except And StateEnun.Cursor Then
Cursor - xTWait
End 11
End with
End Sub

Private Sub Class_TnicializeC)
with Apalication
s - Screenlpdating
e - _EnableEvents
rids = Displayilerts

rcalc - Caleulation
r_cursor = cursor

tnd With

End Sub

Private Sub Class_Teminate()
With Apalication
IF Not m_except And StateEnun. Screenlpdating Then
_Screenipdating = nsu
End T

I Not r_except And Statefnun. Enablebvents Then
“Frablefvents - n ee
Bk 3

images/00209.jpeg

images/01003.jpeg
<:DOCTYPEhtm >
<htnl>
<head>
<meta charset="UTF-8"/>
<meta http-equiv="X-UA-Compatible" content-"IE-Edge"/>
<link rel="stylesheet" type="text/css" href="program.css"/>
</head>
<body>
<p>Hello World! </p>
</body>
<R Ts

images/01002.jpeg
= Workbooks("Code.xlsm").Name
If Not Err = 0 then
on Error Goto 0
Workbooks .Open Filename
ThisWorkbook. Path & Application.PathSeparator & "Code.x1sm'
End If
on Error Goto 0
Application.Run “Code.x1sm!CustFileopen”
e d b

images/01005.jpeg
<’xml version="1.0" encoding="utt-3"7>

<OFficeApp xulns="http://schenas.microsoft.con/of fice/appforoffice/1.0"

xmln si="http://www.w3.0rg/2001/XMLSchema~-instance”

xs13type="TaskPaneApp">

«<1d-0Bafd/fe-1631-42f4-84f1-5ba51e242f98=/1d>

<Version>1.0</Version>

<ProviderName>Tracy Syrstad</ProviderNane>

<DefaulrlocalesEN-US</Defaultlacales

<DisplayName DefaultValue="Hello World app"/>

<Description Defaul tValue

<IconUr] DefaultValue=

“http: //officeing.vo.msecnd.net/ Tayouts/images/general/

officeloge. jpy"/>

<Capabilities>
<Capabi lity Nams
<Capabi lity Nams

«/Capabilities>

My First app."/>

Document”/>
Workbook” />

<DefaultSettings>

<SourceLocation DefaultValue:
HelloWlor1d . htm1"/>

</DefaultSettings>

<Permissions>Reacri teDocument</Permi ssionss
</OFficeApps

\\workpc\MyApps\Hie1ToNor1d\

images/01004.jpeg
body
{
position:relative;
3

11 :hover

text-decoration: underline;
cursor:pointer;
13
hl,h3,h4,p,a,1i
L
font-family: “"Segoe UL Light","Segoe UL",Tahoma,sans-serif;
text-decoration-color:#4ec?24;

images/01001.jpeg
Private Sub Workbook_Open()
On Error Resume Next

images/01000.jpeg
ThisWorkbook. SaveAs F1leName:
FileFormat 10penXMLAddIn

Ci\ClientF1les\Chapz6.xlam™, _

images/00682.jpeg
Option Base 1

Sub OpenLargeCSVFast()

Dim buf(l To 16384) As Variant

Dim i As Long

‘Change the File Tocation and name here

Const strilePath As String = "C:\remp\Sales.CSV"

Dim strRenamedPath As String
strRenamedPath = SpTit{strFilePath, "."3(0) & "txt"

With Application
.ScreenUpdating = False
.Displayalerts = False
End With
'Setting an array for FieldInfo To open CSV
For i = 1 To 16384
buf(i) = Array(i, 2)
Next
Name strFilePath As strRenamedPath
Workbooks .OpenText Filename:=strRenamedPath, DataType:
Comma:=True, FieldTnfo:=buf
Frase buf
Activesheet.UsedRange.Copy ThisWorkbook. Sheets(1).Range("AL")
ActiveWorkbook.Close False
Kill strRenamedPath
With Application
.ScreenUpdating = True
_DisplayAlerts - True
End With
End Sub

DeTimited, _

images/00681.jpeg
FonsUndarline = xlUnder]inestyleSingls
Ent recolunn AutaFit
HorizonsalaT igment = x1Center

End
frt nich
Application. Screantipsating = True
td Sub

At

Private Sub racursesubFelders{aykef Folder As Dbject,
ByRef vararrQ) As variane, _
ByRef 3 Ac Long, _
ByRef srcnExc 43 String)

Din Subfolder As Object

Din strkame As Scring, strFileRullkane As String

For Each SubFolder In Folder .Subrolders.
Let steians - Dirs(subfolder.Path & ™" & srchExt)
Do while stritame < vhka11sTring

Lot i =441
Let strFi1eFulIName — Subolder.Path & "\ 2 srevane
Let varkrr(l, 1) = strFiTaful Hane

Let varhrr(i, 2) = FilelenCstrFilfulTNane) '\, 1024
Let varArr(i, 3) = FilebazeTine(strFilerul Tkane)
Let strtiame = 01730

Losp
1F 1 > 1048176 Then Exit Sub
a1 recurcesubsolders (subroldar, varAre(), 1, srchext)
Nexe
End Sub

Private Function BrouscForFoldersnel1() As Yariant
Din obyShell Ax Object, ohjFalder s Object
Set ob3shell = Createdhject("Shell. Agplication”)
Set objFolder = objshel].BrouseForFolder (0, "Plaase selact & fulder”,
0, "CA"
IF o objFalder Ts Kothing Then

On Error Resime Next

TF IsErrr(obiFolder Ttams Ttan Pach) Then

BrouseForkoldershell = Cser(obiolder)

Elze
on Error GoTo 0
IF Lenconjrolder. Tters Tten.Pach) > 3 Then
BrouserorToldershel] ~ objFolder.Ttens. Tten. Pach & _
Mool ication.PathSeparator
e
BrowseForFoldarshell - objFolder. Itens. Ttan.Pach
End 1F
End 1F
Flse
BrovseFarFaTdershell = False
End 1F

Set. biFolder = Nothing
S s

Set onfsnel] = hathing

images/00200.jpeg
=>4

images/00684.jpeg
Sub SplitWorkbook()
Dim ws As Worksheet
Dim DisplayStatusBar As Boolean

DisplayStatusBar = Application.DisplayStatusBar
Application.DisplayStatusBar = True
Application.ScreenUpdating = False
Application.DisplayAlerts False

images/00683.jpeg
Sub LoadLinesFromCSVL)
Dim sht As Worksheet

Dim strtxt As String

Dim textArray() As String

" Add new sheet for output

Set sht = Sheets.Add

" open the csv file

With CreateObject("Scripting.FileSystenObject") _
.GetFile("c:\tenp\sales.csv") .OpenAsTextStrean(1)
"read the contents into a variable

STrixt = .ReadAll

close it!
Close

End With

"split the text into an array using carriage return and Tine feed
'separator
textArray = VBA.Split(strtxt, vhCrLf)

sht.Range ("A1") .Resize(UBound(textArray) + 1).Value = _
Application. Transpose(textArray)
EFnd Sub

images/00680.jpeg
MG ERGRIEVIRSEAPGIL):
Din SrcnExt As Variant, sreaDic fs Variane
0in i As Long, 1 As Long, striane As String
Din varArr(L To 1048576, 1 To 31 As Variant
Din strFiTeFul Tiane &s String

D1 ws As Warksheer

Dim fs0 As Object

et SrchExt = Application. Tnuisac(Flaase Fnter File Fxtension”,
Tofo Reuest”)

TF srehFxt = False And ot Typetlare(srchFxt) = “String* Tren
Exit subs
ng TF
Let SrchDir - BronseForFaldershel
TF SPCNDIF = False And Mot Typeflane(srchDir) = “String” Then
et sun
£nd 17

Application.screenpdaring = False
Set ws = Thisvorkbook orksnaets .Add(sheets (1))

On Error Resune Next

spplication.nisplayalerts = False

ThsWarkbook Morkshests (" lasearen ResuTes") elete
Application.Displayalerts = True

on Error GaTo 0

v Nane = "Filesearc Result:

Lot strMans - Dirs(srchDir & "*" & srchixt)
Do niniTe striiame < vouwlsering
Leed - 41
Let serfilerulTnane - srchDir & strhane
Lot vararr (i, 1) - strfileruNane
Lot vararr (i, 2) - FileLondstriTobulNanc) b 1024
Lot vararr (i, 3) - Filabateline(striileruTTane)
Lot strhane - BirsO)
Loop

Set f50 = Creatavsject(’Scrinting. Filasystorobject™)
CaTl recursasubrolders(fso.Gatkoldar (srchDir) , VararrQ), 1, Cotr(srchext))
Set 50 = athing

Thisworkbook i ndows (1) .Disolaytleadings = False
With us
IF i 0 Ten
Range("h2") Resize(i, UBound (varArr , 2)).Value = varArr
Forja1Toi
Hypertinks.Add anchor
Hext
£ 17
“Range(.Ce11s(1, 4), .CellsCL, .Colums.Count)) . EntireColum. iicden = _
True
Range(.Ce 15 Rows. Coune, 1) End(x1Up) (20, _
CellsC Rows.Count, 1)), EntireRow. Hidden — True
With .Ranoe"AL:C1")

fe.Cals) 1 L 1), Address:

warkreGi, 1

images/00206.jpeg

images/00205.jpeg
@0

images/00689.jpeg
Set SortColumn = Table.ListColumns.Add(Table.ListColumns.Count + 1)
Ser CriteriaColumn - Table.ListColumns.Add _
(Table.ListColumns .Count + 13

on Error GoTo O

"Add a column to keep track of the original order of the records
SortColumn.Name = " Sort"

CriteriaColum Name = " Criteria”
SortColumn.DataBodyRange . Formula = "=ROW(AL)"
sortColumn.DataBodyRange.Value = SortColumn.DataBodyRange.value

'add the formula to mark the desired records
"the records not wanted will have errors

Criteriacolumn.DataBodyRange. Formula /(([@Units]<10)" ([@Cost]<5))"
CriteriaColumn.DataBodyRange.Value = CriteriaColumn.DataBodyRange.Value

Table.Range.Sort Keyli=CriteriaColumn.Range(l, 1), _
Orcerl:exIAscending, Header:=x1Yes

on Error Resure Next

set FourdRange = Intersect(Table.Range, CriteriaColumn.DataBodyRange.

SpecialCells(x1Cel1TypeConstants, xINumbers) .EntireRow)

on Error GoTo 0

If Not FouncRange Ts Nothing Then
Set Targetsheet = Thisworkbaok .Worksheets.Add(Afrer:=Activesheet)
Foundrange(1, 1).0ffset(-1, 0).Resize(FoundRange.Rows.Count + 1, _
FoundRange . Colunns . Count - 23.Copy
TargetSheet.Range("AL") . PasteSpecial x1PastevaluesAndNumberFormats
Application.CutCopyvode — False

End 1f

Table.Range.Sort Keyl

Header :=x1Yes

ortColumn.Range(1, 1), Orderli=xlascending, _

RemoveColumns

Tf Not SortColumn Ts Kothing Then SortColumn.Delete

If Not CriteriaColum Is Nothing Then CriteriaColumn.Delete
Table.ShowHeaders = HeaderVasible

End Sub

images/00208.jpeg
*ANI

images/00207.jpeg
*+A98

images/00202.jpeg
900

images/00686.jpeg
sub Comb1neWorkbooks()

Dim CurFile As String, Dirloc As String

Dim Desti3 As Workbook

Dim ws As Object 'allows for different sheet types

DirLoc = ThisWorkbook.Path & "\tst\" 'location of files
CurfFile = Dir(DirLoc & "*.xIs*")

Application.ScreenUpdating = False
Application.EnableEvents = False
Set Dest3 - Workbooks.Add (xTWorksheet)
Do While CurFile <> vbNullString
Dim Origh8 As Workbaok
Set Origh = Workbooks.Open(Filenare:=Dirloc & CurFile, _
Readonly:=Trua)

images/00201.jpeg
L

images/00685.jpeg
For Each ws In ThiswWorkbook.Sheets

Oim Newrilevane As String

AppTication. StatusBar — ThisWorkbook.Sheets. Count & _
Remaining Sheets"

If ThisWorkbook.Sheets.Count <> 1 Then
NewFileNane = ThisWorkbook.Path & "\" & ws.Name & ".x1sn"
'Macro-Enabled
* NewFileName = Thiskiorkbook.
'Not Macro-Enabled
ws.Copy
ActiveWorkbook.Sheets (1) .Name Sheet1”
Activellorkbook.SaveAs Filename: wFileName
FilaFormat:—x10penxMLUor kbookwacroEnab]ed
' Activellorkbook. SaveAs Filename:-NewrileName, _
FileFormat:=x10penXhLiior kbaok
ActiveWorkbook.Close SaveChanges:-False

Else
NewkileNane = ThisWorkbook.Path & "\" & ws.Name & ".x1sm"
' NewkFileName hisWorkbook. Path & " & ws.Name & ".x1sx"
wsName = “Sheet1”

End If

Next

ath & "\" & ws.Name & ".xTsx"

Apolication.DisplayAlerts = True
Apolication.Statusbar - False
Apolication.DisplaystatusBar = DisplayStatusBar
Apolication.Screenpdating = True

End Suk

images/00204.jpeg
[~ WA

images/00688.jpeg
Sub CriteriaRange_Copy()

Dim Table As ListObject

Dim SortColumn As ListColumn
Dim CriteriaColumn As ListColumn
Dim FoundRange As Range

Dim TargetSheet As Worksheet
Dim HeaderVisible As Boolean

Set Table = ActiveSheet.ListObjects(1) ' Set as desired
HeaderVisible = Table.ShowHeaders

Table.ShowHeaders = True

On Frror CoTo RemoveColumns

images/00203.jpeg
200

images/00687.jpeg
“Limits to valid sheet names and removes ".xIs*"
CurFile = Left(Left(CurFile, Len(CurFile) - 5), 20)

For Each ws In Origu.Sheets
Ws.Copy After:-DesthB.Sheets(DestiiB. Sheets.Count)

If OrigWd.Sheets.Count > 1 Then
DesthB.Sheets (DesthB . Sheets.Count) .Name = CurFile & ws.Index

Else
DestWB. Sheets (Desti. Sheets.Count) Name = CurFile
End If
Next
OrighB.Close SaveChanges:-False
CurFile = Dir
Loop

Application.DisplayAlerts = False
DestWB. Sheets (1) .Delete
ppplication.DisplayAlerts = True
ppplicaticn.Screenupdating = True
Applicaticn.EnableEvents - True

Set DestWB = Nothing
End Sub

images/00671.jpeg
© Add the Sector Tield from the Sector table to the Row areas
With PI.Cuberields(" [Sector].[Sector]")
.Orientation - xRowrield
Position = 1
End With

! Before you can add Revenue to the pivot tasle,

* you have to define the measure.

* This hanpens using the GetMeasure method

* Assign the cube ficld to the CFRevenue obiact

Set CFRevenue = PT.CubeFields.GetMeasure(_
AvtributeHierarchy:="[Sales]. [Reveruel”,

Caption:="Sun of Revenue")

' Add the newly created cube field to the pivot table
PT.AddDataField Field:=CFReverue, _

"Total Reverue"
PT.PivotFields("[Measures].[sum of Revenuel™)
-NumberFornat = "$#,##0,K

' Add Distinct Count of Customer as a cube field

Set CFCustCount = PT.CubeFielcs CetMeasura(_
Attributelfierarchy:="[Sales] . [Customer]
Function:-x1bistinctCount, _
Caption:="Custoner Count™

' Add the newly created cube field to the pivot table

PT.AddDataField Field:=CFCustCount, _
Caption:="Custoner Count"

' Add Median Sales using DAX

\ctiveWorkaook . Model. Mode IMeasures . Add _
MeasureNane:="Median Sales", _

AssociatedTable
ActiveWorkbook.Model.Modellables("sales™), _
Formula:-"Vedian([Revenuel)", _

FormatInformation:=
ActiveWorkbook . Mode1 . ModeFormatCur rency("Default”, 2)
PT.AddDataField PT.CubeFields(" Measures].[Median Sales]")

End Sub

images/00670.jpeg
2UB-BM RIS E1 VT aniel)
i WAT At Warkbook

Dim WC As WorkboakConnectian
Dim K0 As Vodel

i PiCache Az Pivartache
Dim PT fs FivetTable

i w30 As worksheer

i CFRevenue As Cubskield
Dim CFCustCounc A5 CubeFicld

Set WST = Activakorkbook
Set WSD - VBT arkshsets("Report”)

' 5ui1d connection o the wain Sales table

TanleNane ~ "Sales”

WS Connections.Add2 Nare:="Linkedlable * & TableNare,
Description:~"NainTable", _
Conmeettansering:="WRKSHEF ;" & WRT.Ful INane,
ConmandText:=hST.ane & "1" & TableNane, _
TCndType:=7, _
Createtiode | Camnection

ImgortRelationships:=False ’

* Bui1d connaction to the Sector loskug table
TableNane ~ "Sector”
BT Connections. Add? Nare:="LinkedTable * & TableNane,
Description:=” LoskupTable”
Connectionstring: NOUSHEET;" & WAT. Ful THame, _
ConnandTaxt:=46T. Nare & 1" & TablaNare,
emdType:-7
CrestavodelCannectian:=True.
TnporsReTationshi

felate the T tables
Ser M0 ~ fetiveblorkboal. Hede]
V0. Vode ke Tationshi ps. dd
Fore1gneyo lun:=. Hods I Tablas (“5ales”)
ModeTTabTeCo Tumns (*Cus omer'), _
PriaryeyColun:-+0. dode Tk les (“Sectar™
ModeTTabTeCalumns (“Custoner’)

! balete a1y prior prvot tables

For Esch PT In WS.PivatTables
PI. IahlaKange2 Clear

Nexe PT

* Dafine the PiverCache
Set PTCache = WAT.PiuotCaches Cruate (ScurceType:=x]Extornal, _
Saurcellata: NI Connec tinns (T skarkbeakDataVade1") ,
Version:=xIPivotTableversionis)

! Create the pivet table fron the pivet cache
Set PT = PTCache.CreatePivatTablel
TablabDeat it on:<eD Caltecl. 1%, TableMsin:

images/00673.jpeg
* Define calculated 1tem along the product dimension
PT. PivotFields("Measure").CalculatedItems _
.Add "Variance", '"Actual'-"'Budget'"

images/00672.jpeg
- Define calculated Tields
PT.CalculatedFields.Add Name:
Formula Profit/Revenue”
With PT.PivotFields("ProfitPercent™)
.Orientation = x1DataField
.Function = x1Sum
.Position = 3
.NumberFormat = "#0.0%"
.Name = "GP Pct"
Fnd With

"ProfitPercent”, _

images/00679.jpeg
' Apply a data bar
PT.TableRange2.Ce11s(3, 2).Select
Selection.FormatConditions.AddDatabar
Selection.FormatConditions(1).Showvalue = True
Selection.FormatConditions(1l).SetFirstPriority
With Selection.FormatConditions(1)
_MinPoint.Modify newtype:=x1ConditionValueLowestValue
_MaxPoint.Modify newtype:=x1ConditionValueHighestValue
End With
With Selection.FormatConditions(1).BarColor
.ThemeColor = x1ThemeColorAccent3
.TintAndShade = -0.5
End With
Selection.FormatConditions(1).ScopeType = x1FieldsScope

images/00678.jpeg
Pl.PivotFields("Region
PT .PivotFields("Region

") .Subtotals(l)
.Subtotals(1l)

True
False

images/00675.jpeg
PT.RowAxisLayout xl1TabularRow
PT . RowAxi sLayout x10utlineRow
PT . RowAxi sLayout x1CompactRow

images/00674.jpeg

images/00677.jpeg
Pl.FivotFields("Region™).5ubtotals = Array(False, False, False, False,
Edlss. Faleh. Fales. Exlse. False Faise. Falie. Exlse)

images/00676.jpeg

images/00660.jpeg
Top:=W5D.Range("J1%).Top, _
Left:=WSD.Range("J1").Left, _
Width:=262.5, Height:=108)

' Set the timeline to show years
SL.TimelineViewState.Level — x1TinelineLevelYears

' Set the dates for the timeline
SC.TimelineState SetFilterDateRange "1/1/2018", "12/31/2018"

Cnd Sub

images/00662.jpeg
TableName = “Sector™

WBT.Connections.Add Name:="LinkedTable_" & TableName, _
Description:="", _

ConnectionString:="WORKSHEET;" & WBT.FullName, _
CommandText : =WBT.Name & & TableName, _
1CmdType:=7, _
CreateModelConnection:
ImportRelationships

images/00661.jpeg
© Build Connection to the main >Sales table

Set WBT = ActiveWorkbook

TableName = "Sales"

WBT.Connections.Add Name:="LinkedTable_" & TableName,
Description:
ConnectionString
CommandText :=WBT.Name & "!
1CmdType:=
CreateModelConnection:
ImportRelationships

" & WBT.FullName, _
& TableName, _

images/00668.jpeg
© Add distinct count of customer as a cube Tield

Dim CFCustCount As CubeField

Set CFCustCount = PT.CubeFields.GetMeasure(_
AttributeHierarchy:="[Sales].[Customer]", _
Function:=x1DistinctCount, _

Caption:="Customer Count")

' Add the newly created cube field to the pivot table
PT.AddDataField Field:=CFCustCount, _
Caption:="Customer Count"

images/00667.jpeg
' Before you can add Revenue to the pivot table,

' you have to define the measure.

' This happens using the GetMeasure method.

' Assign the cube field to the CFRevenue object

Dim CFRevenue As CubeField

Set CFRevenue = PT.CubeFields.GetMeasure(_
AttributeHierarchy:="[Sales].[Revenue]
Function:=x1Sum, _

Caption:="Sum of Revenue")

' Add the newly created cube field to the pivot table
PT.AddDataField Field:=CFRevenue, _
Caption:="Total Revenue"
PT.PivotFields("Total Revenue").NumberFormat

images/00669.jpeg
~ Add Median Sales using DAX

Activellarkbaok.ModeT . ModeTMeasures . Add _
MeasureNare:="Median Sales", _

AssociatedTable:=Activelorkbook . ModeT . Mode1Tables("Sales"), _

Formula:="Median([Revenue])", _

FormatInformation:=Activedorkbook.Model . ModeFormatCurrency(*Default”, 2)

PT.AddDataField PT.CubeFields("[Measures] . [Median Sales]™)

images/00664.jpeg
" Define the PivotCache

Set PlCache - WBT.PivotCaches.Create(Sourcelype:-xlExternal, _
SourceData:=WET.Connections ("ThiskorkoockDataMode1"), _
Version:=x1PivotTableVersionl5)

* Create the pivot table fron the pivot cache
Set PT - PTCache.CreatePivotTable(_
TableDestination:=wSD.Cells(1 13. TableName:="PivotTablel")

images/00663.jpeg
- Relate the two tables
Dim MO As Model
Set MO = ActiveWorkbook.Model
M0.ModeRelationships.Add _
Forei gnkeyColumn
MO. Mode'lTab‘IeS("SaW es").Mode1TableColumns ("Customer™), _
PrimaryKeyColumn:= _
MO.Model Tables ("Secto

.ModelTableColumns("“Customer")

images/00666.jpeg
with Pl.CubeFields("[Sector]. [Sector]™)
.Orientation = xTRowField
.Position = 1
Fnd With

images/00665.jpeg
with Pl.CubeFields("LTableName].[F1eldName]")
.Orientation = x1RowField
.Position = 1

Fnd With

images/00651.jpeg
Caption
Top:=W5D.Range("]1").Top + 5,
SD.Range("11") .Left + 5, _
415, Height:=184)
SLC.Style = "SlicerStyleLight2"
SLC.NunberOfColunns - 3

' Unselect some products

With sCP
.SlicerItems("C409").5elected = False
SlicerItems("D625").Selected ~ False
.SlicerItems("E438").Selected = False

End With

" Unselect one customer
With SCC

.5licerItems("Guarded Kettle Corporation").Selected - lalse
End With

End €ih

images/00650.jpeg
SCUTEEURERIFIMDUC.AHURESS,
Version: x| Pivat 151 sversionts)

" Creste the pivor table from the pive cache
Set PT = PTCache.CreatePivocTablel _
Tableestinacion: Cells(18, Finalcol + 2), _
T leNane:="PivatTablel”,
Defau]eVersion: =] PivotTableversionls)

" Set up the row and colum Fields
PI.Add ie1ds Rouftelds:Array(

" Set up the daca fields
ith 7T PivosFielde(uanticy™)
Orientation - xIDataFisld

“runcrion = xlsun
“Position = 1
Clumserformat - ¥, 80"

Nane.
cnd with

Quanity

Vith PTPivoLFields("Revanue
“orizntation - x1Dszarisld

Function - x1Sur

Cposicion - 1

MunserFornat = "$4, #0'
Came - “Revenwe *
tnd With

Vith P1.pivotelde("brofi=’)
Orientation - xIDatsFisld
“runction = xIsun
Position - 1

umberformat - “S, ¢
Nane - "Profic
cnd with

" Define the sTicer caches
Set SCC = WiD.S1{cerCaches AdA(PI, 'Customer”)
Set SCP - WED. 51 cerCaches AJACPT, *Procuct

" Define Product as a sTicer
et 1P = SCP.51icers Add(usi,
Nawe:="Pracuce’
Caption:="Product”, _
Too: sWSD. Rangs(*114") Top + 5,
LerLi-usD. Ranga(" T14™) Left +'5, _
Width: =313, Hetghei=s)
SLP.Style - "STicersuyleLighta”
SLP. Rumber0fCalums - 5

" Define Customer a3 & slicer
Set SLC = SCC.514cers AJAQUSD,
b A

images/00657.jpeg

images/00656.jpeg

images/00659.jpeg
€T Whit~ AEEIVENOIREDOK
Set WSl Workshests ("Tiata®)

" Delere any prior piuot tables
For Each PT In WSD. PivotTables.
PT. Tab eftange?. Clear

Next PT

! Delete any prior slicer cache

For Exch 5C In Activenarkboak. S1icarCaches
SC.elare

Next 5C

' Define inout area and set up a pivet cache
VSD.Select

Finalkon = W50, Cells (Rons .Count, 1) End(x1Up) Row
FinalCol = WSD.CeT1s(1, Colums . Count) . _

EncCx ToLeft) .Colum

Set Phange = WSD.Cells(1, 1) Resize(Finalfon, FinalCal)

" Dafine the pivot table cache
Set PTCache = Activekiorkbook. Pivar Caches Createl
SourceType:exIDatabase, _
Saurcebata:-PRange Address,
Version:=x]PiotTableversionts)

" Creste the pivot table fron the pivos cache

Set PT - PlCache. CreatsPivotTable(_
TableDestination:=cel 510, FinalCol + 2),
Tl cName:—"P vt Tablel”,
DefauTtvarsion:=x]pivotiablaversionts)

" St up the row and eslum Felds
PT.AJAFieTds RouFlelds:

" Set up the data Tields
Vith PT.PivoLFields "Revenue®)
Orienazion = xIDataField
FuncLion - x15um
Position - 1
HuberFormal. -
Hame = "Revenue
End With

" Dafine the sTicar cache
" Firet tao arcumants are Sourca and SaurceFiald
 Third argunent, Nave, should be skipped

Sl SC — WD, 511 curCaches AJG2(PT, *ShipDate®, |
ST cerCacheType I Tine ine)

" Define the tineline a2 2 sTicer

Set 5L - SC.Slicers AJICSD, | _
Nane:-S1 Date”, _
Canttensa"aars.

images/00658.jpeg
Sub PivotWithYearSlicer()

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

SC As SlicerCache
SL As Slicer

WSD As Worksheet

WSR As Worksheet

WBD As Workbook

PT As PivotTable
PTCache As PivotCache
PRange As Range
FinalRow As Long

images/00653.jpeg
' Define the pivot table cache

Set PTCache = ActiveWorkbook.PivotCaches.Create(_
SourceType
SourceData:
Version:

Database, _
Range.Address, _
TPivotTableVersionl5)

' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(_
TableDestination:=Cel1s(10, FinalCol + 2), _
TableName:="PivotTablel", _

DefaultVersiol 1PivotTableVersionlS)

images/00652.jpeg
>ub MoveAndFormatsiicer()

Dim SCP As SlicerCache

Dim SLP as Slicer

Dim WSD As Worksheet

Set WSD = ActiveSheet

Set SCP = ActiveWorkbook.STicerCaches("STicer_Product™)

Set SLP = SCS.Slicers("Product™)

With SLP
.Style = "SlicerStyleLight6"
-NumberOfColumns = §
.Top = WSD.Range("AL").Top + 5
.Left = WSD.Range("A1").Left + 5
.Width = WSD.Range("AL:B14").Width - 60
.Height = WSD.Range("AL:B14") .Height
End With

cnd Sub

images/00655.jpeg
- Detine the timeline as a slicer
Set SL = SC.Slicers.Add(WSD, , _

SD.Range("J1") . Top, _
SD.Range("J1") .Left, _
108)

images/00654.jpeg
~ DeTine the slicer cache

' First two arguments are Source and SourceField
* Third argument, Name, should be skipped

Set SC = WBD.S1icerCaches.Add2(PT, "ShipDate”, ,
SlicerCacheType:=x1Timeline)

images/00649.jpeg
>ub PivotWithiwosiicers()

Din SCP As SlicerCache ' For Product slicer
Din SCC As SlicerCache ' For Customer slicer
Dinm SLP As Slicer

Din SLC As Slicer

Din WSD As Worksheet

Din WSR As Worksheet

Din WED As Workbook

Din PT As PivotTable

Din PTCache As PivotCache

Din PRange As Range

Din FinalRow As Long

Set WBD = ActiveWorkbook

Set WSD = Worksheets("Data")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables
PT.TablcRange2.Clear

Next FT

* Delete any prior slicer cache

For Each SC In ActiveWorkbook.SlicerCaches
SC.Delete

Next SC

' Define input area and set up a pivot cache

wsh. Select

FinalRow = WSD.Cells(Rows.Count, 1).End(x1Up).Row

FinalCol = WSD.Cel1s(1, Columns.Count). _
End(x1ToLeft).Column

Set PRange = WSD.Cells(l, 1).Resize(FinalRow, FinalCol)

" Define the pivot table cache
Set PTCache = ActiveWorkbook.PivotCaches.Create(_

images/00640.jpeg
Pl.PivotFields("Market™).PivotFilters.Add _
Type:=x1ValueIsBetween, _
DataField:=PT.PivotFields("Sum of Revenue"), _

images/00646.jpeg
Jim SLP as Slicer

Set SLP = SCP.Slicers.Add(STicerDestination:=WsD, Name:
Caption:="Product”, _

SD.Range ("A12") . Top, _

D.Range("A12") . Left + 10, _

WSR. Range ("AL2:C12") Width, _

SD. Ranga("A12 :A16") .Heicht)

Product”, _

images/00645.jpeg
Jim oCF as SlicerCache
im SCR as SVicerCache

SCP = ActiveWorkbook. ST icerCaches. Add(Source
SHT SR o AR T PR bR A i A Ak R b Pk

T, SourceFiel,
piapisptityy

Product”)
Rl

images/00648.jpeg
with SCP
.STicerItems("A292").Selected = True
.STicerItems("B722").Selected = True
.STicerItems("C409").Selected = False
.STicerItems("D625").Selected = False
.STicerItems("E438").Selected = False
Fnd With

images/00647.jpeg
' Format the color and number of columns
With SLP

.Style = "SlicerStyleLight6"
.NumberOfColumns = 5
End With

images/00642.jpeg
Sub TopSCustomers()

' Produce a report of the top 5 customers
Dim WSD As Worksheet
Dim WSR As Worksheet
Dim WBN As Workbook
Dim PTCache As PivotCache
Dim PT As PivotTable
Dim PRange As Range
Dim FinalRow As Long
Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables

For Each PT In WSD.PivotTables
PT.TableRange2.Clear

Next PT

WSD.Range("J1:Z1") .EntireColunn.Clear

' Define input area and set up a pivot cache
FinalRaw = WsD.Cells(Application.Rows.Count, 1).End(x1Up).Row

FinalCol = WSD.Cel1s(1, Application.Columns.Count). _
End(x1ToLeft).Column
Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
Set PTCache = Activeworkbaok.PivotCaches.Create(_
SaurceType:= xIDatabase, _
SourceData:=PRange .Address

images/00641.jpeg
~ ohow only the top 5 customers
PT.PivotFields ("Customer") . AutoShow Top:=x]Autonatic, Range:=x1Top
Count:=5. Field um of Revenue'

images/00644.jpeg
xIFasteVa|uesAndNumberiormats
VISR.CeT1s(LastRow + 2, 1).Value = "Total Compzny’

* Clear the pivot table
PT_TableRange2 . Clear
Set PTCache = Nothing

* Do some basic formatting

' Autofit columns, bolc the headings, right-align
VISR . Range (WSR.Range("A3"), WSR.Cells(LastRow + 2, 6)).Columns.AutoFit
Range("A3") .Ent ireRow. Font .Bold = True

Range("A3") .EntireRow. ForizontalAlignment = xIRight

Range("A3") .HorizontalATignnent = x1Left

Range("A2").Select
MsgBox "CEO Report has been Created
cd el

images/00643.jpeg
VErSSanmE VL]

MCYRESIAY

" Create the pivot pivat cache
Set PT = PTCache. CreatePivotTable(Tab ledestination: S
Cells(z, FinalCal 1 21, Tableliane:a PivotTasiel")

" Set un the ron Fields

PT.AddF1e]ds RonFields:a"Custaner”, ColunaFieds:a"Product

' Set up the data fields
Vith PT.PivotFie lds("Revenue’)
Orientztion = xIDataFie d
Function = x15um
Postrion - 1
NonerFarms = "#, 440
Nime = "Tota] Revenue:
rd it

" Ersure that ve get 7eros insread of hlatks <n the dars area
PT.MuTISTring = 0"

' Sort cuscaners descanding by sum of revense
PT.PAuatF! o] ds("Cuscaner”) AuToSart Order:=xINescending,
Field:="Taral Revenue”

" Show only the ton 5 cusromers
PT.PAuatF! o] ds (" Custaner”) Autosaow
Type: X Auzenatic, Range:=yTap,
Counr:=5, Figldi='Toral Revenue'

" Creste a new blank vorkaook with one warksheet
Set UGN = Workbooks .Add(xTNIATWorksheer]

Set sk = W, Vorksheets (1)

it Hame — "fedort”

" set up title for report

with s, (411

vilue = “lop 5 Custoers
Fone.size - 16
crd with

" Copy the pivor Table data <o row 5 of Tre repart sheet
" Use offset o eliminate tre title row of the pivor rable

P1. 1ablekangez OFFser(l, 0).Copy

Vit [AS]. Pastespeci sl paste:xPastavaluesnduuwbertormats
Lastkow - WS CeT1sCRons.Count. 2. Lnd{x1up). Row

it Cells(Lastiow, 1).value = “1op 5 Tatal

" Go back to the pivot table To get totals without the Autoshas
PT. Pivotr s1ds (" Cusconer") Orsentation - xTtidden
PT.Marualupdaze — ralse

PT.Manualupdate True

PT. Taplskangez .0f fsen(z,). Copy

i Pt el aaihow a3 . 35 Oagt

i i

images/00639.jpeg
P1.PivotFields("Market™).PivotFilters.Add _
ValueIsGreaterThan, _

DataField:=PT.PivotFields("Sum of Revenue"), _

Valuel

00000

images/00638.jpeg

images/00635.jpeg
- Make sure all Pivotltems along line are visible
For Each PivItem In _
PT.PivotFields("Product").PivotItems
PivItem.Visible = True

Next PivItem

" Now - Toop through and keep only certain items visible
For Each PivItem In _
PT.PivotFields("Product").PivotItems
Select Case PivItem.Name
Case "Landscaping/Grounds Care", _
“Green Plants and Foliage Care"
PivItem.Visible = True
Case Else
PivItem.Visible = False
End Select
Next PivItem

images/00634.jpeg

images/00637.jpeg

images/00636.jpeg
P1.PivotFields("Customer™).PivotFilters.Add _
Type:=x1CaptionBeginsWith, Valuel:="E"

images/00631.jpeg
WM B3 A% FIeOnian e
Dim 12 As Pivarlabls

Din W5 As Worksheet

Dim WST As Uorksheet

Din PRange Ac Range

Din FinalRou As Long

Set NSD = Worksheets("PiuotTable™)

" Dalece any priar pivat tahles

For Esch PT In WSD.PivatTanles
PT.TableRange2 Clear

pexe 7T

VSD. Ra

CIL2ZLY EntireGolurn Claar

 Define dnput are and set up a pivet cache
Finallow - SD.CeTs(AppT ication. Rons . Count, L3 .EndCx1l
FinalCol = SD.CaT1a(1, Application.Colums. Count)
EndOxTToleTO) Calun
Set PRange - WSO.CaTISCL. 1) ResizaC(Finalkon, FinalCol)
Set PTCachs = Activelorkbock PiverCaches. Createl _
SaurceType:= xDatabase.
SourceDatawPRange Address,
AT PivotTabTovers enld)

o

Version:

" Create the pivot table fron the piver cache
Set PT = PlCache. Createbivot Table(Tablebes tination
Cells(z, FinalCol - 2), Tablekane:="PivotTablel")

" Set up the row fields

PT.AddFieTds RowFie] dai—"Cus Lover
ColumF ields =Array(bate” , "Data"),
PageFields:="Praduct”

" Set up the data Fislds - count of orders
Vith PI.Pivattis]ds(Region”)

Orfentation = xIDataFiald

Function = x1Count

Cposition - 1
NomberForra: = "¢,#40
IName "¢ af Urders

end with

" Graup dasly dates up to years
PT. PivotFis]ds ("Date"). LabsTRange Croup , Periods
Array(ialse, false, false, False, lalse, False, Irue)

' Sat up the daca Fislds - Revenue
Vith PT.PivorFis|ds(Revenue")
LOriencation - xIDatarield
“Foneeion - x1Sum
“position = 2
Nombarrormar -
Nane = "Revenue
Wl

¢, 200

images/00630.jpeg
Sub CustomerByProductReport()

' Use a pivot table to create a report for each product
" with customers in rows and years in columns

Dim WSD As Worksheet

Dim PTCache As PivotCache

images/00633.jpeg
~ Copy the format
Range("J1") .Resize(CalcRows + 5, 1).Copy
Range("K1") .Resize(CalcRous + 5, 1).
PasteSpecial x1PasteFormats
Range("K5") .Value = "% Rev Growth"
Range("K6") .Resize(CalcRows, 1).FormulaRlCl = _
"=IFERROR(RC6/RC3-1,1)"

Range("A2:K5").Style = "Heacing 4"
Range("A2") .Resize(CalcRows + 10, 11).Columns.AutoFit

End If
End If
Next WS

WsD.Select
PT.TableRange2.Clear
Set PTCache = Nothing

WSF.Select
MsgBox Ctr & " product reports created.”

End Sub

images/00632.jpeg
With PT.PivotFields ("Reverue®)
“Orientation = xIDataField
Funcrion - x15um
Position = 3
Numberlormat - *0.0%°
Name = "% of Tozal
Caleulation = x1PercertfColum
End With

" Sort the custoners so the Targest is at the top
TDescending,

PT. PivoLFilds("Cus tomer™) AutoSort
Field: ="Revenue *

with PT
ShonTableStyleColurnStrizes — True

ShouTablestyleRoustripes = True

TableStyle? - "PivotStylaNediumlo”

Hu1Istring - "0
Fnd With

" Replicare the pivor rable far each product

PT.Showpages PageField:="P-aduct’

ctr - 0

For Each 45 In Activekorkboot.Workshe

If 5. PivotTables.Count > O Then

If W5.Cel 1s(1, 1).Value - "Produ

' Save some info
WS, Select

ThisProdact = Cells(L, 2).Value

Cre - Cre - 1
I T = 1 Then

Set WSl - Activasheet

End T

Set PT2 = 1S.PivotTavles (1)

Calckows - PI2. TableRangel.Rows .Count - 3

PT2.Tab] cRange .Copy

AEE M GRER TARIAR = 0T R KO,

PT2.Tatl eRange2. FasteSpecial x1PasteValuss

AL:CE") ClearContents
ALB2"). Clear
valve -
style =

Range
tange
Range
Range

"Tirle!

" Fix sone headings

"Sroduct report for

& ThisProduct

Range("bS:d5"). Copy Destination:=Range("H5:15")

Range ("H4") VaTue
Rance("T4: 14" . Clear

Total

images/00628.jpeg
PT.PivotFields(Customer”).AutoSort Order:=xl|Descending, _

images/00627.jpeg
~ Set up the data fields - Revenue
With PT.PivotFields("Revenue")
.Orientation = x1DataField
.Function = x1Sum
.Position = 2

.NumberFormat = "#,##0"
.Name = "Revenue "
End With

' Set up the data fields - % of total Revenue
With PT.PivotFields("Revenue")

.Orientation = x1DataField

.Function = x1Sum

.Position = 3

.NumberFormat = "0.0%"

.Name = "% of Total "

.Calculation = x1PercentOfColumn
Fnd With

images/00629.jpeg
"~ Replicate the pivot table for each product
PT . ShowPages PageField:="Product"

