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Preface

These linear algebra lecture notes are designed to be presented as twenty five,
fifty minute lectures suitable for sophomores likely to use the material for
applications but still requiring a solid foundation in this fundamental branch
of mathematics. The main idea of the course is to emphasize the concepts
of vector spaces and linear transformations as mathematical structures that
can be used to model the world around us. Once “persuaded” of this truth,
students learn explicit skills such as Gaussian elimination and diagonalization
in order that vectors and linear transformations become calculational tools,
rather than abstract mathematics.

In practical terms, the course aims to produce students who can perform
computations with large linear systems while at the same time understand
the concepts behind these techniques. Often-times when a problem can be re-
duced to one of linear algebra it is “solved”. These notes do not devote much
space to applications (there are already a plethora of textbooks with titles
involving some permutation of the words “linear”, “algebra” and “applica-
tions”). Instead, they attempt to explain the fundamental concepts carefully
enough that students will realize for their own selves when the particular
application they encounter in future studies is ripe for a solution via linear
algebra.

The notes are designed to be used in conjunction with a set of online
homework exercises which help the students read the lecture notes and learn
basic linear algebra skills. Interspersed among the lecture notes are links
to simple online problems that test whether students are actively reading
the notes. In addition there are two sets of sample midterm problems with
solutions as well as a sample final exam. There are also a set of ten online
assignments which are collected weekly. The first assignment is designed to
ensure familiarity with some basic mathematic notions (sets, functions, logi-
cal quantifiers and basic methods of proof). The remaining nine assignments
are devoted to the usual matrix and vector gymnastics expected from any
sophomore linear algebra class. These exercises are all available at

http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/

Webwork is an open source, online homework system which originated at
the University of Rochester. It can efficiently check whether a student has
answered an explicit, typically computation-based, problem correctly. The
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problem sets chosen to accompany these notes could contribute roughly 20%
of a student’s grade, and ensure that basic computational skills are mastered.
Most students rapidly realize that it is best to print out the Webwork assign-
ments and solve them on paper before entering the answers online. Those
who do not tend to fare poorly on midterm examinations. We have found
that there tend to be relatively few questions from students in office hours
about the Webwork assignments. Instead, by assigning 20% of the grade
to written assignments drawn from problems chosen randomly from the re-
view exercises at the end of each lecture, the student’s focus was primarily
on understanding ideas. They range from simple tests of understanding of
the material in the lectures to more difficult problems, all of them require
thinking, rather than blind application of mathematical “recipes”. Office
hour questions reflected this and offered an excellent chance to give students
tips how to present written answers in a way that would convince the person
grading their work that they deserved full credit!

Each lecture concludes with references to the comprehensive online text-
books of Jim Hefferon and Rob Beezer:

http://joshua.smcvt.edu/linearalgebra/

http://linear.ups.edu/index.html

and the notes are also hyperlinked to Wikipedia where students can rapidly
access further details and background material for many of the concepts.
Videos of linear algebra lectures are available online from at least two sources:

• The Khan Academy,
http://www.khanacademy.org/?video#Linear Algebra

• MIT OpenCourseWare, Professor Gilbert Strang,
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring
-2010/video-lectures/

There are also an array of useful commercially available texts. A non-
exhaustive list includes

• “Introductory Linear Algebra, An Applied First Course”, B. Kolman
and D. Hill, Pearson 2001.

• “Linear Algebra and Its Applications”, David C. Lay, Addison–Weseley
2011.
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• “Introduction to Linear Algebra”, Gilbert Strang, Wellesley Cambridge
Press 2009.

• “Linear Algebra Done Right”, S. Axler, Springer 1997.

• “Algebra and Geometry”, D. Holten and J. Lloyd, CBRC, 1978.

• “Schaum’s Outline of Linear Algebra”, S. Lipschutz and M. Lipson,
McGraw-Hill 2008.

A good strategy is to find your favorite among these in the University Library.
There are still many errors in the notes, as well as awkwardly explained

concepts. An army of 400 students, Fu Liu, Stephen Pon and Gerry Puck-
ett have already found many of them. Rohit Thomas has spent a great
deal of time editing these notes and has improved them immeasurably. We
also thank Captain Conundrum for providing us his solutions to the sample
midterm and final questions. The review exercises would provide a better
survey of what linear algebra really is if there were more “applied” questions.
We welcome your contributions!

Andrew and Tom.

©2009 by the authors. These lecture notes may be reproduced in their
entirety for non-commercial purposes.
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1 What is Linear Algebra?

Three bears go into a cave, two come out. Would you go in?

Brian Butterworth

Numbers are highly useful tools for surviving in the modern world, so much
so that we often introduce abstract pronumerals to represent them:

n bears go into a cave, n− 1 come out. Would you go in?

A single number alone is not sufficient to model more complicated real
world situations. For example, suppose I asked everybody in this room to
rate the likeability of everybody else on a scale from 1 to 10. In a room full
of n people (or bears sic) there would be n2 ratings to keep track of (how
much Jill likes Jill, how much does Jill like Andrew, how much does Andrew
like Jill, how much does Andrew like Andrew, etcetera). We could arrange
these in a square array  9 4 · · ·

10 6
...

. . .


Would it make sense to replace such an array by an abstract symbol M? In
the case of numbers, the pronumeral n was more than a placeholder for a
particular piece of information; there exists a myriad of mathematical oper-
ations (addition, subtraction, multiplication,...) that can be performed with
the symbol n that could provide useful information about the real world sys-
tem at hand. The array M is often called a matrix and is an example of a
more general abstract structure called a linear transformation on which many
mathematical operations can also be defined. (To understand why having an
abstract theory of linear transformations might be incredibly useful and even
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lucrative, try replacing “likeability ratings” with the number of times inter-
net websites link to one another!) In this course, we’ll learn about three main
topics: Linear Systems, Vector Spaces, and Linear Transformations. Along
the way we’ll learn about matrices and how to manipulate them.

For now, we’ll illustrate some of the basic ideas of the course in the two
dimensional case. We’ll see everything carefully defined later and start with
some simple examples to get an idea of the things we’ll be working with.

Example Suppose I have a bunch of apples and oranges. Let x be the number of
apples I have, and y be the number of oranges I have. As everyone knows, apples and
oranges don’t mix, so if I want to keep track of the number of apples and oranges I
have, I should put them in a list. We’ll call this list a vector, and write it like this:
(x, y). The order here matters! I should remember to always write the number of
apples first and then the number of oranges - otherwise if I see the vector (1, 2), I
won’t know whether I have two apples or two oranges.

This vector in the example is just a list of two numbers, so if we want
to, we can represent it with a point in the plane with the corresponding
coordinates, like so:

Apples

Oranges

(x, y)

In the plane, we can imagine each point as some combination of apples and
oranges (or parts thereof, for the points that don’t have integer coordinates).
Then each point corresponds to some vector. The collection of all such
vectors—all the points in our apple-orange plane—is an example of a vector
space.

Example There are 27 pieces of fruit in a barrel, and twice as many oranges as apples.
How many apples and oranges are in the barrel?
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How to solve this conundrum? We can re-write the question mathematically as
follows:

x+ y = 27

y = 2x

This is an example of a Linear System. It’s a collection of equations in
which variables are multiplied by constants and summed, and no variables
are multiplied together: There are no powers of x or y greater than one, no
fractional or negative powers of x or y, and no places where x and y are
multiplied together.

Reading homework: problem 1.1

Notice that we can solve the system by manipulating the equations in-
volved. First, notice that the second equation is the same as −2x + y = 0.
Then if you subtract the second equation from the first, you get on the left
side x+ y − (−2x+ y) = 3x, and on the left side you get 27− 0 = 27. Then
3x = 27, so we learn that x = 9. Using the second equation, we then see
that y = 18. Then there are 9 apples and 18 oranges.

Let’s do it again, by working with the list of equations as an object in
itself. First we rewrite the equations tidily:

x+ y = 27

2x− y = 0

We can express this set of equations with a matrix as follows:(
1 1
2 −1

)(
x
y

)
=

(
27
0

)
The square list of numbers is an example of a matrix. We can multiply

the matrix by the vector to get back the linear system using the following
rule for multiplying matrices by vectors:(

a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
(1)

Reading homework: problem 1.2
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The matrix is an example of a Linear Transformation, because it takes
one vector and turns it into another in a “linear” way.

Our next task is to solve linear systems. We’ll learn a general method
called Gaussian Elimination.

References

Hefferon, Chapter One, Section 1
Beezer, Chapter SLE, Sections WILA and SSLE
Wikipedia, Systems of Linear Equations

Review Problems

1. Let M be a matrix and u and v vectors:

M =

(
a b
c d

)
, v =

(
x
y

)
, u =

(
w
z

)
.

(a) Propose a definition for u+ v.

(b) Check that your definition obeys Mv +Mu = M(u+ v).

2. Matrix Multiplication: Let M and N be matrices

M =

(
a b
c d

)
and N =

(
e f
g h

)
,

and v a vector

v =

(
x
c

)
.

Compute the vector Nv using the rule given above. Now multiply this
vector by the matrix M , i.e., compute the vector M(Nv).

Now recall that multiplication of ordinary numbers is associative, namely
the order of brackets does not matter: (xy)z = x(yz). Let us try to
demand the same property for matrices and vectors, that is

M(Nv) = (MN)v .

We need to be careful reading this equation because Nv is a vector and
so is M(Nv). Therefore the right hand side, (MN)v should also be a
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vector. This means that MN must be a matrix; in fact it is the matrix
obtained by multiplying the matrices M and N . Use your result for
M(Nv) to find the matrix MN .

3. Pablo is a nutritionist who knows that oranges always have twice as
much sugar as apples. When considering the sugar intake of schoolchil-
dren eating a barrel of fruit, he represents the barrel like so:

sugar

fruit

(s, f)

Find a linear transformation relating Pablo’s representation to the one
in the lecture. Write your answer as a matrix.

Hint: Let λ represent the amount of sugar in each apple.

4. There are methods for solving linear systems other than Gauss’ method.
One often taught in high school is to solve one of the equations for a
variable, then substitute the resulting expression into other equations.
That step is repeated until there is an equation with only one vari-
able. From that, the first number in the solution is derived, and then
back-substitution can be done. This method takes longer than Gauss’
method, since it involves more arithmetic operations, and is also more
likely to lead to errors. To illustrate how it can lead to wrong conclu-
sions, we will use the system

x+ 3y = 1
2x+ y =−3
2x+ 2y = 0

(a) Solve the first equation for x and substitute that expression into
the second equation. Find the resulting y.
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(b) Again solve the first equation for x, but this time substitute that
expression into the third equation. Find this y.

What extra step must a user of this method take to avoid erroneously
concluding a system has a solution?
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2 Gaussian Elimination

2.1 Notation for Linear Systems

In Lecture 1 we studied the linear system

x+ y = 27

2x− y = 0

and found that

x = 9

y = 18

We learned to write the linear system using a matrix and two vectors like so:(
1 1
2 −1

)(
x
y

)
=

(
27
0

)
Likewise, we can write the solution as:(

1 0
0 1

)(
x
y

)
=

(
9
18

)
The matrix I =

(
1 0
0 1

)
is called the Identity Matrix . You can check that if

v is any vector, then Iv = v.
A useful shorthand for a linear system is an Augmented Matrix , which

looks like this for the linear system we’ve been dealing with:(
1 1 27
2 −1 0

)
We don’t bother writing the vector

(
x
y

)
, since it will show up in any

linear system we deal with. The solution to the linear system looks like this:(
1 0 9
0 1 18

)
Here’s another example of an augmented matrix, for a linear system with

three equations and four unknowns:
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 1 3 2 0 9
6 2 0 −2 0
−1 0 1 1 3


And finally, here’s the general case. The number of equations in the linear

system is the number of rows r in the augmented matrix, and the number of
columns k in the matrix left of the vertical line is the number of unknowns.

a11 a12 · · · a1k b1

a21 a22 · · · a2k b2

...
...

...
...

ar1 ar2 · · · ark br


Reading homework: problem 2.1

Here’s the idea: Gaussian Elimination is a set of rules for taking a gen-
eral augmented matrix and turning it into a very simple augmented matrix
consisting of the identity matrix on the left and a bunch of numbers (the
solution) on the right.

Equivalence Relations for Linear Systems

It often happens that two mathematical objects will appear to be different but
in fact are exactly the same. The best-known example of this are fractions.
For example, the fractions 1

2
and 6

12
describe the same number. We could

certainly call the two fractions equivalent.
In our running example, we’ve noticed that the two augmented matrices(

1 1 27
2 −1 0

)
,

(
1 0 9
0 1 18

)
both contain the same information: x = 9, y = 18.

Two augmented matrices corresponding to linear systems that actually
have solutions are said to be (row) equivalent if they have the same solutions.
To denote this, we write:(

1 1 27
2 −1 0

)
∼
(

1 0 9
0 1 18

)
The symbol ∼ is read “is equivalent to”.
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A small excursion into the philosophy of mathematical notation: Suppose
I have a large pile of equivalent fractions, such as 2

4
, 27

54
, 100

200
, and so on. Most

people will agree that their favorite way to write the number represented by
all these different factors is 1

2
, in which the numerator and denominator are

relatively prime. We usually call this a reduced fraction. This is an example
of a canonical form, which is an extremely impressive way of saying “favorite
way of writing it down”. There’s a theorem telling us that every rational
number can be specified by a unique fraction whose numerator and denom-
inator are relatively prime. To say that again, but slower, every rational
number has a reduced fraction, and furthermore, that reduced fraction is
unique.

2.2 Reduced Row Echelon Form

Since there are many different augmented matrices that have the same set
of solutions, we should find a canonical form for writing our augmented
matrices. This canonical form is called Reduced Row Echelon Form, or RREF
for short. RREF looks like this in general:

1 ∗ 0 ∗ 0 · · · 0 b1

0 1 ∗ 0 · · · 0 b2

0 0 1 · · · 0 b3

...
...

... 0
...

1 bk

0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0


The first non-zero entry in each row is called the pivot . The asterisks

denote arbitrary content which could be several columns long. The following
properties describe the RREF.

1. In RREF, the pivot of any row is always 1.

2. The pivot of any given row is always to the right of the pivot of the
row above it.

3. The pivot is the only non-zero entry in its column.
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Example


1 0 7 0
0 1 3 0
0 0 0 1
0 0 0 0


Here is a NON-Example, which breaks all three of the rules:

1 0 3 0
0 0 2 0
0 1 0 1
0 0 0 1


The RREF is a very useful way to write linear systems: it makes it very easy
to write down the solutions to the system.

Example 
1 0 7 0 4
0 1 3 0 1
0 0 0 1 2
0 0 0 0 0


When we write this augmented matrix as a system of linear equations, we get the
following:

x + 7z = 4

y + 3z = 1

w = 2

Solving from the bottom variables up, we see that w = 2 immediately. z is not a
pivot, so it is still undetermined. Set z = λ. Then y = 1− 3λ and x = 4− 7λ. More
concisely: 

x
y
z
w

 =


4
1
0
2

+ λ


−7
−3
1
0


So we can read off the solution set directly from the RREF. (Notice that we use the
word “set” because there is not just one solution, but one for every choice of λ.)
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Reading homework: problem 2.2

You need to become very adept at reading off solutions of linear systems
from the RREF of their augmented matrix. The general method is to work
from the bottom up and set any non-pivot variables to unknowns. Here is
another example.

Example 
1 1 0 1 0 1
0 0 1 2 0 2
0 0 0 0 1 3
0 0 0 0 0 0

 .

Here we were not told the names of the variables, so lets just call them x1, x2, x3, x4, x5.
(There are always as many of these as there are columns in the matrix before the ver-
tical line; the number of rows, on the other hand is the number of linear equations.)

To begin with we immediately notice that there are no pivots in the second and
fourth columns so x2 and x4 are undetermined and we set them to

x2 = λ1 , x4 = λ2 .

(Note that you get to be creative here, we could have used λ and µ or any other names
we like for a pair of unknowns.)

Working from the bottom up we see that the last row just says 0 = 0, a well
known fact! Note that a row of zeros save for a non-zero entry after the vertical
line would be mathematically inconsistent and indicates that the system has NO
solutions at all.

Next we see from the second last row that x5 = 3. The second row says x3 =
2− 2x4 = 2− 2λ2. The top row then gives x1 = 1− x2 − x4 = 1− λ1 − λ2. Again
we can write this solution as a vector

1
0
2
0
3

+ λ1


−1
1
0
0
0

+ λ2


−1
0
−2
1
0

 .

Observe, that since no variables were given at the beginning, we do not really need to
state them in our solution. As a challenge, look carefully at this solution and make sure
you can see how every part of it comes from the original augmented matrix without
every having to reintroduce variables and equations.

Perhaps unsurprisingly in light of the previous discussions of RREF, we
have a theorem:
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Theorem 2.1. Every augmented matrix is row-equivalent to a unique aug-
mented matrix in reduced row echelon form.

Next lecture, we will prove it.

References

Hefferon, Chapter One, Section 1
Beezer, Chapter SLE, Section RREF
Wikipedia, Row Echelon Form

Review Problems

1. State whether the following augmented matrices are in RREF and com-
pute their solution sets.

1 0 0 0 3 1
0 1 0 0 1 2
0 0 1 0 1 3
0 0 0 1 2 0

 ,


1 1 0 1 0 1 0
0 0 1 2 0 2 0
0 0 0 0 1 3 0
0 0 0 0 0 0 0

 ,


1 1 0 1 0 1 0 1
0 0 1 2 0 2 0 −1
0 0 0 0 1 3 0 1
0 0 0 0 0 2 0 −2
0 0 0 0 0 0 1 1

 .

2. Show that this pair of augmented matrices are row equivalent, assuming
ad− bc 6= 0: (

a b e
c d f

)
∼
(

1 0 de−bf
ad−bc

0 1 af−ce
ad−bc

)
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3. Consider the augmented matrix:

(
2 −1 3
−6 3 1

)
Give a geometric reason why the associated system of equations has
no solution. (Hint, plot the three vectors given by the columns of this
augmented matrix in the plane.) Given a general augmented matrix(

a b e
c d f

)
,

can you find a condition on the numbers a, b, c and d that create the
geometric condition you found?

4. List as many operations on augmented matrices that preserve row
equivalence as you can. Explain your answers. Give examples of oper-
ations that break row equivalence.

5. Row equivalence of matrices is an example of an equivalence relation.
Recall that a relation ∼ on a set of objects U is an equivalence relation
if the following three properties are satisfied:

• Reflexive: For any x ∈ U , we have x ∼ x.

• Symmetric: For any x, y ∈ U , if x ∼ y then y ∼ x.

• Transitive: For any x, y and z ∈ U , if x ∼ y and y ∼ z then x ∼ z.

(For a fuller discussion of equivalence relations, see Homework 0, Prob-
lem 4)

Show that row equivalence of augmented matrices is an equivalence
relation.
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3 Elementary Row Operations

Our goal is to begin with an arbitrary matrix and apply operations that
respect row equivalence until we have a matrix in Reduced Row Echelon
Form (RREF). The three elementary row operations are:

• (Row Swap) Exchange any two rows.

• (Scalar Multiplication) Multiply any row by a non-zero constant.

• (Row Sum) Add a multiple of one row to another row.

Why do these preserve the linear system in question? Swapping rows is
just changing the order of the equations begin considered, which certainly
should not alter the solutions. Scalar multiplication is just multiplying the
equation by the same number on both sides, which does not change the solu-
tion(s) of the equation. Likewise, if two equations share a common solution,
adding one to the other preserves the solution.

There is a very simple process for row-reducing a matrix, working col-
umn by column. This process is called Gauss–Jordan elimination or simply
Gaussian elimination.

1. If all entries in a given column are zero, then the associated variable is
undetermined; make a note of the undetermined variable(s) and then
ignore all such columns.

2. Swap rows so that the first entry in the first column is non-zero.

3. Multiply the first row by λ so that the pivot is 1.

4. Add multiples of the first row to each other row so that the first entry
of every other row is zero.

5. Now ignore the first row and first column and repeat steps 1-5 until
the matrix is in RREF.

Reading homework: problem 3.1
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Example
3x3 = 9

x1 +5x2 −2x3 = 2
1
3x1 +2x2 = 3

First we write the system as an augmented matrix:

0 0 3 9
1 5 −2 2
1
3 2 0 3

 R1↔R3∼

1
3 2 0 3
1 5 −2 2
0 0 3 9


3R1∼

1 6 0 9
1 5 −2 2
0 0 3 9


R2=R2−R1∼

1 6 0 9
0 −1 −2 −7
0 0 3 9


−R2∼

1 6 0 9
0 1 2 7
0 0 3 9


R1=R1−6R2∼

1 0 −12 −33
0 1 2 7
0 0 3 9


1
3
R3∼

1 0 −12 −33
0 1 2 7
0 0 1 3


R1=R1+12R3∼

1 0 0 3
0 1 2 7
0 0 1 3


R2=R2−2R3∼

1 0 0 3
0 1 0 1
0 0 1 3


Now we’re in RREF and can see that the solution to the system is given by x1 = 1,
x2 = 3, and x3 = 1; it happens to be a unique solution. Notice that we kept track of
the steps we were taking; this is important for checking your work!
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Example 
1 0 −1 2 −1
1 1 1 −1 2
0 −1 −2 3 −3
5 2 −1 4 1


R2−R1;R4−5R2∼


1 0 −1 2 −1
0 1 2 −3 3
0 −1 −2 3 −3
0 2 4 −6 6


R3+R2;R4−2R3∼


1 0 −1 2 −1
0 1 2 −3 3
0 0 0 0 0
0 0 0 0 0


Here the variables x3 and x4 are undetermined; the solution is not unique. Set x3 = λ
and x4 = µ where λ and µ are arbitrary real numbers. Then we can write x1 and x2
in terms of λ and µ as follows:

x1 = λ− 2µ− 1

x2 = −2λ+ 3µ+ 3

We can write the solution set with vectors like so:
x1
x2
x3
x4

 =


−1
3
0
0

+ λ


1
−2
1
0

+ µ


−2
3
0
1


This is (almost) our preferred form for writing the set of solutions for a linear system
with many solutions.

Uniqueness of Gauss-Jordan Elimination

Theorem 3.1. Gauss-Jordan Elimination produces a unique augmented ma-
trix in RREF.

Proof. Suppose Alice and Bob compute the RREF for a linear system but
get different results, A and B. Working from the left, discard all columns
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except for the pivots and the first column in which A and B differ. By
Review Problem 1b, removing columns does not affect row equivalence. Call
the new, smaller, matrices Â and B̂. The new matrices should look this:

Â =

(
IN a
0 0

)
and B̂ =

(
IN b
0 0

)
,

where IN is an N ×N identity matrix and a and b are vectors.
Now if Â and B̂ have the same solution, then we must have a = b. But

this is a contradiction! Then A = B.

References

Hefferon, Chapter One, Section 1.1 and 1.2
Beezer, Chapter SLE, Section RREF
Wikipedia, Row Echelon Form
Wikipedia, Elementary Matrix Operations

Review Problems

1. (Row Equivalence)

(a) Solve the following linear system using Gauss-Jordan elimination:

2x1 + 5x2 − 8x3 + 2x4 + 2x5 = 0

6x1 + 2x2 −10x3 + 6x4 + 8x5 = 6

3x1 + 6x2 + 2x3 + 3x4 + 5x5 = 6

3x1 + 1x2 − 5x3 + 3x4 + 4x5 = 3

6x1 + 7x2 − 3x3 + 6x4 + 9x5 = 9

Be sure to set your work out carefully with equivalence signs ∼
between each step, labeled by the row operations you performed.

(b) Check that the following two matrices are row-equivalent:(
1 4 7 10
2 9 6 0

)
and

(
0 −1 8 20
4 18 12 0

)
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Now remove the third column from each matrix, and show that
the resulting two matrices (shown below) are row-equivalent:(

1 4 10
2 9 0

)
and

(
0 −1 20
4 18 0

)
Now remove the fourth column from each of the original two ma-
trices, and show that the resulting two matrices, viewed as aug-
mented matrices (shown below) are row-equivalent:(

1 4 7
2 9 6

)
and

(
0 −1 8
4 18 12

)
Explain why row-equivalence is never affected by removing columns.

(c) Check that the matrix

1 4 10
3 13 9
4 17 20

 has no solutions. If you

remove one of the rows of this matrix, does the new matrix have
any solutions? In general, can row equivalence be affected by
removing rows? Explain why or why not.

2. (Gaussian Elimination) Another method for solving linear systems is
to use row operations to bring the augmented matrix to row echelon
form. In row echelon form, the pivots are not necessarily set to one,
and we only require that all entries left of the pivots are zero, not
necessarily entries above a pivot. Provide a counterexample to show
that row echelon form is not unique.

Once a system is in row echelon form, it can be solved by “back substi-
tution.” Write the following row echelon matrix as a system of equa-
tions, then solve the system using back-substitution.2 3 1 6

0 1 1 2
0 0 3 3


3. Explain why the linear system has no solutions:1 0 3 1

0 1 2 4
0 0 0 6


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For which values of k does the system below have a solution?

x − 3y = 6
x + 3 z =− 3

2x + ky + (3− k)z = 1
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4 Solution Sets for Systems of Linear Equa-

tions

For a system of equations with r equations and k unknowns, one can have a
number of different outcomes. For example, consider the case of r equations
in three variables. Each of these equations is the equation of a plane in three-
dimensional space. To find solutions to the system of equations, we look for
the common intersection of the planes (if an intersection exists). Here we
have five different possibilities:

1. No solutions. Some of the equations are contradictory, so no solutions
exist.

2. Unique Solution. The planes have a unique point of intersection.

3. Line. The planes intersect in a common line; any point on that line
then gives a solution to the system of equations.

4. Plane. Perhaps you only had one equation to begin with, or else all
of the equations coincide geometrically. In this case, you have a plane
of solutions, with two free parameters.

5. All of R3. If you start with no information, then any point in R3 is a
solution. There are three free parameters.

In general, for systems of equations with k unknowns, there are k + 2
possible outcomes, corresponding to the number of free parameters in the
solutions set, plus the possibility of no solutions. These types of “solution
sets” are hard to visualize, but luckily “hyperplanes” behave like planes in
R3 in many ways.

Reading homework: problem 4.1

4.1 Non-Leading Variables

Variables that are not a pivot in the reduced row echelon form of a linear
system are free. We set them equal to arbitrary parameters µ1, µ2, . . .
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Example

1 0 1 −1 1
0 1 −1 1 1
0 0 0 0 0


Here, x1 and x2 are the pivot variables and x3 and x4 are non-leading variables,

and thus free. The solutions are then of the form x3 = µ1, x4 = µ2, x2 = 1+µ1−µ2,
x1 = 1− µ1 + µ2.

The preferred way to write a solution set is with set notation. Let S be the set of
solutions to the system. Then:

S =



x1
x2
x3
x4

 =


1
1
0
0

+ µ1


−1
1
1
0

+ µ2


1
−1
0
1




We have already seen how to write a linear system of two equations in two
unknowns as a matrix multiplying a vector. We can apply exactly the same
idea for the above system of three equations in four unknowns by calling

M =

1 0 1 −1
0 1 −1 1
0 0 0 0

 , X =


x1
x2
x3
x4

 and V =

1
1
0

 .

Then if we take for the product of the matrix M with the vector X of
unknowns

MX =

1 0 1 −1
0 1 −1 1
0 0 0 0



x1
x2
x3
x4

 =

x1 + x3 − x4
x2 − x3 + x4

0


our system becomes simply

MX = V .

Stare carefully at our answer for the product MX above. First you should
notice that each of the three rows corresponds to the left hand side of one of
the equations in the system. Also observe that each entry was obtained by
matching the entries in the corresponding row of M with the column entries
of X. For example, using the second row of M we obtained the second entry
of MX

0 1 − 1 1

x1
x2
x3
x4

7−→ x2 − x3 + x4 .
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In Lecture 8 we will study matrix multiplication in detail, but you can already
try to discover the main rules for your for yourself by working through Review
Question 3 on multiplying matrices by vectors.

Given two vectors we can add them term-by-term:
a1

a2

a3

...
ar

+


b1

b2

b3

...
br

 =


a1 + b1

a2 + b2

a3 + b3

...
ar + br


We can also multiply a vector by a scalar, like so:

λ


a1

a2

a3

...
ar

 =


λa1

λa2

λa3

...
λar


Then yet another way to write the solution set for the example is:

X = X0 + µ1Y1 + µ2Y2

where

X0 =


1
1
0
0

 , Y1 =


−1
1
1
0

 , Y2 =


1
−1
0
1


Definition Let X and Y be vectors and α and β be scalars. A function f
is linear if

f(αX + βY ) = αf(X) + βf(Y )

This is called the linearity property for matrix multiplication.

The notion of linearity is a core concept in this course. Make sure you
understand what it means and how to use it in computations!
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Example Consider our example system above with

M =

1 0 1 −1
0 1 −1 1
0 0 0 0

 , X =


x1
x2
x3
x4

 and Y =


y1
y2
y3

y4

 ,

and take for the function of vectors

f(X) = MX .

Now let us check the linearity property for f . The property needs to hold for any
scalars α and β, so for simplicity let us concentrate first on the case α = β = 1. This
means that we need to compare the following two calculations:

1. First add X + Y , then compute f(X + Y ).

2. First compute f(X) and f(Y ), then compute the sum f(X) + f(Y ).

The second computation is slightly easier:

f(X) = MX =

x1 + x3 − x4
x2 − x3 + x4

0

 and f(Y ) = MY =

y1 + y3 − y4
y2 − y3 + y4

0

 ,

(using our result above). Adding these gives

f(X) + f(Y ) =

x1 + x3 − x4 + y1 + y3 − y4
x2 − x3 + x4 + y2 − y3 + y4

0

 .

Next we perform the first computation beginning with:

X + Y =


x1 + y1
x2 + y2
x3 + y3
x4 + y4

 ,

from which we calculate

f(X + Y ) =

x1 + y2 + x3 + y3 − (x4 + y4)

x2 + y2 − (x3 + y3) + x4 + y4

0

 .
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Distributing the minus signs and remembering that the order of adding numbers like
x1, x2, . . . does not matter, we see that the two computations give exactly the same
answer.

Of course, you should complain that we took a special choice of α and β. Actually,
to take care of this we only need to check that f(αX) = αf(X). It is your job to
explain this in Review Question 1

Later we will show that matrix multiplication is always linear. Then we
will know that:

M(αX + βY ) = αMX + βMY

Then the two equations MX = V and X = X0 + µ1Y1 + µ2Y2 together say
that:

MX0 + µ1MY1 + µ2MY2 = V

for any µ1, µ2 ∈ R. Choosing µ1 = µ2 = 0, we obtain

MX0 = V .

Here, X0 is an example of what is called a particular solution to the system.
Given the particular solution to the system, we can then deduce that

µ1MY1 + µ2MY2 = 0. Setting µ1 = 0, µ2 = 1, and recalling the particular
solution MX0 = V , we obtain

MY1 = 0 .

Likewise, setting µ1 = 1, µ2 = 0, we obtain

MY2 = 0 .

Here Y1 and Y2 are examples of what are called homogeneous solutions to
the system. They do not solve the original equation MX = V , but instead
its associated homogeneous system of equations MY = 0.

Example Consider the linear system with the augmented matrix we’ve been working
with.

x +z −w = 1

y −z +w = 1
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Recall that the system has the following solution set:

S =



x1
x2
x3
x4

 =


1
1
0
0

+ µ1


−1
1
1
0

+ µ2


1
−1
0
1




Then MX0 = V says that


x1
x2
x3
x4

 =


1
1
0
0

 solves the original system of equations,

which is certainly true, but this is not the only solution.

MY1 = 0 says that


x1
x2
x3
x4

 =


−1
1
1
0

 solves the homogeneous system.

MY2 = 0 says that


x1
x2
x3
x4

 =


1
−1
0
1

 solves the homogeneous system.

Notice how adding any multiple of a homogeneous solution to the particular solution
yields another particular solution.

Definition Let M a matrix and V a vector. Given the linear system MX =
V , we call X0 a particular solution if MX0 = V . We call Y a homogeneous
solution if MY = 0. The linear system

MX = 0

is called the (associated) homogeneous system.

If X0 is a particular solution, then the general solution to the system is1:

S = {X0 + Y : MY = 0}

In other words, the general solution = particular + homogeneous.

Reading homework: problem 4.2

1The notation S = {X0 + Y : MY = 0} is read, “S is the set of all X0 + Y such that
MY = 0,” and means exactly that. Sometimes a pipe | is used instead of a colon.
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Wikipedia, Systems of Linear Equations

Review Questions

1. Let f(X) = MX where

M =

1 0 1 −1
0 1 −1 1
0 0 0 0

 and X =


x1
x2
x3
x4

 .

Suppose that α is any number. Compute the following four quantities:

αX , f(X) , αf(X) and f(αX) .

Check your work by verifying that

αf(X) = f(αX) .

Now explain why the result checked in the Lecture, namely

f(X + Y ) = f(X) + f(Y ) ,

and your result f(αX) = αf(X) together imply

f(αX + βY ) = αf(X) + βf(Y ) .

2. Write down examples of augmented matrices corresponding to each
of the five types of solution sets for systems of equations with three
unknowns.

3. Let

M =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

ar1 ar2 · · · ark

 , X =


x1

x2

...
xk


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Propose a rule for MX so that MX = 0 is equivalent to the linear
system:

a11x
1 +a12x

2 · · ·+a1kxk = 0

a21x
1 +a22x

2 · · ·+a2kxk = 0
...

...
...

...

ar1x
1 +ar2x

2 · · ·+arkxk = 0

Show that your rule for multiplying a matrix by a vector obeys the
linearity property.

Note that in this problem, x2 does not denote the square of x. Instead
x1, x2, x3, etc... denote different variables. Although confusing at
first, this notation was invented by Albert Einstein who noticed that
quantities like a21x

1 + a22x
2 · · · + a2kx

k could be written in summation

notation as
∑k

j=1 a
2
jx

j. Here j is called a summation index. Einstein
observed that you could even drop the summation sign

∑
and simply

write a2jx
j.

4. Use the rule you developed in the problem 3 to compute the following
products 

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16




1
2
3
4




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




14
14
21
35
62




1 42 97 2 −23 46
0 1 3 1 0 33
11 π 1 0 46 29
−98 12 0 33 99 98

log 2 0
√

2 0 e 23




0
0
0
0
0
0


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 1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18




0
0
1
0
0
0


Now that you are good at multiplying a matrix with a column vector,
try your hand at a product of two matrices

 1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


Hint, to do this problem, either skip ahead and read Lecture 8, or just
view the matrix on the right as three column vectors next to one another.

5. The standard basis vector ei is a column vector with a one in the ith
row, and zeroes everywhere else. Using the rule for multiplying a matrix
times a vector in problem 3, find a simple rule for multiplying Mei,
where M is the general matrix defined there.
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5 Vectors in Space, n-Vectors

In vector calculus classes, you encountered three-dimensional vectors. Now
we will develop the notion of n-vectors and learn some of their properties.

We begin by looking at the space Rn, which we can think of as the space
of points with n coordinates. We then specify an origin O, a favorite point
in Rn. Now given any other point P , we can draw a vector v from O to P .
Just as in R3, a vector has a magnitude and a direction.

If O has coordinates (o1, . . . , on) and p has coordinates (p1, . . . , pn), then

the components of the vector v are


p1 − o1
p2 − o2

...
pn − on

. This construction allows us

to put the origin anywhere that seems most convenient in Rn, not just at the
point with zero coordinates.

Do not be confused by our use of a superscript to label components of a vector.
Here v2 denotes the second component of a vector v, rather than a number v
squared!

Most importantly, we can add vectors and multiply vectors by a scalar:

Definition Given two vectors a and b whose components are given by

a =

a
1

...
an

 and b =

b
1

...
bn


their sum is

a+ b =

a
1 + b1

...
an + bn

 .

Given a scalar λ, the scalar multiple

λa =

λa
1

...
λan

 .
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Example Let

a =


1
2
3
4

 and b =


4
3
2
1

 .

Then, for example

a+ b =


5
5
5
5

 and 3a− 2b =


−5
0
5
10

 .

Notice that these are the same rules we saw in Lecture 4! In Lectures 1-4,
we thought of a vector as being a list of numbers which captured information
about a linear system. Now we are thinking of a vector as a magnitude and
a direction in Rn, and luckily the same rules apply.

A special vector is the zero vector connecting the origin to itself. All
of its components are zero. Notice that with respect to the usual notions
of Euclidean geometry, it is the only vector with zero magnitude, and the
only one which points in no particular direction. Thus, any single vector
determines a line, except the zero-vector. Any scalar multiple of a non-zero
vector lies in the line determined by that vector.

The line determined by a non-zero vector v through a point P can be

written as {P + tv|t ∈ R}. For example,




1
2
3
4

+ t


1
0
0
0


t ∈ R

 describes

a line in 4-dimensional space parallel to the x-axis.
Given two non-zero vectors, they will usually determine a plane, unless

both vectors are in the same line. In this case, one of the vectors can be
realized as a scalar multiple of the other. The sum of u and v corresponds to
laying the two vectors head-to-tail and drawing the connecting vector. If u
and v determine a plane, then their sum lies in plane determined by u and v.

The plane determined by two vectors u and v can be written as

{P + su+ tv|s, t ∈ R} .
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Example 



3
1
4
1
5
9

+ s



1
0
0
0
0
0

+ t



0
1
0
0
0
0




s, t ∈ R


describes a plane in 6-dimensional space parallel to the xy-plane.

We can generalize the notion of a plane:

Definition A set of k vectors v1, . . . , vk in Rn with k ≤ n determines a
k-dimensional hyperplane, unless any of the vectors vi lives in the same hy-
perplane determined by the other vectors. If the vectors do determine a
k-dimensional hyperplane, then any point in the hyperplane can be written
as:

{P +
k∑
i=1

λivi|λi ∈ R}

5.1 Directions and Magnitudes

Consider the Euclidean length of a vector:

‖v‖ =
√

(v1)2 + (v2)2 + · · · (vn)2 =

√√√√ n∑
i=1

(vi)2 .

Using the Law of Cosines, we can then figure out the angle between two
vectors. Given two vectors v and u that span a plane in Rn, we can then
connect the ends of v and u with the vector v− u. Then the Law of Cosines
states that:

‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖ ‖v‖ cos θ

Then isolate cos θ:
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‖v − u‖2 − ‖u‖2 − ‖v‖2 = (v1 − u1)2 + · · ·+ (vn − un)2

−((u1)2 + · · ·+ (un)2)

−((v1)2 + · · ·+ (vn)2)

= −2u1v1 − · · · − 2unvn

Thus,
‖u‖ ‖v‖ cos θ = u1v1 + · · ·+ unvn .

Note that in the above discussion, we have assumed (correctly) that Eu-
clidean lengths in Rn give the usual notion of lengths of vectors in the plane.
This now motivates the definition of the dot product.

Definition The dot product of two vectors u =

u
1

...
un

 and v =

v
1

...
vn

 is

u v = u1v1 + · · ·+ unvn .

The length of a vector
‖v‖ =

√
v v .

The angle θ between two vectors is determined by the formula

u v = ‖u‖‖v‖ cos θ .

The dot product has some important properties:

1. The dot product is symmetric, so

u v = v u ,

2. Distributive so
u (v + w) = u v + u w ,

3. Bilinear, which is to say, linear in both u and v. Thus

u (cv + dw) = c u v + d u w ,

and
(cu+ dw) v = c u v + dw v .
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4. Positive Definite:
u u ≥ 0 ,

and u u = 0 only when u itself is the 0-vector.

There are, in fact, many different useful ways to define lengths of vectors.
Notice in the definition above that we first defined the dot product, and then
defined everything else in terms of the dot product. So if we change our idea
of the dot product, we change our notion of length and angle as well. The
dot product determines the Euclidean length and angle between two vectors.

Other definitions of length and angle arise from inner products, which
have all of the properties listed above (except that in some contexts the
positive definite requirement is relaxed). Instead of writing for other inner
products, we usually write 〈u, v〉 to avoid confusion.

Reading homework: problem 5.1

Example Consider a four-dimensional space, with a special direction which we will
call “time”. The Lorentzian inner product on R4 is given by 〈u, v〉 = u1v1 + u2v2 +
u3v3 − u4v4. This is of central importance in Einstein’s theory of special relativity.

As a result, the “squared-length” of a vector with coordinates x, y, z and t is
‖v‖2 = x2 + y2 + z2 − t2. Notice that it is possible for ‖v‖2 ≤ 0 for non-vanishing v!

Theorem 5.1 (Cauchy-Schwartz Inequality). For non-zero vectors u and v
with an inner-product 〈 , 〉,

|〈u, v〉|
‖u‖ ‖v‖

≤ 1

Proof. The easiest proof would use the definition of the angle between two
vectors and the fact that cos θ ≤ 1. However, strictly speaking speaking we
did not check our assumption that we could apply the Law of Cosines to the
Euclidean length in Rn. There is, however a simple algebraic proof. Let α be
any real number and consider the following positive, quadratic polynomial
in α

0 ≤ 〈u+ αv, u+ αv〉 = 〈u, u〉+ 2α〈u, v〉+ α2〈v, v〉 .

You should carefully check for yourself exactly which properties of an inner
product were used to write down the above inequality!

Next, a tiny calculus computation shows that any quadratic aα2+2bα+c
takes its minimal value c − b2

a
when α = − b

a
. Applying this to the above
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quadratic gives

0 ≤ 〈u, u〉 − 〈u, v〉
2

〈v, v〉
.

Now it is easy to rearrange this inequality to reach the Cauchy–Schwartz one
above.

Theorem 5.2 (Triangle Inequality). Given vectors u and v, we have:

‖u+ v‖ ≤ ‖u‖+ ‖v‖

Proof.

‖u+ v‖2 = (u+ v) (u+ v)

= u u+ 2u v + v v

= ‖u‖2 + ‖v‖2 + 2 ‖u‖ ‖v‖ cos θ

= (‖u‖+ ‖v‖)2 + 2 ‖u‖ ‖v‖(cos θ − 1)

≤ (‖u‖+ ‖v‖)2

Then the square of the left-hand side of the triangle inequality is ≤ the
right-hand side, and both sides are positive, so the result is true.

Example Let

a =


1
2
3
4

 and b =


4
3
2
1

 ,

so that
a a = b b = 1 + 22 + 32 + 42 = 30

⇒ ‖a‖ =
√

30 = ‖b‖ and
(
‖a‖+ ‖b‖

)2
= (2
√

30)2 = 120 .

Since

a+ b =


5
5
5
5

 ,

we have
‖a+ b‖2 = 52 + 52 + 52 + 52 = 100 < 120 =

(
‖a‖+ ‖b‖

)2
as predicted by the triangle inequality.

Notice also that a b = 1.4 + 2.3 + 3.2 + 4.1 = 20 <
√

30.
√

30 = 30 = ‖a‖ ‖b‖ in
accordance with the Cauchy–Schwartz inequality.
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Reading homework: problem 5.2

References

Hefferon: Chapter One.II
Beezer: Chapter V, Section VO, Subsection VEASM
Beezer: Chapter V, Section O, Subsections IP-N
Relevant Wikipedia Articles:

• Dot Product

• Inner Product Space

• Minkowski Metric

Review Questions

1. When he was young, Captain Conundrum mowed lawns on weekends to
help pay his college tuition bills. He charged his customers according to
the size of their lawns at a rate of 5¢ per square foot and meticulously
kept a record of the areas of their lawns in an ordered list:

A = (200, 300, 50, 50, 100, 100, 200, 500, 1000, 100) .

He also listed the number of times he mowed each lawn in a given year,
for the year 1988 that ordered list was

f = (20, 1, 2, 4, 1, 5, 2, 1, 10, 6) .

(a) Pretend that A and f are vectors and compute A f .

(b) What quantity does the dot product A f measure?

(c) How much did Captain Conundrum earn from mowing lawns in
1988? Write an expression for this amount in terms of the vectors
A and f .

(d) Suppose Captain Conundrum charged different customers differ-
ent rates. How could you modify the expression in part 1c to
compute the Captain’s earnings?
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2. (2) Find the angle between the diagonal of the unit square in R2 and
one of the coordinate axes.

(3) Find the angle between the diagonal of the unit cube in R3 and
one of the coordinate axes.

(n) Find the angle between the diagonal of the unit (hyper)-cube in
Rn and one of the coordinate axes.

(∞) What is the limit as n→∞ of the angle between the diagonal of
the unit (hyper)-cube in Rn and one of the coordinate axes?

3. Consider the matrix M =

(
cos θ sin θ
− sin θ cos θ

)
and the vector X =

(
x
y

)
.

(a) Sketch X and MX in R2 for several values of X and θ.

(b) Compute ||MX||
||X|| for arbitrary values of X and θ.

(c) Explain your result for (b) and describe the action of M geomet-
rically.

4. Suppose in R2 I measure the x direction in inches and the y direction in
miles. Approximately what is the real-world angle between the vectors(

0
1

)
and

(
1
1

)
? What is the angle between these two vectors according

to the dot-product? Give a definition for an inner product so that the
angles produced by the inner product are the actual angles between
vectors.

5. (Lorentzian Strangeness). For this problem, consider Rn with the
Lorentzian inner product and metric defined above.

(a) Find a non-zero vector in two-dimensional Lorentzian space-time
with zero length.

(b) Find and sketch the collection of all vectors in two-dimensional
Lorentzian space-time with zero length.

(c) Find and sketch the collection of all vectors in three-dimensional
Lorentzian space-time with zero length.
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6 Vector Spaces

Thus far we have thought of vectors as lists of numbers in Rn. As it turns
out, the notion of a vector applies to a much more general class of structures
than this. The main idea is to define vectors based on their most important
properties. Once complete, our new definition of vectors will include vectors
in Rn, but will also cover many other extremely useful notions of vectors.
We do this in the hope of creating a mathematical structure applicable to a
wide range of real-world problems.

The two key properties of vectors are that they can be added together
and multiplied by scalars. So we make the following definition.

Definition A vector space (over R) is a set V with two operations + and ·
satisfying the following properties for all u, v ∈ V and c, d ∈ R:

(+i) (Additive Closure) u+ v ∈ V . (Adding two vectors gives a vector.)

(+ii) (Additive Commutativity) u + v = v + u. (Order of addition doesn’t
matter.)

(+iii) (Additive Associativity) (u + v) + w = u + (v + w) (Order of adding
many vectors doesn’t matter.)

(+iv) (Zero) There is a special vector 0V ∈ V such that u+ 0V = u for all u
in V .

(+v) (Additive Inverse) For every u ∈ V there exists w ∈ V such that
u+ w = 0V .

(· i) (Multiplicative Closure) c · v ∈ V . (Scalar times a vector is a vector.)

(· ii) (Distributivity) (c+d)·v = c·v+d·v. (Scalar multiplication distributes
over addition of scalars.)

(· iii) (Distributivity) c·(u+v) = c·u+c·v. (Scalar multiplication distributes
over addition of vectors.)

(· iv) (Associativity) (cd) · v = c · (d · v).

(· v) (Unity) 1 · v = v for all v ∈ V .
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Remark Don’t confuse the scalar product · with the dot product . The
scalar product is a function that takes a vector and a number and returns
a vector. (In notation, this can be written · : R × V → V .) On the other
hand, the dot product takes two vectors and returns a number. (In notation:
: V × V → R.)

Once the properties of a vector space have been verified, we’ll just write
scalar multiplication with juxtaposition cv = c ·v, though, to avoid confusing
the notation.

Remark It isn’t hard to devise strange rules for addition or scalar multipli-
cation that break some or all of the rules listed above.

One can also find many interesting vector spaces, such as the following.

Example
V = {f |f : N→ R}

Here the vector space is the set of functions that take in a natural number n and return
a real number. The addition is just addition of functions: (f1+f2)(n) = f1(n)+f2(n).
Scalar multiplication is just as simple: c · f(n) = cf(n).

We can think of these functions as infinite sequences: f(0) is the first term, f(1)
is the second term, and so on. Then for example the function f(n) = n3 would look
like this:

f = {0, 1, 8, 27, . . . , n3, . . .}.

Thinking this way, V is the space of all infinite sequences.
Let’s check some axioms.

(+i) (Additive Closure) f1(n) + f2(n) is indeed a function N→ R, since the sum of
two real numbers is a real number.

(+iv) (Zero) We need to propose a zero vector. The constant zero function g(n) = 0
works because then f(n) + g(n) = f(n) + 0 = f(n).

The other axioms that should be checked come down to properties of the real
numbers.

Reading homework: problem 6.1

Example Another very important example of a vector space is the space of all differ-
entiable functions: {

f |f : R→ R,
d

dx
f exists

}
.
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The addition is point-wise

(f + g)(x) = f(x) + g(x) ,

as is scalar multiplication
c · f(x) = cf(x) .

From calculus, we know that the sum of any two differentiable functions is dif-
ferentiable, since the derivative distributes over addition. A scalar multiple of a func-
tion is also differentiable, since the derivative commutes with scalar multiplication
( d
dx(cf) = c ddxf). The zero function is just the function such that 0(x) = 0 for ev-

ery x. The rest of the vector space properties are inherited from addition and scalar
multiplication in R.

In fact, the set of functions with at least k derivatives is always a vector space, as
is the space of functions with infinitely many derivatives.

Vector Spaces Over Other Fields Above, we defined vector spaces over
the real numbers. One can actually define vector spaces over any field. A
field is a collection of “numbers” satisfying a number of properties.

One other example of a field is the complex numbers,

C =
{
x+ iy|i2 = −1, x, y ∈ R

}
.

In quantum physics, vector spaces over C describe all possible states a system
of particles can have.

For example,

V =

{(
λ
µ

)
: λ, µ ∈ C

}
describes states of an electron, where

(
1
0

)
describes spin “up” and

(
0
1

)
describes spin “down”. Other states, like

(
i
−i

)
are permissible, since the

base field is the complex numbers.
Complex numbers are extremely useful because of a special property that

they enjoy: every polynomial over the complex numbers factors into a prod-
uct of linear polynomials. For example, the polynomial x2 + 1 doesn’t fac-
tor over the real numbers, but over the complex numbers it factors into
(x+ i)(x− i). This property ends up having very far-reaching consequences:
often in mathematics problems that are very difficult when working over the
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real numbers become relatively simple when working over the complex num-
bers. One example of this phenomenon occurs when diagonalizing matrices,
which we will learn about later in the course.

Another useful field is the rational numbers Q. This is field is important
in computer algebra: a real number given by an infinite string of numbers
after the decimal point can’t be stored by a computer. So instead rational
approximations are used. Since the rationals are a field, the mathematics of
vector spaces still apply to this special case.

There are many other examples of fields, including fields with only finitely
many numbers. One example of this is the field Z2 which only has elements
{0, 1}. Multiplication is defined normally, and addition is the usual addition,
but with

1 + 1 = 0 .

This particular field has important applications in computer science: Modern
computers actually use Z2 arithmetic for every operation.

In fact, for every prime number p, the set Zp = {0, 1, . . . , p − 1} forms
a field. The addition and multiplication are obtained by using the usual
operations over the integers, and then dividing by p and taking the remainder.
For example, in Z5, we have 4+3 = 2, and 4·4 = 1. (This is sometimes called
“clock arithmetic.”) Such fields are very important in computer science,
cryptography, and number theory.

In this class, we will work mainly over the Real numbers and the Complex
numbers, and occasionally work over Z2. The full story of fields is typically
covered in a class on abstract algebra or Galois theory.

References

Hefferon, Chapter One, Section I.1
Beezer, Chapter VS, Section VS
Wikipedia:

• Vector Space

• Field

• Spin 1
2
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1. Check that V =

{(
x
y

)
: x, y ∈ R

}
= R2 with the usual addition and

scalar multiplication is a vector space.

2. Check that the complex numbers form a vector space.

3. (a) Consider the set of convergent sequences, with the same addi-
tion and scalar multiplication that we defined for the space of
sequences:

V =
{
f |f : N→ R, lim

n→∞
f ∈ R

}
Is this still a vector space? Explain why or why not.

(b) Now consider the set of divergent sequences, with the same addi-
tion and scalar multiplication as before:

V =
{
f |f : N→ R, lim

n→∞
f does not exist or is ±∞

}
Is this a vector space? Explain why or why not.

4. Consider the set of 2× 4 matrices:

V =

{(
a b c d
e f g h

)
|a, b, c, d, e, f, g, h ∈ C

}
Propose definitions for addition and scalar multiplication in V . Identify
the zero vector in V , and check that every matrix has an additive
inverse.

5. Let PR
3 be the set of polynomials with real coefficients of degree three

or less.

• Propose a definition of addition and scalar multiplication to make
PR
3 a vector space.

• Identify the zero vector, and find the additive inverse for the vector
−3− 2x+ x2.

• Show that PR
3 is not a vector space over C. Propose a small change

to the definition of PR
3 to make it a vector space over C.
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7 Linear Transformations

Recall that the key properties of vector spaces are vector addition and scalar
multiplication. Now suppose we have two vector spaces V and W and a map
L between them:

L : V → W

Now, both V andW have notions of vector addition and scalar multiplication.
It would be ideal if the map L preserved these operations. In other words,
if adding vectors and then applying L were the same as applying L to two
vectors and then adding them. Likewise, it would be nice if, when multiplying
by a scalar, it didn’t matter whether we multiplied before or after applying L.
In formulas, this means that for any u, v ∈ V and c ∈ R:

L(u+ v) = L(u) + L(v)

L(cv) = cL(v)

Combining these two requirements into one equation, we get the definition
of a linear function or linear transformation.

Definition A function L : V → W is linear if for all u, v ∈ V and r, s ∈ R
we have

L(ru+ sv) = rL(u) + sL(v)

Notice that on the left the addition and scalar multiplication occur in V ,
while on the right the operations occur in W . This is often called the linearity
property of a linear transformation.

Reading homework: problem 7.1

Example Take L : R3 → R3 defined by:

L

xy
z

 =

x+ y
y + z

0


Call u =

xy
z

 , v =

ab
c

. Now check linearity.
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L(ru+ sv) = L

r
xy
z

+ s

ab
c


= L

rxry
rz

+

sasb
sc


= L

rx+ sa
ry + sb
rz + sx


=

rx+ sa+ ry + sb
ry + sb+ rz + sx

0


On the other hand,

rL(u) + sL(v) = rL

xy
z

+ sL

ab
c


= r

x+ y
y + z

0

+ s

a+ b
b+ c

0


=

rx+ ry
ry + rz

0

+

sa+ sb
sb+ sc

0


=

rx+ sa+ ry + sb
ry + sb+ rz + sx

0


Then the two sides of the linearity requirement are equal, so L is a linear transforma-
tion.

Remark We can write the linear transformation L in the previous example
using a matrix like so:

L

xy
z

 =

x+ y
y + z

0

 =

1 1 0
0 1 1
0 0 0

xy
z


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Reading homework: problem 7.2

We previously checked that matrix multiplication on vectors obeyed the
rule M(ru+ sv) = rMu+ sMv, so matrix multiplication is linear. As such,
our check on L was guaranteed to work. In fact, matrix multiplication on
vectors is a linear transformation.

Example Let V be the vector space of polynomials of finite degree with standard
addition and scalar multiplication.

V = {a0 + a1x+ · · ·+ anx
n|n ∈ N, ai ∈ R}

Let L : V → V be the derivative d
dx . For p1 and p2 polynomials, the rules of differen-

tiation tell us that

d

dx
(rp1 + sp2) = r

dp1
dx

+ s
dp2
dx

Thus, the derivative is a linear function from the set of polynomials to itself.
We can represent a polynomial as a “semi-infinite vector”, like so:

a0 + a1x+ · · ·+ anx
n ←→



a0
a1
...
an
0
0
...


Then we have:

d

dx
(a0 + a1x+ · · ·+ anx

n) = a1 + 2a2x+ · · ·+ nanx
n−1 ←→



a1
2a2

...
nan

0
0
...


One could then write the derivative as an “infinite matrix”:

d

dx
←→


0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
...

...
...

...


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Foreshadowing Dimension. You probably have some intuitive notion of
what dimension means, though we haven’t actually defined the idea of di-
mension mathematically yet. Some of the examples of vector spaces we have
worked with have been finite dimensional. (For example, Rn will turn out
to have dimension n.) The polynomial example above is an example of an
infinite dimensional vector space.

Roughly speaking, dimension is the number of independent directions
available. To figure out dimension, I stand at the origin, and pick a direction.
If there are any vectors in my vector space that aren’t in that direction, then
I choose another direction that isn’t in the line determined by the direction I
chose. If there are any vectors in my vector space not in the plane determined
by the first two directions, then I choose one of them as my next direction.
In other words, I choose a collection of independent vectors in the vector
space. The size of a minimal set of independent vectors is the dimension of
the vector space.

For finite dimensional vector spaces, linear transformations can always
be represented by matrices. For that reason, we will start studying matrices
intensively in the next few lectures.

References

Hefferon, Chapter Three, Section II. (Note that Hefferon uses the term ho-
momorphism for a linear map. ‘Homomorphism’ is a very general term which
in mathematics means ‘Structure-preserving map.’ A linear map preserves
the linear structure of a vector space, and is thus a type of homomorphism.)

Beezer, Chapter LT, Section LT, Subsections LT, LTC, and MLT.
Wikipedia:

• Linear Transformation

• Dimension

Review Questions

1. Show that the pair of conditions:

(i) L(u+ v) = L(u) + L(v)
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(ii) L(cv) = cL(v)

is equivalent to the single condition:

(iii) L(ru+ sv) = rL(u) + sL(v) .

Your answer should have two parts. Show that (i,ii)⇒(iii), and then
show that (iii)⇒(i,ii).

2. Let Pn be the space of polynomials of degree n or less in the variable t.
Suppose L is a linear transformation from P2 → P3 such that L(1) =
4, L(t) = t3, and L(t2) = t− 1.

• Find L(1 + t+ 2t2).

• Find L(a+ bt+ ct2).

• Find all values a, b, c such that L(a+ bt+ ct2) = 1 + 3t+ 2t3.

3. Show that integration is a linear transformation on the vector space of
polynomials. What would a matrix for integration look like? Be sure
to think about what to do with the constant of integration.
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8 Matrices

Definition An r × k matrix M = (mi
j) for i = 1, . . . , r; j = 1, . . . , k is a

rectangular array of real (or complex) numbers:

M =


m1

1 m1
2 · · · m1

k

m2
1 m2

2 · · · m2
k

...
...

...
mr

1 mr
2 · · · mr

k


The numbers mi

j are called entries . The superscript indexes the row of
the matrix and the subscript indexes the column of the matrix in which mi

j

appears2.

It is often useful to consider matrices whose entries are more general than
the real numbers, so we allow that possibility.

An r × 1 matrix v = (vr1) = (vr) is called a column vector , written

v =


v1

v2

...
vr

 .

A 1× k matrix v = (v1k) = (vk) is called a row vector , written

v =
(
v1 v2 · · · vk

)
.

Matrices are a very useful and efficient way to store information:

Example In computer graphics, you may have encountered image files with a .gif
extension. These files are actually just matrices: at the start of the file the size of the
matrix is given, and then each entry of the matrix is a number indicating the color of
a particular pixel in the image.

The resulting matrix then has its rows shuffled a bit: by listing, say, every eighth
row, then a web browser downloading the file can start displaying an incomplete version
of the picture before the download is complete.

Finally, a compression algorithm is applied to the matrix to reduce the size of the
file.

2This notation was first introduced by Albert Einstein.
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Example Graphs occur in many applications, ranging from telephone networks to
airline routes. In the subject of graph theory , a graph is just a collection of vertices
and some edges connecting vertices. A matrix can be used to indicate how many edges
attach one vertex to another.

For example, the graph pictured above would have the following matrix, where mi
j

indicates the number of edges between the vertices labeled i and j:

M =


1 2 1 1
2 0 1 0
1 1 0 1
1 0 1 3


This is an example of a symmetric matrix, since mi

j = mj
i .

The space of r × k matrices M r
k is a vector space with the addition and

scalar multiplication defined as follows:

M +N = (mi
j) + (nij) = (mi

j + nij)

rM = r(mi
j) = (rmi

j)

In other words, addition just adds corresponding entries in two matrices, and
scalar multiplication multiplies every entry. Notice that Mn

1 = Rn is just the
vector space of column vectors.

Recall that we can multiply an r× k matrix by a k× 1 column vector to
produce a r × 1 column vector using the rule

MV =
k∑
j=1

mi
jv
j.

55



This suggests a rule for multiplying an r× k matrix M by a k× s matrix
N : our k × s matrix N consists of s column vectors side-by-side, each of
dimension k × 1. We can multiply our r × k matrix M by each of these s
column vectors using the rule we already know, obtaining s column vectors
each of dimension r × 1. If we place these s column vectors side-by-side, we
obtain an r × s matrix MN.

That is, let

N =


n1
1 n1

2 · · · n1
s

n2
1 n2

2 · · · n2
s

...
...

...
nk1 nk2 · · · nks


and call the columns N1 through Ns:

N1 =


n1
1

n2
1
...
nk1

 , N2 =


n1
2

n2
2
...
nk2

 , . . . , Ns =


n1
s

n2
s
...
nks

 .

Then

MN = M

 | | |
N1 N2 · · · Ns

| | |

 =

 | | |
MN1 MN2 · · · MNs

| | |


A more concise way to write this rule is: If M = (mi

j) for i = 1, . . . , r; j =
1, . . . , k and N = (nij) for i = 1, . . . , k; j = 1, . . . , s, then MN = L where
L = (`ij) for i = i, . . . , r; j = 1, . . . , s is given by

`ij =
k∑
p=1

mi
pn

p
j .

This rule obeys linearity.
Notice that in order for the multiplication to make sense, the columns

and rows must match. For an r× k matrix M and an s×m matrix N , then
to make the product MN we must have k = s. Likewise, for the product
NM , it is required that m = r. A common shorthand for keeping track of
the sizes of the matrices involved in a given product is:(

r × k
)
×
(
k ×m

)
=
(
r ×m

)
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Example Multiplying a (3× 1) matrix and a (1× 2) matrix yields a (3× 2) matrix.1
3
2

(2 3
)

=

1 · 2 1 · 3
3 · 2 3 · 3
2 · 2 2 · 3

 =

2 3
6 9
4 6


Reading homework: problem 8.1

Recall that r×k matrices can be used to represent linear transformations
Rk → Rr via

MV =
k∑
j=1

mi
jv
j,

which is the same rule we use when we multiply an r × k matrix by a k × 1
vector to produce an r × 1 vector.

Likewise, we can use a matrix N = (nij) to represent a linear transforma-
tion

L : M s
k

N−→M r
k

via

L(M)il =
s∑
j=1

nijm
j
l .

This is the same as the rule we use to multiply matrices. In other words,
L(M) = NM is a linear transformation.

Matrix Terminology The entries mi
i are called diagonal, and the set {m1

1,
m2

2, . . .} is called the diagonal of the matrix .
Any r × r matrix is called a square matrix . A square matrix that is zero

for all non-diagonal entries is called a diagonal matrix.
The r × r diagonal matrix with all diagonal entries equal to 1 is called

the identity matrix , Ir, or just 1. An identity matrix looks like
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

The identity matrix is special because

IrM = MIk = M
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for all M of size r × k.

In the matrix given by the product of matrices above, the diagonal entries
are 2 and 9. An example of a diagonal matrix is2 0 0

0 3 0
0 0 0

 .

Definition The transpose of an r× k matrix M = (mi
j) is the k× r matrix

with entries
MT = (m̄i

j)

with m̄i
j = mj

i .
A matrix M is symmetric if M = MT .

Example

(
2 5 6
1 3 4

)T
=

2 1
5 3
6 4


Reading homework: problem 8.2

Observations

• Only square matrices can be symmetric.

• The transpose of a column vector is a row vector, and vice-versa.

• Taking the transpose of a matrix twice does nothing. i.e., (MT )T = M .

Theorem 8.1 (Transpose and Multiplication). Let M,N be matrices such
that MN makes sense. Then (MN)T = NTMT .

The proof of this theorem is left to Review Question 2.
Many properties of matrices following from the same property for real

numbers. Here is an example.

Example Associativity of matrix multiplication. We know for real numbers x, y
and z that

x(yz) = (xy)z ,
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i.e. the order of bracketing does not matter. The same property holds for matrix
multiplication, let us show why. Suppose M =

(
mi
j

)
, N =

(
njk
)

and R =
(
rkl
)

are, respectively, m × n, n × r and r × t matrices. Then from the rule for matrix
multiplication we have

MN =
( n∑
j=1

mi
jn
j
k

)
and NR =

( r∑
k=1

njkr
k
l

)
.

So first we compute

(MN)R =
( r∑
k=1

[ n∑
j=1

mi
jn
j
k

]
rkl

)
=
( r∑
k=1

n∑
j=1

[
mi
jn
j
k

]
rkl

)
=
( r∑
k=1

n∑
j=1

mi
jn
j
kr
k
l

)
.

In the first step we just wrote out the definition for matrix multiplication, in the second
step we moved summation symbol outside the bracket (this is just the distributive
property x(y+z) = xy+xz for numbers) and in the last step we used the associativity
property for real numbers to remove the square brackets. Exactly the same reasoning
shows that

M(NR) =
( n∑
j=1

mi
j

[ r∑
k=1

njkr
k
l

])
=
( r∑
k=1

n∑
j=1

mi
j

[
njkr

k
l

])
=
( r∑
k=1

n∑
j=1

mi
jn
j
kr
k
l

)
.

This is the same as above so we are done. As a fun remark, note that Einstein would
simply have written (MN)R = (mi

jn
j
k)r

k
l = mi

jn
j
kr
k
l = mi

j(n
j
kr
k
l ) = M(NR).

References

Hefferon, Chapter Three, Section IV, parts 1-3.
Beezer, Chapter M, Section MM.
Wikipedia:

• Matrix Multiplication
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Review Questions

1. Compute the following matrix products

1 2 1

4 5 2

7 8 2


−2 4

3
−1

3

2 −5
3

2
3

−1 2 −1

 ,
(
1 2 3 4 5

)


1

2

3

4

5

 ,


1

2

3

4

5


(
1 2 3 4 5

)
,

1 2 1

4 5 2

7 8 2


−2 4

3
−1

3

2 −5
3

2
3

−1 2 −1


1 2 1

4 5 2

7 8 2

 ,

(
x y z

)2 1 1
1 2 1
1 1 2


xy
z

 ,


2 1 2 1 2

0 2 1 2 1

0 1 2 1 2

0 2 1 2 1

0 0 0 0 2




1 2 1 2 1

0 1 2 1 2

0 2 1 2 1

0 1 2 1 2

0 0 0 0 1

 ,

−2 4
3
−1

3

2 −5
3

2
3

−1 2 −1


 4 2

3
−2

3

6 5
3
−2

3

12 −16
3

10
3


1 2 1

4 5 2

7 8 2

 .

2. Let’s prove the theorem (MN)T = NTMT .

Note: the following is a common technique for proving matrix identities.

(a) Let M = (mi
j) and let N = (nij). Write out a few of the entries of

each matrix in the form given at the beginning of this chapter.

(b) Multiply out MN and write out a few of its entries in the same
form as in part a. In terms of the entries of M and the entries of
N , what is the entry in row i and column j of MN?

(c) Take the transpose (MN)T and write out a few of its entries in
the same form as in part a. In terms of the entries of M and the
entries of N , what is the entry in row i and column j of (MN)T ?
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(d) Take the transposes NT and MT and write out a few of their
entries in the same form as in part a.

(e) Multiply out NTMT and write out a few of its entries in the same
form as in part a. In terms of the entries of M and the entries of
N , what is the entry in row i and column j of NTMT ?

(f) Show that the answers you got in parts c and e are the same.

3. Let M be any m × n matrix. Show that MTM and MMT are sym-
metric. (Hint: use the result of the previous problem.) What are their
sizes?

4. Let x =

x1...
xn

 and y =

y1...
yn

 be column vectors. Show that the dot

product x y = xT 1 y.

5. Above, we showed that left multiplication by an r × s matrix N was

a linear transformation M s
k

N−→ M r
k . Show that right multiplication

by a k ×m matrix R is a linear transformation M s
k

R−→ M s
m. In other

words, show that right matrix multiplication obeys linearity.

6. Explain what happens to a matrix when:

(a) You multiply it on the left by a diagonal matrix.

(b) You multiply it on the right by a diagonal matrix.

Give a few simple examples before you start explaining.
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9 Properties of Matrices

9.1 Block Matrices

It is often convenient to partition a matrix M into smaller matrices called
blocks, like so:

M =


1 2 3 1
4 5 6 0
7 8 9 1
0 1 2 0

 =

(
A B
C D

)

Here A =

1 2 3
4 5 6
7 8 9

, B =

1
0
1

, C =
(
0 1 2

)
, D = (0).

• The blocks of a block matrix must fit together to form a rectangle. So(
B A
D C

)
makes sense, but

(
C B
D A

)
does not.

Reading homework: problem 9.1

• There are many ways to cut up an n × n matrix into blocks. Often
context or the entries of the matrix will suggest a useful way to divide
the matrix into blocks. For example, if there are large blocks of zeros
in a matrix, or blocks that look like an identity matrix, it can be useful
to partition the matrix accordingly.

• Matrix operations on block matrices can be carried out by treating the
blocks as matrix entries. In the example above,

M2 =

(
A B
C D

)(
A B
C D

)
=

(
A2 +BC AB +BD
CA+DC CB +D2

)
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Computing the individual blocks, we get:

A2 +BC =

 30 37 44
66 81 96
102 127 152


AB +BD =

 4
10
16


CA+DC =

18
21
24


CB +D2 = (2)

Assembling these pieces into a block matrix gives:
30 37 44 4
66 81 96 10
102 127 152 16
4 10 16 2


This is exactly M2.

9.2 The Algebra of Square Matrices

Not every pair of matrices can be multiplied. When multiplying two matrices,
the number of rows in the left matrix must equal the number of columns in
the right. For an r × k matrix M and an s × l matrix N , then we must
have k = s.

This is not a problem for square matrices of the same size, though. Two
n×n matrices can be multiplied in either order. For a single matrix M ∈Mn

n ,
we can form M2 = MM , M3 = MMM , and so on, and define M0 = In, the
identity matrix.

As a result, any polynomial equation can be evaluated on a matrix.

Example Let f(x) = x− 2x2 + 3x3.

Let M =

(
1 t
0 1

)
. Then:

M2 =

(
1 2t
0 1

)
,M3 =

(
1 3t
0 1

)
, . . .

63



Hence:

f(M) =

(
1 t
0 1

)
− 2

(
1 2t
0 1

)
+ 3

(
1 3t
0 1

)
=

(
2 6t
0 2

)
Suppose f(x) is any function defined by a convergent Taylor Series:

f(x) = f(0) + f ′(0)x+
1

2!
f ′′(0)x2 + · · ·

Then we can define the matrix function by just plugging in M :

f(M) = f(0) + f ′(0)M +
1

2!
f ′′(0)M2 + · · ·

There are additional techniques to determine the convergence of Taylor Series
of matrices, based on the fact that the convergence problem is simple for
diagonal matrices. It also turns out that exp(M) = 1+M+ 1

2
M2+ 1

3!
M3+· · ·

always converges.

Matrix multiplication does not commute. For generic n×n square ma-
trices M and N , then MN 6= NM . For example:(

1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
On the other hand: (

1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
Since n × n matrices are linear transformations Rn → Rn, we can see

that the order of successive linear transformations matters. For two linear
transformations K and L taking Rn → Rn, and v ∈ Rn, then in general

K(L(v)) 6= L(K(v)) .

Finding matrices such that MN = NM is an important problem in mathe-
matics.
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Trace

Matrices contain a great deal of information, so finding ways to extract es-
sential information is useful.

Definition The trace of a square matrice M = (mi
j) is the sum of its diag-

onal entries.

trM =
n∑
i=1

mi
i .

Example

tr

2 7 6
9 5 1
4 3 8

 = 2 + 5 + 8 = 15

While matrix multiplication does not commute, the trace of a product of
matrices does not depend on the order of multiplication:

tr(MN) = tr(
∑
l

M i
lN

l
j)

=
∑
i

∑
l

M i
lN

l
i

=
∑
l

∑
i

N l
iM

i
l

= tr(
∑
i

N l
iM

i
l )

= tr(NM).

Thus,
tr(MN) = tr(NM)

for any square matrices M and N .
In the previous example,

M =

(
1 1
0 1

)
, N =

(
1 0
1 1

)
.

MN =

(
2 1
1 1

)
6= NM =

(
1 1
1 2

)
.

65



However, tr(MN) = 2 + 1 = 3 = 1 + 2 = tr(NM).
Another useful property of the trace is that:

trM = trMT

This is true because the trace only uses the diagonal entries, which are fixed

by the transpose. For example: tr

(
1 1
2 3

)
= 4 = tr

(
1 2
1 3

)
= tr

(
1 2
1 3

)T
Finally, trace is a linear transformation from matrices to the real numbers.

This is easy to check.

Linear Systems Redux Recall that we can view a linear system as a ma-
trix equation

MX = V,

with M an r × k matrix of coefficients, X a k × 1 matrix of unknowns, and
V an r × 1 matrix of constants. If M is a square matrix, then the number
of equations r is the same as the number of unknowns k, so we have hope of
finding a single solution.

Above we discussed functions of matrices. An extremely useful function
would be f(M) = 1

M
, where M 1

M
= I. If we could compute 1

M
, then we

would multiply both sides of the equation MX = V by 1
M

to obtain the
solution immediately: X = 1

M
V .

Clearly, if the linear system has no solution, then there can be no hope of
finding 1

M
, since if it existed we could find a solution. On the other hand, if

the system has more than one solution, it also seems unlikely that 1
M

would
exist, since X = 1

M
V yields only a single solution.

Therefore 1
M

only sometimes exists. It is called the inverse of M , and is
usually written M−1.

References

Beezer: Part T, Section T
Wikipedia:

• Trace (Linear Algebra)

• Block Matrix
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Review Questions

1. Let A =

(
1 2 0
3 −1 4

)
. Find AAT and ATA. What can you say about

matrices MMT and MTM in general? Explain.

2. Compute exp(A) for the following matrices:

• A =

(
λ 0
0 λ

)
• A =

(
1 λ
0 1

)
• A =

(
0 λ
0 0

)

3. Suppose ad− bc 6= 0, and let M =

(
a b
c d

)
.

(a) Find a matrix M−1 such that MM−1 = I.

(b) Explain why your result explains what you found in a previous
homework exercise.

(c) Compute M−1M .

4. Let M =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 3


. Divide M into named blocks,

and then multiply blocks to compute M2.
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10 Inverse Matrix

Definition A square matrix M is invertible (or nonsingular) if there exists
a matrix M−1 such that

M−1M = I = M−1M.

Inverse of a 2× 2 Matrix Let M and N be the matrices:

M =

(
a b
c d

)
, N =

(
d −b
−c a

)
Multiplying these matrices gives:

MN =

(
ad− bc 0

0 ad− bc

)
= (ad− bc)I

Then M−1 = 1
ad−bc

(
d −b
−c a

)
, so long as ad− bc 6= 0.

10.1 Three Properties of the Inverse

1. If A is a square matrix and B is the inverse of A, then A is the inverse
of B, since AB = I = BA. Then we have the identity:

(A−1)−1 = A

2. Notice that B−1A−1AB = B−1IB = I = ABB−1A−1. Then:

(AB)−1 = B−1A−1

Then much like the transpose, taking the inverse of a product reverses
the order of the product.

3. Finally, recall that (AB)T = BTAT . Since IT = I, then (A−1A)T =
AT (A−1)T = I. Similarly, (AA−1)T = (A−1)TAT = I. Then:

(A−1)T = (AT )−1

As such, we could even write A−T for the inverse of the transpose of A
(or equivalently the transpose of the inverse).
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10.2 Finding Inverses

Suppose M is a square matrix and MX = V is a linear system with unique
solution X0. Since there is a unique solution, M−1V , then the reduced row
echelon form of the linear system has an identity matrix on the left:(

M V
)
∼
(
I M−1V

)
Solving the linear system MX = V then tells us what M−1V is.

To solve many linear systems at once, we can consider augmented matrices
with a matrix on the right side instead of a column vector, and then apply
Gaussian row reduction to the left side of the matrix. Once the identity
matrix is on the left side of the augmented matrix, then the solution of each
of the individual linear systems is on the right.

To compute M−1, we would like M−1, rather than M−1V to appear on
the right side of our augmented matrix. This is achieved by solving the
collection of systems MX = ek, where ek is the column vector of zeroes with
a 1 in the kth entry. I.e., the n×n identity matrix can be viewed as a bunch
of column vectors In = (e1 e2 · · · en). So, putting the ek’s together into an
identity matrix, we get:(

M I
)
∼
(
I M−1I

)
=
(
I M−1)

Example Find

−1 2 −3
2 1 0
4 −2 5

−1. Start by writing the augmented matrix, then

apply row reduction to the left side.

−1 2 −3 1 0 0

2 1 0 0 1 0

4 −2 5 0 0 1

 ∼

1 −2 3 1 0 0

0 5 −6 2 1 0

0 6 −7 4 0 1



∼

1 0 3
5

−1
4

2
5 0

0 1 −6
5

2
5

1
5 0

0 0 1
5

4
5

−6
5 1



∼

1 0 0 −5 4 −3

0 1 0 10 −7 6

0 0 1 8 −6 5


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At this point, we know M−1 assuming we didn’t goof up. However, row reduction
is a lengthy and arithmetically involved process, so we should check our answer, by
confirming that MM−1 = I (or if you prefer M−1M = I):

MM−1 =

−1 2 −3
2 1 0
4 −2 5

−5 4 −3
10 −7 6
8 −6 5

 =

1 0 0
0 1 0
0 0 1


The product of the two matrices is indeed the identity matrix, so we’re done.

Reading homework: problem 10.1

10.3 Linear Systems and Inverses

If M−1 exists and is known, then we can immediately solve linear systems
associated to M .

Example Consider the linear system:

−x+2y −3z = 1

2x +y = 2

4x−2y +5z = 0

The associated matrix equation is MX =

1
2
0

 , where M is the same as in the

previous section. Then:

xy
z

 =

−1 2 −3
2 1 0
4 −2 5

−11
2
0

 =

−5 4 −3
10 −7 6
8 −6 5

1
2
0

 =

 3
−4
−4



Then

xy
z

 =

 3
−4
−4

. In summary, when M−1 exists, then

MX = V ⇒ X = M−1V .

Reading homework: problem 10.2
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10.4 Homogeneous Systems

Theorem 10.1. A square matrix M is invertible if and only if the homoge-
neous system

MX = 0

has no non-zero solutions.

Proof. First, suppose that M−1 exists. Then MX = 0 ⇒ X = M−10 = 0.
Thus, if M is invertible, then MX = 0 has no non-zero solutions.

On the other hand, MX = 0 always has the solution X = 0. If no other
solutions exist, then M can be put into reduced row echelon form with every
variable a pivot. In this case, M−1 can be computed using the process in the
previous section.

10.5 Bit Matrices

In computer science, information is recorded using binary strings of data.
For example, the following string contains an English word:

011011000110100101101110011001010110000101110010

A bit is the basic unit of information, keeping track of a single one or zero.
Computers can add and multiply individual bits very quickly.

Consider the set Z2 = {0, 1} with addition and multiplication given by
the following tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Notice that −1 = 1, since 1 + 1 = 0.
It turns out that Z2 is just as good as the real or complex numbers (they

are all fields), so we can apply all of the linear algebra we have learned thus
far to matrices with Z2 entries. A matrix with entries in Z2 is sometimes
called a bit matrix.

Example

1 0 1
0 1 1
1 1 1

 is an invertible matrix over Z2:

1 0 1
0 1 1
1 1 1

−1 =

0 1 1
1 0 1
1 1 1


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This can be easily verified by multiplying:1 0 1
0 1 1
1 1 1

0 1 1
1 0 1
1 1 1

 =

1 0 0
0 1 0
0 0 1


Application: Cryptography A very simple way to hide information is to
use a substitution cipher, in which the alphabet is permuted and each letter in
a message is systematically exchanged for another. For example, the ROT-13
cypher just exchanges a letter with the letter thirteen places before or after
it in the alphabet. For example, HELLO becomes URYYB. Applying the
algorithm again decodes the message, turning URYYB back into HELLO.
Substitution ciphers are easy to break, but the basic idea can be extended to
create cryptographic systems that are practically uncrackable. For example,
a one-time pad is a system that uses a different substitution for each letter
in the message. So long as a particular set of substitutions is not used on
more than one message, the one-time pad is unbreakable.

English characters are often stored in computers in the ASCII format.
In ASCII, a single character is represented by a string of eight bits, which
we can consider as a vector in Z8

2 (which is like vectors in R8, where the
entries are zeros and ones). One way to create a substitution cipher, then, is
to choose an 8 × 8 invertible bit matrix M , and multiply each letter of the
message by M . Then to decode the message, each string of eight characters
would be multiplied by M−1.

To make the message a bit tougher to decode, one could consider pairs (or
longer sequences) of letters as a single vector in Z16

2 (or a higher-dimensional
space), and then use an appropriately-sized invertible matrix.

For more on cryptography, see “The Code Book,” by Simon Singh (1999,
Doubleday).

You should now be ready to attempt the first sample midterm.

References

Hefferon: Chapter Three, Section IV.2
Beezer: Chapter M, Section MISLE
Wikipedia: Invertible Matrix
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Review Questions

1. Find formulas for the inverses of the following matrices, when they are
not singular:

i.

1 a b
0 1 c
0 0 1


ii.

a b c
0 d e
0 0 f


When are these matrices singular?

2. Write down all 2×2 bit matrices and decide which of them are singular.
For those which are not singular, pair them with their inverse.

3. Let M be a square matrix. Explain why the following statements are
equivalent:

i. MX = V has a unique solution for every column vector V .

ii. M is non-singular.

(In general for problems like this, think about the key words:

First, suppose that there is some column vector V such that the equa-
tion MX = V has two distinct solutions. Show that M must be sin-
gular; that is, show that M can have no inverse.

Next, suppose that there is some column vector V such that the equa-
tion MX = V has no solutions. Show that M must be singular.

Finally, suppose that M is non-singular. Show that no matter what
the column vector V is, there is a unique solution to MX = V.)
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11 LU Decomposition

Certain matrices are easier to work with than others. In this section, we
will see how to write any square3 matrix M as the product of two simpler
matrices. We will write

M = LU ,

where:

• L is lower triangular . This means that all entries above the main
diagonal are zero. In notation, L = (lij) with lij = 0 for all j > i.

L =


l11 0 0 · · ·
l21 l22 0 · · ·
l31 l32 l33 · · ·
...

...
...

. . .


• U is upper triangular . This means that all entries below the main

diagonal are zero. In notation, U = (uij) with uij = 0 for all j < i.

U =


u11 u12 u13 · · ·
0 u22 u23 · · ·
0 0 u33 · · ·
...

...
...

. . .


M = LU is called an LU decomposition of M .

This is a useful trick for many computational reasons. It is much easier
to compute the inverse of an upper or lower triangular matrix. Since inverses
are useful for solving linear systems, this makes solving any linear system
associated to the matrix much faster as well. We haven’t talked about de-
terminants yet, but suffice it to say that they are important and very easy
to compute for triangular matrices.

Example Linear systems associated to upper triangular matrices are very easy to solve
by back substitution.(

a b 1
0 c e

)
⇒ y =

e

c
, x =

1

a

(
1− be

c

)
3The case where M is not square is dealt with at the end of the lecture.
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1 0 0 d
a 1 0 e
b c 1 f

⇒ x = d , y = e− ad , z = f − bd− c(e− ad)

For lower triangular matrices, back substitution gives a quick solution; for upper tri-
angular matrices, forward substitution gives the solution.

11.1 Using LU Decomposition to Solve Linear Systems

Suppose we have M = LU and want to solve the system

MX = LUX = V.

• Step 1: Set W =

uv
w

 = UX.

• Step 2: Solve the system LW = V . This should be simple by forward
substitution since L is lower triangular. Suppose the solution to LW =
V is W0.

• Step 3: Now solve the system UX = W0. This should be easy by
backward substitution, since U is upper triangular. The solution to
this system is the solution to the original system.

We can think of this as using the matrix L to perform row operations on the
matrix U in order to solve the system; this idea will come up again when we
study determinants.

Reading homework: problem 11.1

Example Consider the linear system:

6x+ 18y + 3z = 3

2x+ 12y + z = 19

4x+ 15y + 3z = 0

An LU decomposition for the associated matrix M is:6 18 3
2 12 1
4 15 3

 =

3 0 0
1 6 0
2 3 1

2 6 1
0 1 0
0 0 1

 .
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• Step 1: Set W =

uv
w

 = UX.

• Step 2: Solve the system LW = V :3 0 0
1 6 0
2 3 1

uv
w

 =

 3
19
0


By substitution, we get u = 1, v = 3, and w = −11. Then

W0 =

 1
3
−11


• Step 3: Solve the system UX = W0.2 6 1

0 1 0
0 0 1

xy
z

 =

 1
3
−11


Back substitution gives z = −11, y = 3, and x = −3.

Then X =

 −3
3
−11

, and we’re done.

11.2 Finding an LU Decomposition.

For any given matrix, there are actually many different LU decompositions.
However, there is a unique LU decomposition in which the L matrix has ones
on the diagonal; then L is called a lower unit triangular matrix .

To find the LU decomposition, we’ll create two sequences of matrices
L0, L1, . . . and U0, U1, . . . such that at each step, LiUi = M . Each of the Li
will be lower triangular, but only the last Ui will be upper triangular.

Start by setting L0 = I and U0 = M , because L0U0 = M .

Next, use the first row of U0 to zero out the first entry of every row

below it. For our running example, U0 = M =

6 18 3
2 12 1
4 15 3

, so the second

row minus 1
3

of the first row will zero out the first entry in the second row.
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Likewise, the third row minus 2
3

of the first row will zero out the first entry
in the third row.

Set L1 to be the lower triangular matrix whose first column is filled with

the constants used to zero out the first column of M . Then L1 =

1 0 0
1
3

1 0
2
3

0 1

.

Set U1 to be the matrix obtained by zeroing out the first column of M . Then

U1 =

6 18 3
0 6 0
0 3 1

.

Now repeat the process by zeroing the second column of U1 below the
diagonal using the second row of U1, and putting the corresponding entries
into L1. The resulting matrices are L2 and U2. For our example, L2 =1 0 0

1
3

1 0
2
3

1
2

1

, and U2 =

6 18 3
0 6 0
0 0 1

. Since U2 is upper-triangular, we’re

done. Inserting the new number into L1 to get L2 really is safe: the numbers
in the first column don’t affect the second column of U1, since the first column
of U1 is already zeroed out.

If the matrix you’re working with has more than three rows, just continue
this process by zeroing out the next column below the diagonal, and repeat
until there’s nothing left to do.

The fractions in the L matrix are admittedly ugly. For two matrices
LU , we can multiply one entire column of L by a constant λ and divide the
corresponding row of U by the same constant without changing the product
of the two matrices. Then:
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LU =

1 0 0
1
3

1 0
2
3

1
2

1

 I

6 18 3
0 6 0
0 0 1



=

1 0 0
1
3

1 0
2
3

1
2

1


3 0 0

0 6 0
0 0 1




1
3

0 0

0 1
6

0

0 0 1


6 18 3

0 6 0
0 0 1


=

3 0 0
1 6 0
2 3 1

2 6 1
0 1 0
0 0 1

 .

The resulting matrix looks nicer, but isn’t in standard form.
Reading homework: problem 11.2
For matrices that are not square, LU decomposition still makes sense.

Given an m × n matrix M , for example we could write M = LU with L
a square lower unit triangular matrix, and U a rectangular matrix. Then
L will be an m × m matrix, and U will be an m × n matrix (of the same
shape as M). From here, the process is exactly the same as for a square
matrix. We create a sequence of matrices Li and Ui that is eventually the
LU decomposition. Again, we start with L0 = I and U0 = M .

Example Let’s find the LU decomposition of M = U0 =

(
−2 1 3
−4 4 1

)
. Since M is

a 2 × 3 matrix, our decomposition will consist of a 2 × 2 matrix and a 2 × 3 matrix.

Then we start with L0 = I2 =

(
1 0
0 1

)
.

The next step is to zero-out the first column of M below the diagonal. There is
only one row to cancel, then, and it can be removed by subtracting 2 times the first
row of M to the second row of M . Then:

L1 =

(
1 0
2 1

)
, U1 =

(
−2 1 3
0 6 −5

)
Since U1 is upper triangular, we’re done. With a larger matrix, we would just continue
the process.
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11.3 Block LU Decomposition

Let M be a square block matrix with square blocks X, Y, Z,W such that X−1

exists. Then M can be decomposed with an LDU decomposition, where D
is block diagonal, as follows:

M =

(
X Y
Z W

)
Then:

M =

(
I 0

ZX−1 I

)(
X 0
0 W − ZX−1Y

)(
I X−1Y
0 I

)
.

This can be checked explicitly simply by block-multiplying these three ma-
trices.

Example For a 2× 2 matrix, we can regard each entry as a block.(
1 2
3 4

)
=

(
1 0
3 1

)(
1 0
0 −2

)(
1 2
0 1

)
By multiplying the diagonal matrix by the upper triangular matrix, we get the standard
LU decomposition of the matrix.

References

Wikipedia:

• LU Decomposition

• Block LU Decomposition

Review Questions

1. Consider the linear system:

x1 = v1

l21x
1 +x2 = v2

...
...

ln1x
1 +ln2x

2 + · · ·+ xn = vn
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i. Find x1.

ii. Find x2.

iii. Find x3.

k. Try to find a formula for xk. Don’t worry about simplifying your
answer.

2. Let M =

(
X Y
Z W

)
be a square n× n block matrix with W invertible.

i. If W has r rows, what size are X, Y , and Z?

ii. Find a UDL decomposition for M . In other words, fill in the stars
in the following equation:(

X Y
Z W

)
=

(
I ∗
0 I

)(
∗ 0
0 ∗

)(
I 0
∗ I

)
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12 Elementary Matrices and Determinants

Given a square matrix, is there an easy way to know when it is invertible?
Answering this fundamental question is our next goal.

For small cases, we already know the answer. If M is a 1×1 matrix, then
M = (m)⇒M−1 = (1/m). Then M is invertible if and only if m 6= 0.

For M a 2× 2 matrix, we showed in Section 10 that if M =

(
m1

1 m1
2

m2
1 m2

2

)
,

then M−1 = 1
m1

1m
2
2−m1

2m
2
1

(
m2

2 −m1
2

−m2
1 m1

1

)
. Thus M is invertible if and only if

m1
1m

2
2 −m1

2m
2
1 6= 0 .

For 2× 2 matrices, this quantity is called the determinant of M .

detM = det

(
m1

1 m1
2

m2
1 m2

2

)
= m1

1m
2
2 −m1

2m
2
1

Example For a 3 × 3 matrix, M =

m
1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

, then (by the first review

question) M is non-singular if and only if:

detM = m1
1m

2
2m

3
3 −m1

1m
2
3m

3
2 +m1

2m
2
3m

3
1 −m1

2m
2
1m

3
3 +m1

3m
2
1m

3
2 −m1

3m
2
2m

3
1 6= 0.

Notice that in the subscripts, each ordering of the numbers 1, 2, and 3 occurs exactly
once. Each of these is a permutation of the set {1, 2, 3}.

12.1 Permutations

Consider n objects labeled 1 through n and shuffle them. Each possible
shuffle is called a permutation σ. For example, here is an example of a
permutation of 5:

σ =

[
1 2 3 4 5
4 2 5 1 3

]
=

[
1 2 3 4 5

σ(1) σ(2) σ(3) σ(4) σ(5)

]
We can consider σ as a function, and write σ(3) = 5, for example. Since the
top line of σ is always the same, we can omit the top line and just write:

σ =
[
σ(1) σ(2) σ(3) σ(4) σ(5)

]
=
[
4 2 5 1 3

]
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The mathematics of permutations is extensive and interesting; there are
a few properties of permutations that we’ll need.

• There are n! permutations of n distinct objects, since there are n choices
for the first object, n− 1 choices for the second once the first has been
chosen, and so on.

• Every permutation can be built up by successively swapping pairs of
objects. For example, to build up the permutation

[
3 1 2

]
from the

trivial permutation
[
1 2 3

]
, you can first swap 2 and 3, and then

swap 1 and 3.

• For any given permutation σ, there is some number of swaps it takes to
build up the permutation. (It’s simplest to use the minimum number of
swaps, but you don’t have to: it turns out that any way of building up
the permutation from swaps will have have the same parity of swaps,
either even or odd.) If this number happens to be even, then σ is
called an even permutation; if this number is odd, then σ is an odd
permutation. In fact, n! is even for all n ≥ 2, and exactly half of the
permutations are even and the other half are odd. It’s worth noting
that the trivial permutation (which sends i→ i for every i) is an even
permutation, since it uses zero swaps.

Definition The sign function is a function sgn(σ) that sends permutations
to the set {−1, 1}, defined by:

sgn(σ) =

{
1 if σ is even;
−1 if σ is odd.

Reading homework: problem 12.1

We can use permutations to give a definition of the determinant.

Definition For an n×n matrix M , the determinant of M (sometimes writ-
ten |M |) is given by:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n).

The sum is over all permutations of n. Each summand is a product of a
single entry from each row, but with the column numbers shuffled by the
permutation σ.
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The last statement about the summands yields a nice property of the
determinant:

Theorem 12.1. If M has a row consisting entirely of zeros, then mi
σ(i) = 0

for every σ. Then detM = 0.

Example Because there are many permutations of n, writing the determinant this way
for a general matrix gives a very long sum. For n = 4, there are 24 = 4! permutations,
and for n = 5, there are already 120 = 5! permutations.

For a 4× 4 matrix, M =


m1

1 m1
2 m1

3 m1
4

m2
1 m2

2 m2
3 m2

4

m3
1 m3

2 m3
3 m3

4

m4
1 m4

2 m4
3 m4

4

, then detM is:

detM = m1
1m

2
2m

3
3m

4
4 −m1

1m
2
3m

3
2m

4
4 −m1

1m
2
2m

3
4m

4
3

− m1
2m

2
1m

3
3m

4
4 +m1

1m
2
3m

3
4m

4
2 +m1

1m
2
4m

3
2m

4
3

+ m1
2m

2
3m

3
1m

4
4 +m1

2m
2
1m

3
4m

4
3 ± 16 more terms.

This is very cumbersome.
Luckily, it is very easy to compute the determinants of certain matrices.

For example, if M is diagonal, then M i
j = 0 whenever i 6= j. Then all

summands of the determinant involving off-diagonal entries vanish, so:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n) = m1
1m

2
2 · · ·mn

n.

Thus, the determinant of a diagonal matrix is just the product of its diagonal
entries.

Since the identity matrix is diagonal with all diagonal entries equal to
one, we have:

det I = 1.

We would like to use the determinant to decide whether a matrix is invert-
ible or not. Previously, we computed the inverse of a matrix by applying row
operations. As such, it makes sense to ask what happens to the determinant
when row operations are applied to a matrix.

Swapping rows Swapping rows i and j (with i < j) in a matrix changes
the determinant. For a permutation σ, let σ̂ be the permutation obtained
by swapping positions i and j. The sign of σ̂ is the opposite of the sign of
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σ. Let M be a matrix, and M ′ be the same matrix, but with rows i and j
swapped. Then the determinant of M ′ is:

detM ′ =
∑
σ

sgn(σ)m1
σ(1) · · ·m

j
σ(i) · · ·m

i
σ(j) · · ·mn

σ(n)

=
∑
σ

sgn(σ)m1
σ(1) · · ·mi

σ(j) · · ·m
j
σ(i) · · ·m

n
σ(n)

=
∑
σ

(−sgn(σ̂))m1
σ̂(1) · · ·mi

σ̂(j) · · ·m
j
σ̂(i) · · ·m

n
σ̂(n)

= −
∑
σ̂

sgn(σ̂)m1
σ̂(1) · · ·mi

σ̂(j) · · ·m
j
σ̂(i) · · ·m

n
σ̂(n)

= − detM.

Thus we see that swapping rows changes the sign of the determinant. I.e.

detSijM = − detM .

Reading homework: problem 12.2

Applying this result to M = I (the identity matrix) yields

detSij = −1 .

This implies another nice property of the determinant. If two rows of the
matrix are identical, then swapping the rows changes the sign of the matrix,
but leaves the matrix unchanged. Then we see the following:

Theorem 12.2. If M has two identical rows, then detM = 0.

12.2 Elementary Matrices

Our next goal is to find matrices that emulate the Gaussian row operations
on a matrix. In other words, for any matrix M , and a matrix M ′ equal to M
after a row operation, we wish to find a matrix R such that M ′ = RM .

We will first find a matrix that, when it multiplies a matrix M , rows i
and j of M are swapped.

Let R1 through Rn denote the rows of M , and let M ′ be the matrix M
with rows i and j swapped. Then M and M ′ can be regarded as a block
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matrices:

M =



...
Ri

...
Rj

...

 , and M ′ =



...
Rj

...
Ri

...

 .

Then notice that:

M ′ =



...
Rj

...
Ri

...


=



1
. . .

0 1
. . .

1 0
. . .

1





...
Ri

...
Rj

...


The matrix is just the identity matrix with rows i and j swapped. This is
called an elementary matrix Ei

j. Then, symbolically,

M ′ = Ei
jM

Because det I = 1 and swapping a pair of rows changes the sign of the
determinant, we have found that

detEi
j = −1

References
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Review Questions

1. Let M =

m1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

. Use row operations to put M into row

echelon form. For simplicity, assume that m1
1 6= 0 6= m1

1m
2
2 −m2

1m
1
2.

Prove that M is non-singular if and only if:

m1
1m

2
2m

3
3−m1

1m
2
3m

3
2 +m1

2m
2
3m

3
1−m1

2m
2
1m

3
3 +m1

3m
2
1m

3
2−m1

3m
2
2m

3
1 6= 0

2. (a) What does the matrix E1
2 =

(
0 1
1 0

)
do to M =

(
a b
d c

)
under

left multiplication? What about right multiplication?

(b) Find elementary matrices R1(λ) and R2(λ) that respectively mul-
tiply rows 1 and 2 of M by λ but otherwise leave M the same
under left multiplication.

(c) Find a matrix S1
2(λ) that adds a multiple λ of row 2 to row 1

under left multiplication.

3. Let M be a matrix and SijM the same matrix with rows i and j
switched. Explain every line of the series of equations proving that
detM = − det(SijM).

4. The inversion number of a permutation σ is the number of pairs i <
j such that σ(i) > σ(j); it’s the number of “numbers that appear
left of smaller numbers” in the permutation. For example, for the
permutation σ = [4, 2, 3, 1], the inversion number is 5. 4 comes before
2, 3, and 1, and 2 and 3 both come before 1.

One way to compute the sign of a permutation is by using the following
fact:

(−1)N = sgn(σ),

where σ is a permutation with N inversions. Let’s see why this is true.

(a) What is the inversion number of the permutation µ = [1, 2, 4, 3]
that exchanges 4 and 3 and leaves everything else alone? Is it an
even or an odd permutation?
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What is the inversion number of the permutation ρ = [4, 2, 3, 1]
that exchanges 1 and 4 and leaves everything else alone? Is it an
even or an odd permutation?

What is the inversion number of the permutation τi,j that ex-
changes i and j and leaves everything else alone? Is τi,j an even
or an odd permutation? If τ 2i,j refers to the permutation obtained
by exchanging i and j, and then exchanging i and j again, what
is τ 2i,j?

(b) Given a permutation σ, we can make a new permutation τi,jσ by
exchanging the ith and jth entries of σ.

What is the inversion number of the permutation τ1,3µ where µ is
as in part i? Compare the parity4 of µ to the parity of τ1,3µ.

What is the inversion number of the permutation τ2,4ρ where ρ is
as in part i? Compare the parity of ρ to the parity of τ2,4ρ.

What is the inversion number of the permutation τ3,4ρ where ρ is
as in part i? Compare the parity of ρ to the parity of τ3,4ρ.

If σ has N inversions and τi,jσ has M inversions, show that N and
M have different parity. In other words, applying a transposition
to σ changes the number of inversions by an odd number.

(c) (Extra credit) Show that (−1)N = sgn(σ), where σ is a permu-
tation with N inversions. (Hint: How many inversions does the
identity permutation have? Also, recall that σ can be built up with
transpositions.)

4The parity of an integer refers to whether the integer is even or odd.
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13 Elementary Matrices and Determinants II

In Lecture 12, we saw the definition of the determinant and derived an ele-
mentary matrix that exchanges two rows of a matrix. Next, we need to find
elementary matrices corresponding to the other two row operations; multi-
plying a row by a scalar, and adding a multiple of one row to another. As a
consequence, we will derive some important properties of the determinant.

Consider M =

R
1

...
Rn

, where Ri are row vectors. Let Ri(λ) be the

identity matrix, with the ith diagonal entry replaced by λ, not to be confused
with the row vectors. I.e.

Ri(λ) =


1

. . .

λ
. . .

1

 .

Then:

M ′ = Ri(λ)M =


R1

...
λRi

...
Rn


What effect does multiplication by Ri(λ) have on the determinant?

detM ′ =
∑
σ

sgn(σ)m1
σ(1) · · ·λmi

σ(i) · · ·mn
σ(n)

= λ
∑
σ

sgn(σ)m1
σ(1) · · ·mi

σ(i) · · ·mn
σ(n)

= λ detM

Thus, multiplying a row by λ multiplies the determinant by λ. I.e.,

detRi(λ)M = λ detM .
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Since Ri(λ) is just the identity matrix with a single row multiplied by λ, then
by the above rule, the determinant of Ri(λ) is λ. Thus:

detRi(λ) = det


1

. . .

λ
. . .

1

 = λ

The final row operation is adding λRj to Ri. This is done with the
matrix Sij(λ), which is an identity matrix but with a λ in the i, j position.

Sij(λ) =



1
. . .

1 λ
. . .

1
. . .

1


Then multiplying Sij(λ) by M gives the following:

1
. . .

1 λ
. . .

1
. . .

1





...
Ri

...
Rj

...


=



...
Ri + λRj

...
Rj

...


What is the effect of multiplying by Sij(λ) on the determinant? Let M ′ =
Sij(λ)M , and let M ′′ be the matrix M but with Ri replaced by Rj.

89



detM ′ =
∑
σ

sgn(σ)m1
σ(1) · · · (mi

σ(i) + λmj
σ(j)) · · ·m

n
σ(n)

=
∑
σ

sgn(σ)m1
σ(1) · · ·mi

σ(i) · · ·mn
σ(n)

+
∑
σ

sgn(σ)m1
σ(1) · · ·λm

j
σ(j) · · ·m

j
σ(j) · · ·m

n
σ(n)

= detM + λ detM ′′

Since M ′′ has two identical rows, its determinant is 0. Then

detSij(λ)M = detM .

Notice that if M is the identity matrix, then we have

detSij(λ) = det(Sij(λ)I) = det I = 1 .

We now have elementary matrices associated to each of the row operations.

Ei
j = I with rows i, j swapped; detEi

j = −1

Ri(λ) = I with λ in position i, i; detRi
j(λ) = λ

Sij(λ) = I with λ in position i, j; detSij(λ) = 1

We have also proved the following theorem along the way:

Theorem 13.1. If E is any of the elementary matrices Ei
j, R

i(λ), Sij(λ),
then det(EM) = detE detM .

Reading homework: problem 13.1
We have seen that any matrix M can be put into reduced row echelon

form via a sequence of row operations, and we have seen that any row op-
eration can be emulated with left matrix multiplication by an elementary
matrix. Suppose that RREF(M) is the reduced row echelon form of M .
Then RREF(M) = E1E2 · · ·EkM where each Ei is an elementary matrix.

What is the determinant of a square matrix in reduced row echelon form?

• If M is not invertible, then some row of RREF(M) contains only zeros.
Then we can multiply the zero row by any constant λ without chang-
ing M ; by our previous observation, this scales the determinant of M
by λ. Thus, if M is not invertible, det RREF(M) = λ det RREF(M),
and so det RREF(M) = 0.
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• Otherwise, every row of RREF(M) has a pivot on the diagonal; since
M is square, this means that RREF(M) is the identity matrix. Then
if M is invertible, det RREF(M) = 1.

• Additionally, notice that det RREF(M) = det(E1E2 · · ·EkM). Then
by the theorem above, det RREF(M) = det(E1) · · · det(Ek) detM . Since
each Ei has non-zero determinant, then det RREF(M) = 0 if and only
if detM = 0.

Then we have shown:

Theorem 13.2. For any square matrix M , detM 6= 0 if and only if M is
invertible.

Since we know the determinants of the elementary matrices, we can im-
mediately obtain the following:

Corollary 13.3. Any elementary matrix Ei
j, R

i(λ), Sij(λ) is invertible, except
for Ri(0). In fact, the inverse of an elementary matrix is another elementary
matrix.

To obtain one last important result, suppose that M and N are square
n × n matrices, with reduced row echelon forms such that, for elementary
matrices Ei and Fi,

M = E1E2 · · ·Ek RREF(M) ,

and
N = F1F2 · · ·Fl RREF(N) = N .

If RREF(M) is the identity matrix (ie, M is invertible), then:

det(MN) = det(E1E2 · · ·Ek RREF(M)F1F2 · · ·Fl RREF(N))

= det(E1E2 · · ·EkIF1F2 · · ·Fl RREF(N))

= det(E1) · · · det(Ek) det(I) det(F1) · · · det(Fl) det(RREF(N)

= det(M) det(N)
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Otherwise, M is not invertible, and detM = 0 = det RREF(M). Then there
exists a row of zeros in RREF(M), so Rn(λ) RREF(M) = RREF(M). Then:

det(MN) = det(E1E2 · · ·Ek RREF(M)N)

= det(E1E2 · · ·Ek RREF(M)N)

= det(E1) · · · det(Ek) det(RREF(M)N)

= det(E1) · · · det(Ek) det(Rn(λ) RREF(M)N)

= det(E1) · · · det(Ek)λ det(RREF(M)N)

= λ det(MN)

Which implies that det(MN) = 0 = detM detN .
Thus we have shown that for any matrices M and N ,

det(MN) = detM detN

This result is extremely important; do not forget it!
Reading homework: problem 13.2

References

Hefferon, Chapter Four, Section I.1 and I.3
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Review Questions

1. Let M =

(
a b
c d

)
and N =

(
x y
z w

)
. Compute the following:

(a) detM .

(b) detN .

(c) det(MN).
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(d) detM detN .

(e) det(M−1) assuming ad− bc 6= 0.

(f) det(MT )

(g) det(M +N)− (detM + detN). Is the determinant a linear trans-
formation from square matrices to real numbers? Explain.

2. Suppose M =

(
a b
c d

)
is invertible. Write M as a product of elemen-

tary row matrices times RREF(M).

3. Find the inverses of each of the elementary matrices, Ei
j, R

i(λ), Sij(λ).
Make sure to show that the elementary matrix times its inverse is ac-
tually the identity.
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14 Properties of the Determinant

In Lecture 13 we showed that the determinant of a matrix is non-zero if and
only if that matrix is invertible. We also showed that the determinant is a
multiplicative function, in the sense that det(MN) = detM detN . Now we
will devise some methods for calculating the determinant.

Recall that:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n).

A minor of an n× n matrix M is the determinant of any square matrix
obtained from M by deleting rows and columns. In particular, any entry mi

j

of a square matrix M is associated to a minor obtained by deleting the ith
row and jth column of M .

It is possible to write the determinant of a matrix in terms of its minors
as follows:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n)

= m1
1

∑
σ̂

sgn(σ̂)m2
σ̂(2) · · ·mn

σ̂(n)

− m1
2

∑
σ̂

sgn(σ̂)m2
σ̂(1)m

3
σ̂(3) · · ·mn

σ̂(n)

+ m1
3

∑
σ̂

sgn(σ̂)m2
σ̂(1)m

3
σ̂(2)m

4
σ̂(4) · · ·mn

σ̂(n) ± · · ·

Here the symbols σ̂ refer to permutations of n−1 objects. What we’re doing
here is collecting up all of the terms of the original sum that contain the
first row entry m1

j for each column number j. Each term in that collection
is associated to a permutation sending 1 → j. The remainder of any such
permutation maps the set {2, . . . , n} → {1, . . . , j − 1, j + 1, . . . , n}. We call
this partial permutation σ̂ =

[
σ(2) · · · σ(n)

]
.

The last issue is that the permutation σ̂ may not have the same sign as σ.
From previous homework, we know that a permutation has the same parity
as its inversion number. Removing 1 → j from a permutation reduces the
inversion number by the number of elements right of j that are less than j.
Since j comes first in the permutation

[
j σ(2) · · · σ(n)

]
, the inversion
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number of σ̂ is reduced by j − 1. Then the sign of σ differs from the sign
of σ̂ if σ sends 1 to an even number.

In other words, to expand by minors we pick an entry m1
j of the first

row, then add (−1)j−1 times the determinant of the matrix with row i and
column j deleted.

Example Let’s compute the determinant of M =

1 2 3
4 5 6
7 8 9

 using expansion by

minors.

detM = 1 det

(
5 6
8 9

)
− 2 det

(
4 6
7 9

)
+ 3 det

(
4 5
7 8

)
= 1(5 · 9− 8 · 6)− 2(4 · 9− 7 · 6) + 3(4 · 8− 7 · 5)

= 0

Here, M−1 does not exist because5 detM = 0.

Example Sometimes the entries of a matrix allow us to simplify the calculation of the

determinant. Take N =

1 2 3
4 0 0
7 8 9

. Notice that the second row has many zeros;

then we can switch the first and second rows of N to get:

det

1 2 3
4 0 0
7 8 9

 = −det

4 0 0
1 2 3
7 8 9


= −4 det

(
2 3
8 9

)
= 24

Theorem 14.1. For any square matrix M , we have:

detMT = detM

5A fun exercise is to compute the determinant of a 4 × 4 matrix filled in order, from
left to right, with the numbers 1, 2, 3, . . . 16. What do you observe? Try the same for a
5× 5 matrix with 1, 2, 3 . . . 25. Is there a pattern? Can you explain it?
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Proof. By definition,

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n).

For any permutation σ, there is a unique inverse permutation σ−1 that
undoes σ. If σ sends i → j, then σ−1 sends j → i. In the two-line notation
for a permutation, this corresponds to just flipping the permutation over. For

example, if σ =

[
1 2 3
2 3 1

]
, then we can find σ−1 by flipping the permutation

and then putting the columns in order:

σ−1 =

[
2 3 1
1 2 3

]
=

[
1 2 3
3 1 2

]
Since any permutation can be built up by transpositions, one can also find
the inverse of a permutation σ by undoing each of the transpositions used to
build up σ; this shows that one can use the same number of transpositions
to build σ and σ−1. In particular, sgnσ = sgnσ−1.

Reading homework: problem 14.1

Then we can write out the above in formulas as follows:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n)

=
∑
σ

sgn(σ)m
σ−1(1)
1 m

σ−1(2)
2 · · ·mσ−1(n)

n

=
∑
σ

sgn(σ−1)m
σ−1(1)
1 m

σ−1(2)
2 · · ·mσ−1(n)

n

=
∑
σ

sgn(σ)m
σ(1)
1 m

σ(2)
2 · · ·mσ(n)

n

= detMT .

The second-to-last equality is due to the existence of a unique inverse permu-
tation: summing over permutations is the same as summing over all inverses
of permutations. The final equality is by the definition of the transpose.

96

http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/ReadingHomework14/1/


Example Because of this theorem, we see that expansion by minors also works over

columns. Let M =

1 2 3
0 5 6
0 8 9

. Then

detM = detMT = 1 det

(
5 8
6 9

)
= −3 .

14.1 Determinant of the Inverse

Let M and N be n× n matrices. We previously showed that

det(MN) = detM detN , and det I = 1.

Then 1 = det I = det(MM−1) = detM detM−1. As such we have:

Theorem 14.2.

detM−1 =
1

detM

14.2 Adjoint of a Matrix

Recall that for the 2× 2 matrix M =

(
m1

1 m1
2

m2
1 m2

2

)
, then

M−1 =
1

m1
1m

2
2 −m1

2m
2
1

(
m2

2 −m1
2

−m2
1 m1

1

)
.

This matrix

(
m2

2 −m1
2

−m2
1 m1

1

)
that appears above is a special matrix, called

the adjoint of M . Let’s define the adjoint for an n× n matrix.
A cofactor of M is obtained choosing any entry mi

j of M and then deleting
the ith row and jth column of M , taking the determinant of the resulting
matrix, and multiplying by(−1)i+j. This is written cofactor(mi

j).

Definition For M = (mi
j) a square matrix, The adjoint matrix adjM is

given by:
adjM = (cofactor(mi

j))
T

97



Example

adj

3 −1 −1
1 2 0
0 1 1

 =


det

(
2 0
1 1

)
−det

(
1 0
0 1

)
det

(
1 2
0 1

)
−det

(
−1 −1
1 1

)
det

(
3 −1
0 1

)
−det

(
3 −1
0 1

)
det

(
−1 −1
2 0

)
−det

(
3 −1
1 0

)
det

(
3 −1
1 2

)



T

Reading homework: problem 14.2

Let’s multiply M adjM . For any matrix N , the i, j entry of MN is given
by taking the dot product of the ith row of M and the jth column of N .
Notice that the dot product of the ith row of M and the ith column of adjM
is just the expansion by minors of detM in the ith row. Further, notice that
the dot product of the ith row of M and the jth column of adjM with j 6= i
is the same as expanding M by minors, but with the jth row replaced by the
ith row. Since the determinant of any matrix with a row repeated is zero,
then these dot products are zero as well.

We know that the i, j entry of the product of two matrices is the dot
product of the ith row of the first by the jth column of the second. Then:

M adjM = (detM)I

Thus, when detM 6= 0, the adjoint gives an explicit formula for M−1.

Theorem 14.3. For M a square matrix with detM 6= 0 (equivalently, if M
is invertible), then

M−1 =
1

detM
adjM

Example Continuing with the previous example,

adj

3 −1 −1
1 2 0
0 1 1

 =

 2 0 2
−1 3 −1
1 −3 7

 .

Now, multiply:
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3 −1 −1
1 2 0
0 1 1

 2 0 2
−1 3 −1
1 −3 7

 =

6 0 0
0 6 0
0 0 6



⇒

3 −1 −1
1 2 0
0 1 1

−1 =
1

6

 2 0 2
−1 3 −1
1 −3 7


This process for finding the inverse matrix is sometimes called Cramer’s Rule .

14.3 Application: Volume of a Parallelepiped

Given three vectors u, v, w in R3, the parallelepiped determined by the three
vectors is the “squished” box whose edges are parallel to u, v, and w as
depicted in Figure 1.

From calculus, we know that the volume of this object is |u (v × w)|.
This is the same as expansion by minors of the matrix whose columns are
u, v, w. Then:

Volume =
∣∣ det

(
u v w

) ∣∣
References
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Figure 1: A parallelepiped.

Review Questions

1. Let M =

(
a b
c d

)
. Show:

detM =
1

2
(trM)2 − 1

2
tr(M2)

Suppose M is a 3 × 3 matrix. Find and verify a similar formula for
detM in terms of tr(M3), (trM)(tr(M2)), and (trM)3.

2. Suppose M = LU is an LU decomposition. Explain how you would
efficiently compute detM in this case.

3. In computer science, the complexity of an algorithm is computed (roug-
hly) by counting the number of times a given operation is performed.
Suppose adding or subtracting any two numbers takes a seconds, and
multiplying two numbers takes m seconds. Then, for example, com-
puting 2 · 6− 5 would take a+m seconds.

(a) How many additions and multiplications does it take to compute
the determinant of a general 2× 2 matrix?

100



(b) Write a formula for the number of additions and multiplications
it takes to compute the determinant of a general n × n matrix
using the definition of the determinant. Assume that finding and
multiplying by the sign of a permutation is free.

(c) How many additions and multiplications does it take to compute
the determinant of a general 3 × 3 matrix using expansion by
minors? Assuming m = 2a, is this faster than computing the
determinant from the definition?
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15 Subspaces and Spanning Sets

It is time to study vector spaces more carefully and answer some fundamental
questions.

1. Subspaces : When is a subset of a vector space itself a vector space?
(This is the notion of a subspace.)

2. Linear Independence: Given a collection of vectors, is there a way to
tell whether they are independent, or if one is a linear combination of
the others?

3. Dimension: Is there a consistent definition of how “big” a vector space
is?

4. Basis : How do we label vectors? Can we write any vector as a sum of
some basic set of vectors? How do we change our point of view from
vectors labeled one way to vectors labeled in another way?

Let’s start at the top!

15.1 Subspaces

Definition We say that a subset U of a vector space V is a subspace of V
if U is a vector space under the inherited addition and scalar multiplication
operations of V .

Example Consider a plane P in R3 through the origin:

ax+ by + cz = 0.

This equation can be expressed as the homogeneous system
(
a b c

)xy
z

 = 0, or

MX = 0 with M the matrix
(
a b c

)
. If X1 and X2 are both solutions to MX = 0,

then, by linearity of matrix multiplication, so is µX1 + νX2:

M(µX1 + νX2) = µMX1 + νMX2 = 0.

So P is closed under addition and scalar multiplication. Additionally, P contains the
origin (which can be derived from the above by setting µ = ν = 0). All other vector
space requirements hold for P because they hold for all vectors in R3.
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Theorem 15.1 (Subspace Theorem). Let U be a non-empty subset of a
vector space V . Then U is a subspace if and only if µu1 + νu2 ∈ U for
arbitrary u1, u2 in U , and arbitrary constants µ, ν.

Proof. One direction of this proof is easy: if U is a subspace, then it is a vector
space, and so by the additive closure and multiplicative closure properties of
vector spaces, it has to be true that µu1 + νu2 ∈ U for all u1, u2 in U and all
constants constants µ, ν.

The other direction is almost as easy: we need to show that if µu1+νu2 ∈
U for all u1, u2 in U and all constants µ, ν, then U is a vector space. That
is, we need to show that the ten properties of vector spaces are satisfied.
We know that the additive closure and multiplicative closure properties are
satisfied. Each of the other eight properties is true in U because it is true in
V . The details of this are left as an exercise.

Note that the requirements of the subspace theorem are often referred to as
“closure”.

From now on, we can use this theorem to check if a set is a vector space.
That is, if we have some set U of vectors that come from some bigger vector
space V , to check if U itself forms a smaller vector space we need check only
two things: if we add any two vectors in U , do we end up with a vector in
U? And, if we multiply any vector in U by any constant, do we end up with
a vector in U? If the answer to both of these questions is yes, then U is a
vector space. If not, U is not a vector space.

Reading homework: problem 15.1

15.2 Building Subspaces

Consider the set

U =


1

0
0

 ,

0
1
0

 ⊂ R3.

Because U consists of only two vectors, it clear that U is not a vector space,
since any constant multiple of these vectors should also be in U . For example,
the 0-vector is not in U , nor is U closed under vector addition.

But we know that any two vectors define a plane. In this case, the vectors
in U define the xy-plane in R3. We can consider the xy-plane as the set of
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all vectors that arise as a linear combination of the two vectors in U . Call
this set of all linear combinations the span of U :

span(U) =

x
1

0
0

+ y

0
1
0

∣∣∣∣∣∣x, y ∈ R

 .

Notice that any vector in the xy-plane is of the formxy
0

 = x

1
0
0

+ y

0
1
0

 ∈ span(U).

Definition Let V be a vector space and S = {s1, s2, . . .} ⊂ V a subset of V .
Then the span of S is the set:

span(S) = {r1s1 + r2s2 + · · ·+ rNsN |ri ∈ R, N ∈ N}.

That is, the span of S is the set of all finite linear combinations6 of elements
of S. Any finite sum of the form (a constant times s1 plus a constant times
s2 plus a constant times s3 and so on) is in the span of S.

It is important that we only allow finite linear combinations. In the definition
above, N must be a finite number. It can be any finite number, but it must
be finite.

Example Let V = R3 and X ⊂ V be the x-axis. Let P =

0
1
0

, and set

S = X ∪ P .

The elements of span(S) are linear combinations of vectors in the x-axis and the vector
P .

The vector

2
3
0

 is in span(S), because

2
3
0

 =

2
0
0

 + 3

0
1
0

 . Similarly, the

vector

−12
17.5

0

 is in span(S), because

−12
17.5

0

 =

−12
0
0

 + 17.5

0
1
0

 . Similarly,

6Usually our vector spaces are defined over R, but in general we can have vector spaces
defined over different base fields such as C or Z2. The coefficients ri should come from
whatever our base field is (usually R).
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any vector of the form x0
0

+ y

0
1
0

 =

xy
0


is in span(S). On the other hand, any vector in span(S) must have a zero in the
z-coordinate. (Why?)

So span(S) is the xy-plane, which is a vector space. (Try drawing a picture to
verify this!)

Reading homework: problem 15.2

Lemma 15.2. For any subset S ⊂ V , span(S) is a subspace of V .

Proof. We need to show that span(S) is a vector space.
It suffices to show that span(S) is closed under linear combinations. Let

u, v ∈ span(S) and λ, µ be constants. By the definition of span(S), there are
constants ci and di (some of which could be zero) such that:

u = c1s1 + c2s2 + · · ·
v = d1s1 + d2s2 + · · ·

⇒ λu+ µv = λ(c1s1 + c2s2 + · · · ) + µ(d1s1 + d2s2 + · · · )
= (λc1 + µd1)s1 + (λc2 + µd2)s2 + · · ·

This last sum is a linear combination of elements of S, and is thus in span(S).
Then span(S) is closed under linear combinations, and is thus a subspace
of V .

Note that this proof, like many proofs, consisted of little more than just
writing out the definitions.

Example For which values of a does

span


1

0
a

 ,

 1
2
−3

 ,

a1
0

 = R3?

Given an arbitrary vector

xy
z

 in R3, we need to find constants r1, r2, r3 such that
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r1

1
0
a

+ r2

 1
2
−3

+ r3

a1
0

 =

xy
z

 .

We can write this as a linear system in the unknowns r1, r2, r3 as follows:1 1 a
0 2 1
a −3 0

r1r2
r3

 =

xy
z

 .

If the matrix M =

1 1 a
0 2 1
a −3 0

 is invertible, then we can find a solution

M−1

xy
z

 =

r1r2
r3



for any vector

xy
z

 ∈ R3.

Therefore we should choose a so that M is invertible:

i.e., 0 6= detM = −2a2 + 3 + a = −(2a− 3)(a+ 1).

Then the span is R3 if and only if a 6= −1, 32 .
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Review Questions

1. (Subspace Theorem) Suppose that V is a vector space and that U ⊂ V
is a subset of V . Show that

µu1 + νu2 ∈ U for all u1, u2 ∈ U, µ, ν ∈ R

implies that U is a subspace of V . (In other words, check all the vector
space requirements for U .)

2. Let PR
3 be the vector space of polynomials of degree 3 or less in the

variable x. Check whether

x− x3 ∈ span{x2, 2x+ x2, x+ x3}

3. Let U and W be subspaces of V . Are:

(a) U ∪W
(b) U ∩W

also subspaces? Explain why or why not. Draw examples in R3.
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16 Linear Independence

Consider a plane P that includes the origin in R3 and a collection {u, v, w}
of non-zero vectors in P . If no two of u, v and w are parallel, then P =
span{u, v, w}. But any two vectors determines a plane, so we should be able
to span the plane using only two vectors. Then we could choose two of the
vectors in {u, v, w} whose span is P , and express the other as a linear com-
bination of those two. Suppose u and v span P . Then there exist constants
d1, d2 (not both zero) such that w = d1u + d2v. Since w can be expressed
in terms of u and v we say that it is not independent. More generally, the
relationship

c1u+ c2v + c3w = 0 ci ∈ R, some ci 6= 0

expresses the fact that u, v, w are not all independent.

Definition We say that the vectors v1, v2, . . . , vn are linearly dependent if
there exist constants7 c1, c2, . . . , cn not all zero such that

c1v1 + c2v2 + · · ·+ cnvn = 0.

Otherwise, the vectors v1, v2, . . . , vn are linearly independent.

Example Consider the following vectors in R4:

v1 =

 4
−1
3

 , v2 =

−3
7
4

 , v3 =

 5
12
17

 , v4 =

−1
1
0

 .

Are these vectors linearly independent?
Since 3v1 + 2v2 − v3 + v4 = 0, the vectors are linearly dependent.

In the above example we were given the linear combination 3v1 + 2v2 −
v3 + v4 seemingly by magic. The next example shows how to find such a
linear combination, if it exists.

7Usually our vector spaces are defined over R, but in general we can have vector spaces
defined over different base fields such as C or Z2. The coefficients ci should come from
whatever our base field is (usually R).
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Example Consider the following vectors in R3:

v1 =

0
0
1

 , v2 =

1
2
1

 , v3 =

1
2
3

 .

Are they linearly independent?
We need to see whether the system

c1v1 + c2v2 + c3v3 = 0

has any solutions for c1, c2, c3. We can rewrite this as a homogeneous system:

(
v1 v2 v3

)c1c2
c3

 = 0.

This system has solutions if and only if the matrix M =
(
v1 v2 v3

)
is singular, so

we should find the determinant of M :

detM = det

0 1 1
0 2 2
1 1 3

 = det

(
1 1
2 2

)
= 0.

Therefore nontrivial solutions exist. At this point we know that the vectors are
linearly dependent. If we need to, we can find coefficients that demonstrate linear
dependence by solving the system of equations:0 1 1 0

0 2 2 0
1 1 3 0

 ∼
1 1 3 0

0 1 1 0
0 0 0 0

 ∼
1 0 2 0

0 1 1 0
0 0 0 0

 .

Then c3 = µ, c2 = −µ, and c1 = −2µ. Now any choice of µ will produce coefficients
c1, c2, c3 that satisfy the linear equation. So we can set µ = 1 and obtain:

c1v1 + c2v2 + c3v3 = 0⇒ −2v1 − v2 + v3 = 0.

Reading homework: problem 16.1

Theorem 16.1 (Linear Dependence). A set of non-zero vectors {v1, . . . , vn}
is linearly dependent if and only if one of the vectors vk is expressible as a
linear combination of the preceeding vectors.
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Proof. The theorem is an if and only if statement, so there are two things to
show.

i. First, we show that if vk = c1v1 + · · · ck−1vk−1 then the set is linearly
dependent.

This is easy. We just rewrite the assumption:

c1v1 + · · ·+ ck−1vk−1 − vk + 0vk+1 + · · ·+ 0vn = 0.

This is a vanishing linear combination of the vectors {v1, . . . , vn} with
not all coefficients equal to zero, so {v1, . . . , vn} is a linearly dependent
set.

ii. Now, we show that linear dependence implies that there exists k for
which vk is a linear combination of the vectors {v1, . . . , vk−1}.
The assumption says that

c1v1 + c2v2 + · · ·+ cnvn = 0.

Take k to be the largest number for which ck is not equal to zero. So:

c1v1 + c2v2 + · · ·+ ck−1vk−1 + ckvk = 0.

(Note that k > 1, since otherwise we would have c1v1 = 0 ⇒ v1 = 0,
contradicting the assumption that none of the vi are the zero vector.)

As such, we can rearrange the equation:

c1v1 + c2v2 + · · ·+ ck−1vk−1 = −ckvk

⇒ −c
1

ck
v1 −

c2

ck
v2 − · · · −

ck−1

ck
vk−1 = vk.

Therefore we have expressed vk as a linear combination of the previous
vectors, and we are done.
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Example Consider the vector space P2(t) of polynomials of degree less than or equal
to 2. Set:

v1 = 1 + t

v2 = 1 + t2

v3 = t+ t2

v4 = 2 + t+ t2

v5 = 1 + t+ t2.

The set {v1, . . . , v5} is linearly dependent, because v4 = v1 + v2.

We have seen two different ways to show a set of vectors is linearly depen-
dent: we can either find a linear combination of the vectors which is equal
to zero, or we can express one of the vectors as a linear combination of the
other vectors. On the other hand, to check that a set of vectors is linearly
independent, we must check that no matter every non-zero linear combina-
tion of our vectors gives something other than the zero vector. Equivalently,
to show that the set v1, v2, . . . , vn is linearly independent, we must show
that the equation c1v1 + c2v2 + · · · + cnvn = 0 has no solutions other than
c1 = c2 = · · · = cn = 0.

Example Consider the following vectors in R3:

v1 =

0
0
2

 , v2 =

2
2
1

 , v3 =

1
4
3

 .

Are they linearly independent?
We need to see whether the system

c1v1 + c2v2 + c3v3 = 0

has any solutions for c1, c2, c3. We can rewrite this as a homogeneous system:

(
v1 v2 v3

)c1c2
c3

 = 0.

This system has solutions if and only if the matrix M =
(
v1 v2 v3

)
is singular, so

we should find the determinant of M :

detM = det

0 2 1
0 2 4
2 1 3

 = 2 det

(
2 1
2 4

)
= 12.
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Since the matrix M has non-zero determinant, the only solution to the system of
equations (

v1 v2 v3
)c1c2

c3

 = 0

is c1 = c2 = c3 = 0. (Why?) So the vectors v1, v2, v3 are linearly independent.

Reading homework: problem 16.2

Now suppose vectors v1, . . . , vn are linearly dependent,

c1v1 + c2v2 + · · ·+ cnvn = 0

with c1 6= 0. Then:

span{v1, . . . , vn} = span{v2, . . . , vn}

because any x ∈ span{v1, . . . , vn} is given by

x = a1v1 + · · · anvn

= a1
(
−c

2

c1
v2 − · · · −

cn

c1
vn

)
+ a2v2 + · · ·+ anvn

=

(
a2 − a1 c

2

c1

)
v2 + · · ·+

(
an − a1 c

n

c1

)
vn.

Then x is in span{v2, . . . , vn}.
When we write a vector space as the span of a list of vectors, we would

like that list to be as short as possible (we will explore this idea further in
lecture 17). This can be achieved by iterating the above procedure.

Example In the above example, we found that v4 = v1 + v2. In this case, any
expression for a vector as a linear combination involving v4 can be turned into a
combination without v4 by making the substitution v4 = v1 + v2.

Then:

S = span{1 + t, 1 + t2, t+ t2, 2 + t+ t2, 1 + t+ t2}
= span{1 + t, 1 + t2, t+ t2, 1 + t+ t2}.

Now we notice that 1 + t + t2 = 1
2(1 + t) + 1

2(1 + t2) + 1
2(t + t2). So the vector

1 + t+ t2 = v5 is also extraneous, since it can be expressed as a linear combination of
the remaining three vectors, v1, v2, v3. Therefore

S = span{1 + t, 1 + t2, t+ t2}.
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In fact, you can check that there are no (non-zero) solutions to the linear system

c1(1 + t) + c2(1 + t2) + c3(t+ t2) = 0.

Therefore the remaining vectors {1 + t, 1 + t2, t + t2} are linearly independent, and
span the vector space S. Then these vectors are a minimal spanning set, in the sense
that no more vectors can be removed since the vectors are linearly independent. Such
a set is called a basis for S.

Example Let B3 be the space of 3× 1 bit-valued matrices (i.e., column vectors). Is
the following subset linearly independent?

1
1
0

 ,

1
0
1

 ,

0
1
1


If the set is linearly dependent, then we can find non-zero solutions to the system:

c1

1
1
0

+ c2

1
0
1

+ c3

0
1
1

 = 0,

which becomes the linear system1 1 0
1 0 1
0 1 1

c1c2
c3

 = 0.

Solutions exist if and only if the determinant of the matrix is non-zero. But:

det

1 1 0
1 0 1
0 1 1

 = 1 det

(
0 1
1 1

)
− 1 det

(
1 1
0 1

)
= −1− 1 = 1 + 1 = 0

Therefore non-trivial solutions exist, and the set is not linearly independent.

References

Hefferon, Chapter Two, Section II: Linear Independence
Hefferon, Chapter Two, Section III.1: Basis
Beezer, Chapter V, Section LI
Beezer, Chapter V, Section LDS
Beezer, Chapter VS, Section LISS, Subsection LI
Wikipedia:

113



• Linear Independence

• Basis

Review Questions

1. Let Bn be the space of n× 1 bit-valued matrices (i.e., column vectors)
over the field Z/2. Remember that this means that the coefficients in
any linear combination can be only 0 or 1, with rules for adding and
multiplying coefficients given here.

(a) How many different vectors are there in Bn?

(b) Find a collection S of vectors that span B3 and are linearly inde-
pendent. In other words, find a basis of B3.

(c) Write each other vector inB3 as a linear combination of the vectors
in the set S that you chose.

(d) Would it be possible to span B3 with only two vectors?

2. Let ei be the vector in Rn with a 1 in the ith position and 0’s in every
other position. Let v be an arbitrary vector in Rn.

(a) Show that the collection {e1, . . . , en} is linearly independent.

(b) Demonstrate that v =
∑n

i=1(v ei)ei.

(c) The span{e1, . . . , en} is the same as what vector space?
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17 Basis and Dimension

In Lecture 16, we established the notion of a linearly independent set of
vectors in a vector space V , and of a set of vectors that span V . We saw that
any set of vectors that span V can be reduced to some minimal collection of
linearly independent vectors; such a set is called a basis of the subspace V .

Definition Let V be a vector space. Then a set S is a basis for V if S is
linearly independent and V = spanS.

If S is a basis of V and S has only finitely many elements, then we say
that V is finite-dimensional. The number of vectors in S is the dimension
of V .

Suppose V is a finite-dimensional vector space, and S and T are two
different bases for V . One might worry that S and T have a different number
of vectors; then we would have to talk about the dimension of V in terms
of the basis S or in terms of the basis T . Luckily this isn’t what happens.
Later in this section, we will show that S and T must have the same number
of vectors. This means that the dimension of a vector space does not depend
on the basis. In fact, dimension is a very important way to characterize of
any vector space V .

Example Pn(t) has a basis {1, t, . . . , tn}, since every polynomial of degree less than
or equal to n is a sum

a0 1 + a1 t+ · · ·+ an tn, ai ∈ R

so Pn(t) = span{1, t, . . . , tn}. This set of vectors is linearly independent: If the
polynomial p(t) = c01 + c1t+ · · ·+ cntn = 0, then c0 = c1 = · · · = cn = 0, so p(t) is
the zero polynomial.

Then Pn(t) is finite dimensional, and dimPn(t) = n+ 1.

Theorem 17.1. Let S = {v1, . . . , vn} be a basis for a vector space V . Then
every vector w ∈ V can be written uniquely as a linear combination of vectors
in the basis S:

w = c1v1 + · · ·+ cnvn.

Proof. Since S is a basis for V , then spanS = V , and so there exist con-
stants ci such that w = c1v1 + · · ·+ cnvn.
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Suppose there exists a second set of constants di such that

w = d1v1 + · · ·+ dnvn .

Then:

0V = w − w
= c1v1 + · · ·+ cnvn − d1v1 + · · ·+ dnvn

= (c1 − d1)v1 + · · ·+ (cn − dn)vn.

If it occurs exactly once that ci 6= di, then the equation reduces to 0 =
(ci − di)vi, which is a contradiction since the vectors vi are assumed to be
non-zero.

If we have more than one i for which ci 6= di, we can use this last equation
to write one of the vectors in S as a linear combination of other vectors in S,
which contradicts the assumption that S is linearly independent. Then for
every i, ci = di.

Next, we would like to establish a method for determining whether a
collection of vectors forms a basis for Rn. But first, we need to show that
any two bases for a finite-dimensional vector space has the same number of
vectors.

Lemma 17.2. If S = {v1, . . . , vn} is a basis for a vector space V and T =
{w1, . . . , wm} is a linearly independent set of vectors in V , then m ≤ n.

The idea of the proof is to start with the set S and replace vectors in S
one at a time with vectors from T , such that after each replacement we still
have a basis for V .

Reading homework: problem 17.1

Proof. Since S spans V , then the set {w1, v1, . . . , vn} is linearly dependent.
Then we can write w1 as a linear combination of the vi; using that equation,
we can express one of the vi in terms of w1 and the remaining vj with j 6=
i. Then we can discard one of the vi from this set to obtain a linearly
independent set that still spans V . Now we need to prove that S1 is a basis;
we need to show that S1 is linearly independent and that S1 spans V .
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The set S1 = {w1, v1, . . . , vi−1, vi+1, . . . , vn} is linearly independent: By
the previous theorem, there was a unique way to express w1 in terms of
the set S. Now, to obtain a contradiction, suppose there is some k and
constants ci such that

vk = c0w1 + c1v1 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ cnvn.

Then replacing w1 with its expression in terms of the collection S gives a way
to express the vector vk as a linear combination of the vectors in S, which
contradicts the linear independence of S. On the other hand, we cannot
express w1 as a linear combination of the vectors in {vj|j 6= i}, since the
expression of w1 in terms of S was unique, and had a non-zero coefficient on
the vector vi. Then no vector in S1 can be expressed as a combination of
other vectors in S1, which demonstrates that S1 is linearly independent.

The set S1 spans V : For any u ∈ V , we can express u as a linear com-
bination of vectors in S. But we can express vi as a linear combination of
vectors in the collection S1; rewriting vi as such allows us to express u as a
linear combination of the vectors in S1.

Then S1 is a basis of V with n vectors.
We can now iterate this process, replacing one of the vi in S1 with w2,

and so on. If m ≤ n, this process ends with the set Sm = {w1, . . . , wm,
vi1 , . . . , vin−m}, which is fine.

Otherwise, we have m > n, and the set Sn = {w1, . . . , wn} is a basis
for V . But we still have some vector wn+1 in T that is not in Sn. Since Sn
is a basis, we can write wn+1 as a combination of the vectors in Sn, which
contradicts the linear independence of the set T . Then it must be the case
that m ≤ n, as desired.

Corollary 17.3. For a finite-dimensional vector space V , any two bases
for V have the same number of vectors.

Proof. Let S and T be two bases for V . Then both are linearly independent
sets that span V . Suppose S has n vectors and T has m vectors. Then by
the previous lemma, we have that m ≤ n. But (exchanging the roles of S
and T in application of the lemma) we also see that n ≤ m. Then m = n,
as desired.

Reading homework: problem 17.2
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17.1 Bases in Rn.

From one of the review questions, we know that

Rn = span




1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


 ,

and that this set of vectors is linearly independent. So this set of vectors is
a basis for Rn, and dimRn = n. This basis is often called the standard or
canonical basis for Rn. The vector with a one in the ith position and zeros
everywhere else is written ei. It points in the direction of the ith coordinate
axis, and has unit length. In multivariable calculus classes, this basis is often
written {i, j, k} for R3.

Bases are not unique. While there exists a unique way to express a vector
in terms of any particular basis, bases themselves are far from unique. For
example, both of the sets:{(

1
0

)
,

(
0
1

)}
and

{(
1
1

)
,

(
1
−1

)}
are bases for R2. Rescaling any vector in one of these sets is already enough
to show that R2 has infinitely many bases. But even if we require that all of
the basis vectors have unit length, it turns out that there are still infinitely
many bases for R2. (See Review Question 3.)

To see whether a collection of vectors S = {v1, . . . , vm} is a basis for Rn,
we have to check that they are linearly independent and that they span Rn.
From the previous discussion, we also know that m must equal n, so assume S
has n vectors.

If S is linearly independent, then there is no non-trivial solution of the
equation

0 = x1v1 + · · ·+ xnvn.

Let M be a matrix whose columns are the vectors vi. Then the above equa-
tion is equivalent to requiring that there is a unique solution to

MX = 0 .
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To see if S spans Rn, we take an arbitrary vector w and solve the linear
system

w = x1v1 + · · ·+ xnvn

in the unknowns ci. For this, we need to find a unique solution for the linear
system MX = w.

Thus, we need to show that M−1 exists, so that

X = M−1w

is the unique solution we desire. Then we see that S is a basis for V if and
only if detM 6= 0.

Theorem 17.4. Let S = {v1, . . . , vm} be a collection of vectors in Rn. Let M
be the matrix whose columns are the vectors in S. Then S is a basis for V if
and only if m is the dimension of V and

detM 6= 0.

Example Let

S =

{(
1
0

)
,

(
0
1

)}
and T =

{(
1
1

)
,

(
1
−1

)}
.

Then set MS =

(
1 0
0 1

)
. Since detMS = 1 6= 0, then S is a basis for R2.

Likewise, set MT =

(
1 1
1 −1

)
. Since detMT = −2 6= 0, then T is a basis for R2.

References

Hefferon, Chapter Two, Section II: Linear Independence
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Wikipedia:

• Linear Independence

• Basis
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Review Questions

1. (a) Draw the collection of all unit vectors in R2.

(b) Let Sx =

{(
1
0

)
, x

}
, where x is a unit vector in R2. For which x

is Sx a basis of R2?

2. Let Bn be the vector space of column vectors with bit entries 0, 1. Write
down every basis for B1 and B2. How many bases are there for B3?
B4? Can you make a conjecture for the number of bases for Bn?

(Hint: You can build up a basis for Bn by choosing one vector at a
time, such that the vector you choose is not in the span of the previous
vectors you’ve chosen. How many vectors are in the span of any one
vector? Any two vectors? How many vectors are in the span of any k
vectors, for k ≤ n?)

3. Suppose that V is an n-dimensional vector space.

(a) Show that any n linearly independent vectors in V form a basis.

(Hint: Let {w1, . . . , wm} be a collection of n linearly independent
vectors in V , and let {v1, . . . , vn} be a basis for V . Apply the
method of Lemma 19.2 to these two sets of vectors.)

(b) Show that any set of n vectors in V which span V forms a basis
for V .

(Hint: Suppose that you have a set of n vectors which span V
but do not form a basis. What must be true about them? How
could you get a basis from this set? Use Corollary 19.3 to derive
a contradiction.)

4. Let S be a collection of vectors {v1, . . . , vn} in a vector space V . Show
that if every vector w in V can be expressed uniquely as a linear combi-
nation of vectors in S, then S is a basis of V . In other words: suppose
that for every vector w in V , there is exactly one set of constants
c1, . . . , cn so that c1v1 + · · ·+ cnvn = w. Show that this means that the
set S is linearly independent and spans V . (This is the converse to the
theorem in the lecture.)

5. Vectors are objects that you can add together; show that the set of all
linear transformations mapping R3 → R is itself a vector space. Find a
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basis for this vector space. Do you think your proof could be modified
to work for linear transformations Rn → R?

(Hint: Represent R3 as column vectors, and argue that a linear trans-
formation T : R3 → R is just a row vector.)

(Hint: If you are stuck or just curious, look up “dual space.” )
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18 Eigenvalues and Eigenvectors

Matrix of a Linear Transformation Consider a linear transformation

L : R2 → R2 .

Suppose we know that L

(
1
0

)
=

(
a
c

)
and L

(
0
1

)
=

(
b
d

)
. Then, because of

linearity, we can determine what L does to any vector

(
x
y

)
:

L

(
x
y

)
= L(x

(
1
0

)
+y

(
0
1

)
) = xL

(
1
0

)
+yL

(
0
1

)
= x

(
a
c

)
+y

(
b
d

)
=

(
ax+ by
cx+ dy

)
.

Now notice that for any vector

(
x
y

)
, we have(

a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
= L

(
x
y

)
.

Then the matrix

(
a b
c d

)
acts by matrix multiplication in the same way

that L does. Call this matrix the matrix of L in the “basis”

{(
1
0

)
,

(
0
1

)}
.

Since every linear function from R2 → R2 can be given a matrix in
this way, we see that every such linear function has a matrix in the basis{(

1
0

)
,

(
0
1

)}
. We will revisit this idea in depth later, and develop the no-

tion of a basis further, and learn about how to make a matrix for an arbitrary
linear transformation Rn → Rm in an arbitrary basis.

18.1 Invariant Directions

Consider the linear transformation L such that

L

(
1
0

)
=

(
−4
−10

)
and L

(
0
1

)
=

(
3
7

)
,

so that the matrix of L is

(
−4 3
−10 7

)
. Recall that a vector is a direction and

a magnitude; L applied to

(
1
0

)
or

(
0
1

)
changes both the direction and the

magnitude of the vectors given to it.
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Notice that L

(
3
5

)
=

(
−4 · 3 + 3 · 5
−10 · 3 + 7 · 5

)
=

(
3
5

)
. Then L fixes both the

magnitude and direction of the vector v1 =

(
3
5

)
. Try drawing a picture of

this situation on some graph paper to help yourself visualize it better!

Reading homework: problem 18.1

Now, notice that any vector with the same direction as v1 can be written
as cv1 for some constant c. Then L(cv1) = cL(v1) = cv1, so L fixes every
vector pointing in the same direction as v1.

Also notice that L

(
1
2

)
=

(
−4 · 1 + 3 · 2
−10 · 1 + 7 · 2

)
=

(
2
4

)
= 2

(
1
2

)
. Then L

fixes the direction of the vector v2 =

(
1
2

)
but stretches v2 by a factor of

2. Now notice that for any constant c, L(cv2) = cL(v2) = 2cv2. Then L
stretches every vector pointing in the same direction as v2 by a factor of 2.

In short, given a linear transformation L it is sometimes possible to find
a vector v 6= 0 and constant λ 6= 0 such that

L(v) = λv.

We call the direction of the vector v an invariant direction. In fact, any
vector pointing in the same direction also satisfies the equation: L(cv) =
cL(v) = λcv. The vector v is called an eigenvector of L, and λ is an eigen-
value. Since the direction is all we really care about here, then any other
vector cv (so long as c 6= 0) is an equally good choice of eigenvector. Notice
that the relation “u and v point in the same direction” is an equivalence
relation.

Returning to our example of the linear transformation L with matrix(
−4 3
−10 7

)
, we have seen that L enjoys the property of having two invariant

directions, represented by eigenvectors v1 and v2 with eigenvalues 1 and 2,
respectively.

It would be very convenient if I could write any vector w as a linear
combination of v1 and v2. Suppose w = rv1 +sv2 for some constants r and s.
Then:

L(w) = L(rv1 + sv2) = rL(v1) + sL(v2) = rv1 + 2sv2.
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Now L just multiplies the number r by 1 and the number s by 2. If we
could write this as a matrix, it would look like:(

1 0
0 2

)(
r
s

)

which is much slicker than the usual scenario L

(
x
y

)
=

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Here, r and s give the coordinates of w in terms of the vectors v1 and v2. In
the previous example, we multiplied the vector by the matrix L and came
up with a complicated expression. In these coordinates, we can see that L is
a very simple diagonal matrix, whose diagonal entries are exactly the eigen-
values of L.

This process is called diagonalization, and it can make complicated linear
systems much easier to analyze.

Reading homework: problem 18.2

Now that we’ve seen what eigenvalues and eigenvectors are, there are a
number of questions that need to be answered.

• How do we find eigenvectors and their eigenvalues?

• How many eigenvalues and (independent) eigenvectors does a given
linear transformation have?

• When can a linear transformation be diagonalized?

We’ll start by trying to find the eigenvectors for a linear transformation.

Example Let L : R2 → R2 such that L(x, y) = (2x + 2y, 16x + 6y). First, we can
find the matrix of L: (

x
y

)
L7−→
(

2 2
16 6

)(
x
y

)
.

We want to find an invariant direction v =

(
x
y

)
such that

L(v) = λv
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or, in matrix notation, (
2 2
16 6

)(
x
y

)
= λ

(
x
y

)

⇔
(

2 2
16 6

)(
x
y

)
=

(
λ 0
0 λ

)(
x
y

)

⇔
(

2− λ 2
16 6− λ

)(
x
y

)
=

(
0
0

)
.

This is a homogeneous system, so it only has solutions when the matrix

(
2− λ 2

16 6− λ

)
is singular. In other words,

det

(
2− λ 2

16 6− λ

)
= 0

⇔ (2− λ)(6− λ)− 32 = 0

⇔ λ2 − 8λ− 20 = 0

⇔ (λ− 10)(λ+ 2) = 0

For any square n× n matrix M , the polynomial in λ given by

PM (λ) = det(λI −M) = (−1)n det(M − λI)

is called the characteristic polynomial of M , and its roots are the eigenvalues of M .
In this case, we see that L has two eigenvalues, λ1 = 10 and λ2 = −2. To find the

eigenvectors, we need to deal with these two cases separately. To do so, we solve the

linear system

(
2− λ 2

16 6− λ

)(
x
y

)
=

(
0
0

)
with the particular eigenvalue λ plugged

in to the matrix.

λ = 10: We solve the linear system(
−8 2
16 −4

)(
x
y

)
=

(
0
0

)
.

Both equations say that y = 4x, so any vector

(
x
4x

)
will do. Since we only

need the direction of the eigenvector, we can pick a value for x. Setting x = 1

is convenient, and gives the eigenvector v1 =

(
1
4

)
.
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λ = −2: We solve the linear system (
4 2
16 8

)(
x
y

)
=

(
0
0

)
.

Here again both equations agree, because we chose λ to make the system

singular. We see that y = −2x works, so we can choose v2 =

(
1
−2

)
.

In short, our process was the following:

• Find the characteristic polynomial of the matrix M for L, given by8 det(λI−M).

• Find the roots of the characteristic polynomial; these are the eigenvalues of L.

• For each eigenvalue λi, solve the linear system (M − λiI)v = 0 to obtain an
eigenvector v associated to λi.

References

Hefferon, Chapter Three, Section III.1: Representing Linear Maps with Ma-
trices
Hefferon, Chapter Five, Section II.3: Eigenvalues and Eigenvectors
Beezer, Chapter E, Section EE
Wikipedia:

• Eigen*

• Characteristic Polynomial

• Linear Transformations (and matrices thereof)

Review Questions

1. Let M =

(
2 1
0 2

)
. Find all eigenvalues of M . Does M have two

independent9 eigenvectors? Can M be diagonalized?

2. Consider L : R2 → R2 with L(x, y) = (x cos θ+y sin θ,−x sin θ+y cos θ).

8It is often easier (and equivalent if you only need the roots) to compute det(M − λI).
9Independence of vectors will be explained later; for now, think “not parallel”.
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(a) Write the matrix of L in the basis

(
1
0

)
,

(
0
1

)
.

(b) When θ 6= 0, explain how L acts on the plane. Draw a picture.

(c) Do you expect L to have invariant directions?

(d) Try to find real eigenvalues for L by solving the equation

L(v) = λv.

(e) Are there complex eigenvalues for L, assuming that i =
√
−1

exists?

3. Let L be the linear transformation L : R3 → R3 given by L(x, y, z) =
(x+ y, x+ z, y+ z). Let ei be the vector with a one in the ith position
and zeros in all other positions.

(a) Find Lei for each i.

(b) Given a matrix M =

m1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

, what can you say about

Mei for each i?

(c) Find a 3 × 3 matrix M representing L. Choose three nonzero
vectors pointing in different directions and show that Mv = Lv
for each of your choices.

(d) Find the eigenvectors and eigenvalues of M.
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19 Eigenvalues and Eigenvectors II

In Lecture 18, we developed the idea of eigenvalues and eigenvectors in the
case of linear transformations R2 → R2. In this section, we will develop the
idea more generally.

Definition For a linear transformation L : V → V , then λ is an eigenvalue
of L with eigenvector v 6= 0V if

Lv = λv.

This equation says that the direction of v is invariant (unchanged) under L.
Let’s try to understand this equation better in terms of matrices. Let

V be a finite-dimensional vector space (we’ll explain what it means to be
finite-dimensional in more detail later; for now, take this to mean Rn), and
let L : V → V .

Matrix of a Linear Transformation Any vector in Rn can be written as
a linear combination of the standard basis vectors {ei|i ∈ {1, . . . , n}}. The
vector ei has a one in the ith position, and zeros everywhere else. I.e.

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . en =


0
0
...
1

 .

Then to find the matrix of any linear transformation L : Rn → Rn, it suffices
to know what L(ei) is for every i.

For any matrix M , observe that Mei is equal to the ith column of M .
Then if the ith column of M equals L(ei) for every i, then Mv = L(v) for
every v ∈ Rn. Then the matrix representing L in the standard basis is just
the matrix whose ith column is L(ei).

Since we can represent L by a square matrix M , we find eigenvalues λ
and associated eigenvectors v by solving the homogeneous system

(M − λI)v = 0.

This system has non-zero solutions if and only if the matrix
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M − λI
is singular, and so we require that

det(λI −M) = 0.

The left hand side of this equation is a polynomial in the variable λ
called the characteristic polynomial PM(λ) of M . For an n × n matrix, the
characteristic polynomial has degree n. Then

PM(λ) = λn + c1λ
n−1 + · · ·+ cn.

Notice that PM(0) = det(−M) = (−1)n detM .
The fundamental theorem of algebra states that any polynomial can be

factored into a product of linear terms over C. Then there exists a collection
of n complex numbers λi (possibly with repetition) such that

PM(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn), PM(λi) = 0

The eigenvalues λi of M are exactly the roots of PM(λ). These eigenvalues
could be real or complex or zero, and they need not all be different. The
number of times that any given root λi appears in the collection of eigenvalues
is called its multiplicity .

Example Let L be the linear transformation L : R3 → R3 given by

L(x, y, z) = (2x+ y − z, x+ 2y − z,−x− y + 2z) .

The matrix M representing L has columns Lei for each i, so:xy
z

 L7→

 2 1 −1
1 2 −1
−1 −1 2

xy
z

 .

Then the characteristic polynomial of L is10

PM (λ) = det

λ− 2 −1 1
−1 λ− 2 1
1 1 λ− 2


= (λ− 2)[(λ− 2)2 − 1] + [−(λ− 2)− 1] + [−(λ− 2)− 1]

= (λ− 1)2(λ− 4)

10It is often easier (and equivalent) to solve det(M − λI) = 0.
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Then L has eigenvalues λ1 = 1 (with multiplicity 2), and λ2 = 4 (with multiplicity 1).
To find the eigenvectors associated to each eigenvalue, we solve the homogeneous

system (M − λiI)X = 0 for each i.

λ = 4: We set up the augmented matrix for the linear system:−2 1 −1 0
1 −2 −1 0
−1 −1 −2 0

 ∼

1 −2 −1 0
0 −3 −3 0
0 −3 −3 0


∼

1 0 1 0
0 1 1 0
0 0 0 0

 .

So we see that z = t, y = −t, and x = −t gives a formula for eigenvectors in

terms of the free parameter t. Any such eigenvector is of the form t

−1
−1
1

;

thus L leaves a line through the origin invariant.

λ = 1: Again we set up an augmented matrix and find the solution set: 1 1 −1 0
1 1 −1 0
−1 −1 1 0

 ∼

1 1 −1 0
0 0 0 0
0 0 0 0

 .

Then the solution set has two free parameters, s and t, such that z = t, y = s,
and x = −s+ t. Then L leaves invariant the set:s

−1
1
0

+ t

1
0
1

∣∣∣∣∣∣s, t ∈ R

 .

This set is a plane through the origin. So the multiplicity two eigenvalue has

two independent eigenvectors,

−1
1
0

 and

1
0
1

 that determine an invariant

plane.

Example Let V be the vector space of smooth (i.e. infinitely differentiable) functions
f : R → R. Then the derivative is a linear operator d

dx : V → V . What are the
eigenvectors of the derivative? In this case, we don’t have a matrix to work with, so
we have to make do.
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A function f is an eigenvector of d
dx if there exists some number λ such that d

dxf =

λf . An obvious candidate is the exponential function, eλx; indeed, d
dxe

λx = λeλx.

As such, the operator d
dx has an eigenvector eλx for every λ ∈ R.

This is actually the whole collection of eigenvectors for d
dx ; this can be proved

using the fact that every infinitely differentiable function has a Taylor series with
infinite radius of convergence, and then using the Taylor series to show that if two
functions are eigenvectors of d

dx with eigenvalues λ, then they are scalar multiples of
each other.

19.1 Eigenspaces

In the previous example, we found two eigenvectors

−1
1
0

 and

1
0
1

 for L

with eigenvalue 1. Notice that

−1
1
0

+

1
0
1

 =

0
1
1

 is also an eigenvector

of L with eigenvalue 1. In fact, any linear combination r

−1
1
0

+ s

1
0
1

 of

these two eigenvectors will be another eigenvector with the same eigenvalue.
More generally, let {v1, v2, . . .} be eigenvectors of some linear transforma-

tion L with the same eigenvalue λ. A linear combination of the vi can be
written c1v1 + c2v2 + · · · for some constants {c1, c2, . . .}. Then:

L(c1v1 + c2v2 + · · · ) = c1Lv1 + c2Lv2 + · · · by linearity of L

= c1λv1 + c2λv2 + · · · since Lvi = λvi

= λ(c1v1 + c2v2 + · · · ).

So every linear combination of the vi is an eigenvector of L with the same
eigenvalue λ. In simple terms, any sum of eigenvectors is again an eigenvector
if they share the same eigenvalue.

The space of all vectors with eigenvalue λ is called an eigenspace. It
is, in fact, a vector space contained within the larger vector space V : It
contains 0V , since L0V = 0V = λ0V , and is closed under addition and scalar
multiplication by the above calculation. All other vector space properties are
inherited from the fact that V itself is a vector space.

An eigenspace is an example of a subspace of V , a notion that we will
explore further next time.
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Reading homework: problem 19.1

You are now ready to attempt the second sample midterm.

References

Hefferon, Chapter Three, Section III.1: Representing Linear Maps with Ma-
trices
Hefferon, Chapter Five, Section II.3: Eigenvalues and Eigenvectors
Beezer, Chapter E, Section EE
Wikipedia:

• Eigen*

• Characteristic Polynomial

• Linear Transformations (and matrices thereof)

Review Questions

1. Explain why the characteristic polynomial of an n×n matrix has degree
n. Make your explanation easy to read by starting with some simple
examples, and then use properties of the determinant to give a general
explanation.

2. Compute the characteristic polynomial PM(λ) of the matrix M =(
a b
c d

)
. Now, since we can evaluate polynomials on square matrices,

we can plug M into its characteristic polynomial and find the matrix
PM(M). What do you find from this computation? Does something
similar hold for 3× 3 matrices? What about n× n matrices?

3. Discrete dynamical system. Let M be the matrix given by

M =

(
3 2
2 3

)
.
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Given any vector v(0) =

(
x(0)
y(0)

)
, we can create an infinite sequence of

vectors v(1), v(2), v(3), and so on using the rule

v(t+ 1) = Mv(t) for all natural numbers t.

(This is known as a discrete dynamical system whose initial condition
is v(0).)

(a) Find all eigenvectors and eigenvalues of M.

(b) Find all vectors v(0) such that

v(0) = v(1) = v(2) = v(3) = · · ·

(Such a vector is known as a fixed point of the dynamical system.)

(c) Find all vectors v(0) such that v(0), v(1), v(2), v(3), . . . all point in
the same direction. (Any such vector describes an invariant curve
of the dynamical system.)
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20 Diagonalization

Given a linear transformation, we are interested in how to write it as a
matrix. We are especially interested in the case that the matrix is written
with respect to a basis of eigenvectors, in which case it is a particularly nice
matrix. But first, we discuss matrices of linear transformations.

20.1 Matrix of a Linear Transformation

Let V and W be vector spaces, with bases S = {e1, . . . , en} and T =
{f1, . . . , fm} respectively. Since these are bases, there exist constants vi and
wj such that any vectors v ∈ V and w ∈ W can be written as:

v = v1e1 + v2e2 + · · ·+ vnen

w = w1f1 + w2f2 + · · ·+ wmfm

We call the coefficients v1, . . . , vn the components of v in the basis11 {e1, . . . , en}.
It is often convenient to arrange the components vi in a column vector and
the basis vector in a row vector by writing

v =
(
e1 e2 · · · en

)

v1

v2

...
vn

 .

Example Consider the basis S = {1− t, 1 + t} for the vector space P1(t). The vector
v = 2t has components v1 = −1, v2 = 1, because

v = −1(1− t) + 1(1 + t) =
(
1− t 1 + t

)(−1

1

)
.

We may consider these components as vectors in Rn and Rm:v
1

...
vn

 ∈ Rn,

w1

...
wm

 ∈ Rm.

11To avoid confusion, it helps to notice that components of a vector are almost always
labeled by a superscript, while basis vectors are labeled by subscripts in the conventions
of these lecture notes.
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Now suppose we have a linear transformation L : V → W . Then we can
expect to write L as an m × n matrix, turning an n-dimensional vector of
coefficients corresponding to v into an m-dimensional vector of coefficients
for w.

Using linearity, we write:

L(v) = L(v1e1 + v2e2 + · · ·+ vnen)

= v1L(e1) + v2L(e2) + · · ·+ vnL(en)

=
(
L(e1) L(e2) · · · L(en)

)

v1

v2

...
vn

 .

This is a vector in W . Let’s compute its components in W .
We know that for each ej, L(ej) is a vector in W , and can thus be written

uniquely as a linear combination of vectors in the basis T . Then we can find
coefficients M i

j such that:

L(ej) = f1M
1
j + · · ·+ fmM

m
j =

m∑
i=1

fiM
i
j =

(
f1 f2 · · · fm

)

M1

j

M2
j

...

Mm
j

 .

We’ve written the M i
j on the right side of the f ’s to agree with our previous

notation for matrix multiplication. We have an “up-hill rule” where the
matching indices for the multiplied objects run up and to the right, like
so: fiM

i
j .

Now M i
j is the ith component of L(ej). Regarding the coefficients M i

j as
a matrix, we can see that the jth column of M is the coefficients of L(ej) in
the basis T .
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Then we can write:

L(v) = L(v1e1 + v2e2 + · · ·+ vnen)

= v1L(e1) + v2L(e2) + · · ·+ vnL(en)

=
m∑
i=1

L(ej)v
j

=
m∑
i=1

(M1
j f1 + · · ·+Mm

j fm)vj

=
m∑
i=1

fi

[
n∑
j=1

M i
jv
j

]

=
(
f1 f2 · · · fm

)

M1

1 M1
2 · · · M1

n

M2
1 M2

2
...

...
Mm

1 · · · Mm
n



v1

v2

...
vn


The second last equality is the definition of matrix multiplication which is
obvious from the last line. Thus:v

1

...
vn

 L7→

M1
1 . . . M1

n
...

...
Mm

1 . . . Mm
n


v

1

...
vn

 ,

and M = (M i
j) is called the matrix of L. Notice that this matrix depends

on a choice of bases for both V and W . Also observe that the columns of M
are computed by examining L acting on each basis vector in V expanded in
the basis vectors of W .

Example Let L : P1(t) 7→ P1(t), such that L(a+ bt) = (a+ b)t. Since V = P1(t) =
W , let’s choose the same basis for V and W . We’ll choose the basis {1− t, 1 + t} for
this example.

Thus:

L(1− t) = (1− 1)t = 0 = (1− t) · 0 + (1 + t) · 0 =
(
(1− t) (1 + t)

)(0
0

)
L(1 + t) = (1 + 1)t = 2t = (1− t) · −1 + (1 + t) · 1 =

(
(1− t) (1 + t)

)(−1
1

)
⇒M =

(
0 −1
0 1

)
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To obtain the last line we used that fact that the columns of M are just the coefficients
of L on each of the basis vectors; this always makes it easy to write down M in terms
of the basis we have chosen.

Reading homework: problem 20.1

20.2 Diagonalization

Now suppose we are lucky, and we have L : V 7→ V , and the basis {v1, . . . , vn}
is a set of linearly independent eigenvectors for L, with eigenvalues λ1, . . . , λn.
Then:

L(v1) = λ1v1

L(v2) = λ2v2
...

L(vn) = λnvn

As a result, the matrix of L in the basis of eigenvectors is:

M =


λ1

λ2
. . .

λn

 ,

where all entries off of the diagonal are zero.
Suppose that V is any n-dimensional vector space. We call a linear trans-

formation L : V 7→ V diagonalizable if there exists a collection of n linearly
independent eigenvectors for L. In other words, L is diagonalizable if there
exists a basis for V of eigenvectors for L.

In a basis of eigenvectors, the matrix of a linear transformation is diago-
nal. On the other hand, if an n×n matrix M is diagonal, then the standard
basis vectors ei are already a set of n linearly independent eigenvectors for M .
We have shown:

Theorem 20.1. Given a basis S for a vector space V and a linear transfor-
mation L : V → V , then the matrix for L in the basis S is diagonal if and
only if S is a basis of eigenvectors for L.

Reading homework: problem 20.2
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20.3 Change of Basis

Suppose we have two bases S = {v1, . . . , vn} and T = {u1, . . . , un} for a
vector space V . (Here vi and ui are vectors, not components of vectors in a
basis!) Then we may write each vi uniquely as a linear combination of the uj:

vj =
∑
i

uiP
i
j ,

or in a matrix notation

(
v1 v2 · · · vn

)
=
(
u1 u2 · · · un

)

P 1
1 P 1

2 · · · P 1
n

P 2
1 P 2

2
...

...
P n
1 · · · P n

n

 .

Here, the P i
j are constants, which we can regard as entries of a square ma-

trix P = (P i
j ). The matrix P must have an inverse, since we can also write

each ui uniquely as a linear combination of the vj:

uj =
∑
k

vkQ
k
j .

Then we can write:
vj =

∑
k

∑
i

vkQ
k
jP

i
j .

But
∑

iQ
k
jP

i
j is the k, j entry of the product of the matrices QP . Since the

only expression for vj in the basis S is vj itself, then QP fixes each vj. As
a result, each vj is an eigenvector for QP with eigenvalues 1, so QP is the
identity.

The matrix P is called a change of basis matrix.

Changing basis changes the matrix of a linear transformation. However,
as a map between vector spaces, the linear transformation is the same no
matter which basis we use. Linear transformations are the actual objects of
study of this course, not matrices; matrices are merely a convenient way of
doing computations.

To wit, suppose L : V 7→ V has matrix M = (M i
j) in the basis T =

{u1, . . . , un}, so

L(ui) =
∑
k

Mk
i uk.
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Now, let S = {v1, . . . , vn} be a basis of eigenvectors for L, with eigenvalues
λ1, . . . , λn. Then

L(vi) = λivi =
∑
k

vkD
k
i

where D is the diagonal matrix whose diagonal entries Dk
k are the eigenval-

ues λk; ie, D =


λ1

λ2
. . .

λn

. Let P be the change of basis matrix

from the basis T to the basis S. Then:

L(vj) = L

(∑
i

uiP
i
j

)
=
∑
i

L(ui)P
i
j =

∑
i

∑
k

ukM
k
i P

i
j .

Meanwhile, we have:

L(vi) =
∑
k

vkD
k
i =

∑
k

∑
j

ujP
j
kD

k
i .

Since the expression for a vector in a basis is unique, then we see that the
entries of MP are the same as the entries of PD. In other words, we see that

MP = PD or D = P−1MP.

This motivates the following definition:

Definition A matrix M is diagonalizable if there exists an invertible matrix
P and a diagonal matrix D such that

D = P−1MP.

We can summarize as follows:

• Change of basis multiplies vectors by the change of basis matrix P , to
give vectors in the new basis.

• To get the matrix of a linear transformation in the new basis, we con-
jugate the matrix of L by the change of basis matrix: M → P−1MP .
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If for two matrices N and M there exists an invertible matrix P such
that M = P−1NP , then we say that M and N are similar . Then the
above discussion shows that diagonalizable matrices are similar to diagonal
matrices.

Corollary 20.2. A square matrix M is diagonalizable if and only if there
exists a basis of eigenvectors for M . Moreover, these eigenvectors are the
columns of the change of basis matrix P which diagonalizes M .

Reading homework: problem 20.3

Example Let’s try to diagonalize the matrix

M =

−14 −28 −44
−7 −14 −23
9 18 29

 .

The eigenvalues of M are determined by

det(M − λ) = −λ3 + λ2 + 2λ = 0.

So the eigenvalues of M are −1, 0, and 2, and associated eigenvectors turn out to be

v1 =

−8
−1
3

 , v2 =

−2
1
0

 , and v3 =

−1
−1
1

. In order for M to be diagonalizable,

we need the vectors v1, v2, v3 to be linearly independent. Notice that the matrix

P =
(
v1 v2 v3

)
=

−8 −2 −1
−1 1 −1
3 0 1


is invertible because its determinant is −1. Therefore, the eigenvectors of M form a
basis of R, and so M is diagonalizable. Moreover, the matrix P of eigenvectors is a
change of basis matrix which diagonalizes M :

P−1MP =

−1 0 0
0 0 0
0 0 2

 .

References

Hefferon, Chapter Three, Section V: Change of Basis
Beezer, Chapter E, Section SD
Beezer, Chapter R, Sections MR-CB
Wikipedia:
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• Change of Basis

• Diagonalizable Matrix

• Similar Matrix

Review Questions

1. Let Pn(t) be the vector space of polynomials of degree n or less, and
d
dt

: Pn(t) 7→ Pn−1(t) be the derivative operator. Find the matrix of d
dt

in the bases {1, t, . . . , tn} for Pn(t) and {1, t, . . . , tn−1} for Pn−1(t).

2. When writing a matrix for a linear transformation, we have seen that
the choice of basis matters. In fact, even the order of the basis matters!

• Write all possible reorderings of the standard basis {e1, e2, e3}
for R3.

• Write each change of basis matrix between the standard basis
{e1, e2, e3} and each of its reorderings. Make as many observations
as you can about these matrices: what are their entries? Do you
notice anything about how many of each type of entry appears
in each row and column? What are their determinants? (Note:
These matrices are known as permutation matrices .)

• Given the linear transformation L(x, y, z) = (2y−z, 3x, 2z+x+y),
write the matrix M for L in the standard basis, and two other
reorderings of the standard basis. How are these matrices related?

3. When is the 2× 2 matrix

(
a b
c d

)
diagonalizable? Include examples in

your answer.

4. Show that similarity of matrices is an equivalence relation. (The defi-
nition of an equivalence relation is given in Homework 0.)

5. Jordan form

• Can the matrix

(
λ 1
0 λ

)
be diagonalized? Either diagonalize it or

explain why this is impossible.
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• Can the matrix

λ 1 0
0 λ 1
0 0 λ

 be diagonalized? Either diagonalize

it or explain why this is impossible.

• Can the n × n matrix



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


be diagonalized?

Either diagonalize it or explain why this is impossible.

Note: It turns out that every complex matrix is similar to a block
matrix whose diagonal blocks look like diagonal matrices or the
ones above and whose off-diagonal blocks are all zero. This is
called the Jordan form of the matrix.
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21 Orthonormal Bases

The canonical/standard basis

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1


has many useful properties.

• Each of the standard basis vectors has unit length:

‖ei‖ =
√
ei ei =

√
eTi ei = 1.

• The standard basis vectors are orthogonal (in other words, at right
angles or perpendicular).

ei ej = eTi ej = 0 when i 6= j

This is summarized by

eTi ej = δij =

{
1 i = j
0 i 6= j

,

where δij is the Kronecker delta. Notice that the Kronecker delta gives the
entries of the identity matrix.

Given column vectors v and w, we have seen that the dot product v w is
the same as the matrix multiplication vTw. This is the inner product on Rn.
We can also form the outer product vwT , which gives a square matrix.
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The outer product on the standard basis vectors is interesting. Set

Π1 = e1e
T
1

=


1
0
...
0

(1 0 · · · 0
)

=


1 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0


...

Πn = ene
T
n

=


0
0
...
1

(0 0 · · · 1
)

=


0 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 1


In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position
and zeros everywhere else. 12

Notice that ΠiΠj = eie
T
i eje

T
j = eiδije

T
j . Then:

ΠiΠj =

{
Πi i = j
0 i 6= j

.

Moreover, for a diagonal matrix D with diagonal entries λ1, . . . , λn, we
can write

D = λ1Π1 + · · ·+ λnΠn.

12This is reminiscent of an older notation, where vectors are written in juxtaposition.
This is called a “dyadic tensor”, and is still used in some applications.
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Other bases that share these properties should behave in many of the
same ways as the standard basis. As such, we will study:

• Orthogonal bases {v1, . . . , vn}:

vi vj = 0 if i 6= j

In other words, all vectors in the basis are perpendicular.

• Orthonormal bases {u1, . . . , un}:

ui uj = δij.

In addition to being orthogonal, each vector has unit length.

Suppose T = {u1, . . . , un} is an orthonormal basis for Rn. Since T is
a basis, we can write any vector v uniquely as a linear combination of the
vectors in T :

v = c1u1 + · · · cnun.

Since T is orthonormal, there is a very easy way to find the coefficients of this
linear combination. By taking the dot product of v with any of the vectors
in T , we get:

v ui = c1u1 ui + · · ·+ ciui ui + · · ·+ cnun ui

= c1 · 0 + · · ·+ ci · 1 + · · ·+ cn · 0
= ci,

⇒ ci = v ui

⇒ v = (v u1)u1 + · · ·+ (v un)un

=
∑
i

(v ui)ui.

This proves the theorem:

Theorem 21.1. For an orthonormal basis {u1, . . . , un}, any vector v can be
expressed as

v =
∑
i

(v ui)ui.

Reading homework: problem 21.1
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21.1 Relating Orthonormal Bases

Suppose T = {u1, . . . , un} and R = {w1, . . . , wn} are two orthonormal bases
for Rn. Then:

w1 = (w1 u1)u1 + · · ·+ (w1 un)un
...

wn = (wn u1)u1 + · · ·+ (wn un)un

⇒ wi =
∑
j

uj(uj wi)

As such, the matrix for the change of basis from T to R is given by

P = (P j
i ) = (uj wi).

Consider the product PP T in this case.

(PP T )jk =
∑
i

(uj wi)(wi uk)

=
∑
i

(uTj wi)(w
T
i uk)

= uTj

[∑
i

(wiw
T
i )

]
uk

= uTj Inuk (∗)
= uTj uk = δjk.

The equality (∗) is explained below. So assuming (∗) holds, we have shown
that PP T = In, which implies that

P T = P−1.

The equality in the line (∗) says that
∑

iwiw
T
i = In. To see this, we

examine
(∑

iwiw
T
i

)
v for an arbitrary vector v. We can find constants cj
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such that v =
∑

j c
jwj, so that:(∑

i

wiw
T
i

)
v =

(∑
i

wiw
T
i

)(∑
j

cjwj

)
=

∑
j

cj
∑
i

wiw
T
i wj

=
∑
j

cj
∑
i

wiδij

=
∑
j

cjwj since all terms with i 6= j vanish

= v.

Then as a linear transformation,
∑

iwiw
T
i = In fixes every vector, and thus

must be the identity In.

Definition A matrix P is orthogonal if P−1 = P T .

Then to summarize,

Theorem 21.2. A change of basis matrix P relating two orthonormal bases
is an orthogonal matrix. I.e.,

P−1 = P T .

Reading homework: problem 21.2

Example Consider R3 with the orthonormal basis

S =

u1 =


2√
6
1√
6
−1√
6

 , u2 =

 0
1√
2
1√
2

 , u3 =


1√
3
−1√
3
1√
3


 .

Let R be the standard basis {e1, e2, e3}. Since we are changing from the standard
basis to a new basis, then the columns of the change of basis matrix are exactly the
images of the standard basis vectors. Then the change of basis matrix from R to S is
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given by:

P = (P ji ) = (ejui) =

e1 u1 e1 u2 e1 u3
e2 u1 e2 u2 e2 u3
e3 u1 e3 u2 e3 u3



=
(
u1 u2 u3

)
=


2√
6

0 1√
3

1√
6

1√
2
−1√
3

−1√
6

1√
2

1√
3

 .

From our theorem, we observe that:

P−1 = P T =

uT1uT2
uT3



=


2√
6

1√
6
−1√
6

0 1√
2

1√
2

1√
3
−1√
3

1√
3

 .

We can check that P TP = I by a lengthy computation, or more simply, notice
that

(P TP )ij =

uT1uT2
uT3

(u1 u2 u3
)

=

1 0 0
0 1 0
0 0 1

 .

We are using orthonormality of the ui for the matrix multiplication above. It is very
important to realize that the columns of an orthogonal matrix are made from an
orthonormal set of vectors.

Orthonormal Change of Basis and Diagonal Matrices. Suppose D is
a diagonal matrix, and we use an orthogonal matrix P to change to a new
basis. Then the matrix M of D in the new basis is:

M = PDP−1 = PDP T .
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Now we calculate the transpose of M .

MT = (PDP T )T

= (P T )TDTP T

= PDP T

= M

So we see the matrix PDP T is symmetric!

References

Hefferon, Chapter Three, Section V: Change of Basis
Beezer, Chapter V, Section O, Subsection N
Beezer, Chapter VS, Section B, Subsection OBC
Wikipedia:

• Orthogonal Matrix

• Diagonalizable Matrix

• Similar Matrix

Review Questions

1. Let D =

(
λ1 0
0 λ2

)
.

(a) Write D in terms of the vectors e1 and e2, and their transposes.

(b) Suppose P =

(
a b
c d

)
is invertible. Show that D is similar to

M =
1

ad− bc

(
λ1ad− λ2bc −(λ1 − λ2)ab
(λ1 − λ2)cd −λ1bc+ λ2ad

)
.

(c) Suppose the vectors
(
a b

)
and

(
c d

)
are orthogonal. What can

you say about M in this case? (Hint: think about what MT is
equal to.)
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2. Suppose S = {v1, . . . , vn} is an orthogonal (not orthonormal) basis
for Rn. Then we can write any vector v as v =

∑
i c
ivi for some

constants ci. Find a formula for the constants ci in terms of v and the
vectors in S.

3. Let u, v be independent vectors in R3, and P = span{u, v} be the plane
spanned by u and v.

(a) Is the vector v⊥ = v − u·v
u·uu in the plane P?

(b) What is the angle between v⊥ and u?

(c) Given your solution to the above, how can you find a third vector
perpendicular to both u and v⊥?

(d) Construct an orthonormal basis for R3 from u and v.

(e) Test your abstract formulae starting with

u =
(
1 2 0

)
and v =

(
0 1 1

)
.

150



22 Gram-Schmidt and Orthogonal Comple-

ments

Given a vector u and some other vector v not in the span of u, we can
construct a new vector:

v⊥ = v − u · v
u · u

u.

v
u

v⊥

u·v
u·u u = v‖

This new vector v⊥ is orthogonal to u because

u v⊥ = u v − u · v
u · u

u u = 0.

Hence, {u, v⊥} is an orthogonal basis for span{u, v}. When v is not par-

allel to u, v⊥ 6= 0, and normalizing these vectors we obtain
{

u
|u| ,

v⊥

|v⊥|

}
, an

orthonormal basis.
Sometimes we write v = v⊥ + v‖ where:

v⊥ = v − u · v
u · u

u

v‖ =
u · v
u · u

u.

This is called an orthogonal decomposition because we have decomposed v
into a sum of orthogonal vectors. It is significant that we wrote this decom-
position with u in mind; v‖ is parallel to u.

If u, v are linearly independent vectors in R3, then the set {u, v⊥, u×v⊥}
would be an orthogonal basis for R3. This set could then be normalized by
dividing each vector by its length to obtain an orthonormal basis.
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However, it often occurs that we are interested in vector spaces with di-
mension greater than 3, and must resort to craftier means than cross products
to obtain an orthogonal basis. 13

Given a third vector w, we should first check that w does not lie in the
span of u and v, i.e. check that u, v and w are linearly independent. We
then can define:

w⊥ = w − u w

u u
u− v⊥ w

v⊥ v⊥
v⊥.

We can check that u w⊥ and v⊥ w⊥ are both zero:

u w⊥ = u

(
w − u w

u u
u− v⊥ w

v⊥ v⊥
v⊥
)

= u w − u w

u u
u u− v⊥ w

v⊥ v⊥
u v⊥

= u w − u w − v⊥ w

v⊥ v⊥
u v⊥ = 0

since u is orthogonal to v⊥, and

v⊥ w⊥ = v⊥
(
w − u w

u u
u− v⊥ w

v⊥ v⊥
v⊥
)

= v⊥ w − u w

u u
v⊥ u− v⊥ w

v⊥ v⊥
v⊥ v⊥

= v⊥ w − u w

u u
v⊥ u− v⊥ w = 0

because u is orthogonal to v⊥. Since w⊥ is orthogonal to both u and v⊥, we
have that {u, v⊥, w⊥} is an orthogonal basis for span{u, v, w}.

In fact, given a collection {x, v2, . . .} of linearly independent vectors, we
can produce an orthogonal basis for span{v1, v2, . . .} consisting of the follow-

13Actually, given a set T of (n − 1) independent vectors in n-space, one can define an
analogue of the cross product that will produce a vector orthogonal to the span of T , using
a method exactly analogous to the usual computation for calculating the cross product of
two vectors in R3. This only gets us the last orthogonal vector, though; the process in
this Section gives a way to get a full orthogonal basis.
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ing vectors:

v⊥1 = v1

v⊥2 = v2 −
v⊥1 · v2
v⊥1 · v⊥1

v⊥1

v⊥3 = v3 −
v⊥1 · v3
v⊥1 · v⊥1

v⊥1 −
v⊥2 · v3
v⊥2 · v⊥2

v⊥2

...

v⊥i = vi −
∑
j<i

v⊥j · vi
v⊥j · v⊥j

v⊥j

= vi −
v⊥1 · vi
v⊥1 · v⊥1

v⊥1 − · · · −
v⊥n−1 · vi
v⊥n−1 · v⊥n−1

v⊥n−1

...

Notice that each v⊥i here depends on the existence of v⊥j for every j < i.
This allows us to inductively/algorithmically build up a linearly independent,
orthogonal set of vectors whose span is span{v1, v2, . . .}. This algorithm bears
the name Gram–Schmidt orthogonalization procedure.

Example Let u =
(
1 1 0

)
, v =

(
1 1 1

)
, and w =

(
3 1 1

)
. We’ll apply

Gram-Schmidt to obtain an orthogonal basis for R3.
First, we set u⊥ = u. Then:

v⊥ =
(
1 1 1

)
− 2

2

(
1 1 0

)
=
(
0 0 1

)
w⊥ =

(
3 1 1

)
− 4

2

(
1 1 0

)
− 1

1

(
0 0 1

)
=
(
1 −1 0

)
.

Then the set {(
1 1 0

)
,
(
0 0 1

)
,
(
1 −1 0

)}
is an orthogonal basis for R3. To obtain an orthonormal basis, as always we simply
divide each of these vectors by its length, yielding:{(

1√
2

1√
2

0
)
,
(
0 0 1

)
,
(

1√
2
−1√
2

0
)}

.
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In Lecture 11 we learnt how to solve linear systems by decomposing a
matrix M into a product of lower and upper triangular matrices

M = LU .

The Gram–Schmidt procedure suggests another matrix decomposition,

M = QR

where Q is an orthogonal matrix and R is an upper triangular matrix. So-
called QR-decompositions are useful for solving linear systems, eigenvalue
problems and least squares approximations. You can easily get the idea
behind QR decomposition by working through a simple example.

Example Find the QR decomposition of

M =

2 −1 1
1 3 −2
0 1 −2

 .

What we will do is to think of the columns of M as three vectors and use Gram–
Schmidt to build an orthonormal basis from these that will become the columns of
the orthogonal matrix Q. We will use the matrix R to record the steps of the Gram–
Schmidt procedure in such a way that the product QR equals M .

To begin with we write

M =

2 −7
5 1

1 14
5 −2

0 1 −2


1 1

5 0

0 1 0

0 0 1

 .

In the first matrix the first two columns are mutually orthogonal because we simpy
replaced the second column of M by the vector that the Gram–Schmidt procedure
produces from the first two columns of M , namely−

7
5

14
5

1

 =

−1

3

1

− 1

5

2

1

0

 .

The matrix on the right is almost the identity matrix, save the +1
5 in the second entry

of the first row, whose effect upon multiplying the two matrices precisely undoes what
we we did to the second column of the first matrix.
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For the third column of M we use Gram–Schmidt to deduce the third orthogonal
vector −

1
6

1
3

−7
6

 =

 1

−2

−2

− 0.

2

1

0

− −9
54
5

−
7
5

14
5

1

 ,

and therefore, using exactly the same procedure write

M =

2 −7
5 −1

6

1 14
5

1
3

0 1 −7
6


1 1

5 0

0 1 −5
6

0 0 1

 .

This is not quite the answer because the first matrix is now made of mutually orthog-
onal column vectors, but a bona fide orthogonal matrix is comprised of orthonormal
vectors. To achieve that we divide each column of the first matrix by its length and
multiply the corresponding row of the second matrix by the same amount:

M =


2
√
5

5 −7
√
30

90 −
√
6

18
√
5
5

7
√
30

45

√
6
9

0
√
30
18 −7

√
6

18



√

5
√
5
5 0

0 3
√
30
5 −

√
30
2

0 0
√
6
2

 = QR .

A nice check of this result is to verify that entry (i, j) of the matrix R equals the dot
product of the i-th column of Q with the j-th column of M . (Some people memorize
this fact and use it as a recipe for computing QR deompositions.) A good test of
your own understanding is to work out why this is true!

22.1 Orthogonal Complements

Let U and V be subspaces of a vector space W . We saw as a review exercise
that U ∩V is a subspace of W , and that U ∪V was not a subspace. However,
span(U∪V ) is certainly a subspace, since the span of any subset is a subspace.

Notice that all elements of span(U ∪ V ) take the form u + v with u ∈ U
and v ∈ V . We call the subspace

U + V = span(U ∪ V ) = {u+ v|u ∈ U, v ∈ V }

the sum of U and V . Here, we are not adding vectors, but vector spaces to
produce a new vector space!
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Definition Given two subspaces U and V of a space W such that U ∩ V =
{0W}, the direct sum of U and V is defined as:

U ⊕ V = span(U ∪ V ) = {u+ v|u ∈ U, v ∈ V }.

Notice that when U ∩ V = {0W}, U + V = U ⊕ V .
The direct sum has a very nice property.

Theorem 22.1. Let w = u+ v ∈ U ⊕ V . Then the expression w = u+ v is
unique. That is, there is only one way to write w as the sum of a vector in
U and a vector in V .

Proof. Suppose that u+ v = u′ + v′, with u, u′ ∈ U , and v, v′ ∈ V . Then we
could express 0 = (u − u′) + (v − v′). Then (u − u′) = −(v − v′). Since U
and V are subspaces, we have (u − u′) ∈ U and −(v − v′) ∈ V . But since
these elements are equal, we also have (u−u′) ∈ V . Since U ∩V = {0}, then
(u− u′) = 0. Similarly, (v − v′) = 0, proving the theorem.

Reading homework: problem 22.1

Given a subspace U in W , we would like to write W as the direct sum of
U and something. Using the inner product, there is a natural candidate for
this second subspace.

Definition Given a subspace U of a vector space W , define:

U⊥ = {w ∈ W |w u = 0 for all u ∈ U}.

The set U⊥ (pronounced “U -perp”) is the set of all vectors in W orthogo-
nal to every vector in U . This is also often called the orthogonal complement
of U .

Example Consider any plane P through the origin in R3. Then P is a subspace, and
P⊥ is the line through the origin orthogonal to P . For example, if P is the xy-plane,
then

R3 = P ⊕ P⊥ = {(x, y, 0)|x, y ∈ R} ⊕ {(0, 0, z)|z ∈ R}.

Theorem 22.2. Let U be a subspace of a finite-dimensional vector space W .
Then the set U⊥ is a subspace of W , and W = U ⊕ U⊥.
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Proof. To see that U⊥ is a subspace, we only need to check closure, which
requires a simple check.

We have U ∩ U⊥ = {0}, since if u ∈ U and u ∈ U⊥, we have:

u u = 0⇔ u = 0.

Finally, we show that any vector w ∈ W is in U ⊕ U⊥. (This is where
we use the assumption that W is finite-dimensional.) Let e1, . . . , en be an
orthonormal basis for W . Set:

u = (w e1)e1 + · · ·+ (w en)en ∈ U
u⊥ = w − u

It is easy to check that u⊥ ∈ U⊥ (see the Gram-Schmidt procedure). Then
w = u+ u⊥, so w ∈ U ⊕ U⊥, and we are done.

Reading homework: problem 22.2

Example Consider any line L through the origin in R4. Then L is a subspace, and L⊥

is a 3-dimensional subspace orthogonal to L. For example, let L be the line spanned
by the vector (1, 1, 1, 1) ∈ R4. Then  L⊥ is given by

L⊥ = {(x, y, z, w) | x, y, z, w ∈ R and (x, y, z, w) (1, 1, 1, 1) = 0}
= {(x, y, z, w) | x, y, z, w ∈ R and x, y, z, w = 0}.

It is easy to check that {v1 = (1,−1, 0, 0), v2 = (1, 0,−1, 0), v3 = (1, 0, 0,−1)} forms
a basis for L⊥. We use Gram-Schmidt to find an orthogonal basis for L⊥:

First, we set v⊥1 = v1. Then:

v⊥2 = (1, 0,−1, 0)− 1

2
(1,−1, 0, 0) =

(
1

2
,
1

2
,−1, 0

)
,

v⊥3 = (1, 0, 0,−1)− 1

2
(1,−1, 0, 0)− 1/2

3/2

(
1

2
,
1

2
,−1, 0

)
=

(
1

3
,
1

3
,
1

3
,−1

)
.

So the set {
(1,−1, 0, 0),

(
1

2
,
1

2
,−1, 0

)
,

(
1

3
,
1

3
,
1

3
,−1

)}
is an orthogonal basis for L⊥. We find an orthonormal basis for L⊥ by dividing each
basis vector by its length:{(

1√
2
,− 1√

2
, 0, 0

)
,

(
1√
6
,

1√
6
,− 2√

6
, 0

)
,

(√
3

6
,

√
3

6
,

√
3

6
,−
√

3

2

)}
.
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Moreover, we have

R4 = L⊕L⊥ = {(c, c, c, c) | c ∈ R}⊕{(x, y, z, w) | x, y, z, w ∈ R and x+y+z+w = 0}.

Notice that for any subspace U , the subspace (U⊥)⊥ is just U again. As
such, ⊥ is an involution on the set of subspaces of a vector space.

References

Hefferon, Chapter Three, Section VI.2: Gram-Schmidt Orthogonalization
Beezer, Chapter V, Section O, Subsection GSP
Wikipedia:

• Gram-Schmidt Process

• QR Decomposition

• Orthonormal Basis

• Direct Sum

Review Questions

1. Find the QR factorization of

M =

 1 0 2
−1 2 0
−1 −2 2

 .

2. Suppose u and v are linearly independent. Show that u and v⊥ are also
linearly independent. Explain why {u, v⊥} are a basis for span{u, v}.

3. Repeat the previous problem, but with three independent vectors u, v, w,
and v⊥ and w⊥ as defined in the lecture.

4. Given any three vectors u, v, w, when do v⊥ or w⊥ vanish?

5. For U a subspace of W , use the subspace theorem to check that U⊥ is
a subspace of W .
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6. This question will answer the question, “If I choose a bit vector at
random, what is the probability that it lies in the span of some other
vectors?”

i. Given a collection S of k bit vectors in B3, consider the bit matrix
M whose columns are the vectors in S. Show that S is linearly
independent if and only if the kernel of M is trivial.

ii. Give some method for choosing a random bit vector v in B3. Sup-
pose S is a collection of 2 linearly independent bit vectors in B3.
How can we tell whether S ∪{v} is linearly independent? Do you
think it is likely or unlikely that S ∪ {v} is linearly independent?
Explain your reasoning.

iii. If P is the characteristic polynomial of a 3 × 3 bit matrix, what
must the degree of P be? Given that each coefficient must be
either 0 or 1, how many possibilities are there for P? How many
of these possible characteristic polynomials have 0 as a root? If M
is a 3×3 bit matrix chosen at random, what is the probability that
it has 0 as an eigenvalue? (Assume that you are choosing a random
matrix M in such a way as to make each characteristic polynomial
equally likely.) What is the probability that the columns of M
form a basis for B3? (Hint: what is the relationship between the
kernel of M and its eigenvalues?)

Note: We could ask the same question for real vectors: If I choose a real
vector at random, what is the probability that it lies in the span
of some other vectors? In fact, once we write down a reasonable
way of choosing a random real vector, if I choose a real vector in
Rn at random, the probability that it lies in the span of n − 1
other real vectors is 0!
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23 Diagonalizing Symmetric Matrices

Symmetric matrices have many applications. For example, if we consider the
shortest distance between pairs of important cities, we might get a table like
this:

Davis Seattle San Francisco
Davis 0 2000 80

Seattle 2000 0 2010
San Francisco 80 2010 0

Encoded as a matrix, we obtain:

M =

 0 2000 80
2000 0 2010
80 2010 0

 = MT .

Definition A matrix is symmetric if it obeys

M = MT .

One very nice property of symmetric matrices is that they always have
real eigenvalues. The general proof is an exercise, but here’s an example for
2× 2 matrices.

Example For a general symmetric 2× 2 matrix, we have:

Pλ

(
a b
b d

)
= det

(
λ− a −b
−b λ− d

)
= (λ− a)(λ− d)− b2

= λ2 − (a+ d)λ− b2 + ad

⇒ λ =
a+ d

2
±

√
b2 +

(
a− d

2

)2

.

Notice that the discriminant 4b2 + (a− d)2 is always positive, so that the eigenvalues
must be real.

Now, suppose a symmetric matrix M has two distinct eigenvalues λ 6= µ
and eigenvectors x and y:

Mx = λx, My = µy.
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Consider the dot product x y = xTy = yTx. And now calculate:

xTMy = xTµy = µx y, and

xTMy = (yTMx)T (by transposing a 1× 1 matrix)

= xTMTy

= xTMy

= xTλy

= λx y.

Subtracting these two results tells us that:

0 = xTMy − xTMy = (µ− λ)x y.

Since µ and λ were assumed to be distinct eigenvalues, λ − µ is non-zero,
and so x y = 0. Then we have proved the following theorem.

Theorem 23.1. Eigenvectors of a symmetric matrix with distinct eigenval-
ues are orthogonal.

Reading homework: problem 23.1

Example The matrix M =

(
2 1
1 2

)
has eigenvalues determined by

det(M − λ) = (2− λ)2 − 1 = 0.

Then the eigenvalues of M are 3 and 1, and the associated eigenvectors turn out to

be

(
1
1

)
and

(
1
−1

)
. It is easily seen that these eigenvectors are orthogonal:

(
1
1

) (
1
−1

)
= 0

In Lecture 21 we saw that the matrix P built from orthonormal basis
vectors {v1, . . . , vn}

P =
(
v1 · · · vn

)
was an orthogonal matrix:

P−1 = P T , or PP T = I = P TP.
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Moreover, given any (unit) vector x1, one can always find vectors x2, . . . , xn
such that {x1, . . . , xn} is an orthonormal basis. (Such a basis can be obtained
using the Gram-Schmidt procedure.)

Now suppose M is a symmetric n×n matrix and λ1 is an eigenvalue with
eigenvector x1. Let the square matrix of column vectors P be the following:

P =
(
x1 x2 · · · xn

)
,

where x1 through xn are orthonormal, and x1 is an eigenvector for M , but
the others are not necessarily eigenvectors for M . Then

MP =
(
λ1x1 Mx2 · · · Mxn

)
.

But P is an orthogonal matrix, so P−1 = P T . Then:

P−1 = P T =

x
T
1
...
xTn



⇒ P TMP =


xT1 λ1x1 ∗ · · · ∗
xT2 λ1x1 ∗ · · · ∗

...
...

xTnλ1x1 ∗ · · · ∗



=


λ1 ∗ · · · ∗
0 ∗ · · · ∗
... ∗ ...
0 ∗ · · · ∗



=


λ1 0 · · · 0
0
... M̂
0


The last equality follows since P TMP is symmetric. The asterisks in the
matrix are where “stuff” happens; this extra information is denoted by M̂
in the final equation. We know nothing about M̂ except that it is an (n −
1)× (n− 1) matrix and that it is symmetric. But then, by finding an (unit)
eigenvector for M̂ , we could repeat this procedure successively. The end
result would be a diagonal matrix with eigenvalues of M on the diagonal.
Then we have proved a theorem.
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Theorem 23.2. Every symmetric matrix is similar to a diagonal matrix of
its eigenvalues. In other words,

M = MT ⇒M = PDP T

where P is an orthogonal matrix and D is a diagonal matrix whose entries
are the eigenvalues of M .

Reading homework: problem 23.2

To diagonalize a real symmetric matrix, begin by building an orthogonal
matrix from an orthonormal basis of eigenvectors.

Example The symmetric matrix M =

(
2 1
1 2

)
has eigenvalues 3 and 1 with eigen-

vectors

(
1
1

)
and

(
1
−1

)
respectively. From these eigenvectors, we normalize and build

the orthogonal matrix:

P =

(
1√
2

1√
2

1√
2
−1√
2

)
Notice that P TP = I2. Then:

MP =

(
3√
2

1√
2

3√
2
−1√
2

)
=

(
1√
2

1√
2

1√
2
−1√
2

)(
3 0
0 1

)
.

In short, MP = DP , so D = P TMP . Then D is the diagonalized form of M
and P the associated change-of-basis matrix from the standard basis to the basis of
eigenvectors.

References
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Review Questions

1. (On Reality of Eigenvectors)

(a) Suppose z = x + iy where x, y ∈ R, i =
√
−1, and z = x − iy.

Compute zz and zz in terms of x and y. What kind of numbers
are zz and zz? (The complex number z is called the complex
conjugate of z).

(b) Suppose that λ = x+ iy is a complex number with x, y ∈ R, and
that λ = λ. Does this determine the value of x or y? What kind
of number must λ be?

(c) Let x =

z
1

...
zn

 ∈ Cn. Let x† =
(
z1 · · · zn

)
∈ Cn. Compute x†x.

Using the result of part 1a, what can you say about the number
x†x? (E.g., is it real, imaginary, positive, negative, etc.)

(d) Suppose M = MT is an n×n symmetric matrix with real entries.
Let λ be an eigenvalue of M with eigenvector x, so Mx = λx.
Compute:

x†Mx

x†x

(e) Suppose Λ is a 1× 1 matrix. What is ΛT ?

(f) What is the size of the matrix x†Mx?

(g) For any matrix (or vector) N , we can compute N by applying
complex conjugation to each entry of N . Compute (x†)T . Then
compute (x†Mx)T .

(h) Show that λ = λ. Using the result of a previous part of this
problem, what does this say about λ?

2. Let x1 =

ab
c

, where a2 + b2 + c2 = 1. Find vectors x2 and x3 such

that {x1, x2, x3} is an orthonormal basis for R3.
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3. (Dimensions of Eigenspaces)

(a) Let A =

4 0 0
0 2 −2
0 −2 2

 . Find all eigenvalues of A.

(b) Find a basis for each eigenspace of A. What is the sum of the
dimensions of the eigenspaces of A?

(c) Based on your answer to the previous part, guess a formula for the
sum of the dimensions of the eigenspaces of a real n×n symmetric
matrix. Explain why your formula must work for any real n × n
symmetric matrix.
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24 Kernel, Range, Nullity, Rank

Given a linear transformation L : V → W , we would like to know whether
it has an inverse. That is, we would like to know whether there exists a
linear transformation M : W → V such that for any vector v ∈ V , we have
M(L(v)) = v, and for any vector w ∈ W , we have L(M(w)) = w. A linear
transformation is just a special kind of function from one vector space to
another. So before we discuss which linear transformations have inverses, let
us first discuss inverses of arbitrary functions. When we later specialize to
linear transformations, we’ll also find some nice ways of creating subspaces.

Let f : S → T be a function from a set S to a set T . Recall that S is
called the domain of f , T is called the codomain of f , and the set

ran(f) = im(f) = f(S) = {f(s)|s ∈ S} ⊂ T

is called the range or image of f . The image of f is the set of elements of T
to which the function f maps, i.e., the things in T which you can get to by
starting in S and applying f . We can also talk about the pre-image of any
subset U ⊂ T :

f−1(U) = {s ∈ S|f(s) ∈ U} ⊂ S.

The pre-image of a set U is the set of all elements of S which map to U .
The function f is one-to-one if different elements in S always map to

different elements in T . That is, f is one-to-one if for any elements x 6= y ∈ S,
we have that f(x) 6= f(y). One-to-one functions are also called injective
functions. Notice that injectivity is a condition on the pre-image of f .

The function f is onto if every element of T is mapped to by some element
of S. That is, f is onto if for any t ∈ T , there exists some s ∈ S such that
f(s) = t. Onto functions are also called surjective functions. Notice that
surjectivity is a condition on the image of f .

If f is both injective and surjective, it is bijective.

Theorem 24.1. A function f : S → T has an inverse function g : T → S if
and only if it is bijective.

Proof. Suppose that f is bijective. Since f is surjective, every element t ∈ T
has at least one pre-image, and since f is injective, every t has no more
than one pre-image. Therefore, to construct an inverse function g, we simply
define g(t) to be the unique pre-image f−1(t) of t.

Conversely, suppose that f has an inverse function g.
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• The function f is injective:

Suppose that we have x, y ∈ S such that f(x) = f(y). We must have
that g(f(s)) = s for any s ∈ S, so in particular g(f(x)) = x and
g(f(y)) = y. But since f(x) = f(y), we have g(f(x)) = g(f(y)) so
x = y. Therefore, f is injective.

• The function f is surjective:

Let t be any element of T . We must have that f(g(t)) = t. Thus, g(t)
is an element of S which maps to t. So f is surjective.

Now let us restrict to the case that our function f is not just an arbitrary
function, but a linear transformation between two vector spaces. Everything
we said above for arbitrary functions is exactly the same for linear trans-
formations. However, the linear structure of vector spaces lets us say much
more about one-to-one and onto functions than we can say about functions
on general sets. For example, we always know that a linear function sends 0V
to 0W . You will show that a linear transformation is one-to-one if and only if
0V is the only vector that is sent to 0W : by looking at just one (very special)
vector, we can figure out whether f is one-to-one. For arbitrary functions
between arbitrary sets, things aren’t nearly so convenient!

Let L : V → W be a linear transformation. Suppose L is not injective.
Then we can find v1 6= v2 such that Lv1 = Lv2. Then v1 − v2 6= 0, but

L(v1 − v2) = 0.

Definition Let L : V → W be a linear transformation. The set of all vectors
v such that Lv = 0W is called the kernel of L:

kerL = {v ∈ V |Lv = 0W}.

Theorem 24.2. A linear transformation L is injective if and only if

kerL = {0V } .

Proof. The proof of this theorem is an exercise.

Notice that if L has matrix M in some basis, then finding the kernel of
L is equivalent to solving the homogeneous system

MX = 0.
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Example Let L(x, y) = (x+ y, x+ 2y, y). Is L one-to-one?
To find out, we can solve the linear system:1 1 0

1 2 0
0 1 0

 ∼
1 0 0

0 1 0
0 0 0

 .

Then all solutions of MX = 0 are of the form x = y = 0. In other words, kerL = 0,
and so L is injective.

Reading homework: problem 24.1

Theorem 24.3. Let L : V → W . Then kerL is a subspace of V .

Proof. Notice that if L(v) = 0 and L(u) = 0, then for any constants c, d,
L(cu+dv) = 0. Then by the subspace theorem, the kernel of L is a subspace
of V .

This theorem has an interpretation in terms of the eigenspaces of L : V →
V . Suppose L has a zero eigenvalue. Then the associated eigenspace consists
of all vectors v such that Lv = 0v = 0; in other words, the 0-eigenspace of L
is exactly the kernel of L.

Returning to the previous example, let L(x, y) = (x + y, x + 2y, y). L is
clearly not surjective, since L sends R2 to a plane in R3.

Example Let L : R3 → R be the linear transformation defined by L(x, y, z) = (x +
y + z). Then kerL consists of all vectors (x, y, z) ∈ R3 such that x + y + z = 0.
Therefore, the set

V = {(x, y, z) ∈ R3 | x+ y + z = 0}

is a subspace of R3.

Notice that if x = L(v) and y = L(u), then for any constants c, d, cx +
dy = L(cv + du). Now the subspace theorem strikes again, and we have the
following theorem.

Theorem 24.4. Let L : V → W . Then the image L(V ) is a subspace of W .

To find a basis of the image of L, we can start with a basis S = {v1, . . . , vn}
for V , and conclude (see the Review Exercises) that

L(V ) = spanL(S) = span{L(v1), . . . , L(vn)}.
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However, the set {L(v1), . . . , L(vn)} may not be linearly independent, so we
solve

c1L(v1) + · · ·+ cnL(vn) = 0.

By finding relations amongst L(S), we can discard vectors until a basis is
arrived at. The size of this basis is the dimension of the image of L, which
is known as the rank of L.

Definition The rank of a linear transformation L is the dimension of its
image, written rankL = dimL(V ) = dim ran L.

The nullity of a linear transformation is the dimension of the kernel,
written nullL = dim kerL.

Theorem 24.5 (Dimension Formula). Let L : V → W be a linear transfor-
mation, with V a finite-dimensional vector space14. Then:

dimV = dim kerV + dimL(V )

= nullL+ rankL.

Proof. Pick a basis for V :

{v1, . . . , vp, u1, . . . , uq},

where v1, . . . , vp is also a basis for kerL. This can always be done, for exam-
ple, by finding a basis for the kernel of L and then extending to a basis for V .
Then p = nullL and p+ q = dimV . Then we need to show that q = rankL.
To accomplish this, we show that {L(u1), . . . , L(uq)} is a basis for L(V ).

To see that {L(u1), . . . , L(uq)} spans L(V ), consider any vector w in L(V ).
Then we can find constants ci, dj such that:

w = L(c1v1 + · · ·+ cpvp + d1u1 + · · ·+ dquq)

= c1L(v1) + · · ·+ cpL(vp) + d1L(u1) + · · ·+ dqL(uq)

= d1L(u1) + · · ·+ dqL(uq) since L(vi) = 0,

⇒ L(V ) = span{L(u1), . . . , L(uq)}.
14The formula still makes sense for infinite dimensional vector spaces, such as the space

of all polynomials, but the notion of a basis for an infinite dimensional space is more
sticky than in the finite-dimensional case. Furthermore, the dimension formula for infinite
dimensional vector spaces isn’t useful for computing the rank of a linear transformation,
since an equation like ∞ = ∞ + x cannot be solved for x. As such, the proof presented
assumes a finite basis for V .
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Now we show that {L(u1), . . . , L(uq)} is linearly independent. We argue
by contradiction: Suppose there exist constants dj (not all zero) such that

0 = d1L(u1) + · · ·+ dqL(uq)

= L(d1u1 + · · ·+ dquq).

But since the uj are linearly independent, then d1u1 + · · · + dquq 6= 0, and
so d1u1 + · · · + dquq is in the kernel of L. But then d1u1 + · · · + dquq must
be in the span of {v1, . . . , vp}, since this was a basis for the kernel. This
contradicts the assumption that {v1, . . . , vp, u1, . . . , uq} was a basis for V , so
we are done.

Reading homework: problem kernelrank.2

24.1 Summary

We have seen that a linear transformation has an inverse if and only if it is
bijective (i.e., one-to-one and onto). We also know that linear transforma-
tions can be represented by matrices, and we have seen many ways to tell
whether a matrix is invertible. Here is a list of them.
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Theorem 24.6 (Invertibility). Let M be an n× n matrix, and let L : Rn →
Rn be the linear transformation defined by L(v) = Mv. Then the following
statements are equivalent:

1. If V is any vector in Rn, then the system MX = V has exactly one
solution.

2. The matrix M is row-equivalent to the identity matrix.

3. If v is any vector in Rn, then L(x) = v has exactly one solution.

4. The matrix M is invertible.

5. The homogeneous system MX = 0 has no non-zero solutions.

6. The determinant of M is not equal to 0.

7. The transpose matrix MT is invertible.

8. The matrix M does not have 0 as an eigenvalue.

9. The linear transformation L does not have 0 as an eigenvalue.

10. The characteristic polynomial det(λI −M) does not have 0 as a root.

11. The columns (or rows) of M span Rn.

12. The columns (or rows) of M are linearly independent.

13. The columns (or rows) of M are a basis for Rn.

14. The linear transformation L is injective.

15. The linear transformation L is surjective.

16. The linear transformation L is bijective.

Note: it is important that M be an n × n matrix! If M is not square,
then it can’t be invertible, and many of the statements above are no longer
equivalent to each other.

Proof. Many of these equivalences were proved earlier in these notes. Some
were left as review questions or sample final questions. The rest are left as
exercises for the reader.
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References

Hefferon, Chapter Three, Section II.2: Rangespace and Nullspace (Recall
that “homomorphism” is is used instead of “linear transformation” in Hef-
feron.)
Beezer, Chapter LT, Sections ILT-IVLT
Wikipedia:

• Rank

• Dimension Theorem

• Kernel of a Linear Operator

Review Questions

1. Let L : V → W be a linear transformation. Show that kerL = {0V } if
and only if L is one-to-one:

(a) First, suppose that kerL = {0V }. Show that L is one-to-one.
Think about methods of proof–does a proof by contradiction, a
proof by induction, or a direct proof seem most appropriate?

(b) Now, suppose that L is one-to-one. Show that kerL = {0V }. That
is, show that 0V is in kerL, and then show that there are no other
vectors in kerL.

2. Let {v1, . . . , vn} be a basis for V . Explain why

L(V ) = span{L(v1), . . . , L(vn)}.

3. Suppose L : R4 → R3 whose matrix M in the standard basis is row
equivalent to the following matrix:1 0 0 −1

0 1 0 1
0 0 1 1

 .

Explain why the first three columns of the original matrix M form a
basis for L(R4).
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Find and describe and algorithm (i.e. a general procedure) for finding
a basis for L(Rn) when L : Rn → Rm.
Finally, use your algorithm to find a basis for L(R4) when L : R4 → R3

is the linear transformation whose matrix M in the standard basis is2 1 1 4
0 1 0 5
4 1 1 6

 .

4. Claim: If {v1, . . . , vn} is a basis for kerL, where L : V → W , then it is
always possible to extend this set to a basis for V .

Choose a simple yet non-trivial linear transformation with a non-trivial
kernel and verify the above claim for the transformation you choose.

5. Let Pn(x) be the space of polynomials in x of degree less than or equal
to n, and consider the derivative operator ∂

∂x
. Find the dimension of

the kernel and image of ∂
∂x

.

Now, consider P2(x, y), the space of polynomials of degree two or less
in x and y. (Recall that xy is degree two, y is degree one and x2y is
degree three, for example.) Let L = ∂

∂x
+ ∂

∂y
. (For example, L(xy) =

∂
∂x

(xy) + ∂
∂y

(xy) = y + x.) Find a basis for the kernel of L. Verify the
dimension formula in this case.
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25 Least Squares

Consider the linear system L(x) = v, where L : U
linear−→ W , and v ∈ W

is given. As we have seen, this system may have no solutions, a unique
solution, or a space of solutions. But if v is not in the range of L then there
will never be any solutions for L(x) = v.

However, for many applications we do not need a exact solution of the
system; instead, we try to find the best approximation possible. To do this,
we try to find x that minimizes ||L(x)− v||.

“My work always tried to unite the Truth with the Beautiful,
but when I had to choose one or the other, I usually chose the
Beautiful.”

– Hermann Weyl.

This method has many applications, such as when trying to fit a (perhaps
linear) function to a “noisy” set of observations. For example, suppose we
measured the position of a bicycle on a racetrack once every five seconds.
Our observations won’t be exact, but so long as the observations are right on
average, we can figure out a best-possible linear function of position of the
bicycle in terms of time.

Suppose M is the matrix for L in some bases for U and W , and v and x
are given by column vectors V and X in these bases. Then we need to
approximate

MX − V ≈ 0 .

Note that if dimU = n and dimW = m then M can be represented by
an m × n matrix and x and v as vectors in Rn and Rm, respectively. Thus,
we can write W = L(U)⊕ L(U)⊥. Then we can uniquely write v = v‖ + v⊥,
with v‖ ∈ L(U) and v⊥ ∈ L(U)⊥.

Then we should solve L(u) = v‖. In components, v⊥ is just V −MX,
and is the part we will eventually wish to minimize.

In terms of M , recall that L(V ) is spanned by the columns of M . (In
the natural basis, the columns of M are Me1, . . ., Men.) Then v⊥ must be
perpendicular to the columns of M . i.e., MT (V −MX) = 0, or

MTMX = MTV.

Solutions X to MTMX = MTV are called least squares solutions to
MX = V .
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Notice that any solution X to MX = V is a least squares solution.
However, the converse is often false. In fact, the equation MX = V may have
no solutions at all, but still have least squares solutions to MTMX = MTV .

Observe that since M is an m× n matrix, then MT is an n×m matrix.
Then MTM is an n× n matrix, and is symmetric, since (MTM)T = MTM .
Then, for any vector X, we can evaluate XTMTMX to obtain a num-
ber. This is a very nice number, though! It is just the length |MX|2 =
(MX)T (MX) = XTMTMX.

Reading homework: problem 25.1
Now suppose that kerL = {0}, so that the only solution to MX = 0 is

X = 0. (This need not mean that M is invertible because M is an n × m
matrix, so not necessarily square.) However the square matrix MTM is
invertible. To see this, suppose there was a vector X such that MTMX = 0.
Then it would follow that XTMTMX = |MX|2 = 0. In other words the
vector MX would have zero length, so could only be the zero vector. But we
are assuming that kerL = {0} so MX = 0 implies X = 0. Thus the kernel
of MTM is {0} so this matrix is invertible. So, in this case, the least squares
solution (the X that solves MTMX = MV ) is unique, and is equal to

X = (MTM)−1MTV.

In a nutshell, this is the least squares method.

• Compute MTM and MTV .

• Solve (MTM)X = MTV by Gaussian elimination.

Example Captain Conundrum falls off of the leaning tower of Pisa and makes three
(rather shaky) measurements of his velocity at three different times.

t s v m/s

1 11
2 19
3 31

Having taken some calculus15, he believes that his data are best approximated by
a straight line

v = at+ b.

15In fact, he is a Calculus Superhero.
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Then he should find a and b to best fit the data.

11 = a · 1 + b

19 = a · 2 + b

31 = a · 3 + b.

As a system of linear equations, this becomes:1 1
2 1
3 1

(a
b

)
?
=

11
19
31

 .

There is likely no actual straight line solution, so instead solve MTMX = MTV .

(
1 2 3
1 1 1

)1 1
2 1
3 1

(a
b

)
=

(
1 2 3
1 1 1

)11
19
31

 .

This simplifies to the system:(
14 6 142
6 3 61

)
∼
(

1 0 10
0 1 1

3

)
.

Then the least-squares fit is the line

v = 10 t+
1

3
.

Notice that this equation implies that Captain Conundrum accelerates towards Italian
soil at 10 m/s2 (which is an excellent approximation to reality) and that he started at
a downward velocity of 1

3 m/s (perhaps somebody gave him a shove...)!

Congratulations, you have reached the end of these notes! You can test
your skills on the sample final exam.

References

Hefferon, Chapter Three, Section VI.2: Gram-Schmidt Orthogonalization
Beezer, Part A, Section CF, Subsection DF
Wikipedia:

• Linear Least Squares

• Least Squares
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Review Questions

1. Let L : U → V be a linear transformation. Suppose v ∈ L(U) and you
have found a vector ups that obeys L(ups) = v.

Explain why you need to compute kerL to describe the solution space
of the linear system L(u) = v.

2. Suppose that M is an m× n matrix with trivial kernel. Show that for
any vectors u and v in Rm:

• uTMTMv = vTMTMu

• vTMTMv ≥ 0.

• If vTMTMv = 0, then v = 0.

(Hint: Think about the dot product in Rn.)
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A Sample Midterm I Problems and Solutions

1. Solve the following linear system. Write the solution set in vector
form. Check your solution. Write one particular solution and one
homogeneous solution, if they exist. What does the solution set look
like geometrically?

x + 3y = 4

x − 2y + z = 1

2x + y + z = 5

2. Consider the system

x − z + 2w = −1

x + y + z − w = 2

− y − 2z + 3w = −3

5x + 2y − z + 4w = 1

(a) Write an augmented matrix for this system.

(b) Use elementary row operations to find its reduced row echelon
form.

(c) Write the solution set for the system in the form

{X = X0 +
∑
i

µiYi : µi ∈ R}.

(d) What are the vectors X0 and Yi called and which matrix equations
do they solve?

(e) Check separately that X0 and each Yi solve the matrix systems
you claimed they solved in part (d).

3. Use row operations to invert the matrix
1 2 3 4
2 4 7 11
3 7 14 25
4 11 25 50


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4. Let M =

(
2 1
3 −1

)
. Calculate MTM−1. Is M symmetric? What is

the trace of the transpose of f(M), where f(x) = x2 − 1?

5. In this problem M is the matrix

M =

(
cos θ sin θ
− sin θ cos θ

)
and X is the vector

X =

(
x
y

)
.

Calculate all possible dot products between the vectors X and MX.
Compute the lengths of X and MX. What is the angle between the
vectors MX and X. Draw a picture of these vectors in the plane. For
what values of θ do you expect equality in the triangle and Cauchy–
Schwartz inequalities?

6. Let M be the matrix 
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Find a formula for Mk for any positive integer power k. Try some
simple examples like k = 2, 3 if confused.

7. Determinants: The determinant detM of a 2× 2 matrix M =

(
a b
c d

)
is defined by

detM = ad− bc .

(a) For which values of detM does M have an inverse?

(b) Write down all 2×2 bit matrices with determinant 1. (Remember
bits are either 0 or 1 and 1 + 1 = 0.)

(c) Write down all 2× 2 bit matrices with determinant 0.
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(d) Use one of the above examples to show why the following state-
ment is FALSE.

Square matrices with the same determinant are always
row equivalent.

8. What does it mean for a function to be linear? Check that integration is
a linear function from V to V , where V = {f : R→ R | f is integrable}
is a vector space over R with usual addition and scalar multiplication.

9. What are the four main things we need to define for a vector space?
Which of the following is a vector space over R? For those that are
not vector spaces, modify one part of the definition to make it into a
vector space.

(a) V = { 2× 2 matrices with entries in R}, usual matrix addition,

and k ·
(
a b
c d

)
=

(
ka b
kc d

)
for k ∈ R.

(b) V = {polynomials with complex coefficients of degree ≤ 3}, with
usual addition and scalar multiplication of polynomials.

(c) V = {vectors in R3 with at least one entry containing a 1}, with
usual addition and scalar multiplication.

10. Subspaces: If V is a vector space, we say that U is a subspace of V when
the set U is also a vector space, using the vector addition and scalar
multiplication rules of the vector space V . (Remember that U ⊂ V
says that “U is a subset of V ”, i.e., all elements of U are also elements
of V . The symbol ∀ means “for all” and ∈ means “is an element of”.)

Explain why additive closure (u+w ∈ U ∀ u, v ∈ U) and multiplicative
closure (r.u ∈ U ∀ r ∈ R, u ∈ V ) ensure that (i) the zero vector 0 ∈ U
and (ii) every u ∈ U has an additive inverse.

In fact it suffices to check closure under addition and scalar multipli-
cation to verify that U is a vector space. Check whether the following
choices of U are vector spaces:

(a) U =


xy

0

 : x, y ∈ R


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(b) U =


1

0
z

 : z ∈ R


Solutions

1. As an additional exercise, write out the row operations above the ∼
signs below: 1 3 0 4

1 −2 1 1

2 1 1 5

 ∼
 1 3 0 4

0 −5 1 −3

0 −5 1 −3

 ∼
 1 0 3

5
11
5

0 1 −1
5

3
5

0 0 0 0


Solution set 

xy
z

 =

11
5
3
5

0

+ µ

−3
5

1
5

1

 : µ ∈ R


Geometrically this represents a line in R3 through the point

11
5
3
5

0

 and

running parallel to the vector

−3
5

1
5

1

.

A particular solution is

11
5
3
5

0

 and a homogeneous solution is

−3
5

1
5

1

.

As a double check note that 1 3 0
1 −2 1
2 1 1

 11
5
3
5

0

 =

4
1
5

 and

 1 3 0
1 −2 1
2 1 1

 −3
5

1
5

1

 =

0
0
0

 .

2. (a) Again, write out the row operations as an additional exercise.
1 0 −1 2 −1

1 1 1 −1 2

0 −1 −2 3 −3

5 2 −1 4 1


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(b)

∼


1 0 −1 2 −1

0 1 2 −3 3

0 −1 −2 3 −3

0 2 4 −6 6

 ∼


1 0 −1 2 −1

0 1 2 −3 3

0 0 0 0 0

0 0 0 0 0


(c) Solution setX =


−1
3
0
0

+ µ1


1
−2
1
0

+ µ2


−2
3
0
1

 : µ1, µ2 ∈ R

 .

(d) The vector X0 =


−1
3
0
0

 is a particular solution and the vectors

Y1 =


1
−2
1
0

 and Y2 =


−2
3
0
1

 are homogeneous solutions. Calling

M =


1 0 −1 2
1 1 1 −1
0 −1 −2 3
5 2 −1 4

 and V =


−1
2
−3
1

, they obey

MX = V , MY1 = 0 = MY2 .

(e) This amounts to performing explicitly the matrix manipulations
MX−V , MY1, MY2 and checking they all return the zero vector.

3. As usual, be sure to write out the row operations above the ∼’s so your
work can be easily checked.

1 2 3 4 1 0 0 0
2 4 7 11 0 1 0 0
3 7 14 25 0 0 1 0
4 11 25 50 0 0 0 1


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∼


1 2 3 4 1 0 0 0
0 0 1 3 −2 1 0 0
0 1 5 13 −3 0 1 0
0 3 13 34 −4 0 0 1



∼


1 0 −7 −22 7 0 −2 0
0 1 5 13 −3 0 1 0
0 0 1 3 −2 1 0 0
0 0 −2 −5 5 0 −3 1



∼


1 0 0 −1 −7 7 −2 0
0 1 0 −2 7 −5 1 0
0 0 1 3 −2 1 0 0
0 0 0 1 1 2 −3 1



∼


1 0 0 0 −6 9 −5 1
0 1 0 0 9 −1 −5 2
0 0 1 0 −5 −5 9 −3
0 0 0 1 1 2 −3 1

 .

Check
1 2 3 4
2 4 7 11
3 7 14 25
4 11 25 50



−6 9 −5 1
9 −1 −5 2
−5 −5 9 −3
1 2 −3 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

4.

MTM−1 =

(
2 3
1 −1

)(1
5

1
5

3
5
−2

5

)
=

(
11
5
−4

5

−2
5

3
5

)
.

Since MTM−1 6= I, it follows MT 6= M so M is not symmetric. Finally

trf(M)T = trf(M) = tr(M2 − I) = tr

(
2 1
3 −1

)(
2 1
3 −1

)
− trI

= (2 · 2 + 1 · 3) + (3 · 1 + (−1) · (−1))− 2 = 9 .

5. First

X (MX) = XTMX =
(
x y

)( cos θ sin θ
− sin θ cos θ

)(
x
y

)
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=
(
x y

)( x cos θ + y sin θ
−x sin θ + y cos θ

)
= (x2 + y2) cos θ .

Now ||X|| =
√
X X =

√
x2 + y2 and (MX) (MX) = XMTMX.

But

MTM =

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos2 θ + sin2 θ 0

0 cos2 θ + sin2 θ

)
= I .

Hence ||MX|| = ||X|| =
√
x2 + y2. Thus the cosine of the angle be-

tween X and MX is given by

X (MX)

||X|| ||MX||
=

(x2 + y2) cos θ√
x2 + y2

√
x2 + y2

= cos θ .

In other words, the angle is θ OR −θ. You should draw two pictures,
one where the angle between X and MX is θ, the other where it is −θ.
For Cauchy–Schwartz, |X (MX)|

||X|| ||MX|| = | cos θ| = 1 when θ = 0, π. For the

triangle equality MX = X achieves ||X + MX|| = ||X|| + ||MX||,
which requires θ = 0.

6. This is a block matrix problem. Notice the that matrix M is really

just M =

(
I I
0 I

)
, where I and 0 are the 3× 3 identity zero matrices,

respectively. But

M2 =

(
I I
0 I

)(
I I
0 I

)
=

(
I 2I
0 I

)
and

M3 =

(
I I
0 I

)(
I 2I
0 I

)
=

(
I 3I
0 I

)
so, Mk =

(
I kI
0 I

)
, or explicitly

Mk =


1 0 0 k 0 0
0 1 0 0 k 0
0 0 1 0 0 k
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
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7. (a) Whenever detM = ad− bc 6= 0.

(b) Unit determinant bit matrices:(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
.

(c) Bit matrices with vanishing determinant:(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 0
1 0

)
,

(
0 1
0 1

)
,

(
1 1
1 1

)
.

As a check, count that the total number of 2 × 2 bit matrices is
2(number of entries) = 24 = 16.

(d) To disprove this statement, we just need to find a single counterex-
ample. All the unit determinant examples above are actually row
equivalent to the identity matrix, so focus on the bit matrices with
vanishing determinant. Then notice (for example), that(

1 1
0 0

)
∼/
(

0 0
0 0

)
.

So we have found a pair of matrices that are not row equivalent
but do have the same determinant. It follows that the statement
is false.

8. We can call a function f : V −→ W linear if the sets V and W are
vector spaces and f obeys

f(αu+ βv) = αf(u) + βf(v) ,

for all u, v ∈ V and α, β ∈ R.

Now, integration is a linear transformation from the space V of all in-
tegrable functions (don’t be confused between the definition of a linear
function above, and integrable functions f(x) which here are the vec-
tors in V ) to the real numbers R, because

∫∞
−∞(αf(x) + βg(x))dx =

α
∫∞
−∞ f(x)dx+ β

∫∞
−∞ g(x)dx.
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9. The four main ingredients are (i) a set V of vectors, (ii) a number
field K (usually K = R), (iii) a rule for adding vectors (vector addition)
and (iv) a way to multiply vectors by a number to produce a new vector
(scalar multiplication). There are, of course, ten rules that these four
ingredients must obey.

(a) This is not a vector space. Notice that distributivity of scalar
multiplication requires 2u = (1 + 1)u = u+u for any vector u but

2 ·
(
a b
c d

)
=

(
2a b
2c d

)
which does not equal(

a b
c d

)
+

(
a b
c d

)
=

(
2a 2b
2c 2d

)
.

This could be repaired by taking

k ·
(
a b
c d

)
=

(
ka kb
kc kd

)
.

(b) This is a vector space. Although, the question does not ask you to,
it is a useful exercise to verify that all ten vector space rules are
satisfied.

(c) This is not a vector space for many reasons. An easy one is
that (1,−1, 0) and (−1, 1, 0) are both in the space, but their sum
(0, 0, 0) is not (i.e., additive closure fails). The easiest way to re-
pair this would be to drop the requirement that there be at least
one entry equaling 1.

10. (i) Thanks to multiplicative closure, if u ∈ U , so is (−1) · u. But
(−1) · u+ u = (−1) · u+ 1 · u = (−1 + 1) · u = 0.u = 0 (at each step in
this chain of equalities we have used the fact that V is a vector space
and therefore can use its vector space rules). In particular, this means
that the zero vector of V is in U and is its zero vector also. (ii) Also,
in V , for each u there is an element −u such that u + (−u) = 0. But
by additive close, (−u) must also be in U , thus every u ∈ U has an
additive inverse.
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(a) This is a vector space. First we check additive closure: let

xy
0


and

zw
0

 be arbitrary vectors in U . But since

xy
0

 +

zw
0

 =x+ z
y + w

0

, so is their sum (because vectors in U are those whose

third component vanishes). Multiplicative closure is similar: for

any α ∈ R, α

xy
0

 =

αxαy
0

, which also has no third component,

so is in U .

(b) This is not a vector space for various reasons. A simple one is

that u =

1
0
z

 is in U but the vector u + u =

 2
0
2z

 is not in U

(it has a 2 in the first component, but vectors in U always have a
1 there).
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B Sample Midterm II Problems and Solu-

tions

1. Find an LU decomposition for the matrix
1 1 −1 2
1 3 2 2
−1 −3 −4 6
0 4 7 −2


Use your result to solve the system

x + y − z + 2w = 7

x + 3y + 2z + 2w = 6

−x − 3y − 4z + 6w = 12

4y + 7z − 2w = −7

2. Let

A =

 1 1 1

2 2 3

4 5 6

 .

Compute detA. Find all solutions to (i) AX = 0 and (ii) AX =

 1
2
3


for the vector X ∈ R3. Find, but do not solve, the characteristic
polynomial of A.

3. Let M be any 2× 2 matrix. Show

detM = −1

2
trM2 +

1

2
(trM)2 .

4. The permanent: Let M = (M i
j) be an n × n matrix. An operation

producing a single number from M similar to the determinant is the
“permanent”

permM =
∑
σ

M1
σ(1)M

2
σ(2) · · ·Mn

σ(n) .
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For example

perm

(
a b
c d

)
= ad+ bc .

Calculate

perm

1 2 3
4 5 6
7 8 9

 .

What do you think would happen to the permanent of an n × n ma-
trix M if (include a brief explanation with each answer):

(a) You multiplied M by a number λ.

(b) You multiplied a row of M by a number λ.

(c) You took the transpose of M .

(d) You swapped two rows of M .

5. Let X be an n× 1 matrix subject to

XTX = (1) ,

and define
H = I − 2XXT ,

(where I is the n× n identity matrix). Show

H = HT = H−1.

6. Suppose λ is an eigenvalue of the matrix M with associated eigenvec-
tor v. Is v an eigenvector of Mk (where k is any positive integer)? If
so, what would the associated eigenvalue be?

Now suppose that the matrix N is nilpotent, i.e.

Nk = 0

for some integer k ≥ 2. Show that 0 is the only eigenvalue of N .

7. Let M =

(
3 −5

1 −3

)
. Compute M12. (Hint: 212 = 4096.)
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8. The Cayley Hamilton Theorem: Calculate the characteristic polyno-

mial PM(λ) of the matrix M =

(
a b
c d

)
. Now compute the matrix

polynomial PM(M). What do you observe? Now suppose the n × n
matrix A is “similar” to a diagonal matrix D, in other words

A = P−1DP

for some invertible matrix P and D is a matrix with values λ1, λ2, . . . λn
along its diagonal. Show that the two matrix polynomials PA(A) and
PA(D) are similar (i.e. PA(A) = P−1PA(D)P ). Finally, compute
PA(D), what can you say about PA(A)?

9. Define what it means for a set U to be a subspace of a vector space V .
Now let U and W be subspaces of V . Are the following also subspaces?
(Remember that ∪ means “union” and ∩ means “intersection”.)

(a) U ∪W
(b) U ∩W

In each case draw examples in R3 that justify your answers. If you
answered “yes” to either part also give a general explanation why this
is the case.

10. Define what it means for a set of vectors {v1, v2, . . . , vn} to (i) be lin-
early independent, (ii) span a vector space V and (iii) be a basis for a
vector space V .

Consider the following vectors in R3

u =

−1
−4
3

 , v =

4
5
0

 , w =

 10
7

h+ 3

 .

For which values of h is {u, v, w} a basis for R3?

Solutions

1. 
1 1 −1 2
1 3 2 2
−1 −3 −4 6
0 4 7 −2

 =


1 0 0 0
1 1 0 0
−1 0 1 0
0 0 0 1




1 1 −1 2
0 2 3 0
0 −2 −5 8
0 4 7 −2


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=


1 0 0 0
1 1 0 0
−1 −1 1 0
0 2 0 1




1 1 −1 2
0 2 3 0
0 0 −2 8
0 0 1 −2



=


1 0 0 0
1 1 0 0
−1 −1 1 0
0 2 −1

2
1




1 1 −1 2
0 2 3 0
0 0 −2 8
0 0 0 2

 .

To solve MX = V using M = LU we first solve LW = V whose
augmented matrix reads

1 0 0 0 7
1 1 0 0 6
−1 −1 1 0 12
0 2 −1

2
1 −7

 ∼


1 0 0 0 7
0 1 0 0 −1
0 0 1 0 18
0 2 −1

2
1 −7



∼


1 0 0 0 7
0 1 0 0 −1
0 0 1 0 18
0 0 0 1 4

 ,

from which we can read off W . Now we compute X by solving UX = W
with the augmented matrix

1 1 −1 2 7
0 2 3 0 −1
0 0 −2 8 18
0 0 0 2 4

 ∼


1 1 −1 2 7
0 2 3 0 −1
0 0 −2 0 2
0 0 0 1 2



∼


1 1 −1 2 7
0 2 0 0 2
0 0 1 0 −1
0 0 0 1 2

 ∼


1 0 0 0 1
0 1 0 0 1
0 0 1 0 −1
0 0 0 1 2


So x = 1, y = 1, z = −1 and w = 2.

2.
detA = 1.(2.6− 3.5)− 1.(2.6− 3.4) + 1.(2.5− 2.4) = −1 .
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(i) Since detA 6= 0, the homogeneous system AX = 0 only has the
solution X = 0. (ii) It is efficient to compute the adjoint

adj A =

−3 0 2
−1 2 −1
1 −1 0

T =

−3 −1 1
0 2 −1
2 −1 0


Hence

A−1 =

 3 1 −1
0 −2 1
−2 1 0

 .

Thus

X =

 3 1 −1
0 −2 1
−2 1 0

1
2
3

 =

 2
−1
0

 .

Finally,

PA(λ) = − det

1− λ 1 1
2 2− λ 3
4 5 6− λ


= −

[
(1− λ)[(2− λ)(6− λ)− 15]− [2.(6− λ)− 12] + [10− 4.(2− λ)]

]
= λ3 − 9λ2 − λ+ 1 .

3. Call M =

(
a b
c d

)
. Then detM = ad− bc, yet

−1

2
trM2 +

1

2
(trM)2 = −1

2
tr

(
a2 + bc ∗
∗ bc+ d2

)
− 1

2
(a+ d)2

= −1

2
(a2 + 2bc+ d2) +

1

2
(a2 + 2ad+ d2) = ad− bc ,

which is what we were asked to show.

4.

perm

1 2 3
4 5 6
7 8 9

 = 1.(5.9 + 6.8) + 2.(4.9 + 6.7) + 3.(4.8 + 5.7) = 450 .
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(a) Multiplying M by λ replaces every matrix element M i
σ(j) in the

formula for the permanent by λM i
σ(j), and therefore produces an

overall factor λn.

(b) Multiplying the ith row by λ replaces M i
σ(j) in the formula for the

permanent by λM i
σ(j). Therefore the permanent is multiplied by

an overall factor λ.

(c) The permanent of a matrix transposed equals the permanent of
the original matrix, because in the formula for the permanent
this amounts to summing over permutations of rows rather than
columns. But we could then sort the product M

σ(1)
1 M

σ(2)
2 . . .M

σ(n)
n

back into its original order using the inverse permutation σ−1. But
summing over permutations is equivalent to summing over inverse
permutations, and therefore the permanent is unchanged.

(d) Swapping two rows also leaves the permanent unchanged. The
argument is almost the same as in the previous part, except that
we need only reshuffle two matrix elements M j

σ(i) and M i
σ(j) (in

the case where rows i and j were swapped). Then we use the fact
that summing over all permutations σ or over all permutations σ̃
obtained by swapping a pair in σ are equivalent operations.

5. Firstly, lets call (1) = 1 (the 1× 1 identity matrix). Then we calculate

HT = (I−2XXT )T = IT−2(XXT )T = I−2(XT )TXT = I−2XXT = H ,

which demonstrates the first equality. Now we compute

H2 = (I − 2XXT )(I − 2XXT ) = I − 4XXT + 4XXTXXT

= I − 4XXT + 4X(XTX)XT = I − 4XXT + 4X.1.XT = I .

So, since HH = I, we have H−1 = H.

6. We know Mv = λv. Hence

M2v = MMv = Mλv = λMv = λ2v ,

and similarly
Mkv = λMk−1v = . . . = λkv .

So v is an eigenvector of Mk with eigenvalue λk.
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Now let us assume v is an eigenvector of the nilpotent matrix N with
eigenvalue λ. Then from above

Nkv = λkv

but by nilpotence, we also have

Nkv = 0

Hence λkv = 0 and v (being an eigenvector) cannot vanish. Thus
λk = 0 and in turn λ = 0.

7. Let us think about the eigenvalue problemMv = λv. This has solutions
when

0 = det

(
3− λ −5

1 −3− λ

)
= λ2 − 4⇒ λ = ±2 .

The associated eigenvalues solve the homogeneous systems (in aug-
mented matrix form)(

1 −5 0
1 −5 0

)
∼
(

1 −5 0
0 0 0

)
and

(
5 −5 0
1 −1 0

)
∼
(

1 −1 0
0 0 0

)
,

respectively, so are v2 =

(
5
1

)
and v−2 =

(
1
1

)
. Hence M12v2 = 212v2

and M12v−2 = (−2)12v−2. Now,

(
x
y

)
= x−y

4

(
5
1

)
− x−5y

4

(
1
1

)
(this was

obtained by solving the linear system av2 + bv−2 = for a and b). Thus

M

(
x
y

)
=
x− y

4
Mv2 −

x− 5y

4
Mv−2

= 212
(x− y

4
v2 −

x− 5y

4
v−2

)
= 212

(
x
y

)
.

Thus

M12 =

(
4096 0

0 4096

)
.

If you understand the above explanation, then you have a good un-
derstanding of diagonalization. A quicker route is simply to observe

that M2 =

(
4 0
0 4

)
.
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8.

PM(λ) = (−1)2det

(
a− λ b
c d− λ

)
= (λ− a)(λ− d)− bc .

Thus
PM(M) = (M − aI)(M − dI)− bcI

=

((
a b
c d

)
−
(
a 0
0 a

))((
a b
c d

)
−
(
d 0
0 d

))
−
(
bc 0
0 bc

)
=

(
0 b
c d− a

)(
a− d b
c 0

)
−
(
bc 0
0 bc

)
= 0 .

Observe that any 2× 2 matrix is a zero of its own characteristic poly-
nomial (in fact this holds for square matrices of any size).

Now if A = P−1DP then A2 = P−1DPP−1DP = P−1D2P . Similarly
Ak = P−1DkP . So for any matrix polynomial we have

An + c1A
n−1 + · · · cn−1A+ cnI

= P−1DnP + c1P
−1Dn−1P + · · · cn−1P−1DP + cnP

−1P

= P−1(Dn + c1D
n−1 + · · · cn−1D + cnI)P .

Thus we may conclude PA(A) = P−1PA(D)P .

Now suppose D =


λ1 0 · · · 0

0 λ2
...

...
. . .

0 · · · λn

. Then

PA(λ) = det(λI−A) = det(λP−1IP−P−1DP ) = detP.det(λI−D).detP

= det(λI −D) = det


λ− λ1 0 · · · 0

0 λ− λ2
...

...
. . .

0 · · · λ− λn


= (λ− λ1)(λ− λ2) . . . (λ− λn) .

Thus we see that λ1, λ2, . . . , λn are the eigenvalues of M . Finally we
compute

PA(D) = (D − λ1)(D − λ2) . . . (D − λn)
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=


0 0 · · · 0

0 λ2
...

...
. . .

0 · · · λn



λ1 0 · · · 0

0 0
...

...
. . .

0 · · · λn

 . . .


λ1 0 · · · 0

0 λ2
...

...
. . .

0 · · · 0

 = 0 .

We conclude the PM(M) = 0.

9. A subset of a vector space is called a subspace if it itself is a vector space,
using the rules for vector addition and scalar multiplication inherited
from the original vector space.

(a) So long as U 6= U ∪W 6= W the answer is no. Take, for example,
U to be the x-axis in R2 and W to be the y-axis. Then

(
1 0

)
∈ U

and
(
0 1

)
∈ W , but

(
1 0

)
+
(
0 1 0

)
=
(
1 1

)
/∈ U ∪W . So

U ∪W is not additively closed and is not a vector space (and thus
not a subspace). It is easy to draw the example described.

(b) Here the answer is always yes. The proof is not difficult. Take
a vector u and w such that u ∈ U ∩W 3 w. This means that
both u and w are in both U and W . But, since U is a vector
space, αu + βw is also in U . Similarly, αu + βw ∈ W . Hence
αu + βw ∈ U ∩W . So closure holds in U ∩W and this set is a
subspace by the subspace theorem. Here, a good picture to draw
is two planes through the origin in R3 intersecting at a line (also
through the origin).

10. (i) We say that the vectors {v1, v2, . . . vn} are linearly independent if
there exist no constants c1, c2, . . . cn (all non-vanishing) such that c1v1+
c2v2 + · · · + cnvn = 0. Alternatively, we can require that there is
no non-trivial solution for scalars c1, c2, . . . , cn to the linear system
c1v1 + c2v2 + · · · + cnvn = 0. (ii) We say that these vectors span a
vector space V if the set span{v1, v2, . . . vn} = {c1v1 +c2v2 + · · ·+cnvn :
c1, c2, . . . cn ∈ R} = V . (iii) We call {v1, v2, . . . vn} a basis for V if
{v1, v2, . . . vn} are linearly independent and span{v1, v2, . . . vn} = V .

For u, v, w to be a basis for R3, we firstly need (the spanning require-

ment) that any vector

xy
z

 can be written as a linear combination of
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u, v and w

c1

−1
−4
3

+ c2

4
5
0

+ c3

 10
7

h+ 3

 =

xy
z

 .

The linear independence requirement implies that when x = y = z = 0,
the only solution to the above system is c1 = c2 = c3 = 0. But the
above system in matrix language reads−1 4 10

−4 5 7
3 0 h+ 3

c1c2
c3

 =

xy
z

 .

Both requirements mean that the matrix on the left hand side must be
invertible, so we examine its determinant

det

−1 4 10
−4 5 7
3 0 h+ 3

 = −4.(−4.(h+ 3)− 7.3) + 5.(−1.(h+ 3)− 10.3)

= 11(h− 3) .

Hence we obtain a basis whenever h 6= 3.
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C Sample Final Problems and Solutions

1. Define the following terms:

(a) An orthogonal matrix.

(b) A basis for a vector space.

(c) The span of a set of vectors.

(d) The dimension of a vector space.

(e) An eigenvector.

(f) A subspace of a vector space.

(g) The kernel of a linear transformation.

(h) The nullity of a linear transformation.

(i) The image of a linear transformation.

(j) The rank of a linear transformation.

(k) The characteristic polynomial of a square matrix.

(l) An equivalence relation.

(m) A homogeneous solution to a linear system of equations.

(n) A particular solution to a linear system of equations.

(o) The general solution to a linear system of equations.

(p) The direct sum of a pair of subspaces of a vector space.

(q) The orthogonal complement to a subspace of a vector space.

2. Kirchoff’s laws: Electrical circuits are easy to analyze using systems
of equations. The change in voltage (measured in Volts) around any
loop due to batteries |

∣∣ and resistors /\/\/\/\ (given by the product
of the current measured in Amps and resistance measured in Ohms)
equals zero. Also, the sum of currents entering any junction vanishes.
Consider the circuit

J Amps

3 Ohms

60 Volts

1 Ohm 2 Ohms

80 Volts

3 Ohms

V Volts

13 AmpsI Amps
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Find all possible equations for the unknowns I, J and V and then solve
for I, J and V . Give your answers with correct units.

3. Suppose M is the matrix of a linear transformation

L : U → V

and the vector spaces U and V have dimensions

dimU = n , dimV = m,

and
m 6= n .

Also assume
kerL = {0U} .

(a) How many rows does M have?

(b) How many columns does M have?

(c) Are the columns of M linearly independent?

(d) What size matrix is MTM?

(e) What size matrix is MMT ?

(f) Is MTM invertible?

(g) is MTM symmetric?

(h) Is MTM diagonalizable?

(i) Does MTM have a zero eigenvalue?

(j) Suppose U = V and kerL 6= {0U}. Find an eigenvalue of M .

(k) Suppose U = V and kerL 6= {0U}. Find detM .

4. Consider the system of equations

x + y + z + w = 1
x + 2y + 2z + 2w = 1
x + 2y + 3z + 3w = 1

Express this system as a matrix equation MX = V and then find the
solution set by computing an LU decomposition for the matrix M (be
sure to use back and forward substitution).
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5. Compute the following determinants

det

(
1 2
3 4

)
, det

1 2 3
4 5 6
7 8 9

 , det


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ,

det


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 .

Now test your skills on

det


1 2 3 · · · n

n+ 1 n+ 2 n+ 3 · · · 2n
2n+ 1 2n+ 2 2n+ 3 3n

...
. . .

...
n2 − n+ 1 n2 − 1 + 2 n2 − n+ 3 · · · n2

 .

Make sure to jot down a few brief notes explaining any clever tricks
you use.

6. For which values of a does

U = span


1

0
1

 ,

 1
2
−3

 ,

a1
0

 = R3 ?

For any special values of a at which U 6= R3, express the subspace U as
the span of the least number of vectors possible. Give the dimension
of U for these cases and draw a picture showing U inside R3.

7. Vandermonde determinant: Calculate the following determinants

det

(
1 x
1 y

)
, det

1 x x2

1 y y2

1 z z2

 , det


1 x x2 x3

1 y y2 y3

1 z z2 z3

1 w w2 w3

 .
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Be sure to factorize you answers, if possible.

Challenging: Compute the determinant

det


1 x1 (x1)

2 · · · (x1)
n−1

1 x2 (x2)
2 · · · (x2)

n−1

1 x3 (x3)
2 · · · (x3)

n−1

...
...

...
. . .

...
1 xn (xn)2 · · · (xn)n−1

 .

8. (a) Do the vectors


1

2
3

 ,

3
2
1

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 form a basis

for R3? Be sure to justify your answer.

(b) Find a basis for R4 that includes the vectors


1
2
3
4

 and


4
3
2
1

.

(c) Explain in words how to generalize your computation in part (b)
to obtain a basis for Rn that includes a given pair of (linearly
independent) vectors u and v.

9. Elite NASA engineers determine that if a satellite is placed in orbit
starting at a point O, it will return exactly to that same point after
one orbit of the earth. Unfortunately, if there is a small mistake in the
original location of the satellite, which the engineers label by a vector
X in R3 with origin16 at O, after one orbit the satellite will instead
return to some other point Y ∈ R3. The engineer’s computations show
that Y is related to X by a matrix

Y =

0 1
2

1

1
2

1
2

1
2

1 1
2

0

X .

(a) Find all eigenvalues of the above matrix.

16This is a spy satellite. The exact location of O, the orientation of the coordinate axes
in R3 and the unit system employed by the engineers are CIA secrets.
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(b) Determine all possible eigenvectors associated with each eigen-
value.

Let us assume that the rule found by the engineers applies to all sub-
sequent orbits. Discuss case by case, what will happen to the satellite
if the initial mistake in its location is in a direction given by an eigen-
vector.

10. In this problem the scalars in the vector spaces are bits (0, 1 with
1+1 = 0). The space Bk is the vector space of bit-valued, k-component
column vectors.

(a) Find a basis for B3.

(b) Your answer to part (a) should be a list of vectors v1, v2, . . . vn.
What number did you find for n?

(c) How many elements are there in the set B3.

(d) What is the dimension of the vector space B3.

(e) Suppose L : B3 → B = {0, 1} is a linear transformation. Explain
why specifying L(v1), L(v2), . . . , L(vn) completely determines L.

(f) Use the notation of part (e) to list all linear transformations

L : B3 → B .

How many different linear transformations did you find? Compare
your answer to part (c).

(g) Suppose L1 : B3 → B and L2 : B3 → B are linear transforma-
tions, and α and β are bits. Define a new map (αL1 + βL2) :
B3 → B by

(αL1 + βL2)(v) = αL1(v) + βL2(v).

Is this map a linear transformation? Explain.

(h) Do you think the set of all linear transformations from B3 to B is
a vector space using the addition rule above? If you answer yes,
give a basis for this vector space and state its dimension.
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11. A team of distinguished, post-doctoral engineers analyzes the design
for a bridge across the English channel. They notice that the force on

the center of the bridge when it is displaced by an amount X =

xy
z


is given by

F =

 −x− y
−x− 2y − z
−y − z

 .

Moreover, having read Newton’s Principiæ, they know that force is
proportional to acceleration so that17

F =
d2X

dt2
.

Since the engineers are worried the bridge might start swaying in the
heavy channel winds, they search for an oscillatory solution to this
equation of the form18

X = cos(ωt)

ab
c

 .

(a) By plugging their proposed solution in the above equations the
engineers find an eigenvalue problem

M

ab
c

 = −ω2

ab
c

 .

Here M is a 3×3 matrix. Which 3×3 matrix M did the engineers
find? Justify your answer.

(b) Find the eigenvalues and eigenvectors of the matrix M .

(c) The number |ω| is often called a characteristic frequency. What
characteristic frequencies do you find for the proposed bridge?

17The bridge is intended for French and English military vehicles, so the exact units,
coordinate system and constant of proportionality are state secrets.

18Here, a, b, c and ω are constants which we aim to calculate.
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(d) Find an orthogonal matrix P such that MP = PD where D is a
diagonal matrix. Be sure to also state your result for D.

(e) Is there a direction in which displacing the bridge yields no force?
If so give a vector in that direction. Briefly evaluate the quality
of this bridge design.

12. Conic Sections: The equation for the most general conic section is
given by

ax2 + 2bxy + dy2 + 2cx+ 2ey + f = 0 .

Our aim is to analyze the solutions to this equation using matrices.

(a) Rewrite the above quadratic equation as one of the form

XTMX +XTC + CTX + f = 0

relating an unknown column vector X =

(
x
y

)
, its transpose XT ,

a 2×2 matrix M , a constant column vector C and the constant f .

(b) Does your matrix M obey any special properties? Find its eigen-
values. You may call your answers λ and µ for the rest of the
problem to save writing.

For the rest of this problem we will focus on central conics
for which the matrix M is invertible.

(c) Your equation in part (a) above should be be quadratic in X.
Recall that if m 6= 0, the quadratic equation mx2 + 2cx + f = 0
can be rewritten by completing the square

m
(
x+

c

m

)2
=
c2

m
− f .

Being very careful that you are now dealing with matrices, use the
same trick to rewrite your answer to part (a) in the form

Y TMY = g.

Make sure you give formulas for the new unknown column vector Y
and constant g in terms of X, M , C and f . You need not multiply
out any of the matrix expressions you find.
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If all has gone well, you have found a way to shift coordi-
nates for the original conic equation to a new coordinate
system with its origin at the center of symmetry. Our next
aim is to rotate the coordinate axes to produce a readily
recognizable equation.

(d) Why is the angle between vectors V and W is not changed when
you replace them by PV and PW for P any orthogonal matrix?

(e) Explain how to choose an orthogonal matrix P such that MP =
PD where D is a diagonal matrix.

(f) For the choice of P above, define our final unknown vector Z by
Y = PZ. Find an expression for Y TMY in terms of Z and the
eigenvalues of M .

(g) Call Z =

(
z
w

)
. What equation do z and w obey? (Hint, write

your answer using λ, µ and g.)

(h) Central conics are circles, ellipses, hyperbolae or a pair of straight
lines. Give examples of values of (λ, µ, g) which produce each of
these cases.

13. Let L : V → W be a linear transformation between finite-dimensional
vector spaces V and W , and let M be a matrix for L (with respect
to some basis for V and some basis for W ). We know that L has an
inverse if and only if it is bijective, and we know a lot of ways to tell
whether M has an inverse. In fact, L has an inverse if and only if M
has an inverse:

(a) Suppose that L is bijective (i.e., one-to-one and onto).

i. Show that dimV = rankL = dimW .

ii. Show that 0 is not an eigenvalue of M .

iii. Show that M is an invertible matrix.

(b) Now, suppose that M is an invertible matrix.

i. Show that 0 is not an eigenvalue of M .

ii. Show that L is injective.

iii. Show that L is surjective.
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14. Captain Conundrum gives Queen Quandary a pair of newborn doves,
male and female for her birthday. After one year, this pair of doves
breed and produce a pair of dove eggs. One year later these eggs hatch
yielding a new pair of doves while the original pair of doves breed again
and an additional pair of eggs are laid. Captain Conundrum is very
happy because now he will never need to buy the Queen a present ever
again!

Let us say that in year zero, the Queen has no doves. In year one
she has one pair of doves, in year two she has two pairs of doves etc...
Call Fn the number of pairs of doves in years n. For example, F0 = 0,
F1 = 1 and F2 = 1. Assume no doves die and that the same breeding
pattern continues well into the future. Then F3 = 2 because the eggs
laid by the first pair of doves in year two hatch. Notice also that in
year three, two pairs of eggs are laid (by the first and second pair of
doves). Thus F4 = 3.

(a) Compute F5 and F6.

(b) Explain why (for any n ≥ 2) the following recursion relation holds

Fn = Fn−1 + Fn−2 .

(c) Let us introduce a column vector Xn =

(
Fn
Fn−1

)
. Compute X1

and X2. Verify that these vectors obey the relationship

X2 = MX1 where M =

(
1 1
1 0

)
.

(d) Show that Xn+1 = MXn.

(e) Diagonalize M . (I.e., write M as a product M = PDP−1 where
D is diagonal.)

(f) Find a simple expression for Mn in terms of P , D and P−1.

(g) Show that Xn+1 = MnX1.

(h) The number

ϕ =
1 +
√

5

2
is called the golden ratio. Write the eigenvalues of M in terms
of ϕ.
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(i) Put your results from parts (c), (f) and (g) together (along with
a short matrix computation) to find the formula for the number
of doves Fn in year n expressed in terms of ϕ, 1− ϕ and n.

15. Use Gram–Schmidt to find an orthonormal basis for

span




1
1
1
1

 ,


1
0
1
1

 ,


0
0
1
2


 .

16. Let M be the matrix of a linear transformation L : V → W in given
bases for V and W . Fill in the blanks below with one of the following

six vector spaces: V , W , kerL,
(
kerL

)⊥
, imL,

(
imL

)⊥
.

(a) The columns of M span in the basis given for .

(b) The rows of M span in the basis given for .

Suppose

M =


1 2 1 3
2 1 −1 2
1 0 0 −1
4 1 −1 0


is the matrix of L in the bases {v1, v2, v3, v4} for V and {w1, w2, w3, w4}
for W . Find bases for kerL and imL. Use the dimension formula to
check your result.

17. Captain Conundrum collects the following data set

y x
5 −2
2 −1
0 1
3 2

which he believes to be well-approximated by a parabola

y = ax2 + bx+ c .
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(a) Write down a system of four linear equations for the unknown
coefficients a, b and c.

(b) Write the augmented matrix for this system of equations.

(c) Find the reduced row echelon form for this augmented matrix.

(d) Are there any solutions to this system?

(e) Find the least squares solution to the system.

(f) What value does Captain Conundrum predict for y when x = 2?

18. Suppose you have collected the following data for an experiment

x y
x1 y1
x2 y2
x3 y3

and believe that the result is well modeled by a straight line

y = mx+ b .

(a) Write down a linear system of equations you could use to find the
slope m and constant term b.

(b) Arrange the unknowns (m, b) in a column vector X and write your
answer to (a) as a matrix equation

MX = V .

Be sure to give explicit expressions for the matrix M and column
vector V .

(c) For a generic data set, would you expect your system of equations
to have a solution? Briefly explain your answer.

(d) Calculate MTM and (MTM)−1 (for the latter computation, state
the condition required for the inverse to exist).

(e) Compute the least squares solution for m and b.

(f) The least squares method determines a vector X that minimizes
the length of the vector V −MX. Draw a rough sketch of the
three data points in the (x, y)-plane as well as their least squares
fit. Indicate how the components of V −MX could be obtained
from your picture.
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Solutions

1. You can find the definitions for all these terms by consulting the index
of these notes.

2. Both junctions give the same equation for the currents

I + J + 13 = 0 .

There are three voltage loops (one on the left, one on the right and one
going around the outside of the circuit). Respectively, they give the
equations

60− I − 80− 3I = 0

80 + 2J − V + 3J = 0

60− I + 2J − V + 3J − 3I = 0 . (2)

The above equations are easily solved (either using an augmented ma-
trix and row reducing, or by substitution). The result is I = −5 Amps,
J = 8 Amps, V = 120 Volts.

3. (a) m.

(b) n.

(c) Yes.

(d) n× n.

(e) m×m.

(f) Yes. This relies on kerM = 0 because if MTM had a non-trivial
kernel, then there would be a non-zero solution X to MTMX = 0.
But then by multiplying on the left by XT we see that ||MX|| = 0.
This in turn implies MX = 0 which contradicts the triviality of
the kernel of M .

(g) Yes because
(
MTM

)T
= MT (MT )T = MTM .

(h) Yes, all symmetric matrices have a basis of eigenvectors.

(i) No, because otherwise it would not be invertible.

(j) Since the kernel of L is non-trivial, M must have 0 as an eigen-
value.
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(k) Since M has a zero eigenvalue in this case, its determinant must
vanish. I.e., detM = 0.

4. To begin with the system becomes

1 1 1 1

1 2 2 2

1 2 3 3



x

y

z

w

 =

1

1

1


Then

M =

1 1 1 1

1 2 2 2

1 2 3 3

 =

1 0 0

1 1 0

1 0 1


1 1 1 1

0 1 1 1

0 1 2 2



=

1 0 0

1 1 0

1 1 1


1 1 1 1

0 1 1 1

0 0 1 1

 = LU

So now MX = V becomes LW = V where W = UX =

ab
c

 (say).

Thus we solve LW = V by forward substitution

a = 1, a+ b = 1, a+ b+ c = 1⇒ a = 1, b = 0, c = 0 .

Now solve UX = W by back substitution

x+ y + z + w = 1, y + z + w = 0, z + w = 0

⇒ w = µ (arbitrary), z = −µ, y = 0, x = 1 .

The solution set is



x
y
z
y

 =


1
0
−µ
µ

 : µ ∈ R


5. ...
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6. If U spans R3, then we must be able to express any vector X =

xy
z


∈ R3 as

X = c1

1
0
1

+ c2

 1
2
−3

+ c3

a1
0

 =

1 1 a
0 2 1
1 −3 0

c1c2
c3

 ,

for some coefficients c1, c2 and c3. This is a linear system. We could
solve for c1, c2 and c3 using an augmented matrix and row operations.
However, since we know that dimR3 = 3, if U spans R3, it will also be
a basis. Then the solution for c1, c2 and c3 would be unique. Hence, the
3× 3 matrix above must be invertible, so we examine its determinant

det

1 1 a
0 2 1
1 −3 0

 = 1.(2.0− 1.(−3)) + 1.(1.1− a.2) = 4− 2a .

Thus U spans R3 whenever a 6= 2. When a = 2 we can write the third
vector in U in terms of the preceding ones as2

1
0

 =
3

2

1
0
1

+
1

2

 1
2
−3

 .

(You can obtain this result, or an equivalent one by studying the above
linear system with X = 0, i.e., the associated homogeneous system.)

The two vectors

 1
2
−3

 and

2
1
0

 are clearly linearly independent, so

this is the least number of vectors spanning U for this value of a. Also
we see that dimU = 2 in this case. Your picture should be a plane in

R3 though the origin containing the vectors

 1
2
−3

 and

2
1
0

.

7.

det

(
1 x
1 y

)
= y − x ,
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det

1 x x2

1 y y2

1 z z2

 = det

1 x x2

0 y − x y2 − x2
0 z − x z2 − x2


= (y − x)(z2 − x2)− (y2 − x2)(z − x) = (y − x)(z − x)(z − y) .

det


1 x x2 x3

1 y y2 y3

1 z z2 z3

1 w w2 w3

 = det


1 x x2 x3

0 y − x y2 − x2 y3 − x3
0 z − x z2 − x2 z3 − x3
0 w − x w2 − x2 w3 − x3



= det


1 0 0 0
0 y − x y(y − x) y2(y − x)
0 z − x z(z − x) z2(z − x)
0 w − x w(w − x) w2(w − x)



= (y − x)(z − x)(w − x) det


1 0 0 0
0 1 y y2

0 1 z z2

0 1 w w2


= (y − x)(z − x)(w − x) det

1 x x2

1 y y2

1 z z2


= (y − x)(z − x)(w − x)(y − x)(z − x)(z − y) .

From the 4 × 4 case above, you can see all the tricks required for a
general Vandermonde matrix. First zero out the first column by sub-
tracting the first row from all other rows (which leaves the determinant
unchanged). Now zero out the top row by subtracting x1 times the
first column from the second column, x1 times the second column from
the third column etc. Again these column operations do not change
the determinant. Now factor out x2 − x1 from the second row, x3 − x1
from the third row, etc. This does change the determinant so we write
these factors outside the remaining determinant, which is just the same
problem but for the (n−1)×(n−1) case. Iterating the same procedure
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gives the result

det


1 x1 (x1)

2 · · · (x1)
n−1

1 x2 (x2)
2 · · · (x2)

n−1

1 x3 (x3)
2 · · · (x3)

n−1

...
...

...
. . .

...
1 xn (xn)2 · · · (xn)n−1

 =
∏
i>j

(xi − xj) .

(Here
∏

stands for a multiple product, just like Σ stands for a multiple
sum.)

8. ...

9. (a)

det

 λ −1
2
−1

−1
2

λ− 1
2
−1

2

−1 −1
2

λ

 = λ
(

(λ−1

2

)
λ−1

4
)+

1

2

(
−λ

2
−1

2

)
−
(
−1

4
+λ
)

= λ3 − 1

2
λ2 − 3

2
λ = λ(λ+ 1)(λ− 3

2
) .

Hence the eigenvalues are 0,−1, 3
2
.

(b) When λ = 0 we must solve the homogenous system 0 1
2

1 0
1
2

1
2

1
2

0

1 1
2

0 0

 ∼
 1 1

2
0 0

0 1
4

1
2

0

0 1
2

1 0

 ∼
 1 0 −1 0

0 1 2 0

0 0 0 0

 .

So we find the eigenvector

 s
−2s
s

 where s 6= 0 is arbitrary.

For λ = −1  1 1
2

1 0
1
2

3
2

1
2

0

1 1
2

1 0

 ∼
 1 0 1 0

0 1 0 0

0 0 0 0

 .
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So we find the eigenvector

−s0
s

 where s 6= 0 is arbitrary.

Finally, for λ = 3
2 −

3
2

1
2

1 0
1
2
−1 1

2
0

1 1
2
−3

2
0

 ∼
 1 1

2
−3

2
0

0 −5
4

5
4

0

0 5
4
−5

4
0

 ∼
 1 0 −1 0

0 1 −1 0

0 0 0 0

 .

So we find the eigenvector

ss
s

 where s 6= 0 is arbitrary.

If the mistake X is in the direction of the eigenvector

 1
−2
1

, then

Y = 0. I.e., the satellite returns to the origin O. For all subsequent
orbits it will again return to the origin. NASA would be very pleased
in this case.

If the mistake X is in the direction

−1
0
1

, then Y = −X. Hence the

satellite will move to the point opposite toX. After next orbit will move
back to X. It will continue this wobbling motion indefinitely. Since
this is a stable situation, again, the elite engineers will pat themselves
on the back.

Finally, if the mistake X is in the direction

1
1
1

 , the satellite will

move to a point Y = 3
2
X which is further away from the origin. The

same will happen for all subsequent orbits, with the satellite moving
a factor 3/2 further away from O each orbit (in reality, after several
orbits, the approximations used by the engineers in their calculations
probably fail and a new computation will be needed). In this case, the
satellite will be lost in outer space and the engineers will likely lose
their jobs!
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10. (a) A basis for B3 is


1

0
0

 ,

0
1
0

 ,

0
0
1


(b) 3.

(c) 23 = 8.

(d) dimB3 = 3.

(e) Because the vectors {v1, v2, v3} are a basis any element v ∈ B3

can be written uniquely as v = b1v1 + b2v2 + b3v3 for some triplet

of bits

b1b2
b3

. Hence, to compute L(v) we use linearity of L

L(v) = L(b1v1 + b2v2 + b3v3) = b1L(v1) + b2L(v2) + b3L(v3)

=
(
L(v1) L(v2) L(v3)

)b1b2
b3

 .

(f) From the notation of the previous part, we see that we can list
linear transformations L : B3 → B by writing out all possible
bit-valued row vectors (

0 0 0
)
,(

1 0 0
)
,(

0 1 0
)
,(

0 0 1
)
,(

1 1 0
)
,(

1 0 1
)
,(

0 1 1
)
,(

1 1 1
)
.

There are 23 = 8 different linear transformations L : B3 → B,
exactly the same as the number of elements in B3.

(g) Yes, essentially just because L1 and L2 are linear transformations.
In detail for any bits (a, b) and vectors (u, v) in B3 it is easy to
check the linearity property for (αL1 + βL2)

(αL1 + βL2)(au+ bv) = αL1(au+ bv) + βL2(au+ bv)
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= αaL1(u) + αbL1(v) + βaL1(u) + βbL1(v)

= a(αL1(u) + βL2(v)) + b(αL1(u) + βL2(v))

= a(αL1 + βL2)(u) + b(αL1 + βL2)(v) .

Here the first line used the definition of (αL1 + βL2), the second
line depended on the linearity of L1 and L2, the third line was just
algebra and the fourth used the definition of (αL1 + βL2) again.

(h) Yes. The easiest way to see this is the identification above of these
maps with bit-valued column vectors. In that notation, a basis is{(

1 0 0
)
,
(
0 1 0

)
,
(
0 0 1

)}
.

Since this (spanning) set has three (linearly independent) ele-
ments, the vector space of linear maps B3 → B has dimension 3.
This is an example of a general notion called the dual vector space.

11. ...

12. (a) If we callM =

(
a b
b d

)
, thenXTMX = ax2+2bxy+dy2. Similarly

putting C =

(
c
e

)
yields XTC+CTX = 2X C = 2cx+2ey. Thus

0 = ax2 + 2bxy + dy2 + 2cx+ 2ey + f

=
(
x y

)(a b
b d

)(
x
y

)
+
(
x y

)(c
e

)
+
(
c e

)(x
y

)
+ f .

(b) Yes, the matrix M is symmetric, so it will have a basis of eigen-
vectors and is similar to a diagonal matrix of real eigenvalues.

To find the eigenvalues notice that det

(
a− λ b
b d− λ

)
= (a −

λ)(d− λ)− b2 =
(
λ− a+d

2

)2 − b2 − (a−d
2

)2
. So the eigenvalues are

λ =
a+ d

2
+

√
b2 +

(a− d
2

)2
and µ =

a+ d

2
−
√
b2 +

(a− d
2

)2
.
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(c) The trick is to write

XTMX+CTX+XTC = (XT+CTM−1)M(X+M−1C)−CTM−1C ,

so that

(XT + CTM−1)M(X +M−1C) = CTMC − f .

Hence Y = X +M−1C and g = CTMC − f .

(d) The cosine of the angle between vectors V and W is given by

V W√
V V W W

=
V TW√

V TV W TW
.

So replacing V → PV and W → PW will always give a factor
P TP inside all the products, but P TP = I for orthogonal matri-
ces. Hence none of the dot products in the above formula changes,
so neither does the angle between V and W .

(e) If we take the eigenvectors of M , normalize them (i.e. divide
them by their lengths), and put them in a matrix P (as columns)
then P will be an orthogonal matrix. (If it happens that λ = µ,
then we also need to make sure the eigenvectors spanning the two
dimensional eigenspace corresponding to λ are orthogonal.) Then,
since M times the eigenvectors yields just the eigenvectors back
again multiplied by their eigenvalues, it follows that MP = PD
where D is the diagonal matrix made from eigenvalues.

(f) If Y = PZ, then Y TMY = ZTP TMPZ = ZTP TPDZ = ZTDZ

where D =

(
λ 0
0 µ

)
.

(g) Using part (f) and (c) we have

λz2 + µw2 = g .

(h) When λ = µ and g/λ = R2, we get the equation for a circle radius
R in the (z, w)-plane. When λ, µ and g are postive, we have the
equation for an ellipse. Vanishing g along with λ and µ of opposite
signs gives a pair of straight lines. When g is non-vanishing, but
λ and µ have opposite signs, the result is a pair of hyperbolæ.
These shapes all come from cutting a cone with a plane, and are
therefore called conic sections.
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13. We show that L is bijective if and only if M is invertible.

(a) We suppose that L is bijective.

i. Since L is injective, its kernel consists of the zero vector alone.
Hence

L = dim kerL = 0.

So by the Dimension Formula,

dimV = L+ rankL = rankL.

Since L is surjective, L(V ) = W. Thus

rankL = dimL(V ) = dimW.

Thereby
dimV = rankL = dimW.

ii. Since dimV = dimW , the matrix M is square so we can talk
about its eigenvalues. Since L is injective, its kernel is the zero
vector alone. That is, the only solution to LX = 0 is X = 0V .
But LX is the same as MX, so the only solution to MX = 0
is X = 0V . So M does not have zero as an eigenvalue.

iii. Since MX = 0 has no non-zero solutions, the matrix M is
invertible.

(b) Now we suppose that M is an invertible matrix.

i. Since M is invertible, the system MX = 0 has no non-zero
solutions. But LX is the same as MX, so the only solution to
LX = 0 is X = 0V . So L does not have zero as an eigenvalue.

ii. Since LX = 0 has no non-zero solutions, the kernel of L is
the zero vector alone. So L is injective.

iii. Since M is invertible, we must have that dimV = dimW . By
the Dimension Formula, we have

dimV = L+ rankL

and since kerL = {0V } we have L = dim kerL = 0, so

dimW = dimV = rankL = dimL(V ).
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Since L(V ) is a subspace of W with the same dimension as W ,
it must be equal to W . To see why, pick a basis B of L(V ).
Each element of B is a vector in W , so the elements of B form
a linearly independent set in W . Therefore B is a basis of W ,
since the size of B is equal to dimW . So L(V ) = spanB = W.
So L is surjective.

14. (a) F4 = F2 + F3 = 2 + 3 = 5.

(b) The number of pairs of doves in any given year equals the number
of the previous years plus those that hatch and there are as many
of them as pairs of doves in the year before the previous year.

(c) X1 =

(
F1

F0

)
=

(
1
0

)
and X2 =

(
F2

F1

)
=

(
1
1

)
.

MX1 =

(
1 1
1 0

)(
1
0

)
=

(
1
1

)
= X2 .

(d) We just need to use the recursion relationship of part (b) in the
top slot of Xn+1:

Xn+1 =

(
Fn+1

Fn

)
=

(
Fn + Fn−1

Fn

)
=

(
1 1
1 0

)(
Fn
Fn−1

)
= MXn .

(e) Notice M is symmetric so this is guaranteed to work.

det

(
1− λ 1

1 −λ

)
= λ(λ− 1)− 1 =

(
λ− 1

2

)2 − 5

4
,

so the eigenvalues are 1±
√
5

2
. Hence the eigenvectors are

(
1±
√
5

2

1

)
,

respectively (notice that 1+
√
5

2
+ 1 = 1+

√
5

2
.1+
√
5

2
and 1−

√
5

2
+ 1 =

1−
√
5

2
.1−
√
5

2
). Thus M = PDP−1 with

D =

(
1+
√
5

2
0

0 1−
√
5

2

)
and P =

(
1+
√
5

2
1−
√
5

2

1 1

)
.

(f) Mn = (PDP−1)n = PDP−1PDP−1 . . . PDP−1 = PDnP−1.
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(g) Just use the matrix recursion relation of part (d) repeatedly:

Xn+1 = MXn = M2Xn−1 = · · · = MnX1 .

(h) The eigenvalues are ϕ = 1+
√
5

2
and 1− ϕ = 1−

√
5

2
.

(i)

Xn+1 =

(
Fn+1

Fn

)
= MnXn = PDnP−1X1

= P

(
ϕ 0
0 1− ϕ

)n( 1√
5

?

− 1√
5

?

)(
1
0

)
= P

(
ϕn 0
0 (1− ϕ)n

)( 1√
5

− 1√
5

)

=

(
1+
√
5

2
1−
√
5

2

1 1

)(
ϕn
√
5

− (1−ϕ)n√
5

)
=

(
?

ϕn−(1−ϕ)n√
5

)
.

Hence

Fn =
ϕn − (1− ϕ)n√

5
.

These are the famous Fibonacci numbers.

15. Call the three vectors u, v and w, respectively. Then

v⊥ = v − u v

u u
u = v − 3

4
u =


1
4

−3
4

1
4
1
4

 ,

and

w⊥ = w − u w

u u
u− v⊥ w

v⊥ v⊥
v⊥ = w − 3

4
u−

3
4
3
4

v⊥ =


−1
0
0
1


Dividing by lengths, an orthonormal basis for span{u, v, w} is


1
2

1
2

1
2

1
2

 ,


√
3
6

−
√
3
2√
3
6√
3
6

 ,


−
√
2
2

0

0
√
2
2


 .
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16. ...

17. ...

18. We show that L is bijective if and only if M is invertible.

(a) We suppose that L is bijective.

i. Since L is injective, its kernel consists of the zero vector alone.
So

L = dim kerL = 0.

So by the Dimension Formula,

dimV = L+ rankL = rankL.

Since L is surjective, L(V ) = W. So

rankL = dimL(V ) = dimW.

So
dimV = rankL = dimW.

ii. Since dimV = dimW , the matrix M is square so we can talk
about its eigenvalues. Since L is injective, its kernel is the zero
vector alone. That is, the only solution to LX = 0 is X = 0V .
But LX is the same as MX, so the only solution to MX = 0
is X = 0V . So M does not have zero as an eigenvalue.

iii. Since MX = 0 has no non-zero solutions, the matrix M is
invertible.

(b) Now we suppose that M is an invertible matrix.

i. Since M is invertible, the system MX = 0 has no non-zero
solutions. But LX is the same as MX, so the only solution to
LX = 0 is X = 0V . So L does not have zero as an eigenvalue.

ii. Since LX = 0 has no non-zero solutions, the kernel of L is
the zero vector alone. So L is injective.

iii. Since M is invertible, we must have that dimV = dimW . By
the Dimension Formula, we have

dimV = L+ rankL
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and since kerL = {0V } we have L = dim kerL = 0, so

dimW = dimV = rankL = dimL(V ).

Since L(V ) is a subspace of W with the same dimension as W ,
it must be equal to W . To see why, pick a basis B of L(V ).
Each element of B is a vector in W , so the elements of B form
a linearly independent set in W . Therefore B is a basis of W ,
since the size of B is equal to dimW . So L(V ) = spanB = W.
So L is surjective.

19. ...
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Angle between vectors, 39
Augmented matrix 2× 2, 14
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Bit matrices, 71
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Calculus Superhero, 175
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Cauchy–Schwartz inequality, 40
Change of basis, 138
Change of basis matrix, 138
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Closure, 103

additive, 44
multiplicative, 44

Cofactor, 97
Column vector, 54
Components of a vector, 134
Conic sections, 204
Conjugation, 139
Cramer’s rule, 99

Determinant, 82
2× 2 matrix, 81
3× 3 matrix, 81

Diagonal matrix, 57
Diagonalizable, 137
Diagonalization, 137

concept of, 124
Dimension, 115

concept of, 52

notion of, 102
Dimension formula, 169
Direct sum, 156
Dot product, 39
Dual vector space, 121, 216
Dyad, 144

Eigenspace, 131
Eigenvalue, 123, 128

multiplicity of, 129
Eigenvector, 123, 128
Einstein, Albert, 34
Elementary matrix, 84

swapping rows, 85
Elementary row operations, 21
Elite NASA engineers, 201
Equivalence relation, 141
Euclidean length, 38
Even permutation, 82
Expansion by minors, 94

Fibonacci numbers, 220
Forward substitution, 75
Fundamental theorem of algebra, 129

Galois, 47
Gauss–Jordan elimination, 21
Gaussian elimination, 21
General solution, 32
Golden ratio, 206
Goofing up, 70
Gram–Schmidt orthogonalization pro-

cedure, 153
Graph theory, 55

Homogeneous solution
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an example, 31
Homogeneous system, 32
Hyperplane, 27, 38

Identity matrix, 57
2× 2, 14

Inner product, 143
Invariant direction, 123
Inverse matrix

concept of, 66
Inversion number, 86
Invertible, 68

Kernel, 167
Kirchoff’s laws, 198
Kronecker delta, 143

Law of Cosines, 38
Least squares, 174

solutions, 174
Length of a vector, 39
Linear

function, 29
Linear combination, 131
Linear dependence theorem, 109
Linear function, 49
Linear independence

concept of, 102
Linear System

concept of, 10
Linear Transformation

concept of, 11
Linear transformation, 49
Linearity, 49
Linearity property, 29
Linearly dependent, 108
Linearly independent, 108
Lower triangular matrix, 74
Lower unit triangular matrix, 76

LU decomposition, 74

Matrix, 54
diagonal of, 57
entries of, 54
of a linear transformation, 122,

128
Matrix of a linear transformation, 134
Minimal spanning set, 113
Minor, 94
Multiplicative function, 94

Newton’s Principiæ, 203
Non-leading variables, 28
Nonsingular, 68
Nullity, 169

Odd permutation, 82
Orthogonal, 143
Orthogonal basis, 145
Orthogonal complement, 156
Orthogonal decomposition, 151
Orthogonal matrix, 147
Orthonormal basis, 145
Outer product, 143

Parallelepiped, 99
Particular solution, 32

an example, 31
Permutation, 81
Permutation matrices, 141
“Perp”, 156
Pivot, 16

QR decomposition, 154
Queen Quandary, 206

Random, 159
Rank, 169
Recursion relation, 206

224



Reduced row echelon form, 16
Row equivalence, 15
Row vector, 54

Scalar multiplication
n-vectors, 36

Sign function, 82
Similar matrices, 140
Solution set, 27

set notation, 28
Span, 104
Square matrices, 63
Square matrix, 57
Standard basis, 118, 128
Subspace, 102

notion of, 102, 131
Subspace theorem, 103
Sum of vectors spaces, 155
Symmetric matrix, 58, 160

Trace, 65
Transpose, 58
Triangle inequality, 41

Upper triangular matrix, 74

Vandermonde determinant, 200
Vector

in R2, 9
Vector addition

n-vectors, 36
Vector space, 44

finitedimensional, 115

Zero vector
n-vectors, 37
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Figure 2: Captain Conundrum
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