OpenGL Programming Guide for Mac OS X

Graphics & Animation: 3D Drawing

¢

2011-06-06

.

[

Apple Inc.

© 2004, 2011 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, iChat,
Instruments, iPhoto, Logic, Mac, Mac OS,
Macintosh, Objective-C, Pages, Quartz, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

OpenCL is a trademark of Apple Inc.

DEC is a trademark of Digital Equipment
Corporation.

I0S is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGlL is a registered trademark of Silicon
Graphics, Inc.

UNIX is a registered trademark of The Open
Group

X Window System is a trademark of the
Massachusetts Institute of Technology.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About OpenGL for Mac OS X 13

AtaGlance 13
OpenGL Is a C-based, Platform-Neutral APl 14
Different Rendering Destinations Require Different Setup Commands 14
OpenGL on Macs Exists in a Heterogenous Environment 14
OpenGL Helps Applications Harness the Power of Graphics Processors 14
Concurrency in OpenGL Applications Requires Additional Effort 15
Performance Tuning Allows Your Application to Provide an Exceptional User Experience 15
How to Use This Document 15
Prerequisites 16
See Also 16

Chapter 1 OpenGL on the Mac Platform 19

OpenGL Concepts 19
OpenGL Implements a Client-Server Model 20
OpenGL Commands Can Be Executed Asynchronously 20
OpenGL Commands Are Executed In Order 21
OpenGL Copies Client Data at Call-Time 21
OpenGL Relies on Platform-Specific Libraries For Critical Functionality 21
OpenGL in Mac OS X 21
Accessing OpenGL Within Your Application 23
OpenGL APIs Specific to Mac OS X 23
Apple-Implemented OpenGL Libraries 24
Terminology 25
Renderer 25
Renderer and Buffer Attributes 25
Pixel Format Objects 25
OpenGL Profiles 26
Rendering Contexts 26
Drawable Objects 26
Virtual Screens 27
Offline Renderer 31
Running an OpenGL Program in Mac OS X 31
Making Great OpenGL Applications on the Macintosh 32

Chapter 2 Drawing to a Window or View 35

General Approach 35
Drawing to a Cocoa View 36
Drawing to an NSOpenGLView Class: A Tutorial 37

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

Chapter 3

CONTENTS

Drawing OpenGL Content to a Custom View 39

Drawing to the Full Screen 43

Chapter 4

Creating a Full-Screen Application 43

Drawing Offscreen 45

Chapter 5

Rendering to a Framebuffer Object 45
Using a Framebuffer Object as a Texture 46
Using a Framebuffer Object as an Image 49
Rendering to a Pixel Buffer 51
Setting Up a Pixel Buffer for Offscreen Drawing 51
Using a Pixel Buffer as a Texture Source 52
Rendering to a Pixel Buffer on a Remote System 53

Choosing Renderer and Buffer Attributes 55

Chapter 6

OpenGL Profiles (Mac OS X v10.7) 55

Buffer Size Attribute Selection Tips 56

Ensuring That Back Buffer Contents Remain the Same 56
Ensuring a Valid Pixel Format Object 57

Ensuring a Specific Type of Renderer 58

Ensuring a Single Renderer for a Display 58

Allowing Offline Renderers 59

OpenCL 60

Deprecated Attributes 60

Working with Rendering Contexts 63

Chapter 7

Update the Rendering Context When the Renderer or Geometry Changes 63

Tracking Renderer Changes 64

Updating a Rendering Context for a Custom Cocoa View 64

Context Parameters Alter the Context’s Behavior 66

Swap Interval Allows an Application to Synchronize Updates to the Screen Refresh 66
Surface Opacity Specifies How the OpenGL Surface Blends with Surfaces Behind It 66
Surface Drawing Order Specifies the Position of the OpenGL Surface Relative to the Window

67

Determining Whether Vertex and Fragment Processing Happens on the GPU 67

Controlling the Back Buffer Size 68
Sharing Rendering Context Resources 69

Determining the OpenGL Capabilities Supported by the Renderer 73

Detecting Functionality 73
Guidelines for Code That Checks for Functionality 76

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CONTENTS

OpenGL Renderer Implementation-Dependent Values 77

Chapter 8 OpenGL Application Design Strategies 79

Visualizing OpenGL 79
Designing a High-Performance OpenGL Application 81
Update OpenGL Content Only When Your Data Changes 83
Synchronize with the Screen Refresh Rate 85
Avoid Synchronizing and Flushing Operations 85
Using glFlush Effectively 86
Avoid Querying OpenGL State 86
Use Fences for Finer-Grained Synchronization 87
Allow OpenGL to Manage Your Resources 88
Use Double Buffering to Avoid Resource Conflicts 88
Be Mindful of OpenGL State Variables 90
Replace State Changes with OpenGL Objects 90
Use Optimal Data Types and Formats 90
Use OpenGL Macros 91

Chapter 9 Best Practices for Working with Vertex Data 93

Understand How Vertex Data Flows Through OpenGL 93
Techniques for Handling Vertex Data 95
Vertex Buffers 96
Using Vertex Buffers 96
Buffer Usage Hints 98
Flush Buffer Range Extension 100
Vertex Array Range Extension 100
Vertex Array Object 102

Chapter 10 Best Practices for Working with Texture Data 105

Using Extensions to Improve Texture Performance 106
Pixel Buffer Objects 107
Apple Client Storage 110
Apple Texture Range and Rectangle Texture 110
Combining Client Storage with Texture Ranges 112
Optimal Data Formats and Types 113
Working with Non-Power-of-Two Textures 113
Creating Textures from Image Data 115
Creating a Texture from a Cocoa View 116
Creating a Texture from a Quartz Image Source 118
Getting Decompressed Raw Pixel Data from a Source Image 119
Downloading Texture Data 119
Double Buffering Texture Data 120

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 11 Customizing the OpenGL Pipeline with Shaders 123

Shader Basics 125

Advanced Shading Extensions 126
Transform Feedback 126
GPU Shader4 126
Geometry Shaders 127
Uniform Buffers 127

Chapter 12 Techniques for Scene Anti-Aliasing 129

Guidelines 129
General Approach 130
Hinting for a Specific Anti-Aliasing Technique 131

Chapter 13 Concurrency and OpenGL 133

Identifying Whether an OpenGL Application Can Benefit from Concurrency 133
OpenGL Restricts Each Context to a Single Thread 134

Strategies for Implementing Concurrency in OpenGL Applications 134
Multithreaded OpenGL 135

Perform OpenGL Computations in a Worker Task 136

Use Multiple OpenGL Contexts 137

Guidelines for Threading OpenGL Applications 138

Chapter 14 Tuning Your OpenGL Application 141

Gathering and Analyzing Baseline Performance Data 142
Using OpenGL Driver Monitor to Measure Stalls 147
Identifying Bottlenecks with Shark 147

Appendix A Legacy OpenGL Functionality by Version 149

Version 1.1 149
Version 1.2 150
Version 1.3 150
Version 14 151
Version 1.5 152
Version 2.0 152
Version 2.1 152

Appendix B Updating an Application to Support the OpenGL 3.2 Core Specification 153

Removed Functionality 153
Extension Changes on Mac OS X 153

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CONTENTS

Appendix C Setting Up Function Pointers to OpenGL Routines 155

Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point 155
Initializing Entry Points 156

Document Revision History 159

Glossary 163

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CONTENTS

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Chapter 1 OpenGL on the Mac Platform 19
Figure 1-1 OpenGL provides the reflections in iChat 19
Figure 1-2 OpenGL client-server model 20

Figure 1-3 Graphics platform model 20
Figure 1-4 MacOS X OpenGL driver model 22

Figure 1-5 Layers of OpenGL for Mac OS X 22

Figure 1-6 The programing interfaces used for OpenGL content 23

Figure 1-7 Data flow through OpenGL 27

Figure 1-8 A virtual screen displays what the user sees 28

Figure 1-9 Two virtual screens 29

Figure 1-10 A virtual screen can represent more than one physical screen 29
Figure 1-T Two virtual screens and two graphics cards 30

Figure 1-12 The flow of data through OpenGL 31

Chapter 2 Drawing to a Window or View 35
Figure 2-1 OpenGL content in a Cocoa view 35
Figure 2-2 The output from the Golden Triangle program 39
Listing 2-1 The interface for MyOpenGLYiew 37
Listing 2-2 Include OpenGL/gl.h 37
Listing 2-3 The drawRect: method for MyOpenGLView 38
Listing 2-4 Code that draws a triangle using OpenGL commands 38

Listing 2-5 The interface for a custom OpenGL view 40
Listing 2-6 The initWithFrame:pixelFormat: method 40
Listing 2-7 The TockFocus method 41

Listing 2-8 The drawRect method for a custom view 41

Listing 2-9 Detaching the context from a drawable object 41
Chapter 3 Drawing to the Full Screen 43

Figure 3-1 Drawing OpenGL content to the full screen 43
Chapter 4 Drawing Offscreen 45

Listing 4-1 Setting up a framebuffer for texturing 48

Listing 4-2 Setting up a renderbuffer for drawing images 50
Chapter 5 Choosing Renderer and Buffer Attributes 55

Table 5-1 Renderer types and pixel format attributes 58

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Listing 5-1 Using the CGL API to create a pixel format object 57
Listing 5-2 Setting an NSOpenGLContext object to use a specific display 59
Listing 5-3 Setting a CGL context to use a specific display 59

Chapter 6 Working with Rendering Contexts 63
Figure 6-1 A fixed size back buffer and variable size front buffer 69
Figure 6-2 Shared contexts attached to the same drawable object 69
Figure 6-3 Shared contexts and more than one drawable object 70
Listing 6-1 Handling context updates for a custom view 64

Listing 6-2 Using CGL to set up synchronization 66

Listing 6-3 Using CGL to set surface opacity 67

Listing 6-4 Using CGL to set surface drawing order 67

Listing 6-5 Using CGL to check whether the GPU is processing vertices and fragments 68
Listing 6-6 Using CGL to set up back buffer size control 68

Listing 6-7 Setting up an NSOpenGLContext object for sharing 70

Listing 6-8 Setting up a CGL context for sharing 71

Chapter 7 Determining the OpenGL Capabilities Supported by the Renderer 73

Table 7-1 Common OpenGL renderer limitations 77

Table 7-2 OpenGL shader limitations 77

Listing 7-1 Checking for OpenGL functionality 74

Listing 7-2 Setting up a valid rendering context to get renderer functionality information 75
Chapter 8 OpenGL Application Design Strategies 79

Figure 8-1 OpenGL graphics pipeline 80

Figure 8-2 OpenGL client-server architecture 81

Figure 8-3 Application model for managing resources 82

Figure 8-4 Single-buffered vertex array data 89

Figure 8-5 Double-buffered vertex array data 89

Listing 8-1 Setting up a Core Video display link 84

Listing 8-2 Setting up synchronization 85

Listing 8-3 Disabling state variables 90
Listing 8-4 Using CGL macros 91

Chapter 9 Best Practices for Working with Vertex Data 93
Figure 9-1 Vertex data sets can be quite large 93
Figure 9-2 Vertex data path 94
Figure 9-3 Immediate mode requires a copy of the current vertex data 94
Listing 9-1 Submitting vertex data using g1DrawElements. 94
Listing 9-2 Using the vertex buffer object extension with dynamic data 97
Listing 9-3 Using the vertex buffer object extension with static data 98

10

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Listing 9-4 Geometry with different usage patterns 98

Listing 9-5 Using the vertex array range extension with dynamic data 101

Listing 9-6 Using the vertex array range extension with static data 102
Chapter 10 Best Practices for Working with Texture Data 105

Figure 10-1 Textures add realism to a scene 105

Figure 10-2 Texture data path 105
Figure 10-3 Data copies in an OpenGL program 106

Figure 10-4 The client storage extension eliminates a data copy 110
Figure 10-5 The texture range extension eliminates a data copy 111
Figure 10-6 Combining extensions to eliminate data copies 112
Figure 10-7 Normalized and non-normalized coordinates 114
Figure 10-8 An image segmented into power-of-two tiles 115
Figure 10-9 Using an image as a texture for a cube 116

Figure 10-10 Single-buffered data 121

Figure 10-11 Double-buffered data 121

Listing 10-1 Using texture extensions for a rectangular texture 112
Listing 10-2 Using texture extensions for a power-of-two texture 113
Listing 10-3 Building an OpenGL texture from an NSView object 116
Listing 10-4 Using a Quartz image as a texture source 118

Listing 10-5 Getting pixel data from a source image 119

Listing 10-6 Code that downloads texture data 120

Chapter 11 Customizing the OpenGL Pipeline with Shaders 123

Figure 11-1 OpenGL fixed-function pipeline 123
Figure 11-2 OpenGL shader pipeline 124
Listing 11-1 Loading a Shader 125

Chapter 12 Techniques for Scene Anti-Aliasing 129
Table 12-1 Anti-aliasing hints 132
Chapter 13 Concurrency and OpenGL 133

Figure 13-1 CPU processing and OpenGL on separate threads 136
Figure 13-2 Two contexts on separate threads 138
Listing 13-1 Enabling the multithreaded OpenGL engine 135

Chapter 14 Tuning Your OpenGL Application 141

Figure 14-1 Output produced by the top application 143
Figure 14-2 The OpenGL Profiler window 144
Figure 14-3 A statistics window 145

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 14-4 A Trace window 146
Figure 14-5 The graph view in OpenGL Driver Monitor 147

Appendix A Legacy OpenGL Functionality by Version 149
Table A-1 Functionality added in OpenGL 1.1 149
Table A-2 Functionality added in OpenGL 1.2 150
Table A-3 Functionality added in OpenGL 1.3 150
Table A-4 Functionality added in OpenGL 14 151
Table A-5 Functionality added in OpenGL 1.5 152
Table A-6 Functionality added in OpenGL 2.0 152
Table A-7 Functionality added in OpenGL 2.1 152
Appendix B Updating an Application to Support the OpenGL 3.2 Core Specification 153
Table B-1 Extensions described in this guide 154
Appendix C Setting Up Function Pointers to OpenGL Routines 155

Listing C-1 Using NSLookupAndBindSymbo1 to obtain a symbol for a symbol name 155
Listing C-2 Using NSGLGetProcAddress to obtain an OpenGL entry point 156

12
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

INTRODUCTION

About OpenGL for Mac OS X

OpenGL is an open, cross-platform graphics standard with broad industry support. OpenGL greatly eases the
task of writing real-time 2D or 3D graphics applications by providing a mature, well-documented graphics
processing pipeline that supports the abstraction of current and future hardware accelerators.

(Application]

OpenGL client {}
Runs on CPU
OpenGL framework
[OpenGL driver]
N\ —

OpenGL server

[Graphics hardware }—— Runs on GPU

At a Glance

OpenGlL is an excellent choice for graphics development on the Macintosh platform because it offers the
following advantages:

« Reliable Implementation. The OpenGL client-server model abstracts hardware details and guarantees
consistent presentation on any compliant hardware and software configuration. Every implementation
of OpenGL adheres to the OpenGL specification and must pass a set of conformance tests.

e Performance. Applications can harness the considerable power of the graphics hardware to improve
rendering speeds and quality.

e Industry acceptance. The specification for OpenGL is controlled by the Khronos Group, an industry
consortium whose members include many of the major companies in the computer graphics industry,
including Apple. In addition to OpenGL for Mac OS X, there are OpenGL implementations for Windows,
Linux, Irix, Solaris, and many game consoles.

At a Glance 13
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

14

INTRODUCTION
About OpenGL for Mac OS X

OpenGL Is a C-based, Platform-Neutral API

Because OpenGL is a C-based AP, it is extremely portable and widely supported. As a C AP|, it integrates
seamlessly with Objective-C based Cocoa applications. OpenGL provides functions your application uses to
generate 2D or 3D images. Your application presents the rendered images to the screen or copies them back
to its own memory.

The OpenGL specification does not provide a windowing layer of its own. It relies on functions defined by
Mac OS X to integrate OpenGL drawing with the windowing system. Your application creates a Mac OS X
OpenGL rendering context and attaches a rendering target to it (known as a drawable object). The rendering
context manages OpenGL state changes and objects created by calls to the OpenGL API. The drawable object
is the final destination for OpenGL drawing commands and is typically associated with a Cocoa window or
view.

Relevant Chapters: “OpenGL on the Mac Platform” (page 19)

Different Rendering Destinations Require Different Setup Commands

Depending on whether your application intends to draw OpenGL content to a window, to draw to the entire
screen, or to perform offscreen image processing, it takes different steps to create the rendering context and
associate it with a drawable object.

Relevant Chapters: “Drawing to a Window or View” (page 35), “Drawing to the Full Screen” (page 43) and
“Drawing Offscreen” (page 45)

OpenGL on Macs Exists in a Heterogenous Environment

Macs support different types of graphics processors, each with different rendering capabilities, supporting
versions of OpenGL from 1.x through OpenGL 3.2. When creating a rendering context, your application can
accept a broad range of renderers or it can restrict itself to devices with specific capabilities. Once you have
a context, you can configure how that context executes OpenGL commands.

OpenGL on the Mac is not only a heterogenous environment, but it is also a dynamic environment. Users
can add or remove displays, or take a laptop running on battery power and plug it into a wall. When the
graphics environment on the Mac changes, the renderer associated with the context may change. Your
application must handle these changes and adjust how it uses OpenGL.

Relevant Chapters: “Choosing Renderer and Buffer Attributes” (page 55), “Working with Rendering
Contexts” (page 63), and “Determining the OpenGL Capabilities Supported by the Renderer” (page 73)

OpenGL Helps Applications Harness the Power of Graphics Processors

Graphics processors are massively parallelized devices optimized for graphics operations. To access that
computing power adds additional overhead because data must move from your application to the GPU over
slower internal buses. Accessing the same data simultaneously from both your application and OpenGL is

At a Glance
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

INTRODUCTION
About OpenGL for Mac OS X

usually restricted. To get great performance in your application, you must carefully design your application
to feed data and commands to OpenGL so that the graphics hardware runs in parallel with your application.
A poorly tuned application may stall either on the CPU or the GPU waiting for the other to finish processing.

When you are ready to optimize your application’s performance, Apple provides both general-purpose and
OpenGL-specific profiling tools that make it easy to learn where your application spends its time.

Relevant Chapters: “OpenGL on the Mac Platform” (page 19),"OpenGL Application Design Strategies” (page
79), “Best Practices for Working with Vertex Data” (page 93), “Best Practices for Working with Texture

Data” (page 105), “Customizing the OpenGL Pipeline with Shaders” (page 123), and “Tuning Your OpenGL
Application” (page 141)

Concurrency in OpenGL Applications Requires Additional Effort

Many Macs ship with multiple processors or multiple cores, and future hardware is expected to add more of
each. Designing applications to take advantage of multiprocessing is critical. OpenGL places additional
restrictions on multithreaded applications. If you intend to add concurrency to an OpenGL application, you
must ensure that the application does not access the same context from two different threads at the same
time.

Relevant Chapters: “Concurrency and OpenGL” (page 133)

Performance Tuning Allows Your Application to Provide an
Exceptional User Experience

Once you've improved the performance of your OpenGL application and taken advantage of concurrency,
put some of the freed processing power to work for you. Higher resolution textures, detailed models, and
more complex lighting and shading algorithms can improve image quality. Full-scene anti-aliasing on modern
graphics hardware can eliminate many of the “jaggies” common on lower resolution images.

Relevant Chapters: “Customizing the OpenGL Pipeline with Shaders” (page 123),"Techniques for Scene
Anti-Aliasing” (page 129)

How to Use This Document

If you have never programmed in OpenGL on the Mac, you should read this book in its entirety, starting with
“OpenGL on the Mac Platform” (page 19). Critical Mac terminology is defined in that chapter as well as in
the “Glossary” (page 163).

If you already have an OpenGL application running on the Mac, but have not yet updated it for Mac OS X
v10.7, read “Choosing Renderer and Buffer Attributes” (page 55) to learn how to choose an OpenGL profile
for your application.

How to Use This Document 15
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

INTRODUCTION
About OpenGL for Mac OS X

Once you have OpenGL content in your application, read “OpenGL Application Design Strategies” (page 79)
to learn fundamental patterns for implementing high-performance OpenGL applications, and the chapters
that follow to learn how to apply those patterns to specific OpenGL problems.

Important: Although this guide describes how to create rendering contexts that support OpenGL 3.2, most
code examples and discussion in the rest of the book describe the earlier legacy versions of OpenGL. See
“Updating an Application to Support the OpenGL 3.2 Core Specification” (page 153) for more information on
migrating your application to OpenGL 3.2.

Prerequisites

This guide assumes that you have some experience with OpenGL programming, but want to learn how to
apply that knowledge to create Mac OS X software. Although this guide provides advice on optimizing
OpenGL code, it does not provide entry-level information on how to use the OpenGL APL. If you are unfamiliar
with OpenGL, you should read “OpenGL on the Mac Platform” (page 19) to get an overview of OpenGL on
the Mac platform, and then read the following OpenGL programming guide and reference documents:

e OpenGL Programming Guide, by Dave Shreiner and the Khronos OpenGL Working Group; otherwise
known as "The Red book.”

e OpenGL Shading Language, by Randi J. Rost, is an excellent guide for those who want to write programs
that compute surface properties (also known as shaders).

e OpenGL Reference Pages.

Before reading this document, you should be familiar with Cocoa windows and views as introduced in Window
Programming Guide and View Programming Guide.

See Also

16

Keep these reference documents handy as you develop your OpenGL program for Mac OS X:

e NSOpenGLView Class Reference, NSOpenGLContext Class Reference, NSOpenGLPixelBuffer Class Reference,
and NSOpenGLPixelFormat Class Reference provide a complete description of the classes and methods
needed to integrate OpenGL content into a Cocoa application.

e CGL Reference describes low-level functions that can be used to create full-screen OpenGL applications.
e OpenGL Extensions Guide provides information about OpenGL extensions supported in Mac OS X.

The OpenGL Foundation website, http://www.opengl.org, provides information on OpenGL commands, the
Khronos OpenGL Working Group, logo requirements, OpenGL news, and many other topics. It's a site that

you'll want to visit regularly. Among the many resources it provides, the following are important reference
documents for OpenGL developers:

e OpenGL Specification provides detailed information on how an OpenGL implementation is expected to
handle each OpenGL command.

Prerequisites
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/documentation/red_book/
http://www.opengl.org/sdk/docs/man/
http://www.opengl.org

INTRODUCTION
About OpenGL for Mac OS X

e OpenGL Reference describes the main OpenGL library.

e OpenGL GLU Reference describes the OpenGL Utility Library, which contains convenience functions
implemented on top of the OpenGL API.

e OpenGL GLUT Reference describes the OpenGL Utility Toolkit, a cross-platform windowing API.

e OpenGL API Code and Tutorial Listings provides code examples for fundamental tasks, such as modeling
and texture mapping, as well as for advanced techniques, such as high dynamic range rendering (HDRR).

See Also 17
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/code/

INTRODUCTION
About OpenGL for Mac OS X

18 See Also
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

You can tell that Apple has an implementation of OpenGL on its platform by looking at the user interface
for many of the applications that are installed with Mac OS X. The reflections built into iChat (Figure 1-1)
provide one of the more notable examples. The responsiveness of the windows, the instant results of applying
an effect in iPhoto, and many other operations in Mac OS X are due to the use of OpenGL. OpenGL is available
to all Macintosh applications.

OpenGL for Mac OS X is implemented as a set of frameworks that contain the OpenGL runtime engine and
its drawing software. These frameworks use platform-neutral virtual resources to free your programming as
much as possible from the underlying graphics hardware. Mac OS X provides a set of application programming
interfaces (APIs) that Cocoa applications can use to support OpenGL drawing.

Figure 1-1 OpenGL provides the reflections in iChat

This chapter provides an overview of OpenGL and the interfaces your application uses on Mac OS X to tap
into it.

OpenGL Concepts

To understand how OpenGlL fits into Mac OS X and your application, you should first understand how OpenGL
is designed.

OpenGL Concepts 19
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

20

CHAPTER 1
OpenGL on the Mac Platform

OpenGL Implements a Client-Server Model

OpenGL uses a client-server model, as shown in Figure 1-2. When your application calls an OpenGL function,
it talks to an OpenGL client. The client delivers drawing commands to an OpenGL server. The nature of the
client, the server, and the communication path between them is specific to each implementation of OpenGL.
For example, the server and clients could be on different computers, or they could be different processes on
the same computer.

Figure 1-2 OpenGL client-server model

[Application]

g

[OpenGL client]

g

[OpenGL server]

A client-server model allows the graphics workload to be divided between the client and the server. For
example, all Macintosh computers ship with dedicated graphics hardware that is optimized to perform
graphics calculations in parallel. Figure 1-3 shows a common arrangement of CPUs and GPUs. With this
hardware configuration, the OpenGL client executes on the CPU and the server executes on the GPU.

Figure 1-3 Graphics platform model

(System ~
CcPU e
Core Core | |l [Core:lU C°fe:|u Core:|
[core |{[Core | [Core |
RAM | | — |
A J

OpenGL Commands Can Be Executed Asynchronously

A benefit of the OpenGL client-server model is that the client can return control to the application before
the command has finished executing. An OpenGL client may also buffer or delay execution of OpenGL
commands. If OpenGL required all commands to complete before returning control to the application, then
either the CPU or the GPU would be idle waiting for the other to provide it data, resulting in reduced
performance.

Some OpenGL commands implicitly or explicitly require the client to wait until some or all previously submitted
commands have completed. OpenGL applications should be designed to reduce the frequency of client-server
synchronizations. See “OpenGL Application Design Strategies” (page 79) for more information on how to
design your OpenGL application.

OpenGL Concepts
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

OpenGL Commands Are Executed In Order

OpenGL guarantees that commands are executed in the order they are received by OpenGL.

OpenGL Copies Client Data at Call-Time

When an application calls an OpenGL function, the OpenGL client copies any data provided in the parameters
before returning control to the application. For example, if a parameter points at an array of vertex data
stored in application memory, OpenGL must copy that data before returning. Therefore, an application is
free to change memory it owns regardless of calls it makes to OpenGL.

The data that the client copies is often reformatted before it is transmitted to the server. Copying, modifying,
and transmitting parameters to the server adds overhead to calling OpenGL. Applications should be designed
to minimize copy overhead.

OpenGL Relies on Platform-Specific Libraries For Critical Functionality

OpenGL provides a rich set of cross-platform drawing commands, but does not define functions to interact
with an operating system’s graphics subsystem. Instead, OpenGL expects each implementation to define an
interface to create rendering contexts and associate them with the graphics subsystem. A rendering context
holds all of the data stored in the OpenGL state machine. Allowing multiple contexts allows the state in one
machine to be changed by an application without affecting other contexts.

Associating OpenGL with the graphic subsystem usually means allowing OpenGL content to be rendered to
a specific window. When content is associated with a window, the implementation creates whatever resources
are required to allow OpenGL to render and display images.

OpenGL in Mac OS X

OpenGL in Mac OS X implements the OpenGL client-server model using a common OpenGL framework and
plug-in drivers. The framework and driver combine to implement the client portion of OpenGL, as shown in
Figure 1-4. Dedicated graphics hardware provides the server. Although this is the common scenario, Apple
also provides a software renderer implemented entirely on the CPU.

OpenGL in Mac OS X 21
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

22

CHAPTER 1
OpenGL on the Mac Platform

Figure 1-4 MacOS X OpenGL driver model

(Application]

&

OpenGL client
Runs on CPU
OpenGL framework
(OpenGL driver]
VAN —
OpenGL server
(Graphics hardware }—— Runs on GPU

Mac OS X supports a display space that can include multiple dissimilar displays, each driven by different
graphics cards with different capabilities. In addition, multiple OpenGL renderers can drive each graphics
card. To accommodate this versatility, OpenGL for Mac OS X is segmented into well-defined layers: a window
system layer, a framework layer, and a driver layer, as shown in Figure 1-5. This segmentation allows for
plug-in interfaces to both the window system layer and the framework layer. Plug-in interfaces offer flexibility
in software and hardware configuration without violating the OpenGL standard.

Figure 1-5 Layers of OpenGL for Mac OS X

Application

Window system layer

s

Common OpenGL framework

Driver layer

[Software GLD plug-in] [ATI GLD plug-in] [NVIDIA GLD plug-in] [Intel GLD plug-in]

Hardware

OpenGL in Mac OS X
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

The window system layer is a Mac OS X—specific layer that your application uses to create OpenGL rendering
contexts and associate them with the Mac OS X windowing system. The NSOpenGL classes and Core OpenGL
(CGL) APl also provide some additional controls for how OpenGL operates on that context. See “OpenGL APIs
Specific to Mac OS X” (page 23) for more information. Finally, this layer also includes the OpenGL libraries—GL,
GLU, and GLUT. (See “Apple-Implemented OpenGL Libraries” (page 24) for details.)

The common OpenGL framework layer is the software interface to the graphics hardware. This layer contains
Apple's implementation of the OpenGL specification.

The driver layer contains the optional GLD plug-in interface and one or more GLD plug-in drivers, which
may have different software and hardware support capabilities. The GLD plug-in interface supports third-party
plug-in drivers, allowing third-party hardware vendors to provide drivers optimized to take best advantage
of their graphics hardware.

Accessing OpenGL Within Your Application

The programming interfaces that your application calls fall into two categories—those specific to the Macintosh
platform and those defined by the OpenGL Working Group. The Apple-specific programming interfaces are
what Cocoa applications use to communicate with the Mac OS X windowing system. These APIs don't create
OpenGL content, they manage content, direct it to a drawing destination, and control various aspects of the
rendering operation. Your application calls the OpenGL APIs to create content. OpenGL routines accept
vertex, pixel, and texture data and assemble the data to create an image. The final image resides in a
framebuffer, which is presented to the user through the windowing-system specific API.

Figure 1-6 The programing interfaces used for OpenGL content
GLUT application Cocoa application
GLUT NSOpenGL
classes
CGL OpenGL

OpenGL engine and drivers

OpenGL APIs Specific to Mac OS X

Mac OS X offers two easy-to-use APIs that are specific to the Macintosh platform: the NSOpenGL classes and
the CGL API. Throughout this document, these APIs are referred to as the Apple-specific OpenGL APIs.

Cocoa provides many classes specifically for OpenGL:

Accessing OpenGL Within Your Application 23
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

24

CHAPTER 1
OpenGL on the Mac Platform

e The NSOpenGLContext class implements a standard OpenGL rendering context.

e The NSOpenGLPixelFormat class is used by an application to specify the parameters used to create
the OpenGL context.

e The NSOpenGLView class is a subclass of NSView that uses NSOpenGLContext and
NSOpenGLPixelFormat to display OpenGL content in a view. Applications that subclass NSOpenGLView
do not need to directly subclass NSOpenGLPixelFormat or NSOpenGLContext. Applications that need
customization or flexibility, can subclass NSView and create NSOpenGLPixelFormat and
NSOpenGLContext objects manually.

e The NSOpenGLLayer class allows your application to integrate OpenGL drawing with Core Animation.
e The NSOpenGLPixelBuffer class provides hardware-accelerated offscreen drawing.

The Core OpenGL API (CGL) resides in the OpenGL framework and is used to implement the NSOpenGL
classes. CGL offers the most direct access to system functionality and provides the highest level of graphics

performance and control for drawing to the full screen. CGL Reference provides a complete description of
this API.

Apple-Implemented OpenGL Libraries

Mac OS X also provides the full suite of graphics libraries that are part of every implementation of OpenGL:
GL, GLU, GLUT, and GLX. Two of these—GL and GLU—provide low-level drawing support. The other two—GLUT
and GLX—support drawing to the screen.

Your application typically interfaces directly with the core OpenGL library (GL), the OpenGL Utility library
(GLU), and the OpenGL Utility Toolkit (GLUT). The GL library provides a low-level modular API that allows
you to define graphical objects. It supports the core functions defined by the OpenGL specification. It provides
support for two fundamental types of graphics primitives: objects defined by sets of vertices, such as line
segments and simple polygons, and objects that are pixel-based images, such as filled rectangles and bitmaps.
The GL API does not handle complex custom graphical objects; your application must decompose them into
simpler geometries.

The GLU library combines functions from the GL library to support more advanced graphics features. It runs
on all conforming implementations of OpenGL. GLU is capable of creating and handling complex polygons
(including quartic equations), processing nonuniform rational b-spline curves (NURBs), scaling images, and
decomposing a surface to a series of polygons (tessellation).

The GLUT library provides a cross-platform API for performing operations associated with the user windowing
environment—displaying and redrawing content, handling events, and so on. It is implemented on most
UNIX, Linux, and Windows platforms. Code that you write with GLUT can be reused across multiple platforms.
However, such code is constrained by a generic set of user interface elements and event-handling options.
This document does not show how to use GLUT. The GLUTBasics sample project shows you how to get started
with GLUT.

GLX is an OpenGL extension that supports using OpenGL within a window provided by the X Window system.
X11 for Mac OS X is available as an optional installation using the Mac OS X installation DVD. (It's not shown
in Figure 1-6 (page 23).) See OpenGL Programming for the X Window System, published by Addison Wesley
for more information.

Accessing OpenGL Within Your Application
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

This document does not show how to use these libraries. For detailed information, either go to the OpenGL
Foundation website http://www.opengl.org or see the most recent version of "The Red book"—OpenGL
Programming Guide, published by Addison Wesley.

Terminology

There are a number of terms that you'll want to understand so that you can write code effectively using
OpenGL: renderer, renderer attributes, buffer attributes, pixel format objects, rendering contexts, drawable
objects, and virtual screens. As an OpenGL programmer, some of these may seem familiar to you. However,
understanding the Apple-specific nuances of these terms will help you get the most out of OpenGL on the
Macintosh platform.

Renderer

Arenderer is the combination of the hardware and software that OpenGL uses to execute OpenGL commands.
The characteristics of the final image depend on the capabilities of the graphics hardware associated with
the renderer and the device used to display the image. Mac OS X supports graphics accelerator cards with
varying capabilities, as well as a software renderer. It is possible for multiple renderers, each with different
capabilities or features, to drive a single set of graphics hardware. To learn how to determine the exact
features of a renderer, see “Determining the OpenGL Capabilities Supported by the Renderer” (page 73).

Renderer and Buffer Attributes

Your application uses renderer and buffer attributes to communicate renderer and buffer requirements to
OpenGL. The Apple implementation of OpenGL dynamically selects the best renderer for the current rendering
task and does so transparently to your application. If your application has very specific rendering requirements
and wants to control renderer selection, it can do so by supplying the appropriate renderer attributes. Buffer
attributes describe such things as color and depth buffer sizes, and whether the data is stereoscopic or
mMOoNOoscopic.

Renderer and buffer attributes are represented by constants defined in the Apple-specific OpenGL APIs.
OpenGL uses the attributes you supply to perform the setup work needed prior to drawing content. “Drawing
to a Window or View” (page 35) provides a simple example that shows how to use renderer and buffer
attributes. “Choosing Renderer and Buffer Attributes” (page 55) explains how to choose renderer and buffer
attributes to achieve specific rendering goals.

Pixel Format Objects

A pixel format describes the format for pixel data storage in memory. The description includes the number
and order of components as well as their names (typically red, blue, green and alpha). It also includes other
information, such as whether a pixel contains stencil and depth values. A pixel format object is an opaque
data structure that holds a pixel format along with a list of renderers and display devices that satisfy the
requirements specified by an application.

Terminology 25
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org
http://www.opengl.org/documentation/red_book/
http://www.opengl.org/documentation/red_book/

26

CHAPTER 1
OpenGL on the Mac Platform

Each of the Apple-specific OpenGL APIs defines a pixel format data type and accessor routines that you can
use to obtain the information referenced by this object. See “Virtual Screens” (page 27) for more information
on renderer and display devices.

OpenGL Profiles

OpenGL profiles are new in Mac OS X 10.7. An OpenGL profile is a renderer attribute used to request a
specific version of the OpenGL specification. When your application provides an OpenGL profile as part of
its renderer attributes, it only receives renderers that provide the complete feature set promised by that
profile. The render can implement a different version of the OpenGL so long as the version it supplies to your
application provides the same functionality that your application requested.

Rendering Contexts

A rendering context, or simply context, contains OpenGL state information and objects for your application.
State variables include such things as drawing color, the viewing and projection transformations, lighting
characteristics, and material properties. State variables are set per context. When your application creates
OpenGL objects (for example, textures), these are also associated with the rendering context.

Although your application can maintain more than one context, only one context can be the current context
in a thread. The current context is the rendering context that receives OpenGL commands issued by your
application.

Drawable Objects

A drawable object refers to an object allocated by the windowing system that can serve as an OpenGL
framebuffer. A drawable object is the destination for OpenGL drawing operations. The behavior of drawable
objects is not part of the OpenGL specification, but is defined by the Mac OS X windowing system.

A drawable object can be any of the following: a Cocoa view, offscreen memory, a full-screen graphics device,
or a pixel buffer.

Note: A pixel buffer (pbuffer) is an OpenGL buffer designed for hardware-accelerated offscreen drawing
and as a source for texturing. An application can render an image into a pixel buffer and then use the pixel
buffer as a texture for other OpenGL commands. Although pixel buffers are supported on Apple’s
implementation of OpenGL, Apple recommends you use framebuffer objects instead. See “Drawing
Offscreen” (page 45) for more information on offscreen rendering.

Before OpenGL can draw to a drawable object, the object must be attached to a rendering context. The
characteristics of the drawable object narrow the selection of hardware and software specified by the rendering
context. Apple’s OpenGL automatically allocates buffers, creates surfaces, and specifies which renderer is the
current renderer.

The logical flow of data from an application through OpenGL to a drawable object is shown in Figure 1-7.
The application issues OpenGL commands that are sent to the current rendering context. The current context,
which contains state information, constrains how the commands are interpreted by the appropriate renderer.
The renderer converts the OpenGL primitives to an image in the framebuffer. (See also “Running an OpenGL
Program in Mac OS X ” (page 31).)

Terminology
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

Figure 1-7 Data flow through OpenGL

Possible renderers Rendered Image
L Drawable
Application objects Ty o
S ;/f 4 OpenGL
Ny 7

buffers :>

-Xm—=4Z00

Current

Virtual Screens

The characteristics and quality of the OpenGL content that the user sees depend on both the renderer and
the physical display used to view the content. The combination of renderer and physical display is called a
virtual screen. This important concept has implications for any OpenGL application running on Mac OS X.

A simple system, with one graphics card and one physical display, typically has two virtual screens. One
virtual screen consists of a hardware-based renderer and the physical display and the other virtual screen
consists of a software-based renderer and the physical display. Mac OS X provides a software-based renderer
as a fallback. It's possible for your application to decline the use of this fallback. You'll see how in “Choosing
Renderer and Buffer Attributes” (page 55).

The green rectangle around the OpenGL image in Figure 1-8 surrounds a virtual screen for a system with
one graphics card and one display. Note that a virtual screen is not the physical display, which is why the
green rectangle is drawn around the application window that shows the OpenGL content. In this case, it is
the renderer provided by the graphics card combined with the characteristics of the display.

Terminology 27
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

Figure 1-8 A virtual screen displays what the user sees

/Virtual screen

/

Graphics card

Because a virtual screen is not simply the physical display, a system with one display can use more than one
virtual screen at a time, as shown in Figure 1-9. The green rectangles are drawn to point out each virtual
screen. Imagine that the virtual screen on the right side uses a software-only renderer and that the one on
the left uses a hardware-dependent renderer. Although this is a contrived example, it illustrates the point.

28 Terminology
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

Figure 1-9 Two virtual screens

Virtual screen 1 Virtual screen 2
/ (Hardware renderer) / (Software renderer)

Graphics card

It's also possible to have a virtual screen that can represent more than one physical display. The green
rectangle in Figure 1-10 is drawn around a virtual screen that spans two physical displays. In this case, the
same graphics hardware drives a pair of identical displays. A mirrored display also has a single virtual screen
associated with multiple physical displays.

Figure 1-10 A virtual screen can represent more than one physical screen

Identical displays M /Virtual screen

Dual-headed
graphics card

Terminology 29
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

30

CHAPTER 1
OpenGL on the Mac Platform

The concept of a virtual screen is particularly important when the user drags an image from one physical
screen to another. When this happens, the virtual screen may change, and with it, a number of attributes of
the imaging process, such as the current renderer, may change. With the dual-headed graphics card shown
in Figure 1-10 (page 29), dragging between displays preserves the same virtual screen. However, Figure 1-11
shows the case for which two displays represent two unique virtual screens. Not only are the two graphics
cards different, but it's possible that the renderer, buffer attributes, and pixel characteristics are different. A
change in any of these three items can result in a change in the virtual screen.

When the user drags an image from one display to another, and the virtual screen is the same for both

displays, the image quality should appear similar. However, for the case shown in Figure 1-11, the image
quality can be quite different.

Figure 1-1 Two virtual screens and two graphics cards

/Virtual screen 1

/Virtual screen 2

=

Graphics card 1

Graphics card 2

OpenGL for Mac OS X transparently manages rendering across multiple monitors. A user can drag a window
from one monitor to another, even though their display capabilities may be different or they may be driven
by dissimilar graphics cards with dissimilar resolutions and color depths.

OpenGL dynamically switches renderers when the virtual screen that contains the majority of the pixels in
an OpenGL window changes. When a window is split between multiple virtual screens, the framebuffer is
rasterized entirely by the renderer driving the screen that contains the largest segment of the window. The
regions of the window on the other virtual screens are drawn by copying the rasterized image. When the
entire OpenGL drawable object is displayed on one virtual screen, there is no performance impact from
multiple monitor support.

Applications need to track virtual screen changes and, if appropriate, update the current application state
to reflect changes in renderer capabilities. See “Working with Rendering Contexts” (page 63).

Terminology
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

Offline Renderer

An offline renderer is one that is not currently associated with a display. For example, a graphics processor
might be powered down to conserve power, or there might not be a display hooked up to the graphics card.
Offline renderers are not normally visible to your application, but your application can enable them by adding
the appropriate renderer attribute. Taking advantage of offline renderers is useful because it gives the user
a seamless experience when they plug in or remove displays.

For more information about configuring a context to see offline renderers, see “Choosing Renderer and Buffer
Attributes” (page 55). To enable your application to switch to a renderer when a display is attached, see
“Update the Rendering Context When the Renderer or Geometry Changes” (page 63).

Running an OpenGL Program in Mac OS X

Figure 1-12 shows the flow of data in an OpenGL program, regardless of the platform that the program runs
on.

Figure 1-12 The flow of data through OpenGL

Vertex shading

and per-vertex
operations

Fragment shading
Rasterization j> and per-fragment ﬁ> Framebuffer
operations

:n/ Per-pixel :v,\ Texture
operations assembly
O ZaN

| |
Pixel data QDDDD Oooooooooooooooooooon

Per-vertex operations include such things as applying transformation matrices to add perspective or to clip,
and applying lighting effects. Per-pixel operations include such things as color conversion and applying blur
and distortion effects. Pixels destined for textures are sent to texture assembly, where OpenGL stores textures
until it needs to apply them onto an object.

Oooooooogooooan

OpenGL rasterizes the processed vertex and pixel data, meaning that the data are converged to create
fragments. A fragment encapsulates all the values for a pixel, including color, depth, and sometimes texture
values. These values are used during anti-aliasing and any other calculations needed to fill shapes and to
connect vertices.

Per-fragment operations include applying environment effects, depth and stencil testing, and performing
other operations such as blending and dithering. Some operations—such as hidden-surface removal—end
the processing of a fragment. OpenGL draws fully processed fragments into the appropriate location in the
framebulffer.

Running an OpenGL Program in Mac OS X 31
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

The dashed arrows in Figure 1-12 indicate reading pixel data back from the framebuffer. They represent
operations performed by OpenGL functions suchas g1ReadPixels, gl CopyPixels,and gl1CopyTexImage2D.

So far you've seen how OpenGL operates on any platform. But how do Cocoa applications provide data to
the OpenGL for processing? A Mac OS X application must perform these tasks:

e Setup a list of buffer and renderer attributes that define the sort of drawing you want to perform. (See
“Renderer and Buffer Attributes” (page 25).)

e Request the system to create a pixel format object that contains a pixel format that meets the constraints
of the buffer and render attributes and a list of all suitable combinations of displays and renderers. (See
“Pixel Format Objects” (page 25) and “Virtual Screens” (page 27).)

e Create a rendering context to hold state information that controls such things as drawing color, view
and projection matrices, characteristics of light, and conventions used to pack pixels. When you set up
this context, you must provide a pixel format object because the rendering context needs to know the
set of virtual screens that can be used for drawing. (See “Rendering Contexts” (page 26).)

e Bind a drawable object to the rendering context. The drawable object is what captures the OpenGL
drawing sent to that rendering context. (See “Drawable Objects” (page 26).)

« Make the rendering context the current context. OpenGL automatically targets the current context.
Although your application might have several rendering contexts set up, only the current one is the
active one for drawing purposes.

e Issue OpenGL drawing commands.

e Flush the contents of the rendering context. This causes previously submitted commands to be rendered
to the drawable object and displays them to the user.

The tasks described in the first five bullet items are platform-specific. “Drawing to a Window or View” (page
35) provides simple examples of how to perform them. As you read other parts of this document, you'll see
there are a number of other tasks that, although not mandatory for drawing, are really quite necessary for
any application that wants to use OpenGL to perform complex 3D drawing efficiently on a wide variety of
Macintosh systems.

Making Great OpenGL Applications on the Macintosh

32

OpenGL lets you create applications with outstanding graphics performance as well as a great user
experience—but neither of these things come for free. Your application performs best when it works with
OpenGL rather than against it. With that in mind, here are guidelines you should follow to create
high-performance, future-looking OpenGL applications:

e Ensure your application runs successfully with offline renderers and multiple graphics cards.

Apple ships many sophisticated hardware configurations. Your application should handle renderer
changes seamlessly. You should test your application on a Mac with multiple graphics processors and
include tests for attaching and removing displays. For more information on how to implement hot
plugging correctly, see “Working with Rendering Contexts” (page 63)

« Avoid finishing and flushing operations.

Making Great OpenGL Applications on the Macintosh
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

Pay particular attention to OpenGL functions that force previously submitted commands to complete.
Synchronizing the graphics hardware to the CPU may result in dramatically lower performance.
Performance is covered in detail in “OpenGL Application Design Strategies” (page 79).

e Use multithreading to improve the performance of your OpenGL application.

Many Macs support multiple simultaneous threads of execution. Your application should take advantage
of concurrency. Well-behaved applications can take advantage of concurrency in just a few line of code.
See “Concurrency and OpenGL” (page 133).

e Use buffer objects to manage your data.

Vertex buffer objects (VBOs) allow OpenGL to manage your application’s vertex data. Using vertex buffer
objects gives OpenGL more opportunities to cache vertex data in a format that is friendly to the graphics
hardware, improving application performance. For more information see “Best Practices for Working
with Vertex Data” (page 93).

Similarly, pixel buffer objects (PBOs) should be used to manage your image data. See “Best Practices for
Working with Texture Data” (page 105)

e Use framebuffer objects (FBOs) when you need to render to offscreen memory.

Framebuffer objects allow your application to create offscreen rendering targets without many of the
limitations of platform-dependent interfaces. See “Rendering to a Framebuffer Object” (page 45).

e Generate objects before binding them.

Earlier version of OpenGL allowed your applications to create its own object names before binding them.
However, you should avoid this. Always use the OpenGL API to generate object names.

e Migrate your OpenGL Applications to OpenGL 3.2

The OpenGL 3.2 Core profile provides a clean break from earlier versions of OpenGL in favor of a simpler
shader-based pipeline. For better compatibility with future hardware and Mac OS X releases, migrate
your applications away from legacy versions of OpenGL. Many of the recommendations listed above are
required when your application uses OpenGL 3.2.

e Harness the power of Apple’s development tools.

Apple provides many tools that help create OpenGL applications and analyze and tune their performance.
Learning how to use these tools helps you create fast, reliable applications. “Tuning Your OpenGL
Application” (page 141) describes many of these tools.

Making Great OpenGL Applications on the Macintosh 33
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 1
OpenGL on the Mac Platform

34 Making Great OpenGL Applications on the Macintosh
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

The OpenGL programming interface provides hundreds of drawing commands that drive graphics hardware.
It doesn't provide any commands that interface with the windowing system of an operating system. Without
a windowing system, the 3D graphics of an OpenGL program are trapped inside the GPU. Figure 2-1 shows
a cube drawn to a Cocoa view.

Figure 2-1 OpenGL content in a Cocoa view

806 Window

This chapter shows how to display OpenGL drawing onscreen using the APIs provided by Mac OS X. (This
chapter does not show how to use GLUT.) The first section describes the overall approach to drawing onscreen
and provides an overview of the functions and methods used by each API.

General Approach

To draw your content to a view or a layer, your application uses the NSOpenGL classes from within the Cocoa
application framework. While the CGL API is used by your applications only to create full-screen content,
every NSOpenGLContext object contains a CGL context object. This object can be retrieved from the
NSOpenGLContext when your application needs to reference it directly. To show the similarities between
the two, this chapter discusses both the NSOpenGL classes and the CGL API.

To draw OpenGL content to a window or view using the NSOpenGL classes, you need to perform these tasks:
1. Set up the renderer and buffer attributes that support the OpenGL drawing you want to perform.

Each of the OpenGL APIs in Mac OS X has its own set of constants that represent renderer and buffer
attributes. For example, the all-renderers attribute is represented by the NSOpenGLPFAAT1Renderers
constant in Cocoa and the kCGLPFAATTRenderers constant in the CGL API.

General Approach 35
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

2. Request, from the operating system, a pixel format object that encapsulates pixel storage information
and the renderer and buffer attributes required by your application. The returned pixel format object
contains all possible combinations of renderers and displays available on the system that your program
runs on and that meets the requirements specified by the attributes. The combinations are referred to
as virtual screens. (See “Virtual Screens” (page 27).)

There may be situations for which you want to ensure that your program uses a specific renderer.
“Choosing Renderer and Buffer Attributes” (page 55) discusses how to set up an attributes array that
guarantees the system passes back a pixel format object that uses only that renderer.

If an error occurs, your application may receive a NULL pixel format object. Your application must handle
this condition.

3. Create a rendering context and bind the pixel format object to it. The rendering context keeps track of
state information that controls such things as drawing color, view and projection matrices, characteristics
of light, and conventions used to pack pixels.

Your application needs a pixel format object to create a rendering context.

4. Release the pixel format object. Once the pixel format object is bound to a rendering context, its resources
are no longer needed.

5. Bind a drawable object to the rendering context. For a windowed context, this is typically a Cocoa view.

6. Make the rendering context the current context. The system sends OpenGL drawing to whichever
rendering context is designated as the current one. It's possible for you to set up more than one rendering
context, so you need to make sure that the one you want to draw to is the current one.

7. Perform your drawing.

The specific functions or methods that you use to perform each of the steps are discussed in the sections
that follow.

Drawing to a Cocoa View

36

There are two ways to draw OpenGL content to a Cocoa view. If your application has modest drawing
requirements, then you can use the NSOpenGLV1iew class. See “Drawing to an NSOpenGLView Class: A
Tutorial” (page 37).

If your application is more complex and needs to support drawing to multiple rendering contexts, you may
want to consider subclassing the NSV i ew class. For example, if your application supports drawing to multiple
views at the same time, you need to set up a custom NSView class. See “Drawing OpenGL Content to a
Custom View” (page 39).

Drawing to a Cocoa View
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

Drawing to an NSOpenGLView Class: A Tutorial

The NSOpenGLView class is a lightweight subclass of the NSView class that provides convenience methods
for setting up OpenGL drawing. An NSOpenGLVYiew object maintainsan NSOpenGLPixelFormat objectand
an NSOpenGLContext object into which OpenGL calls can be rendered. It provides methods for accessing
and managing the pixel format object and the rendering context, and handles notification of visible region
changes.

An NSOpenGLView object does not support subviews. You can, however, divide the view into multiple
rendering areas using the OpenGL function g1Viewport.

This section provides step-by-step instructions for creating a simple Cocoa application that draws OpenGL
content to a view. The tutorial assumes that you know how to use Xcode and Interface Builder. If you have
never created an application using the Xcode development environment, see Getting Started with Tools.

1. Create a Cocoa application project named Golden Triangle.
2. Add the OpenGL framework to your project.

3. Add a new file to your project using the Objective-C class template. Name the file MyOpenGLView.m
and create a header file for it.

4. OpentheMyOpenGLView.h file and modify the file so that it looks like the code shown in Listing 2-1 to
declare the interface.

Listing 2-1 The interface for MyOpenGLView

ffimport <Cocoa/Cocoa.h>

@interface MyOpenGLView : NSOpenGLView
{

}

- (void) drawRect: (NSRect) bounds;
@end

5. Save and close the MyOpenGLView.h file.

6. Open the MyOpenGLView.m file and include the g1.h file, as shown in Listing 2-2.
Listing 2-2 Include OpenGL/g1.h

#fimport "MyOpenGLView.h"
#finclude <OpenGL/g1.h>

@implementation MyOpenGLView
@end

7. Implementthe drawRect: method as shown in Listing 2-3, adding the code afterthe@implementation
statement. The method sets the clear color to black and clears the color buffer in preparation for drawing.
Then, drawRect : calls your drawing routine, which you'll add next. The OpenGL command g1FTush
draws the content provided by your routine to the view.

Drawing to a Cocoa View 37
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://developer.apple.com/referencelibrary/GettingStarted/GS_Tools/index.html

38

CHAPTER 2

Drawing to a Window or View

Listing 2-3 The drawRect: method for MyOpenGLView

-(void) drawRect: (NSRect) bounds
{
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
drawAnObject();
glFlush();
}

Add the code to perform your drawing. In your own application, you'd perform whatever drawing is
appropriate. But for the purpose of learning how to draw OpenGL content to a view, add the code shown
in Listing 2-4. This code draws a 2D, gold-colored triangle, whose dimensions are not quite the dimensions
of a true golden triangle, but good enough to show how to perform OpenGL drawing.

Make sure that you insert this routine before the drawRect : method in the MyOpenGLYiew.m file.

Listing 2-4 Code that draws a triangle using OpenGL commands

10.

1.

12.

13.

static void drawAnObject ()
{
glColor3f(1.0f, 0.85f, 0.35f);
g1Begin(GL_TRIANGLES);
{
glVertex3f(0.0, 0.6, 0.0);
glVertex3f(-0.2, -0.3, 0.0);
glVertex3f(0.2, -0.3 ,0.0);
}
glEnd();
}

Open the MainMenu. xib in Interface Builder.

Change the window’s title to Golden Triangle.

Drag an NSOpenGLView object from the Library to the window. Resize the view to fit the window.
Change the class of this object to MyOpenGLView.

Open the Attributes pane of the inspector for the view, and take a look at the renderer and buffer
attributes that are available to set. These settings save you from setting attributes programmatically.

Only those attributes listed in the Interface Builder inspector are set when the view is instantiated. If you
need additional attributes, you need to set them programmatically.

Drawing to a Cocoa View
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

14. Build and run your application. You should see content similar to the triangle shown in Figure 2-2.

Figure 2-2 The output from the Golden Triangle program

806 Golden Triangle

This example is extremely simple. In a more complex application, you'd want to do the following:

e Replace the immediate-mode drawing commands with commands that persist your vertex data inside
OpenGL. See “OpenGL Application Design Strategies” (page 79).

e Intheinterface for the view, declare a variable that indicates whether the view is ready to accept drawing.
A view is ready for drawing only if it is bound to a rendering context and that context is set to be the
current one.

e Cocoa does not call initialization routines for objects created in Interface Builder. If you need to perform
any initialization tasks, do so in the awakeFromNib method for the view. Note that because you set
attributes in the inspector, there is no need to set them up programmatically unless you need additional
ones. There is also no need to create a pixel format object programmatically; it is created and loaded
when Cocoa loads the nib file.

e YourdrawRect: method should test whether the view is ready to draw into. You need to provide code
that handles the case when the view is not ready to draw into.

e OpenGL is at its best when doing real-time and interactive graphics. Your application needs to provide
a timer or support user interaction. For more information about creating animation in your OpenGL
application, see “Synchronize with the Screen Refresh Rate” (page 85).

Drawing OpenGL Content to a Custom View

This section provides an overview of the key tasks you need to perform to customize the NSView class for
OpenGL drawing. Before you create a custom view for OpenGL drawing, you should read “Creating a Custom
View” in View Programming Guide.

Drawing to a Cocoa View 39
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

40

CHAPTER 2

Drawing to a Window or View

When you subclass the NSView class to create a custom view for OpenGL drawing, you override any Quartz
drawing or other content that is in that view. To set up a custom view for OpenGL drawing, subclass NSView
and create two private variables—one which is an NSOpenGLContext object and the other an
NSOpenGLPixelFormat object, as shown in Listing 2-5.

Listing 2-5 The interface for a custom OpenGL view

@class NSOpenGLContext, NSOpenGLPixelFormat;

@interface CustomOpenGLView : NSView
{
@private
NSOpenGLContext* _openGLContext;
NSOpenGLPixelFormat* _pixelFormat;

+ (NSOpenGLPixelFormat*)defaultPixelFormat;

- (id)initWithFrame: (NSRect)frameRect pixelFormat: (NSOpenGLPixelFormat*)format;
- (void)setOpenGLContext: (NSOpenGLContext*)context;

- (NSOpenGLContext*)openGLContext;

- (void)clearGLContext;

- (void)prepareOpenGL;

- (void)update;

- (void)setPixelFormat: (NSOpenGLPixelFormat*)pixelFormat;

- (NSOpenGLPixelFormat*)pixelFormat;

@end

In addition to the usual methods for the private variables (openGLContext, setOpenGLContext:,
pixelFormat,and setPixelFormat:)you need to implement the following methods:

e + (NSOpenGLPixelFormat*) defaultPixelFormat

Use this method to allocate and initialize the NSOpenGLPixelFormat object.
e - (void) clearGLContext

Use this method to clear and release the NSOpenGLContext object.
e - (void) prepareOpenGL

Use this method to initialize the OpenGL state after creating the NSOpenGLContext object.

You need to override the update and initWithFrame: methods of the NSView class.
e update calls the update method of the NSOpenGLContext class.

e initWithFrame:pixelFormat retains the pixel format and sets up the notification
NSViewGlobalFrameDidChangeNotification. See Listing 2-6.

Listing 2-6 The initWithFrame:pixelFormat: method

- (id)initWithFrame: (NSRect)frameRect pixelFormat:(NSOpenGLPixelFormat*)format
{
self = [super initWithFrame:frameRect];
if (self !=nil) {
_pixelFormat = [format retain];

Drawing to a Cocoa View
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(_surfaceNeedsUpdate:)
name:NSViewGlobalFrameDidChangeNotification
object:self];

}

return self;

}

- (void) _surfaceNeedsUpdate: (NSNotification*)notification
{

[self updatel;
}

If the custom view is not guaranteed to be in a window, you must also override the TockFocus method of
the NSView class. See Listing 2-7. This method makes sure that the view is locked prior to drawing and that
the context is the current one.

Listing 2-7 The TockFocus method

- (void)lockFocus
{
NSOpenGLContext* context = [self openGLContext];

[super lockFocus];
if ([context view] != self) {
[context setView:self];
}
[context makeCurrentContext];
}

The reshape method is not supported by the NSV1iew class. You need to update bounds in the drawRect:
method, which should take the form shown in Listing 2-8.

Listing 2-8 The drawRect method for a custom view

-(void) drawRect

{
[context makeCurrentContext];
//Perform drawing here
[context flushBuffer];

}

There may be other methods that you want to add. For example, you might consider detaching the context
from the drawable object when the custom view is moved from the window, as shown in Listing 2-9.

Listing 2-9 Detaching the context from a drawable object

-(void) viewDidMoveToWindow
{
[super viewDidMoveToWindow];
if ([self window] == nil)
[context clearDrawablel;

Drawing to a Cocoa View 1
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

42 Drawing to a Cocoa View
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

In Mac OS X, you have the option to draw to the entire screen. This is a common scenario for games and
other immersive applications, and Mac OS X applies additional optimizations to improve the performance
of full-screen contexts.

Figure 3-1 Drawing OpenGL content to the full screen

Mac OS X v10.6 and later automatically optimize the performance of screen-sized windows, allowing your
application to take complete advantage of the window server environment on Mac OS X. For example, critical
operating system dialogs may be displayed over your content when necessary.

Creating a Full-Screen Application

Creating a full-screen context is very simple. Your application should follow these steps:
1. Create a screen-sized window on the display you want to take over:
NSRect mainDisplayRect = [[NSScreen mainScreen] frame];
NSWindow *fullScreenWindow = [[NSWindow alloc] initWithContentRect:
mainDisplayRect styleMask:NSBorderlessWindowMask backing:NSBackingStoreBuffered
defer:YEST;
2. Setthe window level to be above the menu bar.:
[fullScreenWindow setlevel:NSMainMenuWindowlLevel+1];

3. Perform any other window configuration you desire:

[fullScreenWindow setOpaque:YES];
[fullScreenWindow setHidesOnDeactivate:YES];

Creating a Full-Screen Application 43
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

4. Create a view with a double-buffered OpenGL context and attach it to the window:

NSOpenGLPixelFormatAttribute attrs[] =
{
NSOpenGLPFADoubleBuffer,
0
b
NSOpenGLPixelFormat* pixelFormat = [[NSOpenGLPixelFormat alloc]
initWithAttributes:attrs];

NSRect viewRect = NSMakeRect(0.0, 0.0, mainDisplayRect.size.width,
mainDisplayRect.size.height);

MyOpenGLView *fullScreenView = [[MyOpenGLView alloc] initWithFrame:viewRect
pixelFormat: pixelFormat];

[fullScreenWindow setContentView: fullScreenView];

5. Show the window:

[fullScreenWindow makeKeyAndOrderFront:self];

That’s all you need to do. Your content is in a window that is above most other content, but because it is in
a window, Mac OS X can still show critical Ul elements above your content when necessary (such as error
dialogs). When there is no content above your full-screen window, Mac OS X automatically attempts to
optimize this context’s performance. For example, when your application calls f1ushBuffer on the
NSOpenGLContext object, the system may swap the buffers rather than copying the contents of the back
buffer to the front buffer. These performance optimizations are not applied when your application adds the
NSOpenGLPFABackingStore attribute to the context. Because the system may choose to swap the buffers
rather than copy them, your application must completely redraw the scene after every call tof TushBuffer.
For more information on NSOpenGLPFABackingStore, see “Ensuring That Back Buffer Contents Remain the
Same” (page 56).

Avoid changing the display resolution from that chosen by the user. If your application needs to render data
at a lower resolution for performance reasons, you can explicitly create a back buffer at the desired resolution
and allow OpenGL to scale those results to the display. See “Controlling the Back Buffer Size” (page 68).

44 Creating a Full-Screen Application
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

OpenGL applications may want to use OpenGL to render images without actually displaying them to the
user. For example, an image processing application might render the image, then copy that image back to
the application and save it to disk. Another useful strategy is to create intermediate images that are used
later to render additional content. For example, your application might want to render an image and use it
as a texture in a future rendering pass. For best performance, offscreen targets should be managed by
OpenGL. Having OpenGL manage offscreen targets allows you to avoid copying pixel data back to your
application, except when this is absolutely necessary.

Mac OS X offers two useful options for creating offscreen rendering targets:

« Framebuffer objects. The OpenGL framebuffer extension allows your application to create fully supported
offscreen OpenGL framebuffers. Framebuffer objects are fully supported as a cross-platform extension,
so they are the preferred way to create offscreen rendering targets. See “Rendering to a Framebuffer
Object” (page 45).

« Pixel buffer drawable objects. Pixel buffer drawable objects are an Apple-specific technology for creating
an offscreen target. Each of the Apple-specific OpenGL APIs provides routines to create an offscreen
hardware accelerated pixel buffer. Pixel buffers are recommended for use only when framebuffer objects
are not available. See “Rendering to a Pixel Buffer” (page 51).

Rendering to a Framebuffer Object

The OpenGL framebuffer extension (GL_EXT_framebuffer_object) allows applications to create offscreen
rendering targets from within OpenGL. OpenGL manages the memory for these framebuffers.

Note: Extensions are available on a per-renderer basis. Before you use framebuffer objects you must check
each renderer to make sure that it supports the extension. See “Detecting Functionality” (page 73) for more
information.

A framebuffer object (FBO) is similar to a drawable object, except a drawable object is a
window-system-specific object, whereas a framebuffer object is a window-agnostic object that's defined in
the OpenGL standard. After drawing to a framebuffer object, it is straightforward to read the pixel data to
the application, or to use it as source data for other OpenGL commands.

Framebuffer objects offer a number of benefits:
e They are window-system independent, which makes porting code easier.

e They are easy to set up and save memory. There is no need to set up attributes and obtain a pixel format
object.

e Theyare associated with a single OpenGL context, whereas each pixel buffer must be bound to a context.

Rendering to a Framebuffer Object 45
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

46

CHAPTER 4

Drawing Offscreen

e You can switch between them faster since there is no context switch as with pixel buffers. Because all
commands are rendered by a single context, no additional serialization is required.

e They can share depth buffers; pixel buffers cannot.

e You can use them for 2D pixel images and texture images.

Completeness is a key concept to understanding framebuffer objects. Completeness is a state that indicates
whether a framebuffer object meets all the requirements for drawing. You test for this state after performing
all the necessary setup work. If a framebuffer object is not complete, it cannot be used as the destination for
rendering operations and as a source for read operations.

Completeness is dependent on many factors that are not possible to condense into one or two statements,
but these factors are thoroughly defined in the OpenGL specification for the framebuffer object extension.

The specification describes the requirements for internal formats of images attached to the framebuffer, how
to determine if a format is color-, depth-, and stencil-renderable, as well as other requirements.

Prior to using framebuffer objects, read the OpenGL specification, which not only defines the framebuffer
object API, but provides detailed definitions of all the terms necessary to understand their use and shows
several code examples.

The remainder of this section provides an overview of how to use a framebuffer as either a texture or an
image. The functions used to set up textures and images are slightly different. The API for images uses the
renderbuffer terminology defined in the OpenGL specification. A renderbuffer image is simply a 2D pixel
image. The API for textures uses texture terminology, as you might expect. For example, one of the calls for
setting up a framebuffer object for a texture is g1 FramebufferTexture2DEXT, whereas the call for setting
up a framebuffer object foranimageis g1FramebufferRenderbufferEXT.You'll see how to set up a simple
framebuffer object for each type of drawing, starting first with textures.

Using a Framebuffer Object as a Texture

These are the basic steps needed to set up a framebuffer object for drawing a texture offscreen:

1. Make sure the framebuffer extension (GL_EXT_framebuffer_object)is supported on the system that
your code runs on. See “Determining the OpenGL Capabilities Supported by the Renderer” (page 73).

2. Check the renderer limits. For example, you might want to call the OpenGL function g1GetIntegerv
to check the maximum texture size (GL_MAX_TEXTURE_SIZE) or find out the maximum number of color
buffers you can attach to the framebuffer object(GL_MAX_COLOR_ATTACHMENTS_EXT).

3. Generate a framebuffer object name by calling the following function:
void glGenFramebufferstEXT (GLsizei n, GLuint *ids);
n is the number of framebuffer object names that you want to create.
On return, *ids points to the generated names.
4. Bind the framebuffer object name to a framebuffer target by calling the following function:
void glIBindFramebufferEXT(GLenum target, GLuint framebuffer);

target should be the constant GL_FRAMEBUFFER_EXT.

Rendering to a Framebuffer Object
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt

CHAPTER 4

Drawing Offscreen

framebuffer is set to an unused framebuffer object name.

On return, the framebuffer object is initialized to the state values described in the OpenGL specification
for the framebuffer object extension. Each attachment point of the framebuffer is initialized to the
attachment point state values described in the specification. The number of attachment points is equal
to GL_MAX_COLOR_ATTACHMENTS_EXT plus 2 (for depth and stencil attachment points).

Whenever a framebuffer object is bound, drawing commands are directed to it instead of being directed
to the drawable associated with the rendering context.

5. Generate a texture name.
void glGenTextures(GLsizei n, GLuint *textures);
n is the number of texture object names that you want to create.
On return, *textures points to the generated names.

6. Bind the texture name to a texture target.
void glBindTexture(GLenum target, GLuint texture);
target is the type of texture to bind.
texture is the texture name you just created.

7. Set up the texture environment and parameters.

8. Define the texture by calling the appropriate OpenGL function to specify the target, level of detail,
internal format, dimensions, border, pixel data format, and texture data storage.

9. Attach the texture to the framebuffer by calling the following function:
void glFramebufferTexture2DEXT (GLenum target, GLenum attachment,
GLenum textarget, GLuint texture,
GLint Tevel);
target must be GL_FRAMEBUFFER_EXT.

attachment must be one of the attachment points of the framebuffer: GL_STENCIL_ATTACHMENT_EXT,
GL_DEPTH_ATTACHMENT_EXT, or GL_COLOR_ATTACHMENTN_EXT, where n is a number from 0 to
GL_MAX_COLOR_ATTACHMENTS_EXT-1.

textarget is the texture target.
texture is an existing texture object.
Tevel is the mipmap level of the texture image to attach to the framebuffer.
10. Check to make sure that the framebuffer is complete by calling the following function:
GLenum glCheckFramebufferStatusEXT(GLenum target);

target must be the constant GL_FRAMEBUFFER_EXT.

Rendering to a Framebuffer Object 47
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt

48

CHAPTER 4

Drawing Offscreen

1.

12.

13.

14.

15.

This function returns a status constant. You must test to make sure that the constant is
GL_FRAMEBUFFER_COMPLETE_EXT. Ifitisn't, see the OpenGL specification for the framebuffer object
extension for a description of the other constants in the status enumeration.

Render content to the texture. You must make sure to bind a different texture to the framebuffer object
or disable texturing before you render content. If you render to a framebuffer object texture attachment
with that same texture currently bound and enabled, the result is undefined.

To draw the contents of the texture to a window, make the window the target of all rendering commands
by calling the function g1BindFramebufferEXT and passing the constant GL_FRAMEBUFFER_EXT and
0. The window is always specified as 0.

Use the texture attachment as a normal texture by binding it, enabling texturing, and drawing.
Delete the texture.

Delete the framebuffer object by calling the following function:

void glDeleteFramebufferseEXT (GLsizei n, const GLuint *framebuffers);

n is the number of framebuffer objects to delete.

*framebuffers points to an array that contains the framebuffer object names.

Listing 4-1 shows code that performs these tasks. This example creates and draws to a single framebuffer
object.

Listing 4-1 Setting up a framebuffer for texturing

GLuint framebuffer, texture;

GLenum status;

glGenFramebufferseXT(1, &framebuffer);

// Set up the FBO with one texture attachment
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebuffer);
glGenTextures(1l, &texture);

glBindTexture(GL_TEXTURE_2D, texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, TEXWIDE, TEXHIGH, O,

GL_RGBA, GL_UNSIGNED_BYTE, NULL);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENTO_EXT,

GL_TEXTURE_2D, texture, 0);

status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
if (status != GL_FRAMEBUFFER_COMPLETE_EXT)

// Handle error here

// Your code to draw content to the FBO

/1

// Make the window the target
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
//Your code to use the contents of the FBO

/7

//Tear down the FBO and texture attachment
glDeleteTextures(1l, &texture);
glDeleteFramebufferseXT(1l, &framebuffer);

Rendering to a Framebuffer Object
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt

CHAPTER 4

Drawing Offscreen

Using a Framebuffer Object as an Image

There is a lot of similarity between setting up a framebuffer object for drawing images and setting one up
to draw textures. These are the basic steps needed to set up a framebuffer object for drawing a 2D pixel
image (a renderbuffer image) offscreen:

1. Make sure the framebuffer extension (EXT_framebuffer_object) is supported on the renderer that
your code runs on.

2. Check the renderer limits. For example, you might want to call the OpenGL function g1GetIntegerv
to find out the maximum number of color buffers (GL_MAX_COLOR_ATTACHMENTS_EXT).

3. Generate a framebuffer object name by calling the function g1GenFramebuffersEXT.

4. Bind the framebuffer object name to a framebuffer target by calling the function
glBindFramebufferEXT.

5. Generate a renderbuffer object name by calling the following function:
void glGenRenderbufferstXT (GLsizei n, GLuint *renderbuffers);
n is the number of renderbuffer object names to create.
*renderbuffers points to storage for the generated names.
6. Bind the renderbuffer object name to a renderbuffer target by calling the following function:
void glBindRenderbufferEXT (GLenum target, GLuint renderbuffer);
target must be the constant GL_RENDERBUFFER_EXT.
renderbuffer is the renderbuffer object name generated previously.

7. Create data storage and establish the pixel format and dimensions of the renderbuffer image by calling
the following function:

void glRenderbufferStorageEXT (GLenum target, GLenum internalformat,
GLsizei width, GlLsizei height);

target must be the constant GL_RENDERBUFFER_EXT.

internalformat is the pixel format of the image. The value must be RGB, RGBA, DEPTH_COMPONENT,
STENCIL_INDEX, or one of the other formats listed in the OpenGL specification.

width is the width of the image, in pixels.
height is the height of the image, in pixels.

8. Attach the renderbuffer to a framebuffer target by calling the function
glFramebufferRenderbufferEXT.

void glFramebufferRenderbufferEXT(GLenum target, GLenum attachment,
GLenum renderbuffertarget, GLuint renderbuffer);

target must be the constant GL_FRAMEBUFFER_EXT.

Rendering to a Framebuffer Object 49
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

50

CHAPTER 4

Drawing Offscreen

10.

1.

12.

attachment should be one of the attachment points of the framebuffer: GL_STENCIL_ATTACHMENT_EXT,
GL_DEPTH_ATTACHMENT_EXT, or GL_COLOR_ATTACHMENTN_EXT, where n is a number from 0 to
GL_MAX_COLOR_ATTACHMENTS_EXT-1.

renderbuffertarget must be the constant GL_RENDERBUFFER_EXT.

renderbuffer should be set to the name of the renderbuffer object that you want to attach to the
framebuffer.

Check to make sure that the framebuffer is complete by calling the following function:
enum glCheckFramebufferStatusEXT(GLenum target);
target must be the constant GL_FRAMEBUFFER_EXT.

This function returns a status constant. You must test to make sure that the constant is
GL_FRAMEBUFFER_COMPLETE_EXT. If itisn't, see the OpenGL specification for the framebuffer object
extension for a description of the other constants in the status enumeration.

Render content to the renderbuffer.

To access the contents of the renderbuffer object, bind the framebuffer object and then use OpenGL
functions such as g1ReadPixels orglCopyTexImage2D.

Delete the framebuffer object with its renderbuffer attachment.

Listing 4-2 shows code that sets up and draws to a single renderbuffer object. Your application can set up
more than one renderbuffer object if it requires them.

Listing 4-2 Setting up a renderbuffer for drawing images

GLuint framebuffer, renderbuffer;

GLenum status;

// Set the width and height appropriately for you image
GLuint imageWidth = 1024,

imageHeight = 1024;

//Set up a FBO with one renderbuffer attachment

glGenFramebufferseXT(1, &framebuffer);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebuffer);
glGenRenderbufferseXT(1l, &renderbuffer);
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, renderbuffer);
glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_RGBA8, imageWidth, imageHeight);
glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENTO_EXT,

GL_RENDERBUFFER_EXT, renderbuffer);

status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);

if

(status != GL_FRAMEBUFFER_COMPLETE_EXT)

// Handle errors

//Your code to draw content to the renderbuffer

/!

//Your code to use the contents

/1l

// Make the window the target
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
// Delete the renderbuffer attachment
glDeleteRenderbufferstEXT(1, &renderbuffer);

Rendering to a Framebuffer Object
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt

CHAPTER 4

Drawing Offscreen

Rendering to a Pixel Buffer

The OpenGL extension string GL_APPLE_pixel_buffer provides hardware-accelerated offscreen rendering
to a pixel buffer. A pixel buffer is typically used as a texture source. It can also be used for remote rendering.

Important: Pixel buffers are deprecated starting with Mac OS X v10.7 and are not supported by the OpenGL
3.2 Core profile; use framebuffer objects instead.

You must create a rendering context for each pixel buffer. For example, if you want to use a pixel buffer as
a texture source, you create one rendering context attached to the pixel buffer and a second context attached
to a window or view.

The first step in using a pixel buffer is to create it. The Apple-specific OpenGL APIs each provide a routine for
this purpose:

e The NSOpenGLPixelBuffer method
initWithTextureTarget:texturelnternal Format:textureMaxMipMaplevel:pixelsWide:pixelsHigh:

e The CGL function CGLCreatePBuffer

Each of these routines requires that you provide a texture target, an internal format, a maximum mipmap
level, and the width and height of the texture.

The texture target must be one of these OpenGL texture constants: GL_TEXTURE_2D for a 2D texture,
GL_TEXTURE_RECTANGLE_ARB for a rectangular (not power-of-two) texture, or GL_TEXTURE_CUBE_MAP for
a cube map texture.

The internal format specifies how to interpret the data for texturing operations. You can supply any of these
options: GL_RGB (each pixel is a three-component group), GL_RGBA (each pixel is a four-component group),
or GL_DEPTH_COMPONENT (each pixel is a single depth component).

The maximum mipmap level should be 0 for a pixel buffer that does not have a mipmap. The value that you
supply should not exceed the actual maximum number of mipmap levels that can be represented with the
given width and height.

Note that none of the routines that create a pixel buffer allocate the storage needed. The storage is allocated
by the system at the time that you attach the pixel buffer to a rendering context.

Setting Up a Pixel Buffer for Offscreen Drawing

After you create a pixel buffer, the general procedure for using a pixel buffer for drawing is similar to the
way you set up windows and views for drawing:

1. Specify renderer and buffer attributes.
2. Obtain a pixel format object.
3. Create a rendering context and make it current.

4. Attach a pixel buffer to the context using the appropriate Apple OpenGL attachment function:

Rendering to a Pixel Buffer 51
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

52

CHAPTER 4

Drawing Offscreen

5.

e ThesetPixelBuffer:cubeMapFace:mipMapLevel:currentVirtualScreen: method of the
NSOpenGLContext class instructs the receiver to render into a pixel buffer.

e The CGL function CGLSetPBuffer attaches a CGL rendering context to a pixel buffer.

Draw, as you normally would, using OpenGL.

Using a Pixel Buffer as a Texture Source

Pixel buffers let you perform direct texturing without incurring the cost of extra copies. After drawing to a
pixel buffer, you can create a texture by following these steps:

1.

2.

Generate a texture name by calling the OpenGL function g1GenTextures.
Bind the named texture to a target by calling the OpenGL function g1BindTexture.
Set the texture parameters by calling OpenGL function g1TexEnvParameter.

Set up the pixel buffer as the source for the texture by calling one of the following Apple OpenGL
functions:

e ThesetTexturelmageToPixelBuffer:colorBuffer: method of the NSOpenGLContext class
attaches the image data in the pixel buffer to the texture object currently bound by the receiver.

e The CGL function CGLTexImagePBuffer binds the contents of a CGL pixel buffer as the data source
for a texture object.

The context that you attach to the pixel buffer is the target rendering context: the context that uses the
pixel buffer as the source of the texture data. Each of these routines requires a source parameter, which
is an OpenGL constant that specifies the source buffer to texture from. The source parameter must be
a valid OpenGL buffer, such as GL_FRONT, GL_BACK, or GL_AUXO0, and should be compatible with the
buffer attributes used to create the OpenGL context associated with the pixel buffer. This means that
the pixel buffer must possess the buffer in question for texturing to succeed. For example, if the buffer
attribute used with the pixel buffer is only single buffered, then texturing from the GL_BACK buffer will
fail.

If you modify content of any pixel buffer that contains mipmap levels, you must call the appropriate
Apple OpenGL function again (setTextureImageToPixelBuffer:colorBuffer: or
CGLTexImagePBuffer) before drawing with the pixel buffer to ensure that the content is synchronized
with OpenGL. To synchronize the content of pixel buffers without mipmaps, simply rebind to the texture
object using g1B1ind.

Draw primitives using the appropriate texture coordinates. (See "The Red book"—OpenGL Programming
Guide—for details.)

Call g1FTush to cause all drawing commands to be executed.
When you no longer need the texture object, call the OpenGL function g1DeleteTextures.

Set the current context to NULL using one of the Apple OpenGL routines:

Rendering to a Pixel Buffer
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

o ThemakeCurrentContext method of the NSOpenGLContext class

e The CGL function CGLSetCurrentContext

9. Destroy the pixel buffer by calling CGLDestroyPBuffer.
10. Destroy the context by calling CGLDestroyContext.

11. Destroy the pixel format by calling CGLDestroyPixelFormat.

You might find these guidelines useful when using pixel buffers for texturing:

e You cannot make OpenGL texturing calls that modify pixel buffer content (such as g1 TexSubImage2D
or gl1CopyTexImage2D) with the pixel buffer as the destination. You can use texturing commands to
read data from a pixel buffer, such as g1CopyTexImage2D, with the pixel buffer texture as the source.
You can also use OpenGL functions such as g1ReadPixels to read the contents of a pixel buffer directly
from the pixel buffer context.

e Texturing can fail to produce the intended results without reporting an error. You must make sure that
you enable the proper texture target, set a compatible filter mode, and adhere to other requirements
described in the OpenGL specification.

e You are not required to set up context sharing when you texture from a pixel buffer. You can have
different pixel format objects and rendering contexts for both the pixel buffer and the target drawable
object, without sharing resources, and still texture using a pixel buffer in the target context.

Rendering to a Pixel Buffer on a Remote System

Follow these steps to render to a pixel buffer on a remote system. The remote system does not need to have
a display attached to it.

1. When you set the renderer and buffer attributes, include the remote pixel buffer attribute
kCGLPFARemotePBuffer.

2. Login to the remote machine using the ssh command to ensure security.
3. Run the application on the target system.

4. Retrieve the content.

Rendering to a Pixel Buffer 53
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

54 Rendering to a Pixel Buffer
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 5

Choosing Renderer and Buffer Attributes

Renderer and buffer attributes determine the renderers that the system chooses for your application. Each
of the Apple-specific OpenGL APIs provides constants that specify a variety of renderer and buffer attributes.
You supply a list of attribute constants to one of the Apple OpenGL functions for choosing a pixel format
object. The pixel format object maintains a list of renderers that meet the requirements defined by those
attributes.

In a real-world application, selecting attributes is an art because you don't know the exact combination of
hardware and software that your application will run on. An attribute list that is too restrictive may miss out
on future capabilities or it may fail to return renderers on some systems. For example, if you specify a buffer
of a specific depth, your application won't be able to take advantage of a larger buffer when more memory
is available in the future. In this case, you might specify a required minimum and direct OpenGL to use the
maximum available.

Although you might specify attributes that make your OpenGL content look and run its best, you also need
to consider whether your application should run on a less-capable system with less speed or detail. If tradeoffs
are acceptable, you need to set the attributes accordingly.

OpenGL Profiles (Mac OS X v10.7)

When your application is running on Mac OS X v10.7, it should always include the kCGLPFAOpenGLProfile
attribute, followed by a constant for the profile whose functionality your application requires. A profile affects
different parts of OpenGL in Mac OS X:

e A profile requires that a specific version of the OpenGL APl must provided by the renderer. The renderer
may implement a different version of the OpenGL specification only if that version implements the same
functions and constants required by the profile; typically, this means a renderer that supports a later
version of the OpenGL specification that did not remove or alter behavior specified in the version of the
OpenGL specification your application requested.

e The profile alters the list of OpenGL extensions returned by the renderer. For example, extensions whose
functionality is provided by the version of the OpenGL specification you requested are not also returned
in the list of extensions.

e On Mac OS X, the profile affects what other renderer and buffer attributes may be included in the
attributes list.
Follow these guidelines to choose an OpenGL profile:

e If you are developing a new Mac OS X v10.7 application, implement your OpenGL functionality using
the OpenGL 3.2 Core profile; include the kCGLOGLPVersion_3_2_Core constant.

OpenGL Profiles (Mac OS X v10.7) 55
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 5

Choosing Renderer and Buffer Attributes

The OpenGL 3.2 core profile is defined by Khronos and explicitly removes removes deprecated features
described in earlier versions of the OpenGL specification; further the core profile prohibits these functions
from being added back into OpenGL using extensions. OpenGL 3.2 core represents a complete break
from the fixed function pipeline of OpenGL 1.x in favor of a clean, lean shader-based pipeline.

When you use the OpenGL 3.2 Core profile on Mac OS X, legacy extensions are removed wherever their
functionality is already provided by OpenGL 3.2. Further, pixel and buffer format attributes that are
marked as deprecated may not be used in conjunction with the OpenGL 3.2 core profile.

If you are updating an existing Mac OS X application, include the kCGLOGLPVersion_Legacy constant.

The legacy profile provides the same functionality found in earlier versions of Mac OS X, with no changes.
It continues to support older extensions as well as deprecated pixel and buffer format attributes. No
new functionality will be added to the legacy profile in future versions of Mac OS X.

If you want to use OpenGL 3.2 in your application, but also want to support earlier versions of Mac OS
X or Macs that lack hardware support for OpenGL 3.2, you must implement multiple OpenGL rendering
options in your application. On Mac OS X v10.7, your application should first test to see if OpenGL 3.2 is
supported. If OpenGL 3.2 is supported, create a context and provide it to your OpenGL 3.2 rendering
path. Otherwise, search for a pixel format using the legacy profile instead.

For more information on migrating an application to OpenGL 3.2, see “Updating an Application to Support
the OpenGL 3.2 Core Specification” (page 153).

Buffer Size Attribute Selection Tips

Follow these guidelines to choose buffer attributes that specify buffer size:

To choose color, depth, and accumulation buffers that are greater than or equal to a size you specify,
use the minimum policy attribute (NSOpenGLPFAMinimumPolicy or KCGLPFAMinimumPolicy).

To choose color, depth, and accumulation buffers that are closest to a size you specify, use the closest
policy attribute (NSOpenGLPFACTosestPolicy or kCGLPFAClosestPolicy).

To choose the largest color, depth, and accumulation buffers available, use the maximum policy attribute
(NSOpenGLPFAMaximumPolicy or kKCGLPFAMaximumPoTl1cy).Aslong as you pass a value that is greater
than 0, this attribute specifies the use of color, depth, and accumulation buffers that are the largest size
possible.

Ensuring That Back Buffer Contents Remain the Same

56

When your application uses a double-buffered context, it displays the rendered image by calling a function
to flush the image to the screen— theNSOpenGLContext class’s f1ushBuf fer method or the CGL function
CGLFTushDrawable. When the image is displayed, the contents of the back buffer are not preserved. The
next time your application wants to update the back buffer, it must completely redraw the scene.

Buffer Size Attribute Selection Tips
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 5
Choosing Renderer and Buffer Attributes

Your application can add a backing store attribute (NSOpenGLPFABackingStoreor kCGLPFABackingStore)
to preserve the contents of the buffer after the back buffer is flushed. Adding this attribute disables some
optimizations that the system can perform, which may impact the performance of your application.

Ensuring a Valid Pixel Format Object

The pixel format routines (the initWithAttributes method of the NSOpenGLPixelFormat classand the
CGLChoosePixelFormat function) return a pixel format object to your application that you use to create
a rendering context. The buffer and renderer attributes that you supply to the pixel format routine determine
the characteristics of the OpenGL drawing sent to the rendering context. If the system can't find at least one
pixel format that satisfies the constraints specified by the attribute array, it returns NULL for the pixel format
object. In this case, your application should have an alternative that ensures it can obtain a valid object.

One alternative is to set up your attribute array with the least restrictive attribute first and the most restrictive
attribute last. Then, it is fairly easy to adjust the attribute list and make another request for a pixel format
object. The code in Listing 5-1 illustrates this technique using the CGL API. Notice that the initial attributes
list is set up with the supersample attribute last in the list. If the function CGLChoosePixelFormat returns
NULL, it clears the supersample attribute to NUL L and tries again.

Listing 5-1 Using the CGL API to create a pixel format object

int last_attribute = 6;
CGLPixelFormatAttribute attribs[] =
{
kCGLPFAAccelerated,
kCGLPFAColorSize, 24
kCGLPFADepthSize, 16,
kCGLPFADoubleBuffer,
kCGLPFASupersample,
0
b

CGLPixelFormatObj pixelFormatQObj;
GLint numPixelFormats;
long value;

CGLChoosePixelFormat (attribs, &pixelFormatObj, &numPixelFormats);

if(pixelFormatObj == NULL) {

attribs[last_attribute] = NULL;

CGLChoosePixelFormat (attribs, &pixelFormatObj, &numPixelFormats);
}

if(pixelFormatObj == NULL) {
// Your code to notify the user and take action.
}

Ensuring a Valid Pixel Format Object 57
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 5
Choosing Renderer and Buffer Attributes

Ensuring a Specific Type of Renderer

There are times when you want to ensure that you obtain a pixel format that supports a specific renderer
type, such as a hardware-accelerated renderer. Table 5-1 lists attributes that support specific types of renderers.
The table reflects the following tips for setting up pixel formats:

e To select only hardware-accelerated renderers, use both the accelerated and no-recovery attributes.
e To use only the floating-point software renderer, use the appropriate generic floating-point constant.

« Torender to system memory, use the offscreen pixel attribute. Note that this rendering option does not
use hardware acceleration.

« To render offscreen with hardware acceleration, specify a pixel buffer attribute. (See “Rendering to a
Pixel Buffer” (page 51).)

Table 5-1 Renderer types and pixel format attributes

Renderer type CGL Cocoa

Hardware-accelerated onscreen | kCGLPFAAccelerated NSOpenGLPFAAccelerated
kCGLPFANoRecovery NSOpenGLPFANoRecovery

Software (floating-point) kCGLPFARendererID NSOpenGLPFARendererID

kCGLRendererGenericFloatID | kCGLRendererGenericFloatID

System memory (not accelerated) | kKCGLPFAOffScreen NSOpenGLPFAOffScreen

Hardware-accelerated offscreen | kCGLPFAPBuffer NSOpenGLPFAPixelBuffer

Ensuring a Single Renderer for a Display

58

In some cases you may want to use a specific hardware renderer and nothing else. Since the OpenGL framework
normally provides a software renderer as a fallback in addition to whatever hardware renderer it chooses,
you need to prevent OpenGL from choosing the software renderer as an option. To do this, specify the
no-recovery attribute for a windowed drawable object.

Limiting a context to use a specific display, and thus a single renderer, has its risks. If your application runs
on a system that uses more than one display, dragging a windowed drawable object from one display to the
other is likely to yield a less than satisfactory result. Either rendering fails, or OpenGL uses the specified
renderer and then copies the result to the second display. The same unsatisfactory result happens when
attaching a full-screen context to another display. If you choose to use the hardware renderer associated
with a specific display, you need to add code that detects and handles display changes.

The code examples that follow show how to use each of the Apple-specific OpenGL APIs to set up a context
that uses a single renderer. Listing 5-2 shows how to set up an NSOpenGLP1ixelFormat object that supports
a single renderer. The attribute NSOpenGLPFANoRecovery specifies to OpenGL not to provide the fallback
option of the software renderer.

Ensuring a Specific Type of Renderer
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 5
Choosing Renderer and Buffer Attributes

Listing 5-2 Setting an NSOpenGLContext object to use a specific display

ffimport <Cocoa/Cocoa.h>
+ (NSOpenGLPixelFormat*)defaultPixelFormat
{
NSOpenGLPixelFormatAttribute attributes [] = {
NSOpenGLPFAScreenMask, 0,
NSOpenGLPFANoRecovery,
NSOpenGLPFADoubleBuffer,
(NSOpenGLPixelFormatAttribute)nil };
CGDirectDisplayID display = CGMainDisplayID ();
// Adds the display mask attribute for selected display
attributes[1] = (NSOpenGLPixelFormatAttribute)
CGDisplayIDToOpenGLDisplayMask (display);
return [[(NSOpenGLPixelFormat *)[NSOpenGLPixelFormat alloc]
initWithAttributes:attributes]
autoreleasel];
}

Listing 5-3 shows how to use CGL to set up a context that uses a single renderer. The attribute
kCGLPFANoRecovery ensures that OpenGL does not provide the fallback option of the software renderer.

Listing 5-3 Setting a CGL context to use a specific display

#include <OpenGL/OpenGL.h>

CGLPixelFormatAttribute attribs[] = { kCGLPFADisplayMask, O,
kCGLPFANoRecovery,
kCGLPFADoubleBuffer,
0}

CGLPixelFormatObj pixelFormat = NULL;

GLint numPixelFormats = 0;

CGLContextObj cglContext = NULL;

CGDirectDisplayID display = CGMainDisplayID ();

// Adds the display mask attribute for selected display

attribs[1] = CGDisplayIDToOpenGLDisplayMask (display);

CGLChoosePixelFormat (attribs, &pixelFormat, &numPixelFormats);

Allowing Offline Renderers

Adding the attribute NSOpenGLPFAATTowOff1ineRenderers allows OpenGL to include offline renderers
in the list of virtual screens returned in the pixel format object. Apple recommends you include this attribute,
because it allows your application to work better in environments where renderers come and go, such as
when a new display is plugged into a Mac.

If your application includes NSOpenGLPFAATTowOf f1ineRenderers inthe list of attributes, your application
must also watch for display changes and update its rendering context. See “Update the Rendering Context
When the Renderer or Geometry Changes” (page 63).

Allowing Offline Renderers 59
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 5
Choosing Renderer and Buffer Attributes

OpenCL

If your applications uses OpenCL to perform other computations, you may want to find an OpenGL renderer
that also supports OpenCL. To do this, add the attribute NSOpenGLPFAAcceleratedCompute to the pixel
format attribute list. Adding this attribute restricts the list of renderers to those that also support OpenCL.

More information on OpenCL can be found in the OpenCL Programming Guide for Mac OS X.

Deprecated Attributes

60

There are several renderer and buffer attributes that are no longer recommended either because they are
too narrowly focused or no longer useful. Your application should move away from using any of these
attributes:

The robust attribute (NSOpenGLPFARobust or kCGLPFARobust) specifies only those renderers that do
not have any failure modes associated with a lack of video card resources.

e The multiple-screen attribute (NSOpenGLPFAMultiScreen or KCGLPFAMu1tiScreen) specifies only
those renderers that can drive more than one screen at a time.

e The multiprocessing-safe attribute (kCGLPFAMPSa fe) specifies only those renderers that are thread safe.
This attribute is deprecated in Mac OS X because all renderers can accept commands for threads running
on a second processor. However, this does not mean that all renderers are thread safe or reentrant. See
“Concurrency and OpenGL” (page 133).

e The compliant attribute (NSOpenGLPFACompTliant or kCGLPFAComp1iant) specifies only
OpenGL-compliant renderers. All Mac OS X renderers are OpenGL-compliant, so this attribute is no longer
useful.

e The full screen attribute (kCGLPFAFu11Screen) requested special full screen contexts. The window
screen attribute (KCGLPFAWindow) required the context to support windowed contexts. Mac OS X no
longer requires a special full screen context to be created, as it automatically provides the same
performance benefits with a properly formatted window.

e The offscreen buffer attribute (kCGLPFAOTfScreen) selects renderers capable of rendering to offscreen
memory. Instead, use a frame buffer object as the rendering target and read the final results back to
application memory.

e The pixel buffer attributes (kCGLPFAPBuffer and kCGLPFARemotePBuffer are nolonger recommended;
use frame buffer objects instead.

e The auxiliary buffers attribute (kCGLPFAAuxBuf fers) specifies the number of required auxiliary buffers
your application requires. Auxiliary buffers are not supported by the OpenGL 3.2 Core profile. Because
auxiliary buffers are not supported, the kKCGLPFAAuxDepthStencil attribute that modifies it is also
deprecated.

e The accumulation buffer size attribute (kCGLPFAAccumSi ze) specifies the desired size for the
accumulation buffer. Accumulation buffers are not supported by the OpenGL 3.2 Core Profile.

OpenCL
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 5
Choosing Renderer and Buffer Attributes

Important: Your application may not use any of the deprecated attributes in conjunction with a profile other
than the legacy profile; if you do, pixel format creation fails.

Deprecated Attributes 61
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 5
Choosing Renderer and Buffer Attributes

62 Deprecated Attributes
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 6

Working with Rendering Contexts

A rendering context is a container for state information. When you designate a rendering context as the
current rendering context, subsequent OpenGL commands modify that context’s state, objects attached to
that context, or the drawable object associated with that context. The actual drawing surfaces are never
owned by the rendering context but are created, as needed, when the rendering context is actually attached
to a drawable object. You can attach multiple rendering contexts to the same drawing surfaces. Each context
maintains its own drawing state.

“Drawing to a Window or View” (page 35), “Drawing to the Full Screen” (page 43), and “Drawing
Offscreen” (page 45) show how to create a rendering context and attach it to a drawable object. This chapter
describes advanced ways to interact with rendering contexts.

Update the Rendering Context When the Renderer or Geometry
Changes

A renderer change can occur when the user drags a window from one display to another or when a display
is attached or removed. Geometry changes occur when the display mode changes or when a window is
resized or moved. If your application uses an NSOpenGLV i ew object to maintain the context, it is automatically
updated. An application that creates a custom view to hold the rendering context must track the appropriate
system events and update the context when the geometry or display changes.

Updating a rendering context notifies it of geometry changes; it doesn't flush content. Calling an update
function updates the attached drawable objects and ensures that the renderer is properly updated for any
virtual screen changes. If you don't update the rendering context, you may see rendering artifacts.

The routine that you call for updating determines how events related to renderer and geometry changes are
handled. For applications that use or subclass NSOpenGLV i ew, Cocoa calls the update method automatically.
Applications that create an NSOpenGLContext object manually must call the update method of
NSOpenGLContext directly. For a full-screen Cocoa application, calling the setFul1Screen method of
NSOpenGLContext ensures that depth, size, or display changes take affect.

Your application must update the rendering context after the system event but before drawing to the context.
If the drawable object is resized, you may want to issue a g1Viewport command to ensure that the content
scales properly.

Note: Some system-level events (such as display mode changes) that require a context update could reallocate
the buffers of the context; thus you need to redraw the entire scene after all context updates.

It's important that you don't update rendering contexts more than necessary. Your application should respond
to system-level events and notifications rather than updating every frame. For example, you'll want to respond
to window move and resize operations and to display configuration changes such as a color depth change.

Update the Rendering Context When the Renderer or Geometry Changes 63
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

64

CHAPTER 6
Working with Rendering Contexts

Tracking Renderer Changes

It's fairly straightforward to track geometry changes, but how are renderer changes tracked? This is where
the concept of a virtual screen becomes important (see “Virtual Screens” (page 27)). A change in the virtual
screen indicates a renderer change, a change in renderer capability, or both. When your application detects
a window resize event, window move event, or display change, it should check for a virtual screen change
and respond to the change to ensure that the current application state reflects any changes in renderer
capabilities.

Each of the Apple-specific OpenGL APIs has a function that returns the current virtual screen number:

e ThecurrentVirtualScreen method of the NSOpenGLContext class

e The CGLGetVirtualScreen function

The virtual screen number represents an index in the list of virtual screens that were set up specifically for

the pixel format object used for the rendering context. The number is unique to the list but is meaningless
otherwise.

When the renderer changes, the limits and extensions available to OpenGL may also change. Your application
should retest the capabilities of the renderer and use these to choose its rendering algorithms appropriately.
See “Determining the OpenGL Capabilities Supported by the Renderer” (page 73).

Updating a Rendering Context for a Custom Cocoa View

If you subclass NSV i ew instead of using the NSOpenGLV i ew class, your application must update the rendering
context. That's due to a slight difference between the events normally handled by the NSView class and
those handled by the NSOpenGLV1iew class. Cocoa does not call a reshape method for the NSView class
when the size changes because that class does not export a reshape method to override. Instead, you need
to perform reshape operations directly in your drawRect : method, looking for changes in view bounds prior
to drawing content. Using this approach provides results that are equivalent to using the reshape method
of the NSOpenGLView class.

Listing 6-1 is a partial implementation of a custom view that shows how to handle context updates. The
update method is called after move, resize, and display change events and when the surface needs updating.
The class adds an observer to the notification NSViewGlobalFrameDidChangeNotification, whichis
posted whenever an NSV iew object that has attached surfaces (that is, NSOpenGLContext objects) resizes,
moves, or changes coordinate offsets.

It's slightly more complicated to handle changes in the display configuration. For that, you need to register
for the notification NSAppTlicationDidChangeScreenParametersNotification through the

NSApplication class. This notification is posted whenever the configuration of any of the displays attached
to the computer is changed (either programmatically or when the user changes the settings in the interface).

Listing 6-1 Handling context updates for a custom view

ffimport <Cocoa/Cocoa.h>
f#import <OpenGL/OpenGL.h>
f#import <OpenGL/gl.h>

@class NSOpenGLContext, NSOpenGLPixelFormat;

Update the Rendering Context When the Renderer or Geometry Changes
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 6
Working with Rendering Contexts

@interface CustomOpenGLView : NSView
{
@private
NSOpenGLContext* _openGLContext;
NSOpenGLPixelFormat* _pixelFormat;

- (id)initWithFrame: (NSRect)frameRect
pixelFormat: (NSOpenGLPixelFormat*)format;

- (void)update;
@end

@implementation CustomOpenGLView

- (id)initWithFrame: (NSRect)frameRect
pixelFormat: (NSOpenGLPixelFormat*)format

self = [super initWithFrame:frameRect];

if (self !=nil) {
_pixelFormat = [format retain];

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(_surfaceNeedsUpdate:)
name:NSViewGlobalFrameDidChangeNotification
object:self];

}

return self;

- (void)dealloc
[[NSNotificationCenter defaultCenter] removeObserver:self
name:NSViewGlobalFrameDidChangeNotification
object:self];
[self clearGLContext];
[_pixelFormat releasel;
[super dealloc];

- (void)update
if ([_openGLContext view] == self) {
[_openGLContext updatel;
}
- (void) _surfaceNeedsUpdate: (NSNotification*)notification

[self updatel;
}

@end

Update the Rendering Context When the Renderer or Geometry Changes 65
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 6
Working with Rendering Contexts

Context Parameters Alter the Context’s Behavior

66

A rendering context has a variety of parameters that you can set to suit the needs of your OpenGL drawing.
Some of the most useful, and often overlooked, context parameters are discussed in this section: swap interval,
surface opacity, surface drawing order, and back-buffer size control.

Each of the Apple-specific OpenGL APIs provides a routine for setting and getting rendering context
parameters:

e ThesetValues:forParameter: method of the NSOpenGLContext class takes as arguments a list of
values and a list of parameters.

e The CGLSetParameter function takes as parameters a rendering context, a constant that specifies an
option, and a value for that option.

Some parameters need to be enabled for their values to take effect. The reference documentation for a
parameter indicates whether a parameter needs to be enabled. See NSOpenGLContext Class Reference, and
CGL Reference.

Swap Interval Allows an Application to Synchronize Updates to the
Screen Refresh

If the swap interval is set to 0 (the default), buffers are swapped as soon as possible, without regard to the
vertical refresh rate of the monitor. If the swap interval is set to any other value, the buffers are swapped
only during the vertical retrace of the monitor. For more information, see “Synchronize with the Screen
Refresh Rate” (page 85).

You can use the following constants to specify that you are setting the swap interval value:
e For Cocoa, use NSOpenGLCPSwapInterval.

e If you are using the CGL API, use kCGLCPSwapInterval as shown in Listing 6-2.

Listing 6-2 Using CGL to set up synchronization
GLint sync = 1;

// ctx must be a valid context
CGLSetParameter (ctx, kCGLCPSwapInterval, &sync);

Surface Opacity Specifies How the OpenGL Surface Blends with
Surfaces Behind It

OpenGL surfaces are typically rendered as opaque. Thus the background color for pixels with alpha values
of 0.0 is the surface background color. If you set the value of the surface opacity parameter to 0, then the
contents of the surface are blended with the contents of surfaces behind the OpenGL surface. This operation

Context Parameters Alter the Context’s Behavior
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 6
Working with Rendering Contexts

is equivalent to OpenGL blending with a source contribution proportional to the source alpha and a
background contribution proportional to 1 minus the source alpha. A value of 1 means the surface is opaque
(the default); 0 means completely transparent.

You can use the following constants to specify that you are setting the surface opacity value:
e For Cocoa, use NSOpenGLCPSurfaceOpacity.

e If you are using the CGL API, use kCGLCPSurfaceOpacity as shown in Listing 6-3.

Listing 6-3 Using CGL to set surface opacity
GLint opaque = 0;

// ctx must be a valid context
CGLSetParameter (ctx, kCGLCPSurfaceOpacity, &opaque);

Surface Drawing Order Specifies the Position of the OpenGL Surface
Relative to the Window

A value of 1 means that the position is above the window; a value of -1 specifies a position that is below
the window. When you have overlapping views, setting the order to -1 causes OpenGL to draw underneath,
1 causes OpenGL to draw on top. This parameter is useful for drawing user interface controls on top of an
OpenGL view.

You can use the following constants to specify that you are setting the surface drawing order value:
e For Cocoa, use NSOpenGLCPSurfaceOrder.

e If you are using the CGL API, use kCGLCPSurfaceOrder as shown in Listing 6-4.

Listing 6-4 Using CGL to set surface drawing order

GLint order = -1; // below window
// ctx must be a valid context
CGLSetParameter (ctx, kCGLCPSurfaceOrder, &order);

Determining Whether Vertex and Fragment Processing Happens on
the GPU

CGL provides two parameters for checking whether the system is using the GPU for processing:
kCGLCPGPUVertexProcessing and kCGLCPGPUFragmentProcessing. To check vertex processing, pass
the vertex constant to the CGLGetParameter function. To check fragment processing, pass the fragment
constant to CGLGetParameter. Listing 6-5 demonstrates how to use these parameters.

Context Parameters Alter the Context’s Behavior 67
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

68

CHAPTER 6
Working with Rendering Contexts

Important: Although you can perform these queries at any time, keep in mind that such queries force an
internal state validation, which can impact performance. For best performance, do not use these queries
inside your drawing loop. Instead, perform the queries once at initialization or context setup time to determine
whether OpenGL is using the CPU or the GPU for processing, and then act appropriately in your drawing
loop.

Listing 6-5 Using CGL to check whether the GPU is processing vertices and fragments

BOOL gpuProcessing;

GLint fragmentGPUProcessing, vertexGPUProcessing;

CGLGetParameter (CGLGetCurrentContext(), kCGLCPGPUFragmentProcessing,
&fragmentGPUProcessing);

CGLGetParameter(CGLGetCurrentContext(), kCGLCPGPUVertexProcessing,
&vertexGPUProcessing);

gpuProcessing = (fragmentGPUProcessing && vertexGPUProcessing) ? YES : NO;

Controlling the Back Buffer Size

Normally, the back buffer is the same size as the window or view that it's drawn into, and it changes size
when the window or view changes size. For a window whose size is 720xpixels, the OpenGL back buffer is
sized to match. If the window grows to 1024x768 pixels, for example, then the back buffer is resized as well.
If you do not want this behavior, use the back buffer size control parameter.

Using this parameter fixes the size of the back buffer and lets the system scale the image automatically when
it moves the data to a variable size buffer (see Figure 6-1). The size of the back buffer remains fixed at the
size that you set up regardless of whether the image is resized to display larger onscreen.

You can use the following constants to specify that you are setting the surface backing size:

e If you are using the CGL API, use kCGLCPSurfaceBackingSize, as shown in Listing 6-6.

Listing 6-6 Using CGL to set up back buffer size control

GLint dim[2] = {720, 480};

// ctx must be a valid context

CGLSetParameter(ctx, kCGLCPSurfaceBackingSize, dim);
CGLEnable (ctx, kCGLCESurfaceBackingSize);

Context Parameters Alter the Context’s Behavior
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 6
Working with Rendering Contexts

Figure 6-1 A fixed size back buffer and variable size front buffer

Sharing Rendering Context Resources

A rendering context does not own the drawing objects attached to it, which leaves open the option for
sharing. Rendering contexts can share resources and can be attached to the same drawable object (see Figure
6-2 (page 69)) or to different drawable objects (see Figure 6-3 (page 70)). You set up context sharing—either
with more than one drawable object or with another context—at the time you create a rendering context.

Contexts can share object resources and their associated object state by indicating a shared context at context
creation time. Shared contexts share all texture objects, display lists, vertex programs, fragment programs,
and buffer objects created before and after sharing is initiated. The state of the objects is also shared but not
other context state, such as current color, texture coordinate settings, matrix and lighting settings, rasterization
state, and texture environment settings. You need to duplicate context state changes as required, but you
need to set up individual objects only once.

Figure 6-2 Shared contexts attached to the same drawable object

Context Context

Shared
object state

Drawable
object

Sharing Rendering Context Resources 69
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

70

CHAPTER 6
Working with Rendering Contexts

When you create an OpenGL context, you can designate another context whose object resources you want
to share. All sharing is peer to peer. Shared resources are reference-counted and thus are maintained until
explicitly released or when the last context-sharing resource is released.

Not every context can be shared with every other context. Both contexts must share the same OpenGL profile.
You must also ensure that both contexts share the same set of renderers. You meet these requirements by
ensuring each context uses the same virtual screen list, using either of the following techniques:

e Use the same pixel format object to create all the rendering contexts that you want to share.

« Create pixel format objects using attributes that narrow down the choice to a single display. This practice
ensures that the virtual screen is identical for each pixel format object.

Figure 6-3 Shared contexts and more than one drawable object

Context Context

Shared
object state

Drawable | | Drawable
object object

Setting up shared rendering contexts is very straightforward. Each Apple-specific OpenGL API provides
functions with an option to specify a context to share in its context creation routine:

e UsetheshareargumentfortheinitWithFormat:shareContext: method of the NSOpenGLContext
class. See Listing 6-7 (page 70).

e Use the share parameter for the function CGLCreateContext. See Listing 6-8 (page 71).

Listing 6-7 ensures the same virtual screen list by using the same pixel format object for each of the shared
contexts.

Listing 6-7 Setting up an NSOpenGLContext object for sharing

ffimport <Cocoa/Cocoa.h>
+ (NSOpenGLPixelFormat*)defaultPixelFormat
{

NSOpenGLPixelFormatAttribute attributes [] = {
NSOpenGLPFADoubleBuffer,
(NSOpenGLPixelFormatAttribute)nil };

return [[(NSOpenGLPixelFormat *)[NSOpenGLPixelFormat alloc]
initWithAttributes:attribs] autorelease];
}

- (NSOpenGLContext*)openGLContextWithShareContext: (NSOpenGLContext*)context
{
if (_openGLContext == NULL) {
_openGLContext = [[NSOpenGLContext alloc]
initWithFormat:[[self class] defaultPixelFormat]
shareContext:context];

Sharing Rendering Context Resources
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 6
Working with Rendering Contexts

[_openGLContext makeCurrentContext];
[self prepareOpenGL];
}
return _openGLContext;
}

- (void)prepareQOpenGL

{
// Your code here to initialize the OpenGL state

}

Listing 6-8 ensures the same virtual screen list by using the same pixel format object for each of the shared

contexts.

Listing 6-8 Setting up a CGL context for sharing

ffinclude <OpenGL/OpenGL.h>

CGLPixelFormatAttribute attrib[] = {kCGLPFADoubleBuffer, 0};
CGLPixelFormatObj pixelFormat = NULL;

G1int numPixelFormats = 0;

CGLContext0Obj cglContextl = NULL;

CGLContextObj cglContext2 = NULL;

CGLChoosePixelFormat (attribs, &pixelFormat, &numPixelFormats);
CGLCreateContext(pixelFormat, NULL, &cglContextl);
CGLCreateContext(pixelFormat, cglContextl, &cglContext?2);

Sharing Rendering Context Resources
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

71

CHAPTER 6
Working with Rendering Contexts

72 Sharing Rendering Context Resources
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 7

Determining the OpenGL Capabilities
Supported by the Renderer

One of the benefits of using OpenGL is that it is extensible. An extension is typically introduced by one or
more vendors and then later is accepted by the OpenGL Working Group. Some extensions are promoted
from a vendor-specific extension to one shared by more than one vendor, sometimes even being incorporated
into the core OpenGL API. Extensions allow OpenGL to embrace innovation, but require you to verify that
the OpenGL functionality you want to use is available.

Because extensions can be introduced at the vendor level, more than one extension can provide the same

basic functionality. There might also be an ARB-approved extension that has functionality similar to that of
a vendor-specific extension. Your application should prefer core functionality or ARB-approved extensions

over those specific to a particular vendor, when both are offered by the same renderer. This makes it easier
to transparently support new renderers from other vendors.

As particular functionality becomes widely adopted, it can be moved into the core OpenGL API by the ARB.
As a result, functionality that you want to use could be included as an extension, as part of the core API, or
both. For example, the ability to combine texture environments is supported through the
GL_ARB_texture_env_combineandthe GL_EXT_texture_env_combine extensions. It's also part of the
core OpenGL version 1.3 API. Although each has similar functionality, they use a different syntax. You may
need to check in several places (core OpenGL APl and extension strings) to determine whether a specific
renderer supports functionality that you want to use.

Detecting Functionality

OpenGL has two types of commands—those that are part of the core APl and those that are part of an
extension to OpenGL. Your application first needs to check for the version of the core OpenGL APl and then
check for the available extensions. Keep in mind that OpenGL functionality is available on a per-renderer
basis. For example, a software renderer might not support fog effects even though fog effects are available
in an OpenGL extension implemented by a hardware vendor on the same system. For this reason, it's important
that you check for functionality on a per-renderer basis.

Regardless of what functionality you are checking for, the approach is the same. You need to call the OpenGL
function g1GetString twice. The first time pass the GL_VERSION constant. The function returns a string
that specifies the version of OpenGL. The second time, pass the GL_EXTENSIONS constant. The function
returns a pointer to an extension name string. The extension name string is a space-delimited list of the
OpenGL extensions that are supported by the current renderer. This string can be rather long, so do not
allocate a fixed-length string for the return value of the g1GetString function. Use a pointer and evaluate
the string in place.

Pass the extension name string to the function gTuCheckExtension along with the name of the extension
you want to check for. The gluCheckExtension function returns a Boolean value that indicates whether
or not the extension is available for the current renderer.

Detecting Functionality 73
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

74

CHAPTER 7
Determining the OpenGL Capabilities Supported by the Renderer

If an extension becomes part of the core OpenGL API, OpenGL continues to export the name strings of the
promoted extensions. It also continues to support the previous versions of any extension that has been
exported in earlier versions of Mac OS X. Because extensions are not typically removed, the methodology
you use today to check for a feature works in future versions of Mac OS X.

Checking for functionality, although fairly straightforward, involves writing a large chunk of code. The best
way to check for OpenGL functionality is to implement a capability-checking function that you call when
your program starts up, and then any time the renderer changes. Listing 7-1 shows a code excerpt that checks
for a few extensions. A detailed explanation for each line of code appears following the listing.

Listing 7-1 Checking for OpenGL functionality

GLint maxRectTextureSize;

GLint myMaxTextureUnits;

GLint myMaxTextureSize;

const GLubyte * strVersion;

const GLubyte * strExt;

float myGLVersion;

GLboolean isVAO, isTexLOD, isColorTable, isFence, isShade,
isTextureRectangle;

strVersion = glGetString (GL_VERSION); /11
sscanf((char *)strVersion, "%f", &myGLVersion);

strExt = g1GetString (GL_EXTENSIONS); /]2
glGetIntegerv(GL_MAX_TEXTURE_UNITS, &myMaxTextureUnits); //3
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &myMaxTextureSize); /14
isVAQ =

gluCheckExtension ((const GLubyte*)"GL_APPLE_vertex_array_object",strkxt); //5

isFence = gluCheckExtension ((const GLubyte*)"GL_APPLE_fence", strExt); /6
isShade =
gluCheckExtension ((const GLubyte*)"GL_ARB_shading_language_100", strExt);//7

isColorTable =
gluCheckExtension ((const GLubyte*)"GL_SGI_color_table", strExt) ||

gluCheckExtension ((const GLubyte*)"GL_ARB_imaging", strExt); /18
isTexLOD =
gluCheckExtension ((const GLubyte*)"GL_SGIS_texture_lod", strExt) ||
(myGLVersion >= 1.2); /19

isTextureRectangle = gluCheckExtension ((const GLubyte*)
"GL_EXT_texture_rectangle", striExt);
if (isTextureRectangle)
glGetIntegerv (GL_MAX_RECTANGLE_TEXTURE_SIZE_EXT, &maxRectTextureSize);
else
maxRectTextureSize = 0; // 10

Here is what the code does:
1. Gets a string that specifies the version of OpenGL.
2. Gets the extension name string.

3. Calls the OpenGL function gl1GetIntegerv to get the value of the attribute passed to it which, in this
case, is the maximum number of texture units.

4. Gets the maximum texture size.

Detecting Functionality
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 7
Determining the OpenGL Capabilities Supported by the Renderer

5. Checks whether vertex array objects are supported.
6. Checks for the Apple fence extension.
7. Checks for support for version 1.0 of the OpenGL shading language.

8. Checks for RGBA-format color lookup table support. In this case, the code needs to check for the
vendor-specific string and for the ARB string. If either is present, the functionality is supported.

9. Checks for an extension related to the texture level of detail parameter (LOD). In this case, the code
needs to check for the vendor-specific string and for the OpenGL version. If the vendor string is present
or the OpenGL version is greater than or equal to 1.2, the functionality is supported.

10. Getsthe OpenGL limit for rectangle textures. For some extensions, such as the rectangle texture extension,
it may not be enough to check whether the functionality is supported. You may also need to check the
limits. You can use g1GetIntegerv and related functions (g1 GetBooleanv, gl GetDoublev,
g1GetFloatv) to obtain a variety of parameter values.

You can extend this example to make a comprehensive functionality-checking routine for your application.
For more details, see the GLCheck. c file in the Cocoa OpenGL sample application.

The code in Listing 7-2 shows one way to query the current renderer. It uses the CGL API, which can be called
from Cocoa applications. In reality, you need to iterate over all displays and all renderers for each display to
get a true picture of the OpenGL functionality available on a particular system. You also need to update your
functionality snapshot each time the list of displays or display configuration changes.

Listing 7-2 Setting up a valid rendering context to get renderer functionality information

#include <OpenGL/0OpenGL.h>
ffinclude <ApplicationServices/ApplicationServices.h>

CGDirectDisplayID display = CGMainDisplayID (); /11
CGOpenGLDisplayMask myDisplayMask =
CGDisplayIDToOpenGLDisplayMask (display); /12

{ // Check capabilities of display represented by display mask
CGLPixelFormatAttribute attribs[] = {kCGLPFADisplayMask,
myDisplayMask,
0}; /13
CGLPixelFormatObj pixelFormat = NULL;
GLint numPixelFormats = 0;
CGLContext0Obj myCGLContext = 0;

CGLContextObj curr_ctx = CGLGetCurrentContext (); /14
CGLChoosePixelFormat (attribs, &pixelFormat, &numPixelFormats); //'5
if (pixelFormat) f{
CGLCreateContext (pixelFormat, NULL, &myCGLContext); /16
CGLDestroyPixelFormat (pixelFormat); /17
CGLSetCurrentContext (myCGLContext); /18

if (myCGLContext) {
// Check for capabilities and functionality here
}
}

CGLDestroyContext (myCGLContext); /19
CGLSetCurrentContext (curr_ctx); // 10

}

Detecting Functionality 75

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 7

Determining the OpenGL Capabilities Supported by the Renderer

Here's what the code does:

.

Gets the display ID of the main display.

Maps a display ID to an OpenGL mask.

Fills a pixel format attributes array with the display mask attribute and the mask value.
Saves the current context so that it can be restored later.

Gets the pixel format object for the display. The numPixelFormats parameter specifies how many pixel
formats are listed in the pixel format object.

Creates a context based on the first pixel format in the list supplied by the pixel format object. Only one
renderer will be associated with this context.

In your application, you would need to iterate through all pixel formats for this display.
Destroys the pixel format object when it is no longer needed.

Sets the current context to the newly created, single-renderer context. Now you are ready to check for
the functionality supported by the current renderer. See Listing 7-1 (page 74) for an example of
functionality-checking code.

Destroys the context because it is no longer needed.

10. Restores the previously saved context as the current context, thus ensuring no intrusion upon the user.

Guidelines for Code That Checks for Functionality

76

The guidelines in this section ensure that your functionality-checking code is thorough yet efficient.

Don't rely on what's in a header file. A function declaration in a header file does not ensure that a feature
is supported by the current renderer. Neither does linking against a stub library that exports a function.

Make sure that a renderer is attached to a valid rendering context before you check the functionality of
that renderer.

Check the API version or the extension name string for the current renderer before you issue OpenGL
commands.

Check only once per renderer. After you've determined that the current renderer supports an OpenGL
command, you don't need to check for that functionality again for that renderer.

Make sure that you are aware of whether a feature is being used as part of the Core OpenGL API or as
an extension. When a feature is implemented both as part of the core OpenGL APl and as an extension,
it uses different constants and function names.

Guidelines for Code That Checks for Functionality
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 7
Determining the OpenGL Capabilities Supported by the Renderer

OpenGL Renderer Implementation-Dependent Values

The OpenGlL specification defines implementation-dependent values that define the limits of what an OpenGL
implementation is capable of. For example, the maximum size of a texture and the number of texture units
are both common implementation-dependent values that an application is expected to check. Each of these
values provides a minimum value that all conforming OpenGL implementations are expected to support. If
your application’s usage exceeds these minimums, it must check the limit first, and fail gracefully if the
implementation cannot provide the limit desired. Your application may need to load smaller textures, disable
a rendering feature, or choose a different implementation.

Although the specification provides a comprehensive list of these limitations, a few stand out in most OpenGL
applications. Table 7-1 lists values that applications should test if they require more than the minimum values
in the specification.

Table 7-1 Common OpenGL renderer limitations

Maximum size of the texture GL_MAX_TEXTURE_SIZE

Number of depth buffer planes | GL_DEPTH_BITS

Number of stencil buffer planes | GL_STENCIL_BITS

The limit on the size and complexity of your shaders is a key area you need to test. All graphics hardware
supports limited memory to pass attributes into the vertex and fragment shaders. Your application must
either keep its usage below the minimums as defined in the specification, or it must check the shader
limitations documented in Table 7-2 and choose shaders that are within those limits.

Table 7-2 OpenGL shader limitations

Maximum number of vertex attributes GL_MAX_VERTEX_ATTRIBS

Maximum number of uniform vertex vectors GL_MAX_VERTEX_UNIFORM_COMPONENTS
Maximum number of uniform fragment vectors GL_MAX_FRAGMENT_UNIFORM_COMPONENTS
Maximum number of varying vectors GL_MAX_VARYING_FLOATS

Maximum number of texture units usable in a vertex GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS
shader

Maximum number of texture units usable in a fragment | GL_MAX_TEXTURE_IMAGE_UNITS
shader

OpenGL Renderer Implementation-Dependent Values 77
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 7
Determining the OpenGL Capabilities Supported by the Renderer

78 OpenGL Renderer Implementation-Dependent Values
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8

OpenGL Application Design Strategies

OpenGL performs many complex operations—transformations, lighting, clipping, texturing, environmental
effects, and so on—on large data sets. The size of your data and the complexity of the calculations performed
on it can impact performance, making your stellar 3D graphics shine less brightly than you'd like. Whether
your application is a game using OpenGL to provide immersive real-time images to the user or an image
processing application more concerned with image quality, use the information in this chapter to help you
design your application.

Visualizing OpenGL

The most common way to visualize OpenGL is as a graphics pipeline, as shown in Figure 8-1 (page 80). Your
application sends vertex and image data, configuration and state changes, and rendering commands to
OpenGL. Vertices are processed, assembled into primitives, and rasterized into fragments. Each fragment is
calculated and merged into the framebuffer. The pipeline model is useful for identifying exactly what work
your application must perform to generate the results you want. OpenGL allows you to customize each stage
of the graphics pipeline, either through customized shader programs or by configuring a fixed-function
pipeline through OpenGL function calls.

In most implementations, each pipeline stage can act in parallel with the others. This is a key point. If any
one pipeline stage performs too much work, then the other stages sit idle waiting for it to complete. Your
design should balance the work performed in each pipeline stage to the capabilities of the renderer. When
you tune your application’s performance, the first step is usually to determine which stage the application
is bottlenecked in, and why.

Visualizing OpenGL 79
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8
OpenGL Application Design Strategies

Figure 8-1 OpenGL graphics pipeline

Application | Primitives and image data |
s

Vertex | Transform and lighting |
afs

Primitive assembly |

Geometry

| Clipping |
s

| Texturing |

Fragment

| Fog |
J0

| Alpha, stencil, and depth tests |

Framebuffer operations
Framebuffer blending |

Another way to visualize OpenGL is as a client-server architecture, as shown in Figure 8-2 (page 81). OpenGL
state changes, texture and vertex data, and rendering commands must all travel from the application to the
OpenGL client. The client transforms these items so that the graphics hardware can understand them, and
then forwards them to the GPU. Not only do these transformations add overhead, but the bandwidth between
the CPU and the graphics hardware is often lower than other parts of the system.

To achieve great performance, an application must reduce the frequency of calls they make to OpenGL,
minimize the transformation overhead, and carefully manage the flow of data between the application and
the graphics hardware. For example, OpenGL provides mechanisms that allow some kinds of data to be
cached in dedicated graphics memory. Caching reusable data in graphics memory reduces the overhead of
transmitting data to the graphics hardware.

80 Visualizing OpenGL
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8
OpenGL Application Design Strategies

Figure 8-2 OpenGL client-server architecture
(Application]
OpenGL client {}
Runs on CPU
[OpenGL framework J
[OpenGL driver]
N\ —
OpenGL server
[Graphics hardware J—— Runs on GPU

Designing a High-Performance OpenGL Application

To summarize, a well-designed OpenGL application needs to:
e Exploit parallelism in the OpenGL pipeline.
 Manage data flow between the application and the graphics hardware.

Figure 8-3 shows a suggested process flow for an application that uses OpenGL to perform animation to the
display.

Designing a High-Performance OpenGL Application 81
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

82

CHAPTER 8
OpenGL Application Design Strategies

Figure 8-3 Application model for managing resources

[Create static resources]

/ Faster process

>

[Update dynamic resources] [Execute rendering commands

Ty
)

[Read back results

Render loop

7

{ Present to display]

\

[Free up resources]

When the application launches, it creates and initializes any static resources it intends to use in the renderer,
encapsulating those resources into OpenGL objects where possible. The goal is to create any object that can
remain unchanged for the runtime of the application. This trades increased initialization time for better
rendering performance. Ideally, complex commands or batches of state changes should be replaced with
OpenGL objects that can be switched in with a single function call. For example, configuring the fixed-function
pipeline can take dozens of function calls. Replace it with a graphics shader that is compiled at initialization
time, and you can switch to a different program with a single function call. In particular, OpenGL objects that
are expensive to create or modify should be created as static objects.

The rendering loop processes all of the items you intend to render to the OpenGL context, then swaps the
buffers to display the results to the user. In an animated scene, some data needs to be updated for every
frame. In the inner rendering loop shown in Figure 8-3, the application alternates between updating rendering
resources (possibly creating or modifying OpenGL objects in the process) and submitting rendering commands
that use those resources. The goal of this inner loop is to balance the workload so that the CPU and GPU are
working in parallel, without blocking each other by using the same resources simultaneously.

A goal for the inner loop is to avoid copying data back from the graphics processor to the CPU. Operations
that require the CPU to read results back from the graphics hardware are sometimes necessary, but in general
reading back results should be used sparingly. If those results are also used to render the current frame, as
shown in the middle rendering loop, this can be very slow. Copying data from the GPU to the CPU often
requires that some or all previously submitted drawing commands have completed.

After the application submits all drawing commands needed in the frame, it presents the results to the screen.
Alternatively, a noninteractive application might read the final image back to the CPU, but this is also slower
than presenting results to the screen. This step should be performed only for results that must be read back
to the application. For example, you might copy the image in the back buffer to save it to disk.

Designing a High-Performance OpenGL Application
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8

OpenGL Application Design Strategies

Finally, when your application is ready to shut down, it deletes static and dynamic resources to make more
hardware resources available to other applications. If your application is moved to the background, releasing
resources to other applications is also good practice.

To summarize the important characteristics of this design:

Create static resources, whenever practical.

The inner rendering loop alternates between modifying dynamic resources and submitting rendering
commands. Enough work should be included in this loop so that when the application needs to read or
write to any OpenGL object, the graphics processor has finished processing any commands that used
it.

Avoid reading intermediate rendering results into the application.

The rest of this chapter provides useful OpenGL programming techniques to implement the features of this
rendering loop. Later chapters demonstrate how to apply these general techniques to specific areas of
OpenGL programming.

“Update OpenGL Content Only When Your Data Changes” (page 83)
“Avoid Synchronizing and Flushing Operations” (page 85)

“Allow OpenGL to Manage Your Resources” (page 88)

“Use Optimal Data Types and Formats” (page 90)

“Use Double Buffering to Avoid Resource Conflicts” (page 88)

“Be Mindful of OpenGL State Variables” (page 90)

“Use OpenGL Macros” (page 91)

“Replace State Changes with OpenGL Objects” (page 90)

Update OpenGL Content Only When Your Data Changes

OpenGL applications should avoid recomputing a scene when the data has not changed. This is critical on
portable devices, where power conservation is critical to maximizing battery life. You can ensure that your
application draws only when necessary by following a few simple guidelines:

If your application is rendering animation, use a Core Video display link to drive the animation loop.
Listing 8-1 (page 84) provides code that allows your application to be notified when a new frame needs
to be displayed. This code also synchronizes image updates to the refresh rate of the display. See
“Synchronize with the Screen Refresh Rate” (page 85) for more information.

If your application does not animate its OpenGL content, you should allow the system to regulate drawing.
For example, in Cocoa call the setNeedsDisplay: method when your data changes.

Update OpenGL Content Only When Your Data Changes 83
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8
OpenGL Application Design Strategies

e If your application does not use a Core Video display link, you should still advance an animation only
when necessary. To determine when to draw the next frame of an animation, calculate the difference
between the current time and the start of the last frame. Use the difference to determine how much to
advance the animation. You can use the Core Foundation function CFAbsoluteTimeGetCurrent to
obtain the current time.

Listing 8-1 Setting up a Core Video display link

@interface MyView : NSOpenGLView
{
CVDisplayLinkRef displaylLink; //display link for managing rendering thread

}
@end

- (void)prepareQOpenGL
{
// Synchronize buffer swaps with vertical refresh rate
GLint swaplnt = 1;
[[self openGLContext] setValues:&swapInt forParameter:NSOpenGLCPSwapIntervall;

// Create a display link capable of being used with all active displays
CVDisplaylLinkCreateWithActiveCGDisplays(&displaylLink);

// Set the renderer output callback function
CVDisplayLinkSetOutputCallback(displaylLink, &MyDisplayLinkCallback, self);

// Set the display link for the current renderer

CGLContextObj cglContext = [[self openGLContext] CGLContextObj];

CGLPixelFormatObj cglPixelFormat = [[self pixelFormat] CGLPixelFormatQObjJ;

CVDisplayLinkSetCurrentCGDisplayFromOpenGLContext(displayLink, cglContext,
cglPixelFormat);

// Activate the display link
CVDisplaylLinkStart(displayLink);
}

// This is the renderer output callback function

static CVReturn MyDisplayLinkCallback(CVDisplaylLinkRef displaylLink, const

CVTimeStamp* now, const CVTimeStamp* outputTime,

CVOptionFlags flagsIn, CVOptionFlags* flagsQut, void* displaylLinkContext)

{
CVReturn result = [(MyView*)displayLinkContext getFrameForTime:outputTime];
return result;

}

- (CVReturn)getFrameForTime: (const CVTimeStamp*)outputTime

{
// Add your drawing codes here

return kCVReturnSuccess;

- (void)dealloc

{
// Release the display Tlink
CVDisplayLinkRelease(displayLink);

Update OpenGL Content Only When Your Data Changes
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8
OpenGL Application Design Strategies

[super dealloc];

Synchronize with the Screen Refresh Rate

Tearing is a visual anomaly caused when part of the current frame overwrites previous frame data in the
framebuffer before the current frame is fully rendered on the screen. To avoid tearing, applications use a
double-buffered context and synchronize buffer swaps with the screen refresh rate (sometimes called VBL,
vertical blank, or vsynch) to eliminate frame tearing.

Note: During development, it's best to disable synchronization so that you can more accurately benchmark
your application. Enable synchronization when you are ready to deploy your application.

The refresh rate of the display limits how often the screen can be refreshed. The screen can be refreshed at
rates that are divisible by integer values. For example, a CRT display that has a refresh rate of 60 Hz can
support screen refresh rates of 60 Hz, 30 Hz, 20 Hz, and 15 Hz. LCD displays do not have a vertical retrace in
the CRT sense and are typically considered to have a fixed refresh rate of 60 Hz.

After you tell the context to swap the buffers, OpenGL must defer any rendering commands that follow that
swap until after the buffers have successfully been exchanged. Applications that attempt to draw to the
screen during this waiting period waste time that could be spent performing other drawing operations or
saving battery life and minimizing fan operation.

Listing 8-2 shows how an NSOpenGLV1iew object can synchronize with the screen refresh rate; you can use
a similar approach if your application uses CGL contexts. It assumes that you set up the context for double
buffering. The swap interval can be set only to 0 or 1. If the swap interval is set to 1, the buffers are swapped
only during the vertical retrace.

Listing 8-2 Setting up synchronization

GLint swapInterval = 1;
[[self openGLContext] setValues:&swapInt forParameter:NSOpenGLCPSwapIntervall;

Avoid Synchronizing and Flushing Operations

OpenGlL is not required to execute most commands immediately. Often, they are queued to a command
buffer and read and executed by the hardware at a later time. Usually, OpenGL waits until the application
has queued up a significant number of commands before sending the buffer to the hardware—allowing the
graphics hardware to execute commands in batches is often more efficient. However, some OpenGL functions
must flush the buffer immediately. Other functions not only flush the buffer, but also block until previously
submitted commands have completed before returning control to the application. Your application should
restrict the use of flushing and synchronizing commands only to those cases where that behavior is necessary.
Excessive use of flushing or synchronizing commands add additional stalls waiting for the hardware to finish
rendering. On a single-buffered context, flushing may also cause visual anomalies, such as flickering or tearing.

These situations require OpenGL to submit the command buffer to the hardware for execution.

e The function g1F1ush waits until commands are submitted but does not wait for the commands to
finish executing.

Avoid Synchronizing and Flushing Operations 85
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

86

CHAPTER 8
OpenGL Application Design Strategies

e The function g1Finish waits for all previously submitted commands to complete executing.

e Functions that retrieve OpenGL state (for example, g1GetError), also wait for submitted commands to
complete.

o Buffer swapping routines (the f1ushBuffer method of the NSOpenGLContext class or the
CGLFTushDrawab1e function) implicitly call g1F1ush. Note that when using the NSOpenGLContext
class or the CGL API, the term flush actually refers to a buffer-swapping operation. For single-buffered
contexts, g1 Flush and g1Finish are equivalent to a swap operation, since all rendering is taking place
directly in the front buffer.

o The command buffer is full.

Using glFlush Effectively

Most of the time you don't need to call g1F1ush to move image data to the screen. There are only a few
cases that require you to call the g1F1ush function:

e If your application submits rendering commands that use a particular OpenGL object, and it intends to
modify that object in the near future. If you attempt to modify an OpenGL object that has pending
drawing commands, your application may be forced to wait until those commands have been completed.
In this situation, calling g1F1ush ensures that the hardware begins processing commands immediately.
After flushing the command buffer, your application should perform work that does not need that
resource. It can perform other work (even modifying other OpenGL objects).

e Your application needs to change the drawable object associated with the rendering context. Before
you can switch to another drawable object, you must call g1F1ush to ensure that all commands written
in the command queue for the previous drawable object have been submitted.

e When two contexts share an OpenGL object. After submitting any OpenGL commands, call g1FTush
before switching to the other context.

e To keep drawing synchronized across multiple threads and prevent command buffer corruption, each
thread should submit its rendering commands and then call g1FTush.

Avoid Querying OpenGL State

Calls to g1Get*(), including g1GetError(), may require OpenGL to execute previous commands before
retrieving any state variables. This synchronization forces the graphics hardware to run lockstep with the
CPU, reducing opportunities for parallelism.

Your application should keep shadow copies of any OpenGL state that you need to query, and maintain
these shadow copies as you change the state.

When errors occur, OpenGL sets an error flag that you can retrieve with the function g1GetError. During
development, it's crucial that your code contains error checking routines, not only for the standard OpenGL
calls, but for the Apple-specific functions provided by the CGL APL. If you are developing a performance-critical
application, retrieve error information only in the debugging phase. Calling g1GetError excessively in a
release build degrades performance.

Avoid Synchronizing and Flushing Operations
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8
OpenGL Application Design Strategies

Use Fences for Finer-Grained Synchronization

Avoid using g1Finish in your application, because it waits until all previously submitted commands are
completed before returning control to your application. Instead, you should use the fence extension
(APPLE_fence). This extension was created to provide the level of granularity that is not provided by

gl Finish. Afence is a token used to mark the current point in the command stream. When used correctly,
it allows you to ensure that a specific series of commands has been completed. A fence helps coordinate
activity between the CPU and the GPU when they are using the same resources.

Follow these steps to set up and use a fence:
1. Atinitialization time, create the fence object by calling the function g1GenFencesAPPLE.

GLint myFence;
glGenFencesAPPLE(1,&myFence);

2. Call the OpenGL functions that must complete prior to the fence.

3. Set up the fence by calling the function g1SetFenceAPPLE. This function inserts a token into the
command stream and sets the fence state to false.

void glSetFenceAPPLE(GLuint fence);
fence specifies the token to insert. For example:
glSetFenceAPPLE(myFence);

4, Callg1Flush toforcethe commands to be sent to the hardware. This step is optional, but recommended
to ensure that the hardware begins processing OpenGL commands.

5. Perform other work in your application.

6. Wait for all OpenGL commands issued prior to the fence to complete by calling the function
glFinishFenceAPPLE.

glFinishFenceAPPLE(myFence);

As an alternative to calling g1FinishFenceAPPLE, you can call g1TestFenceAPPLE to determine
whether the fence has been reached. The advantage of testing the fence is that your application does
not block waiting for the fence to complete. This is useful if your application can continue processing
other work while waiting for the fence to trigger.

glTestFenceAPPLE(myFence);

7. When your application no longer needs the fence, delete it by calling the function
glDeleteFencesAPPLE.

glDeletefFencesAPPLE(]1,&myFence);
There is an art to determining where to insert a fence in the command stream. If you insert a fence for too

few drawing commands, you risk having your application stall while it waits for drawing to complete. You'll
want to set a fence so your application operates as asynchronously as possible without stalling.

The fence extension also lets you synchronize buffer updates for objects such as vertex arrays and textures.
For that you call the function g1FinishObjectAPPLE, supplying an object name along with the token.

Avoid Synchronizing and Flushing Operations 87
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8
OpenGL Application Design Strategies

For detailed information on this extension, see the OpenGL specification for the Apple fence extension.

Allow OpenGL to Manage Your Resources

OpenGL allows many data types to be stored persistently inside OpenGL. Creating OpenGL objects to store
vertex, texture, or other forms of data allows OpenGL to reduce the overhead of transforming the data and
sending them to the graphics processor. If data is used more frequently than it is modified, OpenGL can
substantially improve the performance of your application.

OpenGL allows your application to hint how it intends to use the data. These hints allow OpenGL to make
an informed choice of how to process your data. For example, static data might be placed in high-speed
graphics memory directly connected to the graphics processor. Data that changes frequently might be kept
in main memory and accessed by the graphics hardware through DMA.

Use Double Buffering to Avoid Resource Conflicts

88

Resource conflicts occur when your application and OpenGL want to access a resource at the same time.

When one participant attempts to modify an OpenGL object being used by the other, one of two problems
results:

e The participant that wants to modify the object blocks until it is no longer in use. Then the other
participant is not allowed to read from or write to the object until the modifications are complete. This
is safe, but these can be hidden bottlenecks in your application.

e Some extensions allow OpenGL to access application memory that can be simultaneously accessed by
the application. In this situation, synchronizing between the two participants is left to the application
to manage. Your application calls g1F1ush to force OpenGL to execute commands and uses a fence or
g1 Finish to ensure that no commands that access that memory are pending.

Whether your application relies on OpenGL to synchronize access to a resource, or it manually synchronizes
access, resource contention forces one of the participants to wait, rather than allowing them both to execute
in parallel. Figure 8-4 demonstrates this problem. There is only a single buffer for vertex data, which both
the application and OpenGL want to use and therefore the application must wait until the GPU finishes
processing commands before it modifies the data.

Allow OpenGL to Manage Your Resources
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/APPLE/fence.txt

CHAPTER 8
OpenGL Application Design Strategies

Figure 8-4 Single-buffered vertex array data

Time Frame 1 Frame 2 >
v v
glFinishObject(..., l)| |g1F1’n1’shObject(..., 1)
{]

CPU Vertex array 1 i

Vertex array 1 i

Vertex array 1 Vertex array 1

To solve this problem, your application could fill this idle time with other processing, even other OpenGL
processing that does not need the objects in question. If you need to process more OpenGL commands, the
solution is to create two of the same resource type and let each participant access a resource. Figure 8-5
illustrates the double-buffered approach. While the GPU operates on one set of vertex array data, the CPU
is modifying the other. After the initial startup, neither processing unit is idle. This example uses a fence to
ensure that access to each buffer is synchronized.

Figure 8-5 Double-buffered vertex array data

AN

Vertex array 1

AN

Vertex array 2

Vertex array 2 | Vertex array 1

Time Frame 1 Frame 2 Frame 3 Frame 4 >
v v v v
glFinishObject(..., 2)| |g1F1nish0bject(..., 2>|
® ®
glFinishObject(..., 1)|E glFinishObject(..., 1) E
¢ : ¢ |
: i ! i i
m Vertex array 1 1 Vertex array 2 ' Vertex array 1 ! Vertex array 2 ' '
.\ 1 L Il L :
| g1Flush | | g1Flush | | g1Flush | | g1Flush | !
i
|
1
1

Double buffering is sufficient for most applications, but it requires that both participants finish processing
their commands before a swap can occur. For a traditional producer-consumer problem, more than two
buffers may prevent a participant from blocking. With triple buffering, the producer and consumer each have
a buffer, with a third idle buffer. If the producer finishes before the consumer finishes processing commands,
it takes the idle buffer and continues to process commands. In this situation, the producer idles only if the
consumer falls badly behind.

Use Double Buffering to Avoid Resource Conflicts 89
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8
OpenGL Application Design Strategies

Be Mindful of OpenGL State Variables

The hardware has one current state, which is compiled and cached. Switching state is expensive, so it's best
to design your application to minimize state switches.

Don't set a state that's already set. Once a feature is enabled, it does not need to be enabled again. Calling
an enable function more than once does nothing except waste time because OpenGL does not check the
state of a feature when you call g1Enable orglDisable.Forinstance, ifyoucallgl Enable(GL_LIGHTING)
more than once, OpenGL does not check to see if the lighting state is already enabled. It simply updates the
state value even if that value is identical to the current value.

You can avoid setting a state more than necessary by using dedicated setup or shutdown routines rather
than putting such calls in a drawing loop. Setup and shutdown routines are also useful for turning on and
off features that achieve a specific visual effect—for example, when drawing a wire-frame outline around a
textured polygon.

If you are drawing 2D images, disable all irrelevant state variables, similar to what's shown in Listing 8-3.

Listing 8-3 Disabling state variables

glDisable(GL_DITHER);

glDisable(GL_ALPHA_TEST);

glDisable(GL_BLEND);

g1Disable(GL_STENCIL_TEST);

glDisable(GL_FO0G);

glDisable(GL_TEXTURE_2D);
glDisable(GL_DEPTH_TEST);

glPixelZoom(1.0,1.0);

// Disable other state variables as appropriate.

Replace State Changes with OpenGL Objects

The “Be Mindful of OpenGL State Variables” (page 90) section suggests that reducing the number of state
changes can improve performance. Some OpenGL extensions also allow you to create objects that collect
multiple OpenGL state changes into an object that can be bound with a single function call. Where such
techniques are available, they are recommended. For example, configuring the fixed-function pipeline requires
many function calls to change the state of the various operators. Not only does this incur overhead for each
function called, but the code is more complex and difficult to manage. Instead, use a shader. A shader, once
compiled, can have the same effect but requires only a single call to g1UseProgram.

Other examples of objects that take the place of multiple state changes include the “Vertex Array Range
Extension” (page 100) and “Uniform Buffers” (page 127).

Use Optimal Data Types and Formats

If you don't use data types and formats that are native to the graphics hardware, OpenGL must convert those
data types into a format that the graphics hardware understands.

90 Be Mindful of OpenGL State Variables
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8
OpenGL Application Design Strategies

For vertex data, use GLfloat, GLshort, or GLubyte data types. Most graphics hardware handle these types
natively.

For texture data, you'll get the best performance if you use the following format and data type combination:

GL_YCBCR_422_APPLE, GL_UNSIGNED_SHORT_8_8_REV_APPLE

The combination GL_RGBA and GL_UNSIGNED_BYTE needs to be swizzled by many cards when the data is
loaded, so it's not recommended.

Use OpenGL Macros

OpenGL performs a global context and renderer lookup for each command it executes to ensure that all
OpenGL commands are issued to the correct rendering context and renderer. There is significant overhead
associated with these lookups; applications that have extremely high call frequencies may find that the
overhead measurably affects performance. Mac OS X allows your application to use macros to provide a local
context variable and cache the current renderer in that variable. You get more benefit from using macros
when your code makes millions of function calls per second.

Before implementing this technique, consider carefully whether you can redesign your application to perform
less function calls. Frequently changing OpenGL state, pushing or popping matrices, or even submitting one
vertex at a time are all examples of techniques that should be replaced with more efficient operations.

You can use the CGL macro header (CGL/CGLMacro. h) if your application uses CGL from a Cocoa application.
You must define the local variable cg1_ctx to be equal to the current context. Listing 8-4 shows what's
needed to set up macro use for the CGL API. First, you need to include the correct macro header. Then, you
must set the current context.

Listing 8-4 Using CGL macros

#include <CGL/CGLMacro.h> // include the header

CGL_MACRO_DECLARE_VARIABLES // set the current context

glBegin (GL_QUADS); // This code now uses the macro
// draw here

glEnd ();

Use OpenGL Macros 91
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 8
OpenGL Application Design Strategies

92 Use OpenGL Macros
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 9

Best Practices for Working with Vertex Data

Complex shapes and detailed 3D models require large amounts of vertex data to describe them in OpenGL.
Moving vertex data from your application to the graphics hardware incurs a performance cost that can be
quite large depending on the size of the data set.

Figure 9-1 Vertex data sets can be quite large

short face_indicies[16381][€] =
{1538,2410,1101 ,0,1,2 },

.5 1, {696,704,101 ,6,7,5 },
{1192,117,1113 ,8,9,10 }, eril,12,13 }, {54@,1192,1113 ,14,8,10 },
{7@4,696,398 ,7,6,15 }, 5 N F,15,6,16 1, {16@5,772,4548 ,17,18,19 },
{1192,540,1857 ,8,14,13 LT 800 ,18,3,20 1, {713,173,12600 ,3,12,11 },
{173,1192,1857 ,12,8,13 /] ‘!{'1,1263 ,20,3,11 }, {804,4128,4120 ,21,22,23 },
{1133,804,4120 ,24,21,2 LB 7 e },{4140,1534,4136 ,25,27,28 },
{4531,4148,4136 ,26,25,248 {4515,16@9,4485 ,30,31,32 },
{71@,1396,889 ,33,34,35 ¥} 046,19085,768 ,39,40,41 1,
{2453,5699,5698 ,42,43,44 68,1905,1393 ,41,40,45 1,
{1393,1498,4112 ,45,46,4 H90,4281,839 ,46,51,52 },
{4112,1498,839 ,47,46,52 % 97,80879,3286 ,54,55,56 1,
i i ; e

Applications that use large vertex data sets can adopt one or more of the strategies described in “OpenGL
Application Design Strategies” (page 79) to optimize how vertex data is delivered to OpenGL.This chapter
expands on those best practices with specific techniques for working with vertex data.

Understand How Vertex Data Flows Through OpenGL

Understanding how vertex data flows through OpenGL is important to choosing strategies for handling the
data. Vertex data enters into the vertex stage, where it is processed by either the built-in fixed function vertex
stage or a custom vertex.

Understand How Vertex Data Flows Through OpenGL 93
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

94

CHAPTER 9

Best Practices for Working with Vertex Data

Figure 9-2 Vertex data path

Vertex shading
Vertex data and per-vertex
operations

Fragment shading

Rasterization and per-fragment Framebuffer
operations
Per-pixel Texture
operations assembly

Pixel data

Figure 9-3 takes a closer look at the vertex data path when using immediate mode. Without any optimizations,
your vertex data may be copied at various points in the data path. If your application uses immediate mode
to each vertex separately, calls to OpenGL first modify the current vertex, which is copied into the command
buffer whenever your application makes a g1Vertex* call. This is not only expensive in terms of copy
operations, but also in function overhead to specify each vertex.

Figure 9-3 Immediate mode requires a copy of the current vertex data

[Application]

)
[Current vertex]
1)

Command buffer]
[VRAM]
[GPU]

The OpenGL commands g1DrawRangeElements, glDrawElements, and g1DrawArrays render multiple
geometric primitives from array data, using very few subroutine calls. Listing 9-1 shows a typical
implementation. Your application creates a vertex structure that holds all the elements for each vertex. For
each element, you enable a client array and provide a pointer and offset to OpenGL so that it knows how
to find those elements.

Listing 9-1 Submitting vertex data using g10rawElements.

typedef struct _vertexStruct
{
GLfloat position[2];
GLubyte colorl[4];

Understand How Vertex Data Flows Through OpenGL
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 9

Best Practices for Working with Vertex Data

} vertexStruct;

void DrawGeometry()

{
const vertexStruct vertices[] = {...};
const GLubyte indices[] = {...};

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, sizeof(vertexStruct), &vertices[0].position);
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(vertexStruct), &vertices[0].color);

glDrawElements(GL_TRIANGLE_STRIP, sizeof(indices)/sizeof(GLubyte),
GL_UNSIGNED_BYTE, indices);
}

Each time you call g1DrawElements, OpenGL must copy all of the vertex data into the command buffer,
which is later copied to the hardware. The copy overhead is still expensive.

Techniques for Handling Vertex Data

Avoiding unnecessary copies of your vertex data is critical to application performance. This section summarizes
common techniques for managing your vertex data using either built-in functionality or OpenGL extensions.
Before using these techniques, you must ensure that the necessary functions are available to your application.
See “Detecting Functionality” (page 73).

e Avoid the use of g1Begin and g1End to specify your vertex data. The function and copying overhead
makes this path useful only for very small data sets. Also, applications written with g1Begin and g1End
are not portable to OpenGL ES on iOS.

« Minimize data type conversions by supplying OpenGL data types for vertex data. Use GLf1oat, GLshort,
or GLubyte data types because most graphics processors handle these types natively. If you use some
other type, then OpenGL may need to perform a costly data conversion.

e The preferred way to manage your vertex data is with vertex buffer objects. Vertex buffer objects are
buffers owned by OpenGL that hold your vertex information. These buffers allow OpenGL to place your
vertex data into memory that is accessible to the graphics hardware. See “Vertex Buffers” (page 96) for
more information.

« If vertex buffer objects are not available, your application can search for the
GL_APPLE_vertex_array_range and APPLE_fence extensions. Vertex array ranges allow you to
prevent OpenGL from copying your vertex data into the command buffer. Instead, your application must
avoid modifying or deleting the vertex data until OpenGL finishes executing drawing commands. This
solution requires more effort from the application, and is not compatible with other platforms, including
iOS. See “Vertex Array Range Extension” (page 100) for more information.

« Complex vertex operations require many array pointers to be enabled and set before you call
glDrawElements.The GL_APPLE_vertex_array_object extension allows your application to
consolidate a group of array pointers into a single object. Your application switches multiple pointers
by binding a single vertex array object, reducing the overhead of changing state. See “Vertex Array
Object” (page 102).

Techniques for Handling Vertex Data 95
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 9

Best Practices for Working with Vertex Data

Use double buffering to reduce resource contention between your application and OpenGL. See “Use
Double Buffering to Avoid Resource Conflicts” (page 88).

If you need to compute new vertex information between frames, consider using vertex shaders and
buffer objects to perform and store the calculations.

Vertex Buffers

96

Vertex buffers are available as a core feature starting in OpenGL 1.5, and on earlier versions of OpenGL through
the vertex buffer object extension (GL_ARB_vertex_buffer_object). Vertex buffers are used to improve
the throughput of static or dynamic vertex data in your application.

A buffer object is a chunk of memory owned by OpenGL. Your application reads from or writes to the buffer
using OpenGL callssuchas g1BufferData,glBufferSubData,and g1GetBufferSubData. Yourapplication
can also gain a pointer to this memory, an operation referred to as mapping a buffer. OpenGL prevents your
application and itself from simultaneously using the data stored in the buffer. When your application maps
a buffer or attempts to modify it, OpenGL may block until previous drawing commands have completed.

Using Vertex Buffers

You can set up and use vertex buffers by following these steps:

1.

Call the function g1GenBuffers to create a new name for a buffer object.
void glGenBuffers(sizei n, uint *buffers);

n is the number of buffers you wish to create identifiers for.

buffers specifies a pointer to memory to store the buffer names.

Call the function g1BindBuffer to bind an unused name to a buffer object. After this call, the newly
created buffer object is initialized with a memory buffer of size zero and a default state. (For the default
setting, see the OpenGL specification for ARB_vertex_buffer_object.)

void gIBindBuffer(GLenum target, GLuint buffer);
target must be set to GL_ARRAY_BUFFER.
buffer specifies the unique name for the buffer object.

Fill the buffer object by calling the function g1BufferData. Essentially, this call uploads your data to
the GPU.

void glBufferData(GLenum target, sizeiptr size,
const GLvoid *data, GLenum usage);

target must be set to GL_ARRAY_BUFFER.

size specifies the size of the data store.

Vertex Buffers
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/ARB/vertex_buffer_object.txt

CHAPTER 9

Best Practices for Working with Vertex Data

*data points to the source data. If this is not NULL, the source data is copied to the data stored of the
buffer object. If NULL, the contents of the data store are undefined.

usage is a constant that provides a hint as to how your application plans to use the data stored in the
buffer object. These examples use GL_STREAM_DRAW, which indicates that the application plans to both
modify and draw using the buffer,and GL_STATIC_DRAW, which indicates that the application will define
the data once but use it to draw many times. For more details on buffer hints, see “Buffer Usage

Hints” (page 98)

Enable the vertex array by calling g1EnableClientState and supplying the GL_VERTEX_ARRAY
constant.

Point to the contents of the vertex buffer object by calling a function suchas g1VertexPointer.Instead
of providing a pointer, you provide an offset into the vertex buffer object.

To update the data in the buffer object, your application calls g1MapBuf fer. Mapping the buffer prevents
the GPU from operating on the data, and gives your application a pointer to memory it can use to update
the buffer.

void *gIMapBuffer(GLenum target, GLenum access);
target must be set to GL_ARRAY_BUFFER.

access indicates the operations you plan to perform on the data. You can supply READ_ONLY,
WRITE_ONLY, or READ_WRITE.

Write pixel data to the pointer received from the call to g1MapBuffer.

When your application has finished modifying the buffer contents, call the function g1UnmapBuffer.
You must supply GL_ARRAY_BUFFER as the parameter to this function. Once the buffer is unmapped,
the pointer is no longer valid, and the buffer’s contents are uploaded again to the GPU.

Listing 9-2 shows code that uses the vertex buffer object extension for dynamic data. This example overwrites
all of the vertex data during every draw operation.

Listing 9-2 Using the vertex buffer object extension with dynamic data

/1

To set up the vertex buffer object extension

ffdefine BUFFER_OFFSET(i) ((char*)NULL + (i))
glBindBuffer (GL_ARRAY_BUFFER, myBufferName);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, stride, BUFFER_OFFSET(0));

/!

When you want to draw using the vertex data

draw_loop {

}

glBufferData(GL_ARRAY_BUFFER, bufferSize, NULL, GL_STREAM_DRAW);
my_vertex_pointer = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
GenerateMyDynamicVertexData(my_vertex_pointer);
glUnmapBuffer(GL_ARRAY_BUFFER);

PerformDrawing();

Listing 9-3 shows code that uses the vertex buffer object extension with static data.

Vertex Buffers 97
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

98

CHAPTER 9

Best Practices for Working with Vertex Data

Listing 9-3 Using the vertex buffer object extension with static data

// To set up the vertex buffer object extension

ffdefine BUFFER_OFFSET (i) ((char*)NULL + (1))
glBindBuffer(GL_ARRAY_BUFFER, myBufferName);
glBufferData(GL_ARRAY_BUFFER, bufferSize, NULL, GL_STATIC_DRAW);

GLvoid* my_vertex_pointer = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
GenerateMyStaticVertexData(my_vertex_pointer);
glUnmapBuffer(GL_ARRAY_BUFFER);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, stride, BUFFER_OFFSET(0));

// When you want to draw using the vertex data
draw_loop {

PerformDrawing();
}

Buffer Usage Hints

A key advantage of buffer objects is that the application can provide information on how it uses the data
stored in each buffer. For example, Listing 9-2 and Listing 9-3 differentiated between cases where the data
were expected to never change (GL_STATIC_DRAW) and cases where the buffer data might change
(GL_DYNAMIC_DRAW). The usage parameter allows an OpenGL renderer to alter its strategy for allocating the
vertex buffer to improve performance. For example, static buffers may be allocated directly in GPU memory,
while dynamic buffers may be stored in main memory and retrieved by the GPU via DMA.

If OpenGL ES compatibility is useful to you, you should limit your usage hints to one of three usage cases:

e GL_STATIC_DRAW should be used for vertex data that is specified once and never changed. Your
application should create these vertex buffers during initialization and use them repeatedly until your
application shuts down.

e GL_DYNAMIC_DRAW should be used when the buffer is expected to change after it is created. Your
application should still allocate these buffers during initialization and periodically update them by
mapping the buffer.

e GL_STREAM_DRAW is used when your application needs to create transient geometry that is rendered
and then discarded. This is most useful when your application must dynamically change vertex data
every frame in a way that cannot be performed in a vertex shader. To use a stream vertex buffer, your
application initially fills the buffer using g1BufferData, then alternates between drawing using the
buffer and modifying the buffer.

Other usage constants are detailed in the vertex buffer specification.

If different elements in your vertex format have different usage characteristics, you may want to split the
elements into one structure for each usage pattern and allocate a vertex buffer for each. Listing 9-4 shows
how to implement this. In this example, position data is expected to be the same in each frame, while color
data may be animated in every frame.

Listing 9-4 Geometry with different usage patterns

typedef struct _vertexStatic
{

Vertex Buffers
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 9

Best Practices for Working with Vertex Data

GLfloat position[2];
} vertexStatic;

typedef struct _vertexDynamic
{

GLubyte color[4];
} vertexDynamic;

// Separate buffers for static and dynamic data.
GLuint staticBuffer;

GLuint dynamicBuffer;

GLuint indexBuffer;

const vertexStatic staticVertexDatall = {...};
vertexDynamic dynamicVertexDatall = {...};
const GLubyte indices[] = {...};

void CreateBuffers()

{
glGenBuffers(l, &staticBuffer);
glGenBuffers(l, &dynamicBuffer);
glGenBuffers(l, &indexBuffer);

// Static position data
glBindBuffer(GL_ARRAY_BUFFER, staticBuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(staticVertexData), staticVertexData,
GL_STATIC_DRAW);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,
GL_STATIC_DRAW) ;

// Dynamic color data
// While not shown here, the expectation is that the data in this buffer changes
between frames.

g1BindBuffer(GL_ARRAY_BUFFER, dynamicBuffer);

glBufferData(GL_ARRAY_BUFFER, sizeof(dynamicVertexData), dynamicVertexData,
GL_DYNAMIC_DRAW);
}

void DrawUsingVertexBuffers()
{
glBindBuffer(GL_ARRAY_BUFFER, staticBuffer);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, sizeof(vertexStatic),
(void*)offsetof(vertexStatic,position));
glBindBuffer(GL_ARRAY_BUFFER, dynamicBuffer);
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(vertexDynamic),
(void*)offsetof(vertexDynamic,color));
g1BindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
glDrawElements (GL_TRIANGLE_STRIP, sizeof(indices)/sizeof(GLubyte),
GL_UNSIGNED_BYTE, (void*)0);
}

Vertex Buffers
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

929

CHAPTER 9

Best Practices for Working with Vertex Data

Flush Buffer Range Extension

When your application unmaps a vertex buffer, the OpenGL implementation may copy the full contents of
the buffer to the graphics hardware. If your application changes only a subset of a large buffer, this is inefficient.
The APPLE_flush_buffer_range extension allows your application to tell OpenGL exactly which portions
of the buffer were modified, allowing it to send only the changed data to the graphics hardware.

To use the flush buffer range extension, follow these steps:

1. Turn on the flush buffer extension by calling g1BufferParameteriAPPLE.
glBufferParameteriAPPLE(GL_ARRAY_BUFFER,GL_BUFFER_FLUSHING_UNMAP_APPLE, GL_FALSE);
This disables the normal flushing behavior of OpenGL.

2. Before you unmap a buffer, you must call g1FlushMappedBufferRangeAPPLE for each range of the
buffer that was modified by the application.

void glFlushMappedBufferRangeAPPLE(enum target, intptr offset, sizeiptr size);
target is the type of buffer being modified; for vertex data it's ARRAY_BUFFER.
offset is the offset into the buffer for the modified data.
size is the length of the modified data in bytes.
3. CallglUnmapBuffer. OpenGL unmaps the buffer, but it is required to update only the portions of the

buffer your application explicitly marked as changed.

For more information see the APPLE_flush_buffer_range specification.

Vertex Array Range Extension

The vertex array range extension (APPLE_vertex_array_range) lets you define a region of memory for
your vertex data. The OpenGL driver can optimize memory usage by creating a single memory mapping for
your vertex data. You can also provide a hint as to how the data should be stored: cached or shared. The
cached option specifies to cache vertex data in video memory. The shared option indicates that data should
be mapped into a region of memory that allows the GPU to access the vertex data directly using DMA transfer.
This option is best for dynamic data. If you use shared memory, you'll need to double buffer your data.

You can set up and use the vertex array range extension by following these steps:

1. Enable the extension by calling g1EnableClientState and supplying the
GL_VERTEX_ARRAY_RANGE_APPLE constant.

2. Allocate storage for the vertex data. You are responsible for maintaining storage for the data.

3. Define an array of vertex data by calling a function such as g1VertexPointer. You need to supply a
pointer to your data.

4. Optionally set up a hint about handling the storage of the array data by calling the function
glVertexArrayParameteriAPPLE.

100 Vertex Array Range Extension
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/APPLE/flush_buffer_range.txt

CHAPTER 9

Best Practices for Working with Vertex Data

GLvoid glVertexArrayParameteriAPPLE(GLenum pname, GLint param);
pname must be VERTEX_ARRAY_STORAGE_HINT_APPLE.

paramis a hint that specifies how your application expects to use the data. OpenGL uses this hint to
optimize performance. You can supply either STORAGE_SHARED_APPLE or STORAGE_CACHED_APPLE.
The default value is STORAGE_SHARED_APPLE, which indicates that the vertex data is dynamic and that
OpenGL should use optimization and flushing techniques suitable for this kind of data. If you expect the
supplied data to be static, use STORAGE_CACHED_APPLE so that OpenGL can optimize appropriately.

5. Call the OpenGL function g1VertexArrayRangeAPPLE to establish the data set.
void glVertexArrayRangeAPPLE(GLsizei length, GLvoid *pointer);

Tength specifies the length of the vertex array range. The length is typically the number of unsigned
bytes.

*pointer points to the base of the vertex array range.
6. Draw with the vertex data using standard OpenGL vertex array commands.

7. Ifyou need to modify the vertex data, set a fence object after you've submitted all the drawing commands.
See “Use Fences for Finer-Grained Synchronization” (page 87)

8. Perform other work so that the GPU has time to process the drawing commands that use the vertex
array.

9. CallglFinishFenceAPPLE to gain access to the vertex array.

10. Modify the data in the vertex array.

1. Call g1FlushVertexArrayRangeAPPLE.
void glFlushVertexArrayRangeAPPLE(GLsizei Tlength, GLvoid *pointer);
Tength specifies the length of the vertex array range, in bytes.
*pointer points to the base of the vertex array range.

For dynamic data, each time you change the data, you need to maintain synchronicity by calling
glFlushVertexArrayRangeAPPLE. You supply as parameters an array size and a pointer to an array,
which can be a subset of the data, as long as it includes all of the data that changed. Contrary to the
name of the function, g1FlushVertexArrayRangeAPPLE doesn't actually flush data like the OpenGL
function g1FTush does. It simply makes OpenGL aware that the data has changed.

Listing 9-5 shows code that sets up and uses the vertex array range extension with dynamic data. It overwrites
all of the vertex data during each iteration through the drawing loop. The call to the g1FinishFenceAPPLE
command guarantees that the CPU and the GPU don't access the data at the same time. Although this
example calls the g1FinishFenceAPPLE function almost immediately after setting the fence, in reality you
need to separate these calls to allow parallel operation of the GPU and CPU. To see how that's done, read
“Use Double Buffering to Avoid Resource Conflicts” (page 88).

Listing 9-5 Using the vertex array range extension with dynamic data

// To set up the vertex array range extension

Vertex Array Range Extension 101
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 9

Best Practices for Working with Vertex Data

glVertexArrayParameteriAPPLE(GL_VERTEX_ARRAY_STORAGE_HINT_APPLE,
GL_STORAGE_SHARED_APPLE);

glVertexArrayRangeAPPLE(buffer_size, my_vertex_pointer);
glEnableClientState(GL_VERTEX_ARRAY_RANGE_APPLE);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, my_vertex_pointer);
glSetFenceAPPLE(my_fence);

// When you want to draw using the vertex data

draw_loop {
glFinishFenceAPPLE(my_fence);
GenerateMyDynamicVertexData(my_vertex_pointer);
glFlushVertexArrayRangeAPPLE(buffer_size, my_vertex_pointer);
PerformDrawing();
glSetFenceAPPLE(my_fence);

}

Listing 9-6 shows code that uses the vertex array range extension with static data. Unlike the setup for
dynamic data, the setup for static data includes using the hint for cached data. Because the data is static, it's
unnecessary to set a fence.

Listing 9-6 Using the vertex array range extension with static data

// To set up the vertex array range extension
GenerateMyStaticVertexData(my_vertex_pointer);
glVertexArrayParameteriAPPLE(GL_VERTEX_ARRAY_STORAGE_HINT_APPLE,
GL_STORAGE_CACHED_APPLE);

glVertexArrayRangeAPPLE(array_size, my_vertex_pointer);
glEnableClientState(GL_VERTEX_ARRAY_RANGE_APPLE);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, stride, my_vertex_pointer);

// When you want to draw using the vertex data
draw_1loop {

PerformDrawing();
}

For detailed information on this extension, see the OpenGL specification for the vertex array range extension.

Vertex Array Object

102

Look at the DrawUsingVertexBuffers function in Listing 9-4 (page 98). It configures buffer pointers for
position, color, and indexing before calling g1DrawE1ements. A more complex vertex structure may require
additional buffer pointers to be enabled and changed before you can finally draw your geometry. If your
application swaps frequently between multiple configurations of elements, changing these parameters adds
significant overhead to your application. The APPLE_vertex_array_object extension allows you to
combine a collection of buffer pointers into a single OpenGL object, allowing you to change all the buffer
pointers by binding a different vertex array object.

To use this extension, follow these steps during your application’s initialization routines:

1. Generate a vertex array object for a configuration of pointers you wish to use together.

Vertex Array Object
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/APPLE/vertex_array_range.txt

CHAPTER 9

Best Practices for Working with Vertex Data

void glGenVertexArraysAPPLE(sizei n, const uint *arrays);
n is the number of arrays you wish to create identifiers for.
arrays specifies a pointer to memory to store the array names.
glGenVertexArraysAPPLE(1,&myArrayObject);
2. Bind the vertex array object you want to configure.
void gIBindVertexArrayAPPLE(uint array);
array is the identifier for an array that you received from g1GenVertexArraysAPPLE.
glBindVertexArrayAPPLE(myArrayObject);

3. Call the pointer routines (g1ColorPointer and so forth.) that you would normally call inside your
rendering loop. When a vertex array object is bound, these calls change the currently bound vertex array
object instead of the default OpenGL state.

glBindBuffer(GL_ARRAY_BUFFER, staticBuffer);
glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(2, GL_FLOAT, sizeof(vertexStatic),
(void*)offsetof(vertexStatic,position));

4. Repeat the previous steps for each configuration of vertex pointers.

5. Inside your rendering loop, replace the calls to configure the array pointers with a call to bind the vertex
array object.

glBindVertexArrayAPPLE(myArrayObject);
glDrawArrays(...);

6. If you need to get back to the default OpenGL behavior, call g1BindVertexArrayAPPLE and pass in
0.

glBindVertexArrayAPPLE(O);

Vertex Array Object 103
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 9

Best Practices for Working with Vertex Data

104 Vertex Array Object
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 10

Best Practices for Working with Texture Data

Textures add realism to OpenGL objects. They help objects defined by vertex data take on the material
properties of real-world objects, such as wood, brick, metal, and fur. Texture data can originate from many
sources, including images.

Many of the same techniques your application uses on vertex data can also be used to improve texture

performance.

Figure 10-1 Textures add realism to a scene

Textures start as pixel data that flows through an OpenGL program, as shown in Figure 10-2.

Figure 10-2 Texture data path

Vertex data

—

Vertex shading
and per-vertex

operations

Rasterization

Fragment shading
and per-fragment

operations
Per-pixel :m‘/ Texture
operations assembly

0
0
Pixel data)<100O0

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

Framebuffer

105

CHAPTER 10

Best Practices for Working with Texture Data

The precise route that texture data takes from your application to its final destination can impact the
performance of your application. The purpose of this chapter is to provide techniques you can use to ensure
optimal processing of texture data in your application. This chapter

shows how to use OpenGL extensions to optimize performance

e lists optimal data formats and types

e provides information on working with textures whose dimensions are not a power of two
e describes creating textures from image data

e shows how to download textures

e discusses using double buffers for texture data

Using Extensions to Improve Texture Performance

106

Without any optimizations, texture data flows through an OpenGL program as shown in Figure 10-3. Data
from your application first goes to the OpenGL framework, which may make a copy of the data before handing
it to the driver. If your data is not in a native format for the hardware (see “Optimal Data Formats and
Types” (page 113)), the driver may also make a copy of the data to convert it to a hardware-specific format
for uploading to video memory. Video memory, in turn, can keep a copy of the data. Theoretically, there
could be four copies of your texture data throughout the system.

Figure 10-3 Data copies in an OpenGL program

[Application

<}

[OpenGL framework

<}

[OpenGL driver

<

[VRAM

NV
GPU

Data flows at different rates through the system, as shown by the size of the arrows in Figure 10-3. The fastest
data transfer happens between VRAM and the GPU. The slowest transfer occurs between the OpenGL driver
and VRAM. Data moves between the application and the OpenGL framework, and between the framework
and the driver at the same "medium" rate. Eliminating any of the data transfers, but the slowest one in
particular, will improve application performance.

There are several extensions you can use to eliminate one or more data copies and control how texture data
travels from your application to the GPU:

Using Extensions to Improve Texture Performance
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 10

Best Practices for Working with Texture Data

e GL_ARB_pixel_buffer_object allows your application to use OpenGL buffer objects to manage
texture and image data. As with vertex buffer objects, they allow your application to hint how a buffer
is used and to decide when data is copied to OpenGL.

e GL_APPLE_client_storage allows you to prevent OpenGL from copying your texture data into the
client. Instead, OpenGL keeps the memory pointer you provided when creating the texture. Your
application must keep the texture data at that location until the referencing OpenGL texture is deleted.

e GL_APPLE_texture_range, along with a storage hint, either GL_STORAGE_CACHED_APPLE or
GL_STORAGE_SHARED_APPLE, allows you to specify a single block of texture memory and manage it as
you see fit.

e GL_ARB_texture_rectangle provides support for non-power of-two textures.

Here are some recommendations:

« If yourapplication requires optimal texture upload performance, use GL_APPLE_client_storage and
GL_APPLE_texture_range together to manage your textures.

e If your application requires optimal texture download performance, use pixel buffer objects.

« If your application requires cross-platform techniques, use pixel buffer objects for both texture uploads
and texture downloads.

e UseGL_ARB_texture_rectangle when your source images are not aligned to a power-of-2 size.

The sections that follow describe the extensions and show how to use them.

Pixel Buffer Objects

Pixel buffer objects are a core feature of OpenGL 2.1 and also available through the
GL_ARB_pixel_buffer_object extension. The procedure for setting up a pixel buffer object is almost
identical to that of vertex buffer objects.

Using Pixel Buffer Objects to Efficiently Load Textures

1. Call the function g1GenBuffers to create a new name for a buffer object.
void glGenBuffers(sizei n, uint *buffers);
n is the number of buffers you wish to create identifiers for.
buffers specifies a pointer to memory to store the buffer names.

2. Call the function g1BindBuffer to bind an unused name to a buffer object. After this call, the newly
created buffer object is initialized with a memory buffer of size zero and a default state. (For the default
setting, see the OpenGL specification for ARB_vertex_buffer_object.)

void gIBindBuffer(GLenum target, GLuint buffer);

target should be be setto GL_PIXEL_UNPACK_BUFFER to use the buffer as the source of pixel data.

Using Extensions to Improve Texture Performance 107
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/ARB/vertex_buffer_object.txt

108

CHAPTER 10

Best Practices for Working with Texture Data

buffer specifies the unique name for the buffer object.

Create and initialize the data store of the buffer object by calling the function g1Buf ferData. Essentially,
this call uploads your data to the GPU.

void glBufferData(GLenum target, sizeiptr size,
const GLvoid *data, GLenum usage);

target must be setto GL_PIXEL_UNPACK_BUFFER.
size specifies the size of the data store.

*data points to the source data. If this is not NULL, the source data is copied to the data store of the
buffer object. If NULL, the contents of the data store are undefined.

usage is a constant that provides a hint as to how your application plans to use the data store. For more
details on buffer hints, see “Buffer Usage Hints” (page 98)

Whenever you call g1DrawPixels, g1TexSubImage or similar functions that read pixel data from the
application, those functions use the data in the bound pixel buffer object instead.

To update the data in the buffer object, your application calls g1MapBuf fer. Mapping the buffer prevents
the GPU from operating on the data, and gives your application a pointer to memory it can use to update
the buffer.

void *gIMapBuffer(GLenum target, GLenum access);
target must be setto PIXEL_UNPACK_BUFFER.

access indicates the operations you plan to perform on the data. You can supply READ_ONLY,
WRITE_ONLY, or READ_WRITE.

Modify the texture data using the pointer provided by map buffer.

When you have finished modifying the texture, call the function g1UnmapBuffer. You should
supplyPIXEL_UNPACK_BUFFER. Once the buffer is unmapped, your application can no longer access
the buffer’s data through the pointer, and the buffer’s contents are uploaded again to the GPU.

Using Pixel Buffer Objects for Asynchronous Pixel Transfers

gl ReadPixels normally blocks until previous commands have completed, which includes the slow process
of copying the pixel data to the application. However, if you call g1ReadPixels while a pixel buffer object
is bound, the function returns immediately. It does not block until you actually map the pixel buffer object

to read its content.

1.

Call the function g1GenBuffers to create a new name for a buffer object.
void glGenBuffers(sizei n, uint *buffers);
n is the number of buffers you wish to create identifiers for.

buffers specifies a pointer to memory to store the buffer names.

Using Extensions to Improve Texture Performance
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 10

Best Practices for Working with Texture Data

2. (all the function g1BindBuffer to bind an unused name to a buffer object. After this call, the newly
created buffer object is initialized with a memory buffer of size zero and a default state. (For the default
setting, see the OpenGL specification for ARB_vertex_buffer_object.)

void gIBindBuffer(GLenum target, GLuint buffer);
target should be be setto GL_PIXEL_PACK_BUFFER to use the buffer as the destination for pixel data.
buffer specifies the unique name for the buffer object.

3. Create and initialize the data store of the buffer object by calling the function g1BufferData.

void glBufferData(GLenum target, sizeiptr size,
const GLvoid *data, GLenum usage);

target must be set to GL_ARRAY_BUFFER.
size specifies the size of the data store.

*data points to the source data. If this is not NULL, the source data is copied to the data store of the
buffer object. If NULL, the contents of the data store are undefined.

usage is a constant that provides a hint as to how your application plans to use the data store. For more
details on buffer hints, see “Buffer Usage Hints” (page 98)

4, Call g1ReadPixels ora similar function. The function inserts a command to read the pixel data into
the bound pixel buffer object and then returns.

5. To take advantage of asynchronous pixel reads, your application should perform other work.

6. To retrieve the data in the pixel buffer object, your application calls gT1MapBuffer. This blocks OpenGL
until the previously queued g1ReadPixels command completes, maps the data, and provides a pointer
to your application.

void *gIMapBuffer(GLenum target, GLenum access);
target must be setto GL_PIXEL_PACK_BUFFER.

access indicates the operations you plan to perform on the data. You can supply READ_ONLY,
WRITE_ONLY, or READ_WRITE.

7. Write vertex data to the pointer provided by map buffer.

8. When you no longer need the vertex data, call the function g1UnmapBuffer. You should supply
GL_PIXEL_PACK_BUFFER. Once the buffer is unmapped, the data is no longer accessible to your
application.

Using Pixel Buffer Objects to Keep Data on the GPU

There is no difference between a vertex buffer object and a pixel buffer object except for the target to which
they are bound. An application can take the results in one buffer and use them as another buffer type. For
example, you could use the pixel results from a fragment shader and reinterpret them as vertex data in a
future pass, without ever leaving the GPU:

1. Set up your first pass and submit your drawing commands.

Using Extensions to Improve Texture Performance 109
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/ARB/vertex_buffer_object.txt

110

CHAPTER 10

Best Practices for Working with Texture Data

2. Bind a pixel buffer object and call g1ReadPixels to fetch the intermediate results into a buffer.
3. Bind the same buffer as a vertex buffer.

4. Set up the second pass of your algorithm and submit your drawing commands.

Keeping your intermediate data inside the GPU when performing multiple passes can result in great
performance increases.

Apple Client Storage

The Apple client storage extension (APPLE_client_storage) lets you provide OpenGL with a pointer to
memory that your application allocates and maintains. OpenGL retains a pointer to your data but does not
copy the data. Because OpenGL references your data, your application must retain its copy of the data until
all referencing textures are deleted. By using this extension you can eliminate the OpenGL framework copy
as shown in Figure 10-4. Note that a texture width must be a multiple of 32 bytes for OpenGL to bypass the
copy operation from the application to the OpenGL framework.

Figure 10-4 The client storage extension eliminates a data copy

Application m

[OpenGL framework]

OpenGL driver m

[VRAM
Ve
[v |

The Apple client storage extension defines a pixel storage parameter, GL_UNPACK_CLTIENT_STORAGE_APPLE,
that you pass to the OpenGL function g1PixelStorei to specify that your application retains storage for
textures. The following code sets up client storage:

glPixelStorei (GL_UNPACK_CLIENT_STORAGE_APPLE, GL_TRUE);

For detailed information, see the OpenGL specification for the Apple client storage extension.

Apple Texture Range and Rectangle Texture

The Apple texture range extension (APPLE_texture_range) lets you define a region of memory used for
texture data. Typically you specify an address range that encompasses the storage for a set of textures. This
allows the OpenGL driver to optimize memory usage by creating a single memory mapping for all of the
textures. You can also provide a hint as to how the data should be stored: cached or shared. The cached hint
specifies to cache texture data in video memory. This hint is recommended when you have textures that you

Using Extensions to Improve Texture Performance
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/APPLE/client_storage.txt

CHAPTER 10

Best Practices for Working with Texture Data

plan to use multiple times or that use linear filtering. The shared hint indicates that data should be mapped
into a region of memory that enables the GPU to access the texture data directly (via DMA) without the need
to copy it. This hint is best when you are using large images only once, perform nearest-neighbor filtering,
or need to scale down the size of an image.

The texture range extension defines the following routine for making a single memory mapping for all of
the textures used by your application:

void glTextureRangeAPPLE(GLenum target, GlLsizei length, GLvoid *pointer);
target is a valid texture target, such as GL_TEXTURE_2D.

Tength specifies the number of bytes in the address space referred to by the pointer parameter.
*pointer points to the address space that your application provides for texture storage.

You provide the hint parameter and a parameter value to to the OpenGL function g1 TexParameteri. The
possible values for the storage hint parameter (GL_TEXTURE_STORAGE_HINT_APPLE) are
GL_STORAGE_CACHED_APPLE or GL_STORAGE_SHARED_APPLE.

Some hardware requires texture dimensions to be a power-of-two before the hardware can upload the data
using DMA. The rectangle texture extension (ARB_texture_rectangle) was introduced to allow texture
targets for textures of any dimensions—that is, rectangle textures (GL_TEXTURE_RECTANGLE_ARB). You
need to use the rectangle texture extension together with the Apple texture range extension to ensure
OpenGL uses DMA to access your texture data. These extensions allow you to bypass the OpenGL driver, as
shown in Figure 10-5.

Note that OpenGL does not use DMA for a power-of-two texture target (GL_TEXTURE_2D). So, unlike the
rectangular texture, the power-of-two texture will incur one additional copy and performance won't be quite
as fast. The performance typically isn't an issue because games, which are the applications most likely to use
power-of-two textures, load textures at the start of a game or level and don't upload textures in real time as
often as applications that use rectangular textures, which usually play video or display images.

The next section has code examples that use the texture range and rectangle textures together with the
Apple client storage extension.

Figure 10-5 The texture range extension eliminates a data copy

[Application

N

OpenGL framework

[OpenGL driver]

VRAM
[GPU]
Using Extensions to Improve Texture Performance m

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

112

CHAPTER 10

Best Practices for Working with Texture Data

For detailed information on these extensions, see the OpenGL specification for the Apple texture range ex-
tension and the OpenGL specification for the ARB texture rectangle extension.

Combining Client Storage with Texture Ranges

You can use the Apple client storage extension along with the Apple texture range extension to streamline
the texture data path in your application. When used together, OpenGL moves texture data directly into
video memory, as shown in Figure 10-6. The GPU directly accesses your data (via DMA). The set up is slightly
different for rectangular and power-of-two textures. The code examples in this section upload textures to
the GPU. You can also use these extensions to download textures, see “Downloading Texture Data” (page
119).

Figure 10-6 Combining extensions to eliminate data copies

t[Application m

[OpenGL framework]

[OpenGL driver]

Listing 10-1 shows how to use the extensions for a rectangular texture. After enabling the texture rectangle
extension you need to bind the rectangular texture to a target. Next, set up the storage hint. Call
glPixelStorei to set up the Apple client storage extension. Finally, call the function g1TexImage2D with
a with a rectangular texture target and a pointer to your texture data.

Note: The texture rectangle extension limits what can be done with rectangular textures. To understand the
limitations in detail, read the OpenGL extension for texture rectangles. See “Working with Non-Power-of-Two
Textures” (page 113) for an overview of the limitations and an alternative to using this extension.

Listing 10-1 Using texture extensions for a rectangular texture

glEnable (GL_TEXTURE_RECTANGLE_ARB);
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, 1id);
glTexParameteri (GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_STORAGE_HINT_APPLE,
GL_STORAGE_CACHED_APPLE);
glPixelStorei (GL_UNPACK_CLIENT_STORAGE_APPLE, GL_TRUE);
glTexImage2D(GL_TEXTURE_RECTANGLE_ARB,
0, GL_RGBA, sizex, sizey, 0, GL_BGRA,

myImagePtr);

Using Extensions to Improve Texture Performance
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/APPLE/texture_range.txt
http://www.opengl.org/registry/specs/APPLE/texture_range.txt
http://www.opengl.org/registry/specs/ARB/texture_rectangle.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_rectangle.txt

CHAPTER 10

Best Practices for Working with Texture Data

Setting up a power-of-two texture to use these extensions is similar to what's needed to set up a rectangular
texture, as you can see by looking at Listing 10-2. The difference is that the GL_TEXTURE_2D texture target
replaces the GL_TEXTURE_RECTANGLE_ARB texture target.

Listing 10-2 Using texture extensions for a power-of-two texture

glBindTexture(GL_TEXTURE_2D, myTextureName);

glTexParameteri (GL_TEXTURE_2D,
GL_TEXTURE_STORAGE_HINT_APPLE,
GL_STORAGE_CACHED_APPLE);

glPixelStorei (GL_UNPACK_CLIENT_STORAGE_APPLE, GL_TRUE);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
sizex, sizey, 0, GL_BGRA,

Optimal Data Formats and Types

The best format and data type combinations to use for texture data are:

GL_YCBCR_422_APPLE, GL_UNSIGNED_SHORT_8_8_REV_APPLE

The combination GL_RGBA and GL_UNSIGNED_BYTE needs to be swizzled by many cards when the data is
loaded, so it's not recommended.

Working with Non—-Power-of-Two Textures

OpenGL is often used to process video and images, which typically have dimensions that are not a
power-of-two. Until OpenGL 2.0, the texture rectangle extension (ARB_texture_rectangle) provided the
only option for a rectangular texture target. This extension, however, imposes the following restrictions on

rectangular textures:

e You can't use mipmap filtering with them.

e You can use only these wrap modes: GL_CLAMP, GL_CLAMP_TO_EDGE, and GL_CLAMP_TO_BORDER.

e The texture cannot have a border.

e The texture uses non-normalized texture coordinates. (See Figure 10-7.)

OpenGL 2.0 adds another option for a rectangular texture target through the
ARB_texture_non_power_of_two extension, which supports these textures without the limitations of the

ARB_texture_rectang]le extension. Before using it, you must check to make sure the functionality is
available. You'll also want to consult the OpenGL specification for the non—power-of-two extension.

Optimal Data Formats and Types 113
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/ARB/texture_non_power_of_two.txt

14

CHAPTER 10

Best Practices for Working with Texture Data

Figure 10-7 Normalized and non-normalized coordinates

1 Height

0 1 0 Width

Normalized Non-normalized

If your code runs on a system that does not support either the ARB_texture_rectangle or
ARB_texture_non_power_of_two extensions you have these options for working with with rectangular
images:

e Use the OpenGL function gluScalelmage to scale the image so that it fits in a rectangle whose
dimensions are a power of two. The image undoes the scaling effect when you draw the image from
the properly sized rectangle back into a polygon that has the correct aspect ratio for the image.

Note: This option can result in the loss of some data. But if your application runs on hardware that doesn't
support the ARB_texture_rectangle extension, you may need to use this option.

e Segment the image into power-of-two rectangles, as shown in Figure 10-8 by using one image buffer
and different texture pointers. Notice how the sides and corners of the image shown in Figure 10-8 are
segmented into increasingly smaller rectangles to ensure that every rectangle has dimensions that are
a power of two. Special care may be needed at the borders between each segment to avoid filtering
artifacts if the texture is scaled or rotated.

Working with Non—Power-of-Two Textures
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 10

Best Practices for Working with Texture Data

Figure 10-8 An image segmented into power-of-two tiles

8 06 zebra.jpg

Creating Textures from Image Data

OpenGL on the Macintosh provides several options for creating high-quality textures from image data. Mac
OS X supports floating-point pixel values, multiple image file formats, and a variety of color spaces. You can
import a floating-point image into a floating-point texture. Figure 10-9 shows an image used to texture a
cube.

Creating Textures from Image Data 115
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

116

CHAPTER 10

Best Practices for Working with Texture Data

Figure 10-9 Using an image as a texture for a cube

808 - Image as Texture - Viewer &

N

Frame Rate: 59.98 FPS Rendering Load: 1% %

For Cocoa, you need to provide a bitmap representation. You can create an NSBitmapImageRep object from
the contents of an NSV i ew object. You can use the Image I/0 framework (see CGImageSource Reference). This
framework has support for many different file formats, floating-point data, and a variety of color spaces.
Furthermore, it is easy to use. You can import image data as a texture simply by supplying a CFURL object
that specifies the location of the texture. There is no need for you to convert the image to an intermediate
integer RGB format.

Creating a Texture from a Cocoa View

You can use the NSView class or a subclass of it for texturing in OpenGL. The process is to first store the
image data from an NSView object in an NSBitmapImageRep object so that the image data is in a format
that can be readily used as texture data by OpenGL. Then, after setting up the texture target, you supply the
bitmap data to the OpenGL function g1TexImage?2D. Note that you must have a valid, current OpenGL
context set up.

Note: You can't create an OpenGL texture from image data that's provided by a view created from the
following classes: NSProgressIndicator, NSMovieView,and NSOpenGLView. This is because these views
do not use the window backing store, which is what the method initWithFocusedViewRect: reads from.

Listing 10-3 shows a routine that uses this process to create a texture from the contents of an NSV1iew object.
A detailed explanation for each numbered line of code appears following the listing.

Listing 10-3 Building an OpenGL texture from an NSView object

-(void)myTextureFromView: (NSView*)theView
textureName: (GLuint*)texName
{
NSBitmapImageRep * bitmap = [theView bitmapImageRepForCachingDisplayInRect:

Creating Textures from Image Data
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 10

Best Practices for Working with Texture Data

}

/7

[theView visibleRectl]; // 1
int samplesPerPixel = 0;

[theView cacheDisplayInRect:[theView visibleRect] toBitmapImageRep:bitmap];
2

samplesPerPixel = [bitmap samplesPerPixell;

glPixelStorei (GL_UNPACK_ROW_LENGTH, [bitmap bytesPerRow]l/samplesPerPixel);

glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
if (*texName == 0)
glGenTextures (1, texName);
glBindTexture (GL_TEXTURE_RECTANGLE_ARB, *texName);
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_MIN_FILTER, GL_LINEAR);

if(![bitmap isPlanar] &&

(samplesPerPixel == || samplesPerPixel == 4)) {
glTexImage2D(GL_TEXTURE_RECTANGLE_ARB,
0,

samplesPerPixel == 4 ? GL_RGBA8 : GL_RGBS,
[bitmap pixelsWidel],
[bitmap pixelsHighl,
0,
samplesPerPixel == 4 7 GL_RGBA : GL_RGB,
GL_UNSIGNED_BYTE,
[bitmap bitmapDatal);
b else |
// Your code to report unsupported bitmap data
}

Here's what the code does:

1.

2,

Allocates an NSBitmapImageRep object.

Initializes the NSBitmapImageRep object with bitmap data from the current view.
Gets the number of samples per pixel.

Sets the appropriate unpacking row length for the bitmap.

Sets the byte-aligned unpacking that's needed for bitmaps that are 3 bytes per pixel.
If a texture object is not passed in, generates a new texture object.

Binds the texture name to the texture target.

Sets filtering so that it does not use a mipmap, which would be redundant for the texture rectangle

extension.

/13
/14

/15
/16

/7

/18

/19

Checks to see if the bitmap is nonplanar and is either a 24-bit RGB bitmap or a 32-bit RGBA bitmap. If

so, retrieves the pixel data using the bitmapData method, passing it along with other appropriate

parameters to the OpenGL function for specifying a 2D texture image.

Creating Textures from Image Data
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

17

118

CHAPTER 10

Best Practices for Working with Texture Data

Creating a Texture from a Quartz Image Source

Quartz images (CGImageRef data type) are defined in the Core Graphics framework
(ApplicationServices/CoreGraphics.framework/CGImage.h) while the image source data type for
reading image data and creating Quartzimages from an image source is declared in the Image I/O framework
(ApplicationServices/ImagelIQ.framework/CGImageSource.h). Quartz provides routines that read
a wide variety of image data.

To use a Quartz image as a texture source, follow these steps:

1. Create a Quartz image source by supplying a CFURL object to the function
CGImageSourceCreateWithURL.

2. Create a Quartz image by extracting an image from the image source, using the function
CGImageSourceCreatelImageAtIndex.

3. Extract the image dimensions using the function CGImageGetWidth and CGImageGetHeight. You'l
need these to calculate the storage required for the texture.

4. Allocate storage for the texture.
5. Create a color space for the image data.

6. Create a Quartz bitmap graphics context for drawing. Make sure to set up the context for pre-multiplied
alpha.

7. Draw the image to the bitmap context.

8. Release the bitmap context.

9. Set the pixel storage mode by calling the function g1PixelStorei.
10. Create and bind the texture.

11. Set up the appropriate texture parameters.

12. Call g1TexImage?2D, supplying the image data.

13. Free the image data.

Listing 10-4 shows a code fragment that performs these steps. Note that you must have a valid, current
OpenGL context.

Listing 10-4 Using a Quartz image as a texture source

CGImageSourceRef mylImageSourceRef = CGImageSourceCreateWithURL(url, NULL);
CGImageRef myImageRef = CGImageSourceCreatelmageAtIndex (mylImageSourceRef, 0,
NULL) ;

GLint myTextureName;

size_t width = CGImageGetWidth(myImageRef);

size_t height = CGImageGetHeight(myImageRef);

CGRect rect = {{0, 0}, {width, height}};

void * myData = calloc(width * 4, height);

CGColorSpaceRef space = CGColorSpaceCreateDeviceRGB();

CGContextRef myBitmapContext = CGBitmapContextCreate (myData,

Creating Textures from Image Data
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 10

Best Practices for Working with Texture Data

width, height, 8,
width*4, space,
kCGBitmapByteOrder32Host |
kCGImageAlphaPremultipliedFirst);
CGContextSetBlendMode(myBitmapContext, kCGBlendModeCopy);
CGContextDrawImage(myBitmapContext, rect, myImageRef);
CGContextRelease(myBitmapContext);
glPixelStorei (GL_UNPACK_ROW_LENGTH, width);
glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
glGenTextures(l, &myTextureName);
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, myTextureName);
glTexParameteri (GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_RGBA8, width, height,
0, GL_BGRA_EXT, GL_UNSIGNED_INT_8_8_8_8_REV, myData);

free(myData);

For more information on using Quartz, see Quartz 2D Programming Guide, CGImage Reference, and
CGImageSource Reference.

Getting Decompressed Raw Pixel Data from a Source Image

You can use the Image /0 framework together with a Quartz data provider to obtain decompressed raw
pixel data from a source image, as shown in Listing 10-5. You can then use the pixel data for your OpenGL
texture. The data has the same format as the source image, so you need to make sure that you use a source
image that has the layout you need.

Alpha is not premultiplied for the pixel data obtained in Listing 10-5, but alpha is premultiplied for the pixel
data you get when using the code described in “Creating a Texture from a Cocoa View” (page 116) and
“Creating a Texture from a Quartz Image Source” (page 118).

Listing 10-5 Getting pixel data from a source image

CGImageSourceRef mylImageSourceRef = CGImageSourceCreateWithURL(url, NULL);
CGImageRef myImageRef = CGImageSourceCreatelmageAtIndex (mylImageSourceRef, O,
NULL);

CFDataRef data = CGDataProviderCopyData(CGImageGetDataProvider(myImageRef));
void *pixelData = CFDataGetBytePtr(data);

Downloading Texture Data

A texture download operation uses the same data path as an upload operation except that the data path is
reversed. Downloading transfers texture data, using direct memory access (DMA), from VRAM into a texture
that can then be accessed directly by your application. You can use the Apple client range, texture range,
and texture rectangle extensions for downloading, just as you would for uploading.

To download texture data using the Apple client storage, texture range, and texture rectangle extensions:
e Bind a texture name to a texture target.

e Set up the extensions

Downloading Texture Data 119
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 10

Best Practices for Working with Texture Data

e Call the function g1CopyTexSubImage2D to copy a texture subimage from the specified window
coordinates. This call initiates an asynchronous DMA transfer to system memory the next time you call
a flush routine. The CPU doesn't wait for this call to complete.

e Callthe function g1GetTexImage to transfer the texture into system memory. Note that the parameters
must match the ones that you used to set up the texture when you called the function g1TexImage2D.
This call is the synchronization point; it waits until the transfer is finished.

Listing 10-6 shows a code fragment that downloads a rectangular texture that uses cached memory. Your
application processes data between the g1CopyTexSubImage2D and g1GetTexImage calls. How much
processing? Enough so that your application does not need to wait for the GPU.

Listing 10-6 Code that downloads texture data

glBindTexture(GL_TEXTURE_RECTANGLE_ARB, myTextureName);
glTexParameteri (GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_STORAGE_HINT_APPLE,
GL_STORAGE_SHARED_APPLE);
glPixelStorei (GL_UNPACK_CLIENT_STORAGE_APPLE, GL_TRUE);
glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_RGBA,
sizex, sizey, 0, GL_BGRA,

glCopyTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB,

0, 0, 0, 0, 0, image_width, image_height);
glFlush();
// Do other work processing here, using a double or triple buffer

glGetTexImage(GL_TEXTURE_RECTANGLE_ARB, 0, GL_BGRA,

Double Buffering Texture Data

120

When you use any technique that allows the GPU to access your texture data directly, such as the texture
range extension, it's possible for the GPU and CPU to access the data at the same time. To avoid such a
collision, you must synchronize the GPU and the CPU. The simplest way is shown in Figure 10-10. Your
application works on the data, flushes it to the GPU and waits until the GPU is finished before working on
the data again.

One technique for ensuring that the GPU is finished executing commands before your application sends
more data is to insert a token into the command stream and use that to determine when the CPU can touch
the data again, as described in “Use Fences for Finer-Grained Synchronization” (page 87). Figure 10-10 uses
the fence extension command g1FinishObject to synchronize buffer updates for a stream of single-buffered
texture data. Notice that when the CPU is processing texture data, the GPU is idle. Similarly, when the GPU
is processing texture data, the CPU is idle. It's much more efficient for the GPU and CPU to work asynchronously
than to work synchronously. Double buffering data is a technique that allows you to process data
asynchronously, as shown in Figure 10-11 (page 121).

Double Buffering Texture Data
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 10

Best Practices for Working with Texture Data

Figure 10-10 Single-buffered data

TIME Frame 1 Frame 2 >
v v
| g1Finishobject(..., 1) | |gIFinishobject(..., 1)

.

S PR — - __’

0 T i e
o B O
. i . i

To double buffer data, you must supply two sets of data to work on. Note in Figure 10-11 that while the GPU
is rendering one frame of data, the CPU processes the next. After the initial startup, neither processing unit
is idle. Using the g1Finish0bject function provided by the fence extension ensures that buffer updating
is synchronized.

Figure 10-11 Double-buffered data

Time Frame 1 Frame 2 Frame 3 Frame 4 >
v v v v
g1FinishObject(. .., 2)| |g1F1nish0bject(..., 2)|
* ®
| g1Finishobject(..., 1) |i| g1Finishobject(..., 1)
¢ ! ¢ |
T B DR I R ;
m:__—. | EEmme | Smmam | Semaw !
| O | | | O | ' | B | ' | B | ' 1
o s ! o s ! i s ! i s ! 1
ey !gqgsfi : gsqgsfi : gsqgsfi : :
| g1Flush | | g1Flush | | g1Flush | | g1Flush | !
B N R
m | Shmms @ Shmms | memes | memes
T T T TR T T T TR T T 1 TR T T T T
| i ¢ KRS 1 i ©. KRS L i ©. KRS L i ©. KRS 1
P P P P
Double Buffering Texture Data 121

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 10

Best Practices for Working with Texture Data

122 Double Buffering Texture Data
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 11

Customizing the OpenGL Pipeline with
Shaders

OpenGL 1.x used fixed functions to deliver a useful graphics pipeline to application developers. To configure
the various stages of the pipeline shown in Figure 11-1, applications called OpenGL functions to tweak the
calculations that were performed for each vertex and fragment. Complex algorithms required multiple
rendering passes and dozens of function calls to configure the calculations that the programmer desired.
Extensions offered new configuration options, but did not change the complex nature of OpenGL
programming.

Figure 11-1 OpenGL fixed-function pipeline

Application | Primitives and image data |
T
nin
Vertex | Transform and lighting |
T

Primitive assembly |

Geometry

| Clipping |
1T

| Texturing |

Fragment

| Fog |
J0

| Alpha, stencil, and depth tests |

Framebuffer operations

| Framebuffer blending |

Starting with OpenGL 2.0, some stages of the OpenGL pipeline can be replaced with shaders. A shader is a
program written in a special shading language. This program is compiled by OpenGL and uploaded directly
into the graphics hardware. Figure 11-2 shows where your applications can hook into the pipeline with
shaders.

123
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

124

CHAPTER 11
Customizing the OpenGL Pipeline with Shaders

Figure 11-2 OpenGL shader pipeline

Application | Primitives and image data |
|
Vertex | Vertex shaders |
s
Geometry shaders |
Geometry
| Clipping |
s
Fragment | Fragment shaders |
s

| Alpha, stencil, and depth tests |

Framebuffer operations

Framebuffer blending |

Shaders offer a considerable number of advantages to your application:
e Shaders give you precise control over the operations that are performed to render your images.

e Shaders allow for algorithms to be written in a terse, expressive format. Rather than writing complex
blocks of configuration calls to implement a mathematical operation, you write code that expresses the
algorithm directly.

e Older graphics processors implemented the fixed-function pipeline in hardware or microcode, but now
graphics processors are general-purpose computing devices. The fixed function pipeline is itself
implemented as a shader.

e Shaders allow for longer and more complex algorithms to be implemented using a single rendering
pass. Because you have extensive control over the pipeline, it is also easier to implement multipass
algorithms without requiring the data to be read back from the GPU.

e Yourapplication can switch between different shaders with a single function call. In contrast, configuring
the fixed-function pipeline incurs significant function-call overhead.
If your application uses the fixed-function pipeline, a critical task is to replace those tasks with shaders.

If you are new to shaders, OpenGL Shading Language, by Randi J. Rost, is an excellent guide for those looking
to learn more about writing shaders and integrating them into your application. The rest of this chapter
provides some boilerplate code, briefly describe the extensions that implement shaders, and discusses tools
that Apple provides to assist you in writing shaders.

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 11

Customizing the OpenGL Pipeline with Shaders

Shader Basics

OpenGL 2.0 offers vertex and fragment shaders, to take over the processing of those two stages of the
graphics pipeline. These same capabilities are also offered by the ARB_shader_objects, ARB_vertex_shader
and ARB_fragment_shaderextensions. Vertex shading is available on all hardware running Mac OS X v10.5
or later. Fragment shading is available on all hardware running Mac OS X v10.6 and the majority of hardware
running Mac OS X v10.5.

Creating a shader program is an expensive operation compared to other OpenGL state changes. Listing 11-1
presents a typical strategy to load, compile, and verify a shader program.

Listing 11-1

/** Initia

}

Loading a Shader

lization-time for shader **/
GLuint shader, prog;
GLchar *shaderText = "... shader text ...";

// Create ID for shader
shader = glCreateShader(GL_VERTEX_SHADER);

// Define shader text
glShaderSource(shaderText);

// Compile shader
glCompileShader(shader);

// Associate shader with program
glAttachShader(prog, shader);

// Link program
glLinkProgram(prog);

// Validate program
glvalidateProgram(prog);

// Check the status of the compile/link
glGetProgramiv(prog, GL_INFO_LOG_LENGTH, &loglLen);
if(logLen > 0)
{
// Show any errors as appropriate
glGetProgramInfolog(prog, loglLen, &loglen, Tlog);
fprintf(stderr, "Prog Info Log: %s\n", log);

// Retrieve all uniform locations that are determined during Tink phase

phase

for(i = 0; i < uniformCt; i++)
{

uniformlLoc[i] = glGetUniformLocation(prog, uniformName);
}

// Retrieve all attrib Tocations that are determined during Tink

for(i = 0; 1 < attribCt; i++)
{

attribloc[i] = glGetAttriblLocation(prog, attribName);
}

Shader Basics 125
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/ARB/shader_objects.txt
http://www.opengl.org/registry/specs/ARB/vertex_shader.txt
http://www.opengl.org/registry/specs/ARB/fragment_shader.txt

CHAPTER 11
Customizing the OpenGL Pipeline with Shaders

/** Render stage for shaders **/
glUseProgram(prog);

This code loads the text source for a vertex shader, compiles it, and adds it to the program. A more complex
example might also attach fragment and geometry shaders. The program is linked and validated for
correctness. Finally, the program retrieves information about the inputs to the shader and stores then in its
own arrays. When the application is ready to use the shader, it calls g1UseProgram to make it the current
shader.

For best performance, your application should create shaders when your application is initialized, and not
inside the rendering loop. Inside your rendering loop, you can quickly switch in the appropriate shaders by
calling g1UseProgram. For best performance, use the vertex array object extension to also switch in the
vertex pointers. See “Vertex Array Object” (page 102) for more information.

Advanced Shading Extensions

In addition to the standard shader, some Macs offer additional shading extensions to reveal advanced
hardware capabilities. Not all of these extensions are available on all hardware, so you need to assess whether
the features of each extension are worth implementing in your application.

Transform Feedback

The EXT_transform_feedback extension is available on all hardware running Mac OS X v10.5 or later. With

the feedback extension, you can capture the results of the vertex shader into a buffer object, which can be
used as an input to future commands. This is similar to the pixel buffer object technique described in “Using
Pixel Buffer Objects to Keep Data on the GPU” (page 109), but more directly captures the results you desire.

GPU Shader 4

The EXT_gpu_shader4 extension extends the OpenGL shading language to offer new operations, including:
e Fullinteger support.
e Built-in shader variable to reference the current vertex.

e Built-in shader variable to reference the current primitive. This makes it easier to use a shader to use the
same static vertex data to render multiple primitives, using a shader and uniform variables to customize
each instance of that primitive.

o Unfiltered texture fetches using integer coordinates.
e Querying the size of a texture within a shader.

e Offset texture lookups.

e Explicit gradient and LOD texture lookups.

e Depth Cubemaps.

126 Advanced Shading Extensions
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/EXT/transform_feedback.txt
http://www.opengl.org/registry/specs/EXT/gpu_shader4.txt

CHAPTER 11
Customizing the OpenGL Pipeline with Shaders

Geometry Shaders

The EXT_geometry_shader4 extension allows your create geometry shaders. A geometry shader accepts
transformed vertices and can add or remove vertices before passing them down to the rasterizer. This allows
the application to add or remove geometry based on the calculated values in the vertex. For example, given
a triangle and its neighboring vertices, your application could emit additional vertices to better create a more
accurate appearance of a curved surface.

Uniform Buffers

The EXT_bindable_uniform extension allows your application to allocate buffer objects and use them as the
source for uniform data in your shaders. Instead of relying on a single block of uniform memory supplied by
OpenGlL, your application allocates buffer objects using the same API that it uses to implement vertex buffer
objects (“Vertex Buffers” (page 96)). Instead of making a function call for each uniform variable you want to
change, you can swap all of the uniform data by binding to a different uniform buffer.

Advanced Shading Extensions 127
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/EXT/geometry_shader4.txt
http://www.opengl.org/registry/specs/EXT/bindable_uniform.txt

CHAPTER 11
Customizing the OpenGL Pipeline with Shaders

128 Advanced Shading Extensions
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 12

Techniques for Scene Anti-Aliasing

Aliasing is the bane of the digital domain. In the early days of the personal computer, jagged edges and
blocky graphics were accepted by the user simply because not much could be done to correct them. Now
with faster hardware and higher-resolution displays, there are several anti-aliasing techniques that can smooth
edges to achieve a more realistic scene.

OpenGL supports anti-aliasing that operates at the level of lines and polygons as well as at the level of the
full scene. This chapter discusses techniques for full scene anti-aliasing (FSAA). If your application needs point
or line anti-aliasing instead of full scene anti-aliasing, use the built in OpenGL point and line anti-aliasing
functions. These are described in Section 3.4.2 in the OpenGL Specification.

The three anti-aliasing techniques in use today are multisampling, supersampling, and alpha channel blending:

e Multisampling defines a technique for sampling pixel content at multiple locations for each pixel. This
is a good technique to use if you want to smooth polygon edges.

e Supersampling renders at a much higher resolution than what's needed for the display. Prior to drawing
the content to the display, OpenGL scales and filters the content to the appropriate resolution. This is a
good technique to use when you want to smooth texture interiors in addition to polygon edges.

e Alpha channel blending uses the alpha value of a fragment to control how to blend the fragment with
the pixel values that are already in the framebuffer. It's a good technique to use when you want to ensure
that foreground and background images are composited smoothly.

The ARB_multisample extension defines a specification for full scene anti-aliasing. It describes multisampling
and alpha channel sampling. The specification does not specifically mention supersampling but its wording
doesn't preclude supersampling. The anti-aliasing methods that are available depend on the hardware and
the actual implementation depends on the vendor. Some graphics cards support anti-aliasing using a mixture
of multisampling and supersampling. The methodology used to select the samples can vary as well. Your
best approach is to query the renderer to find out exactly what is supported. OpenGL lets you provide a hint
to the renderer as to which anti-aliasing technique you prefer. Hints are available as renderer attributes that
you supply when you create a pixel format object.

A smaller subset of renderers support the EXT_framebuffer_blit and EXT_framebuffer_multisample extensions.
These extensions allow your application to create multisampled offscreen frame buffer objects, render detailed
scenes to them, with precise control over when the multisampled renderbuffer is resolved to a single
displayable color per pixel.

Guidelines

Keep the following in mind when you set up full scene anti-aliasing:

Guidelines 129
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/ARB/multisample.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_blit.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_multisample.txt

CHAPTER 12

Techniques for Scene Anti-Aliasing

Although a system may have enough VRAM to accommodate a multisample buffer, a large buffer can
affect the ability of OpenGL to maintain a properly working texture set. Keep in mind that the buffers
associated with the rendering context—depth and stencil—increase in size by a factor equal to number
of samples per pixel.

The OpenGL driver allocates the memory needed for the multisample buffer; your application should
not allocate this memory.

Any anti-aliasing algorithm that operates on the full scene requires additional computing resources.
There is a tradeoff between performance and quality. For that reason, you may want to provide a user
interface that allows the user to enable and disable FSAA, or to choose the level of quality for anti-aliasing.

The commands gTEnable(GL_MULTISAMPLE) and g1Disable(GL_MULTISAMPLE) are ignored on
some hardware because some graphics cards have the feature enabled all the time. That doesn't mean
that you should not call these commands because you'll certainly need them on hardware that doesn't
ignore them.

A hint as to the variant of sampling you want is a suggestion, not a command. Not all hardware supports
all types of anti-aliasing. Other hardware mixes multisampling with supersampling techniques. The driver
dictates the type of anti-aliasing that's actually used in your application.

The best way to find out which sample modes are supported is to call the CGL function
CGLDescribeRenderer with the renderer property kCGLRPSamp1eModes or kKCGLRPSampleAlpha.
You can also determine how many samples the renderer supports by calling CGLDescribeRenderer
with the renderer property kCGLRPMaxSampTles.

General Approach

130

The general approach to setting up full scene anti-aliasing is as follows:

1.

Check to see what's supported. Not all renderers support the ARB multisample extension, so you need
to check for this functionality (see “Detecting Functionality” (page 73)).

To find out what type of anti-aliasing a specific renderer supports, call the function
CGLDescribeRenderer. Supply the renderer property kCGLRPSampleModes to find out whether the
renderer supports multisampling and supersampling. Supply kCGLRPSampleAlpha to see whether the
renderer supports alpha sampling.

You can choose to exclude unsupported hardware from the pixel format search by specifying only the

hardware that supports multisample anti-aliasing. Keep in mind that if you exclude unsupported hardware,
the unsupported displays will not render anything. If you include unsupported hardware, OpenGL uses
normal aliased rendering to the unsupported displays and multisampled rendering to supported displays.

Include these buffer attributes in the attributes array:

e The appropriate sample buffer attribute constant (NSOpenGLPFASampleBuffers or
kCGLPFASampleBuffers) along with the number of multisample buffers. At this time the
specification allows only one multisample buffer.

General Approach

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 12

Techniques for Scene Anti-Aliasing

e The appropriate samples constant (NSOpenGLPFASamples or kCGLPFASamp1es) along with the
number of samples per pixel. You can supply 2, 4, 6, or more depending on what the renderer
supports and the amount of VRAM available. The value that you supply affects the quality, memory
use, and speed of the multisampling operation. For fastest performance, and to use the least amount
of video memory, specify 2 samples. When you need more quality, specify 4 or more.

e Thenorecovery attribute (NSOpenGLPFANoRecovery or kCGLPFANoRecavery). Although enabling
this attribute is not mandatory, it's recommended to prevent OpenGL from using software fallback
as a renderer. Multisampled antialiasing performance is slow in the software renderer.

3. Optionally provide a hint for the type of anti-aliasing you want—multisampling, supersampling, or alpha
sampling. See “Hinting for a Specific Anti-Aliasing Technique” (page 131).

4. Enable multisampling with the following command:
glEnable(GL_MULTISAMPLE);

Regardless of the enabled state, OpenGL always uses the multisample buffer if you supply the appropriate
buffer attributes when you set up the pixel format object. If you haven't supplied the appropriate
attributes, enabling multisampling has no effect.

When multisampling is disabled, all coverage values are set to 1, which gives the appearance of rendering
without multisampling.

Some graphics hardware leaves multisampling enabled all the time. However, don't rely on hardware
to have multisampling enabled; use g1Enable to programmatically turn on this feature.

5. Optionally provide hints for the rendering algorithm. You perform this optional step only if you want
OpenGL to compute coverage values by a method other than uniformly weighting samples and averaging
them.

Some hardware supports a multisample filter hint through an OpenGL
extension—GL_NV_multisample_filter_hint. This hint allows an OpenGL implementation to use
an alternative method of resolving the color of multisampled pixels.

You can specify that OpenGL uses faster or nicer rendering by calling the OpenGL function g1Hint,
passing the constant GL_MULTISAMPLE_FILTER_HINT_NV as the target parameter and GL_FASTEST
or GL_NICEST as the mode parameter. Hints allow the hardware to optimize the output if it can. There
is no performance penalty or returned error for issuing a hint that's not supported.

For more information, see the OpenGL extension registry for NV_multisample_filter_hint.

Hinting for a Specific Anti-Aliasing Technique

When you set up your renderer and buffer attributes for full scene antialiasing, you can specify a hint to
prefer one anti-aliasing technique over the others. If the underlying renderer does not have sufficient resources
to support what you request, OpenGL ignores the hint. If you do not supply the appropriate buffer attributes
when you create a pixel format object, then the hint does nothing. Table 12-1 lists the hinting constants
available for the NSOpenGLPixelFormat class and CGL.

Hinting for a Specific Anti-Aliasing Technique 131
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://oss.sgi.com/projects/ogl-sample/registry/NV/multisample_filter_hint.txt

CHAPTER 12

Techniques for Scene Anti-Aliasing

Table 12-1 Anti-aliasing hints

Multisampling Supersampling Alpha blending

NSOpenGLPFAMultisample | NSOpenGLPFASupersample | NSOpenGLPFASampleAlpha

KCGLPFAMuTtisample kCGLPFASupersample kCGLPFASampleAlpha

132 Hinting for a Specific Anti-Aliasing Technique
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 13

Concurrency and OpenGL

Concurrency is the notion of multiple things happening at the same time. In the context of computers,
concurrency usually refers to executing tasks on more than one processor at the same time. By performing
work in parallel, tasks complete sooner, and applications become more responsive to the user. The good
news is that well-designed OpenGL applications already exhibit a specific form of concurrency—concurrency
between application processing on the CPU and OpenGL processing on the GPU. Many of the techniques
introduced in “OpenGL Application Design Strategies” (page 79) are aimed specifically at creating OpenGL
applications that exhibit great CPU-GPU parallelism. However, modern computers not only contain a powerful
GPU, but also contain multiple CPUs. Sometimes those CPUs have multiple cores, each capable of performing
calculations independently of the others. It is critical that applications be designed to take advantage of
concurrency where possible. Designing a concurrent application means decomposing the work your application
performs into subtasks and identifying which tasks can safely operate in parallel and which tasks must be
executed sequentially—that is, which tasks are dependent on either resources used by other tasks or results
returned from those tasks.

Each process in Mac OS X is made up of one or more threads. A thread is a stream of execution that runs
code for the process. Multicore systems offer true concurrency by allowing multiple threads to execute
simultaneously. Apple offers both traditional threads and a feature called Grand Central Dispatch (GCD).
Grand Central Dispatch allows you to decompose your application into smaller tasks without requiring the
application to manage threads. GCD allocates threads based on the number of cores available on the system
and automatically schedules tasks to those threads.

At a higher level, Cocoa offers NSOperationand NSOperationQueue to provide an Objective-C abstraction
for creating and scheduling units of work. On Mac OS X v10.6, operation queues use GCD to dispatch work;
on Mac OS X v10.5, operation queues create threads to execute your application’s tasks.

This chapter does not attempt describe these technologies in detail. Before you consider how to add
concurrency to your OpenGL application, you should first readConcurrency Programming Guide. If you plan
on managing threads manually, you should also read Threading Programming Guide. Regardless of which
technique you use, there are additional restrictions when calling OpenGL on multithreaded systems. This
chapter helps you understand when multithreading improves your OpenGL application’s performance, the
restrictions OpenGL places on multithreaded applications, and common design strategies you might use to
implement concurrency in an OpenGL application. Some of these design techniques can get you an
improvement in just a few lines of code.

|dentifying Whether an OpenGL Application Can Benefit from
Concurrency

Creating a multithreaded application requires significant effort in the design, implementation, and testing
of your application. Threads also add complexity and overhead to an application. For example, your application
may need to copy data so that it can be handed to a worker thread, or multiple threads may need to
synchronize access to the same resources. Before you attempt to implement concurrency in an OpenGL

Identifying Whether an OpenGL Application Can Benefit from Concurrency 133
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 13

Concurrency and OpenGL

application, you should optimize your OpenGL code in a single-threaded environment using the techniques
described in “OpenGL Application Design Strategies” (page 79). Focus on achieving great CPU-GPU parallelism
first and then assess whether concurrent programming can provide an additional performance benefit.

A good candidate has either or both of the following characteristics:

e The application performs many tasks on the CPU that are independent of OpenGL rendering. Games,
for example, simulate the game world, calculate artificial intelligence from computer-controlled opponents,
and play sound. You can exploit parallelism in this scenario because many of these tasks are not dependent
on your OpenGL drawing code.

e Profiling your application has shown that your OpenGL rendering code spends a lot of time in the CPU.
In this scenario, the GPU is idle because your application is incapable of feeding it commands fast enough.
If your CPU-bound code has already been optimized, you may be able to improve its performance further
by splitting the work into tasks that execute concurrently.

If your application is blocked waiting for the GPU, and has no work it can perform in parallel with its OpenGL
drawing commands, then it is not a good candidate for concurrency. If the CPU and GPU are both idle, then
your OpenGL needs are probably simple enough that no further tuning is useful.

For more information on how to determine where your application spends its time, see “Tuning Your OpenGL
Application” (page 141).

OpenGL Restricts Each Context to a Single Thread

Each thread in a Mac OS X process has a single current OpenGL rendering context. Every time your application
calls an OpenGL function, OpenGL implicitly looks up the context associated with the current thread and
modifies the state or objects associated with that context.

OpenGL is not reentrant. If you modify the same context from multiple threads simultaneously, the results
are unpredictable. Your application might crash or it might render improperly. If for some reason you decide
to set more than one thread to target the same context, then you must synchronize threads by placing a
mutex around all OpenGL calls to the context, such as g1* and CGL*. OpenGL commands that block—such
as fence commands—do not synchronize threads.

GCD and NSOperationQueue objects can both execute your tasks on a thread of their choosing. They may
create a thread specifically for that task, or they may reuse an existing thread. But in either case, you cannot
guarantee which thread executes the task. For an OpenGL application, that means:

e Each task must set the context before executing any OpenGL commands.

e Your application must ensure that two tasks that access the same context are not allowed to execute
concurrently.

Strategies for Implementing Concurrency in OpenGL Applications

134

A concurrent OpenGL application wants to focus on CPU parallelism so that OpenGL can provide more work
to the GPU. Here are a few recommended strategies forimplementing concurrency in an OpenGL application:

OpenGL Restricts Each Context to a Single Thread
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 13

Concurrency and OpenGL

e Decompose your application into OpenGL and non-OpenGlL tasks that can execute concurrently. Your
OpenGL rendering code executes as a single task, so it still executes in a single thread. This strategy
works best when your application has other tasks that require significant CPU processing.

« If performance profiling reveals that your application spends a lot of CPU time inside OpenGL, you can
move some of that processing to another thread by enabling the multithreading in the OpenGL engine.
The advantage of this method is its simplicity; enabling the multithreaded OpenGL engine takes just a
few lines of code. See “Multithreaded OpenGL” (page 135).

« If your application spends a lot of CPU time preparing data to send to openGL, you can divide the work
between tasks that prepare rendering data and tasks that submit rendering commands to OpenGL. See
“Perform OpenGL Computations in a Worker Task” (page 136)

e If your application has multiple scenes it can render simultaneously or work it can perform in multiple
contexts, it can create multiple tasks, with an OpenGL context per task. If the contexts can share the
same resources, you can use context sharing when the contexts are created to share surfaces or OpenGL
objects: display lists, textures, vertex and fragment programs, vertex array objects, and so on. See “Use
Multiple OpenGL Contexts” (page 137)

Multithreaded OpenGL

Whenever your application calls OpenGL, the renderer processes the parameters to put them in a format
that the hardware understands. The time required to process these commands varies depending on whether
the inputs are already in a hardware-friendly format, but there is always some overhead in preparing commands
for the hardware.

If your application spends a lot of time performing calculations inside OpenGL, and you've already taken
steps to pick ideal data formats, your application might gain an additional benefit by enabling multithreading
inside the OpenGL engine. The multithreaded OpenGL engine automatically creates a worker thread and
transfers some of its calculations to that thread. On a multicore system, this allows internal OpenGL calculations
performed on the CPU to act in parallel with your application, improving performance. Synchronizing functions
continue to block the calling thread.

Listing 13-1 shows the code required to enable the multithreaded OpenGL engine.

Listing 13-1 Enabling the multithreaded OpenGL engine

CGLError err = 0;
CGLContextObj ctx = CGLGetCurrentContext();

// Enable the multithreading
err = CGLEnable(ctx, kCGLCEMPEngine);

if (err != kCGLNoError)

{
// Multithreaded execution may not be available
// Insert your code to take appropriate action

Multithreaded OpenGL 135
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 13

Concurrency and OpenGL

Note: Enabling or disabling multithreaded execution causes OpenGL to flush previous commands as well as
incurring the overhead of setting up the additional thread. You should enable or disable multithreaded
execution in an initialization function rather than in the rendering loop.

Enabling multithreading comes at a cost—OpenGL must copy parameters to transmit them to the worker
thread. Because of this overhead, you should always test your application with and without multithreading
enabled to determine whether it provides a substantial performance improvement.

Perform OpenGL Computations in a Worker Task

136

Some applications perform lots of calculations on their data before passing that data down to the OpenGL
renderer. For example, the application might create new geometry or animate existing geometry. Where
possible, such calculations should be performed inside OpenGL. For example, vertex shaders and the transform
feedback extension might allow you to perform these calculations entirely within OpenGL. This takes advantage
of the greater parallelism available inside the GPU, and reduces the overhead of copying results between
your application and OpenGL.

The approach described in Figure 8-3 (page 82) alternates between updating OpenGL objects and executing
rendering commands that use those objects. OpenGL renders on the GPU in parallel with your application’s
updates running on the CPU. If the calculations performed on the CPU take more processing time than those
on the GPU, then the GPU spends more time idle. In this situation, you may be able to take advantage of
parallelism on systems with multiple CPUs. Split your OpenGL rendering code into separate calculation and
processing tasks, and run them in parallel. Figure 13-1 shows a clear division of labor. One task produces
data that is consumed by the second and submitted to OpenGL.

Figure 13-1 CPU processing and OpenGL on separate threads

CPU :V\ Shared OpenGL
Processing data context
@ Texture data
Vertex data
OpenGL
state

U

OpenGL

surface

Framebuffer

For best performance, your application should avoid copying data between the tasks. For example, rather
than calculating the data in one task and copying it into a vertex buffer object in the other, map the vertex
buffer object in the setup code and hand the pointer directly to the worker task.

Perform OpenGL Computations in a Worker Task
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 13

Concurrency and OpenGL

If your application can further decompose the modifications task into subtasks, you may see better benefits.
For example, assume two or more vertex buffers, each of which needs to be updated before submitting
drawing commands. Each can be recalculated independently of the others. In this scenario, the modifications
to each buffer becomes an operation, using an NSOperationQueue object to manage the work:

1. Set the current context.

2. Map the first buffer.

3. Create an NSOperation object whose task is to fill that buffer.

4. Queue that operation on the operation queue.

5. Perform steps 2 through 4 for the other buffers.

6. CallwaitUntilAl10perationsAreFinished on the operation queue.

7. Unmap the buffers.

8. Execute rendering commands.

On a multicore system, multiple threads of execution may allow the buffers to be filled simultaneously. Steps

7 and 8 could even be performed by a separate operation queued onto the same operation queue, provided
that operation set the proper dependencies.

Use Multiple OpenGL Contexts

If your application has multiple scenes that can be rendered in parallel, you can use a context for each scene
you need to render. Create one context for each scene and assign each context to an operation or task.
Because each task has its own context, all can submit rendering commands in parallel.

The Apple-specific OpenGL APIs also provide the option for sharing data between contexts, as shown in
Figure 13-2. Shared resources are automatically set up as mutual exclusion (mutex) objects. Notice that
thread 2 draws to a pixel buffer that is linked to the shared state as a texture. Thread 1 can then draw using
that texture.

Use Multiple OpenGL Contexts 137
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 13

Concurrency and OpenGL

Figure 13-2 Two contexts on separate threads

OpenGL context 1 OpenGL context 2

OpenGL state 1

‘ OpenGL state 2

/ OpenGL OpenGL OpenGL
_shared state / JDD §><ﬁ F>\ shared state /

OpenGL Pbuffer
surface surface
Framebuffer

This is the most complex model for designing an application. Changes to objects in one context must be
flushed so that other contexts see the changes. Similarly, when your application finishes operating on an
object, it must flush those commands before exiting, to ensure that all rendering commands have been
submitted to the hardware.

Guidelines for Threading OpenGL Applications

Follow these guidelines to ensure successful threading in an application that uses OpenGL:

e Use only one thread per context. OpenGL commands for a specific context are not thread safe. You
should never have more than one thread accessing a single context simultaneously.

« Contexts that are on different threads can share object resources. For example, it is acceptable for one
context in one thread to modify a texture, and a second context in a second thread to modify the same
texture. The shared object handling provided by the Apple APIs automatically protects against thread
errors. And, your application is following the "one thread per context" guideline.

e Whenyou use an NSOpenGLY1ew object with OpenGL calls that are issued from a thread other than the
main one, you must set up mutex locking. Mutex locking is necessary because unless you override the
default behavior, the main thread may need to communicate with the view for such things as resizing.

Applications that use Objective-C with multithreading can lock contexts using the functions
CGLLockContext and CGLUnTockContext. If you want to perform rendering in a thread other than
the main one, you can lock the context that you want to access and safely execute OpenGL commands.
The locking calls must be placed around all of your OpenGL calls in all threads.

CGLLockContext blocks the thread it is on until all other threads have unlocked the same context using
the function CGLUnTockContext. You canuse CGLLockContext recursively. Context-specific CGL calls
by themselves do not require locking, but you can guarantee serial processing for a group of calls by
surrounding them with CGLLockContext and CGLUnTockContext. Keep in mind that calls from the
OpenGL API (the API provided by the Khronos OpenGL Working Group) require locking.

138 Guidelines for Threading OpenGL Applications
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 13

Concurrency and OpenGL

e Keep track of the current context. When switching threads it is easy to switch contexts inadvertently,
which causes unforeseen effects on the execution of graphic commands. You must set a current context
when switching to a newly created thread.

Guidelines for Threading OpenGL Applications 139
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 13

Concurrency and OpenGL

140 Guidelines for Threading OpenGL Applications
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 14

Tuning Your OpenGL Application

After you design and implement your application, it is important that you spend some time analyzing its

performance. The key to performance tuning your OpenGL application is to successively refine the design
and implementation of your application. You do this by alternating between measuring your application,

identifying where the bottleneck is, and removing the bottleneck.

If you are unfamiliar with general performance issues on the Macintosh platform, you will want to read Getting
Started with Performance and Performance Overview. Performance Overview contains general performance

tips that are useful to all applications. It also describes most of the performance tools provided with Mac OS
X.

Next, take a close look at Instruments. Instruments consolidates many measurement tools into a single
comprehensive performance-tuning application.

There are two tools other than OpenGL Profiler that are specific for OpenGL development—OpenGL Driver
Monitor and OpenGL Shader Builder. OpenGL Driver Monitor collects real-time data from the hardware.
OpenGL Shader Builder provides immediate feedback on vertex and fragment programs that you write.

For more information on these tools, see:

e OpenGL Tools for Serious Graphics Development
e Optimizing with Shark: Big Payoff, Small Effort

e Instruments User Guide

e Shark User Guide

e Real world profiling with the OpenGL Profiler

e OpenGL Driver Monitor User Guide

e OpenGL Shader Builder User Guide

The following books contain many techniques for getting the most performance from the GPU:

e GPU Gems: Programming Techniques, Tips and Tricks for Real Time Graphics, Randima Fernando. In
particular, Graphics Pipeline Performance is a critical article for understanding how to find the bottlenecks
in your OpenGL application.

e GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation,
Matt Pharr and Randima Fernando.

This chapter focuses on two main topics:

“Gathering and Analyzing Baseline Performance Data” (page 142) shows how to use top and OpenGL
Profiler to obtain and interpret baseline performance data.

M
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://developer.apple.com/library/mac/referencelibrary/GettingStarted/GS_Performance/
http://developer.apple.com/library/mac/referencelibrary/GettingStarted/GS_Performance/
http://developer.apple.com/graphicsimaging/opengl/opengl_serious.html
http://developer.apple.com/tools/shark_optimize.html
http://developer.nvidia.com/object/GPU_Gems_Home.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch28.html

CHAPTER 14
Tuning Your OpenGL Application

« ‘“ldentifying Bottlenecks with Shark” (page 147) discusses the patterns of usage that the Shark performance
tool can make apparent and that indicate places in your code that you may want to improve.

Gathering and Analyzing Baseline Performance Data

Analyzing performance is a systematic process that starts with gathering baseline data. Mac OS X provides
several applications that you can use to assess baseline performance for an OpenGL application:

e topisacommand-line utility that you run in the Terminal window. You can use top to assess how much
CPU time your application consumes.

e OpenGL Profiler is an application that determines how much time an application spends in OpenGL. It
also provides function traces that you can use to look for redundant calls.

e OpenGL Driver Monitor lets you gather real-time data on the operation of the GPU and lets you look at
information (OpenGL extensions supported, buffer modes, sample modes, and so forth) for the available
renderers. For more information, see OpenGL Tools for Serious Graphics Development.

This section shows how to use top along with OpenGL Profiler to analyze where to spend your optimization
efforts—in your OpenGL code, your other application code, or in both. You'll see how to gather baseline data
and how to determine the relationship of OpenGL performance to overall application performance.

1. Launch your OpenGL application.
2. Open a Terminal window and place it side-by-side with your application window.

3. Inthe Terminal window, type top and press Return. You'll see output similar to that shown in Figure
14-1.

142 Gathering and Analyzing Baseline Performance Data
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://developer.apple.com/graphicsimaging/opengl/opengl_serious.html

CHAPTER 14
Tuning Your OpenGL Application

The top program indicates the amount of CPU time that an application uses. The CPU time serves as a
good baseline value for gauging how much tuning your code needs. Figure 14-1 shows the percentage
of CPU time for the OpenGL application GLCarbon1C (highlighted). Note this application utilizes 31.5%
of CPU resources.

Figure 14-1 Output produced by the top application

® 06 Terminal — top — 80x22

Processes: 69 total, 3 running, 1 stuck, 65 sleeping... 249 threads 15:54:38 5
Load Awg: 1.31, 8.64, B.35 CPU usage: 64.2% uzer, 13.5% =vs, 22.3% idle
SharedLibs: num = 216, resident = 37.5M code, 4.17VM data, 15.8M LinkEdit
MemRegions: num = 9925, resident = 178M + 13.1M private, 95.5H shared

PhysMem: 76.5M wired, 251M active, 144M inactive, BBZM used, 9.43H free

VM: 7.92G + 142M B1548(8) pogeins, 45087080 pogeouts

PID COMMAND HCPU TIME #TH #PRTS #MREGS RPRVWT RSHRD RSIZE WSIZE
747 top 12.9% B8:84.45 1 15 22 496k Blek 9Bak Z7.6M
746 bazh a.8% 8:88.81 1 14 16 176k 964k 326K 27.ZM
745 login a.8% 8:88.81 1 16 36 148K B3ZK BTVeK 26.9M
743 Terminal B.3% B:88.58 4 98 139 1.78M S.48M 6.41M 142M
742 GLCorbonlC 31.5% @:14.49 1 77 162 B.ZIM 14.TM Z3.BM 144M |
T30 lookupd a.8% 8:88.89 2 34 3 B3ZK 1.81M 1.29M Z3.5M |
Tih Securitydg B.8% B©:88,59 2 g4 135 1.87M 5.62M 15.9M 124M |
728 ztotsColle @.8% 906,73 2 175 61 944K 9.93M Z.16M 41.3M i
716 mdimport a.8% B8:88.45 4 a7 64 1.24M 3.43M 3.63M 48.3M
TE9 SystemUISe B@.8% @:@8.94 2 194 12 Z.BBM T.eOM 4.7EM 141M !
635 RotatingCu 1.1% @:89,95 1 T 172 2.83M 16.1M 1Z.1M 1B4M
B&Z Weode g.8% B:85.87 4 188 348 12.7M 9.81M 17.9M 1TIM A
B43 Apple Dire B.2ZK B:84.79 9 28 Z84 1Z.3M 16.1M ZZ.TM 3TVeM v
474 Gutenberg g.8% B:@9.43 & 118 195 6.7TIM 6.6VM 9.14M 1BEM I A

Gathering and Analyzing Baseline Performance Data 143
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

144

CHAPTER 14
Tuning Your OpenGL Application

Open the OpenGL Profiler application, located in /Developer/Applications/Graphics Tools/.In
the window that appears, select the options to collect a trace and include backtraces, as shown in Figure
14-2.

Figure 14-2 The OpenGL Profiler window

: 8 als) OpenGL Profiler: GLCarbon1ContextPbuffer -psn_0_3407873

() Launch application M collect Trace }
(+) Atrach 1o application M Include Backtraces
-Applicaticn Launch Arguments Full Path

ATSServer ATSServer

laginwindow console console loginwindow T
phs pbs |
Dock -psn_0_524289 -psn_0_524289 Dock :
SystemUlServer -psn_0_655361 -psn_0_655361 SystemUlServer |
Finder -psn_0_786433 -psn_0_786433 Finder \
mdimportserver mdimportserver |
Property List Editor —psn_0_14417 -psn_0_1441793 Property List Editor :
AppleSpell -psn_0_2228225 -psn_0_2228225 AppleSpell |
Terminal -~psn_0_3145729 -psn_0_3145729 Terminal |
-bash -bash v
OpenGL Profiler -psn_0_3276801 -psn_0_3276801 OpenGL Profiler -
GlLCarbon1ContextPbuffer —-psn_0. -psn_0_3407873 CLCarbon lContextPhuffer -
ﬂ O Status: Running...

Connected to: localhost
P Launch Settings

Frame Rate (Peak): 22.7 (22.7) FPS | Suspend | [Detach |

_’

Select the option “Attach to application’ then select your application from the Application list.

You may see small pauses or stutters in the application, particularly when OpenGL Profiler is collecting
a function trace. This is normal and does not significantly affect the performance statistics. The glitches
are due to the large amount of data that OpenGL Profiler is writing out.

Click Suspend to stop data collection.
Open the Statistics and Trace windows by choosing them from the Views menu.

Figure 14-3 provides an example of what the Statistics window looks like. Figure 14-4 (page 146) shows
a Trace window.

The estimated percentage of time spent in OpenGL is shown at the bottom of Figure 14-3. Note that for
this example, it is 28.91%. The higher this number, the more time the application is spending in OpenGL
and the more opportunity there may be to improve application performance by optimizing OpenGL
code.

Gathering and Analyzing Baseline Performance Data
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 14

Tuning Your OpenGL Application

You can use the amount of time spent in OpenGL along with the CPU time to calculate a ratio of the
application time versus OpenGL time. This ratio indicates where to spend most of your optimization

efforts.

Figure 14-3

806

A statistics window

Statistics

Save As Text

GL Function
glGetlntegerv
glGetError
glGetBooleany
glGenTextures
glGenlLists
glFrustum
glFrontFace
glEnd
glEndList
glEnable
glDisable
glColor3fw
glColor3f
glColorMaterial
glClear
glClearColor
glCallList
glBlendFunc
glBitmap
glBindTexture
glBegin
qlAlphaFunc

Clear
v |# of Calls
7,105
7,650
7,052
1
8
4,498
1
470
518
9,602
9,598
62,080
7,676
1
4,498
1
1,722,737
2,551
512
2,550
470
1

Total Time (usec)

12628
7493
8957

12496930
170

954

5447

82

0

Total elapsed GL function time: 18185762.80 psec

Estimated % time in GL: 28.91%

Show slice: ' < W

Avg Time (psec)

1.78
0.98
1.27
3.30
2.12
142
17.52
4.55
67.00
1.26
0.67
0.18
0.40
13.92
14.91
10.62
7.25
0.07
1.86
2.14
0.18
0.09

> Context ID: | © 0xD1814000

% GL Time

0.07
0.04
0.05
0.00
0.00
0.04
0.00
0.01
0.19
0.07
0.04
0.06
0.02
0.00
0.37
0.00
68.72
0.00
0.01
0.03
0.00
0.00

s

% App Time

0.02 |-
0.01
0.01
0.00
0.00
0.01
0.00
0.00
0.06
0.02
0.01
0.02
0.00
0.00
0.11
0.00
19.87
0.00
0.00
0.01 |«
0.00 *
0.00 7

8. In the Trace window, look for duplicate function calls and redundant or unnecessary state changes.

Look for back-to-back function calls with the same or similar data. These are areas that can typically be
optimized. Functions that are called more than necessary include g1 TexParameter, g1PixelStore,

glEnable, and g1Disable. For most applications, these functions can be called once from a setup or
state modification routine and called only when necessary.

It's generally good practice to keep state changes out of rendering loops (which can be seen in the
function trace as the same sequence of state changes and drawing over and over again) as much as

possible and use separate routines to adjust state as necessary.

Gathering and Analyzing Baseline Performance Data
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

145

146

CHAPTER 14
Tuning Your OpenGL Application

Look at the time value to the left of each function call to determine the cost of the call.

Figure 14-4 A Trace window

006 Trace —
sample.filter |ns c | = O une#s @ Timing
: iy $ -
Open... Browse... Filter.. R [Context
Save As Text Save Using Filter Trace Clear Qutput Format
8.08 ps COLGetVirtunlScreen(BxB1847008);
B.88 s CGLSetPBuffer (BxBLE4FEEE, BxBA3472e8, GL_ZEROD, B, 6); GJ

3.03 p= glGetIntegerv(GL_RED_BITS, @xbffffébc);
2.25 ps glGetBooleany (GL_COLOR_FLOAT_APPLE, @xbfffeffd);
.66 Ws glViewport(B, B, 328, 248);
4 = glHotrixtode (GL_PROJECTION);
1 s glloodldentity();
3 ps glFrustum({-8.36397, B.36397, -B.36397, B.36397, 1, 21.5);
9 = glHatr ixMode (GL_MODELYIEW)3
9 s glloodldentity();
1 ps glMultMatrixd({-1, 8, -8, 8, 8, 1, -8, 8, 8, -8, -1, 6, 8, 8, B, 1});
5 = glTronsloted(-8, -A, 1633
7 p= glRotatef(171.862, B.454563, B.849443, -B.267976);
7 p= glClear {GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Use these to determine
the cost of a call

=

.1

.E:

.2

B

R

-6

B

.2

g

-39 ps glEnoble(GL_LIGHTING);
.68 ps glalllist(516);
.81 ps glDizable{GL_LIGHTING);
.1

Rl

il

B

B

.8

B

Rl

.5

.4

-6

65

332.11 ps COLF lushDrowable(s

8 s COLClearDrowable(Bx@1847 008);

B = COLGetSurfoce (BxB1825888);

B [s COLSetSurfoce(PxA184TERE, {45, 22, 6AB, 622}, {B, 22, 6BA, BAAY);
7 ws glicissor(d, @, 600, 608);

5 p= glViewport(B, 8, 688, 680);

B = COLGetSurfoce (AxAla4fB6EY);

8 s COLUpdaoteContext (Bx@1847008);

2 = glGetIntegery(GL_YIEWPORT, Bxbffffind);

)
1
a
1
)
a
2
1
6
6
3
4
)
2
a
)
)
1
1
)
a
2
1
a

4 = glHotrixtode (GL_PROJECTION); 23
8 s glloodldentity(); v
l<i< =5
Show call # Call Stack
Funetion calls 1 - 28 [All Contexts =
A

9. Determine what the performance gain would be if it were possible to reduce the time to execute all

OpenGL calls to zero.

For example, take the performance data from the GLCarbon1C application used in this section to
determine the performance attributable to the OpenGL calls.

Total Application Time (from top) = 31.5%
Total Time in OpenGL (from OpenGL Profiler) = 28.91%

At first glance, you might think that optimizing the OpenGL code could improve application performance
by almost 29%, thus reducing the total application time by 29%. This isn't the case. Calculate the
theoretical performance increase by multiplying the total CPU time by the percentage of time spent in
OpenGL. The theoretical performance improvement for this example is:

31.5 X .2891 = 9.11%

If OpenGL took no time at all to execute, the application would see a 9.11% increase in performance.
So, if the application runs at 60 frames per second (FPS), it would perform as follows:

New FPS = previous FPS * (1 +(% performance increase)) = 60 fps *(1.0911) =
65.47 fps

The application gains almost 5.5 frames per second by reducing OpenGL from 28.91% to 0%. This shows
that the relationship of OpenGL performance to application performance is not linear. Simply reducing
the amount of time spent in OpenGL may or may not offer any noticeable benefit in application
performance.

Gathering and Analyzing Baseline Performance Data
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

CHAPTER 14
Tuning Your OpenGL Application

Using OpenGL Driver Monitor to Measure Stalls

You can use OpenGL Driver Monitor to measure how long the CPU waits for the GPU, as shown in Figure
14-5. OpenGL Driver Monitor is useful for analyzing other parameters as well. You can choose which parameters
to monitor simply by clicking a parameter name from the drawer shown in the figure.

Figure 14-5

ece6 GeForceFXGLDriver =N
© (o B 0 RS
Save As Text Clear Log/Linear Min Max

{ Graph | Table }

Scale: . “ 5.62 Pause
Color Show Driver Monitor Parameter 4 Current Max #
I ~ Buffer Swaps 48 150 -
[v cruwait for GPU 15810 301622835 ns

Action = (Clear Max Values) (Parameters |

The graph view in OpenGL Driver Monitor

Driver Monitor Parameter

2D Command Data |
2D Context Switches

2D Contexts

AGP Data Mapped

AGP Data Unmapped

Buffer Swaps

CPU Texture Page-off Wait (non-DMA)

CPU Texture Page-on Wait

CPU Texture Upload Wait (2D context only)

CPU Wait for 2D Operations to Finish

CPU Wait for 2D Swap to Complete

CPU Wait for DVD Operations to Finish

CPU Wait for DVD Swap to Complete

CPU Wait for Free 20 Command Buffer

CPU Wait for Free 2D Context Switch Buffer

CPU Wait for Free DVD Command Buffer

CPU Wait for Free DVD Context Switch Buffer
CPU Wait for Free OpenCL Command Buffer

CPU Wait for Free OpenGL Context Switch Buffer
CPU Wait for Free OpenGL Data Buffer

CPU Wait fo
CPU Wait for Mapped AGP Buffer Removal
CPU Wait for OpenCL Operations to Finish
CPU Wait for OpenCL Swap to Complete

CPU Wait for Operations to Finish

CPU Wait for VRAM Heap Allocation

CPU Wait in User Code

CPU Wait to Submit Commands

CPU Wait to perform Surface Read

CPU Wait to perform Surface Resize

CPU Wait to perform Surface Write

CPU Wait to perform VRAM Surface Page-off
CPU Wait to perform VRAM Surface Page-on
Current AGP Memory

Current Free AGP Memory

Current Free Video Memory

Current Largest Free Video Memary Block
Cureant Mannad AGP Memoru

|dentifying Bottlenecks with Shark

i

Shark is an extremely useful tool for identifying places in your code that are slow and could benefit from
optimization. Once you learn the basics, you can use it on your OpenGL applications to identify bottlenecks.

There are three issues to watch out for in Shark when using it to analyze OpenGL performance:

e Costly data conversions. If you notice the g1gProcessPixels call (inthe 1ibGLImage.dy11ib library)
showing up in the analysis, it's an indication that the driver is not handling a texture upload optimally.
The call is used when your application makes a g1 TexImage or g1 TexSubImage call using data that is
in a nonnative format for the driver, which means the data must be converted before the driver can
upload it. You can improve performance by changing your data so that it is in a native format for the
driver. See “Use Optimal Data Types and Formats” (page 90).

Note: If your data needs only to be swizzled, g1gProcessPixels performs the swizzling reasonably
fast although not as fast as if the data didn't need swizzling. But non-native data formats are converted
one byte at a time and incurs a performance cost that is best to avoid.

Identifying Bottlenecks with Shark
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

147

CHAPTER 14
Tuning Your OpenGL Application

e Timeinthemach_kernel library. If you see time spent waiting for a timestamp or waiting for the driver,
it indicates that your application is waiting for the GPU to finish processing. You see this during a texture
upload, for example.

e Misleading symbols. You may see a symbol, such as g1gGetString, that appears to be taking time but
shouldn't be taking time in your application. That sometimes happens because the underlying
optimizations performed by the system don't have any symbols attached to them on the driver side.
Without a symbol to display, Shark shows the last symbol. You need to look for the call that your
application made prior to that symbol and focus your attention there. You don't need to concern yourself
with the calls that were made "underneath" your call.

148 Identifying Bottlenecks with Shark
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

APPENDIX A

Legacy OpenGL Functionality by Version

OpenGL functionality changes with each version of the OpenGL API. This appendix describes the functionality
that was added with each version. See the official OpenGL specification for detailed information.

The functionality for each version is guaranteed to be available through the OpenGL API even if a particular
renderer does not support all of the extensions in a version. For example, a renderer that claims to support
OpenGL 1.3 might not export the GL_ARB_texture_env_combine or GL_EXT_texture_env_combine
extensions. It's important that you query both the renderer version and extension string to make sure that
the renderer supports any functionality that you want to use.

Note: It's possible for vendor and ARB extensions to provide similar functionality. As particular functionality
becomes widely adopted, it can be moved into the core OpenGL API. As a result, functionality that you want
to use could be included as an extension, as part of the core API, or both. You should read the extensions
and the core OpenGL specifications carefully to see the differences. Furthermore, as an extension is promoted,
the API associated with that functionality can change. For more information, see “Determining the OpenGL
Capabilities Supported by the Renderer” (page 73).

In the following tables, the extensions describe the feature that the core functionality is based on. The core
functionality might not be the same as the extension. For example, compare the core texture crossbar
functionality with the extension that it's based on.

Version 1.1

Table A-1 Functionality added in OpenGL 1.1

Functionality Extension

Copy texture and subtexture | GL_EXT_copy_texture and GL_EXT_subtexture

Logical operation GL_EXT_blend_logic_op
Polygon offset GL_EXT_polygon_offset
Texture image formats GL_EXT_texture
Texture objects GL_EXT_texture_object
Texture proxies GL_EXT_texture

Texture replace environment | GL_EXT_texture

Vertex array GL_EXT_vertex_array

Version 1.1 149
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/EXT/copy_texture.txt
http://www.opengl.org/registry/specs/EXT/subtexture.txt
http://www.opengl.org/registry/specs/EXT/blend_logic_op.txt
http://www.opengl.org/registry/specs/EXT/polygon_offset.txt
http://www.opengl.org/registry/specs/EXT/texture.txt
http://www.opengl.org/registry/specs/EXT/texture_object.txt
http://www.opengl.org/registry/specs/EXT/texture.txt
http://www.opengl.org/registry/specs/EXT/texture.txt
http://www.opengl.org/registry/specs/EXT/vertex_array.txt

APPENDIX A
Legacy OpenGL Functionality by Version

There were a number of other minor changes outlined in Appendix C section 9 of the OpenGL specification.
See http://www.opengl.org.

Version 1.2

Table A-2 Functionality added in OpenGL 1.2

Functionality Extension
BGRA pixel formats GL_EXT_bgra
Imaging subset (optional) GL_SGI_color_table,GL_EXT_color_subtable, GL_EXT_convo-

Tution,GL_HP_convolution_border_modes,GL_SGI_color_ma-
trix, GL_LEXT_histogram, GL_EXT_blend_minmax, and
GL_EXT_blend_subtract

Normal rescaling GL_EXT_rescale_normal
Packed pixel formats GL_EXT_packed_pixels
Separate specular color GL_EXT_separate_specular_color

Texture coordinate edge clamping | GL_SGIS_texture_edge_clamp

Texture level of detail control GL_SGIS_texture_lod

Three-dimensional texturing GL_EXT_texture3D

Vertex array draw elementrange | GL_EXT_draw_range_elements

Note: The imaging subset might not be present on all implementations; you must verify by checking for the
ARB_imaging extension.

OpenGL 1.2.1 introduced ARB extensions with no specific core API changes.

Version 1.3

Table A-3 Functionality added in OpenGL 1.3

Functionality Extension
Compressed textures GL_ARB_texture_compression
Cube map textures GL_ARB_texture_cube_map
Multisample GL_ARB_multisample

150 Version 1.2

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org
http://www.opengl.org/registry/specs/EXT/bgra.txt
http://www.opengl.org/registry/specs/SGI/color_table.txt
http://www.opengl.org/registry/specs/EXT/color_subtable.txt
http://www.opengl.org/registry/specs/EXT/convolution.txt
http://www.opengl.org/registry/specs/EXT/convolution.txt
http://www.opengl.org/registry/specs/HP/convolution_border_modes.txt
http://www.opengl.org/registry/specs/SGI/color_matrix.txt
http://www.opengl.org/registry/specs/SGI/color_matrix.txt
http://www.opengl.org/registry/specs/EXT/histogram.txt
http://www.opengl.org/registry/specs/EXT/blend_minmax.txt
http://www.opengl.org/registry/specs/EXT/blend_subtract.txt
http://www.opengl.org/registry/specs/EXT/rescale_normal.txt
http://www.opengl.org/registry/specs/EXT/packed_pixels.txt
http://www.opengl.org/registry/specs/EXT/separate_specular_color.txt
http://www.opengl.org/registry/specs/SGIS/texture_edge_clamp.txt
http://www.opengl.org/registry/specs/SGIS/texture_lod.txt
http://www.opengl.org/registry/specs/EXT/texture3D.txt
http://www.opengl.org/registry/specs/EXT/draw_range_elements.txt
http://www.opengl.org/registry/specs/ARB/texture_compression.txt
http://www.opengl.org/registry/specs/ARB/texture_cube_map.txt
http://www.opengl.org/registry/specs/ARB/multisample.txt

APPENDIX A

Legacy OpenGL Functionality by Version

Functionality

Extension

Multitexture

GL_ARB_multitexture

Texture add environment mode

GL_ARB_texture_env_add

Texture border clamp

GL_ARB_texture_border_clamp

Texture combine environment mode

GL_ARB_texture_env_combine

Texture dot3 environment mode

GL_ARB_texture_env_dot3

Transpose matrix

GL_ARB_transpose_matrix

Version 14

Table A-4

Functionality added in OpenGL 14

Functionality

Extension

Automatic mipmap generation

GL_SGIS_generate_mipmap

Blend function separate

GL_ARB_blend_func_separate

Blend squaring

GL_NV_blend_square

Depth textures

GL_ARB_depth_texture

Fog coordinate

GL_EXT_fog_coord

Multiple draw arrays

GL_EXT_multi_draw_arrays

Point parameters

GL_ARB_point_parameters

Secondary color

GL_EXT_secondary_color

Separate blend functions

GL_EXT_blend_func_separate, GL_EXT_blend_color

Shadows

GL_ARB_shadow

Stencil wrap

GL_EXT_stencil_wrap

Texture crossbar environment mode

GL_ARB_texture_env_crosshar

Texture level of detail bias

GL_EXT_texture_lod_bias

Texture mirrored repeat

GL_ARB_texture_mirrored_repeat

Window raster position

GL_ARB_window_pos

Version 14

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

151

http://www.opengl.org/registry/specs/ARB/multitexture.txt
http://www.opengl.org/registry/specs/ARB/texture_env_add.txt
http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
http://www.opengl.org/registry/specs/ARB/texture_env_combine.txt
http://www.opengl.org/registry/specs/ARB/texture_env_dot3.txt
http://www.opengl.org/registry/specs/ARB/transpose_matrix.txt
http://www.opengl.org/registry/specs/SGIS/generate_mipmap.txt
http://www.opengl.org/registry/specs/EXT/blend_func_separate.txt
http://www.opengl.org/registry/specs/NV/blend_square.txt
http://www.opengl.org/registry/specs/ARB/depth_texture.txt
http://www.opengl.org/registry/specs/EXT/fog_coord.txt
http://www.opengl.org/registry/specs/EXT/multi_draw_arrays.txt
http://www.opengl.org/registry/specs/ARB/point_parameters.txt
http://www.opengl.org/registry/specs/EXT/secondary_color.txt
http://www.opengl.org/registry/specs/EXT/blend_func_separate.txt
http://www.opengl.org/registry/specs/EXT/blend_color.txt
http://www.opengl.org/registry/specs/ARB/shadow.txt
http://www.opengl.org/registry/specs/EXT/stencil_wrap.txt
http://www.opengl.org/registry/specs/ARB/texture_env_crossbar.txt
http://www.opengl.org/registry/specs/EXT/texture_lod_bias.txt
http://www.opengl.org/registry/specs/ARB/texture_mirrored_repeat.txt
http://www.opengl.org/registry/specs/ARB/window_pos.txt

APPENDIX A

Legacy OpenGL Functionality by Version

Version 1.5

Table A-5 Functionality added in OpenGL 1.5

Functionality Extension

Buffer objects GL_ARB_vertex_buffer_object

Occlusion queries | GL_ARB_occlusion_query

Shadow functions | GL_EXT_shadow_funcs

Version 2.0

Table A-6 Functionality added in OpenGL 2.0

Functionality

Extension

Multiple render targets

GL_ARB_draw_buffers

Non-power-of-two textures

GL_ARB_texture_non_power_of_two

Point sprites

GL_ARB_point_sprite

Separate blend equation

GL_EXT_blend_equation_separate

Separate stencil

GL_ATI_separate_stencil
GL_EXT_stencil_two_side

Shading language

GL_ARB_shading_Tanguage_100

Shader objects

GL_ARB_shader_objects

Shader programs

GL_ARB_fragment_shader
GL_ARB_vertex_shader

Version 2.1

152

Table A-7 Functionality added in OpenGL 2.1

Functionality Extension

Pixel buffer objects | GL_ARB_pixel_buffer_object

sRGB textures GL_EXT_texture_sRGB

Version 1.5

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://www.opengl.org/registry/specs/ARB/vertex_buffer_object.txt
http://www.opengl.org/registry/specs/ARB/occlusion_query.txt
http://www.opengl.org/registry/specs/EXT/shadow_funcs.txt
http://www.opengl.org/registry/specs/ARB/draw_buffers.txt
http://www.opengl.org/registry/specs/ARB/texture_non_power_of_two.txt
http://www.opengl.org/registry/specs/ARB/point_sprite.txt
http://www.opengl.org/registry/specs/EXT/blend_equation_separate.txt
http://www.opengl.org/registry/specs/ATI/separate_stencil.txt
http://www.opengl.org/registry/specs/EXT/stencil_two_side.txt
http://www.opengl.org/registry/specs/ARB/shading_language_100.txt
http://www.opengl.org/registry/specs/ARB/shader_objects.txt
http://www.opengl.org/registry/specs/ARB/fragment_shader.txt
http://www.opengl.org/registry/specs/ARB/vertex_shader.txt
http://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt
http://www.opengl.org/registry/specs/EXT/texture_sRGB.txt

APPENDIX B

Updating an Application to Support the
OpenGL 3.2 Core Specification

The OpenGL 3.0 specification deprecated many areas of functionality defined in earlier versions of the OpenGL
specification. The OpenGL 3.2 Core profile explicitly removes these deprecated features and adjusts other
parts of the specification to provide a streamlined, clean programming interface to OpenGL. Use this chapter
to assist you in migrating your Mac OS X application away from this deprecated functionality.

Removed Functionality

The features that were removed from OpenGL are described in in Appendix E of the OpenGL 3.2 Core
specification, and you should use that as the definitive guide for the changes you need to make in your
application. Here is a summary of most significant areas that changed:

« If your application uses the fixed-function pipeline, it must be rewritten to use shaders instead.

« If your application uses shaders, you must rewrite your shaders to use OpenGL Shading Language 1.5;
many built-in shader variables provided in earlier versions of the OpenGL Shading Language were
explicitly removed from the OpenGL Shading Language 1.5 specification. Similarly, your application may
no longer provide vertex data using the fixed-function routines; all vertex attributes are now specified
as generic vertex attributes.

e Your application must explicitly generate object names using the OpenGL API.
e \Vertex data must be provided to OpenGL using buffer objects.

e The built-in matrix stack functionality from earlier versions of OpenGL has been removed; you must
recreate this functionality using shader inputs.

e Support for auxiliary and accumulation buffers has been removed; use framebuffer objects instead.

e Your application no longer fetches the list of extensions as a single string. Instead, you first fetch the
number of extensions and then separately fetch each extension string.

Extension Changes on Mac OS X

OpenGL 3.2 provides functionality that earlier versions of OpenGL provided through extensions. Other
extensions that were previously supported on Mac OS X are no longer supported when your application uses
the OpenGL 3.2 Core profile. Table B-1 lists extensions described elsewhere in this guide; use this table to
determine whether the extension is supported, and if not, what equivalent functionality is supported.

Removed Functionality 153
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

154

APPENDIX B

Updating an Application to Support the OpenGL 3.2 Core Specification

Table B-1

Extensions described in this guide

Extension

Status

APPLE_fence

Obsolete. Use the ARB_Sync functionality provided by OpenGL 3.2 (Core).

ARB_vertex_buffer_object

Functionality provided by OpenGL 3.2 (Core).

APPLE_vertex_array_object

Obsolete. Use the ARB_vertex_array_object functionality provided by
OpenGL 3.2 (Core).

APPLE_vertex_array_range

Obsolete. Use the ARB_map_buffer_range functionality provided by OpenGL
3.2 (Core).

APPLE_flush_buffer_range

Obsolete. Use the ARB_map_buffer_range functionality provided by OpenGL
3.2 (Core).

APPLE_client_storage

Supported.

APPLE_texture_range

Supported.

ARB_texture_rectangle

Functionality provided by OpenGL 3.2 (Core).

ARB_shader_objects

Functionality provided by OpenGL 3.2 (Core).

ARB_vertex_shader

Functionality provided by OpenGL 3.2 (Core).

ARB_fragment_shader

Functionality provided by OpenGL 3.2 (Core).

EXT_transform_feedback

Functionality provided by OpenGL 3.2 (Core).

EXT_gpu_shader4

Obsolete. Functionality included in GLSL 1.5

EXT_geometry_shader4

Functionality provided by OpenGL 3.2 (Core).

EXT_bindable_uniform

Obsolete. Use the ARB_uniform_buffer_object functionality provided
by OpenGL 3.2 (Core).

ARB_pixel_buffer_object

Functionality provided by OpenGL 3.2 (Core).

EXT_framebuffer_object

Obsolete. Use the ARB_framebuffer_object functionality provided by
OpenGL 3.2 (Core).

APPLE_pixel_buffer

Obsolete. Use framebuffer objects instead.

NV_multisample_filter_hint

Obsolete. Use multisampled renderbuffers to precisely control multisampling.

Extension Changes on Mac OS X
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

APPENDIX C

Setting Up Function Pointers to OpenGL
Routines

Function pointers to OpenGL routines allow you to deploy your application across multiple versions of Mac
OS X regardless of whether the entry point is supported at link time or runtime. This practice also provides
support for code that needs to run cross-platform—in both Mac OS X and Windows.

Note: If you are deploying your application only in Mac OS X v10.4 or later, you do not need to read this
chapter. Instead, consider the alternative, which is to set the gcc attribute that allows weak linking of symbols.
Keep in mind, however, that weak linking may impact your application's performance. For more information,
see “Frameworks and Weak Linking”.

This appendix discusses the tasks needed to set up and use function pointers as entry points to OpenGL
routines:

e “Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point” (page 155) shows how to write a
generic routine that you can reuse for any OpenGL application on the Macintosh platform.

e ‘“Initializing Entry Points” (page 156) describes how to declare function pointer type definitions and
initialize them with the appropriate OpenGL command entry points for your application.

Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point

Getting a pointer to an OpenGL entry point function is fairly straightforward from Cocoa. You can use the
Dynamic Loader function NSLookupAndBindSymbol to get the address of an OpenGL entry point.

Keep in mind that getting a valid function pointer means that the entry point is exported by the OpenGL
framework; it does not guarantee that a particular routine is supported and valid to call from within your
application. You still need to check for OpenGL functionality on a per-renderer basis as described in “Detecting
Functionality” (page 73).

Listing C-1 shows how to use NSLookupAndBindSymbo1 from within the function MyNSGLGetProcAddress.
When provided a symbol name, this application-defined function returns the appropriate function pointer
from the global symbol table. A detailed explanation for each numbered line of code appears following the
listing.

Listing C-1 Using NSLookupAndBindSymbo1 to obtain a symbol for a symbol name

f#import <mach-o/dyld.h>
ffimport <stdlib.h>
fFimport <string.h>
void * MyNSGLGetProcAddress (const char *name)
{
NSSymbol symbol;
char *symbolName;

Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point 155
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

APPENDIX C
Setting Up Function Pointers to OpenGL Routines

symbolName = malloc (strlen (name) + 2); /11
strcpy(symbolName + 1, name); /12
symbolName[0] = '_"'; /13
symbol = NULL;

if (NSIsSymbolNameDefined (symbolName)) /14

symbol = NSLookupAndBindSymbol (symbolName);

free (symbolName); /15
return symbol ? NSAddressOfSymbol (symbol) : NULL; //6

}
Here's what the code does:

1. Allocates storage for the symbol name plus an underscore character (' _"). The underscore character is
part of the UNIX C symbol-mangling convention, so make sure that you provide storage for it.

2. Copies the symbol name into the string variable, starting at the second character, to leave room for
prefixing the underscore character.

3. Copies the underscore character into the first character of the symbol name string.
4. Checks to make sure that the symbol name is defined, and if it is, looks up the symbol.
5. Frees the symbol name string because it is no longer needed.

6. Returns the appropriate pointer if successful, or NULL if not successful. Before using this pointer, you
should make sure that is it valid.

Initializing Entry Points

156

Listing C-2 shows how to use the MyNSGLGetProcAddress function from Listing C-1 (page 155) to obtain a
few OpenGL entry points. A detailed explanation for each numbered line of code appears following the
listing.

Listing C-2 Using NSGLGetProcAddress to obtain an OpenGL entry point

ffimport "MyNSGLGetProcAddress.h" /11
static void InitEntryPoints (void);
static void DeallocEntryPoints (void);

// Function pointer type definitions
typedef void (*gIBlendColorProcPtr)(GLclampf red,GLclampf green,
GLclampf blue,GlLclampf alpha);
typedef void (*glBlendEquationProcPtr)(GLenum mode);
typedef void (*glDrawRangeElementsProcPtr)(GLenum mode, GLuint start,
GLuint end,GLsizei count,GLenum type,const GLvoid *indices);

glBlendColorProcPtr pfglBlendColor = NULL; //2
glBlendEquationProcPtr pfglBlendEquation = NULL;
glDrawRangeElementsProcPtr pfglDrawRangekElements = NULL;

static void InitEntryPoints (void) /13
{

Initializing Entry Points
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

APPENDIX C
Setting Up Function Pointers to OpenGL Routines

pfglBlendColor = (gIBlendColorProcPtr) MyNSGLGetProcAddress
("glBlendColor");
pfglBlendEquation = (glIBlendEquationProcPtr)MyNSGLGetProcAddress
("glBlendEquation");
pfglDrawRangeETements = (glDrawRangeElementsProcPtr)MyNSGLGetProcAddress
("glDrawRangeElements");
}
[/ =
static void DeallocEntryPoints (void) // 4

{
pfglBlendColor = NULL;
pfglBlendEquation = NULL;
pfglDrawRangeElements = NULL;;
}

Here's what the code does:
1. Imports the header file that contains the MyNSGLProcAddress function from Listing C-1 (page 155).

2. Declares function pointers for the functions of interest. Note that each function pointer uses the prefix
pf to distinguish it from the function it points to. Although using this prefix is not a requirement, it's
best to avoid using the exact function names.

3. Initializes the entry points. This function repeatedly calls the MyNSGLProcAddress function to obtain
function pointers for each of the functions of interest—g1BlendColor, g1BlendEquation, and
glDrawRangeETements.

4, Sets each of the function pointers to NULL when they are no longer needed.

Initializing Entry Points 157
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

APPENDIX C
Setting Up Function Pointers to OpenGL Routines

158 Initializing Entry Points
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to OpenGL Programming Guide for Mac OS X.

Date Notes
2011-06-06 Added new context options.
2010-11-15 Fixed a few small errors in the texture chapter.

Updated the recommendations on when to use each texture uploading and
downloading technique.

Updated the code for creating a texture from a view’s contents to use newer,
better supported techniques.

2010-06-14 Corrected texture creation code snippets.

2010-03-24 Minor updates and clarifications.

2010-02-24 Substantial revisions to describe behaviors for OpenGL on Mac OS X v10.5 and
Mac OS X v10.6. Removed information on obsolete and deprecated behaviors.

2009-08-28 Corrected errors in code listings. Pixel format attribute lists should be terminated
with 0, not NULL. One call to glTeximage2D had an incorrect number of
parameters.

2008-06-09 Updated the Cocoa OpenGL tutorial and made numerous other minor changes.

Fixed compilation errors in Listing 7-1 (page 74).

Added “Getting Decompressed Raw Pixel Data from a Source Image” (page 119).

Updated links to OpenGL extensions.

Made several minor edits.

2007-12-04 Corrected minor typographical and technical errors.

Added “Ensuring That Back Buffer Contents Remain the Same” (page 56).

Revised “Deprecated Attributes” (page 60).

2007-08-07 Fixed several technical issues.
2007-05-29 Fixed a broken link.
2007-05-17 Fixed a few technical inaccuracies in the code listings.

Changed attribs to attributes in Listing 5-2 (page 59).

159
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

160

REVISION HISTORY

Document Revision History

Date Notes
Fixed drawRect method implementation in “Drawing to a Window or View” (page
35).

2006-12-20 Fixed minor errors.
Added information concerning the Apple client storage extension. Fixed a
typographical error.

2006-11-07 Added information about performance issues and processor queries.
See “Determining Whether Vertex and Fragment Processing Happens on the
GPU” (page 67).

2006-10-03 Added a section on checking for GPU processing.
Added “Determining Whether Vertex and Fragment Processing Happens on the
GPU” (page 67).
Fixed a number of minor typos in the code and in the text.

2006-09-05 Fixed minor technical problems.

2006-07-24 Made minor technical and typograhical changes throughout.
Added information to “Surface Drawing Order Specifies the Position of the
OpenGL Surface Relative to the Window” (page 67).
Changed g1CopyTexSubImage to g1CopyTexSubImage?2D in “Downloading
Texture Data” (page 119).
Made minor improvements to Listing 10-6 (page 120).
Removed information about 1-D textures.

2006-06-28 Made several minor technical corrections.
Redirected links to the OpenGL specification for the framebuffer object extension
so that they point to the SGI Open Source website, which hosts the most
up-to-date version of this specification.
Removed the logic operation blending entry from Table A-6 (page 152) because
this functionality is not available in OpenGL 2.0.

2006-05-23 First version.
This document replaces Macintosh OpenGL Programming Guide and AGL
Programming Guide.
This document incorporates information from the following Technical Notes:
TN2007 “The CGDirectDisplay API”
TN2014 “Insights on OpenGL”

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

REVISION HISTORY

Document Revision History

Date Notes

TN2080 “Understanding and Detecting OpenGL Functionality”

TN2093 “OpenGL Performance Optimization: The Basics”

This document incorporates information from the following Technical Q&As:

Technical Q&A OGLO1 “aglChoosePixelFormat, The Inside Scoop”

Technical Q&A OGLO02 “Correct Setup of an AGLDrawable”

Technical Q&A QA1158 “glFlush() vs. glFinish()”

Technical Q&A QA1167 “Using Interface Builder's NSOpenGLView or Custom
View objects for an OpenGL application”

Technical Q&A QA1188 “GetProcAdress and OpenGL Entry Points”

Technical Q&A QA1209 “Updating OpenGL Contexts”

Technical Q&A QA1248 “Context Sharing Tips”

Technical Q&A QA1268 “Sharpening Full Scene Anti-Aliasing Details”

Technical Q&A QA1269 “Mac OS X OpenGL Interfaces”

Technical Q&A QA1325 “Creating an OpenGL texture from an NSView”

161
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

162
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

Glossary

This glossary contains terms that are used specifically for
the Apple implementation of OpenGL and a few terms
that are common in graphics programming. For definitions
of additional OpenGL terms, see OpenGL Programming
Guide, by the Khronos OpenGL Working Group

aliased Said of graphics whose edges appear jagged;
can be remedied by performing anti-aliasing
operations.

anti-aliasing In graphics, a technique used to smooth
and soften the jagged (or aliased) edges that are
sometimes apparent when graphical objects such as
text, line art, and images are drawn.

ARB The Khronos OpenGL Working Group, which is
the group that oversees the OpenGL specification and
extensions to it.

attach To establish a connection between two
existing objects. Compare bind.

bind To create a new object and then establish a
connection between that object and a rendering
context. Compare attach.

bitmap A rectangular array of bits.
bitplane A rectangular array of pixels.

buffer A block of memory dedicated to storing a
specific kind of data, such as depth values, green color
values, stencil index values, and color index values.

CGL (Core OpenGL) framework The Apple
framework for using OpenGL graphics in Mac OS X
applications that need low-level access to OpenGL.

clipping An operation that identifies the area of
drawing. Anything not in the clipping region is not
drawn.

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

clip coordinates The coordinate system used for
view-volume clipping. Clip coordinates are applied
after applying the projection matrix and prior to
perspective division.

color lookup table A table of values used to map
color indexes into actual color values.

completeness A state that indicates whether a
framebuffer object meets all the requirements for
drawing.

context A set of OpenGL state variables that affect
how drawing is performed for a drawable object
attached to that context. Also called a rendering
context.

culling Eliminating parts of a scene that can't be seen
by the observer.

current context The rendering context to which
OpenGL routes commands issued by your application.

current matrix A matrix used by OpenGL to
transform coordinates in one system to those of
another system, such as the modelview matrix, the
perspective matrix, and the texture matrix. GL shading
language allows user-defined matrices.

depth In OpenGlL, refers to the z coordinate and
specifies how far a pixel lies from the observer.

depth buffer A block of memory used to store a
depth value for each pixel. The depth buffer is used
to determine whether or not a pixel can be seen by
the observer. Those that are hidden are typically
removed.

163

http://www.opengl.org/documentation/red_book/
http://www.opengl.org/documentation/red_book/

GLOSSARY

display list A list of OpenGL commands that have
an associated name and that are uploaded to the
GPU, preprocessed, and then executed at a later time.
Display lists are often used for computing-intensive
commands.

double buffering The practice of using a front and
back color buffer to achieve smooth animation. The
back buffer is not displayed, but swapped with the
front buffer.

drawable object In Mac OS X, an object allocated
outside of OpenGL that can serve as an OpenGL
framebuffer. A drawable object can be any of the
following: a window, a view, a pixel buffer, offscreen
memory, or a full-screen graphics device. See also
framebuffer object

extension A feature of OpenGL that's not part of the
OpenGL core APl and therefore not guaranteed to be
supported by every implementation of OpenGL. The
naming conventions used for extensions indicate how
widely accepted the extension is. The name of an
extension supported only by a specific company
includes an abbreviation of the company name. If
more then one company adopts the extension, the
extension name is changed to include EXT instead of
a company abbreviation. If the Khronos OpenGL
Working Group approves an extension, the extension
name changes to include ARB instead of EXT or a
company abbreviation.

eye coordinates The coordinate system with the
observer at the origin. Eye coordinates are produced
by the modelview matrix and passed to the projection
matrix.

fence A token used by the GL_APPLE_fence
extension to determine whether a given command
has completed or not.

filtering A process that modifies an image by
combining pixels or texels.

fog An effect achieved by fading colors to a
background color based on the distance from the
observer. Fog provides depth cues to the observer.

fragment The color and depth values for a single
pixel; can also include texture coordinate values. A
fragment is the result of rasterizing primitives.

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

framebuffer The collection of buffers associated with
a window or a rendering context.

framebuffer attachable image The rendering
destination for a framebuffer object.

framebuffer object An OpenGL extension that allows
rendering to a destination other than the usual
OpenGL buffers or destinations provided by the
windowing system. A framebuffer object (FBO)
contains state information for the OpenGL framebuffer
and its set of images. A framebuffer object is similar
to a drawable object, except that a drawable object
is a window-system specific object whereas a
framebuffer object is a window-agnostic object. The
context that's bound to a framebuffer object can be
bound to a window-system-provided drawable object
for the purpose of displaying the content associated
with the framebuffer object.

frustum The region of space that is seen by the
observer and that is warped by perspective division.

FSAA (full scene anti-aliasing) A technique that
takes multiple samples at a pixel and combines them
with coverage values to arrive at a final fragment.

gamma correction A function that changes color
intensity values to correct for the nonlinear response
of the eye or of a display.

GLU Graphics library utilities.
GL Graphics library.

GLUT Graphics Library Utilities Toolkit, which is
independent of the window system. In Mac OS X,
GLUT is implemented on top of Cocoa.

GLX An OpenGL extension that supports using
OpenGL within a window provided by the X Window
system.

image A rectangular array of pixels.

immediate mode The practice of OpenGL executing
commands at the time an application issues them. To
prevent commands from being issued immediately,
an application can use a display list.

interleaved data Arrays of dissimilar data that are
grouped together, such as vertex data and texture
coordinates. Interleaving can speed data retrieval.

GLOSSARY

mipmaps A set of texture maps, provided at various
resolutions, whose purpose is to minimize artifacts
that can occur when a texture is applied to a
geometric primitive whose onscreen resolution
doesn't match the source texture map. Mipmapping
derives from the latin phrase multum in parvo, which
means "many things in a small place."

modelview matrix A 4 X 4 matrix used by OpenGL
to transforms points, lines, polygons, and positions
from object coordinates to eye coordinates.

mutex A mutual exclusion object in a multithreaded
application.

NURBS (nonuniform rational basis spline) A
methodology use to specify parametric curves and
surfaces.

packing Converting pixel color components from a
buffer into the format needed by an application.

pbuffer See pixel buffer.

pixel A picture element; the smallest element that
the graphics hardware can display on the screen. A
pixel is made up of all the bits at the location x, y, in
all the bitplanes in the framebuffer.

pixel buffer A type of drawable object that allows
the use of offscreen buffers as sources for OpenGL
texturing. Pixel buffers allow hardware-accelerated
rendering to a texture.

pixel depth The number of bits per pixel in a pixel
image.

pixel format A format used to store pixel data in

memory. The format describes the pixel components
(that is, red, blue, green, alpha), the number and order
of components, and other relevant information, such
as whether a pixel contains stencil and depth values.

primitives The simplest elements in OpenGL—points,
lines, polygons, bitmaps, and images.

projection matrix A matrix that OpenGL uses to
transform points, lines, polygons, and positions from
eye coordinates to clip coordinates.

rasterization The process of converting vertex and
pixel data to fragments, each of which corresponds
to a pixel in the framebuffer.

2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

renderbuffer A rendering destination for a 2D pixel
image, used for generalized offscreen rendering, as
defined in the OpenGL specification for the
GL_EXT_framebuffer_object extension.

renderer A combination of hardware and software
that OpenGL uses to create an image from a view and
a model. The hardware portion of a renderer is
associated with a particular display device and
supports specific capabilities, such as the ability to
support a certain color depth or buffering mode. A
renderer that uses only software is called a software
renderer and is typically used as a fallback.

rendering context A container for state information.

rendering pipeline The order of operations used by
OpenGlL to transform pixel and vertex data to an
image in the framebuffer.

render-to-texture An operation that draws content
directly to a texture target.

RGBA Red, green, blue, and alpha color components.
shader A program that computes surface properties.

shading language A high-level language, accessible
in C, used to produce advanced imaging effects.

stencil buffer Memory used specifically for stencil
testing. A stencil test is typically used to identify
masking regions, to identify solid geometry that needs
to be capped, and to overlap translucent polygons.

surface The internal representation of a single buffer
that OpenGL actually draws to and reads from. For
windowed drawable objects, this surface is what the
Mac OS X window server uses to composite OpenGL
content on the desktop.

tearing A visual anomaly caused when part of the
current frame overwrites previous frame data in the
framebuffer before the current frame is fully rendered
on the screen.

tessellation An operation that reduces a surface to
a mesh of polygons, or a curve to a sequence of lines.

texel A texture element used to specify the color to
apply to a fragment.

165

GLOSSARY

texture Image data used to modify the color of
rasterized fragments; can be one-, two-, or three-
dimensional or be a cube map.

texture mapping The process of applying a texture
to a primitive.

texture matrix A 4 x 4 matrix that OpenGL uses to
transform texture coordinates to the coordinates that
are used for interpolation and texture lookup.

texture object An opaque data structure used to
store all data related to a texture. A texture object can
include such things as an image, a mipmap, and
texture parameters (width, height, internal format,
resolution, wrapping modes, and so forth).

vertex A three-dimensional point. A set of vertices
specify the geometry of a shape. Vertices can have a
number of additional attributes such as color and
texture coordinates. See vertex array.

vertex array A data structure that stores a block of
data that specifies such things as vertex coordinates,
texture coordinates, surface normals, RGBA colors,
color indices, and edge flags.

virtual screen A combination of hardware, renderer,
and pixel format that OpenGL selects as suitable for
an imaging task. When the current virtual screen
changes, the current renderer typically changes.

166
2011-06-06 | © 2004, 2011 Apple Inc. All Rights Reserved.

	OpenGL Programming Guide for Mac OS X
	Contents
	Figures, Tables, and Listings
	Introduction
	OpenGL on the Mac Platform
	OpenGL Concepts
	OpenGL Implements a Client-Server Model
	OpenGL Commands Can Be Executed Asynchronously
	OpenGL Commands Are Executed In Order
	OpenGL Copies Client Data at Call-Time
	OpenGL Relies on Platform-Specific Libraries For Critical Functionality

	OpenGL in Mac OS X
	Accessing OpenGL Within Your Application
	OpenGL APIs Specific to Mac OS X
	Apple-Implemented OpenGL Libraries

	Terminology
	Renderer
	Renderer and Buffer Attributes
	Pixel Format Objects
	OpenGL Profiles
	Rendering Contexts
	Drawable Objects
	Virtual Screens
	Offline Renderer

	Running an OpenGL Program in Mac OS X
	Making Great OpenGL Applications on the Macintosh

	Drawing to a Window or View
	General Approach
	Drawing to a Cocoa View
	Drawing to an NSOpenGLView Class: A Tutorial
	Drawing OpenGL Content to a Custom View

	Drawing to the Full Screen
	Creating a Full-Screen Application

	Drawing Offscreen
	Rendering to a Framebuffer Object
	Using a Framebuffer Object as a Texture
	Using a Framebuffer Object as an Image

	Rendering to a Pixel Buffer
	Setting Up a Pixel Buffer for Offscreen Drawing
	Using a Pixel Buffer as a Texture Source
	Rendering to a Pixel Buffer on a Remote System

	Choosing Renderer and Buffer Attributes
	OpenGL Profiles (Mac OS X v10.7)
	Buffer Size Attribute Selection Tips
	Ensuring That Back Buffer Contents Remain the Same
	Ensuring a Valid Pixel Format Object
	Ensuring a Specific Type of Renderer
	Ensuring a Single Renderer for a Display
	Allowing Offline Renderers
	OpenCL
	Deprecated Attributes

	Working with Rendering Contexts
	Update the Rendering Context When the Renderer or Geometry Changes
	Tracking Renderer Changes
	Updating a Rendering Context for a Custom Cocoa View

	Context Parameters Alter the Context’s Behavior
	Swap Interval Allows an Application to Synchronize Updates to the Screen Refresh
	Surface Opacity Specifies How the OpenGL Surface Blends with Surfaces Behind It
	Surface Drawing Order Specifies the Position of the OpenGL Surface Relative to the Window
	Determining Whether Vertex and Fragment Processing Happens on the GPU
	Controlling the Back Buffer Size

	Sharing Rendering Context Resources

	Determining the OpenGL Capabilities Supported by the Renderer
	Detecting Functionality
	Guidelines for Code That Checks for Functionality
	OpenGL Renderer Implementation-Dependent Values

	OpenGL Application Design Strategies
	Visualizing OpenGL
	Designing a High-Performance OpenGL Application
	Update OpenGL Content Only When Your Data Changes
	Synchronize with the Screen Refresh Rate

	Avoid Synchronizing and Flushing Operations
	Using glFlush Effectively
	Avoid Querying OpenGL State
	Use Fences for Finer-Grained Synchronization

	Allow OpenGL to Manage Your Resources
	Use Double Buffering to Avoid Resource Conflicts
	Be Mindful of OpenGL State Variables
	Replace State Changes with OpenGL Objects
	Use Optimal Data Types and Formats
	Use OpenGL Macros

	Best Practices for Working with Vertex Data
	Understand How Vertex Data Flows Through OpenGL
	Techniques for Handling Vertex Data
	Vertex Buffers
	Using Vertex Buffers
	Buffer Usage Hints
	Flush Buffer Range Extension

	Vertex Array Range Extension
	Vertex Array Object

	Best Practices for Working with Texture Data
	Using Extensions to Improve Texture Performance
	Pixel Buffer Objects
	Using Pixel Buffer Objects to Efficiently Load Textures
	Using Pixel Buffer Objects for Asynchronous Pixel Transfers
	Using Pixel Buffer Objects to Keep Data on the GPU

	Apple Client Storage
	Apple Texture Range and Rectangle Texture
	Combining Client Storage with Texture Ranges

	Optimal Data Formats and Types
	Working with Non–Power-of-Two Textures
	Creating Textures from Image Data
	Creating a Texture from a Cocoa View
	Creating a Texture from a Quartz Image Source
	Getting Decompressed Raw Pixel Data from a Source Image

	Downloading Texture Data
	Double Buffering Texture Data

	Customizing the OpenGL Pipeline with Shaders
	Shader Basics
	Advanced Shading Extensions
	Transform Feedback
	GPU Shader 4
	Geometry Shaders
	Uniform Buffers

	Techniques for Scene Anti-Aliasing
	Guidelines
	General Approach
	Hinting for a Specific Anti-Aliasing Technique

	Concurrency and OpenGL
	Identifying Whether an OpenGL Application Can Benefit from Concurrency
	OpenGL Restricts Each Context to a Single Thread
	Strategies for Implementing Concurrency in OpenGL Applications
	Multithreaded OpenGL
	Perform OpenGL Computations in a Worker Task
	Use Multiple OpenGL Contexts
	Guidelines for Threading OpenGL Applications

	Tuning Your OpenGL Application
	Gathering and Analyzing Baseline Performance Data
	Using OpenGL Driver Monitor to Measure Stalls

	Identifying Bottlenecks with Shark

	Appendix A: Legacy OpenGL Functionality by Version
	Version 1.1
	Version 1.2
	Version 1.3
	Version 1.4
	Version 1.5
	Version 2.0
	Version 2.1

	Appendix B: Updating an Application to Support the OpenGL 3.2 Core Specification
	Removed Functionality
	Extension Changes on Mac OS X

	Appendix C: Setting Up Function Pointers to OpenGL Routines
	Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point
	Initializing Entry Points

	Revision History
	Glossary

