
Developers, this book belongs
on your desk!
Once you understand Objective-C and object-oriented programming, you can create apps for
the hottest devices on the market—Macs, iPhones, and iPads. And with this detailed guide, top
Mac developer and author Jiva DeVoe will have you coding in no time, even if you’re a programming
newbie. Coverage ranges from a thorough introduction to Objective-C basics to advanced techniques
used by professional coders. You’ll learn Objective-C memory management, how frameworks fi t
together, the tricky business of thread safety, where Xcode fi ts in, and much more.

• Understand Objective-C syntax, runtimes, and Xcode®—and write your fi rst program

• Create classes, work with properties, and learn about objects

• Use code blocks, threads, KVO, and protocols

• Defi ne and write macros, handle errors, and use frameworks in your projects

• Untangle threads, start using design patterns, and master advanced techniques

• Read and write data with NSCoder

• Write code for Windows®, Linux®, and other platforms

Access the latest information on Apple development
Visit www.wileydevreference.com for the latest on tools and techniques for Apple development,
as well as code and project fi les from the book.

Jiva DeVoe is the founder of Random Ideas, LLC, a software company specializing in iPhone and Mac OS X applications.
He has been writing software for nearly 25 years. His iPhone apps have been featured as Apple staff picks and in Apple
ads. He is also the author of Cocoa Touch for iPhone OS 3 Developer Reference. Contact Jiva through his blog at
www.random-ideas.net.

O
bjective-C

®

DeVoe

Reader Level: Intermediate to Advanced

Shelving Category: COMPUTERS / Programming /
Apple Programming

$39.99 USA • $47.99 CANADA

Developer
Reference

Objective-C®

www.wileydevreference.com

Developer Reference

Jiva DeVoe

01_9780470479223-ffirs.indd ii01_9780470479223-ffirs.indd ii 1/4/11 8:49 PM1/4/11 8:49 PM

Objective-C

01_9780470479223-ffirs.indd i01_9780470479223-ffirs.indd i 1/4/11 8:49 PM1/4/11 8:49 PM

01_9780470479223-ffirs.indd ii01_9780470479223-ffirs.indd ii 1/4/11 8:49 PM1/4/11 8:49 PM

Objective-C
Jiva DeVoe

01_9780470479223-ffirs.indd iii01_9780470479223-ffirs.indd iii 1/4/11 8:49 PM1/4/11 8:49 PM

Objective-C

Published by
Wiley Publishing, Inc.
10475 Crosspoint Blvd.
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-47922-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-
6011, fax 201-748-6008, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2010943062

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley &
Sons, Inc., in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. Objective-C is a registered trademark of Apple, Inc. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

01_9780470479223-ffirs.indd iv01_9780470479223-ffirs.indd iv 1/4/11 8:49 PM1/4/11 8:49 PM

 For my wife, Dawn, and my children, Robert, Alex, and Izzy.
You are, and always will be, the most important people in the world

to me.

01_9780470479223-ffirs.indd v01_9780470479223-ffirs.indd v 1/4/11 8:49 PM1/4/11 8:49 PM

About the Author
Jiva DeVoe has been writing software for nearly 25 years, starting with his Commodore VIC-20
using BASIC and assembly language, and gradually working his way through C, C++, Python,
Ruby, Java and finally Objective-C. In 2001, he founded Random Ideas, LLC, a software com-
pany dedicated to building great applications for the Mac. When the iPhone SDK was
announced, he was honored to be selected as one of the earliest developers to have access to
the SDK, and using it, he developed several applications that were available in the iTunes App
Store when it launched on July 11, 2008. Since that time, his iPhone applications have
received several awards, including being chosen as among the Top 100 apps and games in
the App Store, and been featured as Apple Staff Picks and in Apple Advertisements. Today,
Jiva continues to work full time for his company, Random Ideas, developing great iPhone and
Mac applications. He lives with his wife, three children, and two basset hounds in the dusty
desert of Arizona.

01_9780470479223-ffirs.indd vi01_9780470479223-ffirs.indd vi 1/4/11 8:49 PM1/4/11 8:49 PM

Credits
Acquisitions Editor
Aaron Black

Executive Editor
Jody Lefevere

Project Editor
Beth Taylor

Technical Editor
Brad Miller

Copy Editor
Beth Taylor

Editorial Director
Robyn Siesky

Editorial Manager
Rosemarie Graham

Business Manager
Amy Knies

Senior Marketing Manager
Sandy Smith

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Project Coordinator
Katherine Crocker

Production Specialist
Carrie A. Cesavice

Quality Control Technician
Melissa Cossell

Proofreading and Indexing
Laura Bowman, Evelyn Wellborn,
BIM Indexing & Proofreading Services

01_9780470479223-ffirs.indd vii01_9780470479223-ffirs.indd vii 1/4/11 8:49 PM1/4/11 8:49 PM

Objective-C gets a raw deal in the IT industry. Though it’s a powerful and dynamic object
oriented language, it doesn’t get nearly the amount of recognition that C++, Java, and
others get.

When I wrote Cocoa Touch for iPhone OS 3, I knew that it needed a companion book, one
which helped people over the hump of learning Objective-C before moving on to the higher
level frameworks, Cocoa, and Cocoa Touch.

So when the opportunity came to write a book dedicated to Objective-C, the language,
I jumped at it!

In the end, I feel I have been given an opportunity to contribute to the foundation of new Mac,
iPhone and iPad developers knowledge through this book, and I’m tremendously excited by
that. I love the idea that this book might be a catalyst to helping Objective-C grow, not just on
these, but across many different platforms. There’s no reason that Objective-C shouldn’t be
used more on platforms such as Unix, Windows, and so on.

As a reader, you are expected to have only a limited knowledge of computers. I have tried to
approach the subject from the absolute bare essentials, but you will need at least a basic back-
ground in how to navigate around a computer.

If you already know some programming languages, that won’t hurt you here. Some of what I
discuss will be review for you, but don’t worry, there’s plenty of specifics for Objective-C that
you will pick up.

If you already have a background in Objective-C, I hope that you will find some nuggets of
information you didn’t know in this book. I’ve tried to keep it in an accessible form so that you
can look up specifics that you’re looking for. You may not read it cover to cover, but it should
give you the ability to jump to specific parts and gain insight into how to do what you are look-
ing to do.

With regard to conventions used within this book, I’ve tried to be reasonably consistent, and
also tried to generally err on the side of Apple conventions when prudent. The only notable
exception has been in my use of the phrase “method” to indicate functions on instances and
classes. Apple generally prefers the term “message.” This is in part due to the influence of
Smalltalk on Objective-C.

Preface

01_9780470479223-ffirs.indd viii01_9780470479223-ffirs.indd viii 1/4/11 8:49 PM1/4/11 8:49 PM

 Preface ix

When referring to keyboard shortcuts, I opted to use the term “Command-Key” to indicate key-
board shortcuts using the key directly to the left of the space key on most Apple keyboards.
You may also know this as the “Apple” key, since prior to only a few years ago, it included a
small Apple logo on it. Additionally, the key next to the Command-Key, has been called the
“Option-Key” and the key next to that, the “Control-Key”. These should all be consistent with
Apple documentation conventions.

When referring to variables which store objects in them, I will often refer to them as “instance
variables”. Some books like to use this term, or it’s abbreviation, “ivar” to refer to variables that
are part of a class. For these, I prefer the term “member variable.” To me, member variables can
be instance variables, but not all instance variables are member variables.

When referencing methods in the text, I have used the standard apple convention of referring
to them using the method name, but without parameters. So, for example, the method:

-(void)someMethodUsingParam1:(NSString *)param1 andParam2:(NSString *)
param2;

Would be written in the text as: -someMethodUsingParam1:andParam2. If it’s a class method,
the leading hyphen is replaced with a +, just as if you were writing the method in your class
definition.

With regard to sample code, in chapters where I have instructed you to build specific full-on
projects, I have generally tried to include full listings for the code. In cases where I have not,
you can always download the projects, complete with artwork and other supporting files from
the book’s website. There are also chapters where it didn’t really make sense to make a full-on
project to demonstrate a technology. In these cases, the code listings are more snippets that
you can use as a basis for your own code. Since these snippets don’t comprise fully functional
projects, there will not be example projects for these on the web site.

I hope that you find this book as enjoyable an experience to read as I had writing it. To me, the
mark of a good technical book is that it doesn’t sit on my shelf. It holds a place of honor on or
near my desk because I keep returning to it, time and again. I hope that this book holds such
prestige in your library, and that it becomes a dog-eared, cover-torn, page-scribbled-on refer-
ence that remains useful to you for years to come.

Jiva DeVoe

book@random-ideas.net

01_9780470479223-ffirs.indd ix01_9780470479223-ffirs.indd ix 1/4/11 8:49 PM1/4/11 8:49 PM

Acknowledgments

Writing this book has been both rewarding and challenging, but I could not have done it
without the aide and support of some specific individuals whom I would like to thank.

First and foremost, I have to thank Brad Miller, of Cynical Peak Software who has been
one of the best Technical Editors in the business. His careful attention to detail and his tireless
tenacity in helping me correct my mistakes has been amazing. Thank you for your efforts. You
rock.

For his help and advocacy at Wiley, despite a few bumps in the road, I want to thank Aaron
Black. Your patronage and assistance has been much appreciated.

For teaching me to marvel at the wonders of technology and encouraging me to pursue my
dreams in computers, I’m thankful to my father, Robert A. DeVoe.

To my son, Alex, who spent many hours formatting the pages of this book, thank you. Your
efforts and assistance were key in making this book a reality.

Finally, and most importantly, I’d like to thank my wife, for her unerring support, not just in this
project, but in all my work. Without her, this book could not have been finished. You lift me
when my spirits are low and tired, and inspire me to keep reaching for new accomplishments
and goals. I can’t thank you enough.

x

01_9780470479223-ffirs.indd x01_9780470479223-ffirs.indd x 1/4/11 8:49 PM1/4/11 8:49 PM

xi

Contents
Preface . viii

Acknowledgments. x

Part I: Introducing Objective-C ... 1

Chapter 1: Introducing Objective-C . 3
Using Xcode for Development ... 4

Starting a project .. 4

Exploring the files in your project ... 7

Adding source files ... 8

The main Xcode window .. 10

Understanding the Compilation Process .. 12

Writing code ... 12

Turning source code into compiled code and compiled code into an executable .. 15

Exploring application bundles .. 16

Working with build settings ... 18

Using the Xcode Static Analyzer .. 23

Understanding the Objective-C Runtime ... 26

Summary ... 27

Chapter 2: Understanding Basic Syntax . 29
Working with Statements and Expressions ... 31

Declaring variables ... 32

Using comments... 35

Exploring scalar types ... 35

Using special variable modifiers ... 37

Understanding structures ... 38

Using typedefs .. 40

Using enum .. 42

Understanding pointers .. 44

Using operators .. 48

The ternary operator .. 51

Working with Functions .. 51

Understanding functions .. 51

Defining functions .. 54

Understanding implementation versus interface ... 56

Linking with implementation files ... 58

Controlling Program Flow ... 60

Using conditional statements ... 61

Using if-else .. 61

Using the ternary conditional .. 62

02_9780470479223-ftoc.indd xi02_9780470479223-ftoc.indd xi 1/4/11 8:49 PM1/4/11 8:49 PM

xii Contents

Using switch statements ... 63

Choosing among conditional statements .. 64

Working with loops .. 64

Working with for ... 65

Traditional for loops .. 65

Using for for fast enumeration... 66

Working with while ... 67

Using do .. 69

Applying What You Have Learned ... 70

Summary ... 73

Chapter 3: Adding Objects . 75
Understanding Objects .. 76

Understanding inheritance .. 78

Using polymorphism ... 80

Using the id datatype .. 81

Creating classes .. 81

Working with class files ... 81

Writing object methods ... 83

Working with the special object methods ... 85

Writing class methods ... 87

Declaring objects .. 89

Making calls on objects .. 90

Working with Properties ... 92

Understanding the differences between state and behavior .. 92

Using properties to declare object state .. 93

Understanding synthesized property accessors ... 96

Using the nonatomic attribute .. 97

Using the assign, retain, and copy Attributes .. 98

Using properties with different data member names .. 99

Using dot notation ... 99

Applying Objects ... 100

Creating the employee class ... 101

Creating the manager class .. 104

Tying the classes together in the HR main .. 107

Chapter 4: Understanding Objective-C Memory Management109
Using Reference Counting ... 109

Learning the memory management rules .. 112

Using autorelease ... 113

Understanding autorelease pools .. 117

Understanding memory from inside the object .. 119

Writing initializers ... 119

Writing dealloc Methods ... 121

02_9780470479223-ftoc.indd xii02_9780470479223-ftoc.indd xii 1/4/11 8:49 PM1/4/11 8:49 PM

 Contents xiii

Using Garbage Collection ... 123

Understanding the Garbage Collector ... 123

Understanding reference types ... 125

Configuring your project for garbage collection ... 126

Using Frameworks in a Garbage Collected Project .. 128

Exploring Key Garbage Collector Patterns .. 128

Managing finite resources .. 128

Writing foundation applications with garbage collection ... 131

Working with objects in nib files .. 132

Forcing garbage collection ... 133

Working with void pointers and garbage collection ... 133

Using the object oriented interface to the garbage collector .. 134

Understanding What Memory Management Model to Use for Your Projects ... 135

Summary ... 136

Part II: Exploring Deeper Features .. 137

Chapter 5: Working with Blocks .139
Understanding Blocks .. 139

Declaring code blocks ... 140

Using code blocks ... 142

Understanding Important Block Scoping ... 144

Managing code block memory ... 145

Making blocks easier to read with typedef ... 147

Using Blocks with Threads ... 148

Working with Grand Central Dispatch .. 148

Using GCD functions to dispatch code blocks in threads ... 148

Working with Common Block Design Patterns .. 149

Using code blocks for maps .. 149

Using Blocks in the Standard API .. 150

Applying Blocks to an Embarrassingly Parallel Task... 152

Creating the project .. 152

Using blocks with an array to filter for primes .. 156

Using Grand Central Dispatch ... 159

Summary ... 162

Chapter 6: Using Key Value Coding and Key Value Observing 163
Accessing Object Properties Using Key Value Coding ... 163

Working with key paths ... 167

Writing KVC compliant accessors .. 169

Using KVC with arrays ... 171

Using indexed accessors .. 172

Using Unordered Accessors .. 174

Using KVC with structures and scalars .. 177

Searching objects for attributes .. 177

02_9780470479223-ftoc.indd xiii02_9780470479223-ftoc.indd xiii 1/4/11 8:49 PM1/4/11 8:49 PM

xiv Contents

Observing Changes to KVC-Compliant Values .. 178

Using KVO ... 179

Registering as an observer .. 179

Defining callbacks for KVO .. 181

Removing an observer .. 183

Implementing manual notifications ... 184

Understanding risks with KVO .. 185

Applying Key Value Observing ... 186

Summary ... 189

Chapter 7: Working with Protocols .191
Favoring Composition Over Inheritance ... 191

Understanding why you don’t need (or want) multiple inheritance ... 193

Understanding how protocols solve the problem ... 194

Documenting an expected interface for others to implement .. 195

Implementing Protocols in Your Objects.. 196

Declaring a protocol ... 197

Declaring that a class implements a protocol ... 198

Declaring an object that must implement a protocol ... 200

Exploring formal and informal protocols .. 200

Determining if an object implements optional methods .. 201

Avoiding Circular Protocol Dependencies ... 203

Exploring examples of protocol use ... 204

Summary ... 205

Chapter 8: Extending Existing Class Capabilities .207
Working with Third-Party Frameworks and Classes ... 207

Working with Categories ... 208

Declaring categories ... 209

Implementing category methods ... 210

Declaring categories in header files .. 211

Using a category ... 211

Breaking up functionality using categories ... 212

Extending class methods .. 212

Exploring category limitations .. 214

Implementing protocols with categories .. 215

Understanding the dangers of creating categories on NSObject ... 215

Extending Classes using Anonymous Categories.. 216

Associating Variables with Existing Classes ... 218

Summary ... 221

Chapter 9: Writing Macros .223
Reviewing the Compilation Process ... 223

Understanding how macros work ... 224

Defining Macros .. 229

Defining constants.. 230

Passing constants by compilation ... 231

02_9780470479223-ftoc.indd xiv02_9780470479223-ftoc.indd xiv 1/4/11 8:49 PM1/4/11 8:49 PM

 Contents xv

Using variables in macros ... 232

Using stringification ... 234

Handling conditional switching .. 236

Using built-in macros ... 237

Summary ... 237

Chapter 10: Handling Errors .239
Classifying Errors ... 239

Understanding how to interrupt program flow .. 240

Using the Different Mechanisms for Error Handling ... 241

Using return codes .. 241

Using exceptions .. 244

Using NSError ... 250

Creating an NSError Object .. 251

Understanding the NSError userInfo Dictionary ... 252

Working with a recovery attempter... 253

Working with NSErrors in methods ... 254

Summary ... 255

Part III: Using the Foundation Framework 257

Chapter 11: Understanding How the Frameworks Fit Together259
Understanding the Foundation Framework .. 259

Exploring other frameworks ... 261

Using Frameworks in Your Projects ... 262

Adding frameworks .. 262

Including the headers ... 264

Considering garbage collection .. 264

Summary ... 264

Chapter 12: Using Strings .265
Understanding the String Declaration Syntax .. 265

Using format strings ... 267

Working with Other NSString Methods .. 269

Using NSString categories .. 271

Summary ... 271

Chapter 13: Working with Collections .273
Working with Arrays .. 273

Using dictionaries ... 276

Working with sets .. 280

Understanding mutability .. 281

Understanding Collections and Memory Management.. 283

Using specialized collections .. 285

02_9780470479223-ftoc.indd xv02_9780470479223-ftoc.indd xv 1/4/11 8:49 PM1/4/11 8:49 PM

xvi Contents

Enumerating ... 286

Sending Messages to Elements ... 288

Sorting and Filtering .. 289

Using Blocks with Collections .. 292

Summary ... 293

Chapter 14: Using NSValue, NSNumber, and NSData .295
Using NSValue and NSNumber .. 296

Wrapping arbitrary datatypes with NSValue .. 296

Wrapping numbers with NSNumber .. 297

Doing arithmetic with NSDecimalNumber .. 298

Using NSData and NSMutableData .. 299

Creating NSData objects ... 299

Accessing the raw bytes in an NSData object .. 300

Summary ... 301

Chapter 15: Working with Times and Dates .303
Constructing Dates ... 304

Working with Time Intervals .. 304

Comparing dates .. 305

Using NSCalendar ... 306

Working with time zones ... 307

Using NSDateFormatter ... 308

Summary ... 309

Part IV: Exploring Advanced Topics .. 311

Chapter 16: Multiprocessing with Threads .313
Synchronizing Code ... 314

Using Locks ... 315

Using the @synchronize keyword ... 317

Understanding atomicity .. 319

Using NSThread ... 319

Creating threads ... 319

Manipulating Running Threads .. 320

Accessing the main thread ... 321

Crossing threads using perform selector ... 322

Using NSOperation and NSOperationQueue... 322

Creating operations .. 323

Adding operations to queues.. 325

Manipulating queue parameters .. 326

Using other kinds of operations .. 326

Summary ... 328

02_9780470479223-ftoc.indd xvi02_9780470479223-ftoc.indd xvi 1/4/11 8:49 PM1/4/11 8:49 PM

 Contents xvii

Chapter 17: Objective-C Design Patterns .329
Recognizing Patterns in Solutions ... 329

Describing Design Patterns in Objective-C ... 331

Using Singletons... 331

Problem... 331

Solution ... 331

Discussion .. 334

Delegating responsibility .. 336

Problem... 336

Solution ... 336

Discussion .. 338

Notifying objects of changes .. 339

Problem... 339

Solution ... 339

Discussion .. 342

Summary ... 343

Chapter 18: Reading and Writing Data with NSCoder 345
Implementing the NSCoding Protocol in Your Objects .. 345

Encoding objects .. 345

Encoding basic types .. 347

Working with object graphs ... 348

Using other types of data ... 348

Decoding objects .. 350

Using NSArchiver and NSUnarchiver .. 351

Working with Archiver File Formats and Legacy Data .. 352

Summary ... 353

Chapter 19: Using Objective-C on Other Platforms .355
Using GNUstep... 356

Using Cocotron ... 357

Using other open source libraries ... 358

Looking Toward the Future ... 359

Summary ... 359

Index .361

02_9780470479223-ftoc.indd xvii02_9780470479223-ftoc.indd xvii 1/4/11 8:49 PM1/4/11 8:49 PM

02_9780470479223-ftoc.indd xviii02_9780470479223-ftoc.indd xviii 1/4/11 8:49 PM1/4/11 8:49 PM

In This Part

Introducing
Objective-CI

I
Chapter 1

Introducing Objective-C

Chapter 2
Understanding Basic

Syntax

Chapter 3
Adding Objects

Chapter 4
Understanding

Objective-C Memory
Management

03_9780470479223-pp01.indd 103_9780470479223-pp01.indd 1 1/4/11 8:50 PM1/4/11 8:50 PM

03_9780470479223-pp01.indd 203_9780470479223-pp01.indd 2 1/4/11 8:50 PM1/4/11 8:50 PM

In This Chapter

Introducing Objective-C

Learning about
Objective-C history

Exploring Xcode for
writing Objective-C Code

Configuring your
development
environment

The year was 1986. Halley’s Comet was the closest to the sun
that it had been in 75 years. The United Kingdom and France
announced plans to construct the Channel Tunnel. Polaroid

was all the rage and had just recently forced Kodak to leave the
instant camera business. The C programming language had been
in use for about 15 years, but C++ was a newcomer to the field, and
barely known. The Smalltalk programming language had been
making the rounds in the technology industry and getting people
excited about a new concept in programming called object-ori-
ented programming, or OOP for short.

Two developers, Tom Love and Brad Cox had been exposed to
Smalltalk while at ITT Corporation’s Programming Technology
Center. Cox thought that it would be interesting to add object-
oriented features to the C programming language, enabling
object-oriented programming in C. In fact, he called his extension
to COOPC, which stood for object-oriented programming in C.
Eventually, the two formed a company to commercialize these
extensions and market them as a language to developers. The
name of this new language was changed to Objective-C. A few
years later, a tiny startup headed by Steve Jobs, called NeXT,
licensed and standardized Objective-C as the primary language
that they wanted to use to develop a new operating system called
NeXTstep. NeXT computer was eventually purchased by Apple,
resulting in the absorption of the NeXTstep operating system, and
its eventual evolution into Mac OS X.

Few people realize that Objective-C is as old as it is, and that it has
in fact influenced many other programming technologies. For
example, the Java programming language shares a great deal in
common with Objective-C. The reason for this is that early in
Objective-C’s history, NeXT computer partnered with Sun
Microsystems to develop the OpenStep platform. The language
that they used to develop this technology was Objective-C. When
NeXT computer did not do as well as they had hoped, and the com-
pany began to fail, Sun decided to develop their own language and
cross-platform development kit, Java. The engineers that worked
on Java were intimately familiar with Objective-C because
Objective-C is the language that they had been using prior to
developing Java. As a result, they copied many of the better
 features of Objective-C to the new language they created.

04_9780470479223-ch01.indd 304_9780470479223-ch01.indd 3 1/4/11 8:50 PM1/4/11 8:50 PM

4 Introducing Objective-C

Today, Objective-C is the language of choice for developing both on Mac OS X and iPhone OS.
It has evolved to become an elegant solution, fitting just right between fully statically typed lan-
guages and dynamically typed languages. It is one of the few languages that is typically com-
piled, thus benefiting from the compile time syntax checking of languages like C and C++ while
at the same time benefiting from a dynamic runtime, which enables dynamic object typing.

In addition to Mac OS X and iPhone OS, Objective-C has grown quite a following on other plat-
forms as well and can be used to develop applications on Linux, Windows, and anywhere else
that the GNU compiler collection has been ported. Its use on the iPhone OS has especially
increased the popularity of this language, and brought many new developers to it. It could even
be argued that Objective-C is experiencing a new renaissance today — hundreds of thousands
of new developers are flocking to this language, making it one of the hottest new sensations in
technology today.

In this book, I hope to introduce you to Objective-C and show you why I think it is a first-class
language deserving a place among the best programming languages in the world. I like to say
that a good programmer needs three languages under his belt. The first is a workflow automa-
tion language. Typically, this is a scripting language. One that he can use to automate his work-
space and to build ad hoc tools to help optimize his workflow. The second is an editor macro
language. As developers, we spend 99 percent of our time crafting text into software. Having a
tool that helps you to manipulate your editor is amazingly valuable. The last one is a language
for building systems and applications — one that can be used to deploy applications that
require high performance and high reliability. Usually these languages are compiled so that
you can squeeze the most performance out of your platform of choice. Their most important
feature, however, is the ability to leverage system libraries to their fullest extent.

My hope is that by the end of this book, Objective-C will become your application language of
choice. There is no task that this language cannot perform as well as or better than any other
compiled language out there.

Using Xcode for Development
In this book, I assume that you will be using the Xcode development environment for your cod-
ing. Xcode is an excellent IDE provided by Apple for free by simply signing up for the Apple
developer program. It supports C, Objective-C, C++, Java, and several other languages natively,
but we’re only going to use it for Objective-C here.

Starting a project
When you first start Xcode, you are given the choice to open a recently opened project or to
create a new one. For the purposes of our discussion here, choose to start a new project at this
time so you can follow along. This brings up the New Project dialog box, as shown in Figure 1.1.

04_9780470479223-ch01.indd 404_9780470479223-ch01.indd 4 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 5

Figure 1.1

New Project dialog box

In this dialog box, you can choose to create various kinds of projects, including command line
applications to desktop graphical applications. You can find templates for virtually anything.
Additionally, if you have the iPhone SDK installed, there are also project templates for various
kinds of iPhone and iPad applications. Because you are primarily interested in simply under-
standing the Objective-C language, choose the project that is the simplest of all of these.

 1. From the Mac OS X group, choose Application and then choose Command Line Tool.

 2. Under the Type drop-down list, choose Foundation.

 3. Click the Choose button, choose a location to save your new project, and click Finish.

Over the next few sections, I’m going to give you a brief introduction to the Xcode develop-
ment environment so that you can become familiar with it. To begin with, look at the Xcode
window. It is shown in Figure 1.2.

04_9780470479223-ch01.indd 504_9780470479223-ch01.indd 5 1/4/11 8:50 PM1/4/11 8:50 PM

6 Introducing Objective-C

Figure 1.2

The main Xcode window

The main Xcode window consists of two panels. The first one, shown on the left, contains all the
files in your project. Selecting one of these files brings up that file in the Editor panel, located on
the right-hand side of the window. Project files can be grouped in Xcode by moving them into
folders within your project. For the most part, these groups are strictly for your benefit during
development and have little or no impact on the final completed project.

In addition to your source files, the frameworks that you are linking your project with are also
shown.

Below the project files are a set of Smart groups. These encapsulate things such as the targets
that your project will make, search results, and breakpoints.

The Targets group contains the targets that your project will compile. By modifying the settings
on the objects within this group, you override the project-wide settings for your compilation.
This is also where you can add and edit custom compilation steps for your projects. Figure 1.3
shows the build settings from this group.

04_9780470479223-ch01.indd 604_9780470479223-ch01.indd 6 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 7

Figure 1.3

Build settings

Exploring the files in your project
In this simple project, your source files are contained within the source group. You should see
that you have only one source file, which will be named the same as whatever you named your
project. It will have an extension of .m. Click this file and it should display in the Editor panel in
Xcode, as shown in Figure 1.4.

 N O T E
Although I said that there’s only one source file, you may see another file with an extension of .pch; this is a Pre-
Compiled Header and not a file you need to edit or work with. It’s automatically generated by the compiler.

Don’t worry right now about understanding everything that’s in this file. I go over the syntax of
a basic Objective-C program in the next chapter. For now, the important part is to focus on
understanding Xcode and how it works.

04_9780470479223-ch01.indd 704_9780470479223-ch01.indd 7 1/4/11 8:50 PM1/4/11 8:50 PM

8 Introducing Objective-C

 N O T E
If your source file does not display, you may need to drag the divider from the bottom of the Xcode window to show
the source editor.

Figure 1.4

Editor panel in Xcode.

Other files included in the default project include a documentation file for your program in the
Documentation group, the frameworks that are linked with your project in the External
Frameworks and Libraries group, and your actual executable, which is located in the Products
group. Your executable will be shown in red. This is because you have not yet built your execut-
able. If you click the Build and Run button, it will build the executable, run it, and display its out-
put in the console window. Be sure to familiarize yourself with the console window and what it
looks like, because you will use the console window quite a lot in the upcoming chapters to
examine the output of the programs that you will be writing.

Adding source files
To add new source files to your project, you simply select the source group in the file organiza-
tion panel, and then go to the File ➪ New File menu, which shows the New File dialog box, as
shown in Figure 1.5.

04_9780470479223-ch01.indd 804_9780470479223-ch01.indd 8 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 9

For the most part, you’ll be using the Cocoa Class selection and the Objective-C class template
when adding files in this book, so familiarize yourself with this window.

In some cases, you may have multiple targets in your project, and, as a result, you may have dif-
ferent source files which are compiled for the different targets. To explicitly include or exclude a
file from compilation in the currently selected target, click the file, and then find the detail view
in the source panel. The small Target column contains a selected check box when a file is con-
figured to be compiled for the current target. When it is deselected, it will not be compiled. An
example is shown in Figure 1.6.

 N O T E
If you don’t see the detailed display, go to the View ➪ Zoom Editor Out menu to display it.

Figure 1.5

New File dialog box

04_9780470479223-ch01.indd 904_9780470479223-ch01.indd 9 1/4/11 8:50 PM1/4/11 8:50 PM

10 Introducing Objective-C

Figure 1.6

Showing the Target check box

The main Xcode window
Now that you’re somewhat familiar with basic file management in Xcode, you’ll want to famil-
iarize yourself with the main Xcode window. This is where you’ll do the majority of your work in
Xcode. The main Xcode window is shown in Figure 1.7.

When you look at this window, you can see that the left-hand side is the File Browser panel and
the right-hand side is the detailed display panel, or as I alternatively refer to it throughout the
rest of this text, the Editor panel. Selecting files in the File Browser panel causes them to display
in the Editor panel on the right. Additionally, the Editor panel has several different modes. The
detail mode shows a summary of the files that are selected in the File Browser. The Project Find
mode shows a find panel that enables you to do a search through all the files in your project for
an arbitrary text string. If you enable the All-In-One layout for Xcode, you also have a build
results mode for the Editor panel. This mode enables you to see the build results for your last
compilation.

At this time, look at the strip at the top of the text editor window. This shows you several inter-
esting informational items related to the file that you are currently editing.

The first item you see in this top strip is the filename and line number of the file you’re currently
editing. This is actually a drop-down list, and you can click on it and choose from a list of
recently opened files. Next to this, another drop-down list shows the function declarations of
the methods in the current file that you are editing. If you choose one of these methods, then
the editor will automatically jump to that declaration in your existing file.

04_9780470479223-ch01.indd 1004_9780470479223-ch01.indd 10 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 11

Figure 1.7

Main Xcode window

Figure 1.8 shows a typical file showing this drop-down list in use.

 N O T E
You can also add arbitrary labels to this drop-down list by using the pragma directive in your code. In the case of this
file, you can see that there is already a pragma directive for the interface builder action methods.

Above the text editor and the File Browser is the main toolbar. You can configure this with vari-
ous buttons, but typically the default ones are perfectly fine. They enable you to launch builds,
to stop the current build, and so on.

Finally, in the lower-right corner of the Xcode window, you can see a summary of the last build
results. If it was successful, you see Succeeded. If it was unsuccessful, you see an account of the
number of warnings and errors occurred during the last compile, as well as a yellow icon for
warnings and a red icon for errors. If you recently ran the static code analyzer, you will see a
blue icon for any warnings generated by it.

04_9780470479223-ch01.indd 1104_9780470479223-ch01.indd 11 1/4/11 8:50 PM1/4/11 8:50 PM

12 Introducing Objective-C

Figure 1.8

File Navigation drop-down list

Understanding the Compilation Process
Before we can begin a detailed introduction of the language features of Objective-C, you must
have a thorough understanding of how the compilation process works. The process of compila-
tion is the process by which the computer turns your typed code into instructions that the com-
puter can actually execute. At the end of the day, computers are really only able to execute
instructions in their native language. That language is typically extremely verbose and difficult
for humans to understand and work with. Therefore, for humans to write instructions for the
computer, we use higher-level languages, such as Objective-C. We write our programs in text
editors, save the file to disk, and then run a compiler over the text file. The compiler then takes
the text and turns it into instructions that the computer can execute.

Most of this is Computer Science 101. If you are already familiar with programming, perhaps in
another language, then you already know all this information. You can probably safely skip the
next few sections. If, however, you are brand-new to programming, then this information will
be useful to you. It’s instructional to understand this process even though, in practice, the pro-
cess of compiling your code is very short.

The first step in understanding the compilation process is in writing code.

Writing code
As I said before, as a programmer, you will spend 99 percent of your time crafting text into soft-
ware. All software development requires that a programmer enter the instructions for the com-
puter into a text editor before it is compiled. This is typically referred to as writing code.

04_9780470479223-ch01.indd 1204_9780470479223-ch01.indd 12 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 13

Essentially, this involves nothing more than typing instructions and saving those instructions as
text files. Those text files, and the instructions in them, are usually referred to as source code.

Many programming languages include the concept of interfaces and implementations. An
interface is typically the methods and properties that your module exposes to other modules.
An implementation is the actual instructions that the computer must execute in order to per-
form the duties that it has promised to other modules in the interface. So to put it another way,
the interface is the promise to other parts of the system of what a particular module can do, and
the implementation is the instructions to the computer about how to fulfill that promise.

Most programming languages fall under one of two categories when it comes to interfaces and
implementation. The first are languages that do not separate their interface from their imple-
mentation. They use one file to declare both their interface and implementation in one location.
The second are languages that do separate their interface from their implementation. These
languages use two different text files to represent interface and implementation separately.
Objective-C falls into this latter category.

Objective-C is an object-oriented programming language. This usually means that developers
divide a program’s different components into objects and classes. A class is a collection of data
and the methods that operate on that data. An object is an individual instance of a class.
Objective-C classes, then, include an interface and an implementation.

The names of the text files used to store Objective-C source code typically have an extension
of .m in the case of implementation files and .h in the case of interface files. So, for example,
imagine a case where you wanted to create a class called MyClass. In this case, you would cre-
ate two text files to hold the instructions for the computer for that module. Those text files
would be called “MyClass.h” for the interface, and “MyClass.m” for the implementation.
Listings 1.1 and 1.2 show what those two files might look like. For now, don’t worry about
understanding what’s in them. I’m including this so that you can get a feel for what you will
eventually be implementing.

Listing 1.1

Interface File

@interface MyClass : NSObject
{
 int foo;
}
@property (nonatomic) int foo;
-(void)someMethod;
@end

04_9780470479223-ch01.indd 1304_9780470479223-ch01.indd 13 1/4/11 8:50 PM1/4/11 8:50 PM

14 Introducing Objective-C

Listing 1.2

Implementation File

#include “MyModule.h”

@implementation MyClass
@synthesize foo;

-(void)someMethod
{
 NSLog(@”some method got called”);
}
@end

Again, there’s no need to worry about understanding this code right now, but I will take this
opportunity to point out a few interesting features of these listings.

First, notice that the interface file clearly states the fact that it is an interface by including the @
interface directive. The @interface directive delineates the entire interface and contin-
ues until you see the @end directive. Within these lines, there are several subsections.

The first subsection is delineated by the curly braces ({}) at the top of the interface. This is the
member variable declaration area. Member variables store data related to your module.

The second subsection is where properties and methods are declared. Properties document
and allow access to state and data in your objects. Methods are instructions to the computer for
operating on that data. The code shown above is typical of an object-oriented module. You will
learn more about object-oriented programming, classes, member variables, properties, and
methods in Chapter 3.

 N O T E
Objective-C retains its C programming language roots. Therefore, creating modules in Objective-C that are pure C is
impossible. In these cases, the modules might have had file extensions of .h to indicate the interface and .c to indicate
the implementation. Additionally, Xcode can compile C++ if you name your implementation with a .cc file extension
and Objective-C++ (an Objective-C/C++ hybrid) if you name your implementation with a .mm file extension. In this
book, you’re here to learn Objective-C, however, so we won’t be doing this.

You can use any text editor that can save plain text files to write Objective-C code. However,
Apple provides the excellent Xcode integrated development environment on Mac OS X
expressly for the purpose of creating applications for Mac OS X, iPhone, and iPad. It is a superb
tool, and one that you use in this book. On the other hand, if you are developing on platforms
other than Mac OS X, you need to find a suitable text editor for your platform of choice.

04_9780470479223-ch01.indd 1404_9780470479223-ch01.indd 14 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 15

Turning source code into compiled code and compiled
code into an executable
After you have created your source code, you need to have the computer turn your source code
into the instructions that it can execute. This part of the process is called compiling the source
code.

Compiling the source code actually involves several steps.

The first step is called preprocessing. You can think of the preprocessing step as the computer
preparing your code to be compiled. During this step, the compiler removes any code that will
not result in executable code such as comments and so on. It also expands parts of the code
and rearranges certain directives so that the second step of the compilation process can be
more efficient. The end result of the first step of compilation is an intermediate state of the
source code. You typically will not see or deal with this intermediate form of the code though
there are compiler switches that will cause the compilation to stop at this stage if you wanted
to look at the output for whatever reason. Some developers who utilize advanced techniques
will sometimes use these compiler switches so that they can look at the intermediate file and
see exactly what the compiler is doing. You will probably never have to do that in your normal
application development.

After preprocessing, the second step is where the compiler actually turns your source code into
what’s called an object file. Object files have an extension of .o. Compiling source code can be
a relatively lengthy process, involving many different modules and many different source code
files. As a result, if you can avoid rebuilding a particular module in the case where it and none
of its dependencies have changed, then this can be a big win in terms of reducing compilation
time. Because of this, the object files are typically stored on disk in your build directory. In the
case where a source code file did not change since the last time the compiler was run, this
enables the compiler to simply skip recompiling that source code and instead reuse the object
file that was left from the last run of the compiler. Typically, you will have no need to look at
these files in day-to-day use. They are there for the compiler’s use only.The final step of compi-
lation involves a process called linking. Linking means taking the object files produced in the
last step and connecting them together to form an executable. In addition to the objects them-
selves, libraries and frameworks are also linked into the executable as well. The end result of the
linking process is your actual application executable. In the case of a command line application,
this will be a single binary file which you can run from the command line. In the case of a desk-
top application, this will usually be what’s called an application bundle that actually is a direc-
tory on disk containing an executable and all the resources such as graphics, sounds, and so on
that are necessary for running the application. You learn more about application bundles in
the next section.

04_9780470479223-ch01.indd 1504_9780470479223-ch01.indd 15 1/4/11 8:50 PM1/4/11 8:50 PM

16 Introducing Objective-C

In Xcode, compiling your app is as simple as hitting the Build and Run button. If you do this
with your example project, it’ll launch the application in the console and display it’s output.
While doing so, Xcode switches to debug mode and allows you to debug the application as
well. Debugging is an advanced IDE topic; see the Xcode documentation for information on
how to use it for debugging.

The end result of the compilation process is your executable. If at any point the compiler
detects an error in your source code (a very common event indeed), then it will halt the process-
ing of the file in question and display the error to you so that you can correct it. Sadly, the com-
piler is pretty picky. Computers are not nearly as good as we are at inferring meaning from
words. As a result, the compiler, rather than guessing at what you meant to type, simply gives
up and displays the error to you. These errors can be as simple as a missing semicolon, a miss-
ing space, incorrect capitalization, or any number of tiny things. Be prepared — by embarking
on a career as a programmer, you will be dealing with errors like this hundreds if not thousands
of times a day. Even the best programmers rarely write code that compiles perfectly the first
time.

Exploring application bundles
In the previous section, I mentioned the term application bundle — what may be a completely
new term to you even if you are an experienced programmer. You may be wondering what that
is. An application bundle is really more related to being an operating system construct than it is
to an Objective-C construct. The Objective-C language itself does not require or produce appli-
cation bundles. That said, however, application bundles are an important and integral concept
to programming on almost all the platforms on which Objective-C can be used, and, as a result,
they are important concepts for you as an Objective-C programmer to understand.

An application bundle is simply a directory on a disk containing a grouping of files. In Mac OS X,
application bundles are used for applications to group together all the files necessary for an
application to run. This includes items such as executables, graphics, sound files, and user inter-
face resources. Additionally, when building graphical applications for Mac OS X, the user inter-
face definitions are typically done in an application called Interface Builder. This application also
produces bundles called NIB files. NIB files usually have an extension of .nib and are stored
inside the application bundle.

 N O T E
NIB stands for NeXTstep Interface Builder and is a holdover from the NeXT days. Recently, the format was changed
from binary to XML, and the file extension was changed from .nib to .xib. During compilation, XIB files are still com-
piled to NIB files, so when you look in an application bundle, you’ll see .nib and not .xib.

Listing 1.3 shows a typical application bundle directory structure. In this case, it’s a partial listing
of the Xcode application bundle.

04_9780470479223-ch01.indd 1604_9780470479223-ch01.indd 16 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 17

Listing 1.3

Contents of an Application Bundle

Xcode.app
`-- Contents
|-- CodeResources -> _CodeSignature/CodeResources
|-- Info.plist
|-- Library
| |-- QuickLook
| | `-- SourceCode.qlgenerator
| | `-- Contents
| | |-- CodeResources -> _CodeSignature/CodeResources
| | |-- Info.plist
| | |-- MacOS
| | | `-- SourceCode
| | |-- _CodeSignature
| | | `-- CodeResources
| | `-- version.plist
| `-- Spotlight
| |-- SourceCode.mdimporter
| | `-- Contents
| | |-- CodeResources -> _CodeSignature/CodeResources
| | |-- Info.plist
| | |-- MacOS
| | | `-- SourceCode
| | |-- _CodeSignature
| | | `-- CodeResources
| | `-- version.plist
| `-- uuid.mdimporter
| `-- Contents
| |-- CodeResources -> _CodeSignature/CodeResources
| |-- Info.plist
| |-- MacOS
| | `-- uuid
| |-- Resources
| | |-- English.lproj
| | | |-- InfoPlist.strings
| | | `-- schema.strings
| | |-- Japanese.lproj
| | | |-- InfoPlist.strings
| | | `-- schema.strings
| | `-- schema.xml
| |-- _CodeSignature
| | `-- CodeResources
| `-- version.plist
|-- MacOS
| `-- Xcode
|-- PkgInfo
|-- PlugIns

continued

04_9780470479223-ch01.indd 1704_9780470479223-ch01.indd 17 1/4/11 8:50 PM1/4/11 8:50 PM

18 Introducing Objective-C

Listing 1.3 (continued)

| |-- BuildSettingsPanes.xcplugin
| | `-- Contents
| | |-- CodeResources -> _CodeSignature/CodeResources
| | |-- Info.plist
| | |-- MacOS
| | | `-- BuildSettingsPanes
| | |-- Resources
| | | |-- Built-in Build Settings Panes.pbsettingspanespec
|-- Resources
| |-- AskUserForNewFileDialog
| |-- CreateDiskImage.workflow
| | `-- Contents
| | `-- document.wflow
| |-- DevCDVersion.plist
| |-- Document-Cert.icns
|-- _CodeSignature
| `-- CodeResources
`-- version.plist

Note that the directory Contents/MacOS contains the Xcode executable. This executable is the
same as one that you would produce if you were making a command line application. The dif-
ference here is that it is packaged inside of an application bundle and contains code to load the
resources from that bundle. Some other interesting directories inside this application include
the PlugIns directory, which has bundles inside of it as well. The Spotlight directory also con-
tains bundles in the form of the SourceCode.mdimporter and uuid.mdimporter directories. The
Foundation framework, which we will visit in Part II of this book, includes methods that enable
you to read application bundles, and it allows access to these sorts of embedded bundles.

The important thing for you to know at this time is that when you create a graphical application
for Mac OS X, iPhone, or iPad, Xcode creates an application bundle for your application. In the
future, if you have the need to include compartmentalized groupings of resources within your
application, you may want to create an application bundle yourself. Xcode also gives you the
ability to do exactly that. For now, however, you don’t need to worry about that.

Working with build settings
There are two locations in Xcode where build settings for your projects are configured. The
first and primary location is the project information window, which you access by choosing
Project ➪ Edit Project Settings. In this section, I cover these windows in detail because the infor-
mation is useful and instructional. Because of where this is falling within the book, you may not
understand many of the things that I’m going to talk about. I suggest that you skim through
this section to begin with and then return to it later after you’ve worked through Chapter 2. The
first panel of the Project Settings window, shown in Figure 1.9, shows the general settings for
the project. Most of these you won’t need to change, with the exception of configuring your
source code management by using the Configure Roots and SCM button.

04_9780470479223-ch01.indd 1804_9780470479223-ch01.indd 18 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 19

Figure 1.9

Project settings

The Place Build Products In settings configure where in your project your executable will be
placed after it is compiled. Again, this is another setting that you probably don’t need to
change, but it’s useful to make a note of it at this time to be aware of where your executable will
be placed. This directory is where you will find your executable.

The setting beneath this setting, the Place Intermediate Build Files In setting, configures where
the object files for your source code will be placed while your application is building.

The next setting, Build Independent Targets in Parallel, affects how the compiler builds targets
for different independent platforms, for example PPC and Intel. If it is enabled, the separate tar-
gets will be built in parallel. If not, they will be built serially — one after the other.

One of the most frequently asked questions about Xcode, is “How do I change the organization
name that’s placed automatically in my source code headers after my copyright notice?” The
next setting, Organization Name, is for exactly that purpose. By configuring an organization
name here, when you add new files to your project, the copyright listing will list the organiza-
tion name that you put here as the owner of the copyright. Configure this to be the name of
your company or your name.

04_9780470479223-ch01.indd 1904_9780470479223-ch01.indd 19 1/4/11 8:50 PM1/4/11 8:50 PM

20 Introducing Objective-C

The next setting, Base SDK for All Configurations, configures the SDK that your application will
be compiled and linked against by default. The SDK used defines the code completion and
frameworks available for your project. For the purposes of this book and the projects that you
will work on while going through it, you can configure the base SDK for your current Mac OS
version. However, if you are doing development for other platforms, such as iPhone OS, and so
on, you should configure this setting appropriately. You also should modify this setting in the
cases where you may want to compile your application for an older version of Mac OS.

 N O T E
The term SDK refers to Software Development Kit. An SDK is a collection of libraries, tools, documentation, and source
files which is used to build applications for a specific platform. Xcode comes with SDKs for Mac OS X and iOS.

The final setting on this panel relates to rebuilding the Code Sense Index. You may encounter
some rare cases when the Code Sense Index can become corrupt. In these cases, you may want
to choose to rebuild the Code Sense Index by using this button. These cases are rare, but if you
ever need it, this is where you’ll need to do it.

There are two primary locations where all build settings for your projects are configured. The
first is at the project level, and the second is at an individual target level. If you can think of your
project level settings as being the base settings for building your application, then the target
level settings are the items that you want to change for specific targets. For example, you may
have a project for a given application that has both a debug target and a release target. In this
case, you would have all your project level settings the same for both targets, but you would
vary a few things, such as whether you want to strip your executable and so forth on a target-
by-target basis. Xcode supports this by having the project level settings and the target level set-
tings as two separate windows. You can configure the project level settings, which cascade
down into your targets unless you make a change on a particular target’s settings. When you
make a change to the settings for a particular target, this change overrides the settings from the
project level. Figure 1.10 shows an example of how this works.

In this example, you are looking at both the project level settings and the target level settings.
The example application being shown has configured two different targets that share code but
build different executables. As you can see, the items that are different between the project ver-
sus the target are shown in bold on the target-level settings. If you choose to delete that set-
ting, then the bold goes away, and the default value, which it gets from the project level
settings, take its place.

The drop-down list at the top of the screen allows you to choose what configuration you are
editing, for example, whether you are working with a debug build versus a release build, as well
as to filter the list for specific settings. The configuration options shown are set by using the
Configurations tab at the project level. Figure 1.11 shows a typical project in which a debug and
release build are configured.

You can think of the configurations as being different builds of the same target. Besides debug
and release, another typical example might be a case where you have different architectures
that you want to build for, for example PowerPC versus Intel.

04_9780470479223-ch01.indd 2004_9780470479223-ch01.indd 20 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 21

Figure 1.10

Target versus project settings

Figure 1.11

Build Configurations

04_9780470479223-ch01.indd 2104_9780470479223-ch01.indd 21 1/4/11 8:50 PM1/4/11 8:50 PM

22 Introducing Objective-C

It is possible to use the command line utility xcodebuild to build your projects. This can be
handy when automating builds. If you do this, the option at the bottom of this screen,
“Command-line builds use,” controls which configuration will be used if you do not specify one.

Most of these settings are things that you will typically not be changing for most of this book.
That said, you can scroll through the settings, click on each of them, and view the information
that it shows at the bottom of the screen describing each of the options if you are curious what
they do. The third tab under the target build settings is the Rules tab, which enables you to con-
figure the default compilation behavior for different types of files within your project. So, for
example, if you have a particular kind of file that requires special processing as part of the build
process, you can add that file here by pressing the plus button. Then configure whatever type
of custom behavior you require. Additionally, if you want to change the default behavior for any
of the built-in files, you can also do that here by simply changing the drop-down list options.

For the most part, you will not need to make any changes to the settings. When building graph-
ical Cocoa applications, one additional tab under the target build settings is the Properties tab.
This tab allows you to configure options such as the executable name and the main bundle
identifier for your project. Typically, you want to configure the identifier to match your com-
pany name as opposed to using the default. Additionally, if you have files that your application
saves that you want to be able to double-click to launch, you can register and configure a docu-
ment type for those files here. When your application is built, Mac OS X will detect the file type
that you specify as associated with your application, and it will list your application as one that
can open that particular type of file. This behavior is shown in Figure 1.12.

 N O T E
For command line applications, you will not see a Properties tab. The Properties tab is actually configuring the infor-
mation in your App bundle, which doesn’t exist in command line apps.

You can also configure an icon for your application if it’s a graphical application. You do this by
including the icon file as part of your application bundle and specifying its name in the Icon File
setting.

Again, for most of the development that you do in this book, you don’t need to change any of
these options, but it’s good to know where they are for future reference.

 N O T E
Xcode 4, which is still under development as this book goes to print, has moved the build settings around a bit, but
the settings themselves remain mostly the same. See the Xcode 4 documentation for the latest information on this
feature.

04_9780470479223-ch01.indd 2204_9780470479223-ch01.indd 22 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 23

Figure 1.12

Application bundle properties

Using the Xcode Static Analyzer
One of the biggest improvements to compiler technology included in the Xcode development
environment over the last couple of years has been the inclusion of the Clang Static Analyzer.
The Clang Static Analyzer is a tool for analyzing source code to detect common errors. Though
compilers are good at detecting some errors, they generally tend to err on the side of speed
and forsake the detection of some conditions that are more complicated to find. As a result,
some otherwise detectable errors, errors that one might detect through code review, often go
undetected and result in bugs in your application. Examples of these kinds of errors are failure
to release allocated memory, infinite loops, and use of uninitialized variables, to name a few.
Typical compilers are unable to detect most of these errors. The Clang Static Analyzer was cre-
ated specifically to fill this gap.

To run the Clang Static Analyzer on your source code, you simply choose Build ➪ Build and
Analyze. This will cause your source code to first be built using the compiler, and then the static
analyzer will be run.

04_9780470479223-ch01.indd 2304_9780470479223-ch01.indd 23 1/4/11 8:50 PM1/4/11 8:50 PM

24 Introducing Objective-C

The errors detected by the analyzer are displayed just like regular compilation warnings.
However, when you click on an error in your source code, you get additional contextual infor-
mation in the form of graphical code flow arrows. These arrows show you the predicted code
path that the analyzer expects will be used when your code is run. This information can help
you to understand in greater detail the exact circumstances that the analyzer is considering
when detecting your error.

Take a look at how the analyzer handles some common coding mistakes. Again, much of what
I’m discussing here is an advanced topic that you learn more about in later chapters. For now,
skim over this section, but return to it later after you see these kinds of errors in your own code.

Listing 1.4 shows a sample program with a common mistake. In this case, memory which is allo-
cated is not being released.

Listing 1.4

A Program with a memory leak

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 NSDate *date = [[NSDate alloc] init];
 NSLog(@”The time is: %@”, date);
 [pool drain];
 return 0;
}

In this case, the NSDate object that is allocated is not being released. The static analyzer out-
put from this code is shown in Figure 1.13.

Note that the error is displayed both in the build results panel at the top of the screen, as well as
in-line in the code. Not only does the Clang Static Analyzer catch errors that most compilers do
not, its output is also much clearer than most compiler errors. If you expand the disclosure tri-
angle on the error message in the build results, it will show you the two separate messages that
are associated with this particular error. Clicking on either of these messages shows you the
exact location where the memory is allocated and shows you the program flow as the program
was analyzed. You can then follow the arrows through your code. Figure 1.14 shows the same
code with the errors expanded and the full output of the analyzer displayed.

04_9780470479223-ch01.indd 2404_9780470479223-ch01.indd 24 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 25

Figure 1.13

Output from the Static Analyzer

If you correct the code by modifying it to look like Listing 1.5, you will find that the error disap-
pears and you get a clean compile.

Figure 1.14

Detailed Analyzer output

04_9780470479223-ch01.indd 2504_9780470479223-ch01.indd 25 1/4/11 8:50 PM1/4/11 8:50 PM

26 Introducing Objective-C

Listing 1.5

Correct Code

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 NSDate *date = [[NSDate alloc] init];
 NSLog(@”The time is: %@”, date);
 [date release];
 [pool drain];
 return 0;
}

 N O T E
If you recompile the app, you see that the Clang Static Analyzer no longer flags the errors.

Understanding the Objective-C Runtime
The first and most basic idea to understand about Objective-C is that Objective-C is a compiled
language with a dynamic runtime. What this means is that the language is compiled using a
compiler, enabling static, compile time type checking, but it is also linked with a runtime, which
enables dynamic dispatch of methods. This dynamic runtime gives you the ability to do many
things that are only found in scripting languages such as “duck typing” and introspection of
objects.

 N O T E
Duck typing refers to a type of language type safety where it is assumed that if an object “looks like a duck, and quacks
like a duck, it must be a duck.” This is as opposed to static typing, where an object must be the type that it is declared
to be in order for the language to resolve methods on it. There are advantages and disadvantages to both techniques,
but in the case of Objective-C, duck typing enables many of the cool features in the language.

04_9780470479223-ch01.indd 2604_9780470479223-ch01.indd 26 1/4/11 8:50 PM1/4/11 8:50 PM

 Chapter 1: Introducing Objective-C 27

There are actually two primary Objective-C runtimes. The “modern runtime,” which is used on
64-bit machines and on the iPhone, and the “legacy runtime,” which is used on 32-bit Mac OS X
and everywhere else. There are several features in the “modern runtime” that are very advanta-
geous for development, but because of its lack of widespread use, the code samples that I show
in this book will be written for the legacy runtime. The modern runtime is completely back-
wards compatible with the legacy runtime, so this will not present any problems for you in writ-
ing code. In cases where there are significant advantages to the modern runtime, I will try to
make a note in the text for your reference.

The Objective-C runtime is automatically added to your application when you compile it. Using
it is completely transparent, unless you need to use some of its advanced features. For now,
however, the important thing to understand is simply the capabilities that the runtime gives
you in terms of dynamic typing and static typing. This is a unique capability that Objective-C
has in comparison to other programming languages.

One of the side effects of this capability is the introduction of the id data type. The id data
type is a special type of object in Objective-C that can actually be any type of object. I discuss
more details in Chapter 3.

Summary
In this chapter, I’ve introduced you to the Xcode integrated development environment, which
you use throughout this book for developing your applications. I’ve shown you how to config-
ure it to your tastes, how to organize your files within it, how to build your applications, and
how to read its output to find errors in your code. I also explained the compilation process and
the format of application bundles, as well as explained a bit about the Objective-C runtime.

04_9780470479223-ch01.indd 2704_9780470479223-ch01.indd 27 1/4/11 8:50 PM1/4/11 8:50 PM

04_9780470479223-ch01.indd 2804_9780470479223-ch01.indd 28 1/4/11 8:50 PM1/4/11 8:50 PM

In This Chapter

Understanding
Basic Syntax

Writing your first
program

Declaring variables

Working with functions

Using flow control
statements

Using loops

In this chapter, I show you how to write a basic Objective-C pro-
gram. This very simple command line application will print a
short message to the console. Using this basic program, you will

explore some of the essentials of Objective-C, beginning first with
how to actually write the code, moving into working with variables
and functions, and finally, controlling the flow of your program by
using conditional statements and loops. These concepts are funda-
mental to learning the language, and you should study this chapter
thoroughly before moving on to the next one.

Go ahead and type in the code from Listing 2.1 into the Xcode proj-
ect you created in Chapter 1. This code should be entered into the
source file which is named after your project name, located in the
Source group.

Listing 2.1

Your first program

#import <Foundation/Foundation.h>

int main(int argc, const char *argv[])
{
 NSLog(@”Hello from Objective-C”);
 return 0;
}

I’m going to jump around in this code a bit because it makes it eas-
ier to explain that way.

Start with line 3, which is the declaration of the main function. All
Objective-C applications have a main function. Typically you don’t
see it because it’s usually created by your template when you cre-
ate your project; when working with graphical applications, it’s rare

05_9780470479223-ch02.indd 2905_9780470479223-ch02.indd 29 1/4/11 8:51 PM1/4/11 8:51 PM

30 Introducing Objective-C

that you have to edit this code at all. I want to teach you also how to write command line appli-
cations, so that’s why I’m showing you this code here.

 N O T E
What is a function? A function, essentially, is a subroutine in your program. It’s a branch to another piece of code that
executes some task and then returns. You send data to your function by including arguments when you call the func-
tion (the things in parentheses). You get data back from your functions in several ways, but the primary way is by
receiving a return value, which is a value returned from the function back to your calling code.

All Objective-C applications have a main function. The main function is also where your pro-
gram begins and ends. Your program begins executing by calling the main function from the
operating system. The two arguments shown, argc and argv, contain the parameters given
on the command line to your application. Your application begins executing each of the lines
inside of the main function one after another, until it reaches a return statement. In this case,
our return statement is simply returning zero. This indicates that our program has exited
successfully.

Line 5 contains a call to a function called NSLog. This function causes whatever string is passed
to it to be printed to the console when the application is run.

The curly braces on lines 4 and 7 indicate the scope of the main function. You see these used
frequently. The semicolons at the end of lines 5 and 6 indicate the end of those statements,
and they are used by the compiler to separate one statement from another. Statements in
Objective-C can be split up over multiple lines. As a result, the compiler needs to have some
indication when a statement has ended so that it can parse that statement. Knowing when to
place a semicolon at the end of a line can be confusing for many beginners. Remember that any
statement inside a function block, except for flow control statements, requires a semicolon at
the end of the line. Additionally, declarations also require semicolons. Line 1 is an import
statement. Import statements allow you to load code from other files in your current file. In this
case, we are including the interface declarations for the Foundation framework. (You can read
more about the foundation framework in Part II of this book.) This line of code is required in
order to load the code that will allow us to use the NSLog statement in line 5.The unusual
@”Hello from Objective-C” is known as a string. Strings are literal text in your code; they
are stored in a variable in your program and can be accessed later. In this particular case, this
string will be sent as an argument to the NSLog function which will then display it on the
console.

Go ahead and compile and run this application and view the output. You should see something
like Figure 2.1.

05_9780470479223-ch02.indd 3005_9780470479223-ch02.indd 30 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 31

Figure 2.1

The output of our application

Working with Statements and Expressions
All Objective-C programs are made up of statements and expressions. Statements are lines of
code that exist strictly for the purposes of executing an action. Generally speaking, statements
do not have return values, and so therefore do not change the state of the current line of execu-
tion except in ways that are side effects of calling the statement. In other words, the statement
can branch into another line of code, and in that other line of code it can cause things to occur
that have side effects (such as printing something to the console or displaying a dialog box),
but it does not return a value to the current line of code that the statement is in.

Expressions, on the other hand, do return a value to the calling code, and therefore can be used
to change program flow.

For the most part, the distinction between these two is minor enough to not be something to
be concerned about. I use these two terms interchangeably.

05_9780470479223-ch02.indd 3105_9780470479223-ch02.indd 31 1/4/11 8:51 PM1/4/11 8:51 PM

32 Introducing Objective-C

Declaring variables
So you’ve seen the basics of how to write a simple Objective-C program. Now you can go fur-
ther. Change the code you’ve written to look like Listing 2.2.

Listing 2.2

A program with Variables

#import <Foundation/Foundation.h>

int main(int argc, const char *argv[])
{
 int aVariable = 5555;
 NSLog(@”%ld”, aVariable);
 return 0;
}

This new change illustrates the next concept — variables.

As you can see, I’ve added a variable and have assigned a value to it; then I output the variable
by using the NSLog statement. A variable is a place to store data. Variables have memory asso-
ciated with them that is allocated to store the thing that you want to store. In this case, I am
storing the value 5555 into the variable aVariable, and then passing that variable to the
NSLog function. Interestingly, several other variables have been in our program from the
beginning. These are the argc and argv variables. Just like the aVariable variable, they
store values that can be referenced elsewhere in our program. For example, you could also
change the code to look like Listing 2.3.

Listing 2.3

Working with argc as a variable

#import <Foundation/Foundation.h>

int main(int argc, const char *argv[])
{
 NSLog(@”The argument count is: %ld”, argc);
 return 0;
}

05_9780470479223-ch02.indd 3205_9780470479223-ch02.indd 32 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 33

In this case, you’ve changed the program to print out the number of arguments that are passed
to it. The argc variable stores the number of arguments passed to our application. By passing a
variable to the NSLog function, we are able to print it out.

Variables can be declared within a given scope, also known as a stack frame, or they can be
declared outside of all stack frames, in which case they are a global variable. Stack frames are
defined by the curly braces in your code. For example, look at Listing 2.4.

 N O T E
Global variables are generally considered a bad programming practice and should be avoided.

Listing 2.4

Different stacks

#import <Foundation/Foundation.h>

int main(int argc, const char *argv[])
{
 // this is the first stack frame
 int aVariable1 = 5;
 if(aVariable1 > 4)
 {
 // this is the second stack frame.
 int aVariable2 = 10;
 NSLog(@”aVariable1: %ld”, aVariable1); // this is OK
 NSLog(@”aVariable2: %ld”, aVariable2); // this is OK
 }

 NSLog(@”aVariable1: %ld”, aVariable1); // this is OK
 NSLog(@”aVariable2: %ld”, aVariable2); // error, aVariable2 does not exist

here.
 return 0;
}

In the above code, the variable aVariable1 is declared in the first stack frame. This frame
exists all the way to the end of the second curly brace. We say, “aVariable1 has scope within
the first stack frame.” The variable aVariable2 only has scope within the second stack frame
which exists from lines 7 through 12. Therefore, when we reach line 15, aVariable2 no

05_9780470479223-ch02.indd 3305_9780470479223-ch02.indd 33 1/4/11 8:51 PM1/4/11 8:51 PM

34 Introducing Objective-C

longer exists, and will cause an error. We say, “aVariable2 goes out of scope at the end of
the second stack frame which is at line 12.” Earlier in this chapter, I mention that variables store
data in memory. The memory they use can be allocated on the stack, just as you see in this
example. The memory associated with those variables is also freed when the variable goes out
of scope. That is, when the variable no longer exists. However, memory for variables can also be
allocated on what’s called “the heap,” which is a pool of memory that your application can allo-
cate data from by itself and which your application has much greater power over. However, as
they said in Spiderman, “With great power comes great responsibility.” You have to also be sure
to free any memory you allocate on the heap. Listing 2.5 shows an example of allocating an
object on the heap and then freeing it.

Listing 2.5

Allocating memory on the heap.

// this allocates the memory
SomeClass *aVariable = [[SomeClass alloc] init];

// do something with aVariable

[aVariable release]; // this frees the memory.

The code in this listing is demonstrating a concept that I spend a great deal of time on later,
when I look at objects. For now, simply understand that the variable aVariable is having its
memory allocated on the heap. This means that if we didn’t release that memory at the bottom
of this listing, that memory would stick around and it would be what is commonly referred to as
a memory leak. One of the key ways to tell if a variable has its memory allocated on the heap
versus the stack is by looking to see if it is a pointer. The * operator in the declaration of the
aVariable variable in the prior example indicates that this is a pointer. A pointer is a variable
that points to another memory location.

Note that previously, all the variables we have worked with so far have not had the * operator
before their names. This has meant that their memory was allocated on the stack. Although you
can use the pointers that are strictly allocated on the stack, most often when you see pointers in
Objective-C, it will be for variables that are allocated on the heap. The key is to look for some
kind of allocation function like that shown here.

Pointers are a tough subject to get your head around, but I have a section coming up that
delves into them in detail.

Earlier in this chapter, I describe global variables. Similarly, another word for a variable that is
allocated on the stack is local variable. Local variables are ones that exist only within the local
scope. The local scope is another phrase that means “the current stack frame.” Some other types

05_9780470479223-ch02.indd 3405_9780470479223-ch02.indd 34 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 35

of variables that you encounter include member variables, which are variables that are members
of a class, and instance variables, which are variables that store a particular instance of an object.
I cover both of these in Chapter 3 when I discuss objects.

When working with variables in Objective-C, they first must be declared, which means that you
have to tell the compiler you’re going to use them. When you declare them, you have to give
the type. There are three broad categories of types — scalars, pointers, and structures. It is these
three categories that we talk about in the next sections.

Using comments
Listings 2.4 and 2.5 introduced another bit of syntax, the double slash (//). In Objective-C, lines
that are preceded by // are comments. They are ignored by the compiler, and can contain any-
thing you want. Usually, they’re used to give some kind of human-readable documentation in
the code, but they can just as often be used to temporarily remove code, or simply for the pur-
poses of making the code pretty. The important thing to know is that whenever you see // in
code, everything on that line until the end of that line will be ignored by the compiler.

In addition to the // style comments, there’s another syntax for comments delineated by the
characters /* and */. In this case, rather than commenting everything to the end of the line, it
only comments the text contained within the /* and */ characters.

Which of these commenting techniques you use is entirely up to you. I prefer the // style com-
menting, so that’s what I use throughout this book.

Exploring scalar types
The first and most basic form of variable is scalar variables. A scalar is a type of value that can
hold only one value at a time. Examples of scalars are integers, floating point numbers, and
characters. Scalars have different defined sizes in terms of their memory footprint and the size
of values that can be stored in them. You should be aware of these limitations when deciding
what type to define your variables to be. Table 2.1 shows the size of the most commonly used
scalar types in Objective-C.

Table 2.1 Commonly used scalar types
Type Description

int An integer value between +/– 2,147,483,647.

unsigned int An integer value between 0 and 4,294,967,296.

float A floating point value between +/– 16,777,216.

double A floating point value between +/– 2,147,483,647.

long An integer value varying in size from 32 bit to 64 bit depending on architecture.

continued

05_9780470479223-ch02.indd 3505_9780470479223-ch02.indd 35 1/4/11 8:51 PM1/4/11 8:51 PM

36 Introducing Objective-C

Table 2.1 Continued
Type Description

long long A 64-bit integer.

char A single character. Technically it’s represented as an int.

BOOL A boolean value, can be either YES or NO.

NSInteger When compiling for 32-bit architecture, same as an int, when compiling for 64-bit architecture,

+/– 4,294,967,296.

NSUInteger When compiling for 32-bit architecture, same as an unsigned int, when compiling for 64-bit

architecture, value between 0 and 2^64.

Most of these scalar types are also shared with C and C++, but there are a couple here that are
unique to Objective-C.

Apple has been very good about supporting 32-and 64-bit architectures with their operating
system and libraries. Doing so, however, is no easy task from a programming point of view. For
example, some values, such as array indices, may benefit from the increased upper limit of
64-bit integers. As a result, in an ideal world, we want our code to be able to seamlessly transi-
tion between 32-bit and 64-bit platforms. Therefore, Apple provides us with the NSInteger
and NSUInteger types, which automatically will be either 32- bit or 64-bit depending on the
architecture they are compiled under.

Using scalar types is very straightforward. To declare a scalar variable, you simply tell the com-
piler the type and the name of the variable. You can also give it an initial value. For example,
Listing 2.6 shows how some typical scalar variables might be declared.

Listing 2.6

Declaring Scalar Variables

int foo = 10;
double bar = 500.0;
float baz;
unsigned long n;
NSInteger x;
char a = ‘a’;

 N O T E
Notice the variable a has been initialized with the value ‘a’. Using single quotes around a character tells the com-
piler to take the value of that character as a char. This should not be confused with a string, which I will discuss
later, and which is designated with the @“” construct.

05_9780470479223-ch02.indd 3605_9780470479223-ch02.indd 36 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 37

Using special variable modifiers
In addition to the variable type and the variable name, there are also a number of keywords
that are used to modify the type of variable that you are declaring. The most important of these
modifier keywords, and the ones that you will see in this book, are the static and const
keywords.

As I mention earlier, when declaring local variables, the memory for your variable is normally
allocated each time the scope of the local variable is entered by your program and deallocated
when you leave the local scope. This class of storage is called automatic, or, by the default mod-
ifier keyword, auto.

The static keyword modifies the memory allocation of the variable being declared so that it
will be allocated only once during the run of your program. Subsequent accesses of the same
variable in your application will in fact access the originally allocated memory. This is important,
because it gives you the ability to specify a local variable which will maintain its contents indefi-
nitely. This makes it ideal for storing local variables which take a lot of resources to create, but
for which the contents of the variable do not change often. Listing 2.7 shows how you might
use the static keyword in association with a function to optimize an expensive operation such
as initializing a variable.

Listing 2.7

Using static

void someFunction()
{
 // x will be created and initialized only once,
 //no matter how often you call this
 static Expensive *x = [[Expensive alloc] initWithData:...];
 // do things with x here...
 [x doSomeOperation];
}

int main(int argc, char *argv[])
{
 someFunction(); // x is created up in someFunction
 someFunction(); // x already exists and will not be created again.
 return 0;
}

Global variables, because they are global in scope, by default, behave similarly to static vari-
ables. That is, they are allocated only once, and they maintain their contents throughout the run
of the application. When you apply the static keyword to a global variable, however, it modi-
fies the scope of the global variable so that it can be accessed only within the file in which it is

05_9780470479223-ch02.indd 3705_9780470479223-ch02.indd 37 1/4/11 8:51 PM1/4/11 8:51 PM

38 Introducing Objective-C

declared. This is in contrast to the normal behavior of a global variable. Normal global variables
are in scope anywhere in your program.

The static keyword is known as a storage modifier. There are several of these types of modifi-
ers available in Objective-C. There is the register modifier, which can be used to provide a
hint to the compiler that the data being stored will be accessed often and so could benefit from
being stored in a register on the CPU. This keyword is rarely used. Another, more commonly
used, keyword is the extern keyword. This modifier indicates that a variable or function decla-
ration is referencing an actual variable or function that is defined or allocated in another compi-
lation unit in your application. You’ll see the extern keyword in use later in this chapter when I
talk about functions.

The const keyword similarly modifies the memory behavior of the variable being declared,
but in the case of const, the variable is made to be read-only. This means that once the vari-
able is initialized, its contents cannot be changed. This is useful in cases where you are declaring
variables that should never be modified, such as constants. By declaring such variables to be
const, the compiler will enforce that behavior. If you accidentally later attempt to modify one
of these variables, this would be a bug, and the compiler would generate an error. Listing 2.8
shows how the const keyword can be used to avoid overwriting a constant.

Listing 2.8

Using the const keyword

int main(int argc, char *argv)
{
 const NSString *foo = @”MY_CONSTANT”;

 // do things here....

 foo = @”SOME_OTHER_VALUE”; // this will generate a compiler error.

 if([foo isEqualToString:@”MY_CONSTANT”])
 {
 // take action here...
 }
}

Understanding structures
Structures, or structs for short, are types that you yourself define, which can contain multiple
subvariables within them. For example, if you wanted to declare a variable which grouped x
and y coordinates together to represent a point, you might declare that variable using a
struct. You do this using the struct keyword.

05_9780470479223-ch02.indd 3805_9780470479223-ch02.indd 38 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 39

Declaring a struct is a two-stage affair. First you have to tell the compiler about the struct
itself, and then you can use the struct to declare variables that are of the type of the struct
you have defined. Continuing our example of declaring a variable for a point, Listing 2.9 shows
how this structure might be initially defined. Again, this is the first step of the process — defin-
ing the structure.

Listing 2.9

Declaring a struct

struct Point
{
 float x;
 float y;
};

In this case, I’ve defined a Point structure that contains two member variables, x and y, which
are both of type float. Now, after you have the point structure defined, you can then declare
your variable, which will eventually actually hold the individual point you’re referring using.
Listing 2.10 shows how to do that.

Listing 2.10

Declaring a struct instance.

struct Point p;

Structures can even be made up of composites of other structures. For example, Listing 2.11
shows a structure that defines a line by combining two points.

Listing 2.11

A composite struct.

struct Line
{
 struct Point start;
 struct Point end;
};

05_9780470479223-ch02.indd 3905_9780470479223-ch02.indd 39 1/4/11 8:51 PM1/4/11 8:51 PM

40 Introducing Objective-C

Tie these together to show some code that actually uses a struct to store and displays some
points. This is shown in Listing 2.12.

Listing 2.12

Working with point structures

#import <Foundation/Foundation.h>

// declaring the point structure.
struct Point
{
 float x;
 float y;
};

int main(int argc, const char *argv[])
{
 // declaring the point variable...
 struct Point p;
 // assigning values to the struct’s members...
 p.x = 20.0;
 p.y = 50.0;

 // ... then to use the point...
 moveCursorToPoint(p);

 return 0;
}

Objective-C and Cocoa use structures for storing things such as points, rectangles, and so on.
The nice thing about using structures is that they are a very lightweight way to store groups of
related variables. In Chapter 3, you see how to use objects to also group related variables and
the methods that act on those variables. However, objects can have a fair amount of overhead
associated with them. Structures, on the other hand, have no more overhead than the variables
that make up their members. Therefore, they can sometimes be used in performance-sensitive
areas where objects would be too heavy.

Using typedefs
Naturally, typing struct Point every time you want to declare a point can quickly become
tedious. Fortunately, Objective-C provides another construct that can help with this. This con-
struct is called typedef.

05_9780470479223-ch02.indd 4005_9780470479223-ch02.indd 40 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 41

The word typedef comes from the words type definition, and essentially allows you to define
your own types. Using it in conjunction with structures enables you to define a custom type
that represents your structure. You can then use this custom type anywhere you’d normally
have used your structure definition. Listing 2.13 shows the typedef version of the Point
structure example.

Listing 2.13

Working with point structures and typedefs

#import <Foundation/Foundation.h>

// declaring the point structure.
typedef struct
{
 float x;
 float y;
} Point;

int main(int argc, const char *argv[])
{
 // declaring the point variable...
 Point p;
 // assigning values to the struct’s members...
 p.x = 20.0;
 p.y = 50.0;

 // ... then to use the point...
 moveCursorToPoint(p);

 return 0;
}

As you can see, by simply adding the typedef keyword before the struct keyword, and by
moving the struct name to the end of the structure, it does something amazing; it allows you
to declare your p variable by simply doing Point p. Essentially, Point becomes a first-class
type, and you can use it anywhere you would be using any other type.

The syntax to use the typedef keyword consists of typedef variable-definition
new-type-name. Where variable-definition is the actual type you want inserted
when you use the new type, and new-type-name is the new type name that you will use in
your program.

05_9780470479223-ch02.indd 4105_9780470479223-ch02.indd 41 1/4/11 8:51 PM1/4/11 8:51 PM

42 Introducing Objective-C

Due to the way typedefs allow you to use type names that more clearly describe the type of
data that will be stored in a variable, typedefs are a nice addition that makes your code more
self-documenting than code that doesn’t use them. I touch on using typedefs again in Chapter 5
when I discuss using blocks.

Using enum
Another way to define a custom datatype is to use the enum keyword. Enum is short for enu-
merated type, and it allows you to create a datatype, which has a restricted list of possible val-
ues that can be stored in it. Enums are often used in Cocoa and Cocoa Touch for parameters
and return values where the list of possible values falls within a specific limited set.

To define an enum, you use the enum keyword, followed by a tag for the enum you are declar-
ing, then followed by {}, which contain a list of the possible values for the enum separated by
commas. Listing 2.14 shows an enum definition.

Listing 2.14

Creating an enum

enum MyEnum
{
 Value1,
 Value2,
 Value2
};

To use an enum in your code, you must declare a variable to be of type enum, followed by the
tag that you specified when defining your enum. Then, to assign a value to it, you simply use
one of the allowed values from your enum definition. Listing 2.15 shows how this is done.

Listing 2.15

Using an enum

enum MyEnum foo;
foo = Value1;

// or for a function
enum MyEnum myFunction();

// as a parameter to a function
void myFunction(enum MyEnum foo);

05_9780470479223-ch02.indd 4205_9780470479223-ch02.indd 42 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 43

The actual values of the enums themselves are determined by the compiler, but they default to
integers, starting at 0 for the first value, 1 for the second, and so on. You can force an enum to
assign a specific value to one of the values by simply providing that value as part of the enum
definition, as shown in Listing 2.16.

Listing 2.16

Assigning values to the enum options

enum MyEnum
{
 Value1 = 20,
 Value2 = 13,
 Value3 = 155
};

This can be useful when dealing with legacy code that expects a specific value.

Typing out enum whenever you use an enum can be inconvenient. So enums can be typedef’d
just like structures can. Listing 2.17 shows how this works.

Listing 2.17

Using typedef with an enum

enum MyEnumType
{
 Value1,
 Value2,
 Value3
};
typedef enum MyEnumType MyEnum;

// Now this allows you to type...
MyEnum foo;
foo = Value1;

Cocoa and Cocoa Touch use enums quite a bit. The nice thing about enums is that they allow
you to have a compile-time check to verify that the parameter passed to your function is one
of a limited set of values. If you accidentally pass the wrong value, the compiler will generate
an error.

05_9780470479223-ch02.indd 4305_9780470479223-ch02.indd 43 1/4/11 8:51 PM1/4/11 8:51 PM

44 Introducing Objective-C

Understanding pointers
The third type of variable I’m going to discuss are pointers. Pointers can be a difficult concept to
wrap your head around, but fortunately, in Objective-C, the more complex aspects of pointers
are rarely used. However, understanding them is important.

Recall that a typical variable stores data in RAM. The computer looks up the variable by using an
address in RAM. Metaphorically speaking, if you can imagine a variable as being a house where
people (data) live, the street address of the house is the address of that variable.

A pointer is a variable that contains the address of another variable. Declaring a pointer is simi-
lar to declaring a variable of whatever type it is that you want to point to except that you also
include the pointer operator as part of your declaration. The pointer operator is an asterisk (*).
You can get the address of a variable by using the address-of operator (&).

Listing 2.18 shows an example of declaring a pointer to an integer.

Listing 2.18

Declaring pointers

#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{
 int x = 5;
 int *y = &x;

 NSLog(@“X:%ld - Y:%ld”, x, y);
 return 0;
}

In this code, you are declaring a variable, x, which is an int. Within this variable, you are stor-
ing the value of 5. We are then declaring another variable, y, which is of type pointer to an int,
and within it, we are storing the address of x.

Pointers can be used just like regular variables, but when you access them directly, such as what
we are doing on line 8 of this program, the value you get is a memory address. In this case,
when you run this program, you should see output, as shown in Figure 2.2.

Your value for y will probably vary from mine because your computer may be storing your x
value at a different address from mine. This is normal. The asterisk operator (*) is also the
pointer-dereferencing operator. The process of dereferencing a pointer allows you to access the
value of the variable that the pointer points to. So in other words, in your program example,
you want to print the value that the white pointer was pointing to, in other words the value of
x, then you could rewrite your program to look like Listing 2.19.

05_9780470479223-ch02.indd 4405_9780470479223-ch02.indd 44 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 45

Figure 2.2

Output of the pointer program

Listing 2.19

Dereferencing pointers

#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{
 int x = 5;
 int *y = &x;

 NSLog(@“X:%ld - Y:%ld”, x, *y);
 return 0;
}

05_9780470479223-ch02.indd 4505_9780470479223-ch02.indd 45 1/4/11 8:51 PM1/4/11 8:51 PM

46 Introducing Objective-C

Notice that we are now dereferencing y, which means that when you run this application, you
should see something like Figure 2.3.

Figure 2.3

Output of the dereferencing example code

The interesting thing about pointers is that they can be manipulated just like regular variables.
This means that you can increment them, you can decrement them, you can add to them, and
you can subtract from them. You can do all these things, but what you’re really doing is chang-
ing the location in RAM where the pointer is pointing. Consequently, you can then dereference
the pointer at the new location and access a different value than where it was originally pointing.

Most of this discussion of pointers is relatively advanced subject matter. In day-to-day
Objective-C, you typically don’t have the need to dereference many pointers. (There are a cou-
ple exceptions to this rule, and I will point them out as we go through this book.) For a deeper
understanding of low-level pointers, I suggest picking up a good book on the C programming
language.

Typical Objective-C use of pointers is primarily limited to the declaration of objects. Objects in
Objective-C are in fact pointers. Fortunately, for the most part, even though they are pointers,
you rarely have to think of them in that way. The most important thing that you do need to
remember is that anytime you are declaring an object, it needs to be declared as a pointer. For
example, look at Listing 2.20.

05_9780470479223-ch02.indd 4605_9780470479223-ch02.indd 46 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 47

Listing 2.20

Pointers with objects

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 NSString *foo = [NSString stringWithString:@”Foobar”];

 NSLog(@”foo: %@”, foo);

 [pool drain];
 return 0;
}

Again, if you compile and run this program, you should see something like the listing shown in
Figure 2.4.

Figure 2.4

Output of the object pointer example

05_9780470479223-ch02.indd 4705_9780470479223-ch02.indd 47 1/4/11 8:51 PM1/4/11 8:51 PM

48 Introducing Objective-C

 N O T E
Ignore the code that references NSAutoreleasePool here. You learn about that in a future chapter.

Another unusual pointer situation that you will run into in this book centers around the use of
pointers to objects, such as in the case of using an NSError object to get an error message
back from a failed call. When I discuss this in Chapter 10, I cover this in more detail.

Using operators
Like mathematics, programming languages typically support operators. An operator is a func-
tion that “operates” on variables and values. For example, the expression “5 + 4” contains the
values 5 and 4 and the operator +. In this case, the + operator is said to be a binary operator.
Therefore, it operates on two values, one on the left and one on the right, the 5 and the 4.
Another type of operator is the unary operator. A unary operator only has one value that it
operates upon. For example, the address-of operator, &, is a unary operator. It gets the address
of the value that it operates on.

Table 2.2 shows most of the typical operators in Objective-C.

Table 2.2 Typical operators
Operator Purpose

() [] -> . Parentheses, array operations, dereference

! ~ - + * & ++ -- Not, add/subtraction (unary), dereference (unary), address-of

(unary), increment (unary), decrement (unary)

* / % Multiplication, Division, Modulus (binary)

<< >> Bitwise Shift (binary)

< <= > >= Comparison Operators (binary)

 == != Comparison Operators (binary)

& Bitwise AND (binary)

^ Bitwise XOR (binary)

| Bitwise OR (binary)

&& AND (binary)

|| OR (binary)

 = += -= *= /= %= &= |= ^= <<= >>= Assignment Operators (binary)

05_9780470479223-ch02.indd 4805_9780470479223-ch02.indd 48 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 49

Typically, operators return some kind of result, and that result is either assigned to a variable or
used in a control statement to affect program flow. For example, enter the example program in
Listing 2.21 and check out the output.

Listing 2.21

Working with operators

#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{
 int a = 10;
 int b = 3;
 int c = a + b;
 int d = a - b;
 int e = a * b;
 int f = a / b;
 int g = a % b;

 NSLog(@”a: %ld”, a);
 NSLog(@”b: %ld”, b);
 NSLog(@”c: %ld”, c);
 NSLog(@”d: %ld”, d);
 NSLog(@”e: %ld”, e);
 NSLog(@”f: %ld”, f);
 NSLog(@”g: %ld”, g);

 return 0;
}

In this code, we assign the values 3 and 7 to a and b, respectively; then we add them together
by using the + operator, subtract them by using the - operator, multiply them, divide them, and
so on. Run the program to see the output shown in Figure 2.5.

Notice that the program prints out the results of each of the mathematical operations. Now I
threw a bit of a monkey wrench into this program. If you notice, the value for fis wrong. This is
because the result of dividing 10 by 3 isn’t a round number, it’s a fraction. Or, on a computer, it’s
a floating point number. Normally, you might want to store this into a float or a double, both of
which can represent floating point values; in this case, we’re storing it into an int value, which
means that the decimal portion of the value will be truncated, resulting in just the whole number

05_9780470479223-ch02.indd 4905_9780470479223-ch02.indd 49 1/4/11 8:51 PM1/4/11 8:51 PM

50 Introducing Objective-C

portion of the result. Even if you store the value in a float, it’s possible to still get a truncated
value from the division operator if both the operands are integers. The takeaway here is that
you have to remember that if you are working with integers, you should convert them to floats
before doing any mathematical operations that might result in floats. That said, the next value,
g, demonstrates the modulus operator, which returns the remainder value from a division oper-
ation. So, in cases where you want to work with fractions, and represent them as a real number
and a remainder, you can use this technique to do so. f and g can be taken together to mean 3
with a remainder of 1.

Figure 2.5

Output of the operator program

Operators have an order of precedence, just like in mathematics. This order is also shown in
Table 2.2. Sometimes it can be difficult to remember the exact order of the precedence. Rather
than risk confusion, you should try to remember that parentheses have the highest precedence
of all; they are free syntactical sugar you can sprinkle into your expressions to make certain they
are clear. Use them at your discretion.

05_9780470479223-ch02.indd 5005_9780470479223-ch02.indd 50 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 51

The ternary operator
In addition to the unary and binary operators that I’ve already shown you, there’s also a ternary
operator. This operator is ?: and can be used in place of an if/else statement. I won’t cover this
operator here, because it really belongs more in the “Controlling program flow” section of this
chapter. Therefore, look for more information in that section.

Working with Functions
So far, I’ve shown you how you can feed instructions to the computer so the computer will
execute those instructions sequentially as it goes through your program. However, as your
programs grow in size and complexity, you’ll quickly find that putting all your instructions
sequentially one after another in your program will become extremely laborious. You want to
reuse portions of your code, and cutting and pasting is a very poor method of reusing code.

Fortunately, you can use several mechanisms to solve both of these problems. The first of these
mechanisms, and the one I’m going to explain in this section, is the concept of using functions.
Before object-oriented programming, procedural programming was the preferred method for
breaking your program up into smaller chunks that could more easily be reused.

Objective-C, of course, is a fully object-oriented programming language, and you will for the
most part use object-oriented programming in your application development. However, proce-
dural programming is a fundamental building block that is vital for you to understand because
there are still parts of Objective-C that are procedural in nature.

Understanding functions
The first question that you may be asking is, “What is a function?” And the answer is that a func-
tion, essentially, is a method for declaring a subroutine in your application. A function enables
you to encapsulate a portion of your program’s instructions into something that can be named
and then used as many times as needed, anywhere in your application.

Look at an example; Listing 2.22 shows a program that calculates 5 factorial (it should yield a
value of 120). It’s using a for loop to do the calculation, a concept I discuss in the next section,
but you can ignore that for now and just try to understand that it’s doing a calculation, that’s all.

Listing 2.22

Calculating a factorial

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

continued

05_9780470479223-ch02.indd 5105_9780470479223-ch02.indd 51 1/4/11 8:51 PM1/4/11 8:51 PM

52 Introducing Objective-C

Listing 2.22 (continued)

{
 int a = 5;
 int result = 1;

 for(int i = 1; i <= a; ++i)
 {
 result = result * i;
 }

 NSLog(@”%ld”, result);

 return 0;
}

Now, the interesting thing about this program is that we’re doing a fair amount of work here to
do this calculation. What if we wanted to change the number we’re calculating the factorial for?
Perhaps it would be better if we could isolate that bit of code in a function so that we could
reuse it over and over again. Perhaps we could make a function that simply takes an int as a
parameter, and then returns the factorial of that int.

Listings 2.23 shows a program where I’ve done exactly that.

Listing 2.23

Extracting the calculation to a function

#import <Foundation/Foundation.h>

long int calculateFactorial(int value)
{
 long int result = 1;

 for(int i = 1; i <= value; ++i)
 {
 result = result * i;
 }

 return result;
}

int main (int argc, const char * argv[])
{
 int a = 5;

05_9780470479223-ch02.indd 5205_9780470479223-ch02.indd 52 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 53

 long int result = calculateFactorial(a);

 NSLog(@”%ld”, result);

 return 0;
}

Where I previously had the code to calculate the factorial in our main function, we’re now call-
ing this our calculateFactorial function. The variable that contains the value we want to
calculate is declared in the local scope of our main function, therefore our calculateFacto-
rial function doesn’t know about it. In order to get the value from our main function to our
calculateFactorial function, you have to pass the value through the function call to the
calculateFactorial function.

If you compile and run this program, it should give you close to the same output that you got
before. Now you can reuse that code to calculate a factorial for a bunch of different values. This
is shown in Listing 2.24.

Listing 2.24

Demonstrating use of the function

#import <Foundation/Foundation.h>

long int calculateFactorial(int value)
{
 long int result = 1;

 for(int i = 1; i <= value; ++i)
 {
 result = result * i;
 }

 return result;
}

int main (int argc, const char * argv[])
{
 NSLog(@”5!: %ld”, calculateFactorial(5));
 NSLog(@”10!: %ld”, calculateFactorial(10));
 NSLog(@”15!: %ld”, calculateFactorial(15));
 NSLog(@”20!: %ld”, calculateFactorial(20));

 return 0;
}

05_9780470479223-ch02.indd 5305_9780470479223-ch02.indd 53 1/4/11 8:51 PM1/4/11 8:51 PM

54 Introducing Objective-C

As you can see from some of those larger numbers, calculating these by hand would be pretty
time-consuming. Your computer can do it very quickly.

 N O T E
I used a long int to hold the value of the result because the numbers can get large very quickly.

Defining functions
In order to create a function, you have to define it. The process of defining a function consists of
telling the compiler what types of arguments the function takes and what type of value the
function will return, and then placing the code for the function within curly braces.

Listing 2.25 shows our example function again. Notice that I have highlighted the sections of
the function definition that correspond to the return value and the argument for the function.

Listing 2.25

The function in detail

long int calculateFactorial(int value) // function declaration
{
 long int result = 1;

 for(int i = 1; i <= value; ++i)
 {
 result = result * i;
 }

 return result; // return value here
}

The first line of the function definition is called the function signature. It must be unique within
your application so that the compiler can find your function.

When you define a function, you put the parameters that are passed to the function in paren-
theses after the function name. Each of the parameters is specified with a type and a variable
name. In cases where you have more than one parameter, the different parameters are sepa-
rated by commas. These parameters become available within the scope of your function just as
if they were declared locally within the function itself.

05_9780470479223-ch02.indd 5405_9780470479223-ch02.indd 54 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 55

The return value type is specified to the left of the function name. The return value does not
have a variable name associated with it as part of the declaration. You define what value is
returned from your function by using the return keyword inside your function body. This should
be the last statement of your function.

In Objective-C, parameters and return values are passed using what’s called “pass by value.”
What this means is that when you pass a parameter to a function, the runtime will actually make
a copy of the value that you are passing. This means that changes made to those values inside
of your function will not affect the value in the calling function. If, however, you pass a pointer
to your value instead, then changes made to the dereferenced variable will be sent back to the
original variable in the calling function.

Listing 2.26 demonstrates this concept.

Listing 2.26

Working with pointers

#import <Foundation/Foundation.h>

void myFunction(int a, int *b)
{
 a = 20;
 *b = 20; // de-reference the pointer to access the original
}

int main(int argc, const char *argv[])
{
 int a = 10;
 int b = 10;

 myFunction(a, &b); // using the & operator changes b into a pointer

 NSLog(@”a: %ld”, a);
 NSLog(@”b: %ld”, b);

 return 0;
}

05_9780470479223-ch02.indd 5505_9780470479223-ch02.indd 55 1/4/11 8:51 PM1/4/11 8:51 PM

56 Introducing Objective-C

Similarly, when returning values from functions, you have to be careful to not return pointers or
references to variables that will be out of scope when the function exits. For example, if you
return the address of a value inside of your function, when the calling function tries to access
that value, that variable will have been deallocated and therefore will no longer be available —
this causes a crash.

When I talk about objects in Chapter 3 and memory management in Chapter 4, I will show you
how you can return pointers created in your functions to other functions. For now, however,
stick with simple values.

Understanding implementation versus interface
Collections of functions can be grouped together into separate source files so that you don’t
have to clutter your main source with all your programming logic. These source files are typi-
cally called units.

When you separate your source code into units, a unit consists of two files: One of them con-
tains declarations of your functions, the other one contains definitions for those declarations.
Understanding the difference between declarations and definitions is an important concept
that you need to understand.

You’ve already seen function definitions. The functions that you’ve worked with so far have all
been fully defined. A function definition is where you actually write the code that makes up the
function itself. A function declaration declares the function signature for your function including
the return type, the function name, and its parameters. It does not include the actual definition
of what the function does.

Function declarations can be said to be declaring the interface to your function. This is a loose
definition, but later, when we discuss object-oriented programs, you will see that this concept
of interfaces is heavily used.

Extending this idea, the function definition can therefore be said to be the implementation of
the interface that you declared.

To declare a function that can be used in other units, you use the extern keyword and then
the function signature just like your function definition. Because a function declaration is a
statement, just like declaring a variable, you also need to include an additional semicolon at the
end of your function signature. Knowing when to place the semicolon and when not to is a
common mistake new programmers make. Be sure to remember that the semicolon comes
after the declaration but not after the definition.

So, imagine that we wanted to encapsulate our factorial calculation method in its own unit.

05_9780470479223-ch02.indd 5605_9780470479223-ch02.indd 56 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 57

To do so would take three steps. The first step would be to create the interface file for our
unit. Typically, interface files in Objective-C use a .h extension, which stands for “Header.”
Create a new Header file in your Xcode project called “Factorial.h” and add to it the code
in Listing 2.27.

Listing 2.27

Function declaration

extern long int calculateFactorial(int value);

This is the function declaration for the calculateFactorial function. The next step is to
create an implementation file. The implementation file has as .c extension. Create a new C
source file in your Xcode project called “Factorial.c” and modify it to look like Listing 2.28.

Listing 2.28

Function definition

long int calculateFactorial(int value)
{
 long int result = 1;

 for(int i = 1; i <= value; ++i)
 {
 result = result * i;
 }

 return result;
}

Finally, you have to modify the file that calls your function to include the interface file for your
unit. Modify your own source file to look like Listing 2.29.

05_9780470479223-ch02.indd 5705_9780470479223-ch02.indd 57 1/4/11 8:51 PM1/4/11 8:51 PM

58 Introducing Objective-C

Listing 2.29

Calling the function

#import <Foundation/Foundation.h>
#import “Factorial.h”

int main (int argc, const char * argv[])
{
 NSLog(@”5!: %ld”, calculateFactorial(5));
 NSLog(@”10!: %ld”, calculateFactorial(10));
 NSLog(@”15!: %ld”, calculateFactorial(15));
 NSLog(@”20!: %ld”, calculateFactorial(20));

 return 0;
}

The definition of the function is now removed from this file and replaced with an import command.

Import statements are used to include other units’ interfaces in your current unit. The import
statement works by searching through the directories of your project and through the frame-
works associated with your project for the interface file that you want to include. When you use
angle brackets <> to enclose the filename, as in the case with the Foundation framework, it
searches the system paths for the interface file. When you use quotes, the statement only
searches the current directory of your project and any of its subdirectories.

The rules concerning the search directories for interface files can be difficult to remember, so I
suggest you simply remember these two rules of thumb: If an interface file is part of your proj-
ect, and something that you created, then you want to use quotes when specifying it in an
import statement; otherwise, if the interface file is part of a third-party framework or part of the
frameworks provided by Apple, then you want to use angle brackets.

Linking with implementation files
After you split your code into units and use those units in your code, you still have one more
thing that you need to do. You need to ensure that the implementation file is linked to your
executable. An executable is made up of multiple implementation files linked together with the
Objective-C runtime. As you add more implementation files to your project, you have to make
sure that they are also linked with your executable. Typically, when you create a new file, Xcode
asks you if you want to include it in your project. In Figure 2.6, notice the check box indicating
that this file will be added to the Listing 2.6 target.

05_9780470479223-ch02.indd 5805_9780470479223-ch02.indd 58 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 59

If, however, you forget to do so, or if you add another target and need to include an existing
implementation file in that target as well, then it’s important for you to also know how to
manually link an existing implementation file with your current target.

To do so, simply select the implementation file that you want to include in your current target,
click on the Detail tab above the editor, and ensure that the check box under the bull’s-eye
column is selected, as shown in Figure 2.7.

Again, notice the bull’s-eye check box, which is unchecked for our “NewFile.m” file. To
include this file in your current target, select this check box.

Now that you know some of the basics of syntax and program organization, take a look at how
you can control flow in an Objective-C program.

Figure 2.6

Adding a file to your target

05_9780470479223-ch02.indd 5905_9780470479223-ch02.indd 59 1/4/11 8:51 PM1/4/11 8:51 PM

60 Introducing Objective-C

Figure 2.7

The target check box

Controlling Program Flow
Applications would be pretty dull if they could only do one thing. If you couldn’t have them
branch and make decisions based on conditions at runtime, they wouldn’t be very useful.
Fortunately, we don’t have to worry about that, because Objective-C provides us with a rich
toolkit of flow control mechanisms.

These flow control mechanisms fall under two broad categories.

The mechanisms in the first category, conditional statements, enable you to change the execu-
tion path of your application based on runtime conditions. You can have a fork in the road,
essentially, in the middle of your application. Which path your application takes can be deter-
mined based on the variables. Those variables can be set based on the parameters, user input,
or any other condition that you want.

The second category of flow control mechanisms is that of loops. Loops enable you to perform
some set of operations repeatedly until some condition is met. This enables you to do things
like iterating over items in a list, doing something for some set number of times, and so on.

05_9780470479223-ch02.indd 6005_9780470479223-ch02.indd 60 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 61

We will spend the remainder of this chapter discussing both of these categories and seeing
how you can use these in your applications to drive the flow of execution.

Using conditional statements
To reiterate, conditional statements enable you to branch execution in your code between two
or more different paths. Conditional statements consist of three constructs.

Using if-else
The first construct is the if-else construct. It is shown in Listing 2.30.

Listing 2.30

If statement

if (n > 75)
{
 NSLog(@”%ld is greater than 75!”, n);
}

The syntax for this construct consists primarily of an if statement which is followed by the con-
ditions for the if statement in parentheses, then a code block to execute if the conditional
statement is found to be true. If the conditional statement is found to be false, an optional
else block can also be provided. This is provided after the code block for the if statement, as
shown in Listing 2.31.

Listing 2.31

If with an else

if (n > 75)
{
 NSLog(@”%ld is greater than 75!”, n);
}
else
{
 NSLog(@”%ld is less than 75.”, n);
}

05_9780470479223-ch02.indd 6105_9780470479223-ch02.indd 61 1/4/11 8:51 PM1/4/11 8:51 PM

62 Introducing Objective-C

The else statement can also be followed by an if statement on the same line as the else
statement. In this case, the else block will be executed if the initial if statement is false, but it
will be skipped if the if that is currently being evaluated is found to be true. In this case, you
can have multiple else-if conditionals one after another. Typically, this would be followed
by a final else statement which is executed in the case where none of the if conditions have
been met. This is shown in Listing 2.32.

Listing 2.32

If, else-if, and an else.

 if (n > 75)
{
 NSLog(@”%ld is greater than 75!”, n);
}
else if(n < 25)
{
 NSLog(@”%ld is less than 25!”, n);
}
else
{
 NSLog(@”%ld is between 24 and 76.”, n);
}

If the code block to be executed after an if-else statement is restricted to only a single state-
ment, the curly braces may be omitted.

The conditional statement after the if or the else if can be any statement that returns a
Boolean value of YES or NO. Additionally, for functions or statements that return something
other than a strict Boolean value, a return value of zero is considered to be a negative, or NO,
value, and a return value of anything else is considered to be positive, or YES.

 C A U T I O N
The fact that any statement can be placed into a conditional statement for an if statement can lead to a very com-
mon error in code where the programmer’s intention was to check for equality using the == operator but instead they
accidentally do an assignment using the = operator. In this case, the assignment will always return true. Be very care-
ful about this case in your code.

Using the ternary conditional
I prefer to use the if-else construct for most of my conditional branching in applications. I find it
to be clearer, syntactically, then the ternary operator. That said, however, the ternary operator
has its place in certain cases, for example, in the case where you want to assign a particular
value based on another particular value to a variable. This example is shown in Listing 2.33.

05_9780470479223-ch02.indd 6205_9780470479223-ch02.indd 62 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 63

Listing 2.33

The ternary operator

int result = (x > y ? 10 : 20);

The ternary operator essentially works like a tiny if-else statement that’s all on one line. You can
break the ternary operator up based on its three components which are separated by the ? and
the : on the line. The item to the left of the ? is the conditional statement. If the conditional
statement evaluates to be true, then the result of the ternary operator is the value between the
? and the :. If the conditional statement evaluates to be false, then the result of the ternary
operator is the value on the right-hand side of the colon.

So in the case of Listing 2.26, if x > y, the result will be 10. Otherwise it’s 20. As you can see,
using the ternary operator can be a convenient, terse mechanism for choosing one value versus
another value for assignment and so on. Because of its terseness, however, I find the ternary
operator to be difficult to read, and I prefer the greater clarity of the if-else statement. However,
if you have a state where the ternary operator produces cleaner, clearer code, then by all means
use it. It’s another tool in your toolbox.

Using switch statements
The final type of conditional statement that I’m going to discuss here is the switch statement.
The switch statement is ideal for branching among several different options. You can achieve
essentially the same thing as a switch statement if using an if-else construct, but the switch
statement can often be clearer and in some cases faster.

An example of a switch statement is shown in Listing 2.34.

Listing 2.34

A switch statement

switch(state)
{
 case 1:
 doStateOneAction();
 break;
 case 2:
 doStateTwoAction();
 break;
 case 3:
 doStateThreeAction();
 default:
 doDefaultAction();
}

05_9780470479223-ch02.indd 6305_9780470479223-ch02.indd 63 1/4/11 8:51 PM1/4/11 8:51 PM

64 Introducing Objective-C

As you can see, a switch statement is constructed by using the keyword switch followed by
the value upon which you want to branch in parentheses. This value is commonly known as the
control variable.. After the switch statement, a code block must be provided that contains the
possible values that the control variable may contain and the instructions to execute for each
of those possible values. These “cases” are written by including a case statement followed by a
colon and then the instructions to execute in the case of that condition followed by a break
statement.

The break statement, which is optional, will stop evaluation of the switch at the point of the
break and jump the program execution outside of the switch. If one is not provided, the subse-
quent case statements will continue to be evaluated until a break is encountered or until the
exit of the switch statement.

In addition to case statements being provided inside of the switch statement, you can also
provide a default case. This is provided at the bottom of your switch statement, and is the
case that occurs if no other cases have been met.

 N O T E
In Listing 2.34, case 3 is missing a break statement, so if case 3 is entered, both case 3 and the default case will be
executed.

It’s important to note that the control variable of a switch statement can only be an integer
value. This is not a case where you can, for example, use a string or something of that nature to
determine the different cases. Additionally, new variables cannot be declared inside of a
switch statement.

Choosing among conditional statements
Because of the additional constraints of switch statements, switch statements can be opti-
mized by compilers to be more efficient and faster than if-else statements. However, for the vast
majority of cases, if-else statements are probably going to be fast enough for most operations
that you will need to perform. It is only in cases of extreme performance tuning that the differ-
ence between a switch statement and if-else statement become an issue. As is usually the case,
you should measure your performance before prematurely optimizing for one type of condi-
tional statement over another. Most of the time, you want to choose the conditional statement
that best expresses the intent of the code that you are trying to write. Choose the conditional
statement that is easiest for future developers looking at your code, including yourself, to read.

For me, I personally prefer if-else statements over switch statements because I find them eas-
ier to read. Some would disagree, citing long if-else blocks as being difficult to follow. As with
most things, your mileage may vary.

Working with loops
Loops enable your program to perform a set of instructions repeatedly until some condition is
met. As with conditional statements, you encounter three primary types of loops: the for loop,
the while loop, and do-while loop, which is really a variation of the while loop.

05_9780470479223-ch02.indd 6405_9780470479223-ch02.indd 64 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 65

With the introduction of Objective-C 2.0, and its fast enumeration capabilities, the for loop has
become really the primary loop of choice when working in Objective-C. However, the while
and do-while loops serve important functions in the language.

Working with for
The for loop is probably the most commonly used loop in Objective-C. Using it, you can count
over a range of numbers, iterate over an array of items, and so on. Because of this flexibility,
some variations in its syntax can be confusing.

Traditional for loops
The first variation of the for loop that I would like to introduce to you is the traditional form. In
this form, a for statement consists of the statement followed by the conditions of the for
loop in the form of three statements inside parentheses. These three statements correspond to
the three operations that are performed on the control variable as the for loop executes. The
first operation sets the initial conditions of the control variable, and it is typically used to initial-
ize the variable to zero, or, in the case where you don’t want to start counting at zero, to some
other value. This first operation is only executed the first time the for loop is entered.

The second operation is the conditional statement that is evaluated upon each iteration of the
loop to determine if the loop should be halted. If the conditional statement is evaluated to be
true, then the for loop is interrupted and program execution continues after the for loop
code block. If the conditional statement is evaluated to be false, another iteration of the for
loop code block is executed.

The final operation is the counting expression. It is this expression that is used to actually
change the value of the control variable for each iteration of the loop. During each iteration, the
control variable can be incremented, decremented, assigned to, and so on at will in the count-
ing expression.

Listing 2.35 shows an example of a typical for loop.

Listing 2.35

A for loop

for(int i = 0; i < 100; i++)
{
 Foo *foo = [array objectAtIndex:i];
 [foo doSomething];
}

05_9780470479223-ch02.indd 6505_9780470479223-ch02.indd 65 1/4/11 8:51 PM1/4/11 8:51 PM

66 Introducing Objective-C

In this case, the first time that the for loop is entered, the control variable (i) is created and
assigned a value of zero. On each iteration of the loop, the conditional expression is evaluated
to determine if the control variable has reached 100. If it has, execution will jump to the state-
ment directly after the for loop code block. If it has not, then the counting expression is exe-
cuted; in this case, the control variable is incremented by one.

 N O T E
Your counting expression can be anything you want it to be. For example, to increment a loop that counts by twos,
you could simply increment your control variable by two in each iteration of the loop instead of by one like we are
doing here.

 N O T E
The x++ operator is the postfix increment operator. It increments the value of x and stores it back into x. When
doing so, it also returns the value of x before it has been incremented. The ++x operator is the prefix increment oper-
ator. It also increments the value of x and stores it into x, but the value it returns is the value of x after the incre-
ment. The same goes for the post/pre versions of the decrement operator, --. In some cases, you may want to assign
the return value of these operations to another variable. When doing so, be aware of this behavior.

The control variable is available within the scope of the for loop code block and can be used,
for example, to reference indexes within arrays or to drive conditional logic within the for loop
code block. Additionally, a for loop can be aborted at any time within the for loop code block
by executing a continue statement. The continue statement will stop execution of the for loop
immediately and reset execution back to the beginning of the loop. An example of this is
shown in Listing 2.36.

Listing 2.36

The continue statement

for(int n = 0; n < 100; ++n)
{
 if(n > 10 && n < 20)
 continue; // this skips 11-19
 // do something with n...
 Foo *foo = [array objectAtIndex:i];
 [foo doSomething];
}

Using for for fast enumeration
The second form of for loops is a new addition in Objective-C 2.0; it applies to enumerating
over objects contained in collections. You learn about collections and objects in the next chap-
ter, but I want to introduce you to the fast enumeration syntax here so you’ll be familiar with it
when we come to it.

05_9780470479223-ch02.indd 6605_9780470479223-ch02.indd 66 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 67

In the previous form of the for loop, we had to use the control variable to retrieve an element
of the array in order to operate on it. The fast enumeration form of the for loop obsoletes this
mechanism by providing us with an ability to specify, as part of the for statement itself, a
temporary variable to store the elements of the collection that is being iterated over. This is tre-
mendously convenient, because the vast majority of for loops are written specifically for the
purposes of iterating over the members of a collection and performing an operation on each of
the members individually.

An example of a fast enumeration for loop is shown in Listing 2.37.

As you can see, a variable (object) is declared as part of the for statement itself. As the for
loop is executed, each member of the collection (array) is assigned to the variable. It is then
available within the scope of the for loop code block.

Listing 2.37

For loop with fast enumeration

for(Foo *object in array)
{
 // the Foo object is assigned to an element of the array
 // do something with object
}

You’ll see a pattern with for loops in use a great deal when I describe collection objects in
Chapter 13. For now, simply be familiar with the form of the for loop, and be prepared to
return to this chapter again for review.

Working with while
While loops work similarly to for loops with the exception of the fact that there are not multi-
ple statements inside the parentheses after the while statement. A while statement has a
conditional statement which is checked upon each iteration of the loop. When the conditional
statement is found to be false, execution continues at the next statement after the end of the
while code block.

An example of a while statement is shown in Listing 2.38.

05_9780470479223-ch02.indd 6705_9780470479223-ch02.indd 67 1/4/11 8:51 PM1/4/11 8:51 PM

68 Introducing Objective-C

Listing 2.38

While loop

int x = 0
while(x < 10)
{
 NSLog(@”Value of x: %ld”, x);
 x++;
}

The implication of this sort of control flow is that whatever condition you are checking within
the while’s conditional statement needs to, at some point, change to false within the
while’s code block. If it doesn’t, your while statement will continue to loop forever.
Whiles can also be interrupted with a continue statement just like a for loop.

 N O T E
If the conditional statement is false upon the first run of the loop, the code within the while code block will never
execute.

While statements are particularly convenient in cases where you have complex iterative logic
involved.

Older versions of Objective-C did not have the fast enumeration capabilities that are available
today. As a result, the while statement is often used to iterate over arrays using an
NSEnumerator. An example of this is shown in Listing 2.39.

Listing 2.39

Old-style enumeration

NSArray *someArray = [self getArray];
NSEnumerator *enumerator = [someArray objectEnumerator];
while((NSObject *obj = [enumerator nextObject]))
{
 // do something with obj…
}

05_9780470479223-ch02.indd 6805_9780470479223-ch02.indd 68 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 69

You rarely see this pattern used today, but because it is so ubiquitous in older code, familiariz-
ing yourself with this concept is important. Each time the conditional statement is checked, the
enumerator returns the next object from the array. When it reaches the end of the array, it
returns nil. This causes the while conditional to return false. This, in turn, causes execution to
jump to the next line of code after the while code block.

Using do
The final type of loop that we are going to talk about in this section is the do-while loop. This
loop is similar to the while loop, with the exception of the fact that the conditional is moved
to the end of the loop so that no matter what, at least one iteration through the loop is exe-
cuted before the conditional is checked. An example of this kind of loop is shown in Listing 2.40.

This loop is one that is rarely used, but when it is, it’s usually an ideal solution to the problem
that you’re trying to solve.

Listing 2.40

do-while loop

int x = 0;
do
{
 NSLog(@”%ld”, x);
 x++;
}
while(x < 10)

Usually, this loop is used in cases where you are dealing with some type of control variable that
is in a pre-existing state, which you do not want to change until the loop has executed at least
once. You may also use this loop when calculating the control variable within the scope of the
control block. Again, you might be doing some kind of complex logic in order to arrive at the
value of the control variable. The do-while loop gives you an opportunity to perform what-
ever complex logic you desire inside of its code block before the while conditional is evalu-
ated. Note, however, that the control variable must be declared outside the scope of the
do-while code block in order to be within scope for the while conditional.

 N O T E
Remember, when dealing with a switch, that it was possible to break out of the switch by using a break statement.
This is very common in switch usage. However, break can also be used with do-while, while, and for loops.
When used in these contexts, it causes the thread of execution to jump out of the loop to the next line of the program
after the loop’s code block.

05_9780470479223-ch02.indd 6905_9780470479223-ch02.indd 69 1/4/11 8:51 PM1/4/11 8:51 PM

70 Introducing Objective-C

Applying What You Have Learned
Now you can create a command line calculator program. Although you may not understand
everything in this program, you will understand most of it, and the things you don’t yet under-
stand I explain in the next section.

This program takes a series of arguments on its command line. It should be in the form of num-
bers separated by operators. So, for example, you run the program as follows: ./Calculator
‘10 + 5 – 3’. The program then sequentially adds, subtracts, multiplies, or divides the numbers.
When finished, it outputs the final result on the console. Just for the purposes of demonstration,
I’ve broken the program into two units: the main unit, which contains the logic for the main func-
tionality, and the MathOperations unit, which contains the functions for addition, subtraction,
and so on. To enter the program, start Xcode and create a new Foundation-based Command Line
application. Name it “Calculator.”

 N O T E
Don’t worry about the calls to NSString, NSArray, and so on; those will be explained in the next chapter. After
the project is created, open the Calculator.m file and modify it to look like Listing 2.41.

Listing 2.41

Calculator.m

#import <Foundation/Foundation.h>
#import “MathOperations.h”

BOOL isAnOperator(const char value)
{
 return ((value == ‘+’) || (value == ‘-’) || (value == ‘*’) || (value ==

‘/’));
}

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 double result = 0;

 char operator = ‘\0’;

 NSString *equation = [NSString stringWithUTF8String:argv[1]];
 NSArray *eqParts = [equation
 componentsSeparatedByCharactersInSet:
 [NSCharacterSet whitespaceCharacterSet]];

05_9780470479223-ch02.indd 7005_9780470479223-ch02.indd 70 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 71

 for(int n = 0; n < [eqParts count]; n++)
 {
 NSString *argString = [eqParts objectAtIndex:n];
 char firstChar = [argString characterAtIndex:0];

 if(isAnOperator(firstChar))
 {
 operator = firstChar;
 continue;
 }

 double newValue = [argString doubleValue];

 switch (operator)
 {
 case ‘+’:
 result = add(result, newValue);
 break;
 case ‘-’:
 result = subtract(result, newValue);
 break;
 case ‘*’:
 result = multiply(result, newValue);
 break;
 case ‘/’:
 result = divide(result, newValue);
 break;
 default:
 result = add(result, newValue);
 break;
 }
 }

 NSLog(@”%.3f”, result);

 [pool drain];
 return 0;
}

 N O T E
I said earlier that switch statements only work with integers, and yet, here I am using chars. Recall when talking
about scalars that chars are represented internally as integers. Using the single quote characters, ‘’, the compiler auto-
matically converts the character inside the single quotes to the integer representation of the value of that character.

Next, create a new C source file, name it MathOperations.m, and make it look like Listing 2.42.

05_9780470479223-ch02.indd 7105_9780470479223-ch02.indd 71 1/4/11 8:51 PM1/4/11 8:51 PM

72 Introducing Objective-C

Listing 2.42

MathOperations.m

#include “MathOperations.h”

double add(double value1, double value2)
{
 return value1 + value2;
}

double subtract(double value1, double value2)
{
 return value1 - value2;
}

double multiply(double value1, double value2)
{
 return value1 * value2;
}

double divide(double value1, double value2)
{
 return value1 / value2;
}

Finally, edit the MathOperations.h file and make it look like Listing 2.43.

Listing 2.43

MathOperations.h

extern double add(double value1, double value2);
extern double subtract(double value1, double value2);
extern double multiply(double value1, double value2);
extern double divide(double value1, double value2);

05_9780470479223-ch02.indd 7205_9780470479223-ch02.indd 72 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 2: Understanding Basic Syntax 73

After you do this, compile the application and start your terminal program. You should be able
to find the compiled application in your project directory under the subdirectory build/Debug.
Enter that subdirectory, and run your new program, as shown in Figure 2.8. Be sure when you
run it to enter the single quotes just as I have shown here. This causes the console to ignore the
‘*’ character as a wildcard and to just pass it to your program.

This program combines all the information from these first two chapters: for loops, conditional
statements, functions, working with basic types, and so on.

Figure 2.8

The output of the program

Summary
In this chapter, you’ve learned all the basic syntax for procedural programming in Objective-C.
You learned how to declare variables and structures, how to use operators, and how to use
functions. You’ve also learned about things like loops and conditional expressions for control-
ling the flow of your programs at runtime. Finally, you combined all this knowledge to make a
basic calculator program.

In the next chapter, we’re going to delve into the Objective part of Objective-C and see how
Objective-C implements object-oriented programming.

05_9780470479223-ch02.indd 7305_9780470479223-ch02.indd 73 1/4/11 8:51 PM1/4/11 8:51 PM

05_9780470479223-ch02.indd 7405_9780470479223-ch02.indd 74 1/4/11 8:51 PM1/4/11 8:51 PM

In This Chapter

Adding Objects

Learning object-oriented
terminology

Working with objects in
Objective-C

Creating classes and
class hierarchies

Defining properties

Writing class and object
methods

Declaring member
variables

Fundamentally speaking, all software development technolo-
gies are ultimately aimed at solving one specific problem. The
problem is that thinking about more than one idea at a time

is difficult for human beings. So, all these technologies enable us to
compartmentalize and encapsulate our ideas into reusable pack-
ages that can be mixed and matched in novel ways to solve new
problems.

You’ve already seen how procedural programming — breaking our
ideas out into procedures that we can reuse — enables exactly this
kind of compartmentalization and encapsulation. Procedural pro-
gramming was a revolutionary concept when it was initially intro-
duced early in computer science history. However, it had one major
flaw: Procedures have no mechanism for storing state within them-
selves. Typically, procedural programmers work around this limita-
tion by either passing state variables into the procedures along
with the parameters that are necessary for the procedure to do its
work, or by relying on global variables to store their state instead.
Both of these are not ideal solutions.

Passing state variables into the procedures can quickly get out of hand
because, as your programs become more complex, they require more
and more state to be preserved between procedure calls.

Using global variables is similarly complicated because excessive
use of global variables can lead to excessive dependencies that are
difficult to track in your code. For example, to determine what
global variables a particular procedure relies on, you have to
become familiar with the procedure itself. There’s no way to know
simply by looking at the interface of a procedure what global vari-
ables that particular procedure relies upon. This leads to variables
not being initialized properly, or side effects, such as variables
receiving values that you were not aware were accessed in that
function.

As procedural applications became more and more complicated,
these problems became more insurmountable by developers.

06_9780470479223-ch03.indd 7506_9780470479223-ch03.indd 75 1/4/11 8:51 PM1/4/11 8:51 PM

76 Introducing Objective-C

A new programming paradigm that enabled developers to encapsulate both the data that
they wished to operate on and the logic to operate on that data together in one package was
needed. The name for this new programming paradigm is object-oriented programming. In
the following sections, I introduce you to this technology.

Understanding Objects
The idea behind object-oriented programming is to allow a programmer to encapsulate the
data that you want to operate on with the procedures that you want to use to operate on
the data.

For example, imagine that you want to encapsulate the behavior of a cat. The first thing that
you need to do is capture the attributes of that cat — its data. Figure 3.1 shows an illustration of
this concept. You might want to capture the properties of the color of the cat. In this case, the
color of the cat is black.

Figure 3.1

Encapsulating the properties of a cat

06_9780470479223-ch03.indd 7606_9780470479223-ch03.indd 76 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 77

You might also want to capture the fact that the cat’s eyes are yellow. Some cats have gray eyes,
some cats have green eyes, but this cat’s eyes are yellow. Perhaps you also want to capture the
weight of the cat. All of these things are attributes of the cat. If you can imagine dealing with
this in a procedural application, all of these properties would have to be stored in some sort
of global variables. You could probably alleviate some of the problem by using structures for
those global variables, but even so, after you move beyond one, managing bunches of struc-
tures would quickly get out of hand.

Using object-oriented programming, you can represent the state of the cat and its attributes
using an object. In the same way that a given instance of a cat is a physical representation of
the more generic, ideal “Cat” concept, you can say that there is a generic version of cats called,
generically, Cat. This is called the “class” of the object. Another way to think of this is to think of
this class of an object as sort of the platonic representation of the concept of a cat. This platonic
ideal representation of a cat acts as a sort of conceptual template that you can then use to cre-
ate instances of our actual individual cats. My specific, individual cat (named George) is the
“object,” or “instance,” of a cat “class.”

Putting this a different way, our Cat class represents the definition of all the attributes that make
up what a cat is, including all the potential variety of different kinds of cats. Using that template,
you can create an individual instance of a cat that describes your particular cat. The Cat class
might define that cats are small, furry animals with pointy ears, sharp teeth, and a tendency for
attacking their owners’ legs. The class might also define that cats have eyes or fur of different
colors. The fur color of your particular instance of cat would be a variable that you define in
order to differentiate your cat from the generic concept of the cat.

In addition to defining the attributes of both the generic concept of a cat as well as the specific
attributes of your particular cat, a class can also encapsulate the behavior of the cat. For exam-
ple, it might be said that a cat vocalizes by meowing. You could create code in your Cat tem-
plate that represents the instructions required to make that cat meow, this is called a “method.”
Similarly, you might have a method on the cat that represents the process of cleaning itself. The
cat might have a temporary state that represents “dirty.” The “clean” method might represent
the behaviors necessary to change the cat from dirty to clean. In this way, the methods defined
on the class Cat define the instructions necessary to alter the data in your particular instance
of cat.

Moving away from our metaphor, and returning back to actual Objective-C, the takeaway here
is that Objective-C defines programming constructs that give you the ability to define these
concepts and relationships.

In Objective-C, a class represents the definition or template for a particular type of object. When
working with objects, you create classes. In those classes, you define both the data that the
object encapsulates and the methods that are used to manipulate that data.

An object is a particular instance of a class. Objects are also often referred to as instances, and I
use these two terms interchangeably.

06_9780470479223-ch03.indd 7706_9780470479223-ch03.indd 77 1/4/11 8:51 PM1/4/11 8:51 PM

78 Introducing Objective-C

The data that is encapsulated within an object can be referred to as data, state, attributes,
or properties. It’s important, however, to be aware that there is also another programming
concept called properties, which I cover later in this chapter. All data is not necessarily a prop-
erty, nor are all properties necessarily data.

Finally, when talking about the behavior of an object, including behavior that changes its data,
the instructions to the computer related to that behavior are referred to as methods.
Objective-C developers also tend to adopt the Smalltalk convention of referring to methods as
messages. This terminology is most often used when referring to using a method as an action.
Some programming languages refer to this as “calling a method,” but Objective-C program-
mers tend to use the phrase “sending a message.” I, for one, happen to prefer to use the
“method” oriented terms, but I may on occasion use the messaging terminology instead.

 N O T E
It is vital that you understand the terminology that is used for describing classes, objects, properties, and methods
before you move on to the rest of this chapter. If you have any amount of confusion, please reread the Understanding
objects section so that you understand the distinction between these items clearly.

Understanding inheritance
Inheritance has two sides to it. One side represents the class design aspect of class inheritance,
which affects how you design your classes and where you place behavior in your class defini-
tions. The second aspect of class inheritance relates to how those classes look from an outside
perspective and how you use the classes. (I cover this topic in the following section, “ Using
polymorphism.”)

Returning to the Cat class, recall that the Cat class represents, sort of, the template for the crea-
ture that is your pet. You could also think of this as representing the species of your pet. Just
like a species, the Cat class can be said to have descended from other species. In other words,
the cat species is descended from, and inherits certain characteristics from, the classification
known as mammals. Similarly, the classification mammals descends from and inherits charac-
teristics from the classification vertebrates. Cats also have sister species, such as dogs. Each of
these species has shared characteristics with each other as well as with their parent species. You
can extend in either direction, becoming more specific (poodles, German shepherds, and so
on). Or you can become less specific, moving up the inheritance tree to mammals, vertebrates,
and so on. Figure 3.2 demonstrates this concept by roughly laying out the classification of sev-
eral different creatures and how they relate to each other.

Classes in Objective-C have the same kind of capability. In fact, Figure 3.2 could just as easily
be used to describe a class inheritance tree as a species inheritance tree. In other words, classes
in Objective-C can have parent classes from which they inherit behaviors and attributes.
Additionally, any class that you create can have child classes that inherit your class’s attributes
and behaviors.

06_9780470479223-ch03.indd 7806_9780470479223-ch03.indd 78 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 79

Figure 3.2

A class inheritance tree

06_9780470479223-ch03.indd 7906_9780470479223-ch03.indd 79 1/4/11 8:51 PM1/4/11 8:51 PM

80 Introducing Objective-C

In our example, the cat class inherits from the mammal class. The mammal class specifies that
all its child classes have fur, give live birth, eat, sleep, and have some kind of vocalization. As a
result, it provides attributes such as the fur color, eye color, and so on. It also provides standard
methods for eating, sleeping, and vocalizing. The child classes of mammal inherit all these attri-
butes and behaviors automatically, but can override them in cases where it is required. For
example, the particular vocalization that a cat makes is different from the vocalization that a
dog makes. A cat’s vocalization is a meow, and a dog’s vocalization is a bark. To override behav-
iors in a parent class when implementing a new subclass, you simply define the method in your
subclass. Your new version will replace the version in the parent class and will automatically be
used by the runtime when the method is called.

All these same customizable capabilities are available when you are defining classes in object-
oriented languages. In Objective-C, a given class can inherit from any other given class.
However, it can only ever have one parent. The class itself will inherit all the attributes and
behaviors of its parent and all its parent’s parents, but it cannot inherit behavior from more
than one direct parent. This concept is known as single parent inheritance. Some languages,
such as C++, enable classes to inherit from multiple parents. This can result in ambiguity during
compilation. As a result, Objective-C chooses to remove this ambiguity by only allowing a single
parent inheritance. Our species inheritance tree eventually leads back to a single global great,
great, great grandparent class that is the ancestor of all creatures; Objective-C also has a single
class that all classes eventually inherit from. This class is NSObject. The NSObject class pro-
vides the most basic functionality that all classes in Objective-C require, such as memory man-
agement routines, copying routines, and so on.

 N O T E
In Objective-C, you can do some things that simulate multiple parent inheritance without actually requiring multiple
parents. I go over how you do this when we look at protocols and categories.

Using polymorphism
Earlier in this chapter, I introduced you to the concept of class inheritance. Polymorphism
means that any object that is created from a given class can be assumed by users of that object
to be an instance itself, or any of its parent classes. What this means is that your code can be
written to utilize the bare minimum functionality required based on classes it inherits from.
Because Objective-C classes all eventually inherit from NSObject, you can even create code
that only requires NSObject in order to function. It might not be particularly useful, but it
would be extremely flexible, in that you could pass any object to it and it would work just fine.

To extend this back into our animal analogy, you can imagine writing code that requires capa-
bilities that mammalian objects provide, for example, vocalization. How the particular instance
of mammal that you are currently working with implements the vocalization method can vary,
but when you call the vocalization method, it will determine what type of actual animal you’re
working with and do the appropriate thing. For example, the dog would bark, the cat would
meow, or the lion would roar.

06_9780470479223-ch03.indd 8006_9780470479223-ch03.indd 80 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 81

This is a tremendously powerful capability, and one that you will leverage continually in your
programming career. Polymorphism gives object-oriented programming its real power.

Using the id datatype
I want to introduce one more concept to you before we actually start looking at real code in this
chapter. It is the concept of the id datatype. The id datatype is a special data type in
Objective-C that essentially means any object. It can be used in any location where an object
type would normally be used.

For the most part, you will not need to use the id datatype directly in your code. However, you
will probably see cases where the id datatype is used in the Cocoa or Cocoa Touch libraries.
Particularly, in areas such as arrays, dictionaries, and so on. In these cases, it is the use of the id
datatype, and the fact that it can masquerade as any class at all, that give Objective-C its
dynamic typing capabilities.

You might ask yourself, “Why not use id all the time? Then I don’t have to worry about declar-
ing my actual object types.” Unfortunately, because the compiler can’t know at compile time
what type of object you’re working with when you use an id datatype in place of a more
specific type name, it opens up the possibility for errors within your code that could have been
caught by the compiler otherwise. Also, the additional overhead required to look up the data
type at runtime can cause method calls to objects declared as an id datatype to be slightly
slower than those with more specific data types. Therefore, generally speaking, it is better for
you to declare your objects to be of a specific type rather than using the id datatype. That said,
however, it is important for you to understand the concept of the id datatype so that you can
use it in those rare occasions when you need it.

 N O T E
You use the id datatype for your initialization methods.

Creating classes
Now that I’ve introduced you to the general concepts of object-oriented programming, classes,
inheritance, and polymorphism, in the following sections, I show you how to actually create
classes and how to use them in your code.

Working with class files
Classes are defined by using two separate files. The first is the interface file. Interface files are
created with an extension of .h. Within this file you declare the interface of your class. An
example of this is shown in Listing 3.1.

06_9780470479223-ch03.indd 8106_9780470479223-ch03.indd 81 1/4/11 8:51 PM1/4/11 8:51 PM

82 Introducing Objective-C

Listing 3.1

An interface file

#import <Foundation/Foundation.h>

@interface Foo : NSObject
{
 NSString *someVariable;
 NSString *someOtherVariable;
 NSArray *someArray;
}
@property (nonatomic, retain) NSString *someVariable;
@property (nonatomic, retain) NSString *someOtherVariable;

-(void)someMethod;
-(BOOL)someOtherMethodWithArg:(NSString *)param andAnotherArg:(int)param2;

@end

As you can see, the interface is declared by using a special syntax of @interface Classname.
Where Classname represents the name of the class that you are defining. If your class is inher-
iting from some other class, you place the name of the class you are inheriting from after your
class name. In this case, you are simply inheriting from NSObject.

After the @interface line, there is a block of code bracketed by curly braces. Within these
curly braces is where you define your class’s data. Variables defined within these curly braces
are considered to be within scope in any method defined as part of your class.

The older runtime requires that all your member variables have to be defined here, but the
modern, 64-bit runtime, which is available in Mac OS X 10.6 and iOS, does not. You can declare
your member variables by simply declaring them as properties. It doesn’t hurt anything to
declare them additionally here, however, so there’s nothing wrong with being in the habit of
doing so.

After the curly braces, you define the method signatures for the methods that are part of your
class. Finally, you declare the end of your interface by using the @end directive.

After you have created the interface definition for your class, you must also implement it. The
implementation of your class is created in a file with an .m extension. An example implementa-
tion for the class that we just saw is shown in Listing 3.2.

06_9780470479223-ch03.indd 8206_9780470479223-ch03.indd 82 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 83

Listing 3.2

An example implementation file

#import “Foo.h”

@implementation
@synthesize someVariable;
@synthesize someOtherVariable;

-(void)someMethod
{
 // body of method
}

-(BOOL)someOtherMethodWithArg:(NSString *)param andAnotherArg:(int)param2
{
 // body of method
}

@end

Again, we have a special syntax that tells the compiler that we are creating an implementation.
This syntax is the @implementation directive. Just like the @interface directive, you
include the name of the class that we are defining after it. Between the @implementation
and the @end directive is where we define all the methods that will be used in our class.

Jump back into the interface file and take a closer look at how we encapsulate data in our class.

Writing object methods
Object methods are methods that are defined as part of a class and that are only able to be
called once an object has been instantiated. Typically, these methods are the methods that we
refer to when we talk about the idea of methods operating on the data within an object. For
example, methods that change data inside of an object or do a calculation based on data inside
of an object are typically implemented as object methods.

Creating an object method consists of two parts. The first part is the method signature declara-
tion in the interface file for the class. An example of this is shown in Listing 3.3.

06_9780470479223-ch03.indd 8306_9780470479223-ch03.indd 83 1/4/11 8:51 PM1/4/11 8:51 PM

84 Introducing Objective-C

Listing 3.3

Object method declaration

-(BOOL)someOtherMethodWithArg:(NSString *)param1
 andAnotherArg:(int)param2

All object methods are prefixed with a hyphen character to differentiate them from class meth-
ods, which are prefixed with a plus character.

 N O T E
Class methods are methods that can be called using an uninstantiated class instead of an object.

The method’s return type is specified within parentheses. After the return type, the name of the
method and the parameters it takes are specified. Each parameter is specified after a colon. Its
type is specified within parentheses and then its name is specified. Finally, the method must be
suffixed with a semicolon.

After you have declared the method signature for the method that you want to create, you
have to create its actual implementation. This is also known as the method definition. The
method definition is placed within the implementation file for your class. When creating your
method implementation, the first line of the method implementation should match your
method interface declaration that you placed in your interface file. Following the method signa-
ture declaration in the implementation file, you then place the body of your method within
curly braces. Listing 3.4 shows the implementation for the method that we declared previously.

Listing 3.4

Object method definition

-(BOOL)someOtherMethodWithArg:(NSString *)param1
 andAnotherArg:(int)param2
{
 // do something with param1 and param2 here
 if([someOtherObject doSomething:param1] == param2)
 return YES;

 return NO;
}

06_9780470479223-ch03.indd 8406_9780470479223-ch03.indd 84 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 85

The method implementation specifies the instructions required for the computer to execute
whatever behavior it is that you want to occur when this method is called. To return a value from
a method, you use the return statement just like you did previously when defining procedures.

All the data members of your class are within scope and available to be used within any object
method defined for that class. Additionally, any variables passed into the method as arguments
are also within scope and available within the method as well.

Working with the special object methods
In addition to object methods that define behavior that you require for your functionality, there
are also certain special object methods that you can optionally define as part of your class that
have specific functionality and standard behavior. A variety of these methods exist, but I want
to introduce you to two of them right now.

The first of these special object methods are in the generic category of initializers. Initializer
method names always begin with the word init and always return an id datatype. Other
than these conventions, the method signature of initializers is reasonably arbitrary. However,
the body of an initializer method should follow a special standardized syntax. Listing 3.5 shows
an example of a typical initializer.

Listing 3.5

A typical initializer

-(id)init
{
 if((self = [super init]))
 {
 memberVariable = [[NSMutableArray alloc] init];
 }
 return self;
}

The structure of the initializer method is very important. The first step is to call the superclass
designated initializer. The initializer returns an initialized instance of the superclass object, and
you must assign that to the special variable “self”. If something fails during the initialization
process, the contract associated with the initializer specifies that it should return a nil object
instead of a validly initialized object. Because of this, after assigning the return of the super class
initializer to self, you should check to see if self is nil. If it is, you should not initialize your
own variables, but instead, simply return nil yourself. In the example shown above, we actu-
ally assign the variable to self and check it for nil at the same time in the if statement.

06_9780470479223-ch03.indd 8506_9780470479223-ch03.indd 85 1/4/11 8:51 PM1/4/11 8:51 PM

86 Introducing Objective-C

The real purpose of the initializer, aside from creating self, is to initialize any data members in
the object. So, after you have verified that self is not nil, you can initialize your variables.
Having initialized your variables, you then return self from your initializer method.

In some cases, it may make sense to provide multiple initializers for your class. For example, if
there are different ways to create an object and different parameters need to be passed to the
initializer in these different states. In these cases, you can create multiple, different initializers
that take different parameters. To avoid duplication in your code, however, it makes sense to
call other initializers from within your initializer. Doing this allows you to keep specific initializa-
tion in one place and only one place.

In addition to the concept of an initializer, there is also the concept of the designated initializer.
Typically it takes the fewest number of parameters of all your initializers, and it is the final initial-
izer that all your other initializers will call to set up the initial state of your object.

An example of this is shown in Listing 3.6.

Listing 3.6

An example showing different initializers is calling the designated initializer

-(id)init
{
 if((self = [super init]))
 {
 memberVariable = [[NSMutableArray alloc] init];
 }
 return self;
}

-(id)initWithArray:(NSMutableArray *)inArray
{
 if((self = [self init]))
 {
 memberVariable = [inArray retain];
 }
 return self;
}

The second kind of special method that you need to be familiar with is the dealloc method.
The dealloc method is the opposite of the init method. It enables you to free up resources
that were allocated in your commit method or elsewhere in your object. You must be sure to
call the superclass dealloc method before the method exits. Listing 3.7 shows an example of
a dealloc method.

06_9780470479223-ch03.indd 8606_9780470479223-ch03.indd 86 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 87

Listing 3.7

An example showing a different initializer calling the designated initializer

-(void)dealloc
{
 [memberVariable release]; memberVariable = nil;
 [super dealloc];
}

 C A U T I O N
You should be sure not to call the super dealloc method before releasing your own variables. This can cause
a crash.

I discuss initializer and dealloc methods in greater detail in Chapter 4. For now, it’s important
that you simply be familiar with the methods because you will be using these methods in the
upcoming example code.

Writing class methods
In Objective-C, classes themselves also have many of the same capabilities as objects. For exam-
ple, classes have the ability to have static methods declared upon them that can be called
directly from the class itself. When using these kinds of methods, you don’t need to have instan-
tiated an instance of the class that you’re working with. This can be convenient for methods
that are used for creating instances of your class, such as factories and singletons. In fact, the
Cocoa frameworks utilize class methods for many of the built-in classes for the purposes of cre-
ating instances of the class. In other languages, such as C++ or Java, class methods are often
referred to as “static methods.” If you are familiar with these languages, you may be familiar
with this terminology.

 N O T E
A factory method in Objective-C is a class method that is used as a convenience for constructing an object. It always
returns an autoreleased object. Factory methods are covered more in Chapter 4.

 C R O S S  R E F E R E N C E
Singletons are covered in Chapter 17.

Declaring a class method is very similar to declaring an object method; the only difference is
that instead of using a hyphen in front of the method declaration, instead you use a plus sign.
Listing 3.8 shows an example of a class method declaration.

06_9780470479223-ch03.indd 8706_9780470479223-ch03.indd 87 1/4/11 8:51 PM1/4/11 8:51 PM

88 Introducing Objective-C

Listing 3.8

A class method declaration

@interface Foo : NSObject
{
 NSMutableArray *memberVariable;
 NSString *anotherMemberVariable;
}
@property (nonatomic, retain) NSMutableArray * memberVariable;
@property (nonatomic, retain) NSString * anotherMemberVariable;

-(id)init;
-(id)initWithArray:(NSMutableArray *)inArray;

// a class method
+(id)fooWithArray:(NSMutableArray *)inArray;

@end

The implementation of a class method is identical to the implementation of an object method.
However, class methods do not have access to any of the object’s member variables. To under-
stand why, remember that a class method is called directly off the class itself, not off an instance
of that class. Therefore, there is no object that the data can be stored within in order to operate
on that data. Listing 3.9 shows an example of a class method implementation.

Listing 3.9

A class method definition

@implementation Foo

+(id)fooWithArray:(NSMutableArray *)inArray
{
 return [[[self alloc] initWithArray:inArray] autorelease];
}

@end

06_9780470479223-ch03.indd 8806_9780470479223-ch03.indd 88 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 89

The most common use of class methods is in the use of factories, like this method. Many classes
in Cocoa and Cocoa Touch have factory methods defined on classes to make creation of objects
easier. For example, the NSArray class includes the factory method [NSArray array]
which returns a properly constructed NSArray object. (I discuss some special memory man-
agement rules in Chapter 4.) When creating class methods, you can use the self object to refer
to the class itself, as in this case.

Declaring objects
I’ve now shown you how to declare classes, including their data, their methods, and so on, but
all of this would be useless if you couldn’t declare instances of your classes and use them. So
now, let’s take a look at how you declare an instance of your class in your code.

Listing 3.10 shows an example of code where I’ve taken the class that we created in the previ-
ous section and now I want to use that class in my code to do something useful.

Listing 3.10

Creating an instance of your class

{
 // plain old initializer
 Foo *object;
 object = [[Foo alloc] init];
 [object doSomethingWithParameter:arg];

 // all on one line
 Foo *object = [[Foo alloc] initWithArray:[NSMutablArray array]];
 [object doSomethingWithParameter:arg];

 // using a class method factory
 Foo *object = [Foo fooWithArray:[NSMutableArray array]];
 [object doSomethingWithParameter:arg];
}

As you can see, declaring an instance of your class is very straightforward. First, you use your
class name, filed by the pointer operator (*). Then you place the name of the variable that will
hold the instance of your class, in this case “object”. You can, if you choose, initialize the object
variable immediately, on the same line, as its declaration. To do this, you simply use the equal
operator to assign the initialized value to your object variable. In the example code above, I’ve
shown it both ways, first not initializing the variable, and then initializing the variable all on one
line. I’m introducing an important new syntax in this code. You’ve seen it before in other sec-
tions of this book, and now I’m going to explain exactly what it’s all about. The syntax I’m refer-
ring to here is the use of the square bracket operators ([]).

06_9780470479223-ch03.indd 8906_9780470479223-ch03.indd 89 1/4/11 8:51 PM1/4/11 8:51 PM

90 Introducing Objective-C

In Objective-C, methods are called on classes and objects by surrounding them in square brack-
ets. You put the opening square bracket at the beginning of the object or class that the method
relates to, and then you place the closing square bracket at the end of the method invocation.
Thus, looking at the code above, you can see that in the initialization of our object variable, we
actually have two method calls in both of the initialization code snippets. The first one is a call
to alloc. This method is actually being called on the class. The second method call is for the
method init. This method call is actually being called on the object that is returned from the
alloc call. It’s important to recognize when looking at this code that the alloc call is in fact
returning an object and that the init method is being called on that object. This is not uncom-
mon whatsoever in Objective-C code to see nested calls like this where calls are made on
objects returned from prior method calls.

Initializing an Objective-C object is actually a two-step process. The first step is used to allocate
the memory that will be used to store the data and the methods that make up the object. This is
what the alloc call is for. This is why the init and method can be called on the object that is
returned from alloc.

I cover this in more detail in the chapter on memory management, but it is important to note
that any object that you allocate, using an alloc method, like shown here, must also be
released. To release an object ,you simply call the method release on the object. Release is
a method that is defined on NSObject.

Making calls on objects
After you have declared and created an instance of your class, you will, likely, want to make calls
on that instance. You can call any of the methods that you have declared in your class as object
methods, using the square bracket syntax I showed you in the previous section. However, only
methods that are declared in the interface file of your class definition should be called from
modules other than the class itself. Although it is technically possible to call methods that are
not declared in the interface file, the compiler will issue a warning when you compile your code.
Additionally, the compiler will be unable to determine the types of arguments and return val-
ues that the method requires, and thus it may not be able to catch errors that it would normally
be able to catch.

In some cases, you may want to create methods in your class which are only for internal use to
your class. Meaning, you don’t want to expose their functionality to outside classes. In other
languages such as C++ or Java, you might think of these methods as “private” methods.
Objective-C has no syntax for declaring private methods, but if you do not expose the method
in your interface file, then it is considered bad form by other classes to call those methods. Part
of this is for the reasons that I mentioned in the previous paragraph, and part of it is because of
social norms. You don’t have to expose methods that you use strictly in your class to users of
your class. You can declare methods in your implementation file alone, and they will be avail-
able for use in your implementation file. The only important thing to keep in mind when doing
so is that the compiler still needs to know about your method signature before you use it.
Therefore, methods that you use only in your implementation file, that you don’t want to
expose externally, should be placed above any methods that reference those methods. Listing
3.11 shows an example of what I mean.

06_9780470479223-ch03.indd 9006_9780470479223-ch03.indd 90 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 91

Listing 3.11

“Private” methods in Objective-C

@interface Foo : NSObject
{

}

+(id)fooWithArray:(NSMutableArray *)inArray;
-(void)someOtherMethod;

@end

@implementation Foo

+(id)fooWithArray:(NSMutableArray *)inArray
{
 return [[[self alloc] initWithArray:inArray] autorelease];
}

-(void)somePrivateMethod;
{
 // do something private...
}

-(void)someOtherMethod;
{
 [self somePrivateMethod]; // this is OK.
 [self anotherPrivateMethod]; // this generates a warning
}

-(void)anotherPrivateMethod;
{
 // do something else private
}

@end

Notice that the first private method is physically above the method that calls it in the file and in
the listing. The second private method is below the method that calls it. If you were to do this in
your code, the second private method generates a compiler warning just like if you were calling
a private method in another class.

06_9780470479223-ch03.indd 9106_9780470479223-ch03.indd 91 1/4/11 8:51 PM1/4/11 8:51 PM

92 Introducing Objective-C

 N O T E
If this method of declaring “private” methods seems a bit sketchy to you because of the dependency on the location of
the definition of the methods in the file, see Chapter 8 for another way of declaring private methods using categories.

Working with Properties
A recent addition to Objective-C is the concept of properties. Properties allow you to declara-
tively define accessor methods for the data members of your classes. They eliminate much of
the boilerplate code that has been previously required for accessing those data members. They
also enable you, the developer of a class, to define the contract for the state of your object. They
are an important syntactical addition to Objective-C.

Understanding the differences between
state and behavior
In previous sections, I talked about objects as a mechanism for encapsulating attributes and
behavior. In this section, I approach this topic in a bit more depth in order to explain some con-
cepts that can help you in your use of properties in Objective-C.

The purpose of properties in Objective-C is to assist you in exposing attributes of your object
that represent your object’s state. Internally, properties compile down to actual methods that
can be used to get and set the data in your objects. These are called accessors. You can choose
to use the compiler-generated accessors, or you can choose to override the compiler and gen-
erate your own.

 N O T E
An accessor is a method which is defined specifically for the purpose of allowing users of your objects to set and get
values in your object. They encapsulate the data members of your object and hide the implementation details of those
objects from the outside. An accessor can allow direct access to a variable, or it can be nothing more than a calculation
that is performed when accessed. Sometimes these methods are called setters and getters. Most people use properties
instead of manually writing accessors, but in cases where you want to override the normal behavior of property acces-
sors, you can easily override accessors and provide your own implementation. I show you how to do this shortly in the
section on properties.

Objects are composed of state and behavior. State consists of the data that makes up your
object. When thinking about object state, a good design rule that most developers follow states
that though an object’s state can be changed at any time, it is safe to consider that once an
object’s state has been set, it will maintain that state until otherwise acted upon by your appli-
cation. It is also considered to be bad form to have side effects occur when simply modifying

06_9780470479223-ch03.indd 9206_9780470479223-ch03.indd 92 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 93

the state of an object. When you are tempted to have the act of changing the state of an object
have an outside side effect, you should think carefully about the design decisions that have led
you to that result.

Behavior, on the other hand, can be thought of as your object taking action. Behavior can be
used to update other objects, and thus have side effects, or it can be used to change the inter-
nal data of your object or trigger other operations on your object.

Some schools of object-oriented design state that objects should only expose behavior to
external entities. With the Objective-C 2.0 property notation, the designers of Objective-C
decided that it is acceptable to expose the internal state of your objects as well. The property
notation enables you to expose your object’s state while still providing accessors through
which the access to that state goes. Properties, similarly, should be used only for accessing and
manipulating your object’s state. To be clear, when writing properties, you should not create
properties that have far-ranging external consequences. This is the kind of thing that should be
limited to behaviors on your objects.

To give you an example, consider a class that represents an engine. This engine class might
expose a property for specifying its throttle. Your property to specify the throttle setting should
only set the throttle value. If you want to additionally expose behavior that causes the engine to
change its behavior based on the throttle value, then you should additionally expose a method
(a behavior) called something like updateEngineSpeedFromThrottle. This method
would take no parameters, and it would return a Boolean value indicating whether or not it was
able to successfully update the engine’s speed based off of the throttle value.

By separating the state and behavior of your class, you are preventing potential side effects and
dependencies between your behaviors and your object attributes.

Using properties to declare object state
For the purposes of this example, I’d like you to imagine that you’re writing an HR application.
This application will be used to track employee benefits, including salary, insurance, and so on.
Therefore, you need to create an Employee class that will be used to encapsulate this data.

I’m sure that you can imagine the kinds of attributes and properties that an employee class
would have to encapsulate. Typically, these would include things like the employee’s first name,
their last name, their Social Security number, their employee number, their salary, and perhaps
a reference to another employee who is their manager. All these items can be represented as
properties of the employee class.

Listing 3.12 shows an example of how you might create the employee class interface. It includes
the listing of the data members that I just specified as well as properties for accessing each of
those data members. As we explore each of these properties, it should help you to understand
how properties work and which attributes properties can have.

06_9780470479223-ch03.indd 9306_9780470479223-ch03.indd 93 1/4/11 8:51 PM1/4/11 8:51 PM

94 Introducing Objective-C

Listing 3.12

The employee class interface

#import <Cocoa/Cocoa.h>

@interface Employee : NSObject
{
 NSString *firstName;
 NSString *lastName;
 NSDate *birthDate;
 NSDate *dateOfEmployment;
 Employee *manager;
 NSString *ssn;

 double salary;

}
@property (nonatomic, retain) NSString * firstName;
@property (nonatomic, retain) NSString * lastName;
@property (nonatomic, retain) NSDate * birthDate;
@property (nonatomic, retain) NSDate * dateOfEmployment;
@property (nonatomic, assign) Employee * manager;
@property (nonatomic, retain) NSString * ssn;
@property (nonatomic, readonly) NSTimeInterval age;
@property (nonatomic) double salary;

-(id)initWithFirstName:(NSString *)inFirstName
 lastName:(NSString *)inLastName
 birthDate:(NSDate *)inBirthDate ssn:(NSString *)inSsn;
-(id)init;
-(void)giveRaise:(double)percentage;
-(double)bonus;

@end

The first thing to note is that almost all the properties specified here have data members that
they map to. A property declaration consists of the @property directive followed by attri-
butes that affect the type of accessor that is created as part of this property. These attributes are
specified inside the parentheses after the @property directive. The different attributes that
can be specified for a given property are shown in Table 3.1.

06_9780470479223-ch03.indd 9406_9780470479223-ch03.indd 94 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 95

Table 3.1 Property Attributes
Attribute Purpose

getter=<name>, setter=<name> Specifies the name of the accessor methods that will be used for this property.

readwrite or readonly Specifies whether this property will be able to be written to. Default is readwrite.

assign, retain, or copy Determines the type of setter generated for this property. Assign generates a setter with a

plain assign to the variable. Retain generates a setter which retains the argument passed to

it while assigning it to the variable. Copy generates an accessor which copies the passed in

value to the member variable. The default is assign.

nonatomic Specifies that the generated accessor will be nonatomic, and therefore not threadsafe. The

default value is atomic, or threadsafe.

Following the property attributes, you must specify the datatype for the property. Properties do
not always have to map directly to a data member variable, but when they do, that data mem-
ber’s datatype should match the data type of the property specified here. Finally, you have to
specify the name of the property. It is possible to specify a property with a name that is different
from the actual data member that the property represents. Most often, however, you won’t
need to do this. Therefore, this name should match the name of the data member that this
property maps to.

As usual, things declared in your interface file also have a corresponding declaration in your
implementation file. Properties are no different. To use the compiler-generated accessor meth-
ods, your properties must have a declaration inside of your implementation block in your
implementation file. The possible types of property declarations in your implementation file can
be either @synthesize declarations or @dynamic declarations. The @synthesize direc-
tive causes the compiler to completely generate all the necessary code to create the accessors
for your property. Essentially, this directive is a “hands-off” method for using properties. If you
use the @synthesize directive, no additional code needs to be written in your implementa-
tion file for your property.

On the other hand, if you want to create your accessors yourself, by hand, either in your unit or
later, by dynamically loading code at runtime, you can do this by using the @dynamic direc-
tive. When using the @dynamic directive, the compiler will expect that you have created an
appropriate pair of accessors for your property.

 C A U T I O N
When you create your own accessors using the @dynamic directive, ensure that your accessors fulfill the contract
that you have specified in the property’s attributes. In other words, if you have specified a copy attribute, then you
have to ensure that your accessor copies the value that’s passed in when setting the property.

Listing 3.13 shows our employee class implementation. Note that there are different properties
that are handled in different ways.

06_9780470479223-ch03.indd 9506_9780470479223-ch03.indd 95 1/4/11 8:51 PM1/4/11 8:51 PM

96 Introducing Objective-C

Listing 3.13

Employee class implementation

#import “Employee.h”

@implementation Employee
@synthesize firstName;
@synthesize lastName;
@synthesize birthDate;
@synthesize dateOfEmployment;
@synthesize manager;
@synthesize ssn;
@synthesize salary;
@dynamic age;

// parts removed to focus on properties...

-(NSTimeInterval)age;
{
 return [birthDate timeIntervalSinceNow];
}

@end

Most of the properties that are defined are using the @synthesize directive. This means that
the compiler is completely in charge of creating accessors for those properties. There were a
couple of properties of the employee class, however, which were purely calculated properties.
For example, the employee’s age can be calculated using the employee’s birthdate. As you can
see by looking at this code, in those particular cases, the properties have been specified to be
“read-only” and “dynamic.” What this means is that we’ve chosen to go ahead and create meth-
ods that dynamically calculate these attributes rather than storing them as data members. As
you can see from looking at the code, to do this, we implemented methods that do the calcula-
tion for us.

Understanding synthesized property accessors
When specifying a property and allowing the compiler to generate synthesized accessories by
using the apt @synthesize directive, the attributes of the property affect how the accessor
behaves. The compiler itself will actually generate different code depending on those attributes.

06_9780470479223-ch03.indd 9606_9780470479223-ch03.indd 96 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 97

Using the nonatomic attribute
One of the important attributes that you can specify as part of your property declaration is that
of your property’s accessor’s atomicity. The atomicity of a property has to do with how it
behaves in a multithreaded environment. An accessor that is atomic ensures that its value is
completely set or retrieved in the thread that is accessing it. Therefore, an atomic accessor is
considered to be thread safe. Essentially, the code generated by an atomic accessor look some-
thing like the code in Listing 3.14.

Listing 3.14

An atomic accessor

-(NSString *)firstName
{
 [threadLock lock];
 NSString *result = [[firstName retain] autorelease];
 [threadLock unlock];
 return result;
}

Accessors that are not atomic are not considered to be thread safe. A nonatomic accessor gen-
erated by the @synthesize directive might look like Listing 3.15.

Listing 3.15

A nonatomic accessor

-(NSString *)firstName
{
 return [[firstName retain] autorelease];
}

You may choose to use nonatomic accessors in applications in which you are certain there will
only ever be one thread accessing your object.

Using nonatomic accessors can result in a slight performance boost because of the lack of
necessity for the locking of the thread locks in atomic accessors.

06_9780470479223-ch03.indd 9706_9780470479223-ch03.indd 97 1/4/11 8:51 PM1/4/11 8:51 PM

98 Introducing Objective-C

Using the assign, retain, and copy Attributes
Among the property attributes are a set of important attributes used for specifying the seman-
tics of the generated setter. These are the assign, retain, and copy attributes. These three
attributes are mutually exclusive and define the behavior of the setter that is used in conjunc-
tion with this property.

The default value, assign, specifies that the value will simply be assigned to the data member.
An example of this kind of the center is shown in Listing 3.16.

Listing 3.16

A simple assign style setter

-(void)setFirstName:(NSString *)inValue
{
 firstName = inValue;
}

This attribute is typically used for scalar properties, delegates, and other types of variables
where it would be inappropriate retain them.

 N O T E
Some of the language used in this section relates to Objective-C memory management, which is a topic that I cover in
the next chapter. You may need to refer back to this section again after you have read that chapter.

The retain property attribute is used only when working with data members which are them-
selves objects. It specifies that the value that is passed to the setter will be assigned to the
member variable and a retain message will be sent to it.

An example of a setter of this style is shown in Listing 3.17.

Listing 3.17

A retain style setter

-(void)setFirstName:(NSString *)inValue
{
 [firstName autorelease];
 firstName = [inValue retain];
}

06_9780470479223-ch03.indd 9806_9780470479223-ch03.indd 98 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 99

Finally, the copy attribute specifies that the setter generated should copy the object to
the member variable. Likely retain attribute, this is only used for member variables that are
objects. An example of the generated accessor from a copy attribute style property is shown
in Listing 3.18.

Listing 3.18

A copy style setter

-(void)setFirstName:(NSString *)inValue
{
 [firstName autorelease];
 firstName = [inValue copy];
}

Using properties with different data member names
Typically, the names of your properties will match the names of your member variables. There
may be cases, for example, when you are dealing with legacy code, where this may not be desir-
able. In these cases, it is possible to specify that your property uses different accessor names. An
example of this is shown in Listing 3.19.

Listing 3.19

Specifying accessor names for properties

@property (nonatomic, retain, getter=getFirstName) NSString *firstName;

 N O T E
Objective-C accessors typically take the form of “variableName” for the getter and “setVariableName”
for the setter. This is a standard in Objective-C and aides in making your objects Key-Value-Coding compliant. We
discuss this more in Chapter 6.

Using dot notation
Internally, a property compiles to a method call, in the case of setting a value a setter, and in the
case of getting a value a getter. When using Objective-C properties, you can either utilize these
setters and getters directly using traditional method calls, for example [object setFoo:bar],

06_9780470479223-ch03.indd 9906_9780470479223-ch03.indd 99 1/4/11 8:51 PM1/4/11 8:51 PM

100 Introducing Objective-C

or you can use a special syntax, called dot notation. Listing 3.20 shows an example using both
traditional accessors and dot notation.

Listing 3.20

Accessing properties using traditional accessors and dot notation

{
 // traditional method call...
 [employee setFirstName:@”John”];

 // new Objective-C dot notation
 employee.firstName = @”John”;
}

 C A U T I O N
Dot notation is ONLY available for values that have properties defined for them.

Some languages, such as C++, Python, and Ruby, utilize dot notation for making method calls
to all their methods, not just properties. If you have a background in these languages, you may
be tempted to use dot notation for accessing behaviors as opposed to state. This is considered
to be extremely bad form.

Applying Objects
Now that I’ve shown you all the details of object-oriented programming, I’d like to walk you
through creating a simple application that will demonstrate the use of object-oriented pro-
gramming techniques.

The application that we’re going to create is an application for managing human resources. It’s
a very simple application. The end result won’t actually be a procedural application that you can
use, but the process of creating it will demonstrate all the object-oriented programming tech-
niques that I have shown you thus far.

To begin, create a new command line Foundation project.

06_9780470479223-ch03.indd 10006_9780470479223-ch03.indd 100 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 101

Creating the employee class
The purpose of this application is simply to store a list of employees and their managers.
Additionally, the employee class will enable you to give the employee bonuses and raises and
to calculate the employee’s age.

Additionally, there will be a special type of employee, a manager. The manager employees will
have employees who report to the manager. Employees will have references to their manager
so that you can access the employee’s manager. Once you’ve created the application from the
template, create a new class and name it Employee. Edit the interface of that class to match
Listing 3.21.

Listing 3.21

The Employee class interface

//
// Employee.h
// HR
//
// Created by Jiva DeVoe on 4/22/10.
// Copyright 2010 __MyCompanyName__. All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface Employee : NSObject
{
 NSString *firstName;
 NSString *lastName;
 NSDate *birthDate;
 NSDate *dateOfEmployment;
 Employee *manager;
 NSString *ssn;

 double salary;

}
@property (nonatomic, retain) NSString * firstName;
@property (nonatomic, retain) NSString * lastName;
@property (nonatomic, retain) NSDate * birthDate;

continued

06_9780470479223-ch03.indd 10106_9780470479223-ch03.indd 101 1/4/11 8:51 PM1/4/11 8:51 PM

102 Introducing Objective-C

Listing 3.21 (continued)

@property (nonatomic, retain) NSDate * dateOfEmployment;
@property (nonatomic, assign) Employee * manager;
@property (nonatomic, retain) NSString * ssn;
@property (nonatomic, readonly) NSTimeInterval age;
@property (nonatomic) double salary;

-(id)initWithFirstName:(NSString *)inFirstName
 lastName:(NSString *)inLastName
 birthDate:(NSDate *)inBirthDate
 ssn:(NSString *)inSsn;
-(void)giveRaise:(double)percentage;
-(double)bonus;

@end

Notice that the interface for this file has defined a variety of data members for all the attributes
that an employee class might need to track. Additionally, we have defined properties to access
those data members. Notice that some of the properties, for example the age property, do not
directly map to data members but instead will wind up being calculated values.

Most of the properties utilize the retain attribute. The exceptions include the scalar value
attributes, the calculated property (which is read-only), and the manager property. The man-
ager property, in this case, is going to be a special case. The manager property will have a list
of employees who report to him or her. Because the act of adding the employees to that list of
reports will cause those employees to be retained by the manager, you wouldn’t want the man-
ager property on the employee to also be retained. I’ll explain more about why this is the case
in the next chapter on memory management. For now, simply understand that the manager
property on an employee should be set to an assign attribute as opposed to a retain
attribute.

After you’ve created the interface file, go ahead and edit the implementation file. Make it match
the code in Listing 3.22.

Listing 3.22

The employee class implementation file

//
// Employee.m
// HR

06_9780470479223-ch03.indd 10206_9780470479223-ch03.indd 102 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 103

//
// Created by Jiva DeVoe on 4/22/10.
// Copyright 2010 __MyCompanyName__. All rights reserved.
//

#import “Employee.h”

@implementation Employee
@synthesize firstName;
@synthesize lastName;
@synthesize birthDate;
@synthesize dateOfEmployment;
@synthesize manager;
@synthesize ssn;
@synthesize salary;
@dynamic age;

-(void)dealloc;
{
 [self setFirstName:nil];
 [self setLastName:nil];
 [self setBirthDate:nil];
 [self setDateOfEmployment:nil];
 [self setSsn:nil];
 [self setManager:nil];

 [super dealloc];
}

-(id)init;
{
 if(self = [super init])
 {

 }
 return self;

}

-(id)initWithFirstName:(NSString *)inFirstName
 lastName:(NSString *)inLastName
 birthDate:(NSDate *)inBirthDate
 ssn:(NSString *)inSsn;
{
 if(self = [self init])
 {

continued

06_9780470479223-ch03.indd 10306_9780470479223-ch03.indd 103 1/4/11 8:51 PM1/4/11 8:51 PM

104 Introducing Objective-C

Listing 3.22 (continued)

 [self setFirstName:inFirstName];
 [self setLastName:inLastName];
 [self setBirthDate:inBirthDate];
 [self setSsn:inSsn];
 }
 return self;

}

-(NSTimeInterval)age;
{
 return [birthDate timeIntervalSinceNow];
}

-(void)giveRaise:(double)percentage;
{
 salary = salary + (salary * percentage);
}

-(double)bonus;
{
 return salary * .05;
}

@end

Important things to note here are that, first of all, there is an initializer that takes a variety of
parameters which are used to initialize the member variables of the Employee class. By using
this initializer, the object that you create will have all its basic attributes initialized and ready
to use.

Another important thing to note in this code is the fact that we are creating a dynamic property
for the purposes of calculating the employee’s age. To do this, we utilize the @dynamic direc-
tive for the age property. We then create an age accessor method which calculates the age
using the employee’s birthdate. There are also two methods defined here, one for giving the
employee a raise, and the other for giving the employee a bonus. Both of these methods will be
overwritten in our manager class to give a different percentage of raise and bonus.

Creating the manager class
Now that you’ve created the Employee class, you need to create a subclass of the Employee
class called Manager. This class has a list of employees who report to that employee, and it has
different percentages for raises and bonuses.

06_9780470479223-ch03.indd 10406_9780470479223-ch03.indd 104 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 105

To create the manager class, add a new class file to your project, name it Manager, and edit
each interface file to match Listing 3.23.

Listing 3.23

The Manager class interface

#import <Cocoa/Cocoa.h>
#import “Employee.h”

@interface Manager : Employee
{
 NSMutableArray *reports;
}
@property (nonatomic, retain) NSMutableArray * reports;

-(void)addReport:(Employee *)inEmployee;

@end

Recall that in order to create a class that inherits from another class, you have to specify the par-
ent class after the class name in the interface operation. As you can see from this code, you do
exactly that. By doing this, remember that the Manager class will inherit all the attributes and
behavior of its parent class, the Employee class.

When it comes to things that are different about the Manager class, you need to specify those
items here. Specifically, you need to add the reports array for storing the employees that will
report to this manager. Additionally, there is a method here for adding a report to the manager’s
report list. Switching over to the Manager implementation file, edit it to look like Listing 3.24.

Listing 3.24

Manager implementation file

#import “Manager.h”

@implementation Manager
@synthesize reports;

-(void)dealloc;
{

continued

06_9780470479223-ch03.indd 10506_9780470479223-ch03.indd 105 1/4/11 8:51 PM1/4/11 8:51 PM

106 Introducing Objective-C

Listing 3.24 (continued)

 for(Employee *employee in reports)
 {
 [employee setManager:nil];
 }

 [self setReports:nil];
 [super dealloc];
}

-(id)init;
{
 if(self = [super init])
 {
 [self setReports:[NSMutableArray array]];
 }
 return self;
}

-(void)addReport:(Employee *)inEmployee;
{
 [reports addObject:inEmployee];
 [inEmployee setManager:self];
}

-(double)bonus;
 {
 return salary * .10;
}

@end

The important things to note about this code are that we have a designated initializer here
which creates the reports array and initializes it. This designated initializer will be called from
the Employee class when its initializer is called. If you refer to the Employee class implemen-
tation file, you’ll see that there is a call to [super init] which calls this method. Notice that
the bonus method is overridden in this class as well. This is so the amount of bonus awarded to
the employee is given a different percentage than the amount of bonus for a standard
employee.

One final item of note, in the dealloc method, the manager object iterates over its reports
and removes itself as the manager of those reports when it is deallocated. Remember that the
manager attribute on the employees is set with the assign attribute rather than the retain attri-
bute. The result of this is, if the manager object is the allocated but the employees that report to

06_9780470479223-ch03.indd 10606_9780470479223-ch03.indd 106 1/4/11 8:51 PM1/4/11 8:51 PM

 Chapter 3: Adding Objects 107

that manager are not, the pointer that references the manager in the employee will become
invalid. Therefore, it is important for the manager to set the manager property on its reports to
nil when it deallocs itself. This is an important pattern to remember for future use when work-
ing with delegates.

Tying the classes together in the HR main
Now that you’ve seen the employee and manager class definitions, I’d like to show how you
might create instances of these classes and tie them together.

If you edit your main procedure of your example application to look like Listing 3.25, then it will
demonstrate some of the basic operations that we can do now that we have these classes.

Listing 3.25

#import <Foundation/Foundation.h>
#import “Employee.h”
#import “Manager.h”

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 Employee *joeBlow = [[Employee alloc]
 initWithFirstName:@”Joe”
 lastName:@”Blow”
 birthDate:
 [NSDate dateWithNaturalLanguageString:@”12/01/1990”]
 ssn:@”555-12-1212”];

 Employee *janeDoe = [[Employee alloc]
 initWithFirstName:@”Jane”
 lastName:@”Doe”
 birthDate:
 [NSDate dateWithNaturalLanguageString:@”11/01/1985”]
 ssn:@”555-12-1212”];

 Manager *johnAppleseed = [[Manager alloc]
 initWithFirstName:@”John”
 lastName:@”Appleseed”
 birthDate:
 [NSDate dateWithNaturalLanguageString:@”11/01/1970”]
 ssn:@”555-12-1212”];
 [johnAppleseed addReport:joeBlow];

continued

06_9780470479223-ch03.indd 10706_9780470479223-ch03.indd 107 1/4/11 8:51 PM1/4/11 8:51 PM

108 Introducing Objective-C

Listing 3.25 (continued)

 [johnAppleseed addReport:janeDoe];

 joeBlow.salary = 50000;
 janeDoe.salary = 75000;
 johnAppleseed.salary = 100000;

 NSMutableArray *allEmployees = [NSMutableArray array];
 [allEmployees addObject:joeBlow];
 [allEmployees addObject:janeDoe];
 [allEmployees addObject:johnAppleseed];

 for(Employee *employee in allEmployees)
 {
 [employee giveRaise:.10];
 NSLog(@”Employee %@ %@’s salary is: %.2f with a bonus of: %.2f”,
 employee.firstName, employee.lastName, employee.salary,
 employee.bonus);
 }

 [johnAppleseed release];
 [janeDoe release];
 [joeBlow release];

 [pool drain];
 return 0;
}

Essentially, this code creates three employees, Joe Blow, Jane Doe, and John Appleseed. John
Appleseed is the manager of Joe Blow and Jane Doe. Each of these employees is created and
added to an array that contains all the employees. Finally, the application iterates over the array
of employees and gives them all a bonus and a raise.

SummaryIn this chapter, I’ve introduced you to the very basics of object-oriented programming
and how you declare classes and work with them in Objective-C. I’ve shown you how to create
classes, how to work with inheritance, how to work with polymorphism, and how to encapsu-
late your data in your classes using properties. Throughout the rest of the book, you work with
objects a great deal.

06_9780470479223-ch03.indd 10806_9780470479223-ch03.indd 108 1/4/11 8:51 PM1/4/11 8:51 PM

In This Chapter

Understanding Objective-C
 Memory Management

Introducing memory
management

Using reference counting

Building objects that
manage memory

Using garbage collection

Converting existing code
to garbage collection

Knowing what memory
management model

to use

One of the biggest challenges you may face as a new
Objective-C developer when coming to the platform from
other languages, such as Java, Ruby, and Python, is that

Objective-C requires that you think about memory management.
Many other modern languages have built-in memory management
systems (garbage collection, for example) which enable the pro-
grammer to ignore most memory management concerns.
Objective-C has a garbage collected runtime version, but it is rela-
tively new to the language and unavailable when working on some
of the platforms that Objective-C runs on, such as iPhone and iPad.
As a result, while it would be nice to say that a new Objective-C
developer has no need to be concerned about memory manage-
ment, doing so would be a disservice to you as a new student of
Objective-C. It is entirely likely that even if you are not writing
Objective-C code for platforms other than MacOS X, you will still
run into MacOS X code, which does not have garbage collection
and requires you to manage your memory manually.

Fortunately, however, if you become familiar with the Objective-C
memory management rules, even managing your memory by hand
can be a reasonably simple affair. By the time you finish this chap-
ter, you should have all of the knowledge of all of the tools that you
will require to work with both memory managed code as well as
non-memory managed code.

Using Reference Counting
Before I begin reviewing the actual tools that you will use to
manage your memory in Objective-C, I first want to introduce
you to the mechanism that Objective-C uses under the hood to
make manual memory management almost as easy as using a
garbage-collected environment.

Every object that inherits from NSObject inherits certain memory
management behaviors. Internal to these objects there exists a
counter called the retain count. Using certain calls, this counter can

07_9780470479223-ch04.indd 10907_9780470479223-ch04.indd 109 1/4/11 8:52 PM1/4/11 8:52 PM

110 Introducing Objective-C

be incremented or decremented. The Objective-C language runtime knows that when the
retain count reaches zero, the object in question can be deallocated. When the object is deallo-
cated, all of its memory resources are given back to the system to be reused.

The retain count can be incremented by using several standardized means. First and foremost,
any time you create a new object using a method whose name contains the words alloc, or cre-
ate, the object returned will have a retain count of one. Additionally, any time you acquire an
object by using a method with a method name containing the word copy, that object will also
have a retain count of one. You can manually increment the retain count by calling the method
retain. Finally, you can decrement the retain count by calling the method release. Again, when
the retain count reaches zero, the object, and its memory, are deallocated.

In the following listings, I go over a few scenarios to show how this works in practice. First, in
Listing 4.1 I allocate an object using a standard alloc, and init.

Listing 4.1

A standard allocation of an object

Bar *foo = [[Bar alloc] init];

In this case, at the end of this method, the object foo has a retain count of one.

Now take a look at Listing 4.2

Listing 4.2

Retaining an object

Bar *foo = [[Bar alloc] init];
[foo retain];

In this case, in addition to allocating the object using an alloc call, I’m also incrementing the
retain count by using the retain method. At the end of this code, the object has a retain
count of two.

07_9780470479223-ch04.indd 11007_9780470479223-ch04.indd 110 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 111

Now look at Listing 4.3

Listing 4.3

Allocating and releasing an object.

Bar *foo = [[Bar alloc] init];
[foo release];
[foo doSomething];

In this case, after calling the method release, the object has a retain count of zero, and
would therefore be deallocated. The following line, because it’s attempting to access a deallo-
cated object, would result in a crash.

Obviously, that code is an error. Listing 4.4 shows another example of an error, in this case, a
memory leak.

Listing 4.4

A memory leak

Bar *foo = [[Bar alloc] init];
[foo retain];
[foo release];

In this code, I’ve allocated an object, then retained that object, and then released it, but only
once. If this were a member variable, and I was eventually sending it the second release to
deallocate that object for good, that would be fine. In this case, however, we’re only dealing
with the code in this particular stack, and this would in fact be a memory leak.

Listing 4.5 shows another example of an error that can occur, can you tell what it is?

07_9780470479223-ch04.indd 11107_9780470479223-ch04.indd 111 1/4/11 8:52 PM1/4/11 8:52 PM

112 Introducing Objective-C

Listing 4.5

Failure to retain an object

@interface Foo : NSObject
{
 memberVariable
}

@end

@implementation Foo

-(void)someMethod;
{
 memberVariable = [someOtherObject getFoo];
}

@end

In this case, the code in question should be retaining the object that it received through the call
that didn’t have alloc, copy, or create in the method name. When the program exits this
method, the object in question will be deallocated by the program’s runtime releasing it. This
will result in a crash the next time that object is accessed. Because the variable being used here
is a member variable, it should be retained.

 N O T E
Technically, the object will be deallocated at the end of the next run loop iteration assuming nothing else has retained
it before then, but for the purposes of following the memory management rules, you can assume, if it goes out of
scope and you haven’t retained it, it’s been deallocated.

Learning the memory management rules
Keeping track of retain counts may seem complicated, but memorizing them can make working
with Objective-C much easier.

 Any object you create using a method call containing the word alloc, copy, or
create, is an object, and thus memory, that you own. You are responsible for send-
ing a release to that same object at some point in the future to free that resource.
Anything that looks like [[Foo alloc] init...] is something you need to release.
Anything that looks like [foo copy] you need to release. And anything that looks
like CreateFoo() returns something you need to release.

07_9780470479223-ch04.indd 11207_9780470479223-ch04.indd 112 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 113

 An object you acquire which is not received by calling a method with one of the afore-
mentioned words in it, you don’t own. These objects can be used as much as you want
within the current execution stack, but after you leave your current stack you cannot
expect that they will remain available for your use.

When you receive an object from some other method call, you’re going to get back an object
that has been “autoreleased.” I discuss autoreleasing later in this chapter, but the important
point is that an autoreleased object will be released the next time your application exits its run
loop. This release will likely happen as soon as you leave your current method. Don’t expect
that object to live beyond the current method, for example, if you’re assigning it to a member
variable, then you need to retain it.

When you increment the retain count on an object, either by allocating it, copying it, or retain-
ing it, you are taking ownership of that object, and staking a claim on it. You are stating that you
require access to this object for some indefinite period of time, and when you are finished with
it, you will give up ownership of that object, and allow it to be destroyed.

 C A U T I O N
Although you are becoming the owner of an object by retaining it, ownership does not imply exclusivity. Others may
own the object, as well. You are not the only person who could be accessing the object and changing its values.

Using autorelease
I’ve already mentioned autorelease. The autorelease concept is central to Objective-C
memory management. It enables Objective-C to solve a critical problem that has faced other
languages, such as C++ and C: defining a standard “handoff” mechanism for objects returned
from other methods and how the memory associated with them is managed.

For example, if you think about a C++ method or function that returns an object, who is the
owner of that object? Is it the method that was called? Or is it the calling method? How do you
handle the transfer of that memory from one owner to another without somehow having it all
spill out onto the floor somewhere in between? C++ and C have handled that through a variety
of means. For the most part, it’s been up to the individual developer to create and document
whatever standard they want to follow. The end result is that when learning a new library, you
also need to learn whatever memory management system it’s using as well. Some libraries
might prefer smart pointers, while others might prefer known contracts, for example.

When Objective-C was faced with this problem, the developers of Objective-C created the
concept of “autorelease”. Autorelease is a method that you call on an object just like
release. However, instead of immediately decrementing the retain count on the object, you can
think of autorelease as a promise from the runtime that it will decrement the retain count
the next time the application’s run loop exits. Typically, this happens when your current
method exits. When the retain count is decremented in this manner, the object will be released
just like normal.

07_9780470479223-ch04.indd 11307_9780470479223-ch04.indd 113 1/4/11 8:52 PM1/4/11 8:52 PM

114 Introducing Objective-C

Any time you are returning an object that you have created from a method whose name does
not contain Alloc, copy, or create, the object that you return should be autoreleased.
The autorelease method actually returns the object that it is autoreleasing. Therefore, it is
especially convenient, and somewhat of a standard, to use a pattern similar to that shown in
Listing 4.6

Listing 4.6

Returning an autoreleased object

-(Foo *)getFoo
{
 Foo *foo = [[Foo alloc] init];
 // do something with foo here...
 return [foo autorelease];
}

Another common pattern where autorelease is used effectively is that of autoreleasing objects
that you create instead of manually releasing them. By doing this, you are essentially giving up
worrying about managing the memory for the object that you create, and instead allowing the
“autorelease pool” to automatically clean out anything that you leave hanging when your
method exits. An example of this is shown in Listing 4.7.

Listing 4.7

The alloc/autorelease pattern

-(void)someMethod
{
 Foo *foo = [[[Foo alloc] init] autorelease];

 // foo is still valid here,
 //it won’t be released until the method exists
 [foo doSomething];
}

07_9780470479223-ch04.indd 11407_9780470479223-ch04.indd 114 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 115

You may find a liberating simplicity in having the release coupled so closely to the allocation of
the object. You are less likely to forget to do it later when using this pattern. Additionally, writ-
ing your code in this way enables you to think of Objective-C a bit more like a memory man-
aged language, such as Python or Ruby. You can imagine that all of your variables that you are
working with inside of this particular stack frame will always go out of scope and be deallo-
cated. You only have to actually think about a particular object or variable when you want to
keep it around outside of this particular stack frame.

The Cocoa and Cocoa Touch frameworks provide you with additional tools to help you follow this
pattern, as well. Specifically, many of the foundation objects, such as NSString, NSArray, and
NSDictionary, include factory methods that return autoreleased versions of the objects
they create. By using these, instead of the alloc/init patterned constructors, you barely
have to think about memory management at all.

Listing 4.8 shows an example of using these sorts of factory methods and compares them to the
traditional pattern.

Listing 4.8

Using factory methods versus the traditional allocation pattern

-(void)usingFactories;
{
 NSMutableArray *array = [NSMutableArray array]; // nice, simple,

autoreleased.

 NSMutableArray *array2 = [[NSMutableArray alloc] init];
 // do stuff with array and array 2...

 // need to release this one.
 [array2 release];

 // [array release]; no need to release this,
 // it’s already autoreleased
 // if you release it here, it will cause a crash
}

Because you are essentially leaving it up to the runtime to delete the objects that you create,
you are giving up a certain amount of control over when those objects will be deleted. In an

07_9780470479223-ch04.indd 11507_9780470479223-ch04.indd 115 1/4/11 8:52 PM1/4/11 8:52 PM

116 Introducing Objective-C

ideal scenario, they will be deleted the next time the runtime exits its run loop. In practice, of
course it’s not always quite that simple. Because of this, you want to avoid creating large
amounts of objects using the autorelease pool. On platforms with especially strict memory
limitations, it is even possible to exhaust your memory without having any memory leaks. Take,
for example, the code shown in Listing 4.9.

Listing 4.9

Leaving many objects on the autorelease pool

-(void)inflateMemoryUsage
{
 for(NSUInteger n = 0; n < 100000; ++n)
 {
 // this object is autoreleased
 NSData *data = [self getBigBlobOfData];
 // do something with data...
 [self doStuff:data];
 }
 // all 100,000 data objects are still alive here.
}

In this case, the code seems simple enough. Notice, however, that I am executing a tight loop
wherein objects are being allocated and being left on the autorelease pool to be released
later. Because this code is looping, the execution flow is not exiting the current stack. The
autorelease pool is never being drained. Thus, memory use continues to simply climb.

You can resolve this problem several different ways. The first, of course, is to simply release the
objects instead of using autoreleased objects. For example, if you rewrote the code in Listing
4.9 to be like Listing 4.10, the problem would go away.

Listing 4.10

Releasing the objects inside the loop

-(void)inflateMemoryUsage
{
 for(NSUInteger n = 0; n < 100000; ++n)

07_9780470479223-ch04.indd 11607_9780470479223-ch04.indd 116 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 117

 {

 // plain old retain count of 1
 NSData *data = [[NSData alloc] init];
 [self putBlobOfDataIntoData:data];
 // use the existing object you made
 // do something with data...
 [self doStuff:data];
 [data release]; // object is deallocated here.
 }
 // nothing left over.
}

However, there are times when you don’t always have control over whether all of the objects
inside of your loop can be released in this manner or not. Sometimes, due to libraries, for exam-
ple, you may wind up with autoreleased objects in a loop like that in Listing 4.10. In these cases,
the appropriate solution is to create your own autorelease pool inside your loop, and, when you
are finished with the objects inside that code, drain your autorelease pool and dealloc it.

Exactly how you do all of this is the subject of the next section.

Understanding autorelease pools
You’ve already seen autorelease pools in the template code that is provided for you automati-
cally when you create a new project. In case you missed it, here’s an example from a typical
Foundation command line application in Listing 4.11.

Listing 4.11

A typical main function

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 // insert code here...
 NSLog(@”Hello, World!”);
 [pool drain];
 return 0;
}

07_9780470479223-ch04.indd 11707_9780470479223-ch04.indd 117 1/4/11 8:52 PM1/4/11 8:52 PM

118 Introducing Objective-C

As you can see, the first thing that this application does is create an NSAutoreleasePool
to capture all of the objects that the application creates and which have received an auto
release message. At the end of the main function, the autorelease pool is drained, before it is
deallocated. The act of draining the autorelease pool is what actually causes the actual release
messages to be sent to all of the objects that have been autoreleased.

All applications have at least one NSAutoreleasePool. If an application has multiple
threads, each thread must have its own autorelease pool as well. Typically, most GUI applica-
tions have an autorelease pool that is drained each time the run loop executes. This causes your
autoreleased objects to be released constantly while your application is running, unlike the
code in Listing 4.11 that releases the objects only prior to the application exiting.

To create your own autorelease pool, you need to allocate a new NSAutoreleasePool
object, and then perform the necessary operations you need to, including autoreleasing what-
ever objects you need to autorelease. When you are ready to actually deallocate the objects
that you have autoreleased, you simply drain the pool using the drain method or deallocate it
with a release. An example of this is shown in Listing 4.12.

Listing 4.12

Creating your own autorelease pool

-(void)inflateMemoryUsage
{
 for(NSUInteger n = 0; n < 100000; ++n)
 {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 // this object is autoreleased
 NSData *data = [self getBigBlobOfData];
 // do something with data...
 [self doStuff:data];
 [pool release]; // the autoreleased objects are deallocated here.
 }
 // nothing left over.
}

Autorelease pools work a bit like nested stacks, in that objects that are autoreleased are pushed
onto the highest level autorelease pool that is available to them. Therefore, if you create multiple
autorelease pools inside one another, objects autoreleased inside of the innermost autorelease

07_9780470479223-ch04.indd 11807_9780470479223-ch04.indd 118 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 119

pool will be deallocated when that autorelease pool is drained. Again, autorelease pools are a
useful tool to aid in making manual memory management easier. They are not to be confused
with automatic memory management.

In the next section, I explain how memory management looks from inside your objects and
what you need to do to make sure that your object is managing its resources correctly.

Understanding memory from inside the object
You may be wondering what happens to your objects when you are allocating and releasing
them.” When someone instantiates one of your objects, they call your init method. When
they release one of your objects, your dealloc method is called automatically by the runtime.
When allocating and initializing a new object, your initializer should allocate and initialize all of
the member variables of that object. Similarly, when releasing an object, your dealloc
method should release all of the allocated memory both from your objects initializer as well as
any dynamic memory that may have been allocated during execution of any of the methods on
that object. Essentially, when initializing a new object, you allocate whatever resources that
object will require, and when releasing the object you should deallocate those resources.

 C A U T I O N
You should never call dealloc yourself.

You’ve already seen that when you create a new object, and assign it to a variable, you call
alloc on the class which in turn, returns an allocated object, with no data members. You then
use that object to call init, or another initializer that is appropriate for your class. The initial-
izer is where you allocate the memory for your member variables in your object.

The dealloc method is never called directly by you. It is called indirectly, when you call the
release method on your object. The dealloc method is also called automatically when
your object is released by an autorelease pool.

How you allocate and deallocate memory inside of these methods is important. I go into to
detail in the next section.

Writing initializers
When writing initializers, remember to call either the designated initializer for your class or call
the superclass’ designated initializer.

To call the designated initializer for your current class, you call it by using the special variable,
self, like so: [self init]. To call the superclass’s designated initializer, you use the special
variable super, and call the superclass’s designated initializer by calling [super init]. Both

07_9780470479223-ch04.indd 11907_9780470479223-ch04.indd 119 1/4/11 8:52 PM1/4/11 8:52 PM

120 Introducing Objective-C

of these methods will return an initialized object, self, which represents the object that you
are initializing, and which must be returned from your initializer as well. If an error occurs in the
superclass, or designated initializer initialization, they will return nil.

One important, but unusual, step in writing a correct initializer is the assignment of the self
returned from the superclass or designated initializer to the self variable inside of your initial-
izer. This may look like an error, but it is an important aspect of Objective-C, and one which you
should not bypass. The super class initializer may actually create a new object and return it as
self instead of reusing the self object that you have allocated in your initializer. This is often
done in cases where class clusters exist. Class clusters are the implementation of a given class by
one of several subclasses. The initializer determines the correct subclass to instantiate, and
returns it.

After calling the designated initializer, and assigning its results to self, you should verify that
self is not nil. If an error occurs during initialization, you will receive nil from the parent
initializer. If this occurs, you should not attempt to initialize your member variables, but should
simply return nil as well.

The assignment and verification can occur on a single line, as shown in Listing 4.13.

Listing 4.13

A typical initializer

-(id)init
{
 if(self = [super init])
 {
 someMemberVariable = [[Foo alloc] init];
 }
 return self;

}

When the super class initialization has completed successfully, you can allocate and initialize your
member variables. Doing this consists of simply calling standard Objective-C initializers for each of
the member variables that you need. In some cases, you may want to delay allocating certain
member variables until they are actually needed. If this occurs, adjust your code accordingly.

07_9780470479223-ch04.indd 12007_9780470479223-ch04.indd 120 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 121

After allocating and initializing your member variables and other resources, you then return self
from your initializer. Doing this fulfills the contract of the initializer, returning the now initialized
object to the caller.

In some cases, special initializers are called by the Cocoa or Cocoa Touch frameworks under
specific conditions. For example, when deserializing an object from a nib file, the special initial-
izer initWithCoder: is called to decode the serialized class information from the file. These
cases are rare, but important. Members of the Objective-C community currently debate about
whether or not it is appropriate to use Objective-C 2.0 property accessors to initialize member
variables in initializers and destructors because using these accessors triggers Key Value
Observing events. (I discuss Key Value Observing and how it works in a future chapter) For now,
I suggest initializing your member variables directly, and to not use the accessors in the initial-
izer and destructor. That said, even if you choose to ignore this advice, you will probably not run
into a problem. I use my accessors in initializers and destructors frequently, and I have never run
into an issue. Nonetheless, the possibility exists that you can introduce an obscure bug by
doing it this way.

This problem becomes slightly more complicated, because when using the 64-bit runtime, you
can declare properties that do not have member variables associated with them. In this case, it
is only possible to initialize or release your member variables by using your accessors. Therefore,
Apple suggests that when using the 64-bit runtime, and using properties that do not have
member variables associated with them, you should in fact use the accessors in the initializers
and destructors of your objects and when using the older, 32-bit runtime, that you do not use
accessors in your constructor or destructor.

Writing dealloc Methods
In order to free the memory that you allocated in your initializer, you also have to write a
destructor as well. The method name for Objective-C destructor, is dealloc. As I mentioned
before, dealloc is called indirectly when you call the method release on an object. It is also
called automatically when an object is autoreleased, when the auto release pool is drained. An
example dealloc method is shown in Listing 4.14.

Listing 4.14

A typical dealloc method

-(void)dealloc
{
 [someMemberVariable release];
 someMemberVariable = nil;
 [super dealloc];
}

07_9780470479223-ch04.indd 12107_9780470479223-ch04.indd 121 1/4/11 8:52 PM1/4/11 8:52 PM

122 Introducing Objective-C

Inside the dealloc method, you should free any resources that were allocated by your object,
including any memory associated with any of its member variables. You do this by calling
release on any member variables. After releasing a member variable, you should always make a
point to assign the pointer which previously held the data for that member variable to nil.

Objective-C, unlike other languages, such as Java or C++, specifies that methods called on nil
objects result in no operations at all (a “no-op” in comp-sci speak). Therefore, setting your point-
ers to nil after releasing them is always a good idea. When you release a member variable,
though its memory may be freed, its pointer still points to the location in memory where that
object once existed. Other data may immediately be written to that same location in memory.
When this occurs, accessing that variable again may result in a crash or unexpected, undefined,
behavior. If you fail to set the member variable to nil, access to that member variable will be
accessing unknown values in memory. This is known as a “dangling pointer”.

When working with objects that are using your object as a delegate, special care must be taken
as well. When you assign your object as a delegate for another object, the delegating object,
according to Cocoa standards, should not retain the assigned object (the delegate).

The reason is that if your object allocates an object for which it is a delegate, the result could be
a circular retain cycle, wherein your object retains the sub object, which in turn retains your
object as a delegate. In this case, deallocating either object will still result in both objects
remaining allocated, because they contain references to each other. Because of this, the object
with the delegate always has the delegate variable specified to be assigned rather than
retained. Therefore, when deallocating an object that is the delegate for another object, always
set the sub objects delegate property to nil in your dealloc method to prevent the sub
object from trying to make calls on a delegate that has been deallocated.

Another common situation, similar to that of the delegates issue occurs when using the
observer pattern, or the more Objective-C specific implementation of the observer pattern, the
NSNotificationCenter. When using the NSNotificationCenter to have your
object notified of certain events while your application is running, you should always be sure to
remove yourself as an observer of the NSNotificationCenter when your object is deallo-
cated. Failure to do so can result in a crash. The same also applies when having your object
observe Key Value notifications for other objects. You should always remove yourself as a Key
Value Observer from any objects for which you previously set yourself as an observer. I cover
this topic in Chapter 6.

After you have deallocated your resources, and removed your object from any observing or del-
egation responsibilities that it may have had, then the last thing that you should always make
sure to do is call the superclass dealloc method. This gives your superclasses an opportunity
to free their resources.. If you fail to call your superclass dealloc method, your application will
leak memory. The call to [super dealloc] should always be the last line of your dealloc
method so that it comes after you’ve cleaned up your own memory allocations.

07_9780470479223-ch04.indd 12207_9780470479223-ch04.indd 122 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 123

Using Garbage Collection
If the idea of manually managing your memory in your application sounds like a chore, then
you will be glad to hear that recently Apple added garbage collection to Objective-C. If you are
unfamiliar with the concept of garbage collection, garbage collection is a means by which an
application’s runtime dynamically determines objects that are no longer being used or refer-
enced inside of your application, and automatically deallocates those objects. Applications that
use garbage collection need not worry about releasing objects, retain cycles, or, for the most
part, memory leaks. When used appropriately, garbage collection can help you avoid some of
the most common pitfalls that beginning programmers run into.

Unfortunately, garbage collection does have a down side. Garbage collection is only available
on MacOS X Version 10.5 or above. It is not available, currently, on iPhone, iPad, or any of the
less common platforms, such as Linux or Windows. Because of this limitation, learning how to
write proper Objective-C code for manual memory managed environments is important.

Also, although garbage collection solves a great many problems with regard to memory man-
agement, it also presents additional challenges that you must understand in order to use gar-
bage collection effectively.

Understanding the Garbage Collector
If you’re coming to Objective-C from another language, such as Java, Python, or Ruby, you
are probably already familiar with the concept of garbage collection. Understanding how the
Objective-C garbage collector works, however, can be useful in aiding you to write correct code
for the specifics of the Objective-C environment.

Understanding the basics of how the Objective-C garbage collector functions is essential. For
any application that has a run loop built into it, for example Cocoa or Cocoa Touch applications,
when the main run loop executes, the garbage collector kicks in and searches for objects that
have no active references to them. When the garbage collector finds some, it deallocates them.

How this works is that the garbage collector looks at a set of root objects within your applica-
tion and searches all of the references that contain those root objects. Any object that cannot
be reached from one of those root objects is considered to be “garbage” and will be collected.
Root objects are defined to be global variables, stack variables, and external references.

So, for example, any object reference from the main application global instance, or any object
referenced by any object referenced by the main application global instance would not be
considered to be garbage references. However, if an object is allocated in a method assigned
to a variable within that method and then never referred to again after that method has exited,
the original variable that held it has gone out of scope. The object reference is now held in
memory and has no reachable reference from a root object. That object can be collected.

07_9780470479223-ch04.indd 12307_9780470479223-ch04.indd 123 1/4/11 8:52 PM1/4/11 8:52 PM

124 Introducing Objective-C

When an object is collected, its memory is freed, but its dealloc method is not called. In a gar-
bage collected environment dealloc methods are considered obsolete and are no longer
used. Instead, a new object method has been introduced called finalize. The finalize
method shares many similarities with the dealloc method, in that it is the last method that is
called before your object is deleted, and it is, for the most part, considered to be the correct
place to do whatever cleanup is necessary for your object. However, because of the way that
garbage collection works, the finalize method has certain limitations that the dealloc
method does not share. Having a finalize method for your object is entirely optional. In fact,
arguably, you should actually strive not to have a finalize method at all.

Recall that the dealloc methods primary purpose is to manually release the memory allo-
cated for your member variables. Because you do not need to do that in a garbage collected
environment, this is not necessary in your finalize method. Therefore, the only reason to
have a finalize method, is for freeing other finite resources. (Unfortunately, for reasons I
explain later, finalize is actually a really poor place to free finite resources.)

Because the garbage collector is relatively nondeterministic in terms of when it will actually call
your finalize method, ou can’t determine when it will be called. Therefore, if the resources
that you need to free are important, you probably want to put the code for freeing those
resources in another method that can be called deterministically by your code rather than rely-
ing on the garbage collector and when it may get around to deallocating your object.

The order in which garbage objects are collected is also nondeterministic. Therefore, any case in
which you might be calling other objects in your finalize method has potential for failure
depending on whether your object or the objects you are calling are deallocated first.

Because of these reasons, avoid using a finalize method. If no other choice is available to
you, I discuss the appropriate way to write a finalize method and how to manage your
finite resources in that method later in this chapter.

Recall that any application containing a run loop, again, Cocoa or Cocoa Touch applications,
automatically has a garbage collector (assuming that you have enabled garbage collection for
your project). However, if you’re writing a foundation-only application, such as the applications
that you’ve written so far in this book, you must manually instantiate and launch the garbage
collector as part of your application’s main function.

For the most part, in the remainder of this book, I intend to use Cocoa GUI applications for the
example projects. However, I wanted to show you how you launch the garbage collector in a
Foundation application. To do so, you call the function objc_startCollectorThread()
as shown in Listing 4.15.

07_9780470479223-ch04.indd 12407_9780470479223-ch04.indd 124 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 125

Listing 4.15

Using the garbage collector in a foundation application

int main (int argc, const char * argv[])
{
 objc_startCollectorThread();

 // ...

 return 0;
}

Understanding reference types
To effectively understand how to use garbage collection in your applications, you need to
understand two fundamental concepts that impact how garbage collection works within your
application. These concepts are strong and weak references.

All object pointers in Objective-C are references, meaning that they refer to memory allocated
for an object. A reference can be either strong or weak. By default, all references in Objective-C
are strong references. A strong reference is the kind of reference that the garbage collector will
follow to determine that an object is alive and should not be collected. Weak references, on the
other hand, are references that are assignable and valid references to objects, but which are
allowed to be garbage collected if the object that they refer to does not have an otherwise
strong reference elsewhere.

This concept is useful when you want to have a reference to an object but if that object is
marked to be deallocated, you don’t want to hold onto it. For example, the NSNotification
Center uses weak references for observers that are registered with it. Remember that in a ref-
erence counted environment, objects that are registered as an observer with the NSNotification
Center must remove themselves as an observer in their dealloc methods. In a garbage col-
lected environment this requirement is not necessary because when the object is deallocated,
the weak reference to that object in the NSNotificationCenter becomes invalid and is set
to nil. Therefore, the NSNotificationCenter no longer attempts to send notifications to
that object.

07_9780470479223-ch04.indd 12507_9780470479223-ch04.indd 125 1/4/11 8:52 PM1/4/11 8:52 PM

126 Introducing Objective-C

Now, you may be reading this, and thinking that this would be an appropriate pattern to use
when creating a delegate. Remember that in a reference counted environment, when an object
has a delegate, it uses the assign property attribute to effectively create a “weak” reference to
the delegate. The reason this is done in that environment is to prevent retain cycles. In a gar-
bage collected environment, however, the garbage collector is able to detect and prevent
retain cycles, and as a result, using a weak reference for delegates is unnecessary.

As I said before, the default for all references in Objective-C is to be strong. To define a reference
as weak, you use the __weak keyword. An example of this is shown in Listing 4.16.

Listing 4.16

Defining a weak reference

@interface Foo : NSObject
{
 __weak NSString *memberVariable;
}

@end

In addition to being able to manually specify a given reference as being weak, there are also
specialized container classes that can be used to store lists of weak references. You might use
these classes in place of such classes as NSArray or NSDictionary in cases where you want to
store weak references instead of strong references.

These classes are NSMapTable, NSHashTable and NSPointerArray. When you use these classes, if
an element of these arrays is deallocated, the reference to that element is simply removed from
the array. Normally, if you use an NSAray, or similar, the strong reference within the array keeps
the objects alive.

Configuring your project for garbage collection
Configuring a project for garbage collection is relatively straightforward. All that’s really neces-
sary is to configure your build settings, and change the setting for Objective-C garbage collec-
tion. As shown in Figure 4.1, if you search for this setting in your build settings you can pull
down a drop-down list of possible values. These include the following:

 Unsupported: Use the retain-count memory management system.

 Supported: Specifies that your project supports garbage collection but does not
require it.

 Required: Garbage Collection is required for this application and all frameworks it uses.

07_9780470479223-ch04.indd 12607_9780470479223-ch04.indd 126 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 127

Figure 4.1

Garbage Collection Build Settings

The first setting, of course, is no garbage collection at all. You can enable this by choosing the
Unsupported option. The second option is the Supported option. This option adds the flag
-fobjc-gc, which specifies that your project supports garbage collection but does not
require it. When using this setting, you can link your project with applications that have not
been compiled for garbage collection. This setting is normally only used for libraries. When
using this setting, your code is expected to implement both dealloc methods as well as final-
ize methods, so that it can be used regardless of whether the application that it is being linked
with is compiled for garbage collection or not.

The final setting, Required adds the compiler flag -fobjc-gc-only to your compile settings,
and specifies that your code does not use retain/release methods and thus cannot be loaded
into an application that does not support garbage collection.

07_9780470479223-ch04.indd 12707_9780470479223-ch04.indd 127 1/4/11 8:52 PM1/4/11 8:52 PM

128 Introducing Objective-C

If you are converting an existing application from a non-garbage collected environment to a
garbage collected environment, you should know that all of the methods specific to the non-
garbage collected memory management model will no longer apply. Your initializer will still be
called, but your dealloc method will not. You should thus re-factor your dealloc method,
either removing any sort of resource deallocation you may have had before or moving it into a
finalize method.

Using Frameworks in a Garbage Collected Project
When using garbage collection for your application, you must also ensure that any libraries
or frameworks that you link to are compiled to support garbage collection. As I showed you
before, when compiling a framework or library for garbage collection, you can choose to enable
it exclusively, inclusively (allowing your framework to be used both in a garbage collected
application and a non-garbage collected application), or to disallow garbage collection alto-
gether. In the latter case, the library or framework will not be able to be linked with your
application.

Fortunately, all of the Cocoa frameworks fully support garbage collection. The only cases where
you may run into situations where libraries or frameworks do not support garbage collection
are in the cases of third-party libraries. Garbage collection has been around in Objective-C on
MacOS X for quite some time now, so libraries that don’t support it are few and far between.

Exploring Key Garbage Collector Patterns
There are a few design patterns that you will inevitably run into when working on a garbage-
collected application. Recognizing these patterns and understanding the ways that you should
deal with the problems that they solve can be helpful.

Managing finite resources
One often-used design pattern in object oriented programming languages is the practice of
writing an object wrapper for a finite resource. Using object wrappers is a common practice
when working with files, sockets, and so on. The advantage of this pattern is that the resource
can be allocated in the initializer of the object and deallocated in the dealloc method for the
object. This provides a nice mental model for ensuring that the resource that has been allocated
gets deallocated.

There are several problems with this design pattern in a garbage collected environment.
The first, of course, is that the dealloc method is no longer called. Therefore, if you make no
changes to your application other than enabling garbage collection, the finite resource that
you are attempting to wrap and ensure is deallocated will never be deallocated. This can

07_9780470479223-ch04.indd 12807_9780470479223-ch04.indd 128 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 129

become especially problematic if, for example, the item in question is an operating system
resource, such as a socket. It might seem tempting to simply move the deallocation from your
dealloc method to a finalize method. (I’ve already discussed how your goal should be to have
no finalize method at all.) Remember that in a garbage collected environment, your
object may be deallocated at an arbitrary point in the future. In other words, you can’t count
on your finalize method to be called at any particular point in time in the execution of
your application. Therefore, it is possible that the resource that you are expecting to be deal-
located in your finalize method is not going to be deallocated until much later in your
program’s execution than you previously expected.

These two problems combined, result in a situation that requires you to rethink this design pat-
tern and to do a little bit of extra work, both in the object itself, and objects that use that object
to ensure that resources allocated by that object are closed properly before allowing the object
to be garbage collected.

The easiest way to demonstrate this concept is probably to show you some code. Listing 4.17
shows a typical file wrapper class, which is allocating a resource, a file handle, its initializer, and
then deallocating that resource in dealloc method.

Listing 4.17

A typical file wrapper class

@interface Foo : NSObject
{
 int fileHandle;
}

@end

@implementation Foo

-(id)init
{
 if(self = [super init])
 {
 fileHandle = open(...);
 }
 return self;

}

continued

07_9780470479223-ch04.indd 12907_9780470479223-ch04.indd 129 1/4/11 8:52 PM1/4/11 8:52 PM

130 Introducing Objective-C

Listing 4.17 (continued)

// methods here...

-(void)dealloc
{
 close(fileHandle);
 [super dealloc];
}

@end

To convert this class to an appropriate garbage collectible class, you need to take the deallo-
cation of the file handle out of the dealloc method, and put it in another method that can be
called manually by users of your object. For example, a close method.

Listing 4.18 shows the same class updated and able to be used in a garbage collected environment.

Listing 4.18

A garbage collectible file wrapper

@interface Foo : NSObject
{
 int fileHandle;
}

@end

@implementation Foo

-(id)init
{
 if(self = [super init])
 {
 fileHandle = open(...);
 }
 return self;

07_9780470479223-ch04.indd 13007_9780470479223-ch04.indd 130 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 131

}

-(void)close;
{
 if(fileHandle != -1)
 close(fileHandle);
 fileHandle = -1;
}

-(void)finalize;
{
 [self close];
 [super finalize];
}
@end

Writing foundation applications with
garbage collection
I touched on the subject of Foundation command line applications written with garbage collec-
tion briefly before. You already know that to create a commandline Foundation application that
uses garbage collection, you must manually start the garbage collector at the beginning of your
main function, before you allocate any objects. However, another detail is important for you to
understand.

The way that the Objective-C garbage collector works is that it searches for pointers that refer
to objects in both the global scope and the current local stack. When it does this, it looks at all
of the currently active variables in the local stack. When doing so, it doesn’t take into account
whether the local stack variable has been initialized or not. Remember that a variable, before it
is initialized, is pointing to memory locations which previously may have contained initialized
data for objects or variables that have been previously deleted. In other words, an uninitialized
variable in your current stack may be pointing to an object that you allocated in a previous
function call but subsequently is no longer referenced. Therefore, the garbage collector may
mistakenly think that your local variable may be referencing an object which should be garbage
collected.

To prevent this problem from happening, you need to clear the local stack on a regular basis.
The low-level Objective-C runtime method you use to do this is objc_clear_stack(OBJC_
CLEAR_RESIDENT_STACK). Typically, in a command line Foundation application, one with-
out a run loop provided by the frameworks, you would be providing your own run loop for your
own application events to be processed. The top of this run loop is considered to be an ideal
location to clear the local stack and prevent this problem from occurring.

07_9780470479223-ch04.indd 13107_9780470479223-ch04.indd 131 1/4/11 8:52 PM1/4/11 8:52 PM

132 Introducing Objective-C

Taking these two things into consideration, a typical command line Foundation application
main function should probably look something like Listing 4.19.

Listing 4.19

Commandline Foundation application main function

int main (int argc, const char * argv[])
{
 objc_startCollectorThread();

 // ...

 while(running)
 {
 objc_clear_stack(OBJC_CLEAR_RESIDENT_STACK);

 for(RunnableItem *item in runnableItems)
 {
 [item run]; // ..
 }
 }

 return 0;
}

Working with objects in nib files
An uncommon but difficult to debug problem can occur when working with objects in nib files
that have no reference from an instantiated object in your application. Again, the garbage col-
lector searches for any objects which have no references from global objects or objects on the
current stack. In some rare cases, you may create a nib file, which contains objects that don’t
have references to them, for example, view controllers with no external reference. Under nor-
mal conditions, these objects are garbage collected. The solution to this problem is to create an
IBOutlet in the object that owns your nib, and connect this outlet to the object in question.
This provides a strong reference to the object and prevents it from being garbage collected.

 N O T E
Nib files, or “NeXT Interface Builder” files are used in defining interfaces on iOS and Mac OS. I don’t discuss them in this
book other than here since it’s specific to Cocoa and Cocoa Touch. For more information, see the Wiley books Cocoa
Developer Reference or Cocoa Touch for iPhone OS 3 Developer Reference.

07_9780470479223-ch04.indd 13207_9780470479223-ch04.indd 132 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 133

Forcing garbage collection
In some cases, you may want to force the garbage collector to collect whatever may be avail-
able for collection at a particular point of execution in your application. For example, if you have
just recently allocated and then deallocated a large collection of objects, it may be appropriate
for you to tell the garbage collector to start collecting so that those objects can be completely
deallocated as quickly as possible.

To do this, you can use the low-level method objc_collect(). This method forces the gar-
bage collector to begin a collection cycle. I detail this method later in this chapter.

 N O T E
When working with converting non-garbage collected code to garbage collection or code which has to function in both
environments, the presence of an autorelease pool will act as a hint to the collector that it should attempt a collection
as well. This is an undocumented but somewhat well-known feature of the garbage collector.

Working with void pointers and garbage collection
Another common Objective-C pattern that can cause difficulty in garbage-collected applica-
tions is using a void* data type for passing application-specific data between callbacks. The
advantage of this approach is that the data passed between methods can be any type of data
the developer desires. It could be an object, or it could be just a blob of bytes. The receiving
method typecasts the void* parameter to whatever type of data it expects to receive.

The problem in a garbage-collected environment arises because the void pointer is opaque,
and so may be mistaken for an object without a reference, and thus garbage collected. This can
occur between the initiating method and the callback method such that the pointer received
by the callback method winds up pointing to a deallocated object.

The solution to this problem is to use the Core Foundation methods CFRetain and CFRelease to
for ce a strong reference to be maintained in the global Core Foundation framework. An exam-
ple of how this works is shown in Listing 4.20.

Listing 4.20

Retaining opaque pointers for use with a callback

@implementation Baz

-(void)callbackMethodForObject:(id)object withUserInfo:(void *)inData
{

continued

07_9780470479223-ch04.indd 13307_9780470479223-ch04.indd 133 1/4/11 8:52 PM1/4/11 8:52 PM

134 Introducing Objective-C

Listing 4.20 (continued)

 Bar *bar = (Bar *)inData;

 // do stuff with bar...

 CFRelease(bar);
}

-(void)startLongOperation
{
 Bar *bar = [[Bar alloc] init];
 CFRetain(bar);
 foo = [[Foo alloc] init];
 [foo startLongOperationWithDelegate:self callbackMethod:
 @selector(callbackMethodForObject:withUserInfo:)
 userInfo:bar];
}

@end

Essentially, before passing your user data pointer to the object which is going to call your call-
back, you manually call a CFRetain, passing your user data pointer as its parameter. At this
point, a strong reference is established for the object in question.

Subsequently, when your callback is called, and passed the user data pointer, you should call
the CFRelease, again, passing the pointer as its parameter. This removes the strong reference to
the pointer and makes it so that the next time the garbage collector executes, assuming you
don’t establish another strong reference to this object, it will be collected.

Using the object oriented interface
to the garbage collector
In addition to the functional interface of the garbage collector, which is appropriate to use in
low-level code, Apple also provides a higher-level abstraction for working with the garbage col-
lector the NSGarbageCollector class.

The NSGarbageCollector class is a singleton that allows you to interact with the garbage collec-
tor through an Objective-C interface. You can access the current thread’s garbage collector by
calling the defaultCollector method. After you have the singleton instance of the garbage col-
lector, you can use it to disable or enable collection for specific pointers, or even for the entire

07_9780470479223-ch04.indd 13407_9780470479223-ch04.indd 134 1/4/11 8:52 PM1/4/11 8:52 PM

 Chapter 4: Understanding Objective-C Memory Management 135

thread. Additionally, you can use it to force a collection by using the methods collectExhaus-
tively or collectIfNeeded.

A list of the methods available on the NSGarbageCollector class are shown in Table 4.1

Table 4.1 Commonly Used NSGarbageCollector Methods
Method Purpose

+defaultCollector Returns the NSGarbageCollector singleton for the current thread.

-disable/-enable Disables or enables garbage collection temporarily.

-isEnabled Returns YES if garbage collection is currently enabled, otherwise NO.

-collectExhaustively Triggers an exhaustive collection of garbage objects.

-collectIfNeeded Triggers a collection, but only if memory consumption has grown beyond thresholds since the

last collection.

-disableCollectionForPointer: Causes the given pointer to become a root object, and thus ineligible for collection.

-enableCollectionForPointer: Removes the given pointer from the list of root objects, making it eligible for collection.

Understanding What Memory Management
Model to Use for Your Projects
Perhaps the most important thing to understand about garbage collection is when it’s appro-
priate to be used and when it’s not appropriate to be used. For certain, in many cases garbage
collection is not a good choice for your application. As I’ve mentioned before, it’s only available
on MacOS X Versions 10.5, and later. If your code needs to run on any other platform, including
iPhone or iPad, garbage collection isn’t even an option for you. In addition to this, however, if
you have an application that does not use garbage collection, and which has a large existing
code base that is using reference counted memory management, it probably doesn’t make
sense to convert it to garbage collection. The effort required to do so may be prohibitive.

Finally, because the garbage collector is slightly less efficient with regard to how many objects
are actively alive in the application at any given time, the deallocated objects aren’t truly deallo-
cated until the collector finds them. Additionally, the garbage collector itself must utilize CPU
cycles in order to do its work. If either of these are a consideration for you, then using garbage
collection in your application may not be an appropriate choice.

However, using garbage collection in your application can also have significant advantages. For
example, generally speaking, applications using garbage collection are easier to make thread
safe. This is because accessors can become simple assignment operations that no longer
require thread locks to be thread-safe.

07_9780470479223-ch04.indd 13507_9780470479223-ch04.indd 135 1/4/11 8:52 PM1/4/11 8:52 PM

136 Introducing Objective-C

Garbage collected applications typically are also easier to code. The lack of necessity for main-
taining weak references to delegates, and so on results in simpler code that is easier to maintain.

Finally, and most obviously, the ability to practically ignore the typical boilerplate code required
for reference counted memory management is a huge win. They say that the best code, and the
most bug free code, is code that you don’t have to write at all. Certainly, garbage collection
helps to reduce the opportunities for bugs in your code by reducing the amount of code you
have to write.

Remember that you should use the highest level of abstraction that will achieve your goals
while working within the performance parameters that you require. Meaning, if you can use
garbage collection, and it will perform adequately for your problem domain, then you should.
If garbage collection results in subpar performance for your particular problem domain, then
don’t use it. One of the greatest advantages that Objective-C provides developers is the ability
to easily move up and down the framework stack and use the level of abstraction that most eas-
ily solves the problems that need solving.

Summary
This chapter may be one of the most important chapters in this book. An understanding of
memory management technologies and proper use of both reference counting and garbage
collection is a vital skill for all Objective-C programmers. In this chapter, I introduced you first
to the traditional memory management model of Objective-C, reference counting. I’ve shown
you how to allocate memory in your objects, and how to free that memory when you’re no lon-
ger using it. I also show you how to use the new technology available on MacOS X, garbage
collection. Garbage collection can make your code simpler and less bug-prone than traditional
reference counted memory management. You must decide for yourself which memory man-
agement technology is appropriate for your project. However, I hope that I have given you suf-
ficient tools to be able to make that decision effectively.

07_9780470479223-ch04.indd 13607_9780470479223-ch04.indd 136 1/4/11 8:52 PM1/4/11 8:52 PM

In This Part

Exploring Deeper
FeaturesII

II
Chapter 5

Working with Blocks

Chapter 6
Using Key Value Coding

and Key Value Observing

Chapter 7
Working with Protocols

Chapter 8
Extending Existing Class

Capabilities

Chapter 9
Writing Macros

Chapter 10
Handling Errors

08_9780470479223-pp02.indd 13708_9780470479223-pp02.indd 137 1/4/11 8:52 PM1/4/11 8:52 PM

08_9780470479223-pp02.indd 13808_9780470479223-pp02.indd 138 1/4/11 8:52 PM1/4/11 8:52 PM

In This Chapter

Working with Blocks

Using blocks to
encapsulate algorithms

Using the block directive

Creating map and filter
functions using blocks

Running blocks in
parallel using threads

and Grand Central
Dispatch

One of the newest and most powerful additions to Objective-C
is the inclusion of a capability known as blocks. Using them,
you can specify arbitrary portions of code which can be

passed around to methods and functions like objects. In this chap-
ter, I show you how to use them.

Understanding Blocks
If you are coming to Objective-C from another language, such as
Ruby or lisp, you may already be familiar with the concept of blocks,
also known as closures. Listing 5.1 shows an example of a block
in Ruby.

Listing 5.1

An example block in Ruby

items.each { |item| puts item }

Essentially, a block enables you to define a function object in-line in
your code. These function objects can be referenced by using tradi-
tional variables, including being passed to other functions. What
this means, is that you can define reusable chunks of code that
function and can be passed around just like objects enabling that
code to be executed inside other objects, dynamically. This may
sound confusing, but I think as we work through the upcoming
examples, the concept will become clearer.

In the case of the above block, this code is actually iterating over
each item in the items array, and then executing the code inside
the curly braces, passing the current item into the block.

09_9780470479223-ch05.indd 13909_9780470479223-ch05.indd 139 1/4/11 8:53 PM1/4/11 8:53 PM

140 Exploring Deeper Features

Declaring code blocks
In this section, I introduce you to what block looks like in Objective-C. Listing 5.2 shows an
example of a simple block.

Listing 5.2

A simple block in Objective-C

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 void (^myBlock)(NSString *x);

 myBlock = ^(NSString *x)
 {
 NSLog(@”%@”, x);
 };

 [pool drain];
 return 0;
}

A block, at its heart, is a variable like any other variable. What makes blocks different is that the
data stored inside the block is the body of a function. When using a block, you can call the func-
tion just like any standard function, passing it arguments and receiving a return value from it.

In the case of this code, the variable that holds the block is called “myBlock”. First, you
declare the variable with the line void (^myBlock)(NSString *). Normal variables, when
declared, are relatively simplistic. Normal variables do not need to have arguments passed to
them, nor do they return values. A block, on the other hand, is stored in a variable and does
have to have its arguments and return type declared. Therefore, its declaration is more complex
than that of a traditional variable.

A block declaration consists of its return type (in this case, void). The return type of the block is
placed at the location where you normally expect to see the type definition of the variable you
are declaring. In a block declaration, however, you are declaring the value type that will be
returned from the block when it is executed.

Following the return type definition, there is a special operator that is used to tell the compiler
that you are defining a block instead of another type of variable. This operator is the ^ character.

09_9780470479223-ch05.indd 14009_9780470479223-ch05.indd 140 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 141

You may find it easier to think of this like declaring a pointer variable. Just like when declaring a
pointer variable the *character is used to indicate that the variable in question is a pointer. In
the case of a block, however, the ^ character is used.

Following the ^ character, the variable name that stores the block (myBlock) is given. This vari-
able name is enclosed within parentheses to separate it from its arguments afterwards.

The variable name follows the same conventions of variable names in the rest of the language;
it must contain only alphanumeric characters, and cannot begin with a number.

Following the closing parenthesis of the block variable name, the arguments that need to be
passed to the block when it is used are listed separated by commas and enclosed in an addi-
tional set of parentheses (here, this is (NSString *x)). When listing these arguments, you do
not need to provide the variable names for the arguments themselves. Doing so is up to you,
but it’s not required. A good way to think about this is that you are not actually declaring the
body of the function at this time. Therefore, providing the variable names for the arguments
serves no purpose, because they would not be used at this time. Instead, you simply have to
tell the compiler what types of arguments to expect. You simply provide the types of the argu-
ments separated by commas. A lot of block documentation omits this argument name in decla-
rations. I choose not to, because I think that it makes the code confusing, particularly for new
developers.

As always, you terminate the statement with a semicolon. At this point, you have declared a
variable, which can store a block that returns the value type that you specified, and takes the
arguments that you specified. The name of that variable is, in our example above, myBlock.

Just declaring the variable, as we know, is not sufficient. You also have to store the block in
order to use it. Initializing your new variable with a block is done simply by using the assign-
ment operator, and then, again, a special syntax indicates that you are creating the actual block
that you will store into the variable.

The definition of the block again uses the ^ character to tell the compiler that what follows is a
block definition. You can omit the return type in the definition, because the compiler can deter-
mine the return type by looking at the variable that the block is being stored within. You must,
however, provide the argument specification for the block, again, inside parentheses. In this
case, you must also provide the variable names for the arguments that are being passed. This
makes sense, because you are declaring the variable names for the arguments as they will be
used within the body of your block.

After the closing parenthesis of your argument list, you then provide the actual body of the
block. This body of code takes a form that is nearly identical to declaring a normal function. You
enclose the block code within curly braces, execute whatever operations you choose, utilize
your arguments as needed, and return whatever value is appropriate after you finish. Just like
when defining a standard function, the code inside a block can be spread over multiple lines,
though normal white space rules do apply.

09_9780470479223-ch05.indd 14109_9780470479223-ch05.indd 141 1/4/11 8:53 PM1/4/11 8:53 PM

142 Exploring Deeper Features

Listing 5.3 shows some additional examples of typical block definitions.

Listing 5.3

Different kinds of block definitions

void (^myBlock)(NSString *x) = ^(NSString *x)
{
 NSLog(@”%@”, x);
};

void (^anotherBlock)(NSString *x) = ^(NSString *x) { NSLog(@”%@”, x); };

void (^aVoidBlock)() = ^{ NSLog(@”blah”); };

doIt(^(NSString *x){ NSLog(@”%@”, x); });

 N O T E
When defining blocks that take no arguments, it is syntactically acceptable to not provide the enclosing parentheses
for the arguments, which are not there. You must still provide the parentheses for the definition, however.

As shown here, you can perform the declaration of a block variable as well as its initialization,
all within the same expression. Again, this is just like working with regular variables. You can
declare the variable and then initialize it separately, or you can do it all in one shot.

In the last line of listing so-and-so, you can see it’s also possible to simply define your block
inline in place of whatever parameter requires it in the same way you can pass a hard-coded
value in place of a variable as an argument to a function. This is perfectly legal.

Using code blocks
The main reason that you declare blocks is so that they can be used elsewhere. Therefore,
understanding how blocks are passed to other functions and methods, and how you use a
block object when you have received one is important.

To declare that a function or method takes a block as a parameter, you declare the parameter
just like declaring a block variable in your code. For example, Listing 5.4 shows a function that
takes a block as a parameter. The block in question, takes an argument of an NSString and
returns an NSComparisonResult.

09_9780470479223-ch05.indd 14209_9780470479223-ch05.indd 142 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 143

Listing 5.4

Declaring a function which takes a block parameter

void useCodeBlock(NSComparisonResult (^theBlock)(NSString *value));

Inside the body of the function that utilizes a block, you call the block by treating its variable
just like a normal function name. In other words, you simply use the variable just as if it were a
function, passing the parameters that the block requires inside parentheses, and storing the
return result however, you need to use the assignment operator.

Listing 5.5 shows the same function that we declared earlier, but shows how it might use the
block that was passed to it.

Listing 5.5

A function which uses a block

void useCodeBlock(NSComparisonResult (^theBlock)(NSString *value))
{
 if(NSOrderedSame == theBlock(@”foo”))
 doSomethingIfSame();
 else
 doSomethingElse();
}

When passing a block parameter as an argument to an object or class method (versus an argu-
ment to a function) the syntax is slightly different. Listing 5.6 shows an example of how you
do that.

Listing 5.6

Passing a block to an object method

-(NSMutableArray *)filterArray:(NSArray *)inArray
 withBlock:(BOOL (^)(NSInteger))block
{
 NSMutableArray *result = [NSMutableArray array];

continued

09_9780470479223-ch05.indd 14309_9780470479223-ch05.indd 143 1/4/11 8:53 PM1/4/11 8:53 PM

144 Exploring Deeper Features

Listing 5.6 (continued)

 for(NSNumber *number in inArray)
 {
 if(block([number integerValue]))
 [result addObject:number];
 }
 return result;
}

Notice that you pass the block parameter’s name (the name the variable, which will hold the
block has within the method body) after the definition of the block. Because of this, the area
where block definition normally provides the block variable name is passed as just (^).

What’s great is that the Objective-C new feature is tremendously powerful. You can create code
that is much more flexible and reusable than what could previously be done.

First, however, there are a few details that you should be aware of when using this powerful lan-
guage feature.

Understanding Important Block Scoping
If blocks were limited to only utilizing the parameters that were passed to them, and only
returning the value that they defined , then it would be a powerful feature in its own right.
However, blocks have more tools under the surface that make them even more powerful.

When you define a block inside of another section of code, the block that you define, that is the
instructions inside your block, have access not just to all of the normal global variables that all
the rest of your code has access to, they also automatically receive read-only copies of all of the
stack variables that are within scope in the stack in which the block is defined. This means, that
your block has access (read-only) to the entire state of your program as it is running when the
block was defined.

To give you an idea of what I mean by this, take a look at Listing 5.7.

Listing 5.7

A block which accesses variables from the stack within which it is defined

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

09_9780470479223-ch05.indd 14409_9780470479223-ch05.indd 144 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 145

 NSString *formatStr = @”%s”;

 void (^myBlock)(char *x) = ^(char *x){ NSLog(formatStr, x); };

 doIt(myBlock);

 [pool drain];
 return 0;
}

As you can see, the block accesses a variable (formatStr) that is not passed to it, but which
comes from the environment from within which the block is created.

Again, these variables are read-only inside the block. However, you can explicitly make a vari-
able read-write inside of any referencing blocks by using the special language directive __block
when declaring the variable.

Because of the ability for blocks to “take a snapshot” of your application state, and make it avail-
able to other parts of your application in this way, it provides an incredibly powerful mechanism
for encapsulating and manipulating your data.

I will show you momentarily some other cool uses for blocks, but before I do that, there is a
small amount of housekeeping that needs to be addressed.

Managing code block memory
In Objective-C, blocks are objects, just like anything else. The data that makes up a block is allo-
cated on the stack just like normal variables. Therefore, if you pass a block to another function
or object, and that object needs to store that block for later use, the receiving object must
retain the block, as though it were receiving an object passed to it.

Listing 5.8 shows an example of how this works.

Listing 5.8

An object which stores a block in a member variable

@interface Foo : NSObject
{
 void (^myBlock)(NSString *);

continued

09_9780470479223-ch05.indd 14509_9780470479223-ch05.indd 145 1/4/11 8:53 PM1/4/11 8:53 PM

146 Exploring Deeper Features

Listing 5.8 (continued)

}
-(void)doSomethingWithBlock;
-(void)setMyBlock:(void (^)(NSString *))inBlock;
@end;

@implementation Foo

-(void)dealloc;
{
 [myBlock release];
 [super dealloc];
}

-(void)setMyBlock:(void (^)(NSString *))inBlock
{
 myBlock = [inBlock copy];
}

-(void)doSomethingWithBlock
{
 myBlock(@”foo”);
 //
}
@end

As you can see, all of the standard Objective-C reference counting memory management meth-
ods work with blocks just like any other Objective-C object. Although you should use –copy
instead of –retain for the block object that is passed in since it’s allocated on the stack and
you’ll want to be sure to get a copy on the heap if you want to keep it around.

The way this works is that the runtime will make a const copy of any external variables that the
block uses and the self object to the heap. This way you have access to those variables and all of
the member variables of the object within which the block is created. Any variables marked
with the __block directive are bit-copied to the heap, and the block is responsible for any
additional memory management involved in working with those variables.

All this said, if your application uses garbage collection, instead of reference counted memory
management, copying, retaining, and releasing are all done for you.

09_9780470479223-ch05.indd 14609_9780470479223-ch05.indd 146 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 147

Making blocks easier to read with typedef
It can sometimes make your code easier to read if you typedef your block definition. This
enables you to reuse the definition without having to retype all the arguments and return types
of the block. Listing 5.9 shows the class from the last section, but this time, it’s using a typedef
for its block arguments. As you can see, this makes the code much clearer and more readable.

Listing 5.9

Same code using a typedef

typedef void (^BlockWithCharArg)(char *);

@interface Foo : NSObject
{
 BlockWithCharArg myBlock;
}
-(void)doSomethingWithBlock;
-(void)setMyBlock:(BlockWithCharArg)inBlock;
@end;

@implementation Foo

-(void)dealloc;
{
 [myBlock release];
 [super dealloc];
}

-(void)setMyBlock:(BlockWithCharArg)inBlock
{
 myBlock = [inBlock copy];
}

-(void)doSomethingWithBlock
{
 myBlock(“foo”);
 //
}
@end

09_9780470479223-ch05.indd 14709_9780470479223-ch05.indd 147 1/4/11 8:53 PM1/4/11 8:53 PM

148 Exploring Deeper Features

Using Blocks with Threads
I’m sure that you can think of many different uses for blocks in your code. I’m going to touch on
a couple of them in the next few sections.

If you think about the way that blocks enable you to encapsulate functionality in your applica-
tion in a nice neat package, functionality that can be easily reused, then it makes sense that one
of the most commonly used design patterns for blocks in Objective-C is to provide code that
can be run in parallel. In other words, threads.

Indeed, one of the first use cases that Apple demonstrated when it introduced blocks in
Objective-C was the ability to use them in its (at the time) brand-new parallelization framework,
Grand Central Dispatch.

Working with Grand Central Dispatch
Grand Central Dispatch is a framework that ships with Mac OS X version 10.6. It provides an
easy-to-use abstraction layer that enables developers to take advantage of multiprocessor and
multicore architectures without having to deal with lower-level thread management.

Using GCD, developers need only provide blocks of code, which encapsulate functionality that
can safely run in parallel. They hand these blocks off to GCD queues, which then handle all of
the low-level details surrounding things such as the creation of threads, the management of
those threads, even how many threads should be created to run the tasks provided on a given
system. GCD knows how many cores a machine has and will only allocate enough threads to
maximize performance over those cores. It completely handles queuing up the tasks provided
to it and distributing those tasks to the threads that it creates.

Tasks can be provided to Grand Central Dispatch as either functions or blocks. Obviously, given
the topic of this chapter, we are going to focus on using blocks with Grand Central Dispatch.

Using GCD functions to dispatch code
blocks in threads
The core of the GCD API centers around the concept of queues. By using GCD, you can either
select one of the pre-existing system queues, such as the global queue. You access it by using
the method dispatch_get_global_queue(), which returns the global concurrent
queue associated with your application, or you can create your own private serial queue by
using the function dispatch_queue_create.

Queues themselves can be either concurrent or serial, indicating that the objects placed within
them can be run in parallel, relative to each other, in the case of a concurrent queue or sequen-
tially, relative to each other in the case of a serial queue.

09_9780470479223-ch05.indd 14809_9780470479223-ch05.indd 148 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 149

 N O T E
Serial queues are often used when you require exclusive access to a given resource for a series of operations. Typically,
you might utilize a thread lock to ensure the exclusive access to these resources. Using GCD, you can simply cue the dif-
ferent operations up into a serial queue. Each item can only run after the previous item has completed.

Dispatching blocks into queues is simple. Listing 5.10 shows an example, using a block which
performs some lengthy operation. In this case, we are dispatching this block onto the global
concurrent queue. As you can see, we can dispatch multiples of these processes onto the
queue. Grand Central Dispatch can handle scheduling and management of these tasks auto-
matically for us with no intervention from us whatsoever.

Listing 5.10

Dispatching a block onto the global concurrent queue

dispatch_async(dispatch_get_global_queue(0, 0), ^{ doSomethingSlow(); });

You get the global queue with the method dispatch_get_global_queue, then you dis-
patch your block (^{ doSomethingSlow(); }) onto that queue. Here, if you wanted,
you could use any of the previous block patterns I already showed you. Of course, normal
thread safety requirements apply.

Working with Common Block
Design Patterns
I showed you how you can use blocks with GCD to dispatch units of work to threads. Now take a
look at some other common block patterns. In these cases, there are examples of where you
might use blocks with standard framework APIs to do things a bit more efficiently or cleanly
than you would be able to do them without blocks.

Using code blocks for maps
A common operation that is used to demonstrate the power of blocks in other languages is in
implementing a map algorithm.

A map, if you’re not aware, is a function that applies a given function to each element of an
array, and returns a list of results. Implementing a map using blocks in Objective-C is trivially
easy. First, you need to create your map function. The map function takes a block and your array
of items as arguments. It’s shown in Listing 5.11.

09_9780470479223-ch05.indd 14909_9780470479223-ch05.indd 149 1/4/11 8:53 PM1/4/11 8:53 PM

150 Exploring Deeper Features

Listing 5.11

A map function using blocks

NSArray *map(NSArray *items, id (^block)(id item))
{
 NSMutableArray *result = [NSMutableArray array];

 for(id item in items)
 {
 [result addObject:block(item)];
 }

 return result;
}

To use this map function, you simply construct your block object and your array and pass them
to the map function. This is shown in Listing 5.12.

Listing 5.12

Calling the map function

NSArray *mappedResults = map(items, ^(id item){ return transformItem(item); });

Using Blocks in the Standard API
Constructing your own map function is great, but the real power of blocks comes when you
combine it with some of the standard Cocoa framework APIs that now take blocks as parameters.

09_9780470479223-ch05.indd 15009_9780470479223-ch05.indd 150 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 151

Some classes in Cocoa take blocks as parameters for performing operations, typically on
elements of collections that they manage. Notable classes that do this include NSArray,
NSDictionary, NSIndexSet and NSSet. Additionally, NSString and NSAttributed
String provide methods for enumerating over lines and attributes using blocks, as well.

A collection of the most commonly used methods in Cocoa that use blocks is shown in
Table 5.1.

Table 5.1
Class Method Purpose

NSNotificationCenter addObserverForName:object:queue:usingBlock: Executes the given block when the notification

is sent.

NSIndexSet enumerateIndexesInRange:options:usingBlock:,

enumerateIndexesUsingBlock:, enumerateIndexes

WithOptions:usingBlock:

Enumerates over the indices of the set,

executing the given block, and passing the

index to the block.

NSDictionary enumerateKeysAndObjectsUsingBlock:,enumerate

KeysAndObjectsWithOptions:usingBlock:

Enumerates over the keys and objects of the

dictionary, executing the given block, with the

keys and objects passed to it as parameters.

NSString enumerateLinesUsingBlock:,enumerateSubstrings

InRange:options:usingBlock:

Enumerates the lines of a string, calling the

given block with the line as a parameter.

NSArray enumerateObjectsAtIndexes:options:usingBlock:,e

numerateObjectsUsingBlock:,enumerateObjects

WithOptions:usingBlock:

Enumerates the elements of the array, passing

each item to the given block.

NSSet enumerateObjectsUsingBlock:,enumerateObjects

WithOptions:usingBlock:

Enumerates the elements of the set, passing

each item to the given block.

NSOperationQueue addOperationWithBlock: Adds the given block to the queue.

NSBlockOperation +blockOperationWithBlock: Creates a new NSOperation using the given

block.

Of particular interest are the methods on NSOperationQueue and NSBlockOperation,
which enable you to utilize NSOperation objects with blocks. This is a higher level API than
the GCD functions I showed you earlier in the section entitled “Using GCD to Dispatch Blocks in
Threads.” I show you how to use these APIs in Chapter 16.

09_9780470479223-ch05.indd 15109_9780470479223-ch05.indd 151 1/4/11 8:53 PM1/4/11 8:53 PM

152 Exploring Deeper Features

Applying Blocks to an Embarrassingly
Parallel Task
Now that I’ve shown you everything you need to know about how to use blocks in your code,
you can apply this knowledge. Though blocks are certainly not limited to their uses in parallel-
ization and threading, they are uniquely good at these tasks.

In programming circles, they are known as embarrassingly parallel problems, — problems that
are uniquely well suited to parallelization.

An example of this kind of problem is that of calculating prime numbers. Although you can use
other ways to calculate prime numbers that are faster than brute force, for the purposes of the
following example, I show how you can improve the performance of a brute force solution.
Therefore, I’m going to have you write a simple program to calculate all of the prime numbers
between 2 and 150,000. Then you will rewrite the application two different ways. The first way
uses a block and an NSArray, to demonstrate encapsulating the determination of the prime-
ness of a given number. The second form takes advantage of Grand Central Dispatch to parallel-
ize the calculation. The sample code has the ability to print out the prime numbers it finds. Feel
free to uncomment this code if you want to see it working. The important thing for you, how-
ever, is to note how long it takes to calculate each of these. The program will print out the time
it takes for each program. You should see that the naive, plain approach and the array filtering
approach should take about the same amount of time, whereas, the parallel version should be
much faster.

Creating the project
The first thing you need to do is create the project. (You’ve already done this several times, so I
won’t belabor it here.) Make sure to create a new command line Foundation project. Although
it’s not really necessary, I’m going to have you create a class for actually doing prime number
calculations. The vast majority of programming you do using Objective-C uses objects and
classes. Therefore, becoming familiar with them and using them in your day-to-day work even
now is a good idea.

After you’ve created the new project, modify the main source file so that it looks like Listing 5.13.

Listing 5.13

The main source file for the prime number calculator

#import <Foundation/Foundation.h>
#import “PrimeFinder.h”

09_9780470479223-ch05.indd 15209_9780470479223-ch05.indd 152 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 153

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 PrimeFinder *finder = [[PrimeFinder alloc] initWithMaxNumber:150000];
 [finder start];

// uncomment if you want to print out all the primes.
// for(NSNumber *number in [finder primes])
// {
// NSLog(@”Found prime: %@”, number);
// }

 NSLog(@”Found all the primes in %fs”, [finder elapsedTime]);

 [finder release];
 [pool drain];
 return 0;
}

This source file stays the same for all three versions of the example application. After you’ve
modified the main source file, you can create a class that does the prime number calculations.
Go ahead and choose to add a new class to your project. Name the class “PrimeFinder”.
For the first version of this application, you are not going to use blocks at all so that you can
see what this program would look like if you were just doing things the old-fashioned way.

The interface and implementation for PrimeFinder is shown in Listings 5.14 and 5.15.

Listing 5.14

Interface file for PrimeFinder

#import <Cocoa/Cocoa.h>

@interface PrimeFinder : NSObject
{
 NSInteger maxNumber;
 NSDate *startedDate;
 NSDate *endedDate;
 NSMutableArray *primes;
}

continued

09_9780470479223-ch05.indd 15309_9780470479223-ch05.indd 153 1/4/11 8:53 PM1/4/11 8:53 PM

154 Exploring Deeper Features

Listing 5.14 (continued)

@property (retain, nonatomic) NSMutableArray * primes;
@property (retain, nonatomic) NSDate * startedDate;
@property (retain, nonatomic) NSDate * endedDate;
@property (readonly) NSTimeInterval elapsedTime;
-(id)initWithMaxNumber:(NSInteger)inMaxNumber;
-(void)start;

@end

Listing 5.15

Implementation file for PrimeFinder

#import “PrimeFinder.h”

@implementation PrimeFinder
@synthesize startedDate;
@synthesize endedDate;
@synthesize primes;
@dynamic elapsedTime;

-(void)dealloc;
{
 [primes release];
 [startedDate release];
 [endedDate release];
 [super dealloc];
}

-(id)initWithMaxNumber:(NSInteger)inMaxNumber
{
 if(self = [super init])
 {
 maxNumber = inMaxNumber;
 primes = [[NSMutableArray alloc] init];
 }
 return self;

}

09_9780470479223-ch05.indd 15409_9780470479223-ch05.indd 154 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 155

-(BOOL)isPrime:(NSInteger)number
{
 for(NSInteger n = 2; n < number; ++n)
 if((number % n) == 0)
 return NO;
 return YES;
}

-(void)start
{
 [self setStartedDate:[NSDate date]];

 for(NSInteger n = 2; n <= maxNumber; ++n)
 {
 if([self isPrime:n])
 [primes addObject:[NSNumber numberWithInteger:n]];
 }

 [self setEndedDate:[NSDate date]];
}

-(NSTimeInterval)elapsedTime
{
 return [endedDate timeIntervalSinceDate:startedDate];
}

@end

In Listing 5.15, the code is pretty straightforward. Essentially, we have a tight for loop which
counts from 2 all the way to 150,000, our maximum number that we have passed. It then takes
each one of those numbers in turn and calls the method isPrime:. If that method returns true,
then it adds that number to the list of primes for our result set. The isPrime: function takes
whatever number is given to it, and tries to divide that number by every number below that
number. If it divides cleanly, — if there is no remainder — then that number is not a prime. If,
however, it gets to the end of all of the numbers less than the number itself, then it is a prime
number and it returns true.

If you compile and run this program, it should print out the amount of time that it takes for your
computer to calculate all of those primes. On my computer, it takes about 15 seconds. If your
computer is significantly faster than mine is, and yours is done much faster than that, you might
want to increase the maximum number of prime candidates by increasing the 150,000 to some

09_9780470479223-ch05.indd 15509_9780470479223-ch05.indd 155 1/4/11 8:53 PM1/4/11 8:53 PM

156 Exploring Deeper Features

higher number. It’s important, for the purposes of this example, that your computer spend at
least some time chugging away on this problem. Don’t go too high though. Computing primes
is a pretty intense task for your CPU and if you go too high, it may take a long time to complete.

Using blocks with an array to filter for primes
The first example that shows the use of block won’t actually give us any kind of improvement in
performance. I’m showing you this because it’s a useful design pattern that you can use for solv-
ing other kinds of problems.

Essentially, what you’re going to do is modify the PrimeFinder class so that it takes all of the
possible prime numbers in our sequence of candidate prime numbers and places them in an
array. You will then write a method that filters the array by using a block that you pass to the fil-
ter method. The filter method then returns a new array containing only the numbers from the
candidate array that are prime. This kind of pattern might be used in cases where you want to
filter an array for elements of the array that matches certain criteria. The nice thing about using
blocks in this case, is that you can change the criteria dynamically at any time, simply by passing
a different block to the filter function.

 N O T E
Another way to do this might be to create an NSPredicate using the NSPredicate class method +predicateWithBlock:
and then use it with the NSArray method filteredArrayUsingPredicate:. Again, my purpose here is to explain the
underlying concepts, so we’re doing it the hard way.

Listing 5.16 shows the changes necessary to the interface file for this version of the program.
The important items are the addition of the candidates array.

Listing 5.16

Interface file for the filtered version of the PrimeFinder

#import <Cocoa/Cocoa.h>

@interface PrimeFinder : NSObject
{
 NSInteger maxNumber;
 NSDate *startedDate;
 NSDate *endedDate;
 NSMutableArray *primes;
 NSMutableArray *candidates;
}
@property (retain, nonatomic) NSMutableArray * candidates;
@property (retain, nonatomic) NSMutableArray * primes;

09_9780470479223-ch05.indd 15609_9780470479223-ch05.indd 156 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 157

@property (retain, nonatomic) NSDate * startedDate;
@property (retain, nonatomic) NSDate * endedDate;
@property (readonly) NSTimeInterval elapsedTime;
-(id)initWithMaxNumber:(NSInteger)inMaxNumber;
-(void)start;

@end

The important changes are in the implementation file, which is shown in Listing 5.17.

Listing 5.17

Implementation file for filter version of PrimeFinder

#import “PrimeFinder.h”

@implementation PrimeFinder
@synthesize startedDate;
@synthesize endedDate;
@synthesize primes;
@synthesize candidates;
@dynamic elapsedTime;

-(void)dealloc;
{
 [self setCandidates:nil];
 [self setPrimes:nil];
 [self setStartedDate:nil];
 [self setEndedDate:nil];
 [super dealloc];
}

-(id)initWithMaxNumber:(NSInteger)inMaxNumber
{
 if(self = [super init])
 {
 maxNumber = inMaxNumber;
 candidates = [NSMutableArray new];
 for(NSInteger n = 2; n <= inMaxNumber; ++n)
 {

continued

09_9780470479223-ch05.indd 15709_9780470479223-ch05.indd 157 1/4/11 8:53 PM1/4/11 8:53 PM

158 Exploring Deeper Features

Listing 5.17 (continued)

 [candidates addObject:[NSNumber numberWithInteger:n]];
 }
 }
 return self;

}

-(NSMutableArray *)filterArray:(NSArray *)inArray
 withBlock:(BOOL (^)(id))block
{
 NSMutableArray *result = [NSMutableArray array];
 for(id item in inArray)
 {
 if(block(item))
 [result addObject:item];
 }
 return result;
}

-(void)start
{
 [self setStartedDate:[NSDate date]];

 BOOL (^isPrime)(id) = ^(id number)
 {
 NSInteger value = [number integerValue];
 for(NSInteger n = 2; n < value; n++)
 if((value % n) == 0)
 return NO;
 return YES;
 };

 [self setPrimes:[self filterArray:candidates withBlock:isPrime]];

 [self setEndedDate:[NSDate date]];
}

-(NSTimeInterval)elapsedTime
{
 return [endedDate timeIntervalSinceDate:startedDate];
}

@end

First, you create your candidates array in your initializer.

09_9780470479223-ch05.indd 15809_9780470479223-ch05.indd 158 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 159

After your candidate array is created, you have to modify the start method. In this version, you
take your isPrime: method, and instead of creating it as an object method on your
PrimeFinder class, you actually create it as a block.

You also have to create the filter method which will be called with your candidate array and
your block and which will return your filtered array containing only numbers for which the block
returns true. In the code listing above, this method is called -filterArray:withBlock:.

The cool part of this particular code, is that you can pass any kind of block to this filter function
that you want. It will iterate over the members of the array, and simply call the block for each
one of those elements, passing the element as the parameter to the block. The block can do
anything it wants. All it needs to do is return true if the element in question should be in the
result array and return false if it should not. The ability to decouple this logic from the iteration
of the array is very powerful and can be very useful in certain circumstances.

Using Grand Central Dispatch
The final version of our PrimeFinder class utilizes GCD to actually run the prime number calcula-
tions in parallel. Again, I discuss GCD in much greater depth later. For now, simply understand
that we are going to dispatch instances of our block on to the GCD global queue for each num-
ber that we want to test for primeness.

In order to do this, we have to do a little bit of jockeying to make sure that our access to any
variables that are shared among the different threads is safe. There are a couple of things that
this impacts. First, you are going to store all of your results, that is, the prime numbers, into an
array, called result. Because that array is going to be shared among all of your blocks, you’re
going to declare it inside the scope of the start method itself. Recall that when the block is
declared, it receives all of the scoped variables and state from the stack within which it is cre-
ated. However, recall also that those variables are all read-only, that includes our result array.
We don’t have to use the __block directive however, because though the result variable itself
is read-only, the contents of result, through it’s pointer reference, are not. This is a subtle
but important nuance to note.

In addition to making the result array writable, we also have to ensure that no two blocks
attempt to write to that array at the same time. We do this by using a simple thread safety
mechanism built into Objective-C, the @synchronized key word.

Finally, in order to actually dispatch your blocks onto GCD, you need to create a dispatch group,
which allows you to put your blocks into a global queue that will be completely managed by
Grand Central Dispatch. It will automatically spawn an appropriate number of threads for the
number of cores and processors on the machine that you run it on, and then remove blocks
from the queue one by one, sending them out onto these threads to do their work.

Listing 5.18 shows how you need to modify your PrimeFinder implementation to do all this.
Go ahead and modify your class to match it.

09_9780470479223-ch05.indd 15909_9780470479223-ch05.indd 159 1/4/11 8:53 PM1/4/11 8:53 PM

160 Exploring Deeper Features

 N O T E
Be sure to remove the candidates array from your interface, if you are working off the project from the previous
example.

Listing 5.18

Implementation file for the GCD version of PrimeFinder

#import “PrimeFinder.h”

@implementation PrimeFinder
@synthesize startedDate;
@synthesize endedDate;
@synthesize primes;
@dynamic elapsedTime;

-(void)dealloc;
{
 [self setPrimes:nil];
 [self setStartedDate:nil];
 [self setEndedDate:nil];
 [super dealloc];
}

-(id)initWithMaxNumber:(NSInteger)inMaxNumber
{
 if(self = [super init])
 {
 maxNumber = inMaxNumber;
 }
 return self;

}

-(void)start
{
 [self setStartedDate:[NSDate date]];

 NSMutableArray *result = [NSMutableArray array];

 dispatch_queue_t globalQueue = dispatch_get_global_queue(0, 0);
 dispatch_group_t group = dispatch_group_create();
 for(NSInteger number = 2; number <= maxNumber; ++number)

09_9780470479223-ch05.indd 16009_9780470479223-ch05.indd 160 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 5: Working with Blocks 161

 {
 dispatch_block_t isPrime = ^
 {
 for(NSInteger n = 2; n < number; ++n)
 if((number % n) == 0)
 return;

 @synchronized(result)
 {
 [result addObject:[NSNumber numberWithInteger:number]];
 }
 };

 dispatch_group_async(group, globalQueue, isPrime);
 }

 dispatch_group_wait(group, DISPATCH_TIME_FOREVER);

 [self setEndedDate:[NSDate date]];
 [self setPrimes:result];
}

-(NSTimeInterval)elapsedTime
{
 return [endedDate timeIntervalSinceDate:startedDate];
}

@end

In this code, the block in question is being specified to be of type dispatch_block_t,
which is a special typedef provided by the Grand Central Dispatch functions for use in defining
blocks to be passed to the GCD queues. The important thing to understand is that these are
normal blocks just like you’ve been working with previously. The actual definition of the dis-
patch_block_t is shown in Listing 5.19 for your reference.

Listing 5.19

The definition of dispatch_block_t

typedef void (^dispatch_block_t)(void);

09_9780470479223-ch05.indd 16109_9780470479223-ch05.indd 161 1/4/11 8:53 PM1/4/11 8:53 PM

162 Exploring Deeper Features

If you run this version of the program, you should see a substantial improvement in perfor-
mance. On my computer, it shaves about 45 to 50 percent off the runtime involved in calculat-
ing the prime numbers. Your mileage will vary, of course.

Summary
In this chapter, I introduced you to a powerful new tool in the Objective-C toolbox. Code blocks
are incredibly useful in that they give you the ability to encapsulate small anonymous chunks of
code and pass those chunks of code around as if they were objects. This gives you the ability to
create generic methods that can be retooled with different functionality by simply passing new
types of blocks to them as arguments. Additionally, blocks make working with Grand Central
Dispatch incredibly simple because they provide you with the ability to express chunks of func-
tionality and then send that functionality into a queue to be executed.

09_9780470479223-ch05.indd 16209_9780470479223-ch05.indd 162 1/4/11 8:53 PM1/4/11 8:53 PM

In This Chapter

Using Key Value Coding
and Key Value Observing

Learning about key
value coding

Writing KVD compliant
accessors

Using KVC to simplify
complex tasks

Observing changes to
other objects using key

value observing

Implementing manual
and automatic KVO

notifications

The Objective-C runtime provides you with a variety of
advanced tools for not just interacting with the operating sys-
tem frameworks, but also for interacting with the attributes of

your code. One tool available to you is the concept I cover in this
chapter called Key Value Coding. Key Value Coding, or KVC as it is
often referred to in Objective-C circles.

Accessing Object Properties
Using Key Value Coding
Key value coding gives you the ability to access attributes of your
classes using a set of standardized accessor methods in addition to
your normal setters and getters. You can use these accessor meth-
ods to get and set properties of your classes by specifying string
identifiers that represent the names of the attributes you want to
access. In addition to enabling you to access these attributes using
these string identifiers, you can also access object relationships and
sub objects by using a standardized syntax.

To give you an example of what I’m talking about, take a look at
Listing 6.1

Listing 6.1

Some example classes.

@interface Bar : NSObject
{
 NSArray *array;
 NSString *stringOnBar;
}

continued

10_9780470479223-ch06.indd 16310_9780470479223-ch06.indd 163 1/4/11 8:53 PM1/4/11 8:53 PM

164 Exploring Deeper Features

Listing 6.1 (continued)

@property (retain, nonatomic) NSArray * array;
@property (retain, nonatomic) NSString * stringOnBar;
@end

@interface Foo : NSObject
{
 Bar *bar;
 NSString *stringOnFoo;
}
@property (retain, nonatomic) Bar * bar;
@property (retain, nonatomic) NSString * stringOnFoo;
@end

Given the two classes shown, as you can see, we have a class called Foo. This class has a string
attribute, as well as another attribute defining a relationship between Foo and the class Bar.
This relationship is defined by virtue of the bar property on Foo.

I’ve already shown you how by defining properties for the attributes of a given class,
Objective-C gives you setters and getters for each of those properties. In addition to those stan-
dard setters and getters, it also provides you a set of Key Value Coding accessors as well.

The most commonly used of these key value coding accessors are the ones that enable you to
access the attributes of a given class directly. These are the calls -valueForKey:, which allows
you to read an attribute by specifying a parameter representing the name of the attribute you
wish to access as a string, set -setValueForKey:, which allows you to set the value of a
given attribute, also by specifying the name of the attribute as a string.

When working with more complicated relationships, where you want to access an attribute of
an attribute, you can specify a more complex key path using dot notation. So, for example, if
you have an object with an attribute of type Bar called bar, which additionally has an attribute
called stringOnBar, you can use the method -valueForKeyPath:, specifying the
dot notation path to the attribute, “bar.stringOnBar”. Additionally, there’s the
–setValue:forKeyPath: method as well.

Again, looking at code may be the easiest way to describe what I’m talking about. The
Objective-C runtime automatically generates for you code that enables you to read and write to
the attributes of those classes by using the calls that I just talked about, as shown in Listing 6.2

10_9780470479223-ch06.indd 16410_9780470479223-ch06.indd 164 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 165

Listing 6.2

Accessing the attributes of our classes using KVC accessors

Foo *foo = [[Foo alloc] init];
[foo setValue:@”blah blah” forKey:@”stringOnFoo”];
NSString *string = [foo valueForKey:@”stringOnFoo”];
[foo setValue:@”The quick brown fox.” forKeyPath:@”bar.stringOnBar”];
NSString *string2 = [foo valueForKeyPath:@”bar.stringOnBar”];

So, as you can see, literally speaking, you can specify the name of the attribute that you want
to access using a string, and you can read its value or you can write its value. You can even, as
shown in the case where you are accessing the attributes of the Bar class, traverse a relationship
between two objects and access the attributes of child objects of the primary object that you
are accessing.

This may seem a bit confusing at first, and you may wonder why you need to know this. For
most of your day-to-day coding, using Key Value Coding methods to set and access your prop-
erties probably will wind up being more typing, and more error-prone than simply accessing
the setters and getters on your class directly. However, a small number of edge cases where
being able to access these attributes dynamically, using values that can change at runtime
rather than at compile time, can be incredibly powerful.

Listing 6.3 shows an example of a class that needs to serialize a pen object into a database
table. In the first example shown, the serialization routine iterates over each of the fields of the
table. As it iterates it needs a complex if statement to determine what accessor to call on the
object that it is attempting to serialize so it can get the value to be serialized into the given field.

Listing 6.3

Serializing a table without KVC.

-(BOOL)serializeToTable:(Table *)inTable
{
 Row *row = [inTable addRow];
 for(Column *column in row)
 {
 if([[column name] isEqualToString:@”firstName”])
 [column setValue:[self firstName]];

continued

10_9780470479223-ch06.indd 16510_9780470479223-ch06.indd 165 1/4/11 8:53 PM1/4/11 8:53 PM

166 Exploring Deeper Features

Listing 6.3 (continued)

 else if([[column name] isEqualToString:@”lastName”])
 [column setValue:[self lastName]];
 else if([[column name] isEqualToString:@”age”])
 [column setValue:[self lastName]];
 else if([[column name] isEqualToString:@”birthDate”])
 [column setValue:[self lastName]];
 ...
 }
 [row save];
}

This code is going to get hairy pretty quickly. Now take a look at the same code using the key
value coding method. Listing 6.4 shows the updated code.

Listing 6.4

Serialize method using KVC

-(BOOL)serializeToTable:(Table *)inTable
{
 Row *row = [inTable addRow];
 for(Column *column in row)
 {
 [column setValue:[self valueForKey:[column name]]];
 }
 [row save];
}

As you can see, the new version isn’t just smaller in terms of lines of code, but it’s also more
resilient and flexible. As you add new columns to the table, you need only additionally add attri-
butes to this object to store the values for those fields. This serialize method automatically
extracts those values from the attributes and stores them for us without any changes to this
method whatsoever. Again, the serialize method isn’t something that you’re going to use every-
where in your code. I want to stress that. Using KVC accessors instead of normal accessors is

10_9780470479223-ch06.indd 16610_9780470479223-ch06.indd 166 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 167

usually more code than you need. But in these kinds of conditions it enables you to write code
that is more dynamic and also enables you to reduce the number of places in your code where
you have to represent the information about the attributes of your objects. When you can
query an object about its attributes, you don’t have to commit that information to as many
places in code. That’s always a good thing — the most bug-free code is code that isn’t written.

Working with key paths
In order to use key value coding, you must first figure out which key paths you can construct
and what you can access with those keep paths.

You can think of working with KVC accessors like using a dictionary. The keys to the dictionary
are strings. The strings themselves are the names of the attributes on the object on which you
are operating. Because of this requirement, a certain number of rules have to be followed in
terms of your key and thus attribute naming. First, your keys must use ASCII encoding. This
means that you cannot have keys that use unusual characters that would not normally be
usable in an attribute name. Secondly, your keys must begin with a lowercase letter.
Underscores are also allowed for this first letter, but no numbers, and no uppercase. Finally,
your key cannot contain any whitespace.

Thankfully, because the attribute that you’re accessing has to be a valid symbol name anyway,
most of these rules are rules that you are probably already following in the first place.

Listing 6.5 shows some examples of valid key paths and invalid key paths.

Listing 6.5

Valid and invalid key paths.

// valid
[foo valueForKeyPath:@”someMember”];
[foo valueForKeyPath:@”someMember.someAttributeOnMember”];
[foo valueForKeyPath:@”someOtherMember”];

// invalid
[foo valueForKeyPath:@”4fun”];
[foo valueForKeyPath:@”kermit the frog”];
[foo valueForKeyPath:@”SomethingWickedThisWayComes”];
[foo valueForKeyPath:@”THISWONTWORK”];
[foo valueForKeyPath:@”thisAlsoWon’tWork”];

10_9780470479223-ch06.indd 16710_9780470479223-ch06.indd 167 1/4/11 8:53 PM1/4/11 8:53 PM

168 Exploring Deeper Features

As I discuss earlier, you can traverse relationships between objects and access attributes on sub
objects by using a key path. A key path is the key in which the relationships between different
objects are spanned by using dots, as in the example above @”someMember.someAttribu-
teOnMember”. The key path accesses the someMember attribute on the foo object, finds the
someAttributeOnMember attribute on whatever class someMember is, and it returns the
value stored there. A variety of syntactical sugar has been provided in the specification of these
key paths. In addition to being able to traverse these relationships, you can even access func-
tions that operate on collections of objects, such as their count, and so on. For example,
Listing 6.6 shows some of the built-in functions that you can use as part of these key paths.

Listing 6.6

Using functions inside key paths.

[anArrayOfProducts valueForKeyPath:@”@avg.price”];
[anArrayOfProducts valueForKeyPath:@”@sum.cost”];
[store valueForKeyPath:@”products.@count”];

Functions operate only on arrays and sets of objects. In the example, the first two lines are
accessing product objects. Those products have attributes, such as price and cost. The functions
given take the values specified for the attributes on each object in the array and then perform
the specified function on those values. In other words, the first item iterates over each of the
items in the array of products, collects the price from each of those products, and then averages
them.

The syntax for using these functions consists of prefixing the name of the function with the @
sign, then the name of the function, a “.” and then the attribute on which to operate. The one
exception to the requirement for the attribute on which to operate is the “@count” function,
which simply returns the count of items in the collection.

Table 6.1 shows a list of these functions.

Table 6.1
Function Purpose

@avg Returns the average of all elements of the array or set.

@count Returns the count of elements in the array or set.

@max Returns the max value of all of the elements in the array or set.

@min Returns the minute value of all of the elements in the array or set.

@sum Returns a sum of all of the values of all of the elements in the array or set.

10_9780470479223-ch06.indd 16810_9780470479223-ch06.indd 168 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 169

Function Purpose

@unionOfArrays/@

distinctUnionOfArrays

Given a collection of arrays returns an array containing all of the arrays in the collection. In the case of the

distinct aversion, it returns only unique arrays.

@unionOfSets/@

distinctUnionOfSets

Given a collection of sets returns a set containing all of the sets together. In the case of the distinct version,

it returns only unique sets.

@unionOfObjects/@

distinctUnionOfObjects

Given a collection of sets or arrays, returns all of the elements of all of the collections as a single array. The

distinct aversion returns only unique elements.

Writing KVC compliant accessors
The Objective-C runtime accomplishes all of this magic partially through capabilities of the
underlying frameworks and partially thanks to coding style conventions. Although the
Objective-C runtime does the heavy lifting as far as the functionality of KVC, it relies upon you,
the developer, to write accessors for your properties that follow specific conventions so that it
can retrieve and set values by using KVC.

The KVC standard for setters and getters is to use setters that follow a pattern of set<Value>:
and getters that follow the pattern of simply <value>. In both of these cases, the <value>
part of the pattern should be replaced with the name of the property that you are accessing.
This property should be a member variable whose name is specified using camel case.

 N O T E
The term camel case refers to a standard for variable naming in which the words in a variable are packed together into
one long string. In this string, the first letter of each word, with the exception of the first word, is capitalized. For
example, to write a variable name called “some variable name,” you would write it as someVariableName. Notice,
when looking at the variable name, that the capital letters in the inner part of the variable name resemble the hump
on a camel. This is where it derives its name.

So, given a class definition as shown in Listing 6.7, you might write accessors as shown in Listing 6.7.

Listing 6.7

Class definition with member variables.

@interface MyClass : NSObject
{
 float x;
 float y;
 NSString *something;continued

continued

10_9780470479223-ch06.indd 16910_9780470479223-ch06.indd 169 1/4/11 8:53 PM1/4/11 8:53 PM

170 Exploring Deeper Features

Listing 6.7 (continued)

}
-(void)setX:(float)inX;
-(void)setY:(float)inY;
-(void)setSomething:(NSString *)inSomething;
-(float)x;
-(float)y;
-(NSString *)something;
@end
Listing so-and-so

KVC compliant accessors.

@implementation MyClass
-(void)setX:(float)inX;
{
 x = inX;
}

-(void)setY:(float)inY;
{
 y = inY;
}

-(void)setSomething:(NSString *)inSomething;
{
 NSString *oldValue = something;
 something = [inSomething retain];
 [oldValue release];
}

-(float)x;
{
 return x;
}

-(float)y;
{
 return y;
}

-(NSString *)something;
{
 return something;
}

@end

10_9780470479223-ch06.indd 17010_9780470479223-ch06.indd 170 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 171

If you use properties to encapsulate your objects attributes, then it automatically generates
accessors that are KVC compliant. In other words, if you’re using properties, you don’t have to
do anything else. You’re done. That said, the normal caveats apply. If you use properties and
you choose to override the standard property accessor naming conventions, then your acces-
sors will not be KVC compliant, and they won’t work with KVC.

Using KVC with arrays
When talking about object-oriented design, thinking about the relationships between your
objects is helpful. When one class has a member variable which is of another class type, this
relationship can be said to be a one-to-one relationship. Listing 6.8 shows an example of a class
interface of this type.

Listing 6.8

The class Foo which has a one-to-one relationship with the class Bar

@interface Foo : NSObject
{
 Bar *bar;
}
@property (retain) Bar * bar;
@end;

For example, if a given class contains a member variable that is actually a collection of other
objects, this relationship is said to be one-to-many. A one-to-many relationship is typically
implemented through the use of an NSArray or NSSet member variable containing elements
that are instances of whatever the other class is.

Listing 6.9 shows an example of this type of relationship. Note, however, that the array contains
instances of the class Bar, but it is not specified here.

Listing 6.9

A one to many relationship from the class Foo to many instances of class Bar

@interface Foo : NSObject
{
 NSArray *bars;
}
@property (retain) NSArray * bars;
@end;

10_9780470479223-ch06.indd 17110_9780470479223-ch06.indd 171 1/4/11 8:53 PM1/4/11 8:53 PM

172 Exploring Deeper Features

In these cases, when accessing these values through KVC, you may not necessarily want to sim-
ply access the array member variable, but instead access the elements of the array directly. In
some cases, this can be more efficient, but at the very least, it more directly represents the
actual relationship that exists between these two objects.

KVC provides a special set of accessors specifically for these types of operations. They are used
specifically to access the properties of one-to-many relationships as well as the individual ele-
ments involved in those relationships.

These accessors fall into two broad categories. The first is that of indexed accessors. These
accessors are used when you want to access an individual element in a one-to-many relation-
ship represented as an array. An NSArray is an ordered collection and typically, this is the sort
of container class that is used in this case. The second type of access for a one-to-many relation-
ship is one that is used in the case when you’re relationship member variable is in an unordered
collection, such as an NSSet. In this case, the accessors that are used to access the elements in
this type of one-to-many relationship are known as unordered accessors. Both of these types of
accessors have both mutable and immutable variations.

 N O T E
Though typically these relationships are modeled using NSArray and NSSet, technically, they can be modeled using
any sort of collection that you choose. The key issue is that your accessors that you create must obey the contract speci-
fied for each of the types of access.

Using indexed accessors
When working with indexed accessors for a one-to-many relationship, there is one method that
you must implement for retrieving the count of elements, -countOf<VariableName>, and
then several other methods which you must choose amongst to implement for retrieving the
elements of the relationship. The methods for retrieving the elements in the indexed collection,
are either -object<VariableName>AtIndex: or -<variableName>AtIndexes:.
These methods are designed to enable users of your class to access a given element at the
given index or indexes and should return the appropriate object accordingly. Examples of
implementations of these accessors include the one-to-many relationship of Foo to Bar in
Listing 6.10.

Listing 6.10

Implementation of immutable one-to-many indexed accessors

@implementation Foo

-(NSUInteger)countOfBars
{

10_9780470479223-ch06.indd 17210_9780470479223-ch06.indd 172 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 173

 return [bars count];
}

-(id)objectInBarsAtIndex:(NSUInteger)inIndex;
{
 return [bars objectAtIndex:inIndex];
}

// OR...

-(NSArray *)barsAtIndexes:(NSIndexSet *)inIndexes;
{
 return [bars objectsAtIndexes:inIndexes];
}

// OR ...

-(void)getBars:(Bar **)outBuffer range:(NSRange)inRange;
{
 [bars getObjects:outBuffer range:inRange];
}

@end

In addition to these accessors, you can also implement the optional method -get<Variable
Name>:range:, which can provide some performance gains by limiting the search to a
specified range within the array as shown in the previous listing. The result is stored in the
“outBuffer” variable.

If you can imagine our previous Foo and Bar relationship, implemented, instead with an
NSMutableArray, the relationship becomes a mutable one-to-many relationship. When
you need to implement a mutable one-to-many relationship, where you can add, remove, or
change elements in the indexed collection, you must also implement either -insertObject:
in<VariableName>AtIndex: or -insert<VariableName>:atIndexes: for insert-
ing items, -removeObjectFrom<VariableName>AtIndex: or -remove<Variable
Name>AtIndexes: for removing items, or, for high performance replacement of objects,
-replaceObjectIn<VariableName>AtIndex:withObject: or -replace<Variab
leName>AtIndexes:with<VariableName>:. Replacing objects is considered to be an
optional operation that you only really need to implement in cases where it is indicated by per-
formance measurement. Often, simply replacing an object at a given index, without removing
the original object and then reinserting a new one can be faster than the alternative. Implement
these methods at your discretion.

10_9780470479223-ch06.indd 17310_9780470479223-ch06.indd 173 1/4/11 8:53 PM1/4/11 8:53 PM

174 Exploring Deeper Features

The additional code required for the Foo and Bar implementation with mutable access to the
objects in the relationship is shown in Listing 6.11.

Listing 6.11

Implementing a mutable one-to-many relationship with an indexed collection

-(void)insertObject:(Bar *)inBar inBarsAtIndex:(NSUInteger)inIndex;
{
 [bars insertObject:inBar atIndex:inIndexes];
}

-(void)insertBars:(NSArray *)inBars atIndexes:(NSIndexSet *)inIndexSet;
{
 [bars insertObjects:inBars atIndexes:inIndexSet];
}

-(void)removeObjectFromBarsAtIndex:(NSUInteger)inIndex;
{
 [bars removeObject:inIndex];
}

-(void)removeBarsAtIndexes:(NSIndexSet *)inIndexSet;
{
 [bars removeObjectsAtIndexes:inIndexSet];
}

-(void)replaceObjectInBarsAtIndex:(NSUInteger)inIndex
 withObject:(id)inBar;
{
 [bars replaceObjectAtIndex:inIndex withObject:inBar];
}

-(void)replaceBarsAtIndexes:(NSIndexSet *)inIndexSet
 withBars:(NSArray *)inBars;
{
 [bars replaceObjectsAtIndexes:inIndexSet withObjects:inBars];
}

Using Unordered Accessors
When working with a one-to-many relationship in which the collection of objects is an unor-
dered collection, there are a different set of KVC-compliant accessors that you can implement.

10_9780470479223-ch06.indd 17410_9780470479223-ch06.indd 174 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 175

Just like when working with the indexed accessors, there are immutable accessors that enable
you simply to read values from the collection, and mutable accessors that enable you to change
values in the collection.

For the immutable accessors, just like with the indexed collection, you must implement
the -countOf<VariableName> method to return the number of elements in the set.
Additionally, you must also implement the methods -enumeratorOf<VariableName>,
and -memberOf<VariableName>:. In the case of the method -enumeratorOf
<VariableName>, this should return an NSEnumerator initialized to be used for the pur-
poses of iterating over the collection. In the case of -memberOf<VariableName>:, this
method takes an instance of an object as a parameter, and should return any object inside the
set which isEqual: to that object. If no object can be found within the set for which
isEqual: returns true, it should return nil.

Listing 6.12 shows examples of implementations of these methods for a one-to-many relation-
ship using an NSSet.

Listing 6.12

Accessors for an immutable unordered collection.

@implementation Foo

-(NSUInteger)countOfBars
{
 return [bars count];
}

-(NSEnumerator *)enumeratorOfBars
{
 return [bars objectEnumerator];
}

-(Bar *)memberOfBars:(Bar *)inBar;
{
 return [bars member:inBar];
}

@end

When it comes to mutating an unordered one-to-many relationship, you must implement
either the methods -add<VariableName>Object: or -add<VariableName>: for
inserting new objects, either -remove<VariableName>Object: or

10_9780470479223-ch06.indd 17510_9780470479223-ch06.indd 175 1/4/11 8:53 PM1/4/11 8:53 PM

176 Exploring Deeper Features

-remove<VariableName>: for removing objects, and -intersect<VariableName>:
for removing a group of objects from the set.

Listing 6.13 shows an example implementation of these methods using an NSSet to actually
implement the relationship.

Listing 6.13

Implementing mutable accessors for an unordered one-to-many relationship

// adding...

-(void)addBarsObject:(Bar *)inBar;
{
 [bars addObject:inBar];
}

// OR...

-(void)addBars:(NSSet *)inBars;
{
 [bars unionSet:inBars];
}

// removing

-(void)removeBarsObject:(Bar *)inBar;
{
 [bars removeObject:inBar];
}

// OR...

-(void)removeBars:(NSSet *)inBars;
{
 [bars minusSet:inBars];
}

// intersect

-(void)intersectBars:(NSSet *)inBars;
{
 return [bars intersectSet:inBars];
}

10_9780470479223-ch06.indd 17610_9780470479223-ch06.indd 176 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 177

Using KVC with structures and scalars
An important limitation when working with KVC is that all of the methods, -valueForKey:,
-setValueForKey:, and so on, all take id as the type for both parameters and return val-
ues. For most attributes, this isn’t a problem, because, for the most part, you work with objects
when defining these attributes, and they can be manipulated by using the id datatype. However,
when you have attributes that are structures or scalar types, variables like ints, floats, and so on,
this presents a bit of a problem.

Specifically, the Objective-C runtime can’t actually use these types of variables directly when
using Key Value Coding. It actually has to convert these values from their native types into types
that are full-fledged Objective-C objects.

Thankfully, Objective-C, for the most part, handles this for you. When accessing KVC attributes
that are not objects, the Objective-C runtime automatically and transparently looks at the type
of the variable being accessed, and will create an NSNumber or NSValue to wrap the value so
that it can be used with KVC.

I discuss NSNumbers and NSValues in Part III of this book, however, for now, simply under-
stand that these are special classes that enable you to wrap scalars and structures within them
and treat them as Objective-C objects. This enables you to do things like storing them in arrays,
storing them in dictionaries, and using them in KVC.

Again, Objective-C handles this for you automatically, but there is one edge condition that you
need to be aware of. In the case where you use a KVC accessor to set a scalar value, but you pass
nil as the value, there isn’t a generic way that this can be handled in all cases automatically. As
a result, in this specific case, the Objective-C runtime will instead call the method -setNil
ValueForKey:. This method, by default, throws an exception. If needed, however, you can
override this method in your class to do whatever may be appropriate. For example, you might
define that passing a nil value for a particular variable on your class means that the value should
be -1.0. In this case, you would simply override the -setNilValueForKey: method, check
to see what the key is that’s being passed in, if it matches the variable that you have defined
should be -1.0 in the case of a nil, you can then simply create your own NSNumber instance and
set the value yourself manually by using the -setValue:forKey: method.

Again, this is simply an edge condition. For the most part, the wrapping and unwrapping of sca-
lars and structures to NSNumbers and NSValues is totally transparent. Even your own struc-
tures are handled automatically by using NSValue’s -getValue: capabilty.

Searching objects for attributes
When accessing your KVC-compliant attributes, the runtime follows a specific set of rules to
attempt to find the correct accessor for a given key path. Those rules are as follows.

10_9780470479223-ch06.indd 17710_9780470479223-ch06.indd 177 1/4/11 8:53 PM1/4/11 8:53 PM

178 Exploring Deeper Features

When setting a value for a particular key, the runtime first searches the class for any accessor
that matches the standard accessor pattern I’ve mentioned before, that is, -set<ValueName>:.
If no accessor is found, your class can also implement the optional method -access
InstanceVariablesDirectly, and return YES. In this example, the runtime then searches
the class for any instance variables that follow the naming pattern of_<valueName>,_is
<valueName>, <valueName>, or is <valueName>, in that order. If none of these apply,
the method -setValue:forUndefinedKey: will be called. The default behavior for this
method is to raise an exception.

When getting a value by using Key Value Coding, the runtime follows a similar procedure in
finding the variable that a given key represents. Specifically, first it searches your class for an
accessor whose name matches the pattern -get<ValueName>, -<valueName>, or
-is<ValueName>, in that order. If it finds such an accessor, then it retrieves the value using it.
If no accessor following these specifications can be found, it next attempts to determine if the
value that you are trying to access is instead an array. To do this, it checks for methods which
match the pattern -countOf<ValueName> and -objectIn<ValueName>AtIndex: and
-<valueName>AtIndexes:. The existence of these array KVC accessors, indicates that the
value being accessed is an array stored in a member variable. If these accessors are found, the
runtime returns a proxy NSArray object containing proxy methods correlating to all of the
above accessors it found. Accessing any of these methods on the NSArray object causes
the corresponding accessor on the original object to be called instead.

Next, the runtime tries to determine if the value that you are trying to access is accessible as a set. To
do this, it checks for the methods -countOf<ValueName>, -enumeratorOf<ValueName>,
and -memberOf<ValueName>:. If all three of these methods are found, a proxy NSSet
object is returned. When accessing this proxy object, if any of the aforementioned methods are
called on the proxy object, they are automatically forwarded to the corresponding method on
the original object.

Again, just like when setting values, if the class method -accessInstanceVariables
Directly is implemented and returns YES, the runtime will search for member variables
following the standard naming convention of -_<valueName>, -_is<ValueName>,
-<valueName>, or -is<ValueName>. Also, just like setters, if it finds any of these member
variables, it will access them directly.

Finally, if none of this works, the runtime will call the method -valueForUndefinedKey:
just like when setting a value.

Observing Changes to KVC-Compliant
Values
One of the neat Objective-C technologies that builds on Key Value Coding is Key Value
Observing. Key Value Observing allows you to register as an observer of a given object and

10_9780470479223-ch06.indd 17810_9780470479223-ch06.indd 178 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 179

receive notification when specific properties on that object are changed. It’s an incredibly pow-
erful capability, and it is built into Objective-C at its very core.

Writing KVC accessors may seem like a lot of effort (though if you use properties, it’s really not),
but the great part is that if you create KVC compliant accessors for all of your class attributes,
you get Key Value Observing totally for free.

Using KVO
Key Value Observing enables you to automatically observe changes on other objects. So, for
example, you can use it to be notified when an object changes its state, such as when the user
changes a setting by using the settings panel in your application. Using Key Value Observing,
the Windows and objects that utilize the setting that the user just changed can automatically
be notified that the user changed that value. You don’t have to manually tell your other objects
to update themselves. They automatically receive the new value and can take whatever action
is appropriate. This is incredibly powerful. Settings are one of the most powerful uses of this
technology, but additionally, things like core data and other technologies in the Cocoa frame-
works take advantage of Key Value Observing to do a lot of the magical things that they do.

To use Key Value Observing, first, the object being observed must be using KVC-compliant
accessors for the attributes that you want to observe. Second, the object that wishes to observe
the changes, the Observer, must implement a special method to receive the notification of the
change. That method is -observeValue:forKeyPath:ofObject:change:context:.
This method is called when the value changes and can be configured to receive both the old
value and the new value as well as other information defined by you.

Finally, the Observer asked to register with the observed object by calling the method -add
Observer:forKeyPath:options:context:. Calling this method tells the object what
KVC keypath it wishes to observe changes to, what changes it wants to see, and also provide a
context object which it will receive back when it receives a notification of changes to that
object.

After the observer has done this, any changes to the property specified by the keypath will
automatically call the observer’s callback method. When the observer is finished observing the
observed object, it must also remove itself as an observer of that object. If you fail to do this and
then allow the observer to be deallocated, then future notifications to the observer may cause
your application to crash.

Registering as an observer
Registering as an observer is easy. Simply call the method — addObserver:forKeyPath:
options:context: on the object that you want to observe. This is shown in Listing 6.14.

10_9780470479223-ch06.indd 17910_9780470479223-ch06.indd 179 1/4/11 8:53 PM1/4/11 8:53 PM

180 Exploring Deeper Features

Listing 6.14

Adding an observer

[obj addObserver:self
 forKeyPath:@”memberVariable”
 options:(NSKeyValueObservingOptionNew |
 NSKeyValueObservingOptionOld)
 context:NULL];

The Observer parameter is usually self, and is the object that receives the notification when the
observed value changes. The key path parameter specifies the key path to the attribute for
which you want to observe changes. The options parameter specifies a set of flags that tell KVO
how you want the changes to be sent to you. These values are or’d together using the ‘|’ opera-
tor. The possible values that can be passed here are shown in Table 6.2.

Table 6.2
Value Purpose

NSKeyValueObservingOptionNew Send the new value as part of the change information.

NSKeyValueObservingOptionOld Send the old value as part of the change information.

NSKeyValueObservingOptionInitial Send an initial update as soon as the observer is registered.

NSKeyValueObservingOptionPrior Send separate updates before and after the change is made rather than only one update

after the value has changed.

The context parameter is a void * parameter is passed unchanged through the KVO system
and back to your object when the change notification occurs. Essentially, as far as KVO is con-
cerned, this parameter is an opaque blob of data that is entirely implementation dependent.
Whatever you want to pass in here is passed through unchanged.

 N O T E
Remember when working with void * context parameters that there are special rules that apply for garbage collection
and that is up to you to make sure that whatever data that void * is pointing to is still allocated and valid when you
later need to access it. In other words, don’t pass things that are stored on the stack into this parameter. That will
cause a crash.

10_9780470479223-ch06.indd 18010_9780470479223-ch06.indd 180 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 181

After you register as an observer, if you passed the flag NSKeyValueObservingOption
Initial, you can get an initial notification of the initial value for the attribute that you’re
observing. Additionally, as the value changes over time, you receive notifications of those
changes.

In order to receive those notifications, you have to implement the callback method shown in
the next section.

Defining callbacks for KVO
The next step in using KVO is in writing the callback method for the Observer. Listing 6.15
shows an example implementation of the method -observeValue:forKeyPath:of
Object:change:context:.

Listing 6.15

An example implementation of the KVO callback method.

-(void)observeValueForKeyPath:(NSString *)inKeyPath
 ofObject:(id)inObject
 change:(NSDictionary *)inChange
 context:(void *)inCtx;
{
 if([inKeyPath isEqualToString:@”memberVariable”])
 {
 NSString *newValue = [inChange
 objectForKey:NSKeyValueChangeNewKey];
 // do something with the new value...
 }
 else if([inKeyPath isEqualToString:@”...”]) // etc...
 {

 }
 [super observeValueForKeyPath:inKeyPath
 ofObject:inObject
 change:inChange
 context:inCtx];

}

10_9780470479223-ch06.indd 18110_9780470479223-ch06.indd 181 1/4/11 8:53 PM1/4/11 8:53 PM

182 Exploring Deeper Features

As you can see in this method, the first thing that you have to do is to find out what attribute of
the observed object is changed. The method is automatically passed an object parameter,
which tells you what object is sending you the notification. By using the -isEquals method
with the passed in value for the key path, you can determine exactly what attribute it was on
the object that changed. The key parameter is nothing but a string, just like when you are using
it with KVC. Therefore, you can use the NSString method -isEqualToString: to deter-
mine which key path this notification is for.

When you have determined what attribute on the object has changed, you can then take
 whatever appropriate action is necessary. The actual change is passed to you by the change
parameter. This parameter is an NSDictionary, containing keys and values associated with
whatever change information you requested when you registered as an observer. Those keys
and values are shown in Table 6.3.

Table 6.3
Key Value

NSKeyValueChangeKindKey An NSNumber specifying the type of change.

NSKeyValueChangeNewKey The new value.

NSKeyValueChangeOldKey The old value.

NSKeyValueChangeIndexesKey When NSKeyValueChangeKindKey is one of NSKeyValueChangeInsertion,

NSKeyValueChangeRemoval, or NSKeyValueChangeReplacement, this value contains

the indexes of the values changed.

NSKeyValueChangeNotificationIsPriorKey Used in conjunction with the NSKeyValueChangeOptionPrior to indicate the “prior”

notification.

As you can see, if you chose to receive both the old value and the new value, they are both pro-
vided to you inside the change parameter, accessible using the appropriate key. After you have
retrieved the value from the change dictionary, you can use it in your object to do whatever is
necessary.

Remember that KVC has to use objects for sending values — it cannot use scalars and structures
directly. Therefore, if the value that you are observing is a scalar or a structure, the value that
you will receive here will be an NSNumber or an NSValue, respectively. Therefore, you must
use that value and extract the actual scale or value or structure value that you require, as
needed. The example code shown above demonstrates this.

10_9780470479223-ch06.indd 18210_9780470479223-ch06.indd 182 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 183

The NSKeyValueChangeKindKey specifies the kind of change you are receiving. The possi-
ble values are shown in Table 6.4.

Table 6.4
Value Purpose

NSKeyValueChangeSetting Specifies that the value is being set.

NSKeyValueChangeInsertion Specifies that values are being inserted, as in a collection or one-to-many relationship.

NSKeyValueChangeRemoval Specifies that values are being removed from a one-to-many relationship.

NSKeyValueChangeReplacement Specifies that values are being replaced in a one-to-many relationship.

Removing an observer
Remember that after you are done observing changes to an object, you have to remember to
remove yourself as an observer. If you don’t, your application may crash.

 N O T E
In a garbage-collected environment, crashes are not an issue if you forget to remove yourself as an observer. However,
they can still be a good practice to do so anyway so that you get in the habit of it when you’re not working in a garbage-
collected environment.

To remove yourself as an observer, you simply call the method -removeObserver:forKeyPath:,
passing the Observer as the first parameter, and the key path that you are observing as the sec-
ond parameter. Listing 6.16 shows an example doing this in the dealloc method of the observer.

Listing 6.16

Removing an observer.

-(void)dealloc;
{
 [obj removeObserver:self forKeyPath:@”memberVariable”];
 [super dealloc];
}

10_9780470479223-ch06.indd 18310_9780470479223-ch06.indd 183 1/4/11 8:53 PM1/4/11 8:53 PM

184 Exploring Deeper Features

Implementing manual notifications
All of these notifications happen automatically. All you need to do is use KVC compliant acces-
sors for your properties and everything will work fine. Sometimes, you don’t necessarily want to
take advantage of the automatic notifications. Where you want to instead manually send notifi-
cations that you’ve just changed a value or set of values. For example, if you are about to make
many changes at once, you may want to group up the notification and only send one notifica-
tion. In these cases, you want to use manual notifications.

To use manual notifications, you must first override the class method +automatically
NotifiesObserversForKey: to tell Objective-C that you do not want it to automatically
notify observers of changes. You do this by returning NO for any keys for which you want to
implement manual notification. An example of this is shown in Listing 6.17.

Listing 6.17

Overriding +automaticallyNotifiesObserversForKey:

+(BOOL)automaticallyNotifiesObserversForKey:(NSString *)inKey;
{
 if([inKey isEqualToString:@”memberVariable”])
 return NO;
 return YES;
}

When you actually want to perform a manual notification for change, you must call the method
-willChangeValueForKey: prior to the change and then -didChangeValueForKey:
after. An example of this is shown in Listing 6.18.

Listing 6.18

Implementing manual notifications

-(void)setMemberVariable:(CGFloat)inValue;
{
 [self willChangeValueForKey:@”memberVariable”];
 memberVariable = inValue;
 [self didChangeValueForKey:@”memberVariable”];
}

10_9780470479223-ch06.indd 18410_9780470479223-ch06.indd 184 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 185

These calls can be nested when needed, in cases where you need to modify multiple variables
in one call. There are corresponding calls for one to many relationships. These are -will
Change:valuesAtIndexes:forKey: and -didChange:valuesForIndexes:
forKey:.

Understanding risks with KVO
Using KVO is not without problems. Any time you let the computer just “do things” on its own,
there’s always the possibility that you might wind up with some unusual combination of factors
that, once in a blue moon, may cause problems. KVO is not immune to this.

More specifically, the biggest risk factor that you have in using KVO is that, if observers are
watching your every move, those observers can sometimes have side effects, and because you
don’t control those observers, you can’t control those side effects either.

For the most part, this isn’t an issue, but in one case this can cause problems. This case is when
you use your accessors to free your member variables in your initializer or your dealloc method,
as shown in Listing 6.19.

Listing 6.19

Using accessors to release member variables in your dealloc

-(void)dealloc
{
 [self setFoo:nil];
 [self setBar:nil];
 [super dealloc];
}

Writing your dealloc method like this is great! You can simultaneously release your member
variable and set it to nil, all in one shot.

The problem is, when you’re calling those accessors, the KVO observers will be receiving notifi-
cations of those changes. If they are not expecting to receive nil, or if they are expecting to be
able to manipulate the object itself when the notification is received, bad things can happen.

Furthermore, if you can imagine an observer that when receiving a notification for a change to
the bar variable, expects to be able to access the foo variable obviously, in this case, it would
have a problem because the foo variable has already been deallocated and set to nil.

Apple’s current recommendation is that you do not use accessors for initializing or deallocating
member variables in your initializer or dealloc method. This is further complicated by the fact

10_9780470479223-ch06.indd 18510_9780470479223-ch06.indd 185 1/4/11 8:53 PM1/4/11 8:53 PM

186 Exploring Deeper Features

that under the 64-bit runtime is possible to declare properties that do not have member variables
associated with them. In these cases, the only way to initialize and deallocate as member vari-
ables is by using their accessors.

In my code, I use accessors for initializing and deallocating member variables unless I know that
doing so in a given circumstance will cause a problem. Also, when I implement a key value
observer I ensure that the observer can properly handle nil values and I try to minimize any
side effects.

If you feel that this is a risk worth taking, then feel free to write your initializers and dealloc
method by using your accessors. Just be aware of the potential hazards involved, so that if and
when you do encounter a problem, you know immediately where to look.

On the other hand, if you don’t feel that you can ensure this with your observers, follow Apple’s
advice and do not use accessors in initializers and destructors unless you must.

Applying Key Value Observing
Now that you understand all the details of Key Value Coding and Key Value Observing, take a
look at a small example application with a few classes. One of those classes will observe the
other classes, and as it receives notifications of changes to the attributes on the observed
classes, it will print out those changes to the console.

Listing 6.20 shows the first class in this application. This simple point class has a couple of prop-
erties, x, and y. Just put the interface into the interface file, and the implementation in an imple-
mentation file.

Listing 6.20

Interface and implementation of the MyPoint class.

// Interface - goes in MyPoint.h
#import <Cocoa/Cocoa.h>

@interface MyPoint : NSObject
{
 CGFloat x;
 CGFloat y;
}
@property CGFloat x;
@property CGFloat y;

@end

10_9780470479223-ch06.indd 18610_9780470479223-ch06.indd 186 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 187

// implementation - goes in MyPoint.m
#import “MyPoint.h”

@implementation MyPoint
@synthesize x;
@synthesize y;

@end

Listing 6.21 shows the Observer class. This class will simply take a MyPoint and add itself as
an observer. Nothing to it.

Listing 6.21

The Observer class

// Interface - goes in Observer.h
#import <Cocoa/Cocoa.h>
#import “MyPoint.h”

@interface Observer : NSObject
{
 MyPoint *point;
}
@property (retain) MyPoint *point;
-(id)initWithPoint:(MyPoint *)inPoint;
@end

// Implementation - goes in Observer.m
#import “Observer.h”

@implementation Observer
@synthesize point;

-(void)dealloc;
{
 [point removeObserver:self forKeyPath:@”x”];
 [point removeObserver:self forKeyPath:@”y”];
 [point release];

continued

10_9780470479223-ch06.indd 18710_9780470479223-ch06.indd 187 1/4/11 8:53 PM1/4/11 8:53 PM

188 Exploring Deeper Features

Listing 6.21 (continued)

 point = nil;
 [super dealloc];
}

-(id)initWithPoint:(MyPoint *)inPoint;
{
 if(self = [super init])
 {
 point = [inPoint retain];
 [point addObserver:self forKeyPath:@”x”
 options:(NSKeyValueObservingOptionNew|
 NSKeyValueObservingOptionOld)
 context:nil];
 [point addObserver:self forKeyPath:@”y”
 options:(NSKeyValueObservingOptionNew|
 NSKeyValueObservingOptionOld)
 context:nil];
 }
 return self;
}

-(void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context;
{
 NSNumber *oldValue = [change objectForKey:NSKeyValueChangeOldKey];
 NSNumber *newValue = [change objectForKey:NSKeyValueChangeNewKey];

 if(keyPath == @”x”)
 NSLog(@”Value for X changed from: %f to %f”,
 [oldValue floatValue],
 [newValue floatValue]);
 if(keyPath == @”y”)
 NSLog(@”Value for Y changed from: %f to %f”,
 [oldValue floatValue],
 [newValue floatValue]);
}

@end

Finally, the main function. Listing 6.22 shows this code.

10_9780470479223-ch06.indd 18810_9780470479223-ch06.indd 188 1/4/11 8:53 PM1/4/11 8:53 PM

 Chapter 6: Using Key Value Coding and Key Value Observing 189

Listing 6.22

The main function.

#import <Foundation/Foundation.h>
#import “Observer.h”
#import “MyPoint.h”

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 MyPoint *point = [[MyPoint alloc] init];
 Observer *observer = [[Observer alloc] initWithPoint:point];

 point.x = 42.0;
 point.y = 55.1;

 point.x = 4200.0;
 point.y = 5500.1;

 [observer release];
 [point release];

 [pool drain];
 return 0;
}

All it does is create the point, then creates the observer, passing it the point. Then it changes
the values. All of the output happens inside the Observer class, and it’s all automatic.

Go ahead and compile and run this application and see what I mean.

Summary
In this chapter, I’ve introduced you to Key Value Coding and Key Value Observing, two core
technologies that Objective-C and the Cocoa and Cocoa Touch frameworks provide you. By
using these capabilities, you can build application designs that are more flexible by not cou-
pling disparate parts of the application too tightly. Loose coupling means more flexible designs,
and KVO and KVC provide you with the tools needed to keep your application components
loosely coupled.

10_9780470479223-ch06.indd 18910_9780470479223-ch06.indd 189 1/4/11 8:53 PM1/4/11 8:53 PM

10_9780470479223-ch06.indd 19010_9780470479223-ch06.indd 190 1/4/11 8:53 PM1/4/11 8:53 PM

In This Chapter

Working with Protocols

Solving object-oriented
design problems with

protocols

Implementing protocols
for your classes

Adopting protocols

Working with optional
methods

Understanding formal
versus informal protocols

Objective-C does not feature multiple inheritance, which has
advantages as well as disadvantages. It is advantageous
because multiple inheritance results in complicated issues

that can be difficult to resolve. However, it is also a disadvantage
because there are times when you want to have a class, which
implements a specific interface without necessarily inheriting from
the class that specifies that interface. Thankfully, the designers of
Objective-C included a feature to address exactly this situation,
protocols.

Essentially, a protocol defines an interface that can be imple-
mented by multiple other classes without the use of inheritance.
This enables you to mix and match functionality on a given class
so that the class can be adapted to different uses.

Favoring Composition Over
Inheritance
An object oriented design axiom known as “favor composition over
inheritance” means that rather than always turning to inheritance as
a tool for extending functionality of a given class, you should instead
first try to solve the problem by using other classes compositionally
within your class. For example, if you needed to implement a class
that provided an interface between a network service and your
application, instead of inheriting from a socket class (a class that
gives you access to network resources), you should include another
object in your class, which provides that network connectivity. You
should “compose” your design from other reusable components.
Building your designs in this way results in more flexibility, because
those bits and pieces that you are composing together to solve a
given problem can later be swapped out and changed to solve
another problem. This is an incredibly powerful design philosophy
and one which you should strive for in your code.

It is certainly possible to follow this design philosophy simply by
using standard object oriented techniques. However, designing
components for reuse causes complications.

11_9780470479223-ch07.indd 19111_9780470479223-ch07.indd 191 1/4/11 8:54 PM1/4/11 8:54 PM

192 Exploring Deeper Features

Figure 7.1 shows a class diagram describing the relationships between a class, which holds busi-
ness logic and a class provided for network connectivity. This is a classic “compositional” design.

The idea here is that the NetworkConnector class provides all the interaction with the net-
work server. It connects, disconnects, and sends and receives data. The BusinessLogic class
takes the data that the NetworkConnector receives, and it decides where in the application
that data needs to go.

Figure 7.1

Tightly coupled BusinessLogic and NetworkConnector.

The problem arises when you have to talk from the NetworkConnector class back to the
BusinessLogic class, for example when receiving data. Network connectivity is an incredi-
bly generic concept. Something you could definitely reuse in other applications, or even in the
same application in different locations. If you want to design the network class in a completely
generic way so that the network class can be reused over and over again, you have to design it
so that it is not in any way tightly coupled to its client classes, in other words the
BusinessLogic class.

You can’t have the NetworkConnector requiring the BusinessLogic class as a depen-
dency because you can’t always count on the existence of the BusinessLogic class being
the class that’s using your NetworkConnector.

11_9780470479223-ch07.indd 19211_9780470479223-ch07.indd 192 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 7: Working with Protocols 193

One way to solve this using inheritance is to force the BusinessLogic class to inherit from
some parent class which the NetworkConnector class can rely upon. This is shown in
Figure 7.2.

Figure 7.2

BusinessLogic class inheriting from generic NetworkClient class.

In this situation, you are limiting the developer of the client class by forcing them to inherit
from a particular parent. If that parent class doesn’t smoothly fit into that developer’s object
hierarchy, then this can present significant design problems. For example, imagine that the
BusinessLogic class needed to both communicate with the network, as well as communi-
cate with a disk I/O system that had a similar callback mechanism. Using straight inheritance
such as this simply won’t work in that situation.

Understanding why you don’t need (or want)
multiple inheritance
Some languages, such as C++, solve this kind of problem through multiple inheritance. Figure 7.3
shows an example of how you might solve the network communication problem in C++.

The problem with multiple inheritance is typically referred to as the “diamond problem“ and is
illustrated in Figure 7.4.

11_9780470479223-ch07.indd 19311_9780470479223-ch07.indd 193 1/4/11 8:54 PM1/4/11 8:54 PM

194 Exploring Deeper Features

Figure 7.3

Using multiple inheritance.

As you can see in the class diagram, the main problem with multiple inheritance arises from the
fact that it is possible to inherit from two different classes (above, class D inheriting from classes
B and C), which both inherit from a common superclass (class A). In this situation, an ambiguity
can occur wherein a method on the class A is called on an instance of class D. In this situation, if
class D has not overridden that method and provided its own implementation, which superclass
method should be called, B or C?

Because of this problem, multiple inheritance is simply not something that Objective-C pro-
vides. If you only have single inheritance, then you don’t have to worry about the diamond
problem.

Understanding how protocols solve the problem
Protocols solve the problem by enabling you to declare an interface, which a class implements
without providing any default implementation of that interface. Protocols do not provide a
mechanism for specifying the implementation of the methods within them. They only provide a
mechanism for declaring the interface for those methods. Rather than making a reusable com-
ponent depend on a specific class implementation, you can instead make that component
depend on the existence of the interface in the form of a protocol. Classes that implement a
given protocol are expected to provide their own implementations of the methods specified in
the protocol declaration. By implementing protocols in this manner, you enable classes to be
written so that they depend only on an interface existence while at the same time removing the
ambiguity question because any class that declares that it implements a given interface must
also implement the methods in question. There is no “diamond problem” because any protocol
that you declare and support has to have an implementation in your class.

11_9780470479223-ch07.indd 19411_9780470479223-ch07.indd 194 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 7: Working with Protocols 195

Figure 7.4

The diamond problem.

From an object-oriented design point of view, the class diagram for this solution looks nearly
identical to that of multiple-inheritance, but it doesn’t allow for the problems that multiple
inheritance invariably brings with it.

This solution is not unique to Objective-C. Java, which in a lot of ways was based on
Objective-C, also implements a similar concept using its version of protocols called interfaces. If
you are coming to Objective-C from a Java background, the concept of protocols and interfaces
is very similar, and you should feel right at home.

Documenting an expected interface
for others to implement
Another way to think about protocols is to imagine that you are documenting an expected
interface for others to implement. In the NetworkConnector example, we are documenting
all of the different conditions for which the network class might need assistance from the devel-
oper in terms of determining what to do in these situations.

11_9780470479223-ch07.indd 19511_9780470479223-ch07.indd 195 1/4/11 8:54 PM1/4/11 8:54 PM

196 Exploring Deeper Features

For example, if the NetworkConnector receives data from the network, it is reasonable to
assume that the application itself contains whatever knowledge (the business logic) is neces-
sary to determine what to do with that data. In other words, there is no generic way to say
“when I receive data, here’s what I’m going to do with it.” You really have to ask the rest of the
application “I just got some data, what do you want me to do with it?” It is these kinds of situa-
tions where protocols are perfectly and uniquely suited. You can declare a protocol for all of the
different unresolved questions (“I got data, what do I do with it?” - “I got disconnected should I
reconnect?!”) that your generic component needs to be able to delegate to a higher authority.

By declaring these different “questions,” you are establishing a clear and precise contract that
users of your class can then fulfill. When they fulfill this contract by implementing the protocol,
they will know all of the different situations that they will need to be prepared to handle. This sys-
tem is much more flexible than any system involving return codes, exceptions, and so on. It’s even
more powerful than simply generic callbacks, because of the uniquely verbose nature of
Objective-C method declarations and how the act of declaring a clear and obvious protocol
becomes a self-documenting callback API for your reusable components. If you think about it in
this way, the term “protocol” actually makes more sense than “interface” because a “protocol” can
be thought of as an agreed upon code of procedure or behavior, as in diplomacy and etiquette.

So, enough theory, now you can get your hands dirty with some code.

Implementing Protocols in Your Objects
Using protocols is very straightforward, and follows many of the same syntax conventions that
you’ve already seen when working with classes.

Essentially, you first have to create the protocol declaration. You can do this in an existing inter-
face file, in the case where you are declaring a protocol for use with an already existing object,
like in our previous discussion with the NetworkClient, or in its own separate interface file in
cases where you might be using this protocol for many different purposes. The protocol itself
only declares an interface and does not provide an implementation whatsoever. Because of
this, if you are creating a separate .h file for your protocol declaration, you do not need to pro-
vide any .m file at all. The interface in the .h file is sufficient.

After you have declared your protocol, for any classes which implement that protocol, they
should also declare that they implement it. This is so that the compiler can verify that the class
in question is implementing all of the methods required for the program.

 N O T E
It is not actually absolutely necessary to declare that your class implements a protocol that it supports. As we discuss
shortly, some types of protocols do not need to be declared at all. Additionally, your class can choose simply to imple-
ment the protocol methods rather than declaring its support. In these cases, the compiler will not be able to deter-
mine if your class supports the protocol at compile time, so you will have to do extra work at runtime to ensure that
any objects upon which you are calling the protocol methods actually implements them. This can, however, result in a
compiler warning if another class declares that it expects your class to implement the protocol.

11_9780470479223-ch07.indd 19611_9780470479223-ch07.indd 196 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 7: Working with Protocols 197

When you reference objects in your code, which are expected to implement a given protocol,
there is a special syntax that you can use in the type declaration of that object to show that,
although you may not know what the actual class of the object is, you expect it to implement
a given protocol. If the protocol is a formal protocol, any object that is stored in that variable is
checked at compile time to determine if it implements all of the required methods for that pro-
tocol. If it does not, a warning is raised.

Protocols can have both required and optional methods. In cases where you have optional
methods, an object that implements the protocol may not necessarily implement one of its
optional methods. In this situation, you are expected to check to verify that the object in ques-
tion is implementing the optional method before you attempt to call it. If you attempt to call
an optional method and the object does not implement that method, then you will get an
exception.

Declaring a protocol
Declaring the protocol follows many of the same syntactical standards that you’ve already
come to recognize. Superficially, it most resembles declaring a class. You begin a protocol
declaration by using the keyword @protocol, followed by the name of the protocol you are
declaring. Protocols do not by default inherit from each other or from classes, but if you want to
inherit from another protocol you can, optionally, by providing the name of protocols that you
inherit from enclosed in angle brackets <> after the name of the protocol you are declaring.
When you do this, classes implementing your protocol must implement not only the protocol
methods that you declare but also the protocol methods of any protocols that you inherit from.
After the @protocol declaration, you then declare any methods that are required for your
protocol. Declare these just as if you were declaring methods on a class.

Inside the protocol definition itself, where you are declaring your protocol methods, two key
words can be used. The first is the @required key word. This keyword dictates that all of the
following methods are required methods for implementations of this protocol. This is the
default behavior of a formal protocol, so if you do not specify the @required key word, then
all methods declared in the protocol default to required status.

The second keyword that is usable within the @protocol declaration is the @optional key-
word. This is used to indicate methods that are optional for the implementing classes to imple-
ment. Classes that implement this protocol can choose not to implement any methods declared
after the @optional keyword.

At the end of the protocol declaration, just like with the class, you end the protocol declaration
with the @end keyword. An example protocol declaration for our NetworkClient class that
we discussed previously is shown in Listing 7.1

11_9780470479223-ch07.indd 19711_9780470479223-ch07.indd 197 1/4/11 8:54 PM1/4/11 8:54 PM

198 Exploring Deeper Features

Listing 7.1

Example protocol declaration

@protocol NetworkClient
-(void)networkConnector:(NetworkConnector *)inNetConnector
 gotData:(NSData *)inData;
@optional
-(void)networkConnectorDisconnected:(NetworkConnector *)inNetConnector;
@end

 N O T E
This protocol shows the delegate pattern at work, which is why the first parameter is the object sending the message.
I go over more about that in Chapter 17.

Again, if you wanted to derive your protocol from another preexisting protocol, for example, to
extend that preexisting protocol, you can do that by having your protocol extend or inherit
from that preexisting protocol, as shown in Listing 7.2.

Listing 7.2

NetworkClient extending the IOClient protocol

@protocol NetworkClient <IOClient>
-(void)networkConnector:(NetworkConnector *)inNetConnector
 gotData:(NSData *)inData;
@optional
-(void)networkConnectorDisconnected:(NetworkConnector *)inNetConnector;
@end

Protocols are incapable of having member variables. Therefore, there is no place in the protocol
declaration to declare member variables. Do not confuse this with the idea that a protocol can’t
access member variables, it certainly can, but that’s a detail that is specific to the implementa-
tion of the protocol and not part of declaring the protocol itself. When you implement the
methods of the protocol on whatever class has adopted it, you can certainly use any member
variables declared in the header of that particular class.

Declaring that a class implements a protocol
To declare that a class implements a specific protocol you simply place the protocol name
inside angle brackets after the superclass in the class declaration. For example, Listing 7.3 shows
an example class implementing the protocol from the previous section.

11_9780470479223-ch07.indd 19811_9780470479223-ch07.indd 198 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 7: Working with Protocols 199

Listing 7.3

A class implementing the NetworkClient protocol

@class BusinessLogic : NSObject <NetworkClient>
{
 // member variables
 NSString *someMemberVariable;
}
-(id)init;
@end

Classes can implement more than one protocol simultaneously. When doing this, you simply list
the different protocols inside the angle brackets separated by commas, as shown in Listing 7.4.

Listing 7.4

A class implementing multiple protocols

@class BusinessLogic : NSObject <NetworkClient, DiskClient>
{
 // member variables
 NSString *someMemberVariable;
}
-(id)init;
@end

In this case, the BusinessLogic is being said to implement both the NetworkClient and
DiskClient protocols.

Though you must import the header file for the protocol declaration, you do not need to
declare the protocol methods in your interface as well. Simply declaring that you implement
the protocol is enough information to tell the compiler what methods to expect to find in your
implementation.

 N O T E
Categories, which are described in Chapter 8, can also declare that they implement a protocol, just like classes.

11_9780470479223-ch07.indd 19911_9780470479223-ch07.indd 199 1/4/11 8:54 PM1/4/11 8:54 PM

200 Exploring Deeper Features

Declaring an object that must implement a protocol
When declaring an instance variable that is expected to implement a given protocol, typically
you use the id datatype so that any object can be stored in the variable. If you want to have the
compiler verify that the required protocol methods are in fact implemented on whatever object
you are actually storing in the variable, then you must also tell this to the compiler by specifying
the protocol type information along with the datatype. To do this, in addition to the id datatype,
you also specify the protocol you expect the object to adhere to after the id keyword, in angle
brackets, as shown in Listing 7.5.

Listing 7.5

Declaring a variable which implements a specific protocol

id<NetworkClient> *delegate;

In this case, the delegate object is being defined as adopting the NetworkClient protocol,
and thus will be expected, by the compiler, to implement the appropriate required methods
from that protocol.

Anywhere you are expected to declare a variable datatype, you can use this syntax. This
includes method declarations, variable declarations, return types, and so on.

 N O T E
In those rare cases where you have not declared that your variable must implement a specific protocol, but you do
require it, you can force the compiler to assume that a given object does implement a given protocol by typecasting it.
To typecast a given variable to a given protocol, you actually typecast it to (id<SomeProtocol>). This isn’t
required if you specify your protocols as part of your variable declarations, as is generally recommended.

Exploring formal and informal protocols
I’ve mentioned it briefly before, but it bears further discussion here before we deal with how
you handle optional methods.

There are, in fact, two different kinds of protocols, formal and informal. Informal protocols are
the older style of protocols that are still used in part of cocoa and Objective-C. Informal proto-
cols do not require a formal protocol declaration as I’ve shown you so far in this chapter.
Informal protocols are typically declared as categories on the NSObject class. I discuss catego-
ries in the next chapter, so I won’t go into a great amount of detail here.

Because of the greater type safety that formal protocols provide and because of the fact that
formal protocols have the @optional keyword that enables you to selectively mark individual
methods as optional, generally speaking, formal protocols are the preferred way to create new
protocols in your code.

11_9780470479223-ch07.indd 20011_9780470479223-ch07.indd 200 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 7: Working with Protocols 201

Typically, the only place that you are likely to run into informal protocols today is when you are
working with older frameworks, such as portions of the Cocoa frameworks themselves.

You can recognize these circumstances, because rather than the documentation pointing you to a
formal document declaring and documenting the interface that you are expected to implement,
typically you will see these protocol methods documented as part of the class that you are actu-
ally using. For example, the Cocoa class NSURLConnection uses an informal protocol for its
delegate methods. If you look at the documentation for that class, you’ll see that the delegate
methods themselves are actually documented in the documentation on the NSURLConnection
class itself. They are marked “delegate.” Contrast this with the Cocoa Touch class, SKPayment
Queue, which was recently added for in-app purchase support on iPhone. It separates its delegate
methods into a formal protocol by using the SKPaymentTransactionObserver protocol.

When needing to implement an informal protocol in one of your classes, you do not need to
declare that your class implements the protocol in its declaration as you would normally with a
formal protocol. Instead, you simply implement the methods that you choose to implement,
and if they are available, classes that need to use your object will call them.

When working with informal protocols, all the methods in the protocol are optional, so you
need to verify that the object in question implements them before you call them. I explain how
to do this in the next section.

Determining if an object implements
optional methods
Within your code, you can determine if a given class implements a specific protocol by using
the object method -conformsToProtocol:. The method, which is called using the object
in question, takes one parameter, which is expected to be a protocol object. To get the protocol
object for a specific protocol, you use the built-in Objective-C directive @protocol(). This is
different from the @protocol directive that you used in declaring your protocol, in that it
takes a parameter inside parentheses, which is the name of the protocol that you want to get
the object for.

So, for example, to determine if a given object adheres to our NetworkClient protocol, you
would do something like Listing 7.6.

Listing 7.6

Determining if an object adheres to the NetworkClient protocol at runtime.

-(void)receivedData:(NSData *)inData;
{
 if([delegate conformsToProtocol:@protocol(NetworkClient)])
 [delegate networkConnector:self gotData:inData];
 // else do something else...
}

11_9780470479223-ch07.indd 20111_9780470479223-ch07.indd 201 1/4/11 8:54 PM1/4/11 8:54 PM

202 Exploring Deeper Features

Typically, you would only need to do this in cases where you did not specify the type of the pro-
tocol as part of the datatype for the variable in question. If you had specified the protocol is part
of the datatype for the variable then the compiler would have flagged this variable for you if it
did not implement the protocol required.

 N O T E
The -conformsToProtocol: method shown in Listing 7.6 only works with formal protocols. If you’re using an
informal protocol, use the NSObject method -respondsToSelector: as shown in Listing 7.7 instead.

Even when you are certain that a given object implements a given protocol, there is still the
possibility that the object may not implement any of the optional methods of the protocol.

Remember, if an object does not implement an optional method and you call that method on
that object, then your application will crash. Therefore, you need a way to determine if that
object actually implements an optional method before you attempt to call it.

Fortunately, NSObject, which all objects inherit from, has a method which does exactly this.
This method is -respondsToSelector: and it takes as a parameter a selector object.

Just like with the protocol object, a special directive can be used to convert a method signature
into a selector object. That directive is the @selector() directive. Its use, along with the
-respondsToSelector: method, is shown in Listing 7.7.

Listing 7.7

Testing to determine if an object implements an optional method

-(void)disconnected;
{
 if([delegate respondsToSelector:@selector(networkConnectorDisconnected:)])
 [delegate networkConnectorDisconnected:self];

 // else implement some default behavior...
}

In this example, you first check to see if the object which implements the protocol in fact imple-
ments one of the optional methods using the call -respondsToSelector:. If it does, then it
goes ahead and calls that method. If it does not, you can choose to either do nothing, or to
implement some kind of default behavior instead.

11_9780470479223-ch07.indd 20211_9780470479223-ch07.indd 202 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 7: Working with Protocols 203

Avoiding Circular Protocol Dependencies
Protocols can refer to other protocols within their own declarations. For example, imagine a
protocol which requires another protocol for use as a parameter to one of its methods, as
shown in Listing 7.8.

Listing 7.8

A protocol requiring another protocol

@protocol Foo
-(void)someMethodRequiringBar:(id<Bar>)inBar;
@end

If the required protocol (Bar) also requires the original protocol (Foo), as shown in Listing 7.9,
then a circular dependency is created between the two protocols. This generates a compiler
error.

Listing 7.9

The Bar protocol, which requires the Foo protocol

@protocol Bar
-(void)someMethodRequiringFoo:(id<Foo>)inFoo;
@end

To resolve this problem, you can give a forward declaration of the required protocol which
enables you to not include the file for the protocol that is required. For example, to prevent this
circular dependency, you can add to the Bar.h interface file, the directive @protocol Foo;
instead of importing the Foo.h file. This is shown in Listing 7.10.

Listing 7.10

A corrected version of the Bar protocol.

@protocol Foo;
@protocol Bar
-(void)someMethodRequiringFoo:(id<Foo>)inFoo;
@end

11_9780470479223-ch07.indd 20311_9780470479223-ch07.indd 203 1/4/11 8:54 PM1/4/11 8:54 PM

204 Exploring Deeper Features

This occurrence is rare, but it’s important to know that you have this tool available to you if
needed. By adding the @protocol Foo directive above the Bar protocol declaration, you are
telling the compiler “Trust me, Foo is a protocol, and I’ll include it in my compilation, but I’m
not importing the Foo.h here.”

Exploring examples of protocol use
Protocols are used throughout Objective-C when working with application frameworks, such as
Cocoa and Cocoa Touch. The biggest area of use is in delegation and datasource objects. Often,
these are cases where the delegating object requires information at runtime that can’t be deter-
mined in a generic way, such as what columns to display in a given table view. Alternatively,
they’re also used in cases where some process needs to happen in the background. You might
call a method like -start, which returns immediately, and then receive a callback on a dele-
gate protocol method telling you that the process has completed.

Just to give you an example of this in action, take a look at Listing 7.11. In this code, the applica-
tion is creating an NSURLConnection, and firing it off. Later, as the data comes back from the
URL request, it receives notice of that data via the protocol method
-connection:didReceiveData:.

Listing 7.11

A class using an NSURLConnection and implementing the NSURLConnection delegate
protocol methods

@implementation NetworkConnector
-(id)init
{
 if(self = [super init])
 {
 NSURL *url = [NSURL URLWithString:@”http://www.google.com”];
 NSURLRequest *req = [NSURLRequest requestWithURL:url];

 connection = [[NSURLConnection alloc] initWithRequest:req

 delegate:self startImmediately:YES];
 }
 return self;
}
// protocol methods
(void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)inData
{

11_9780470479223-ch07.indd 20411_9780470479223-ch07.indd 204 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 7: Working with Protocols 205

 [data appendData:inData];
}
- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 // do something with all that data!
}
@end

Summary
In this chapter, you learned about a powerful decoupling mechanism in Objective-C, protocols.
Protocols enable you to write code that is more reusable by allowing you to keep your compo-
nents decoupled from specific implementations. Using protocols, you can simply say “I don’t
care what type of object you are, as long as you implement this interface, I’ll talk to you.”
Protocols are really one of the key technologies in Objective-C that make it different, and better,
than most other languages.

11_9780470479223-ch07.indd 20511_9780470479223-ch07.indd 205 1/4/11 8:54 PM1/4/11 8:54 PM

11_9780470479223-ch07.indd 20611_9780470479223-ch07.indd 206 1/4/11 8:54 PM1/4/11 8:54 PM

In This Chapter

Extending Existing Class
Capabilities

Extending existing
classes with categories

Exposing private APIs
using anonymous

categories

Adding variables to
classes using associative

references

No matter how well designed a class or framework is, inevita-
bly, there will always be circumstances that you will encoun-
ter that the framework designer did not anticipate. Some

developers go so far as to say that you should not plan for reusability
in your code because at the end of the day, it is so difficult to achieve
true universal reusability. I disagree with this notion, and I think that
Objective-C provides some of the best tools for fostering reusability
of any language available today.

In this chapter, I’m going to delve into some of the most powerful
of those tools. While not completely unique to Objective-C, they
are certainly examples of how the dynamism of Objective-C
enables more flexibility and reuse than almost any other compiled
language.

The technologies that I explain in this chapter center on the ability
to extend the functionality of existing classes.

Working with Third-Party
Frameworks and Classes
If you’ve worked with any kind of programming frameworks at all
in the past, you’ve probably run into a situation in which existing
classes that are provided by the standard library of the language
give you about 90 percent of the functionality that you’re looking
for, but not the final 10 percent of the functionality that you really
need. For example, you might have a string class, which doesn’t
provide a regular expression search.

Because these frameworks are built by a third-party, usually you
don’t have access to the source code of those frameworks. Because
of this, changing the existing framework itself to add that addi-
tional 10 percent of functionality is not an option. Even in cases in
which you do have access to the source code, it would be an
extremely bad practice to have to distribute a modified, custom
version of a standard library with your application.

12_9780470479223-ch08.indd 20712_9780470479223-ch08.indd 207 1/4/11 8:54 PM1/4/11 8:54 PM

208 Exploring Deeper Features

Another option that you might consider, would be to inherit from the existing class, creating
your own custom version of whatever class is that you need to change. By doing this, you could
add whatever functionality you wanted to in your custom version of that class.

On the surface, this seems like it might be a good idea, and indeed, many new object oriented
developers would jump on this opportunity as being the logical way to solve this problem.
However, in practice, this actually leads to other problems. Specifically, other readers of your
code may have difficulty grasping your intent. They might ask themselves why you created a
custom string class. If you are only adding a few methods, creating a custom subclass is proba-
bly overkill.

The amount of confusion caused by your custom string class probably outweighs the benefit.
Additionally, merging disparate subclasses from different code bases can be complicated and
fraught with error. Imagine two different code bases with two slightly different subclasses of
NSString. Imagine now that you want to use part of the functionality from the first code base
and part of the functionality from the second code base. Aside from just the difficulty of merg-
ing the two NSString subclasses, if the two classes have different names then one or the
other of the two code bases will have to be extensively edited in order to use the new, com-
bined NSString class.

Metaphorically speaking, using subclasses in order to extend existing classes, in some cases, is
akin to requiring that someone have a completely custom-built automobile delivered directly
from the factory whenever the customer simply requires a different type of hubcaps.

I’m not trying to say that subclassing is inappropriate in all cases. In certain cases, subclassing is
absolutely the right solution to a reusability problem. However, revisiting the object oriented
development axiom that I mentioned in the last chapter, “favor composition over inheritance,”
it’s easy to see that classes, when designed like automobiles, with reusable and replaceable
parts, results in greater flexibility and greater customizability for anyone who has to reuse
that class.

So, all that being said, let me introduce you to some parts of Objective-C that enable you to bolt
on functionality from outside the classes without having access to source code and without
subclassing.

Working with Categories
The first technology that I want to talk about is called categories. Categories enable you to
extend the functionality of existing classes by declaring and implementing methods on those
classes, which then become usable throughout your application anywhere the original class
is used.

12_9780470479223-ch08.indd 20812_9780470479223-ch08.indd 208 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 8: Extending Existing Class Capabilities 209

This may sound cool, just on the surface, but what makes it even cooler is that when declaring a
category, you do not need to have access to the original source code of the class that you are
extending. Furthermore, a category is not a subclass. Meaning, the methods that you are add-
ing are actually being added to the implementation of the class that you are directly manipulat-
ing. Any users of that class in your application will have access to those methods on instances of
that class simply by virtue of you declaring a category on it.

Although it is considered poor form to do so, you can use categories to override existing meth-
ods. When doing this, even third-party libraries will call your modified method when referenc-
ing the class in question instead of the original.

If you’re coming to Objective-C from another dynamic language such as Ruby or Smalltalk, you
may be familiar with the concept of mixins. Mixins and categories share a lot in common, and
you could even say that categories are the Objective-C version of a mixin.

Declaring categories
Categories are declared similarly to how you declare class interfaces. Meaning, you declare
a category by first typing @interface and then the class name that you wish to modify. After the
class name, instead of the superclass, as in the case of declaring a class, you put the name of
the category that you are declaring inside parentheses. Listing 8.1 shows an example category
declared on the NSMutableString class.

Listing 8.1

An example category on NSMutableString adding the ability to insert a GUID into the string

#import <Foundation/Foundation.h>

@interface NSMutableString (GUID)

-(void)appendGuid;

@end

In this particular code, I’m adding a category to the NSMutableString class that will gener-
ate a globally unique identifier (GUID). For now, this category simply appends the GUID onto
the end of whatever string is there.

12_9780470479223-ch08.indd 20912_9780470479223-ch08.indd 209 1/4/11 8:54 PM1/4/11 8:54 PM

210 Exploring Deeper Features

Implementing category methods
Unlike protocols, simply declaring the interface of the category is not enough, because you are
actually adding the implementation of the method to the class that you are modifying. This
means that in addition to declaring the interface of your category, you must also add the imple-
mentation for the methods in question. Listing 8.2 shows the implementation for the methods
that I just declared for the NSMutableString class in the previous section. Notice that the @
implementation line, just like when declaring a class, tells the class name that you are creat-
ing an implementation for, in this case, NSMutableString, again followed by the category
name in parentheses.

Listing 8.2

Implementation for the GUID category on NSMutableString

#import “NSMutableString+GUID.h”

@implementation NSMutableString (GUID)

-(void)appendGuid
{
 CFUUIDRef uuid = CFUUIDCreate(kCFAllocatorDefault);
 NSString *str =
 (NSString *)CFUUIDCreateString(kCFAllocatorDefault, uuid);
 [self appendString:str];
 CFRelease(uuid);
}

@end

Just like defining methods on a class implementation, you define methods in a category inside
the implementation block. These methods have access to all member variables in the class, can
call other methods on the class using self, and can even call methods on the superclass using
the super keyword.

The only limitation is that you cannot declare new member variables as part of your category.
There is a way to add variables to existing classes, which I will show you later in this chapter, but
categories are not able to do so.

12_9780470479223-ch08.indd 21012_9780470479223-ch08.indd 210 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 8: Extending Existing Class Capabilities 211

Declaring categories in header files
Categories are typically declared in .h and .m files just like classes. In some cases, it can be con-
venient to group similar functionality for different extended classes in one file. For example, if
you have multiple classes that you need to extend with similar functionality. By grouping them
together in a single .h/.m unit, you are conceptually segregating that functionality together. If,
in the future, you need to change that functionality, all of the similar methods, albeit for differ-
ent classes, are located in a single file.

Using a category
Simply declaring and defining a category makes the methods of that category available any-
where that the extended class is used. However, the compiler still needs to be told that the
methods of the category exist to avoid it generating a warning at compile time.

To do this, you simply include your .h file containing the category declaration in whatever .m
file uses the methods of the category.

In other words, in order to use the GUID category I have to include its .h file in any compilation
unit that I use it in, for example, the main.m file shown in Listing 8.3.

Listing 8.3

Using the GUID category

#import <Foundation/Foundation.h>
#import “NSMutableString+GUID.h”

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSMutableString *aString = [NSMutableString string];

 [aString appendGuid];

 NSLog(@”The guid: %@”, aString);

 [pool drain];
 return 0;
}

12_9780470479223-ch08.indd 21112_9780470479223-ch08.indd 211 1/4/11 8:54 PM1/4/11 8:54 PM

212 Exploring Deeper Features

Once I’ve included the header file, I can simply use the methods just like if they were actually
declared on the original class.

Breaking up functionality using categories
Another convenience that categories provide you is the ability to extract components of func-
tionality from classes that have grown too large. In these cases, you might have a class contain-
ing a lot of code. Large class files can quickly become unwieldy when you need to modify them.
Searching through lots of source code to find the method that you need to change can be
made easier by extracting discrete parts of the functionality of the class into categories. In this
way, when you go to make a change to a given class that impacts just a portion of its functional-
ity, you can have all of the methods relating to that functionality in one category file, making it
easier to make your changes.

Obviously, you should try to keep your classes as simple as possible. You shouldn’t use a cate-
gory as an excuse for adding excessive extra features to a given class. However, classes do have
a tendency to grow orthogonally, and it’s nice to know that you have this tool available to you
when the time comes for refactoring.

Extending class methods
Categories are not limited to object methods. You can also use them to add class methods. For
example, if you wanted to add a factory method to NSMutableString for the GUID cate-
gory, you could simply add the factory method as shown in Listing 8.4.

Listing 8.4

Adding a factory method to NSMutableString

#import <Foundation/Foundation.h>

@interface NSMutableString (GUID)

-(void)appendGuid;
+(id)stringWithGuid;

@end

@implementation NSMutableString (GUID)

-(void)appendGuid
{

12_9780470479223-ch08.indd 21212_9780470479223-ch08.indd 212 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 8: Extending Existing Class Capabilities 213

 CFUUIDRef uuid = CFUUIDCreate(kCFAllocatorDefault);
 NSString *str = (NSString *)CFUUIDCreateString(kCFAllocatorDefault, uuid);
 [self appendString:str];
 CFRelease(uuid);
}

+(id)stringWithGuid;
{
 NSMutableString *ret = [self string];
 [ret appendGuid];
 return ret;
}

@end

Again, all of the same rules apply here in terms of referencing the class versus the object, the
keyword self in a class method refers to the class object, whereas self refers to the instance
object when working inside an object method. As before, you can use the class method as
though it were declared on the original class, as shown in the updated main file in Listing 8.5.

Listing 8.5

The updated main function

#import <Foundation/Foundation.h>
#import “NSMutableString+GUID.h”

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSMutableString *aString = [NSMutableString stringWithGuid];

 NSLog(@”The guid: %@”, aString);

 [pool drain];
 return 0;
}
@end

@implementation NSMutableString (GUID)

continued

12_9780470479223-ch08.indd 21312_9780470479223-ch08.indd 213 1/4/11 8:54 PM1/4/11 8:54 PM

214 Exploring Deeper Features

Listing 8.5 (continued)

-(void)appendGuid
{
 CFUUIDRef uuid = CFUUIDCreate(kCFAllocatorDefault);
 NSString *str =
 (NSString *)CFUUIDCreateString(kCFAllocatorDefault, uuid);
 [self appendString:str];
 CFRelease(uuid);
}

+(id)stringWithGuid;
{
 NSMutableString *ret = [self string];
 [ret appendGuid];
 return ret;
}

@end

Exploring category limitations
Categories do have certain limitations associated with them. Categories cannot add any mem-
ber variables to the extended class. They can absolutely declare and use local variables within
the scope of the category methods, and they can certainly use global variables, or any variables
passed into them as parameters, but they cannot add any member variables to the class.

Categories can call superclass methods by using the super keyword. However, there is no mech-
anism in place to allow a category to call the original implementation of a method that the cat-
egory itself is overriding. In other words, if you override an existing object method by using a
category, there is no way for you to call the original existing object method.

Recall that when I talked about the dangers of multiple inheritance when I described how to
create protocols, that the problem was that if two superclasses defined implementations of the
same method, the compiler would have difficulty in determining which implementation to call
in a given circumstance. This problem does not affect protocols, because the protocol is simply
a declaration of an interface and not an implementation. Categories on the other hand are not
so lucky.

Just like in the case of multiple inheritance, if two categories define the same method on the
same class, which method actually gets called at runtime is undefined. As a result, you should

12_9780470479223-ch08.indd 21412_9780470479223-ch08.indd 214 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 8: Extending Existing Class Capabilities 215

always avoid this. You may even want to consider adopting a unique method naming prefix
system to avoid conflicting with other categories, such as prefixing your method names with
your initials. For example, I might use -jdAppendGuid: instead of just -appendGuid:.

You also need to be careful with naming your methods when you’re extending a system frame-
work. Remember that Apple is constantly enhancing their own frameworks, and they might add
a method named the same as yours. The other methods in the framework might rely on the
implementation Apple provides, so your method might cause Apple’s code to break. So when
possible, you should also use prefixes for your category method names to avoid this kind of
problem.

Implementing protocols with categories
I introduce protocols in Chapter 7. In that chapter, I touch on the concept of informal protocols.
An informal protocol is a protocol that is actually implemented as a category defined on
NSObject. When doing so, the given protocol declaration does not actually require a corre-
sponding implementation. In other words, you can simply declare the protocol interface as a
category on NSObject, but you need not actually provide the implementation of the methods
for that category. Adopters of the informal protocol must provide the actual implementation of
the given methods.

Because of its unique place in the object hierarchy, NSObject is usually the class upon which
these protocols are defined. Your implementing class always inherits from NSObject, so any
categories declared upon it are available as part of your interface to be implemented at your
option.

Understanding the dangers of creating
categories on NSObject
Unfortunately, there are also risks associated with declaring categories on NSObject in partic-
ular. You must be aware that any category method you declare on NSObject becomes part
of the interface and, if implemented, the implementation of every class in the runtime. In some
cases, this can actually affect behavior of the system by virtue of the fact that some classes
change their behavior based on the existence of specific methods. Therefore, if you create a cat-
egory which implements a method that falls under this umbrella, you could inadvertently affect
behavior in parts of the system that you did not expect. Remember, when you declare a cate-
gory on the class, that category becomes available throughout your application even to the
foundation frameworks.

Another risk to be aware of when declaring a category on NSObject is the fact that
NSObject has no superclass. Therefore, if you call super, it may compile, but it will certainly
result in a runtime error.

12_9780470479223-ch08.indd 21512_9780470479223-ch08.indd 215 1/4/11 8:54 PM1/4/11 8:54 PM

216 Exploring Deeper Features

NSObject is a “special class” in that it provides certain functionality to the runtime that other
classes do not. The end result of this is that the NSObject class, speaking about the class
object itself and not the class definition, is capable of calling object methods. It is the only class
in Objective-C that is able to do this. In order to do this, NSObject does some unusual voodoo
with the self object. Therefore, self, when used within the context of a category defined on
NSObject, they refer to the class or the object.

Because of these hazards, generally speaking, you should only declare categories on
NSObject in the form of interfaces alone and did not provide implementations. The category
implementations should probably be limited to subclasses. Although the capability exists to
provide implementations for NSObject categories, for the most part, expect that categories
on NSObject will only be used for the purposes of declaring informal protocols.

Extending Classes using Anonymous
Categories
Although Objective-C does not have a mechanism for declaring private methods baked into the
class declaration syntax, there is a way of defining a private API, which you exposed only to priv-
ileged users of your class and not to others using categories.

The tool that you use to do this is called an anonymous category. Essentially, an anonymous
category is a category declared on a given class without a name. That is, when you declare the
category, rather than placing the name of the category inside parentheses after the category
name, the parentheses are there, but they are left empty. When working with anonymous cate-
gories, you declare only the interface, but not the implementation as part of the category itself.
Typically, you place this category declaration in another header file that can be imported by
users of your class that have access to the private API. The implementation is done inside the
implementation of the original class. You are simply creating a mechanism for accessing that
implementation externally.

What this gives you is the ability to have a method which is declared as part of the private API in
the anonymous category but which is not part of your public API in your public class declara-
tion. When the anonymous category interface is imported, the compiler will then expect that
the methods declared in the anonymous category interface will be implemented by the
extended class. Therefore, this also provides a method for you to have a declared, compilation
time checked API, which is private and invisible to users of your class unless they know to
include the private API category header.

Listing 8.6 shows an example of an anonymous category declaration.

12_9780470479223-ch08.indd 21612_9780470479223-ch08.indd 216 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 8: Extending Existing Class Capabilities 217

Listing 8.6

An anonymous category declaration, this would go in Foo+PrivateMethods.h

#import <Foundation/Foundation.h>

@interface Foo ()

-(void)somePrivateMethod;

@end

Listing 8.7 shows the implementation of the Foo class itself. Note that the interface does not
declare the private method, but the implementation does provide the definition for it.

Listing 8.7

The Foo class implementation

@interface Foo : NSObject
{

}

@end

@implementation Foo

-(void)somePrivateMethod
{
 // secret things go here. ;)
}

@end

Just so it’s clear what’s happening here. The anonymous Foo category is declaring the private
methods that are implemented in the actual Foo class.

At the risk of having my object oriented design certification revoked (as if one existed in the first
place), I think that private methods are overrated, and I can’t really think of a case where you

12_9780470479223-ch08.indd 21712_9780470479223-ch08.indd 217 1/4/11 8:54 PM1/4/11 8:54 PM

218 Exploring Deeper Features

would want to use this for the purposes of actually hiding private methods from users of your
class. Considering the fact that I just demonstrated to you that using categories, if a developer
were sufficiently motivated, he or she could easily crack open your class and access any private
methods they so desired, I think any attempt to prevent such access is kind of futile.

However, I can think of cases where you may want to expose particular methods to particular
users of your classes and simply not include it as part of your documented public API. For exam-
ple, if you are a proponent of unit testing, you may want to be able to test “non-public” meth-
ods without having to expose them in the public class declaration. Non-public methods might
be methods that simply have no place in the public API, or no use outside of the class. In this
case, anonymous categories may be an excellent solution for you.

Associating Variables with Existing Classes
Categories are incapable of adding new member variables to the class that they are extending.
While this may seem like a limitation in categories, in practice it’s not so bad. In cases where you
really need to add member variables to a class that you’re extending, you can easily subclass
class and do it that way. However, there are cases where you really don’t want to subclass but
you really do need to add some additional variables to the class that you are extending.
Fortunately, as of MacOS X version 10.6 and iOS 3.2, there is a low-level capability built into the
Objective-C runtime for doing exactly this. It is a capability which is leveraged by the runtime
itself, and one which you can use in extreme cases when you need to associate a variable with
an existing object without subclassing and without changing the class declaration of that
object. This technique is called associative references. It is available regardless of whether it’s
through a category or not. I will show you how to use it, and then show you how to implement
a category for cached sorted keys on the NSMutableDictionary class using it.

Before I get too deeply into this, I want to clear up any confusion that may occur. When working
with associative references, you will not actually be adding a member variable to the class itself.
It will not have a property associated with it. It will not have an accessor associated with it. At its
heart, associative references are simply storage associated with a specific instance of your class.
Notice that I didn’t say that its storage associated with the class. If you do not explicitly associ-
ate a reference with a given instance of your class it will not have it.

To add an associative reference to an instance of your class you simply use the Objective-C run-
time function objc_setAssociatedObject. This function takes four arguments, the object
you wish to associate the data with, a key so that you can retrieve the data later, the value you
want to store the reference, and finally an association policy, which defines how the stored val-
ues memory is managed.

After an association is created, you can access the value stored in the Association by using the
Objective-C runtime function objc_getAssociatedObject. This function takes two
parameters, the first is the object with which the data is associated, and the second is the key
that you specified when associating the data in the first place.

12_9780470479223-ch08.indd 21812_9780470479223-ch08.indd 218 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 8: Extending Existing Class Capabilities 219

Finally, when you are no longer using an associated object, you can remove the association by
again calling the Objective-C function objc_setAssociatedObject, but in this case pass-
ing nil as the value to be associated.

In all cases, the key associated with the value must be unique to that value. The actual data type
of the key is a void *. Typically, you want to use a variable which has been declared to be static
for this key. By doing so, you are ensured that the pointer associated with the key will always
point to a singular instance of that pointer and be unique.

The association policy can be one of the following values, as shown in Table 8.1

Table 8.1
Value Purpose

OBJC_ASSOCIATION_ASSIGN Specifies the value will simply be assigned. No retain or release will be used.

OBJC_ASSOCIATION_RETAIN_NONATOMIC Specifies the value will be assigned and retained in a non-threadsafe way.

OBJC_ASSOCIATION_COPY_NONATOMIC Specifies the value will be copied in a non-threadsafe way.

OBJC_ASSOCIATION_RETAIN Specifies the value will be assigned and retained in a threadsafe way.

OBJC_ASSOCIATION_COPY Specifies the value will be copied in a threadsafe way.

As you can see, these values closely resemble the property attributes that can be specified
when declaring properties for objects. It uses much the similar mechanism for associative
references.

As an example of how an associative reference actually works in code, Listing 8.8 shows a cate-
gory declared on NSMutableDictionary, which will maintain a cached, sorted list of the
dictionaries keys. There are several methods defined here for housekeeping purposes. If you
were actually implementing this category, there might be better ways to do it. The purpose
here is simply to illustrate the lifecycle of the associative reference which will be used to store
the sorted keys.

Listing 8.8

A sorted keys category

@interface NSMutableDictionary (SortedKeys)

-(void)generateSortedKeys;
-(NSArray *)sortedKeys;
-(void)dropSortedKeys;

continued

12_9780470479223-ch08.indd 21912_9780470479223-ch08.indd 219 1/4/11 8:54 PM1/4/11 8:54 PM

220 Exploring Deeper Features

Listing 8.8 (continued)

@end

@implementation NSMutableDictionary (SortedKeys)

-(void)generateSortedKeys;
{
 NSMutableArray *keys = [NSMutableArray arrayWithArray:[self allKeys]];
 [keys sortUsingSelector:@selector(compare:)];
 objc_setAssociatedObject(self, @”KEYS”, keys, OBJC_ASSOCIATION_RETAIN);
}

-(NSArray *)sortedKeys;
{
 return objc_getAssociatedObject(self, @”KEYS”);
}

-(void)dropSortedKeys;
{
 objc_setAssociatedObject(self, @”KEYS”, nil, OBJC_ASSOCIATION_RETAIN);
}

@end

As you can see, when the sorted keys array is created, it’s stored as an associative reference
on self, or that is, the dictionary upon which we are operating, this is shown in -generate
SortedKeys. When finished with the sorted keys, the associative reference can be removed
using the -dropSortedKeys method.

Because you’re not subclassing, you do need to make sure you explicitly call the -dropSorted
Keys (or whatever your cleanup method is) in order to release the memory associated with the
object before deallocating it.

 N O T E
If you use the newer LLVM 1.5 compiler and the modern runtime, they include the ability to declare instance variables
in class extensions, so you can avoid most of this rigmarole. To do so, you simply declare them as part of your exten-
sion interface, just like if you were declaring them in a class. See the LLVM documentation for the flags required to
enable this behavior.

 N O T E
You can use NSString constants (as I have used here) for keys, because they are defined by the language to be
static references to each other when defined inline like I have done here.

12_9780470479223-ch08.indd 22012_9780470479223-ch08.indd 220 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 8: Extending Existing Class Capabilities 221

Summary
In this chapter I have introduced you to some of the unique and powerful tools that Objective-C
provides you for building object-oriented designs from small reusable components. The
approaches shown may seem unusual, or even magical, if you are coming to the language from
a language that is less dynamic, such as C++ or Java. But the power of Objective-C comes from
the fact that these kinds of meta-programming tools are available as part of the language itself
and fully supported in the language frameworks. Working with a language that is so expressive,
so powerful, and so dynamic is a wonderful experience.

12_9780470479223-ch08.indd 22112_9780470479223-ch08.indd 221 1/4/11 8:54 PM1/4/11 8:54 PM

12_9780470479223-ch08.indd 22212_9780470479223-ch08.indd 222 1/4/11 8:54 PM1/4/11 8:54 PM

In This Chapter

Writing Macros

Revisiting the
Compilation Process

Creating constants using
preprocessor Defines

Conditionally compiling
portions of code based

on compiler settings

Writing preprocessor
macros to manipulate

your code at compile time

The topic of this chapter is macros. Macros are a special feature
of the Objective-C preprocessor that enable you to execute
special commands or replace particular values in your code

at compilation time. Macros are unique in that the commands are
actually executed as part of the compilation process. The results of
those commands are usually insertions of values or files, and so on.
The term “macro” comes from the idea that something small can
expand into something larger, and in a lot of ways, this is exactly
what preprocessor macros do.

Reviewing the Compilation
Process
I’ve discussed the compilation process before, but here I want to
focus on the earliest stage of compilation called the preprocessor.
The preprocessor, as its name implies, is a stage of compilation
which happens prior to the actual processing of the bulk of the
source code. Its job is primarily to take raw source files and prepare
them for the compilation process itself.

To do this, it first strips out any comments in the source code,
replacing them with spaces; then it performs any line transforma-
tions required. Finally, it expands any preprocessor directives, also
known as macros.

A preprocessor directive is any line that begins with a # symbol,
directly followed by the directive itself, and any parameters to that
directive. So in other words, all the items in Listing 9.1 are prepro-
cessor directives.

13_9780470479223-ch09.indd 22313_9780470479223-ch09.indd 223 1/4/11 8:54 PM1/4/11 8:54 PM

224 Exploring Deeper Features

Listing 9.1

Some preprocessor directives or macros

#define FOO 1
#ifdef BAR
#endif
#define BAZ(X, Y) NSLog(@”%s - %s”, (X), (Y));
#import <Foundation/Foundation.h>

Each of these items is a preprocessor directive. The #define is defining a constant called FOO
with a value of 1. The #ifdef and #endif are defining a conditional block of code that will only be
compiled if BAR has been defined. #define BAZ(X, Y) NSLog(@”%s - %s”, (X), (Y)); is a preproces-
sor function, which takes parameters and logs them. Finally, the #import directive, which you
have seen before, loads the given header file and puts its source code inline into this source file.

These directives are expanded during the compilation process, not at runtime. Therefore, the
things they do impact the source code before it’s actually compiled. In some ways, you can
think of preprocessor macros as a means for writing programs that manipulate your source
code when it’s compiling.

Understanding how macros work
This idea of manipulating your source code while it’s being compiled is an interesting concept.
Take a look at Listing 9.2. In this code, there is a particular string constant, @”MY_IMPORTANT_
DATA”, which is used over and over again to access items from NSUserDefaults.

Listing 9.2

Code that uses a string to access an item from NSUserDefaults

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

13_9780470479223-ch09.indd 22413_9780470479223-ch09.indd 224 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 9: Writing Macros 225

 NSString *someValue = @”foobar”;
 [[NSUserDefaults standardUserDefaults] setObject:someValue
 forKey:@”MY_IMPORTANT_DATA”];

 // do stuff...

 NSString *theValue = [[NSUserDefaults standardUserDefaults]
 stringForKey:@”MY_IMPORTANT_DATA”];

 [pool drain];
 return 0;
}

The biggest problem with this code is that I’m using a constant string for the key in this code,
you open yourself up to syntax errors that won’t be caught by the compiler. If you make a mis-
take in typing the string, the compiler will not be able to tell that it was a mistake and instead
will allow it to go all the way to win your application is running. This makes for bugs that are
difficult to track down.

It would be nice if you could create some kind of macro that the compiler will expand to your
string but which it can check for syntax errors when it goes to compile. This is exactly the kind
of thing for which macros are made. Listing 9.3 shows the same code, written using a macro
instead of the string.

Listing 9.3

Using a macro

#import <Foundation/Foundation.h>

#define THE_KEY @”MY_IMPORTANT_DATA”

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSString *someValue = @”foobar”;

continued

13_9780470479223-ch09.indd 22513_9780470479223-ch09.indd 225 1/4/11 8:54 PM1/4/11 8:54 PM

226 Exploring Deeper Features

Listing 9.3 (continued)

 [[NSUserDefaults standardUserDefaults] setObject:someValue
 forKey:THE_KEY];

 // do stuff...

 NSString *theValue = [[NSUserDefaults standardUserDefaults]
 stringForKey:THE_KEY];

 [pool drain];
 return 0;
}

As you can see, at the top of this new source listing we are defining a macro called THE_KEY.
This macro is being defined to be @”MY_IMPORTANT_DATA”. Everywhere in the subsequent
code where the words THE_KEY are located will be replaced with the string @”MY_IMPORTANT_
DATA” when the program is compiled. This will happen transparently as part of the compila-
tion process but the end result is that this code, when compiled, will actually wind up being
exactly the same as the listing that we saw previously. The only difference is that when you are
writing the source code you can take advantage of Xcode’s built-in code completion, and the
compiler will detect if you have any instances of THE_KEY that were typed incorrectly. For
example, if you accidentally wrote THE_KEY instead of THE_KEY, the compiler can check for
that condition and issue an error.

Listing 9.4 shows another example where the program is taking different actions depending on
whether the given macro value (DEBUGGING) is defined.

Listing 9.4

Optional compilation based on a macro

#import <Foundation/Foundation.h>

#define DEBUGGING 1

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

#ifdef DEBUGGING

13_9780470479223-ch09.indd 22613_9780470479223-ch09.indd 226 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 9: Writing Macros 227

 NSLog(@”Debugging stuff...”);
#else
 NSLog(@”Not debugging”);
#endif

 [pool drain];
 return 0;
}

In this case, the code inside the main block is checking to see if a value has been set or the
DEBUGGING macro. If this macro has been defined, in other words if it has any value at all, then
it prints out the “Debugging stuff...” message. If the DEBUGGING macro has not been defined,
then it prints out “Not debugging.” This is really powerful because by using it, you can have cer-
tain code compile only when you are running in a debugging environment. For example, you
might use this to cause your application to connect to a development server instead of your
production server while you are testing.

One of the cool aspects of using macros in this way is that there are also flags that you can use
as part of your compiler settings to cause these macros to be defined or undefined based
strictly on your build settings. In other words, you can configure your build settings so that
when you build your target for your debug environment you get this macro defined, and when
you’re building for release to your customers you do not. Again, remember that all of this
expansion is actually happening at compile time. In addition to that, keep in mind that the
expansion is happening in your source code at the location where you place the macro. This is
difficult to explain, but easier with an example. Take a look at Listing 9.5.

Listing 9.5

An example of some macros which will give different values than you might expect

#import <Foundation/Foundation.h>

#define LOG_LINE NSLog(@”%s:%ld”, __FILE__, __LINE__);

int main (int argc, const char * argv[])

{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 LOG_LINE

continued

13_9780470479223-ch09.indd 22713_9780470479223-ch09.indd 227 1/4/11 8:54 PM1/4/11 8:54 PM

228 Exploring Deeper Features

Listing 9.5 (continued)

 NSLog(@”%s %s”, __DATE__, __TIME__);
 LOG_LINE

 [pool drain];
 return 0;
}

In this code, I first defined a function called LOG_LINE. This function, when it is expanded in
your code, turns into NSLog(@”%s:%ld”, __FILE__, __LINE__);. This causes your
program, when it runs, to log the filename and line number where the LOG_LINE function has
been placed. The built-in macros __FILE__ and __LINE__ are provided by the compiler itself,
and expand to the current source file name and the current line number. When you run this
program notice that the line number changes between the two different calls to LOG_LINE. This
is only possible because of this in-line expansion capability that macros have. Another illustra-
tion of this is shown by looking at the output of the line in between the LOG_LINE calls. The
built-in macros __DATE__ and __TIME__ expand to the date and time that the preprocessor
was run to compile this program. In other words, this is the date and time that your program
was compiled. If you compile the program once and then run it multiple times, you’ll find that
the date and time shown here do not change on subsequent launches. This is because the date
and time that are being expanded in your source code are effectively being hardcoded by the
expansion of these macros in your code.

Listing 9.6 shows what this code might look like after the preprocessor expansion has already
taken place.

Listing 9.6

Program with macros expanded

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSLog(@”Code/Macros/Macros.m:9”);
 NSLog(@”%s %s”, “May 18 2010”, “16:00:03”);
 NSLog(@”Code/Macros/Macros.m:11”);

13_9780470479223-ch09.indd 22813_9780470479223-ch09.indd 228 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 9: Writing Macros 229

 [pool drain];
 return 0;
}

Literally speaking, this is exactly what the preprocessor is doing. It takes your macros and
expands them into whatever they are defined to be right inside your code.

You might notice that these particular macros are using double underscores at the beginning
and end of the macro name. This is a standard that is reserved specifically for compiler-provided
macros and not something that you should do in your code. You can use these macros — just
don’t use the double underscores in your own macro names.

Defining Macros
You begin a macro definition with the # symbol followed by the preprocessor directive and
then any parameters to the directive such as the name of the macro and so on. Table 9.1 shows
a listing of the most commonly used preprocessor directives.

Table 9.1
Directive Purpose

#define Used to define new macros such as constants and functions.

#ifdef Begins an optional compilation block. If the parameter for the preprocessor directive is defined to be anything

(even zero), then the code following the #ifdef up until a terminating #endif, #else, or #elif will be compiled and

included in the application. If the parameter is not defined and an #else or #elsif block is provided, then the #else

or #elsif block will be evaluated and if appropriate compiled and included in the application.

#undef Removes a previously defined macro.

#import Reads and includes another source file in this file. Guards against including the file multiple times automatically.

#include Reads and includes another source file in this file. Does not prevent including a file multiple times.

#pragma Special macro used for configuring the compiler and for annotations in the IDE.

#warning Generates a compiler warning. Used to flag issues to the developer.

#error Generates a compiler error.

#if Begins a conditional compilation block similar to #ifdef, but relies on an expression (such as X > 10) which must

evaluate to true in order to be considered true.

#else Used after an #if or #ifdef to provide a conditional block to be compiled if the statement is false.

#elif Used after an #if or #ifdef to provide an additional conditional block with an additional control statement to

determine if it should be compiled.

#endif Terminates an #if, #ifdef, #else, or #elif block.

13_9780470479223-ch09.indd 22913_9780470479223-ch09.indd 229 1/4/11 8:54 PM1/4/11 8:54 PM

230 Exploring Deeper Features

For the purposes of this book, I will focus primarily on the #define, #ifdef, and other
more commonly used preprocessor directives. The directives #pragma, #warning,
#include, and #error are better served by viewing the GCC documentation.

 N O T E
One very common use of the #pragma directive is in adding IDE directives to your code for use by the IDE in labels.
Apple uses this extensively in its own templates. In many of their templates, you’ll see the directive: #pragma
mark Something. This will cause the IDE to display “Something” in the method name listing drop down list.
Additionally, the special directive #pragma mark – causes a horizontal rule to be placed in the list.

Defining constants
The first type of macro that I showed you in this chapter was used for the purposes of defining a
constant that would then be reused in multiple places in your application. Indeed, this is per-
haps one of the most common uses of macros. I myself use macros in this form for defining keys
for accessing NSUserDefaults just like they showed in the previous example.

To define a constant, you use the preprocessor directive #define followed by the name of the
constant you are defining the value for. After the name, separated by a space, you then provide
the value you want the preprocessor to expand your macro to in your source code. The prepro-
cessor expands the macro by using all of the remaining text in your line until it encounters the
end of the line.

In cases where you want to make a macro such as this and spread its definition out over multi-
ple lines, you can do this by entering a backslash and then pressing enter. This causes the com-
piler to consider the next line to be part of the current line for the purposes of evaluating this
macro.

Listing 9.7 shows an example of several different constants being defined using the #define
preprocessor directive.

Listing 9.7

Defining constants with #define

#define FOO 1
#define BAR @”this is bar”
#define BAZ @”THIS IS A VERY LONG STRING \
AND IT CONTINUES DOWN HERE \
AND HERE.”
#define BOZ BAR

13_9780470479223-ch09.indd 23013_9780470479223-ch09.indd 230 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 9: Writing Macros 231

An unspoken rule is to always name your macros using all capital letters. Doing this helps to dis-
tinguish macros in your source code from normal statements and makes your code easier to
read. In the previous section, I mentioned that you should not use the double underscores for
your own macro names. Additionally, you should not use underscores at the beginning or end
of your macro names either because this is reserved for the compiler. It’s perfectly safe to use
underscores inside your macro names, and in fact, this is again another unspoken standard:
separating multiple words in your macro names by using underscores instead of spaces since
spaces are not legal anywhere in a macro name. Macro names must also begin with an alpha-
betic letter. Numbers are not allowed. You are free to use numbers after the first letter of the
macro name but they cannot be used for the first letter.

As you found out in the previous section, macros can refer to other macros within their defini-
tion. In these cases, your macro will first be expanded to whatever you have defined, and then
any macros inside of your macro definition will be expanded in place from there. For example,
the macro BOZ above will ultimately expand to BAR, and then BAR will be expanded to
@”this is bar”.

The exception to this rule is that macros are not recursive. Meaning, you cannot refer to the
macro that you are defining in its definition. For example, the macro #define FOO FOO
won’t work.

Passing constants by compilation
I mention earlier in this chapter how you can define macros as part of your build settings.
Listing 9.8 shows an example of an application that needs to be compiled to connect to a test
server when it is being debugged and compiled to connect to the production server when it is
not being debugged.

Listing 9.8

Conditional compilation based on build settings

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NetworkConnection *conn = [[NetworkConnection alloc] init];
#ifdef DEBUGGING
 [conn connectToServer:@”http://develop.nowhere.com”];
#else
 [conn connectToServer:@”http://production.nowhere.com”];

continued

13_9780470479223-ch09.indd 23113_9780470479223-ch09.indd 231 1/4/11 8:54 PM1/4/11 8:54 PM

232 Exploring Deeper Features

Listing 9.8 (continued)

#endif

 [pool drain];
 return 0;
}

Notice that the DEBUGGING macro is not actually being defined in this source file. In this partic-
ular case, I’m relying on the build settings to pass in that value when I do a debug build. If that
value has been defined, then the application connects to the development server. If it is not,
then it connects to the production server.

Figure 9.1 shows the build settings window and the parameter that you set in order to define
values as part of your build settings.

The build setting that you use to define these preprocessor macros is the Preprocessor Macros
setting. This particular setting takes a list of macro names and values separated by =. So, in
other words, to define the preprocessor macro DEBUGGING, you would set this build setting
to DEBUGGING=1. The given value here, 1, is more or less just setting it to any value (even 0
would be OK) so that the #ifdef statement returns true. If we used a #if with an expression,
like #if DEBUGGING > 10 then we could have variable levels of debugging based on the com-
pilation flag.

By setting this build setting on the debug build, the DEBUGGING macro will be set when the
source code is compiled. When you switch to the Release build, which does not have this set-
ting, then the normal, production code will be compiled and included.

Using variables in macros
Although the syntactical capabilities of macros is much more primitive, macros are capable of
taking parameters just like if when working with functions or methods. This enables you to cre-
ate complex macros that actually do creative things with the contextual information available
when the macro is being expanded.

For example, if you wanted to create a MAX macro to return the greater value of two parame-
ters, you might create a macro such as Listing 9.9.

Listing 9.9

A macro for printing the value of a variable

#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))

13_9780470479223-ch09.indd 23213_9780470479223-ch09.indd 232 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 9: Writing Macros 233

Figure 9.1

The build settings window.

In this example, the MAX macro takes two arguments, X and Y. It then compares these two
arguments by using the ternary operator. If X is greater than Y, it returns X, alternatively, if Y is
greater than X, it returns Y.

When using parameters with a macro the parameters are specified inside parentheses just as if
you were defining parameters for procedures. There are, however, a few subtle differences.

First, you do not need to provide a data type for the parameters. This code will not be compiled.
Instead, the macro will be expanded where it is used in the parameters will be inserted directly
into the expanded macro code. Therefore, variable types are not necessary here.

13_9780470479223-ch09.indd 23313_9780470479223-ch09.indd 233 1/4/11 8:54 PM1/4/11 8:54 PM

234 Exploring Deeper Features

Secondly, the opening parenthesis of the parameter list must come directly after the name of
the macro. Notice when we have been defining other macros, that the value that we are defin-
ing for the macro is separated from the macro name by a space. Therefore, if you were to put a
space between the macro name and the opening parenthesis of the parameter list, the prepro-
cessor would assume that the parameter list is the beginning of the macro value instead of part
of the macro name.

Another subtle difference between procedures and macros with arguments is in the handling
of the values inside the body of the macro value. Notice in the example above that there are a
lot of extra parentheses being used in the body of the macro. Again, this has to do with the
fact that the macro will be expanded in the code and that the values will be expanded
inside the macro in the code. To illustrate this point, consider the expansion of the code
NSLog(@”Max Value: %ld”, MAX(x & 20, 10));. Without the additional parentheses,
this might expand to NSLog(@”Max Value: %ld”, (x & 20 > 10 ? x & 20 : 10));. In this
case, order of operations dictates that the greater than comparison has higher precedence than
the bitwise-AND operation and therefore would be performed on the 20 and the 10 rather than
on x & 20 and the 10. By including the extra parentheses inside the body of the macro, you
ensure that the order of operations is performed in exactly the way that you expect them to be.
In other words, this code would actually expand to NSLog(@”Max Value: %ld”, ((x & 20)
> (10) ? (x & 20) : (10)));.

Using stringification
One of the macro tricks that I like to use in my own code is in logging values of particular vari-
ables as my application is running. Doing this can be useful because I can see what the state of
my application is without necessarily stopping it in the debugger and looking at particular val-
ues one at a time.

To do this, I have to create a macro that takes a variable as a parameter. Because I might use
this macro in multiple locations on different variables I also need to get the variable name and
print it alongside the value of that variable. To do this, I use a special macro capability called
stringification.

Stringification takes whatever code is passed to it and converts it to a C string by enclosing it in
quotes. So, for example, if given ‘x + 10’ as a parameter, it will turn it into “’x + 10’”. This
makes it ideal for solving this kind of problem.

Listing 9.10 shows the macro as I would define it.

13_9780470479223-ch09.indd 23413_9780470479223-ch09.indd 234 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 9: Writing Macros 235

Listing 9.10

A macro to print the value of a variable

#define LOGVAR(var) NSLog(@”%s: %@”, #var, var);

The key here is to prefix the variable name itself with a # symbol. This invokes the stringification.

If you use this macro in an application as shown in Listing 9.11, you can see that it will first print
the name of the variable, and then it will print the value of that variable.

Listing 9.11

Using a macro to print the value of a variable

#import <Foundation/Foundation.h>

#define LOGVAR(var) NSLog(@”%s: %@”, #var, var);

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSString *someVar = @”This is the value.”;

 LOGVAR(someVar);

 [pool drain];
 return 0;
}

The LOGVAR(someVar) line gets expanded to something like Listing 9.12.

13_9780470479223-ch09.indd 23513_9780470479223-ch09.indd 235 1/4/11 8:54 PM1/4/11 8:54 PM

236 Exploring Deeper Features

Listing 9.12

The expanded code

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSString *someVar = @”This is the value.”;

 NSLog(@”%s: %@”, “someVar”, someVar);

 [pool drain];
 return 0;
}

 N O T E
This code is deliberately simplistic for the purposes of example. In the case where you would actually want to create a
macro like this you probably need to do something to determine the data type of the variable that’s passed in so that
you can use a correct format string when printing it out.

Handling conditional switching
You can choose to conditionally compile particular parts of your code by using the conditional
preprocessor directives, #if, #ifdef, #ifndef, and their cohorts, #else, #elif, and
#endif. You can optionally choose to include or not include entire chunks of your code
based on whether something is defined, not defined, or whether an expression evaluates
to true.

The first of these directives is the #if directive. The #if directive is used to allow or prevent a
particular portion of your code from compiling based on the result of an expression. The
expression can be any valid expression, using other macros, constants, variables from the code
surrounding the macro expansion, or whatever. The key is that it must evaluate to true in order
for the block following the #if directive to be compiled. You terminate the #if statement
with a #end statement. If you want to provide an additional block of code to be compiled in
the case that the expression evaluates to false, you put a #else directive inside the #if block,
before the #end directive. Alternatively, you can place a #elif directive inside the #if block.

13_9780470479223-ch09.indd 23613_9780470479223-ch09.indd 236 1/4/11 8:54 PM1/4/11 8:54 PM

 Chapter 9: Writing Macros 237

The #elif directive also takes an expression and will only compile the code between it and
the next directive if that expression evaluates to true, just like the #if directive. Essentially, the
whole #if, #else, #elif, #end construct is very similar to the if, else, construct,
except that instead of affecting program flow during program execution, it affects what parts of
your application are compiled. The #ifdef and #ifndef directives work just like #if, except
that instead of using an expression, it simply tests to see if a value has been defined at all. In the
case of #ifdef, the code is compiled if the value has been defined, and in the case of
#ifndef, the code is compiled if the value is not defined.

Using built-in macros
GCC, the underlying compiler that Xcode uses to compile your code has a variety of built-in
macros already available for your use. You’ve already seen some of them in use in the examples
in this chapter. Macros like __FILE__, __LINE__, and others. To find out more information ,
visit the GCC documentation located at: http://gcc.gnu.org/onlinedocs/cpp/.

Summary
In this chapter, I’ve introduced you to the Objective-C preprocessor, a powerful tool which lets
you write code that modifies your code as it compiles. Using it, you can do all sorts of things,
from preventing syntax errors with constants, to printing out your variables, even to condition-
ally compiling portions of your code but not others. It’s a tool that you’ll probably not use often,
but one which, when you need it, comes in very handy.

13_9780470479223-ch09.indd 23713_9780470479223-ch09.indd 237 1/4/11 8:54 PM1/4/11 8:54 PM

13_9780470479223-ch09.indd 23813_9780470479223-ch09.indd 238 1/4/11 8:54 PM1/4/11 8:54 PM

In This Chapter

Handling Errors

Learning about different
kinds of errors and how

you should handle them

Using return codes to
return status

Using exceptions for
exceptional errors

Learning the proper way
to use NSError

You hope that run time errors won’t occur, but you know that
they will. You try to code defensively, making sure to verify
that the variables you are using have the values you expect.

You write unit tests to make sure that any possible condition that
could occur has been foreseen, and the solution to that problem is
built into your application. You know that you can’t foresee all
problems, however. You know that no matter how hard you work
to gird your application against the perils of the real world, as soon
as your application is launched into real-world environments with
real-world problems, such as limited memory, limited disk space,
and users who interrupt your application at the worst time, you’re
going to run into problems. You’re going to experience errors.

Thankfully, Objective-C has a variety of error handling capabilities
built into it that you can leverage to write code that is robust, resil-
ient, and stable. You can write applications that, when errors occur,
bend rather than break.

In this chapter, I’m going to introduce you to the three major
mechanisms built into Objective-C and the Foundation framework
that will help you write code that will be brave in the face of these
dangers, and which will “do the right thing” when presented with
unforeseen problems. Before I begin, however, take a look at what
kind of errors you might encounter in a typical application.

Classifying Errors
Errors that can occur in a typical, running program fall into three
major categories.

The first category is the kind of error that simply consists of a suc-
cess or failure condition. There is no additional information that
can be gleaned about what happened, the operation simply suc-
ceeded or it didn’t succeed. Typically, this is the most minor of
errors, and is not the kind of error that drastically interrupts pro-
gram flow. For example, if you are trying to gain access to a shared
resource through a mutually exclusive lock, your program may try

14_9780470479223-ch10.indd 23914_9780470479223-ch10.indd 239 1/4/11 8:55 PM1/4/11 8:55 PM

240 Exploring Deeper Features

to gain access to the resource and fail because another program or part of your program are
already accessing that resource. In this case, you want to know that accessing the resource
failed, and you want to simply retry accessing the resource again. This category is a minor type
of error condition. You know exactly what to do when the call fails and exactly what might have
caused the failure.

Return codes are uniquely suited for this kind of error. Ideally, the return code can be as simple
as a Boolean value. The return code can return YES if the call succeeded or NO if the call failed.
In some languages that lack some of the more complex error handling mechanisms that I am
about to introduce to you, error codes are the only option that you have for returning invalid
conditions. In these languages, error codes are often overloaded with meaning. Often these lan-
guages require that the error code be set to particular values to mean particular error condi-
tions. Typically, Objective-C does not do this because other mechanisms are in place that
enable you to give better more descriptive error messages than plain old error codes provides.

The second category of errors is on the opposite spectrum from the first. This type of error, if
not handled, causes data loss or an application failure. These errors are obviously much more
serious than the first and consist of things like failure to open resources that are absolutely
required for your application to continue running, consistency errors in your data storage, and
so on. Imagine that these errors are so important that if you don’t do something about them
you would rather the application crash than continue running in order to avoid causing more
damage than has already been done. These errors are, not to put too fine a point on it, excep-
tional conditions, so it makes sense that the error handling mechanism best suited to handling
them are called Exceptions. Fortunately, errors of this kind are few and far between in
Objective-C. Nevertheless, I show you how to handle them, and how to recover from them later
in this chapter.

Finally, the third category of errors is somewhere in between the first two in terms of severity.
This type of error is serious enough that you really need to pass more contextual information
back up the stack to the person who is calling your function, but not so serious that it cannot be
recovered from.

This is by far the most common type of runtime error that occurs in Objective-C programs. It’s
so common that Apple has provided a standardized error mechanism for handling these kinds
of errors. It uses a combination of a return code to indicate success, and a specialized NSError
object to provide contextual information in the case of failures. Working with NSError can be
tricky, but by the end of this chapter you’ll be able to handle errors such as this like a pro.

Understanding how to interrupt program flow
Knowing when to interrupt program flow is important.

14_9780470479223-ch10.indd 24014_9780470479223-ch10.indd 240 1/4/11 8:55 PM1/4/11 8:55 PM

 Chapter 10: Handling Errors 241

Each of the three categories of errors I previously mentioned call for different design patterns in
terms of how you handle interrupting program flow when the errors occur. When designing an
API that has the potential to return an error, think of the users of the API and how the handling
of the potential errors that can occur will impact the design of the code required to call your
API. Ideally, you want to design your API so that the developer using it can do so while provid-
ing the smallest amount of infrastructure possible while at the same time being capable of cap-
turing and handling any potential error conditions that might occur.

If your errors are minor and obvious and require little external (developer side) support or inter-
vention, then you might consider using a return code to indicate that a particular call has failed.
On the other hand, if the error condition that has occurred is so extreme that you absolutely
have to completely bring the application to a halt in order to avoid more damage to the system,
then using an exception may be the way to go. You have to assume that if the exception is not
handled by users of your API that the application will crash, because that’s exactly what an excep-
tion does. Looking at exceptions from this point of view, that is, by viewing an un-handled excep-
tion as a crash, really puts this sort of error condition into perspective and may help you to think
about when exceptions are really justified (clue: very rarely).

Finally, for most other error conditions — the ones that fall between extremely minor and
extremely serious — the NSError mechanism is probably the right choice. It communicates eas-
ily the fact that a call failed up the stack to the caller, but at the same time puts the responsibil-
ity for deciding how serious the error is where it belongs, in the hands of that very same caller.

Using the Different Mechanisms
for Error Handling
So, let’s get down to the nitty-gritty of how to use these three different error handling tech-
niques. In the following sections, I cover how to use the three different error handling capabili-
ties built into Objective-C, how they work in your code, and what you need to do to handle
errors that occur in other people’s code.

Using return codes
You’ve already seen how methods and procedures both have the capability of returning a value
when they exit. You do this by using the return keyword. You declare the type of value that you
return as part of your method signature and this determines what type of return value your
method returns.

Using this return value to indicate failure or success is one of the oldest error handling mecha-
nisms in programming languages. In the C programming language of which Objective-C is a

14_9780470479223-ch10.indd 24114_9780470479223-ch10.indd 241 1/4/11 8:55 PM1/4/11 8:55 PM

242 Exploring Deeper Features

derivative, seeing procedures that return an int return code to indicate different kinds of
errors is very common. Typically these return codes would be mapped to error messages so
that you could determine by looking at the value returned what the actual error was that
occurred. Despite this ability to look up the error code, the error code itself was typically still just
a number. This tended to be inconvenient, because different functions used different values to
indicate different types of errors and looking them up meant looking at different tables of
codes to error messages according to the procedure that you were using.

As a result, other error handling mechanisms were developed, and using return codes in this
fashion fell by the wayside. Nonetheless, using return codes for simple errors is still certainly a
worthwhile technique to understand and utilize. However, it’s best when doing so to avoid the
biggest problem with return codes, the lookup of codes to error messages, and instead stick
with simple Boolean values, returning YES in the case of success or NO in the case of failure. This
is generally the way that you see return codes used for error handling in Objective-C.

There are of course exceptions to this rule, for example, in cases where a method may be
returning some value in the case of a successful call, sometimes the call will return nil instead of
the expected value. Fortunately, nil and NO in Objective-C, when used as the control variable
for an if statement and with the same result, they evaluate to false. Thus, you can treat these
return values similarly when working with them.

Listing 10.1 shows an example of a class that is being used as a wrapper for a disk file. In this
particular example, the expectation is that the data file on disk is there and readable. But what
if it isn’t? If the file doesn’t exist, it can’t be opened. In this particular case, the object method
-openFileAtPath: will return nil.

Listing 10.1

Class definition for a file wrapper class

@interface FileWrapper : NSObject
{
 NSDictionary *contents;
}
-(BOOL)openFileAtPath:(NSString *)inPath;
@end;

@implementation FileWrapper

// dealloc and other stuff should be here...

-(BOOL)openFileAtPath:(NSString *)inPath;
{

14_9780470479223-ch10.indd 24214_9780470479223-ch10.indd 242 1/4/11 8:55 PM1/4/11 8:55 PM

 Chapter 10: Handling Errors 243

 contents = [[NSDictionary dictionaryWithContentsOfFile:inPath]
 retain];
 if(!contents)
 return NO;
 return YES;
}

@end

The -openFileAtPath: method actually uses a method on NSDictionary that utilizes the exact
same kind of error handling that I am illustrating here. In other words, the return value from
the NSDictionary class method +dictionaryWithContentsOfFile: is normally an instance of
NSDictionary. However, if the file does not exist, or it cannot be loaded as a property list file,
then this method returns nil. The method shown in Listing 10.1 checks to see if the value
returned from the NSDictionary method is nil. If it is, then it itself returns NO. Otherwise it
returns YES.

Listing 10.2 shows the main function for a program that might be using this class.

Listing 10.2

Using the file wrapper class

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 FileWrapper *wrapper = [[FileWrapper alloc] init];
 if([wrapper openFileAtPath:@”...”])
 {
 // do stuff with the file here...
 }
 else
 {
 // tell the user the file couldn’t be opened.
 }

 [pool drain];
 return 0;
}

14_9780470479223-ch10.indd 24314_9780470479223-ch10.indd 243 1/4/11 8:55 PM1/4/11 8:55 PM

244 Exploring Deeper Features

As you can see, I’ve wrapped the call to -openFileAtPath: inside an if statement. If the call
returns YES, that was a success, and I can do things with the file. Otherwise I have to tell the user
that the file could be opened.

This example illustrates one of the problems with return codes in that you can’t tell why the file
couldn’t be opened. All you know is that it couldn’t. Ideally, you want to be able to tell the user
exactly what happened, and why the file couldn’t be opened. Maybe the file was missing, or
maybe the user didn’t have permission to open the file. The user has no way of knowing in this
particular case.

That said, however, this is one of the simplest ways to indicate an error when one occurs.

Using exceptions
Moving now to the other extreme of error handling, the truly serious conditions, Objective-C
provides an excellent facility for throwing and handling exceptions.

The Objective-C language provides several built-in directives specifically for exception han-
dling. The act of signaling that an exceptional condition has occurred is known as throwing or
raising an exception. Essentially, this consists of creating an instance of an NSException and
then using the built-in Objective-C directive, @throw.

Once an exception is thrown, it will continue to travel up the call stack until it is caught. To
catch an exception, you use the Objective-C directive @catch. The @catch directive can be used
to catch specific subclasses of NSException, in the case where you may want to have special
processing for particular kinds of exceptions or it can be written to catch all exceptions. Listing
10.3 shows the file wrapper example again but in this case if the file can’t be opened, the
-openFileAtPath: method throws an exception.

Listing 10.3

The -openFileAtPath: method using exceptions

-(void)openFileAtPath:(NSString *)inPath;
{
 contents = [[NSDictionary dictionaryWithContentsOfFile:inPath]
 retain];
 if(!contents)
 {
 if(![self fileExistsAtPath:inPath])
 {
 NSException *ex =

14_9780470479223-ch10.indd 24414_9780470479223-ch10.indd 244 1/4/11 8:55 PM1/4/11 8:55 PM

 Chapter 10: Handling Errors 245

 [NSException exceptionWithName:@”Error opening file”
 reason:@”File doesn’t exist.”
 userInfo:nil];
 }
 else if(![self hasPermissionForFileAtPath:inPath])
 {
 NSException *ex =
 [NSException exceptionWithName:@”Error opening file”
 reason:@”Permission error.”
 userInfo:nil];
 }
 else
 {
 NSException *ex =
 [NSException exceptionWithName:@”Error opening file”
 reason:@”Unknown error.”
 userInfo:nil];
 }
 @throw ex;
 }
}

In this version of the -openFileAtPath: method, after I’ve determined that the file could not
be opened, I then go through some of the typical reasons why it might have failed, and I craft
an exception specifically to address each of those conditions. Once I have my exception built, I
then throw the exception using the @throw directive.

In this particular case, I’m using the default NSException class to throw my exception. But if I
wanted to be extra fancy, I could rewrite this method using a custom exception class for each of
these different sorts of exceptional conditions.

An example of this is shown in Listing 10.4.

Listing 10.4

Throwing custom exceptions for different sorts of errors

-(void)openFileAtPath:(NSString *)inPath;
{
 contents =
 [[NSDictionary dictionaryWithContentsOfFile:inPath] retain];
 if(!contents)

continued

14_9780470479223-ch10.indd 24514_9780470479223-ch10.indd 245 1/4/11 8:55 PM1/4/11 8:55 PM

246 Exploring Deeper Features

 Listing 10.4 (continued)

 {
 NSException *ex;
 if(![self fileExistsAtPath:inPath])
 {
 ex = [FileMissingException
 exceptionWithName:@”Error opening file”
 reason:@”File doesn’t exist.”
 userInfo:nil];
 }
 else if(![self hasPermissionForFileAtPath:inPath])
 {
 ex = [FilePermissionException
 exceptionWithName:@”Error opening file”
 reason:@”Permission error.”
 userInfo:nil];
 }
 else
 {
 ex = [NSException exceptionWithName:@”Error opening file”
 reason:@”Unknown error.”
 userInfo:nil];
 }
 @throw ex;
 }
}

Notice that this method has had the return value removed completely. This is an example of
code that returns successfully or not at all. In other words, if the file is able to be successfully
opened, then the method returns successfully and everything works great. If an error occurs in
opening the file, then an exception is thrown that will need to be caught by the caller.

 C A U T I O N
I can’t stress this enough, so I’ll make the point again here: In this code, if the exception gets thrown and it is not
caught by someone up the stack from this method, then the application will crash. So clearly, you would only want to
use an exception in this manner if you knew that the failure was a critical problem for this application.

Because it’s so important to catch these exceptions, take a look at how you do that. Listing 10.5
shows the updated main function for this application with proper exception handling code in
place.

14_9780470479223-ch10.indd 24614_9780470479223-ch10.indd 246 1/4/11 8:55 PM1/4/11 8:55 PM

 Chapter 10: Handling Errors 247

Listing 10.5

Handling the exception in the main function

int main (int argc, const char * argv[])
{
 int retCode = 0;
 @try
 {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 FileWrapper *wrapper = [[FileWrapper alloc] init];
 [wrapper openFileAtPath:@”...”];

 // do stuff with the file here...

 }
 @catch (NSException *e)
 {
 NSString *errorName = [e name];
 NSString *errorMsg = [e reason];
 NSLog(@”An error occurred: %@ - %@” , errorName, errorMsg);
 retCode = -255;
 }
 @finally
 {
 [wrapper release];
 [pool drain];
 }
 return retCode;
}

The way that exceptions work enables them to actually interrupt program flow no matter
where it is in your application and then jump up the stack until the exception is caught.

Therefore, when there is the possibility for an exception to occur in a method that you’re call-
ing, you have to wrap the code that could throw an exception inside of what’s called a try/catch
block. In the code shown above, you can see that one of the first things that this program does
is to use the @try directive. This begins a try/catch block. Once you use the @try directive,
the code inside of the following code block (delimited by {}) will be executed just like normal
until it either reaches the end of the code block, or an exception is thrown.

14_9780470479223-ch10.indd 24714_9780470479223-ch10.indd 247 1/4/11 8:55 PM1/4/11 8:55 PM

248 Exploring Deeper Features

If an exception is thrown, program flow is interrupted immediately, and it jumps to the excep-
tion handlers that are designated by the @catch directive.

The @catch directives allow you to catch exceptions of particular types. When an exception
occurs, the code jumps to the @catch directives and looks for the closest match to the excep-
tion that has been thrown. It then begins executing again the code inside of the catch block.

In this particular case, the catch block is simply printing out the error message and then setting
the applications return code to an error status. By catching the generic NSException, as
shown in Listing 10.5, you are effectively catching all exceptions.

You could even catch the id data type instead of NSException. This would enable you to
catch any object that’s thrown at all.

In cases like the earlier example where different kinds of exceptions are thrown for different
kinds of error conditions, you would list separate catch blocks for each of the different kinds of
exceptions that you needed to handle. An example of this is shown in Listing 10.6.

Listing 10.6

Catching different kinds of exceptions

int main (int argc, const char * argv[])
{
 int retCode = 0;
 @try
 {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 FileWrapper *wrapper = [[FileWrapper alloc] init];
 [wrapper openFileAtPath:@”...”];

 // do stuff with the file here...

 }
 @catch (FilePermissionException *e)
 {
 // ...
 }
 @catch (FileMissingException *e)
 {
 // ...

14_9780470479223-ch10.indd 24814_9780470479223-ch10.indd 248 1/4/11 8:55 PM1/4/11 8:55 PM

 Chapter 10: Handling Errors 249

 }
 @catch (NSException *e)
 {
 // ...
 }
 @finally
 {
 [wrapper release];
 [pool drain];
 }
 return retCode;
}

When catching exceptions in this manner, you should list the exceptions in order from most
specific to least specific, because the runtime will execute the first catch block match that
it finds.

Because of the ability for an exception to interrupt program flow at any time, it can be difficult
for your application to do appropriate cleanup of allocated memory and resources when an
exception occurs. Fortunately, in addition to the try/catch constructs, there is an additional
feature built into Objective-C exception handling, the @finally directive.

The @finally block works just like a @catch block except that it is always executed regardless of
whether or not an exception occurs. This makes it the perfect place to clean up memory or free
other resources that are allocated as part of the @try block. You can always rely on your @finally
block being executed no matter what happens inside your try or catch blocks.

The advantages of this kind of error handling is that you can group your code and let it just run
until something bad happens, and then handle that error condition. Additionally, errors can be
very descriptive. You can put all sorts of things into the NSException object, and be as verbose
as needed.

Try/catch/finally blocks can even be nested within each other in cases where you have complex
processing requirements with complex error conditions. This allows you to have multiple levels
of exception handling if needed.

 N O T E
The use of exceptions for error handling in Objective-C is relatively rare compared to some other languages that use
exceptions much more extensively. If you’re coming from a language such as Java and are tempted to use exceptions
yourself as extensively, I urge you to think twice, and instead, look at the next error handling mechanism that I’m
going to visit, NSError.

14_9780470479223-ch10.indd 24914_9780470479223-ch10.indd 249 1/4/11 8:55 PM1/4/11 8:55 PM

250 Exploring Deeper Features

 N O T E
To cause the debugger to break when an exception is thrown, you can set a breakpoint in the Objective-C runtime
method objc_exception_throw. If you do this, when an exception is thrown, it will trigger your breakpoint and stop
your application. You have to be careful though, since some methods will throw and catch an exception without allow-
ing it to pass up the stack. This is normal, and doesn’t hurt anything.

Using NSError
When designing the Foundation framework, Apple recognized that they needed an error han-
dling mechanism that retained the simplicity of a simple return code, but also provided a mech-
anism for specifying more information about what kind of error occurred. As a result, it began
introducing a new error handling system called NSError. Listing 10.7 shows the file wrapper
class, updated to use one.

Listing 10.7

File wrapper class using NSError

-(BOOL)openFileAtPath:(NSString *)inPath withError:(NSError **)outError;
{
 contents = [[NSDictionary dictionaryWithContentsOfFile:inPath] retain];
 if(!contents)
 {
 if(![self fileExistsAtPath:inPath])
 {
 NSDictionary *errorInfo =
 [NSDictionary dictionaryWithObject:@”File doesn’t exist.”
 forKey:NSLocalizedDescriptionKey];

 *outError = [NSError errorWithDomain:@”FileWrapper”
 code:404
 userInfo:errorInfo];
 }
 else if(![self hasPermissionForFileAtPath:inPath])
 {
 NSDictionary *errorInfo =
 [NSDictionary dictionaryWithObject:@”Permission Error.”
 forKey:NSLocalizedDescriptionKey];

 *outError = [NSError errorWithDomain:@”FileWrapper”
 code:500
 userInfo:errorInfo];

14_9780470479223-ch10.indd 25014_9780470479223-ch10.indd 250 1/4/11 8:55 PM1/4/11 8:55 PM

 Chapter 10: Handling Errors 251

 }
 else
 {
 NSDictionary *errorInfo =
 [NSDictionary dictionaryWithObject:@”Unknown error.”
 forKey:NSLocalizedDescriptionKey];

 *outError = [NSError errorWithDomain:@”FileWrapper”
 code:501
 userInfo:errorInfo];
 }
 return NO;
 }
 return YES;
}

NSError is a formalized design pattern that is being implemented across the Cocoa and Cocoa
Touch frameworks.

To use it, you extend your method signature to take an indirect reference to an NSError object.
This object is provided by the caller. An indirect reference is essentially a pointer to a pointer. In
other words, it’s a pointer that points to another pointer; in this case, it is a pointer to a variable
allocated inside the stack of the caller. When you assign something to that variable, you deref-
erence the indirect reference and thus are actually assigning to the variable to which it points.

 N O T E
Some programmers will refer to indirect references as “pointer to a pointer”, “pass by reference”, or “a reference”. I
prefer the term “indirect reference” to distinguish it from a plain reference, which you might encounter when using
Objective-C++. “Pointer to a pointer” would probably be the most accurate description, but I feel the phrase “pointer
to a pointer” is confusing for new programmers.

This concept of an indirect reference probably sounds very confusing. If so, then good, you’re
perfectly normal. Fortunately, the underlying details are mostly unimportant as long as you
understand the syntax that you have to use when creating and returning the NSError object.

When declaring the NSError indirect reference in your method’s parameter list, you will declare
it using the syntax “(NSError **)”. The double * signs mark this as an indirect reference.

Creating an NSError Object
Once inside your method, if an error occurs, before you return NO from the method, you must
first create your NSError objects and assign it to the dereferenced NSError indirect refer-
ence. To do this, go ahead and create your NSError object just like you would normally, but

14_9780470479223-ch10.indd 25114_9780470479223-ch10.indd 251 1/4/11 8:55 PM1/4/11 8:55 PM

252 Exploring Deeper Features

when assigning it to the passed in variable, you dereference the variable by using the derefer-
ence operator (*).So, in other words, to create and assign a new NSError object to the passed
in NSError indirect reference, you do something like Listing 10.8.

Listing 10.8

Assigning an NSError object to the passed in NSError indirect reference

*outError = [NSError errorWithDomain:@”FileWrapper”
 code:404
 userInfo:errorInfo];

The NSError factory method takes three parameters. The first is the error domain. This is a
string value used to indicate the subsystem from which the error has originated. Cocoa provides
several error domains itself, such as NSCocoaErrorDomain, NSPOSIXErrorDomain, and
so on. These are declared in the NSError.h header file. You can, and probably should, specify
your own error domain when creating your own instances of NSError. If you choose to do so,
the error domain string should be specified in reverse DNS notation, for example, com.
yourcompanyname.productname.classname.

The second parameter is the error code parameter. The error code is entirely application spe-
cific, and provides a means for you to specify a traditional error code as part of your error object.
How you choose to use the error code is up to you, but it must be an unsigned integer.

Understanding the NSError userInfo Dictionary
For the most part, the error code and the error domain are legacy parameters that are mostly
unused today. The real juice in the NSError object is in the userInfo dictionary. When cre-
ating the dictionary for this parameter, you can use several keys for different error information.
The keys are shown in Table 10.1.

Not all of these keys will always exist, and furthermore, users of the NSError class may add spe-
cial domain-specific keys to the dictionary as well for the purposes of encoding data specific to
the error that has occurred.

The ability to encode all the information required for displaying an error message to the user,
the description, the error reason, a suggestion for how to recover, and even the buttons for the
dialog box, make it possible to even use the NSAlert class method +alertWithError: to display an
appropriate alert box with the appropriate buttons and text fields with the data from the
NSError object.

14_9780470479223-ch10.indd 25214_9780470479223-ch10.indd 252 1/4/11 8:55 PM1/4/11 8:55 PM

 Chapter 10: Handling Errors 253

Table 10.1
Key Purpose

NSLocalizedDescriptionKey A localized description of the error condition, such as “File could not be opened because

it does not exist.” Also accessible via the NSError object method

-localizedDescription.

NSLocalizedFailureReasonKey A localized reason for the error, such as “File does not exist.” Also accessible via the

NSError object method -localizedFailureReason.

NSLocalizedRecoverySuggestionErrorKey A localized description of what the user might do to try to resolve the problem. Also

accessible via the NSError method

-localizedRecoverySuggestion.

NSLocalizedRecoveryOptionsErrorKey An array of strings to be used for buttons in a dialog box when presenting the error to

the user. The first string will be used as the right most button, and then sequentially left

from there.

NSRecoveryAttempterErrorKey An object which conforms to the NSErrorRecoveryAttempting

protocol, which can be used to attempt to recover from the error. (Mac OS X only)

NSUnderlyingErrorKey Another NSError object representing the actual underlying error.

Working with a recovery attempter
The recovery attempter is a little-known and rarely used component of NSError. Available only
on Mac OS X, it provides an object that can be used to automatically attempt to recover from
the error that has occurred.

The object provided must conform to the NSErrorRecoveryAttempting protocol, which defines
two methods, -attemptRecoveryFromError:optionIndex: which is invoked exclusively in applica-
tions using a modal, non-document centric user interface, and -attemptRecoveryFromError:opti
onIndex:delegate:didRecoverSelector:contextInfo: which is invoked by applications with a doc-
ument-centric user interface.

Recovery attempters work hand-in-hand with the OS X responder chain. To cause the recovery
attempter to be used, you call either -presentError: or -presentError:modalForWindow:delegate:
didPresentSelector:contextInfo: on any object in the responder chain. These two methods cor-
respond to presenting an error for a modal application in the former case, and a document-
based application in the latter case. When you call them, they will present an alert to the user,
displaying the information from the NSError. When the user clicks a button, the appropriate
recovery attempt method will be called on the recovery attempter, passing the index of the
clicked button as the optionIndex parameter.

The -attemptRecoveryFromError:optionIndex: method returns a BOOL value if the
error is able to be recovered from. The -presentError:modalForWindow:delegate:
didPresentSelector:contextInfo: method is expected to call the selector provided
on the delegate object. That selector should take a form similar to Listing 10.9.

14_9780470479223-ch10.indd 25314_9780470479223-ch10.indd 253 1/4/11 8:55 PM1/4/11 8:55 PM

254 Exploring Deeper Features

Listing 10.9

The recovery attempter callback function

- (void)didPresentErrorWithRecovery:(BOOL)didRecover
 contextInfo:(void *)contextInfo;

Again, recovery attempters are rarely used, and probably not something you’ll typically run into
in your code. Nonetheless, it’s an interesting feature of NSError.

Working with NSErrors in methods
Returning to the file wrapper example, in order to take advantage of this new NSError code,
you’d have to change the main block to look something like Listing 10.10.

Listing 10.10

Using a method with NSError

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 FileWrapper *wrapper = [[FileWrapper alloc] init];

 NSError *error = nil;

 if([wrapper openFileAtPath:@”...” withError:&error])
 {
 // do stuff with the file here...
 }
 else
 {
 // tell the user the file couldn’t be opened.
 // here you have the error object filled in.
 showErrorToUser(error);
 }

 [pool drain];
 return 0;
}

14_9780470479223-ch10.indd 25414_9780470479223-ch10.indd 254 1/4/11 8:55 PM1/4/11 8:55 PM

 Chapter 10: Handling Errors 255

The important changes here center around the fact that you can now check the return code
of the -openFileAtPath:withError: method. If it’s NO, then the error object should
now contain an initialized NSError object containing everything you need to display an error
to the user.

 C A U T I O N
Some code examples with NSError call for you to set NSError to nil, and then check to see if NSError has
been initialized to determine if an error occurred. This is absolutely wrong. There are parts of Cocoa that do manipu-
late the NSError object even though they succeed. The correct pattern to use with NSError is as shown here.
Check the return code of the method, and if it’s NO or nil, then check the error object for more information.

This method of error handling is the best of all worlds. It’s simple and informative, and it doesn’t
force the user to handle the error. It provides enough flexibility for the user of the API to do the
right thing while not pretending to know better than her.

Summary
Error handling is a vital part of being an effective programmer, so it’s good that Objective-C
gives you enough tools to handle error conditions gracefully and correctly. You have the tools
available to you. Use them.

14_9780470479223-ch10.indd 25514_9780470479223-ch10.indd 255 1/4/11 8:55 PM1/4/11 8:55 PM

14_9780470479223-ch10.indd 25614_9780470479223-ch10.indd 256 1/4/11 8:55 PM1/4/11 8:55 PM

In This Part

Using the
Foundation
FrameworkIII

III
Chapter 11

Understanding How the
Frameworks Fit Together

Chapter 12
Using Strings

Chapter 13
Working with Collections

Chapter 14
Using NSValue,

NSNumber, and NSData

Chapter 15
Working with Times and

Dates

15_9780470479223-pp03.indd 25715_9780470479223-pp03.indd 257 1/4/11 8:55 PM1/4/11 8:55 PM

15_9780470479223-pp03.indd 25815_9780470479223-pp03.indd 258 1/4/11 8:55 PM1/4/11 8:55 PM

In This Chapter

Understanding How the
Frameworks Fit Together

Explaining frameworks

Learning where
Foundation fits into

other frameworks

Learning how to add
frameworks to your

projects

When working with Objective-C on MacOS X, iPhone, and
iPad, the reusable libraries provided by the operating sys-
tem are typically packaged as frameworks. These frame-

works bundle together header files, documentation, and dynamic
libraries to present a package containing all of the information and
data necessary for using the code within them.

How exactly frameworks are implemented is relatively platform
specific. A framework could be packaged as a dynamic library like
the one I just described, as is the case in MacOS X, or it could be a
static library, as is the case occasionally on Linux or BSD. Because
of the platform centric nature of the framework bundle itself, a
detailed explanation of how to build a framework is beyond the
scope of a language-centric book such as this one. However, that
said, it is important that you understand what some of the key
frameworks that are typically used with Objective-C are and what
they provide. Therefore, this chapter focuses on giving you an
overview of the available frameworks on some of the platforms
upon which you can build your Objective-C programs. For reasons
that will become obvious later, writing a strictly language-centric
Objective-C book without including extensive coverage of at least
the Foundation framework is almost impossible. Because of this,
the remainder of this part of the book focuses on discussing some
of the details of this key component.

Understanding the
Foundation Framework
You may not know it, but you have already been using frameworks
in your applications if you have been following along with the
example code from this book. Every example application that’s
been shown so far has been a Foundation application, which
means that it links with the Foundation framework.

16_9780470479223-ch11.indd 25916_9780470479223-ch11.indd 259 1/4/11 8:56 PM1/4/11 8:56 PM

260 Using the Foundation Framework

Most languages have a standard library. The C programming language for example has the C.
standard library. C++ extends the standard library to also include a standard template library.
Java also has a standard library, and so on. In most cases, these standard libraries are specified
as providing certain functionality, but implementation is left to the platform vendors.

Objective-C as a language does not specify a standard library as such, but over time, the
Foundation framework has evolved into the closest thing to a standard library that Objective-C
has. It provides many of the same facilities — strings, collections, I/O, and so on that the stan-
dard libraries of these other languages provide.

Though originally developed and supported by NeXT/Apple for NeXTstep and Mac OS X, it has
become the gold standard by which other platforms must adhere to in order to realistically be
considered a viable Objective-C platform. Foundation itself is a huge library, and a comprehen-
sive list of every class and method that Foundation provides is way beyond the scope of what
would be practical here. To give you just a taste of what’s available as part of this library, how-
ever, I have listed many of the more commonly used classes in Table 11.1.

Table 11.1
Class Purpose

NSArchiver/NSUnarchiver Used for serializing and deserializing objects that conform to the NSCoder

protocol.

NSArray/NSMutableArray Ordered collections.

NSAutoreleasePool Implements the auto release pool used in retain count and memory

management.

NSBundle Provides a dramatic interface for application bundles.

NSCalendar Provides classes for dealing with calendars.

NSData A class whose purpose is for storing generic data.

NSDate A class for creating and manipulating dates.

NSDateFormatter Provides localization and formatting for dates.

NSDictionary/NSMutableDictionary An associative collection.

NSLock Thread locking.

NSError Used to store error information.

NSException The base class for exceptions.

NSEnumerator Used for the purposes of enumerating over a collection.

NSFileHandle A wrapper class for dealing with file I/O.

16_9780470479223-ch11.indd 26016_9780470479223-ch11.indd 260 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 11: Understanding How the Frameworks Fit Together 261

Class Purpose

NSFileManager A class which encapsulates operations related to the file system such as

creating directories and so on.

NSGarbageCollector A class for interacting in an object-oriented manner with the garbage

collector.

NSSet/NSMutableSet An unordered set collection.

NSNotification/NSNotificationCenter Provides a means for sending and receiving arbitrary notifications through

the runtime.

NSObject The base class or all other classes.

NSTask A class for interacting with operating system processes.

NSThread A class for creating and interacting with threads.

NSURL A class which encapsulates uniform resource locators.

NSURLConnection Networking classes enabling connection to resources located on the Internet

utilizing supported protocols.

NSString/NSMutableString The Objective-C string class.

Perhaps the most important class that Foundation provides is NSObject, from which every
other class in Objective-C inherits. In fact, it is NSObject which provides much of the function-
ality that we take for granted as part of Objective-C, things like Key Value Coding, reflection,
and some aspects of dynamic dispatch. Without Foundation, Objective-C would be an abso-
lutely crippled language. The two go hand in hand.

Foundation is extremely comprehensive. For the most part, before considering inventing some
low-level class yourself, check first to see if it already exists in Foundation. More than likely,
it does.

Even now, I find myself discovering new things in Foundation and other frameworks, and con-
stantly being surprised at all the unusual edge cases Apple has anticipated. For a full listing of
everything in the Foundation, or any other Apple framework, visit the Apple documentation at
http://developer.apple.com.

Exploring other frameworks
The Foundation framework does not stand alone on MacOS X. Apple provides many additional
frameworks as part of the standard platform as well as hundreds of frameworks that you can
download from third parties. Among the Apple provided frameworks are things like AppKit,
which provides the classes necessary for building GUI applications on MacOS X, UIKit which

16_9780470479223-ch11.indd 26116_9780470479223-ch11.indd 261 1/4/11 8:56 PM1/4/11 8:56 PM

262 Using the Foundation Framework

provides the classes needed for building GUI applications on iPhone and iPad, and a slew of
other frameworks which provide functionality specific to things such as network services,
graphics, and so on. For the purposes of this book, we will focus exclusively on Foundation. This
framework easily has the greatest cross-platform support of any of the frameworks on MacOS X.
It is available in the official Apple versions on MacOS X, iPhone, and iPad, and in the form of
open source third-party implementations on Linux, BSD UNIX, and even Windows. One type of
implementation enables you to develop your application by using Xcode on MacOS X, and
cross compile to build an executable for Windows. In many ways, the Foundation framework
provides greater portability and power than some standard libraries that have been built specif-
ically for that purpose.

For now, however, since Apple platforms are by far the most popular platforms for Objective-C
developers at this time, I focus primarily on features available there.

Using Frameworks in Your Projects
Though it is specific to MacOS X, I am going to visit, briefly, the subject of using frameworks in
your own projects so that you’ll know how to handle them when you need to.

Frameworks provided by Apple are typically installed in the directory that you installed Xcode,
by default /Developer. Under this directory, you’ll find a directory called Platforms. Inside the
Platforms directory, you’ll find a directory for each of the different development platforms for
which you have an SDK installed. For example, if you have installed the iPhone SDK, then you
will see directories corresponding to iPhone OS. If you have not, then you will only see directo-
ries corresponding to MacOS X.

Inside of the SDK directory, you’ll find a path leading to System/Library/Frameworks It is within
this directory that all of the frameworks for this particular platform in this particular SDK
located.

Adding frameworks
Adding a framework to your project is very straightforward. You simply right-click or option
click the target to which you intend to add the framework, and choose Add ➪ Existing
Frameworks. Doing this brings up the framework selection dialog box, as shown in Figure 11.1.

This dialog box enables you to select from the list of installed frameworks whichever framework
you wish to link with your currently selected target.

16_9780470479223-ch11.indd 26216_9780470479223-ch11.indd 262 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 11: Understanding How the Frameworks Fit Together 263

Figure 11.1

The framework selection dialog box.

16_9780470479223-ch11.indd 26316_9780470479223-ch11.indd 263 1/4/11 8:56 PM1/4/11 8:56 PM

264 Using the Foundation Framework

Including the headers
Remember that simply linking with the framework is not enough to enable you to actually use
the classes and code contained within it. You also need to be sure to include the appropriate
header files into your source file. Recall when you learned about importing header files that you
tell the compiler to search the linked framework directories by enclosing the name of the
header file you are importing in <>. Doing so causes the compiler to search the system includ-
ing directories as well as any framework directories.

Considering garbage collection
An important consideration when linking with third-party frameworks is to ensure that the
framework in question supports the memory management model that you have selected for
your project. Not all frameworks support both garbage collection and reference counted mem-
ory management. So be sure when you are reviewing the documentation for the framework
that you intend to link to your project that you are linking with the correct version of that
framework for the memory management system that you have selected. Linking with the incor-
rect version will cause a compilation error.

Summary
In this chapter, I have introduced you to the concept of frameworks and also talked about the
Foundation framework which serves as the closest thing to a standard library that Objective-C
has. The remainder of this part of the book will utilize the Foundation framework extensively
and it is important that you have this conceptual introduction to the framework and what it
provides. Now that you have this background information, you’ll be better prepared for the
detailed coding examples to come.

16_9780470479223-ch11.indd 26416_9780470479223-ch11.indd 264 1/4/11 8:56 PM1/4/11 8:56 PM

In This Chapter

Using Strings

Using the NSString and
NSMutableString Classes

Understanding Format
Strings

Using the Special
Objective-C String

Declaration Syntax

Any good standard library needs a great string class, and
Objective-C with Foundation is no exception. In fact, the
foundation framework comes with an excellent string class,

NSString. Like many of the low-level core classes in Foundation,
an immutable version of NSString, as well as a mutable version
called NSMutableString exists. These two classes give you a
tremendous amount of functionality when working with string
values.

Understanding the String
Declaration Syntax
Although NSString and NSMutableString have many types
of initializers and factory methods available, strings are such a com-
monly used class in Objective-C, a special language construct has
been created explicitly for the purposes of declaring a string easily.
This construct is shown in Listing 12.1.

Listing 12.1

The Objective-C NSString shortcut syntax

NSString *someString = @”this is a string”;

Essentially, the compiler knows that any time it encounters @ and
then a string contained within double quotes, it should create a
static const NSString object to contain the string provided.

Any two declarations of the exact same string value, even if stored
in different variable names, point to the same object. Therefore,
you can use these strings for keys, for example, where the equality
of the string as compared to another instance of that string will
be considered to be equal, both using the -isEqual: object
method as well as the == operator, which will compare the value
of the pointers.

17_9780470479223-ch12.indd 26517_9780470479223-ch12.indd 265 1/4/11 8:56 PM1/4/11 8:56 PM

266 Using the Foundation Framework

To illustrate this, look at Listing 12.2.

Listing 12.2

Examining string constant equality

NSString *string1 = @”this is a string”;
NSString *string2 = @”this is a string”; // same object as string1
NSString *string3 = [NSString stringWithString:string1]; // makes new

assert(string1 == string2); // true
assert([string1 isEqual:string2]); // also true
assert([string1 isEqual:string3]); // true
assert(string1 == string3); // false

Most often, you declare strings using the Objective-C string construct, but numerous initializers
and factory methods are available on the NSString and NSMutableString classes. Some
of the more common ones are shown in Table 12.1.

Table 12.1 NSString and NSMutableString factory methods.
Method Purpose

+string Constructs a new empty string.

+stringWithFormat: Constructs a new string using the printf-style format specifier given and any

arguments required by the format specifier.

+stringWithCharacters:length: Constructs a new string containing length characters retrieved from the C. style

array provided.

+stringWithString: Constructs a new string with the value of the given string.

+stringWithCString:encoding: Constructs a new string using a C. style string by converting it using the specified

encoding.

+stringWithUTF8String: Constructs a new string using a C.-style string encoded with UTF-8 string encoding.

This is equivalent to calling +stringWithCString:encoding: using NSUTF8Encoding

for the encoding parameter.

+stringWithContentsOfFile:encoding:error: Constructs a new string containing the contents of the file specified using the

encoding provided.

17_9780470479223-ch12.indd 26617_9780470479223-ch12.indd 266 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 12: Using Strings 267

Method Purpose

+stringWithContentsOfURL:encoding:error: Constructs a new string containing the contents of the resource specified by the

URL. The resource will be downloaded using the specified protocol, and decoded

using the provided encoding. This call will block while the resource is downloading.

+stringWithContentsOfFile:usedEncoding:error: Constructs a new string containing the contents of the file specified. Will attempt to

automatically detect the type of file encoding used and inform the caller of the type

of encoding detected via the usedEncoding out parameter.

+stringWithContentsOfURL:usedEncoding:

error:

Constructs a new string containing the contents of the resource specified by the

provided URL. Will download the resource, and attempt to detect the type of file

encoding used and inform the caller of the encoding type via the usedEncoding out

parameter.

Each of these also has an initializer version that can be used if you prefer to create your strings
that way.

 N O T E
The term “factory method” refers to class methods that can be used to construct an object using particular arguments.

Using format strings
One of the more commonly used factory methods is the +stringWithFormat: factory
method, which utilizes a printf style format string and a list of arguments to construct the string.
(I use format strings in many of the examples of this book. Every time you see a call to NSLog,
you see an instance of a format string.) Listing 12.3 shows an example of a format string used
with a call to NSLog.

Listing 12.3

The format string in NSLog

NSLog(@”The age of the employee named %@ is %ld”, [employee name], [employee age]);

The use of @”” indicates the format string is an instance of NSString. When creating a format
string, you use a special combination of percent signs and characters to indicate particular

17_9780470479223-ch12.indd 26717_9780470479223-ch12.indd 267 1/4/11 8:56 PM1/4/11 8:56 PM

268 Using the Foundation Framework

parameters that will be substituted into the string when it is passed to the object that is using
the string. The format string contains three kinds of components, the first is the format specifi-
ers. A format specifier is a special combination of characters, beginning with a %, followed by
one or more numbers and letters specifying the format of the argument to be substituted into
the format string at runtime. You can use a format specifier to insert anything from an object, to
an integer, or a float. A format specifier can also specify how the argument is formatted when
placed into the string. For example, to construct a format specifier to insert a floating-point
value with two decimal places after it, you use a format specifier, such as %.2f. The different
characters used for the format specifiers are extensive and comprehensive, and could probably
fill a book this size with their complexity and quirks. Therefore, I won’t go into a great amount of
detail about all of them. I encourage you to read the Apple documentation on format strings.

That said, however, there is one format specifier which I would like to address specifically. It
is the format specifier %@. This specifier is special to Objective-C. It is intended to be used in
conjunction with object arguments. What it does is cause the format string to take the object
passed as an argument for that format specifier and call the method -description on
that object in order to get a string representation of that object. Most foundation classes
have a -description method that returns something sensible for the class in question.
NSString’s -description method actually returns the string itself. NSArray’s
-description method returns a string that shows a stringified representation of the con-
tents of the array. The default NSObject implementation of -description returns a string,
which shows the pointer address of the object. If you create a custom class, and you want to use
this feature of format strings with your class, be sure to override the -description method
accordingly.

The second type of component that can be used in a format string is called an escape sequence.
You use escape sequences to insert special, nonstandard characters into the string. The first let-
ter of an escape sequence is always a backslash character followed by a character that tells the
compiler what type of special character you wish to insert. For example, to insert a carriage
return character into the string, you use the escape sequence \r.

The most commonly used escape sequences are \n to insert a newline, \r for a carriage return,
\” for a double quote, and \t for a tab character. Because of the use of the \ character to begin
an escape sequence, the escape sequence \\ also inserts just a \ character.

Finally, the third type of component you can use in a format string is essentially anything that
doesn’t fall into the first two component categories. These characters are simply passed straight
through into the final result.

When a format string is interpreted, it goes through the format string, and for each format spec-
ifier that it encounters, it looks for a following argument to the function for which this format
string is an argument itself. It then substitutes the value of that argument into the result string
and performs whatever conversion the format specifier indicates. To give you an idea of exactly
how this works, take a look at Listing 12.4.

17_9780470479223-ch12.indd 26817_9780470479223-ch12.indd 268 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 12: Using Strings 269

Listing 12.4

Using format strings

NSString *str;

NSString *cardName = @”Ace”;
NSString *cardSuit = @”Spades”;

str = [NSString stringWithFormat:@”The winning card is %@ of %@.”,
 cardName, cardSuit];
// str is “The winning card is Ace of Spades.”

 str = [NSString stringWithFormat:@”You have %ld gold!”,
 [player goldAmount]];
// str is “You have 1000 gold!”

 str = [NSString stringWithFormat:@”Your change is: $%.2f.”, change];
// str is “Your change is $2.43

Notice that the arguments passed when working with format strings are passed using an unusual
syntax. The format string allows you to pass a variadic argument list to the +stringWith
Format method. The count of arguments is determined by how many format specifiers are
provided.

 N O T E
To ensure your code is 64-bit safe, it’s generally considered a best practice to use the %ld format specifier when work-
ing with integers. When using NSInteger as the type for your integers, it will automatically change with the
architecture from 32-bit to 64-bit. Using %ld for your format specifier insures that the format string will work with
either 32-bit or 64-bit NSIntegers, regardless of their size.

Working with Other NSString Methods
Using format strings allows you to create strings in a much more flexible fashion than if you
simply had to append them together. Various applications for format strings are available aside
from simply constructing new strings. For example, you can also append a formatted string, as
shown in Listing 12.5.

17_9780470479223-ch12.indd 26917_9780470479223-ch12.indd 269 1/4/11 8:56 PM1/4/11 8:56 PM

270 Using the Foundation Framework

Listing 12.5

Appending a formatted string

NSMutableString *str = [...];

[str appendFormat:@”Your change is: %.2f.”, change];

You can also split a string into separate components by using the method -components
SeperatedByString:. This method will search for instances of the given string within the
receiver, and then returned and NSArray containing the parts of the string separated by that
string. Listing 12.6 shows example of this.

Listing 12.6

Splitting a string into its components

NSString *str = @”This is a string of words.”;

NSArray *words = [str componentsSeperatedByString:@” “];

// words is now [@”This”, @”is”, ...]

Similarly, the corollary to this is the NSArray method -componentsJoinedByString:
which will do the opposite operation. It will take an array of strings and combine them into a
single string with each component separated by the given string.

You can perform string searching and replacement using methods like -rangeOfString: to
find the range of a given string within the receiver, or -stringByReplacingOccurrences
OfString:withString: to do string replacement. NSString even has some limited regu-
lar expression matching support as well.

Overall, NSString is an amazingly powerful and comprehensive class with a lot of functional-
ity much more than can be covered here. My advice is to visit the NSString documentation,
and review all the methods it provides you.

17_9780470479223-ch12.indd 27017_9780470479223-ch12.indd 270 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 12: Using Strings 271

Using NSString categories
Because NSString is such a comprehensive class already, Apple has chosen to extract into
separate category files that are used in conjunction with NSString. These are the NSString
(AppKitAdditions) and NSString(UIStringDrawing) categories. These are not
strictly part of the Foundation framework; however, they are part of the GUI toolkit frameworks
Cocoa, and Cocoa Touch. They provide methods used for drawing strings on windows and
views. Because they are not part of Foundation, I won’t cover them here, for more information
on them, please visit the Apple Documentation, or pick up one of the other books in this series
on those subjects.

Summary
The NSString and NSMutableString classes are a vital component of Objective-C. I could
write chapters and chapters about all of the different methods and how you can use them in
your code. However, the best thing you can do is simply to be familiar with the NSString
and NSMutableString class documentation. Usually, if there’s something you need on
NSString, the functionality is going to be there. You just need to find it.

17_9780470479223-ch12.indd 27117_9780470479223-ch12.indd 271 1/4/11 8:56 PM1/4/11 8:56 PM

17_9780470479223-ch12.indd 27217_9780470479223-ch12.indd 272 1/4/11 8:56 PM1/4/11 8:56 PM

In This Chapter

Working with Collections

Learning to use
collections

Understanding
mutability versus

immutability

Using specialized
collections

Enumerating the
members of a collection

Sorting and filtering
collections

Using blocks with
collections

While Foundation provides you with tons of classes for
all kinds of purposes, it’s worthwhile to visit a few of the
most fundamental classes in depth because of the extent

to which you are likely to use them in your applications.

Among those fundamental classes is the group of classes known
as collections. A collection is a class which manages a group of
objects. Every good language has a good collections API and
Objective-C is no exception. The Foundation framework contains
classes for dealing with arrays, dictionaries, hash tables, sets, and
so on. These classes provide a comprehensive toolset for managing
and manipulating groups of objects for almost any circumstance.
Additionally, thanks to a small sprinkling of syntactical sugar as
part of the language, dealing with enumerating, filtering, and
sorting with these collection classes is simple and intuitive.

Working with Arrays
The first collection class that I want to introduce you to is
NSArray. The NSArray class is used for managing an ordered
collection of objects. An ordered collection of objects is a grouping
of objects that is expected to be maintained in the order in which
they were stored. Typically, an ordered collection of objects is
accessed either through enumeration or by index.

To create an NSArray, you can either use an initializer, or you can
use one of its numerous class factory methods. Listing 13.1 shows
an example of creating a new NSArray.

18_9780470479223-ch13.indd 27318_9780470479223-ch13.indd 273 1/4/11 8:56 PM1/4/11 8:56 PM

274 Using the Foundation Framework

Listing 13.1

Creating a new NSArray

NSArray *array = [NSArray arrayWithObjects:@”foo”, @”bar”, @”baz”, nil];

The NSArray class is immutable — once it is created, you cannot modify its contents.
However, because Objective-C provides no mechanism for ensuring the immutability of the
objects inside an array, if you access an element of an array, those objects can be modified.

 N O T E
Elements in collection classes do not need to be the same type. You can mix them at will.

You can access the count of the elements inside the array using the -count method, which
returns an NSInteger.

You can access the elements of NSArray sequentially by using fast enumeration, indexed
access, or by using an NSEnumerator object. Examples of all three of these are shown in
Listing 13.2.

Listing 13.2

Accessing the elements of an array sequentially

NSArray *array = [NSArray arrayWithObjects:@”foo”, @”bar”, @”baz”, nil];

// fast enumeration

for(NSString *item in array)
{
 NSLog(@”%@”, item);
}

// indexed access

18_9780470479223-ch13.indd 27418_9780470479223-ch13.indd 274 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 275

for(NSInteger n = 0; n < [array count]; n++)
{
 NSLog(@”%@”, [array objectAtIndex:n]);
}

// using an NSEnumerator

NSEnumerator *enumerator = [array objectEnumerator];
NSString *item = nil;
while((item = [enumerator nextObject]))
{
 NSLog(@”%@”, item);
}

Accessing an individual element of an NSArray is done by using the method -objectAt
Index: which returns an individual element at the given index. NSArray also provides the
convenience method -lastObject: which returns the last element of the array. To find the
index of a specific element, you can also use the method -indexOfObject:, which sends
the -isEqual: message to each of the elements of the array, and returns the first element
which returns YES. Both of these are shown in Listing 13.3.

Listing 13.3

Accessing individual elements.

NSArray *array = [NSArray arrayWithObjects:@”foo”, @”bar”, @”baz”, nil];

NSString *item = nil;

item = [array objectAtIndex:1]; // item is now ‘bar’

item = [array lastObject]; // item is now ‘baz’

NSLog(@”%ld”, [array indexOfObject:@”foo”]); // yields 0

18_9780470479223-ch13.indd 27518_9780470479223-ch13.indd 275 1/4/11 8:56 PM1/4/11 8:56 PM

276 Using the Foundation Framework

 C A U T I O N
NSArray as well as all collections in Objective-C is zero based. This means the first element starts at index 0, and the
last element has an index of one less than the length of the array. If you try to access an element outside of these
index boundaries, you will get an exception.

In addition to the methods that return individual items at individual indexes, you can also use
other methods that return groups of objects based on ranges of indexes. These methods, such
as -objectsAtIndexes: and -indexesOfObjects: work similarly to the methods that
are used for accessing individual elements, except that they take an NSIndexSet, specifying
the items you want. These calls return a new NSArray containing the subset of objects match-
ing the indexes passed in. Listing 13.4 shows examples of these methods.

Listing 13.4

Accessing groups of elements

NSArray *array = [NSArray arrayWithObjects:@”foo”, @”bar”, @”baz”, nil];
NSRange range;
range.location = 1;
range.length = 2;

NSIndexSet *indexSet = [NSIndexSet indexSetWithIndexesInRange:range];

// this should get indexes for [@”bar”, @”baz”]
NSArray *subItems = [array objectsAtIndexes:indexSet];

The access time for an element of an NSArray, while not strictly specified as such, can be
assumed to be at worst, O(lg N), but is often O(1) for most operations. Linear search operations
can have a worst-case complexity of O(N*lg N).The NSArray class is useful for storing virtually
any collection of Objective-C objects, including objects that are not of the same class. However,
NSArray is incapable of holding either nil values, structs, or scalars. If you feel the need to
store a nil value in an NSArray, instead consider using an instance of NSNull. This class was
made specifically for cases where you needed to store a “non-value” in a container class. When
it comes to storing structs, you should wrap the struct in an NSValue. The same goes for stor-
ing scaler values, NSNumber provides a convenient wrapper object which you can use to store
a scalar value.

Using dictionaries
The next collection class that I’d like to talk about is NSDictionary. The NSDictionary
class provides a container for an associative collection of objects. Associative collections refer to

18_9780470479223-ch13.indd 27618_9780470479223-ch13.indd 276 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 277

collections that contain both keys and objects which must be associated to each other. To
access a given element of the collection, you request the element by asking for the object asso-
ciated with a given key.

Often, instances of NSString are used as the keys for the dictionary. This is not a requirement.
The objects used as keys can be of any type, provided they implement the NSCopying protocol
and are unique. The dictionary determines uniqueness via the NSObject method -isEqual:
versus other keys in the dictionary, and will throw an exception if you attempt to create a dic-
tionary with two keys that are the same.

Like NSArray, NSDictionary can be initialized either by using an initializer or by using one
of the numerous NSDictionary class factory methods. Listing 13.5 shows several examples
of how to create instances of NSDictionary.

Listing 13.5

Creating instances of NSDictionary

NSDictionary *dict;

// normal initializer...

dict = [[NSDictionary alloc] initWithObjects:@”foo”, @”bar”, @”baz”
 forKeys:@”one”, @”two”, @”three”
 count:3];

// factory method

dict = [NSDictionary dictionaryWithObjects:@”foo”, @”bar”, @”baz”
 forKeys:@”one”, @”two”, @”three”
 count:3];

// this one reads in a plist file and uses it to create the dict...

dict = [NSDictionary dictionaryWithContentsOfFile:@”something.plist”];

// just like the NSArray...

dict = [NSDictionary dictionaryWithObjectsAndKeys:
 @”foo”, @”one”,
 @”bar”, @”two”,
 @”baz”, @”three”,
 nil];

18_9780470479223-ch13.indd 27718_9780470479223-ch13.indd 277 1/4/11 8:56 PM1/4/11 8:56 PM

278 Using the Foundation Framework

You can access individual elements of an NSDictionary by using the object method
-objectForKey:, which retrieves the object associated with the given key. Listing 13.6
shows an example of this operation.

Listing 13.6

Accessing an individual elements of an NSDictionary

NSLog(@”%@”, [dict objectForKey:@”one”]); // prints ‘foo’

NSLog(@”%@”, [dict objectForKey:@”two”]); // prints ‘bar’

Just like when using the NSArray class, there are variants of this method which take as param-
eters, multiple keys to access multiple objects at once. One variant of these calls is the -objects
ForKeys:notFoundMarker:, which calls for an object that will be returned in the event
that a given key is not found. Listing 13.7 shows an example of this method in use.

Listing 13.7

Using the method -objectsForKeys:notFoundMarker:

NSArray *keys = [NSArray arrayWithObjects:@”one”, @”ten”, @”two”];

NSArray *items = [dict objectsForKeys:keys notFoundMarker:[NSNull null]];

// items now contains [@”foo”, NSNull, @”bar”]

As is the case with NSArray, nil values, structures, and scalars cannot be stored as objects in
an NSDictionary. You need to wrap them, instead, by using NSNull, NSValue, or
NSNumber, respectively.

In addition to being able to access individual elements of an NSDictionary by key, you can
also retrieve all keys in the dictionary or all objects in the dictionary by using the methods
-allKeys or –allObjects, respectively. Both of these methods return an instance of

18_9780470479223-ch13.indd 27818_9780470479223-ch13.indd 278 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 279

NSArray which can then subsequently be used in the same patterns as NSArray for the
purposes of enumeration. That is, you can enumerate over all of the keys, or all of the objects in
an NSDictionary by enumerating over these arrays using a for loop, a while loop, and so on.
Listing 13.8 shows an example of doing this.

Listing 13.8

Enumerating over the keys and objects in NSDictionary

// these two have the same output
// iterating the objects...
NSArray *objects = [dict allObjects];
for(NSString *obj in objects)
{
 NSLog(@”%@”, obj);
}

// default is to iterate the keys
for(NSString *key in dict)
{
 NSLog(@”%@”, [dict objectForKey:key]);
}

In addition to using the -allKeys method to get an array you can use iteration to loop over
the dictionary’s values using the –allObjects method. Just iterating using the dictionary
itself as the iteration object as shown here allows you to loop over the keys as well.

Finally, you can also retrieve a sorted array of keys in an NSDictionary by using the method
-sortedKeysUsingSelector:. I cover more about sorting collections shortly, so I won’t
discuss this method here other than to simply inform you that it exists.

Like NSArray, NSDictionary cannot contain nil keys or objects, and it cannot contain
scalars or structs.

NSDictionary is usually implemented internally as a hash table. Therefore, access by key to a
given object is typically going to be O(1). Again, this is not specified explicitly, so, your mileage
may vary.

18_9780470479223-ch13.indd 27918_9780470479223-ch13.indd 279 1/4/11 8:56 PM1/4/11 8:56 PM

280 Using the Foundation Framework

Working with sets
The NSArray class provides a collection for use with an ordered collection of objects, and the
NSSet provides a class for working with unordered collections of objects. Using an NSSet, you
can store objects that do not have to be stored in a particular order. The fact that an NSSet is
unordered enables it to be slightly faster when accessing individual elements, though they can-
not be accessed by index or key.

Again, creating an NSSet is done by using either an initializer or one of the numerous NSSet
class factory methods. Listing 13.9 shows how to create an NSSet using a factory method and
how to manipulate the members of the set.

Listing 13.9

Creating an NSSet

NSSet *set = [NSSet setWithObjects:@”foo”, @”bar”, @”baz”];

NSLog(@”%@”, [set member:@”foo”]); // outputs foo

NSLog(@”%@”, [set anyObject]); // prints one of them, no idea which

NSLog(@”%@”, [set allObjects]); // [@”foo”, @”bar”, @”baz”]

NSLog(@”%ld”, [set containsObject:@”baz”]); // prints ’1’

Object stored in an NSSet must respond to the NSObject methods -isEqual: and -hash.
If the -hash method of an object stored in an NSSet depends on the internal state of the
object, the stored object must not change while it is in the set.

Accessing objects in the set can be done by using the methods -allObjects, which returns
an array containing all of the objects in the set, -anyObject which returns a non-determinis-
tic object from the set, or -member: which returns the member of the set that matches the
passed in parameter determined by using the method -isEqual:. Finally, the method -any
Object returns a non-deterministic member of the set.

You can iterate over the objects of the NSSet by using fast enumeration or an NSEnumerator.

Listing 13.10 shows accessing objects in an NSSet and enumerating over an NSSet.

18_9780470479223-ch13.indd 28018_9780470479223-ch13.indd 280 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 281

Listing 13.10

Operations on an NSSet

NSSet *set = [NSSet setWithObjects:@”foo”, @”bar”, @”baz”];

NSLog(@”%@”, [set member:@”foo”]); // outputs foo

NSLog(@”%@”, [set anyObject]); // prints one of them, no idea which

NSLog(@”%@”, [set allObjects]); // [@”foo”, @”bar”, @”baz”]

NSLog(@”%ld”, [set containsObject:@”baz”]); // prints ’1’

for(NSString *item in set)
{
 NSLog(@”%@”, item);
}

NSEnumerator *enumerator = [set objectEnumerator];
NSString *item = nil;
while((item = [enumerator nextObject]))
{
 NSLog(@”%@”, item);
}

Foundation also provides a subclass of NSSet called NSCountedSet. This nifty class allows
you to add the same object to the set multiple times. The NSCountedSet keeps track of how
many times you added a given object, but only actually stores the object once. It keeps a run-
ning count of the number of times the given object is added to the set and requires an equal
number of -removeObject: calls to actually remove the object.

NSCountedSet’s implementation of the -count method returns the number of distinct
objects, not the total number of times all objects were added to the set. In order to access the
count for a given object, you can use the method -countForObject:.

Understanding mutability
Each of the collection classes that I’ve introduced you to so far have been immutable. After
you create the collection, you cannot add objects to or remove objects from the collection.
Collections wouldn’t be particularly useful if you were limited to adding or removing objects
from them.

18_9780470479223-ch13.indd 28118_9780470479223-ch13.indd 281 1/4/11 8:56 PM1/4/11 8:56 PM

282 Using the Foundation Framework

Therefore, Foundation also provides mutable versions of all of these classes. The names of the
mutable versions of the classes are NSMutableArray, which corresponds to NSArray,
NSMutableDictionary, corresponding to NSDictionary, and NSMutableSet that cor-
responds to NSSet. Each of these classes provides additional methods, in addition to the read-
only methods of their immutable counterparts for the purposes of adding, removing, and
replacing objects within the collections.

NSMutableArray provides the method -addObject: for placing an object at the end
of the array, -insertObject:atIndex: for inserting an object at a specific index, -removeLast
Object for removing the last object in the array, -removeObjectAtIndex: for removing
an object at a given index, and -replaceObjectAtIndex:withObject: for replacing a
given object at a specified index with another object. Listing 13.11 shows some examples of
using these methods on an NSMutableArray.

Listing 13.11

Manipulating the elements of an NSMutableArray

NSMutableArray *array = [NSMutableArray array];

[array addObject:@”foo”];
[array addObject:@”baz”];
[array insertObject:@”bar” atIndex:1];
// now [@”foo”, @”bar”, @”baz]

[array removeLastObject];
// now [@”foo”, @”bar”]

[array removeObjectAtIndex:0];
// now [@”bar”]

[array replaceObjectAtIndex:0 withObject:@”boz”];
// now [@”boz”]

There are naturally plural forms of each of these methods that perform the same operations
with arrays of objects or ranges of indexes.

Similarly, NSMutableDictionary provides methods for manipulating its contents as well.
For example, to add an object into the dictionary, you use the method -setObject:forKey:.
To remove an object, you use the method -removeObjectForKey:. Listing 13.12 shows an
example of manipulating an NSMutableDictionary.

18_9780470479223-ch13.indd 28218_9780470479223-ch13.indd 282 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 283

 C A U T I O N
Calling –setObject:forKey: with a key that already exists in the dictionary will replace the old object with
the new one.

Listing 13.12

Manipulating the elements of an NSMutableDictionary

NSMutableDictionary *dict [NSMutableDictionary dictionary];

[dict setObject:@”foo” forKey:@”one”];
[dict setObject:@”bar” forKey:@”two”];
[dict setObject:@”baz” forKey:@”three”];

// dict now contains all three objects and keys

[dict removeObjectForKey:@”two”];

// dict now only has foo and baz in it

Finally, NSMutableSet provides similar functionality with the methods -addObject:, and
-removeObject:. Additionally, it also provides specialized methods for adding and remov-
ing groups of objects. -unionSet:, for example adds all the objects from another set to the
receiver. Similarly, -minusSet: removes a set of objects from the receiver.

Understanding Collections and Memory
Management
You have to be careful when working with collections in a non-garbage collected memory envi-
ronment. When an object is removed from the collection, it is released. This has several implica-
tions for you as a developer.

First and foremost, because the collection will be retaining objects that are added to it, you do
not need to retain those objects outside of the collection if you don’t have some other good
reason to do so. You can assume that by placing the object into the collection, that the collec-
tion then owns it. When the collection is deallocated, it sends a release to each of the objects in

18_9780470479223-ch13.indd 28318_9780470479223-ch13.indd 283 1/4/11 8:56 PM1/4/11 8:56 PM

284 Using the Foundation Framework

the collection, so you do not need to be concerned about the potential for memory leaks,
because the collection fulfills that part of the memory management contract.

Secondly, because objects are released when removed from a collection, the possibility that a
given object that you intend to continue to use but which is being removed from a collection,
may be released without your being aware of it. Listing 13.13 shows an example of this problem
when using an NSMutableArray.

Listing 13.13

Error when removing an object from an NSMutableArray

NSMutableArray *array = [NSMutableArray arrayWithObjects:@”foo”,
 @”bar”, @”baz”, nil];

NSString *item = [array objectAtIndex:1];

[array removeObjectAtIndex:1]; // item is released here.

NSLog(@”%@”, item); // error!!

The error in this code occurs because although you have retrieved the object from the array,
you have not retained it. As long as you do not remove the object from the array, it is still
retained by the array and therefore can be manipulated at will. However, if you remove the
object from the array, it is immediately released. Therefore, accessing the method on the object
as shown here causes an error.

The correct way to write this code is to retain the object that you have retrieved from the array
prior to removing it from the array. Listing 13.14 shows the same code corrected.

Listing 13.14

The correct way to remove an object you wish to continue using

NSMutableArray *array = [NSMutableArray arrayWithObjects:@”foo”,
 @”bar”, @”baz”, nil];

NSString *item = [array objectAtIndex:1];

[item retain]; // keep it around!

18_9780470479223-ch13.indd 28418_9780470479223-ch13.indd 284 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 285

[array removeObjectAtIndex:1]; // item is released here.

NSLog(@”%@”, item); // OK

[item release]; // remember to release it since you retained it!

Obviously, when working in a garbage collected environment, these types of problems do not
occur.

Using specialized collections
A few collection classes serve specific narrow purposes. Although they are rarely used, it’s nice
to know that they exist, if you need them; these are NSPointerArray, NSHashTable, and
NSMapTable. They are primarily used in garbage collected environments for specialized col-
lections requiring weak relationships.

Each of them provides an interface that is similar to, but does not inherit from a specific type of
collection. NSPointerArray for NSArray, NSHashTable for NSSet, and NSMapTable
for NSDictionary.

Because of their similarity of purpose and their rarity of use, I won’t belabor this subject by going
into a great amount of detail on every one of these, however, it can be useful to look at one of
these three, NSPointerArray, for the purposes of example since the design pattern used in its
construction is similar enough to the other two as to not require additional explanation.

The class NSPointerArray is probably one of the most powerful of these specialized collec-
tion classes. It specifies an NSArray like interface but allows for the insertion of null values
and arbitrary pointers. Additionally, by specifying certain options when creating an instance of
NSPointerArray, you can configure your array to have specific memory management poli-
cies with regard to the objects stored within it. For example, you can specify that objects that
get reclaimed by the garbage collector get replaced by a NULL value. To do this, you create a zero-
ing weak memory configuration by using the NSPointerFunctionsZeroingWeakMemory
option.

You specify the options for your instance of NSPointerArray when you create it using the
methods -initWithOptions: or -initWithPointerFunctions:. When using the
method -initWithOptions:, you are specifying that the array that you are creating will
obey the policies set forth by the options that you are passing as a parameter. The options,
which are specified using a bitwise-or, set specific policies or “personalities” for the array. For
example, to create an array to store standard C-style strings that require strcmp to compare
them and malloc/free for memory management, you do something like Listing 13.15.

18_9780470479223-ch13.indd 28518_9780470479223-ch13.indd 285 1/4/11 8:56 PM1/4/11 8:56 PM

286 Using the Foundation Framework

Listing 13.15

An NSPointerArray to store C strings

NSPointerArray *array = [[NSPointerArray alloc] initWithOptions:
 (NSPointerFunctionsCStringPersonality|
 NSPointerFunctionsMallocMemory)];

You can only specify one such personality option and one such memory option for a given
instance.

Alternatively, for maximum flexibility, you can use the initializer -initWithPointer
Functions: that allows you to specify an instance of NSPointerFunctions as a parame-
ter. This class encapsulates the functions that will be used by the array for operations, such as
hashing, equality finding, storage, and deletion. Each of these different operations has a corre-
sponding function that you can configure by using an instance of this class. When you pass this
instance to the NSPointerArray, it will then use the functions that you have defined when
objects are inserted, removed, and so on, in place of the normal retain, release, and other meth-
ods that would be used in a normal NSArray.

The cases when you actually need to use NSPointerArray are probably few and far
between. However, it is available as a tool if you need it.

Enumerating
The elements of a collection can be iterated over by using fast enumeration or by using an
NSEnumerator. By using fast enumeration, you simply use a standard for loop. Enumerating
in this way over an NSArray or NSSet enumerates over each element of the collection. Using
fast enumeration on an NSDictionary enumerates over its keys.

Listing 13.16 shows each of these three collection types being enumerated.

Listing 13.16

Enumerating over collections using fast enumeration

NSMutableArray *array = [NSMutableArray arrayWithObjects:@”foo”,
 @”bar”, @”baz”, nil];

18_9780470479223-ch13.indd 28618_9780470479223-ch13.indd 286 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 287

for(NSString *item in array)
{
 NSLog(@”%@”, item);
}

Alternatively, you can use “old style” enumeration, using NSEnumerator. In this method,
you acquire an NSEnumerator for your collection and then call the NSEnumerator object
method -nextObject repeatedly until you receive a nil, which indicates the end of the
collection. This is shown in Listing 13.17.

Listing 13.17

Enumerating the collections using NSEnumerator

NSEnumerator *enumerator = [array objectEnumerator];
NSString *item = nil;
while((item = [enumerator nextObject]))
{
 NSLog(@”%@”, item);
}

There is also a reverse enumerator that you can access, which will enable you to iterate over the
elements of the container in reverse. This can actually be used both in the traditional while loop
as well as using fast enumeration, as shown in Listing 13.18.

Listing 13.18

Enumerator Tricks

NSEnumerator *enumerator = [array reverseObjectEnumerator];
NSString *item = nil;
while((item = [enumerator nextObject]))
{
 NSLog(@”%@”, item);
}

continued

18_9780470479223-ch13.indd 28718_9780470479223-ch13.indd 287 1/4/11 8:56 PM1/4/11 8:56 PM

288 Using the Foundation Framework

 Listing 13.18 (continued)

for(item in enumerator)
{
 NSLog(@”%@”, item);
}

This also works for forward enumerators, but because that’s the standard behavior for fast enu-
meration, that is rarely used.

Changing the contents of a collection while enumerating is dangerous and will cause the enu-
meration to become invalid and cause an error. Therefore — don’t do it.

Sending Messages to Elements
Another common requirement is to loop over the elements of a collection, calling some
method on each of them. This is accomplished via the object methods -makeObjects
PerformSelector: and -makeObjectsPerformSelector:withObject:. These
methods take a selector object, which specifies the method to be called on each of the objects
in the collection. In the case of the latter method, a parameter, given as the object parameter,
is also passed to each of the method calls.

Listing 13.19 shows an example of using this method to iterate over a collection of items in a
game engine, updating their positions. In this case, the game state object is passed to each ele-
ment so that it can use it.

Listing 13.19

Making all objects of a collection perform some action

NSArray *gameObjects = [...];

GameState *gameState = [...];

[gameObjects makeObjectsPerformSelector:@selector(updatePosition:)
 withObject:gameState];

18_9780470479223-ch13.indd 28818_9780470479223-ch13.indd 288 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 289

This causes each element of the array to receive a call to -updatePosition: with the
parameter gameState.

Sorting and Filtering
NSArray and NSMutableArray benefit from a plethora of sorting and filtering capabilities.
NSArray, because of its immutability, has methods that allow you to retrieve a copy of the
array, sorted or filtered, whereas NSMutableArray allows you to also sort the array in place.
For the purposes of discussion here, I focus primarily on NSMutableArray, but you should
know that you can access any of the non-mutating methods through NSArray as well.

Sorting an array can be done with the methods -sortUsingDescriptors:, -sortUsing
Function:context:, or my personal favorite, -sortUsingSelector:, each of which
takes a different type of sorting object as an argument to use for performing the sort.

The first of these, -sortUsingDescriptors: takes an instance of NSSortDescriptor
as an argument. To create one of these, you specify the key path of the property upon which
you want to sort the objects, whether this sort will be ascending or descending, and finally, if
you choose, a selector which will be called using the property as arguments to do the compari-
son. If no selector is provided, the default is to use the standard -compare: selector.

In other words, take for example if you have an array of Employee objects, and you wanted to
sort them based on employment date. The property that you would actually be sorting by in
this case would be the employment date property, and you could perform this sort by using
something like the code shown in Listing 13.20.

Listing 13.20

Sorting an array of employees using -sortUsingDescriptors:

NSMutableArray *employees = [...];

NSSortDescriptor *descr =
[NSSortDescriptor sortDescriptorWithKey:@”employmentDate”
 ascending:YES];

NSArray *descriptors = [NSArray arrayWithObject:descr];

[employees sortUsingDescriptors:descriptors];

18_9780470479223-ch13.indd 28918_9780470479223-ch13.indd 289 1/4/11 8:56 PM1/4/11 8:56 PM

290 Using the Foundation Framework

In this example, I’m only using a single descriptor, but you can also sort by multiple criteria by
providing multiple descriptors. The parameter is an array, so you simply put them all into an
NSArray and call the method.

The second of these methods -sortUsingFunction:context: It is for use when you
need to perform your compare by using a function pointer. The function pointer that is passed
as the argument to this method should be of the form NSInteger comparisonFunction
(id obj1, id obj2, void *). Its first two arguments are the two objects being compared.
Its third argument is the context information, which is passed unchanged from the additional
parameter provided to the method. This technique is useful when you need to pass some kind
of additional external information to the comparison. You would do this by passing it as the
contextual information pointer. Listing 13.21 shows an example sorting an array using this
technique.

Listing 13.21

Sorting an array using a function

NSInteger sortByEmploymentDate(id employee1,
 id employee2,
 void *ctx)
{
 return [[employee1 employmentDate]
 compare:[employee2 employmentDate]];
}

NSMutableArray *employees = [...];

[employees sortUsingFunction:sortByEmploymentdate context:nil];

The third technique, using the method -sortUsingSelector: takes a selector object as a
parameter. When used, the array iterates over all the elements of the array calling the given
selector as a comparison method. The selector in question is expected to be implemented as an
object method on the class of all of the elements of the array. It takes as an argument another
element of the array and returns an NSComparisonResult specifying NSOrderedSame,
NSOrderedAscending, or NSOrderedDescending, depending upon whether the
receiver of the method and the past in object are equal, ordered ascending, were ordered
descending relative to each other. Listing 13.22 shows the same employee array sort being
done by using this technique. In this example, I’m showing the Employee class as well, to
demonstrate how you might create the method that’s being called.

18_9780470479223-ch13.indd 29018_9780470479223-ch13.indd 290 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 291

Listing 13.22

Sorting the employee array using -sortUsingSelector:

@interface Employee
{

}
-(NSComparisonResult)compareEmploymentDate:(Employee *)other;
@end

@implementation Employee

-(NSComparisonResult)compareEmploymentDate:(Employee *)other;
{
 return [[self employmentDate] compare:[other employmentDate]];
}

@end

[employees sortUsingSelector:@selector(compareEmploymentDate:)];

Again, each of these methods sorts a mutable array in place. The NSArray class provides
corresponding, non-mutating methods for each of these via the -sortedArrayUsingSort
Descriptors:, -sortedArrayUsingFunction:context:, and -sortedArrayUsingSelector:
methods, respectively.

 N O T E
You can also sort arrays using blocks, which I detail in the next section.

To filter an array, you use the method -filterUsingPredicate:, which takes an
NSPredicate object as a parameter. The NSPredicate object allows you to specify via a
simple query language, conditions to be met for the purposes of filtering the array. You specify
the conditions of the query by using a query string. The query language used with NSPredicate
is similar to but not a direct derivative of SQL. It allows you to specify things such as “first
Name == ‘John’”, or “birthDate >= ‘01/01/2001’”. In each of these cases, the named
property is compared against the value given by using the operation specified, and if it logically
returns true if the object is included in the result set. If it logically returns false, then the object is
filtered.

18_9780470479223-ch13.indd 29118_9780470479223-ch13.indd 291 1/4/11 8:56 PM1/4/11 8:56 PM

292 Using the Foundation Framework

So, to filter the array from the previous examples for all employees that have been at the com-
pany more than 5 years ago, you might do something like Listing 13.23.

Listing 13.23

Filtering an array

NSPredicate *predicate = [NSPredicate
 predicateWithFormat:@”employedForYears >= 5”];

NSArray *seniorEmployees = [employees filterUsingPredicate:predicate];

The assumption here is that you have created an object method on the Employee class that
calculates the number of years employed and it’s looking for all employees for which that
returns 5 or greater.

Using Blocks with Collections
NSArray also has the ability to do transformations using blocks. I showed you this briefly back
in the section about blocks, but for the sake of thoroughness, I’ll discuss it again here. Using the
method -enunerateObjectsUsingBlock:, which takes a block as a parameter and exe-
cutes the block, passing each element of the array to it as the iteration proceeds. The other form
of this method, -enumerateObjectsWithOptions:usingBlock: takes an options
parameter, which allows you to specify how the enumeration will be done. This parameter is a
bitwise or’d value which can be one or both of the flags NSEnumerateConcurrently or
NSEnumerateReverse, which specify that theta enumeration occurs in parallel or in reverse,
respectively. In Chapter 5, I showed you how to iterate over the items in an array by executing a
block. Here, in Listing 13.24, we cut right to the chase and use the -enumerateObjects
UsingBlock: method to perform the same operation.

Listing 13.24

Performing a map operation on the elements of an NSArray

__block NSMutableArray *result = [NSMutableArray array];

void (^theBlock)(id obj, NSUInteger idx, BOOL *stop) =
^{

18_9780470479223-ch13.indd 29218_9780470479223-ch13.indd 292 1/4/11 8:56 PM1/4/11 8:56 PM

 Chapter 13: Working with Collections 293

 [result addObject:transformObj(obj)];
}

[array enumerateObjectsUsingBlock:theBlock];

When this completes, the result array should contain all the elements of the original array but
with whatever transformation the transformObj function is doing.

To do the same, but only over a subset of the array, you can use the method -enumerate
ObjectsAtIndexes:withBlock:. You can also access a subset of the array by using the
method -indexesOfObjectsPassingTest:. This convenient method allows you to pass
a block to which each object will be given. If the block returns YES, then the object’s index will
be included in the returned array, otherwise it will not. This makes filtering a breeze with blocks.

Another method of performing a similar procedure might be to use the object methods
-makeObjectsPerformSelector: or -makeObjectsPerformSelector:with
Object:, which perform an enumeration of the elements of the array and call the given selec-
tor on each object. The disadvantage of this method as opposed to the ones that take blocks is
that the selector has to be defined on the class of the objects in the array. This can be difficult in
some cases, and might even force you to make a category to extend third-party classes for this
purpose.

Summary
Collection classes are a vital part of any standard library. Objective-C, fortunately, has an excel-
lent group of collection classes that make working with groups of objects easy. With NSArray
for ordered collections, NSDictionary for associative collections, and NSSet for unordered
collections, you have all the tools you need.

18_9780470479223-ch13.indd 29318_9780470479223-ch13.indd 293 1/4/11 8:56 PM1/4/11 8:56 PM

18_9780470479223-ch13.indd 29418_9780470479223-ch13.indd 294 1/4/11 8:56 PM1/4/11 8:56 PM

In This Chapter

Using NSValue,
NSNumber, and NSData

Boxing Datatypes for
Use in Collections

Working with
NSNumber, and NSValue

Using NSData and
NSMutableData

As I highlight in Chapter 13, when working with collections,
collections are capable of storing only valid Objective-C
objects. Collections are incapable of storing scalars, struc-

tures, or other arbitrary low-level data. This is an inconvenience,
but one that the designers of the Foundation framework antici-
pated and solved.

In order to store scalars and structures in collections, you need to
use a class wrapper for these values. In other words, a class that
enables you to store the value inside of an object. The Foundation
framework provides three primary classes for this purpose,
NSValue, NSNumber, and NSData.

The NSValue class is the simplest of these classes, providing a low-
level interface for the arbitrary storage of virtually any C datatype.
For example, you can store structures within it, you can store ranges
within it, and so on. Once the data is stored within the NSValue
instance, you can then use the instance of NSValue in a collection
object. Because NSValue is relatively low level, it does not provide
some of the conveniences of higher-level abstractions. Its purpose is
to be flexible but it is limited in its capabilities because it can only
store simple stack-allocated data. NSNumber is a subclass of
NSValue. It provides a higher level abstraction to the NSValue
data encoding system specifically for the purposes of storing num-
bers. It provides numerous factory methods for various scalar types
to make creation and manipulation of the NSNumber objects easier.
Using NSNumber is generally easier than using NSValue directly,
and you should prefer it when possible.

I mentioned that NSValue is capable only of storing simple, stack
allocated data. In fact, it is possible to store references to dynami-
cally allocated data within an NSValue as well. You can use this as
a means to keep track of dynamically allocated data in collections.
However, when doing this, you must also have other code in place
to keep track of the actual data itself so that you can allocate it and
deallocate it. Managing memory manually like this can be inconve-
nient. Fortunately, there is a third class which enables you to wrap

19_9780470479223-ch14.indd 29519_9780470479223-ch14.indd 295 1/4/11 8:57 PM1/4/11 8:57 PM

296 Using the Foundation Framework

arbitrary dynamic data as well. This class is the NSData class. This class provides an object-
oriented interface for a dynamically allocated byte buffer. You can use it to store any arbitrary
chunk of bytes either directly or by copying the bytes from an allocated buffer. You can also use
it to write that data out to disk as well.

Using NSValue and NSNumber
Now that I’ve introduced you to each of these classes, in the next sections, I show you how to
use them. I start with the NSValue and NSNumber classes, and then proceed on to NSData
and NSMutableData.

Wrapping arbitrary datatypes with NSValue
I mentioned before that NSValue is used for storing arbitrary data types. To create an NSValue,
you provide it with a pointer to the value that you want to store, and a C string indicating the
data type. Telling the NSValue instance about the type of the data is important because that
tells it how many bytes it needs to read in order to get all of the data. Fortunately, Objective-C
provides a special directive, @encode() that returns the appropriate encoding for a given type
for your platform. Listing 14.1 shows how to create an NSValue using an arbitrary structure,
passing the address of the structure instance for the pointer to the value, and using the @
encode() directive to find the appropriate datatype.

Listing 14.1

Creating an NSValue for an arbitrary structure

typedef struct
{
 int someMember;
 float someOtherMember;
} MyDataType;

MyDataType item;
item.someMember = 10;
item.someOtherMember = 500.3;
NSValue *boxedStruct = [NSValue value:&item
 withObjCType:@encode(MyDataType)];

19_9780470479223-ch14.indd 29619_9780470479223-ch14.indd 296 1/4/11 8:57 PM1/4/11 8:57 PM

 Chapter 14: Using NSValue, NSNumber, and NSData 297

This technique can be used with any structures that you create or any of the structures pro-
vided by the frameworks. For example, you could just as easily use the exact same code as
above to encode an NSRect or an NSSize, both of which are foundation structures.

NSValue can also store integers, floats, and so on as well although NSNumber is probably a
better choice when dealing with those particular types of values.

You can also store pointers to dynamic data inside an NSValue. To do this, you store the
address of the pointer, as shown in Listing 14.2.

Listing 14.2

Storing pointers to dynamic data in NSValue

char *foo = malloc(1024);

NSValue *boxedPointer = [NSValue value:&foo
 withObjCType:@encode(char **)];

An important thing to understand here is that what you are actually storing is the pointer itself
and not the data. Therefore, you need to make sure that dynamically allocated data is not freed
after storing it in the NSValue.

Wrapping numbers with NSNumber
For a higher-level abstraction when dealing with numbers, such as ints, floats, and the like, the
NSNumber class provides some additional factory methods and accessors that automatically
do the type conversion and determination for you. Using NSNumber is as simple as calling the
appropriate factory method with your value. Listing 14.3 shows a few examples.

Listing 14.3

Creating NSNumbers

int someNumber = 110;
float someFloat = 500.3;
NSNumber *theNumber = [NSNumber numberWithInt:someNumber];
 NSNumber *theFloat = [NSNumber numberWithFloat:someFloat];

19_9780470479223-ch14.indd 29719_9780470479223-ch14.indd 297 1/4/11 8:57 PM1/4/11 8:57 PM

298 Using the Foundation Framework

Doing arithmetic with NSDecimalNumber
Though you can easily get at the underlying value stored inside an NSNumber for the purposes
of mathematical operations, sometimes you may want to just perform simple operations by
using the NSNumber object. For this, Foundation provides the NSDecimalNumber class.

The NSDecimalNumber class is a subclass of NSNumber that provides methods for perform-
ing simple, base-10 arithmetical operations. It has various methods such as -decimalNumber
ByAdding:, -decimalNumberBySubtracting:, -decimalNumberByRaising
ToPower:, and so on. These methods make it easy to use NSArray methods such as -make
ObjectsPerformSelector:withObject: to do math operations on all members of a
collection.

 N O T E
NSDecimalNumber is immutable, so all the math operations reviewed here return their result as a new
NSDecimalNumber.

To see an example of how you might use these methods to give a bonus to all the employees in
an employee dataset, take a look at Listing 14.4.

Listing 14.4

Giving a flat $5000 bonus to all employees

NSArray *employees = ...;
 [employees
makeObjectsPerformSelector:@selector(addToSalary:)
withObject:[NSDecimalNumber numberWithFloat:5000.0]];
 // the implementation of addToSalary: might be this...

 -(void)addToSalary:(NSDecimalNumber *)inRaise
 {
 self.salary = [self.salary decimalNumberByAdding:inRaise];
 }

Because NSDecimalNumber is capable of storing very large values (up to 38 digits x 10^+/-
128) it can also be convenient for some very large number calculations, however, using the
C-level scalar values directly, rather than through NSDecimalNumber will almost always be
faster, so choose this method with care. Generally speaking, this is for use with collections
exclusively.

19_9780470479223-ch14.indd 29819_9780470479223-ch14.indd 298 1/4/11 8:57 PM1/4/11 8:57 PM

 Chapter 14: Using NSValue, NSNumber, and NSData 299

Using NSData and NSMutableData
When working with chunks of binary data, foundation provides you with the NSData and
NSMutableData classes to be used for an object-oriented interface in manipulating that data.
These classes can manage the allocation and deallocation of buffers and also provide an
object wrapper for the purposes of storing the data in collection classes. They also provide an
interface for writing data to files and transmitting data through socket communication.

Creating NSData objects
You can create NSData objects either by using an existing low-level data structure that you
have previously allocated or by copying data from any of the other types of Objective-C objects
that support the NSCopying protocol.

To create an NSData object using raw bytes from a C data structure, you use the factory
method +dataWithBytes:length:, which takes a pointer to a data buffer and then copies
the bytes from that data buffer into the NSData object. If you prefer to access the bytes inside
the buffer directly, without copying them, you can use the factory method +dataWithBytes
NoCopy:length:, which also constructs an NSData object but without copying the data,
thus resulting in an NSData object with a buffer directly accessing the raw memory that you
provide. In this case, the bytes provided must have been allocated by using malloc because
the NSData object when released will free the bytes using the free function. Because
NSMutableData allows you to make modifications to the data within it, doing so while
pointing to an externally allocated buffer would lead to problems, therefore, when using
NSMutableData, the object will copy the bytes regardless of whether you specify whether
or not to copy them. Listing 14.5 shows an example of creating an NSData object using a
preallocated buffer of bytes.

Listing 14.5

Creating an NSData object

char *buf = malloc(1024);

NSData *data = [NSData dataWithBytes:buf length:1024];

One of the more common uses for NSData objects is to access the bytes stored in files or
resources on the Internet. You can easily create an NSData object with the contents of a file by
using the factory method +dataWithContentsOfFile:, which takes the path to the file

19_9780470479223-ch14.indd 29919_9780470479223-ch14.indd 299 1/4/11 8:57 PM1/4/11 8:57 PM

300 Using the Foundation Framework

that you want to read as its parameter. To do the same thing but with a resource from the
Internet, you use the factory method +dataWithContentsOfURL:. This method will access
the Internet using the provided protocol from the provided URL and download the resource
and make the raw data of that resource available as the raw data of the NSData object. As
usual, as in most cases with these kinds of convenience methods, the download process will
block the current thread until it completes so use this method with caution. NSData also pro-
vides methods for writing data to disk using the methods -writeToFile:atomically:
and -writeToURL:atomically:. The latter of these methods only supports writing to
local file URLs. Each of these takes as a secondary parameter one which specifies whether to
write the file atomically. In cases where the data that you are writing is especially large, it may
be possible for your application to terminate in the middle of writing the data. This can result
in a corrupted file on disk. The atomic parameter specifies that the file will first be written to a
scratch file and when the file operation is complete the scratch file will then be copied over to
the final location. By using this flag, you know that your original file will only be overwritten if
the replacement file has been able to be completely written successfully.

Accessing the raw bytes in an NSData object
The NSMutableSet class provides an object-oriented interface for an NSData object contain-
ing bytes that you want to be able to manipulate. You can add bytes to it by using the methods
-appendBytes:length: and -apendData:; you can replace bytes using the method -
replaceBytesInRange:withBytes:; and you can also truncate or expand the NSMutable
Data buffer by using the method -setLength:. If you want to simply zero out a particular por-
tion of the buffer (setting it’s bytes to 0’s) you can use the method -resetBytesInRange:.
This provides you with all the tools you need to manipulate raw data from files and structures at
will. Listing 14.6 shows how you can use this capability to read a file from disk, modify specific
bytes, and then write it back out to disk. In this case, the file in question is a legacy game data save
file, which uses a hard-coded file format wherein particular values are stored at particular loca-
tions in the data.

Listing 14.6

Modifying the raw bytes of a game save file

int goldOffset = 617; // at location 617 in the file
int goldLength = 4; // 4 bytes are used for storing the gold

 NSRange goldRange = NSMakeRange(goldOffset, goldLength);
 NSMutableData *gameData = [NSMutableData dataWithContentsOfFile:@”...”];

 [gameData replaceBytesInRange:goldRange withBytes:newGoldValue]; [gameData
writeToFile:@”...” atomically:YES];

19_9780470479223-ch14.indd 30019_9780470479223-ch14.indd 300 1/4/11 8:57 PM1/4/11 8:57 PM

 Chapter 14: Using NSValue, NSNumber, and NSData 301

As you can see, NSData makes a very convenient low-level interface for accessing raw data. It
also provides a convenient wrapper for storing that data inside collection classes as well, just
like with NSNumber and NSValue.

Summary
The purpose of this chapter was to introduce you to a few classes that make working with non-
standard Objective-C data easier. They are particularly convenient when working with collec-
tions, which as you saw in Chapter 13 work only with Objective-C objects. These classes provide
a very simple wrapper for that low level data so that you can then use them in collection classes
and leverage the object-oriented capabilities of Objective-C with them. We live in a world filled
with edge conditions and legacy data. Objective-C provides one of the cleanest, most inte-
grated interfaces for that legacy data of any language out there. Its C language roots make it
especially well suited to this task.

19_9780470479223-ch14.indd 30119_9780470479223-ch14.indd 301 1/4/11 8:57 PM1/4/11 8:57 PM

19_9780470479223-ch14.indd 30219_9780470479223-ch14.indd 302 1/4/11 8:57 PM1/4/11 8:57 PM

In This Chapter

Working with Times
and Dates

Manipulating dates with
NSDate and NSCalendar

Working with time
intervals

Localizing dates

Working with dates on computers is traditionally a complex
proposition. Dates, despite appearances, are not nearly as
simple as they might seem. They’re filled with exceptions

and edge conditions, such as leap years, calendar changes, and so
on. A comprehensive consideration of the subject reveals that even
taking into consideration these exceptions, there are still issues sur-
rounding questions of how far back your calendar should go and
what to do with dates that fall before that boundary, and so on.
The CE/BCE standard which we are accustomed to is really a fairly
ineffective kludge.

If you need more proof of how difficult working with dates can be,
recall the Y2K problem that the computing industry experienced at
the beginning of this century. Naïve programmers had previously
thought that they could represent the year in dates using only two
digits. When the century mark rolled over, millions of lines of code
had to be rewritten.

Even now, we face future problems with dates due to the fact that
most computers store their dates using 32-bit integers as a count
of seconds since January 1, 1970. Unfortunately, this counter will
roll over sometime in the year 2032. Although that may seem far
away, I remind you that programmers said the same things about
the year 2000 when they were writing their two-digit year han-
dling code.

Even if you ignore some of these larger questions, there is still the
very practical point of how to handle dates and times properly in
your application. For example, how do you handle determining the
duration of a week in hours. Your first response to that maybe sim-
ply to multiply the number of hours in a day by seven. This would
be a typical, albeit naïve response. But what if one of those days is
the day upon which we change from daylight savings time to stan-
dard time, or vice versa? Now your calculation has suddenly
become incorrect.

These kinds of problems are very common in software develop-
ment and have resulted in some very high profile bugs that cost
millions of dollars in public relations damage and problems for cus-
tomers. Don’t be that programmer.

20_9780470479223-ch15.indd 30320_9780470479223-ch15.indd 303 1/4/11 8:57 PM1/4/11 8:57 PM

304 Using the Foundation Framework

In this chapter, I introduce you to the NSDate class, which is used for constructing and manipu-
lating data objects within your applications. I also introduce you to the NSCalendar class that
allows you to specify the rules that are used in calculating dates. Finally, I’m going to introduce
you to the NSDateFormatter class, which allows you to convert a date value into something
that you can display to the user. These three classes, when used together, form an effective tool
kit for all of your date handling needs. Using them is the preferred method of manipulating
dates in Objective-C applications.

Constructing Dates
NSDate is the class that encapsulates a given instant in time. It includes both the date and
time. It can be used to represent the current time, by constructing a new NSDate object by
using the class method +date, or you can construct an NSDate object representing any time in
the past or future by constructing one using an NSTimeInterval. Listing 15.1 shows how to
create an NSDate object representing the current time. It actually shows two different meth-
ods, the first using the +date factory method and the second using the standard initializer.

Listing 15.1

Constructing an NSDate object

NSDate *now = [NSDate date];
NSDate *alsoNow = [[NSDate alloc] init];

Working with Time Intervals
An NSTimeInterval represents a slice of time in seconds. By using it, you can construct
dates relative to other dates. For example, you can construct an NSDate object which repre-
sents “30 minutes from now” by constructing an NSDate object using the initializer -init
WithTimeIntervalSinceNow: and passing the number of seconds in 30 minutes as the
parameter.

When representing time measurements in the future, the NSTimeInterval from now to that
future time is represented as a positive integer. In other words, five seconds in the future is rep-
resented as the NSTimeInterval 5. Similarly, to represent a time in the past, you use a nega-
tive integer as your NSTimeInterval. So, to represent five seconds ago in the past you
would create an NSTimeInterval with a value of -5.You can manipulate and create new
dates relative to any other date by adding positive or negative NSTimeIntervals to that
date. This is shown in Listing 15.2.

20_9780470479223-ch15.indd 30420_9780470479223-ch15.indd 304 1/4/11 8:57 PM1/4/11 8:57 PM

 Chapter 15: Working with Times and Dates 305

Listing 15.2

Creating dates with time intervals

NSDate *now = [NSDate date];
NSDate *anHourAgo = [now dateByAddingTimeInterval:-3600];
NSDate *anHourFromNow = [now dateByAddingTimeInterval:3600];

Comparing dates
You can compare dates to determine whether one or the other is earlier, later, equal, or to
determine how much of a time interval exists between two dates.

To find out the time interval between two dates, you use the method -timeIntervalSin-
ceDate:. You call this method on one of your dates, passing another day as the parameter.
This method returns the time interval between the two dates. Just like when constructing a new
NSDate object, the NSTimeInterval that is returned will be positive if the receiver of the
call is after the given parameter and negative if the receiver is before the parameter. There is
also the shortcut method -timeIntervalSinceNow, which simply gives you the time inter-
val between the receiver and the current time. Listing 15.3 shows some examples of these
methods in use.

Listing 15.3

Calculating the time interval between different dates

NSDate *now = [NSDate date];
NSDate *anHourAgo = [now dateByAddingTimeInterval:-3600];
NSTimeInterval timeBetween = [now timeIntervalSinceDate:anHourAgo]; // 3600

Additionally, the NSDate class also provides the methods -laterDate:, -earlierDate:,
and compare: for the purposes of comparing dates. In the case of the methods -laterDate:
and -earlierDate:, these methods return the later or earlier, respectively, date of the
two dates being compared. Meanwhile, the -compare: method returns a standard
NSComparisonResult, and is useful when sorting dates. Listing 15.4 shows these methods
in action.

20_9780470479223-ch15.indd 30520_9780470479223-ch15.indd 305 1/4/11 8:57 PM1/4/11 8:57 PM

306 Using the Foundation Framework

Listing 15.4

Comparing dates

NSDate *now = [NSDate date];
NSDate *anHourAgo = [now dateByAddingTimeInterval:-3600];
assert([now laterDate:anHourAgo] == now); // true
assert([now earlierDate:anHourAgo] == anHourAgo); // true
assert([now compare:anHourAgo] == NSOrderedDescending); // true

Using NSCalendar
Although it can be useful to construct an NSDate for a specific instant in time using an NSTime
Interval, more often you will want to construct an NSDate for a specific day or a relative time
based on calendar representations of time rather than the number of seconds. Not only is this eas-
ier to think of conceptually, it is also often more accurate and less prone to error. These are the
cases where the edge conditions in calendar manipulation are most likely to bite you.

The Foundation framework provides the NSCalendar class for exactly this purpose. It pro-
vides a mechanism for specifying dates using more natural date components, such as day,
month, week, and so on. It does this not only for the Gregorian calendar as we use it today, but
also for specialized calendars, such as Hebrew calendars, Islamic calendars, Buddhist calendars,
and so on. In this way, it also provides a powerful localization tool for delivering a rich localized
experience for your users.

To construct a new NSDate object for a given day of a given month, you first construct an
NSDateComponents object, and use it to set whatever parameters you want to include. You
then construct an NSCalendar for the calendar in which you are trying to construct the date.
Using these two together, you can then create the NSDate object representing the day you’re
looking for. Listing 15.5 shows how to do this.

Listing 15.5

Constructing an NSDate using NSDateComponents and NSCalendar

NSDateComponents *components = [[NSDateComponents alloc] init];
[components setMonth:4];
[components setDay:13];
[components setYear:2010];

NSCalendar *currentCalendar = [NSCalendar currentCalendar];
NSDate *date = [currentCalendar dateFromComponents]; // 04/13/2010

20_9780470479223-ch15.indd 30620_9780470479223-ch15.indd 306 1/4/11 8:57 PM1/4/11 8:57 PM

 Chapter 15: Working with Times and Dates 307

Similarly, if you want to construct a date representing “One week ago” you can do so using
something like Listing 15.6.

Listing 15.6

Working with relative dates

NSCalendar *calendar = [NSCalendar currentCalendar];
NSDateComponents *components = [calendar components:(NSYearCalendarUnit |
 NSMonthCalendarUnit |
 NSDayCalendarUnit)
 fromDate:today];
[components setWeek:([components week] - 1)];
NSDate *oneWeekAgo = [calendar dateFromComponents:components];

You can even convert a given date from one calendar to another by passing an NSDate object
created in one NSCalendar to another. Listing 15.7 shows how this is done.

Listing 15.7

Converting dates between calendars

NSDate *today = [NSDate date];
NSCalendar *calendar = [NSCalendar currentCalendar];
NSDateComponents *components = [calendar components:(NSYearCalendarUnit |
 NSMonthCalendarUnit |
 NSDayCalendarUnit)
 fromDate:today];
NSCalendar *japaneseCalendar =
[[NSCalendar alloc] initWithCalendarIdentifier:NSJapaneseCalendar];
NSDate *inJapan = [calendar dateFromComponents:components];

Using these techniques, the dates that you construct will take into account all of the idiosyncra-
sies of the calendar. For example, it will handle things like leap year and daylight savings time
automatically for you.

Working with time zones
One other fairly common item when working with dates and times is the matter of time zones.
Foundation provides the NSTimeZone for the purposes of enabling you to specify the time

20_9780470479223-ch15.indd 30720_9780470479223-ch15.indd 307 1/4/11 8:57 PM1/4/11 8:57 PM

308 Using the Foundation Framework

zone in a given address calendar object. Just like specifying different calendar types, the time
zone of the given NSCalendar can affect the calculated time of a given instant compared to
the same time in another region. In other words, this moment in time one week ago in a differ-
ent time zone would actually be a different time in terms of hours than the same time in your
current time zone.

NSTimeZone also provides a list of all the time zones it knows about by using the class
method +knownTimeZoneNames. You can use this class method to present a list of time
zones to the user.

You create an NSTimeZone object by specifying the time zone name as a parameter to the fac-
tory method +timeZoneWithName: or by specifying the abbreviation of that time zone by
using the factory method +timeZoneWithAbbreviation:. These are shown in Listing 15.8.

Listing 15.8

Creating NSTimeZone objects

NSTimeZone *est = [NSTimeZone timeZoneWithAbbreviation:@”PST”];

NSTimeZone *azZone = [NSTimeZone timeZoneWithName:@”America/Arizona/Phoenix”];

After you have constructed these objects, you can use them in conjunction with your
NSCalendar object. If you do not explicitly set the time zone on your calendar, it uses the sys-
tem’s default time zone. But if you want your times to be in a particular time zone, you can set
the time zone on the NSCalendar, and then any dates you get from that calendar will be
adjusted accordingly.

Using NSDateFormatter
Most of the time, when working with dates, you wind up representing those dates to the user as
a string. Just like when working with dates themselves, numerous edge conditions need to be
accounted for when doing date to string conversions. Aside from simple standard localization
issues, such as getting the month and day names correct for the users region, consider that
there are different formats at different dates can be represented using. For example, a day of
the week can be represented as its full name, Tuesday, as an abbreviated version, Tue, or just a
letter T. Months are even more complicated. They can be represented as a full name,
September, an abbreviation, Sept. or a number, 9. In the U.S. dates are typically represented as
MM/DD/YYYY, whereas in Europe, they are represented as DD/MM/YYYY. As you can see, the
potential variations are infinite.

20_9780470479223-ch15.indd 30820_9780470479223-ch15.indd 308 1/4/11 8:57 PM1/4/11 8:57 PM

 Chapter 15: Working with Times and Dates 309

To handle all of the complications in formatting dates, Foundation provides you with the
NSDateFormatter class. This class allows you to specify the type of behavior you require and
then converts the given NSDate object into a string representation of that date matching the
behavior you requested. For example, to display a date using the short, numeric-only style, such
as 09/20/10, you would use the NSDateFormatterShortStyle, as shown in Listing 15.9.

Listing 15.9

Formatting the date for short numerical format

NSDate *date = [NSDate date];
NSDateFormatter *f = [[NSDateFormatter alloc] init];
[f setDateStyle:NSDateFormatterShortStyle];
NSString *dateStr = [f stringFromDate:date]; // yields MM/DD/YY

This goes both ways, in that you can also use an NSDateFormatter to convert a natural lan-
guage string representing a given date to an actual NSDate object. This example is shown in
Listing 15.10.

Listing 15.10

Converting a natural language string into an NSDate object

NSDateFormatter *f = [[NSDateFormatter alloc] init];
[f setDateStyle:NSDateFormatterShortStyle];
NSDate *date = [f dateFromString:@”02/25/10”];

Constructing an NSDateFormatter for virtually any date format that you need to work with
is impossible, but typically you will use one of the standard sets of formatters that are provided
by the system.

Summary
Working with dates is a complex subject filled with details that can trap the unwary developer.
Over the years, Apple and others have put a lot of thought and care into the NSDate and
NSCalendar classes to make dates less of a problem for developers. You should avoid manip-
ulating dates manually, and instead use these classes. Doing so saves time.

20_9780470479223-ch15.indd 30920_9780470479223-ch15.indd 309 1/4/11 8:57 PM1/4/11 8:57 PM

20_9780470479223-ch15.indd 31020_9780470479223-ch15.indd 310 1/4/11 8:57 PM1/4/11 8:57 PM

In This Part

Exploring
Advanced TopicsIV

IV
Chapter 16

Multiprocessing with
Threads

Chapter 17
Objective-C Design

Patterns

Chapter 18
Reading and Writing

Data with NSCoder

Chapter 19
Using Objective-C on

Other Platforms

21_9780470479223-pp04.indd 31121_9780470479223-pp04.indd 311 1/4/11 8:57 PM1/4/11 8:57 PM

21_9780470479223-pp04.indd 31221_9780470479223-pp04.indd 312 1/4/11 8:57 PM1/4/11 8:57 PM

In This Chapter

Multiprocessing
with Threads

Understanding the
causes of thread errors

Learning how to prevent
thread errors with locks

Using @synchronize

Creating threads with
NSThread

Using NSOperation and
NSOperationQueue

Threads. Probably no other computing subject strikes more
fear and trepidation into the hearts of experienced program-
mers. It should. Threads cause bugs that are difficult to track

down, difficult to reproduce, and maddeningly frustrating to fix. At
the same time, however, they promise to unlock more of our multi-
core computing potential than any other modern software tech-
nology. This dual nature makes them a complex subject worthy of
an entire chapter dedicated to handling them properly.

Every program has at least one thread, usually called the main
thread. The main thread begins execution in your main function
and then is responsible for executing the rest of your application
code unless you explicitly create another thread.

Conceptually, you can think of a thread as a single line of execution
through your application by which instructions are executed
sequentially. When you create another thread, you actually have two
separate threads of execution, running through your application in
parallel. If your application is running on a single core, single CPU
machine, your threads may appear to be running simultaneously,
however, they are actually given different time slices on the CPU. On
the other hand, if your application is running on a multicore, or
multi-CPU machine, then it is entirely possible for two threads in
your application to actually be executing simultaneously.

When two threads are executing simultaneously in this manner, it
is possible that the two threads may both try to access the same
chunk of memory at the same time. When this occurs, the exact
behavior is undefined and as a result, this can cause an error in
your program. This circumstance is called an unsafe thread condi-
tion. These circumstances only occur when the code which is exe-
cuting is written without thread safety in mind.

To prevent these kinds of circumstances, you have to prevent one
thread from accessing the same memory or data that another
thread is accessing at the same time. This is called making your
code thread safe. It is vitally important that whenever you use
threads you make sure that all of the code that you write is thread

22_9780470479223-ch16.indd 31322_9780470479223-ch16.indd 313 1/4/11 8:58 PM1/4/11 8:58 PM

314 Exploring Advanced Topics

safe. Debugging problems in threads is extremely difficult because often the bug only occurs in
very specific very narrow race conditions. This means that a bug might appear on a particular
user’s computer because of the speed and configuration of their computer and never show
itself on your computer. Additionally, because the debugger specifically can stop your applica-
tion at particular points and because it narrows the execution of your application down to a
specific thread, threading bugs often won’t show up in a debugger at all. It is because of these
issues that threading bugs are sometimes known as “heisenbugs”. They get this nickname
because you know that they occur, but when you try to observe them they disappear.

Many developers see all of the wonderful thread related tools that they have available in
Objective-C, and their first reaction is to think that somehow threads are going to solve all of
their design problems. It can be very tempting to fire off threads into the background for vari-
ous tasks, leaving your main thread free to handle user interface interaction; but doing this is a
bad idea. Even in cases like network code, where other languages might encourage you to use
threads to prevent blocking I/O, 99 percent of the time, when it comes to Objective-C, using a
thread is going to be the wrong tool for the job. Using threads is a technique that should be
reserved for narrow requirements, for example situations where you have CPU intensive calcu-
lations. Even in these cases, properly written, thread-safe code can be in danger of being
blocked by shared resources such as GUI interaction. These problems can cause multithreaded
code to, in some cases, actually be slower than the single-threaded alternative.

Objective-C provides a variety of tools for creating and manipulating threads as well as for writ-
ing thread safe code. In this chapter, I review some of the key technologies that are required for
writing thread-safe code, and then introduce you to some of the classes that make creating and
using threads in Objective-C simple.

 C A U T I O N
One note of warning, the Cocoa UI frameworks (UIKit and AppKit) are not, in fact, thread safe. Any interaction with any
GUI element in your application at any time must always be done on the main thread. If you must update a GUI ele-
ment from a background thread, you can dispatch a method to be called on the main thread by using the NSObject
method -performSelectorOnMainThread:withObject:... methods to do so.

 C A U T I O N
A common bug which some programmers encounter is in the use of notifications using NSNotificationCenter.
Notifications are sent on the thread upon which they are posted. This means that if you post a notification from a back-
ground thread that then updates a GUI component, you are in danger of a thread safety issue. Therefore, take care when
working with notifications in a threaded application.

Synchronizing Code
The key to writing thread-safe code is to remember that no thread is ever safe reading or writ-
ing a particular chunk of memory that might simultaneously get written to by another thread. If
the memory that is being read or written to is also simultaneously changing from underneath
the thread, the behavior of the application is undefined. Anything could happen. So the key

22_9780470479223-ch16.indd 31422_9780470479223-ch16.indd 314 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 16: Multiprocessing with Threads 315

then is to ensure that when you are writing to a particular block of memory or variable that no
other thread will be able to read from it until you are finished.

The most common way to prevent another thread from accessing memory that you’re writing
to while you’re writing it is the use of a mutually exclusive lock, or mutex.

Using Locks
A mutually exclusive lock, or mutex, is an object which prevents the simultaneous access of a
common resource (usually memory). It’s called a mutually exclusive lock because it locks out
access to the resource and allows exclusive access to only one thread at a time.

The Objective-C foundation framework provides two main types of mutually exclusive locks.
The first, and simplest, is the NSLock class. The NSLock class represents a simple mutex that
you can instantiate and then lock prior to writing to a particular variable or memory location.
Other threads, which want to write to or read from the same variable, should attempt to lock
the same NSLock object before initiating their data access. Attempting to lock the NSLock
blocks the thread until the lock is unlocked and can be locked again. In this way, the attempt to
lock the NSLock will prevent access to the data until the first thread is finished with its access.

To create an instance of an NSLock, you simply instantiate one using the standard alloc/init
pattern. Listing 16.1 shows an example of how you do this. Typically, you hold the instance of
your NSLock as a member variable of whatever class is accessing the data. It is important that
the lock be maintained and available as a variable that both threads can access so that they can
acquire the lock accordingly.

Listing 16.1

Creating an instance of an NSLock

-(id)init
{
 if((self = [super init]))
 {
 lock = [[NSLock alloc] init];
 }
 return self;
}

Typically, you would create your instance of NSLock as I’ve shown here in the initializer of the
class. Then, within the accessors of the data that you want to protect, you would simply acquire
a lock on the NSLock instance before attempting to access the data. Listing 16.2 shows an
example of some accessors written using this technique.

22_9780470479223-ch16.indd 31522_9780470479223-ch16.indd 315 1/4/11 8:58 PM1/4/11 8:58 PM

316 Exploring Advanced Topics

Listing 16.2

-(void)setSomeVar:(id)inValue
{
 [inValue retain];
 [lock lock];
 id originalValue = someVar;
 someVar = inValue;
 [lock unlock];
 [originalValue release];
}

-(id)someVar
{
 id ret = nil;
 [lock lock];
 ret = [someVar retain];
 [lock unlock];
 return [ret autorelease];
}

Remember that attempting to lock an instance of NSLock, which is already locked results in
your thread blocking until the lock can be acquired. If this presents a problem, NSLock pro-
vides two convenience methods for you to help. The first is the -tryLock method. This
method attempts to acquire a lock, but if it cannot, it immediately returns with a result of NO.
If it is able to acquire the lock, it returns a result of YES. This can be convenient to use in cases
where you may want to attempt to acquire a lock before doing something, but if you can’t
acquire the lock, you can perform some other operation while waiting to attempt again.

The second convenience method that NSLock provides is the -lockBeforeDate: method.
Just like the -tryLock method, this one also returns a Boolean, yes or no, depending on
whether or not he was able to lock the instance of NSLock. In this case, however, this method
will block for a period of time until the date specified. When this method expires, if it has not
been able to achieve the lock, it will return NO.

The biggest problem with NSLock is that if you mistakenly attempt to lock a lock already
locked by the thread from which you are attempting to lock it again, this results in what’s
known as “deadlock.” Because the act of attempting to lock the lock will block the current
thread, you can wind up in a situation in which you are waiting for a lock to be unlocked but it
will never get unlocked because the thread responsible for unlocking it is the thread which is
waiting for it to be unlocked.This may sound incredibly contorted and complex, but this does in
fact happen in complex applications.

22_9780470479223-ch16.indd 31622_9780470479223-ch16.indd 316 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 16: Multiprocessing with Threads 317

To solve this problem, there is another kind of lock called NSRecursiveLock. This lock keeps
track of the thread which has locked it, and if that thread attempts to lock it again, it simply
returns immediately. You do not need to be concerned about accessing the data which you are
yourself locking from your existing thread. Therefore, attempting to lock a lock which you
already have a lock on doesn’t make any sense. Using an NSRecursiveLock in these cases
resolves this problem.

Using the @synchronize keyword
Using locks is a simple and efficient way to ensure that your code is thread safe. However, you
may find, after you’ve written a certain amount of NSLock based code, certain patterns begin
to emerge.

The first pattern is that you often want to lock access to specific variables, or all member vari-
ables of a particular object, and so you have instances of locks that are associated with these
specific variables. Often, you have a lock that uses a member of a given class as its lock object.
You might lock this lock whenever you need to access any of the data in that class. Alternatively,
you might have particular locks associated with particular variables, and you want to make sure
that you lock those locks whenever those particular variables are accessed. In other words, you
are trying to protect the coupling between the data. Ideally, you’d like to have some kind of lan-
guage construct that enabled you to express this relationship in your code.

The second pattern that tends to emerge when working with thread locks is the fact that it is
easy to forget to unlock your locks. When this occurs, you wind up with deadlock situations that
can really ruin your day. This can be especially problematic when exceptions are introduced,
causing situations where normal execution of the call stack might be interrupted. Because of
these problems, Objective-C introduced a built-in language directive called @synchronized.
This directive provides a built in low-level mutually exclusive lock mechanism which also
includes specific scoping and variable parameters. What this means is that the @synchronized
directive gives you the ability to specify a lock for a specific variable and to specify that lock
exists for a particular scope of code. Listing 16.3 shows an example of the @synchronized
directive in use.

Listing 16.3

Using @synchronized

-(void)setSomeVar:(id)inValue
{
 [inValue retain];
 @synchronized(someVar)
 {

continued

22_9780470479223-ch16.indd 31722_9780470479223-ch16.indd 317 1/4/11 8:58 PM1/4/11 8:58 PM

318 Exploring Advanced Topics

Listing 16.3 (continued)

 id originalValue = someVar;
 someVar = inValue;
 [originalValue release];
 }
}

As you can see, the @synchronized directive takes a single parameter, specifying the vari-
able upon which the lock is intended. Additionally, it takes a block of code, specified within
curly braces, that specifies the scope within which the lock will be locked. Essentially, you can
think of this as a scoped lock. The lock exists only within the scope of the code bracketed within
the curly braces.

Often, the @synchronized directive is used with the self variable to specify that an entire
object is locked within the scope of the @synchronized block. Listing 16.4 is an example of
this.

Listing 16.4

Using self as the variable to be synchronized.

-(void)setSomeVar:(id)inValue
{
 [inValue retain];
 @synchronized(self)
 {
 id originalValue = someVar;
 someVar = inValue;
 [originalValue release];
 }
}

One nice feature about @synchronized is that, because it specifies the scope of the lock, if
anything, including an exception, causes it to exit that scope, the lock is released.

Using @synchronized rather than NSLock or NSRecursiveLock is considered to be the
more modern and more correct form of ensuring thread safety. When possible, you should use
this technique in your applications.

22_9780470479223-ch16.indd 31822_9780470479223-ch16.indd 318 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 16: Multiprocessing with Threads 319

 N O T E
The immutable Foundation classes, such as NSString, NSArray, NSDictionary, and NSSet, are natu-
rally thread safe because they cannot be modified once created. However, the variable you store them in is not, and
therefore should be protected with a lock if you will be modifying it.

Understanding atomicity
Another tool available to you for ensuring that your code is thread safe relates to the use of
properties. The atomic property flag specifies that no matter how many threads may be access-
ing a given property, setting or getting its value, you’ll always get a “whole” value, versus a par-
tial value. Essentially, it ensures that the accessor created by the @synthesize directive for
your property utilizes an @synchronized(self) block within the generated accessor prior
to assignment or retrieval of the value. When you specify the nonatomic flag, no such
@synchronized block is used.

By specifying the atomic flag (which is the default), you are specifying that the property acces-
sor itself is thread safe. Which is to say, if two threads are simultaneously accessing that particu-
lar member variable through its property accessors, the operations will be thread safe.
However, it does not ensure thread safety across your entire object or across subsequent calls
to multiple different accessors on the same object. To do this, you would need to implement
some form of object-wide lock.

Using NSThread
There are several different ways of creating new threads in Objective-C. The first of these is
using the NSThread object.

Creating threads
To use the NSThread class to create a thread, you can either use the factory method +detach
NewThreadSelector:toTarget:withObject:, or you can use the standard initializer,
-initWithTarget:selector:object:. In the case of the former method, the thread will
be created and launched running the code provided by the selector and target. In the case of the
latter method, the thread will be initialized but won’t actually be launched until you call the
-start method. Listing 16.5 shows an example of creating a thread using the factory method.

Listing 16.5

Creating a new thread

[NSThread detachNewThreadSelector:@selector(work:)
 toTarget:self withObject:someData];

22_9780470479223-ch16.indd 31922_9780470479223-ch16.indd 319 1/4/11 8:58 PM1/4/11 8:58 PM

320 Exploring Advanced Topics

In this case, the selector that we are calling is the -work: method which is defined on the cur-
rent object from where this method is being called (in other words self). The -work: method
takes one argument. We provide this argument with the someData parameter. What this code
will actually do is create a new thread, in that thread will then call the -work: method on self,
passing the someData parameter to it. Once the thread is launched, the method returns.

Manipulating Running Threads
After a thread has been created and detached, it will continue to run until the selector used to
launch the thread exits. If you need to have control over stopping the thread, you should typi-
cally include a check inside the run loop of the selector for some variable that you will set in
your main thread. In other words, if you take for example a case where you want to have some
job running continually in the background until the user pushes a stop button, you need to
have some variable that can be set on the foreground thread and checked in the background
thread. An example of this is shown in Listing 16.6.

Listing 16.6

A typical background thread run loop

-(void)work:(NSDictionary *)somData
{
 while([self continueRunning])
 {
 // do some work...

 [self doSomethingWith:someData];
 }
}

In this particular case, this is a relatively brute force technique. There’s nothing occurring out-
side of this method, and nothing tricky going on with the run loop.

There are some rare cases where you may want to allow the run loop of the current thread to
actually get some processing time inside your thread. For example, some classes, such as
NSURLConnection, can be scheduled to run on the current run loop rather than launching
their own threads.

To make sure that these classes and methods get appropriate time on the run loop, you need to
make sure that you give the run loop an opportunity to run inside your thread run loop. Listing

22_9780470479223-ch16.indd 32022_9780470479223-ch16.indd 320 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 16: Multiprocessing with Threads 321

16.7 shows another example of a background thread run loop that is actually also giving the
current threads run loop an opportunity to run if there is anything that needs to be done.

Listing 16.7

A run loop which also allows the current thread run loop to run

-(void)work:(NSDictionary *)somData
{
 while([self continueRunning])
 {
 // do some work...

 [self doSomethingWith:someData];
 [[NSRunLoop currentRunLoop] runUntilDate[NSDate date]];
 }
}

You don’t have to give it a lot of time to run, you simply have to say runUntilDate, and pass
the current date. If anything needs to be processed, this will give it an opportunity to do so.
Specifying a later date would only cause the current thread to block at that location until that
date with the run loop running in the background. If nothing needed to be done on the current
run loop, then it would do nothing but sleep.

 N O T E
The assumption I make in Listings 16.6 and 16.7 is that the continueRunning property has been declared to be
atomic. This insures thread safety for setting and retrieving the value in this thread and the main thread.

Accessing the main thread
I mention previously that the Cocoa GUI frameworks are not thread safe. If you need to access
any GUI elements from your background thread, you must do it through the main thread. It
cannot be done on your background thread. Obviously, this would be a huge limitation if you
couldn’t access the main thread from your background thread. Fortunately, Objective-C pro-
vides methods that allow you to access the main thread from your background thread very easily.

If you can imagine that the work that we’re doing in our background thread needs to compute
some kind of value and then update a GUI component to display that value as it’s being

22_9780470479223-ch16.indd 32122_9780470479223-ch16.indd 321 1/4/11 8:58 PM1/4/11 8:58 PM

322 Exploring Advanced Topics

calculated. To do this, from your background thread you simply use the NSObject method
-performSelectorOnMainThread:withObject:waitUntilDone: This method
takes three parameters. The first is the name of the selector to call. This selector will be called on
whatever object the -performSelector method is being called on. The second parameter is
an optional object that will be passed to the method that’s called. Finally, the third parameter
specifies whether you want the current thread to block until the method that you’re calling on
the main thread has completed. Listing 16.8 shows an example of this method in action.

Listing 16.8

Updating a GUI element from a background thread

-(void)doSomethingWith:(NSDictionary *)someData
{
 NSValue *calculatedValue =
 [someObject calculateValueFromData:someData];
 [self performSectorOnMainThread:@selector(updateGui:)
 withObject:calculatedValue
 waitUntilDone:NO];
}

Crossing threads using perform selector
In addition to causing the main thread to perform certain actions within its own context, there
can be cases where you need to communicate from the main thread to your background
threads as well. Just like when working with updating GUI components or otherwise communi-
cating with the main thread, NSObject also provides methods for performing selectors on a
specific background thread. The method you use for this is -performSelector:onThread
:waitIntilDone: This works the same way as the previous method, except that instead of
executing the selector on the main thread, it executes the selector on the provided thread.

Using NSOperation and NSOperationQueue
NSThread is a powerful class and it gives you a great way to create and manage threads at a
low level. However, when it comes to innovation, NSThread is essentially using the same tech-
nology that has been used for creating threads for the last 40 years. Recently, Apple added
some new threading capabilities to Objective-C.

22_9780470479223-ch16.indd 32222_9780470479223-ch16.indd 322 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 16: Multiprocessing with Threads 323

Managing threads in this way can be difficult and error prone. The most complicated aspect of
managing threads manually is the fact that the ideal number of threads for your application var-
ies depending on how many other system threads are currently running as well as how many
cores exist on the machine you’re running on. In an ideal world, you want to spawn just the
right amount of threads to take advantage of 100 percent of your CPU resources. Knowing how
many threads would achieve this goal is difficult for you, the programmer. Recently, Apple
added some new threading capabilities to Objective-C to address exactly this conundrum. The
centerpiece of this new threading model is called Grand Central Dispatch.

Grand Central Dispatch is centered around the classes NSOperation and
NSOperationQueue. These two classes together provide a high-level object-oriented
abstraction for dealing with threads as individual atomic tasks.

The core class of this suite of classes is NSOperation. The NSOperation class provides a
base class for you to inherit from for the purposes of defining a task to be executed on a back-
ground thread. You can think of an NSOperation object as an instance of a task that you
want to perform. You inherit from the NSOperation class and create your own custom opera-
tion class. You then instantiate this custom operation class and hand the operation off to an
NSOperationQueue which is responsible for managing the operation. NSOperation
Queue will even spawn whatever necessary threads are appropriate for having that task oper-
ate in the background. The NSOperationQueue, under the covers, leverages Grand Central
dispatch and launches an appropriate number of background threads to handle however many
operations you feed to it. Operations can be configured with dependencies such that a given
operation will not be started until all of its dependencies have already been completed.
Additionally, the queues can be configured to run in parallel or to execute their operations
serially.

 C R O S S  R E F E R E N C E
Chapter 5 also discusses some of the low level Objective-C functions you can use for interacting with Grand Central
Dispatch.

 N O T E
Some developers who are new to Objective-C mistakenly think that NSOperationQueue is a useful tool for sim-
ply serializing tasks one after another on the current thread. This is incorrect. NSOperationQueue is really bet-
ter used in association with background threads. This is its default operation.

Creating operations
NSOperation and NSOperationQueue are ideally suited to tasks that are “embarrassingly
parallel.” These are tasks which have no real dependencies, but which consist of CPU bound

22_9780470479223-ch16.indd 32322_9780470479223-ch16.indd 323 1/4/11 8:58 PM1/4/11 8:58 PM

324 Exploring Advanced Topics

calculations. These kinds of tasks can run on multiple core CPUs very effectively. Imagine for
example, an application that performs a certain graphic effect on a series of photos. To create
an NSOperation to do this you would first subclass NSOperation and create your own cus-
tom operation class, as shown in Listing 16.9.

Listing 16.9

A custom NSOperation subclass

@interface PhotoBlurOperation : NSOperation
{
 NSImage *photo;
 NSString *photoPath;
}

-(id)initWithImageAtPath:(NSString *)pathToImage;
-(void)blur;

@end

@implementation PhotoBlurOperation

...

-(void)main
{
 if(![self cancelled])
 photo = [NSImage imageAtPath:photoPath];
 if(![self cancelled] && [self photo])
 [self blur];
 if(![self cancelled])
 [photo writeToOutputPath:...];
}

@end

This is an incredibly simple example, and obviously I’m not giving you the details of the blur
here, but the basics are the same regardless of how complicated your operation will be. The

22_9780470479223-ch16.indd 32422_9780470479223-ch16.indd 324 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 16: Multiprocessing with Threads 325

important point to understand here is that the main entry and exit point of your operation is
the main method implemented in your NSOperation subclass. This is where the thread that
is spawned to handle your operation will begin executing and when your main method exits
the thread also exits. Threads cannot be forcibly terminated, instead, if an NSOperation
needs to be canceled, the cancelled property will be set to YES. You are expected in the imple-
mentation of your main method, as well as any other lengthy methods inside of your operation,
to periodically check the cancelled property to determine if your NSOperation has been can-
celed. If it has, you are expected to clean up any work that you have begun and attempt to exit
your main method as soon as possible. In Listing 16.9, for example, you would be expected to
check the canceled property regularly in the blur method, perhaps as you looped over sections
of the image.

Adding operations to queues
After you have created instances of your operations, you then submit those operations to an
NSOperationQueue. The NSOperationQueue is what will manage the threads that are
spawned that are then responsible for running the operations that you have provided to it.

Following our image blur example, imagine that you have a directory of images that you want
to blur. You might load up all of the files from that directory, create blur operations for each one
of them, and then feed them to an NSOperationQueue to perform the actual blur. Listing
16.10 is an example of adding operations to a queue.

Listing 16.10

Adding operations to a queue

-(void)processDirectoryOfFiles:(NSString *)inDirectoryPath
{
 NSArray *filesInDirectory = [...]; // get listing of files.

 queue = [[NSOperationQueue alloc] init];

 for(NSString *imagePath in filesInDirectory)
 {
 PhotoBlurOperation *op = [[PhotoBlurOperation alloc]
 initWithImageAtPath:imagePath];
 [queue addOperation:op];
 }
}

22_9780470479223-ch16.indd 32522_9780470479223-ch16.indd 325 1/4/11 8:58 PM1/4/11 8:58 PM

326 Exploring Advanced Topics

After an operation is added to the queue, it remains in that queue until it is finished executing
or it has been cancelled.

Manipulating queue parameters
As each operation is added to the queue, the queue begins pulling off operations to process.
NSOperationQueue, in conjunction with GCD will automatically configure an appropriate
number of threads to handle your operations based on the current system status. If you want to
manually configure the number of threads it will use, you can use the property maxConcur-
rentOperationCount. Setting this property limits the number of threads the queue will
use. If you configure this to 1, you are, in effect, creating a serial queue.

NSOperationQueue has other methods that allow you to determine the status of the queue.
You can find out how many operations are in the queue waiting to execute by calling the
method -operationCount. You can also access the operations themselves from the
method. If you want to block your current thread until a queue has finished all of its work, you
can use the method -waitUntilAllOperationsAreFinished.

Using other kinds of operations
In addition to being able to inherit from NSOperation, and create your own operations,
Foundation also provides you with two other built-in NSOperation subclasses.
NSInvocationOperation for creating an operation that calls a given method on an already
existing object, and NSBlockOperation that takes a block which will be executed as part of
the operation main method.

NSInvocationOperation is convenient for cases in which you have code which already
does the task at hand, but is part of an already existing class. It can be inconvenient to refactor
that code and put it into an NSOperation. NSInvocationOperation allows you to sim-
ply call a given method in-situ. For example, imagine if you had a category on NSImage which
did the blur operation for you. You could create operations to blur your images by doing some-
thing similar to Listing 16.11.

Listing 16.11

Using an NSInvocationOperation

-(void)processDirectoryOfFiles:(NSString *)inDirectoryPath
{
 NSArray *filesInDirectory = [...]; // get listing of files.

 queue = [[NSOperationQueue alloc] init];

 for(NSString *imagePath in filesInDirectory)
 {

22_9780470479223-ch16.indd 32622_9780470479223-ch16.indd 326 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 16: Multiprocessing with Threads 327

 NSImage *image = [NSImage imageAtPath:...];
 NSOperation *op = [[NSInvocationOperation alloc]
 initWithTarget:image
 selector:@selector(blur)
 [object:nil];
 [queue addOperation:op];
 }
}

 C A U T I O N
In this example, this would take a lot more memory, since you’re loading all the images ahead of time. For this reason,
this example a poor one to follow verbatim.

The purpose is simply to show how to use NSInocationOperation.

As you can see, you can create an NSInvocationOperation and cause it to call blur on the
image object and add it to the operation queue just like the NSOperation subclasses.

NSBlockOperation is convenient if the operation you want to perform can be easily
expressed as a code block. Listing 16.12 shows the same blur operation using an
NSBlockOperation.

Listing 16.12

Using NSBlockOperation

-(void)processDirectoryOfFiles:(NSString *)inDirectoryPath
{
 NSArray *filesInDirectory = [...]; // get listing of files.

 queue = [[NSOperationQueue alloc] init];

 for(NSString *imagePath in filesInDirectory)
 {
 NSOperation *op = [NSBlockOperation blockOperationWithBlock:^
 {
 NSImage *image = [NSImage imageAtPath:imagePath];
 [image blur];
 }];

 [queue addOperation:op];
 }
}

22_9780470479223-ch16.indd 32722_9780470479223-ch16.indd 327 1/4/11 8:58 PM1/4/11 8:58 PM

328 Exploring Advanced Topics

If necessary you can add multiple execution blocks to a single NSBlockOperation by using
the method -addExecutionBlock:. The operation will execute each block in sequence
and will not be considered complete until all blocks have been executed.

 C A U T I O N
Some calls that take blocks as parameters will automatically execute the block in a background thread. This is not
always documented. Therefore, you should always assume that any block you pass to an API you didn’t write will be
executed in another thread and should be written with thread safety in mind. This includes being careful not to
mutate objects outside the block that you may have access to.

Summary
All of the thread tools I have shown you in this chapter give you tremendous power when it
comes to building applications that take advantage of multi-processor and multi-core
machines. As always, with great power comes great responsibility, and you have to make sure
you architect your applications appropriately when using these tools.

When possible, if you have the choice, I encourage you to use single-threaded designs in your
code rather than introducing threads. Use threads only when it is absolutely appropriate for
your problem domain.

When you do use threads, use the highest level of abstraction that will accomplish your goals,
and, as always, be sure to use appropriate thread locking and synchronization to prevent multi-
ple threads from stomping on each other in memory. This chapter has provided you with all the
tools you need to write high performance multi-threaded applications in Objective-C.

22_9780470479223-ch16.indd 32822_9780470479223-ch16.indd 328 1/4/11 8:58 PM1/4/11 8:58 PM

In This Chapter

Objective-C Design
Patterns

Understanding design
pattern usage in

Objective-C

Learning how to make a
singleton in Objective-C

Delegating responsibility
using delegates

Observing changes using
notifications

One of the joys of developing with Objective-C and the
Foundation framework is the fact that its designers have
fully embraced the most modern of software development

methodologies when thinking about engineering the API and lan-
guage. Indeed, some experts argue that these methodologies even
originated with Objective-C.

Among the methodologies that are well represented in Objective-C
and Foundation is the concept of design patterns. In fact, evidence
shows that the first implementation of many of the common design
patterns that we use in programming today actually originated in
the Objective-C community. Though they may not necessarily be
called by their modern names, “Chain of Responsibility”, “Observer”,
and so on, there can be no mistaking that the Objective-C versions of
these common (today) design patterns are well represented in the
Objective-C language.

In this chapter, I show you how to implement some of the more
common design patterns in Objective-C. Objective-C, Foundation,
and Cocoa leverage design patterns heavily within their respective
APIs; therefore, you will encounter design patterns in Objective-C
regularly. It can be useful to understand how these design patterns
are implemented, specifically in Objective-C, because the imple-
mentation in a dynamic compiled language such as Objective-C
can sometimes be slightly different than its implementation in a
more strictly typed language, such as C++ or Java.

Recognizing Patterns
in Solutions
Have you ever noticed that over time, the same kinds of problems
tend to appear in your application development over and over
again in different projects? You might be working away, and find
yourself faced with a particular programming circumstance that
closely, but not exactly, matches a scenario that you just previously
dealt with elsewhere. Perhaps the problem was close to another
problem but not close enough that you could exactly reuse the

23_9780470479223-ch17.indd 32923_9780470479223-ch17.indd 329 1/4/11 8:58 PM1/4/11 8:58 PM

330 Exploring Advanced Topics

code that you used in the previous solution. A design pattern is a generalized, reusable solution
to a specific programming problem that can be reused and reapplied within the scope of
widely varying application architectures. Typically, experienced developers find themselves
faced with the same general types of problems within the context of different applications.
Often, the solution to these general problems can be applied in these different contexts, lever-
aging the knowledge and code that already exists. Typically, this is not a case where you reuse
the code exactly from a previous solution, but instead, you use the same ideas that you used to
solve the problem previously.

As an example of a typical design pattern, imagine a situation where you might have two
objects, object Foo and object Bar. Bar wants to be notified whenever a particular event
occurs inside of object Foo. How would you approach this problem?

What you might do in this circumstance is give Foo a reference to the Bar object such that
whenever the event in question occurs, it knows to then call a method on Bar to tell Bar about
it. This is a very common problem and a very common solution. The two of these together make
up a design pattern. In fact, this particular design pattern is called the Delegate design pattern.
Bar is becoming the delegate to the object Foo.

There are usually two different states where a developer recognizes that it would be appropri-
ate to use a particular design pattern. The first is in the design phase of an application. Studying
design patterns can be useful because it enables developers when discussing abstract ideas
about application design to have a sort of “lingua franca” with which to discuss particular solu-
tions. In other words, instead of going to the trouble of describing the details of a given solu-
tion a developer, you can simply say, “Here we will use a Delegate to address this particular
problem.” The other developer knows immediately what you’re talking about and could proba-
bly implement the solution with no additional information. This makes design patterns an abso-
lutely vital tool in the expert developer’s arsenal.

The second place that design patterns typically come up is when a developer is busy working
away at a particular problem. The developer often finds himself faced with complex problems,
which on the surface require complex solutions.

Design Patterns train your mind to immediately respond with the correct solution to whatever
programming problem is at hand.

Because of these reasons, a detailed study of Design Patterns is almost always a good use of
your time. If possible, you should strive to study design patterns by using resources specific to
the language that you are using. In other words, study design patterns in Objective-C and
Cocoa. However, there are probably more resources available for the generic study of Design
Patterns using pseudocode than there is specific to Objective-C. Do not let this discourage you.
Most of these resources are just as applicable in Objective-C.

In the next few sections, I review how to implement a few specific design patterns specifically
in Objective-C. This discussion is not a comprehensive listing of all of the design patterns in
Objective-C, but it should be enough to get you started and help you understand how

23_9780470479223-ch17.indd 33023_9780470479223-ch17.indd 330 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 17: Objective-C Design Patterns 331

Objective-C differs from other languages in its implementation of these particular patterns. My
goal here is not a full catalog of patterns, but instead a sampling of patterns that are particularly
illustrative, and which will help you approach other design pattern books more comfortably as
an Objective-C programmer.

Describing Design Patterns in Objective-C
Most design pattern books follow a specific format in the description of their patterns. Typically,
these books begin by stating a particular type of problem. They then follow the problem state-
ment with a description of the solution, including code for the solution, and then finally a dis-
cussion about the solution. For the purposes of the design patterns I am going to discuss here I
intend to follow this pattern.

Using Singletons
Problem
You need to ensure that there is one and only one instance of a particular class in your applica-
tion and provide a global point of access to it. This may be due to design constraints or for the
purposes of controlling access to a finite resource.

Solution
The solution to this problem is called a singleton. A singleton is a class that ensures that you
cannot create more than one instance of it. Normally, this is accomplished by creating a single
instance of that class the first time the constructor for your class is called. Subsequent calls to
the constructor check for the existence of the global instance, and if it exists, returns a reference
to the global instance rather than creating a new one.

Implementing a singleton in Objective-C consists of several steps. First, you have to create the
global instance. The global instance is typically stored in a global variable. One important
aspect of this global instance is that you should be sure to set the instance to nil. You will later
be checking whether this variable is set to nil when your initializer is called. Listing 17.1 shows a
typical declaration of a global singleton instance. Typically, this declaration is put into the
implementation file for the class that you are turning into a singleton.

Listing 17.1

The global instance definition

static MyClass *instance = nil;

23_9780470479223-ch17.indd 33123_9780470479223-ch17.indd 331 1/4/11 8:58 PM1/4/11 8:58 PM

332 Exploring Advanced Topics

After you have created the place to store your global instance, you need to provide global
access to that instance through a factory method which checks for the existence of the
instance, and if it does not exist creates it. This is shown in Listing 17.2.

Listing 17.2

The singleton factory method

+(MyClass *)sharedInstance;
{
 @synchronized(self)
 {
 if(!instance)
 [[self alloc] init];
 }
 return instance;
}

This method is declared as a class method so that it can be accessed from the class itself. When
it’s called, it first checks to see if the instance variable has been initialized. If it has not, then it
initializes the instance variable. Finally, it returns the global instance.

The place where the actual initialization of the global instance variable occurs is in the
+allocWithZone: method, which is ultimately what’s called when you call the last method
+alloc. This method is shown in Listing 17.3.

Listing 17.3

Initializing the global instance

+(id)allocWithZone:(NSZone *)inZone;
{
 @synchronized(self)
 {
 if(!instance)
 {
 instance = [super allocWithZone:inZone];

23_9780470479223-ch17.indd 33223_9780470479223-ch17.indd 332 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 17: Objective-C Design Patterns 333

 return instance;
 }
 }
 return nil;
}

Using this method rather than the factory method to verify and initialize the global instance
ensures that even if someone attempts to create an instance of your singleton using the
standard +alloc and -init methods, they will still receive the global instance and not a
new copy.

You should implement some methods in order to ensure the safety of the global instance. For
example, you should also implement the method -copyWithZone:. This method is called
when your object receives a call to the method -copy. Normally, this is expected to make a
copy of your object as well as all of its attributes. By overriding this method, you can instead
simply return yourself, or in other words, since it would only ever be called on the global
instance, you are in fact simply returning a pointer to the global instance. Listing 17.4 shows
how you would implement this method.

Listing 17.4

Implementing -copyWithZone:

-(id)copyWithZone:(NSZone *)inZone;
{
 return self;
}

In a non-garbage collected, retain count memory model, you should also override the appropri-
ate methods to repent your global instance from being released. Therefore, you need to over-
ride the methods -retain, -retainCount, -release, and -autorelease. Each of these
should be overridden with the intent to prevent your object from being retained, or released.
You will only ever have one instance of this object, and it should only ever have a retain count
of one

Listing 17.5 also shows all four of these methods as they should be implemented on a singleton.

23_9780470479223-ch17.indd 33323_9780470479223-ch17.indd 333 1/4/11 8:58 PM1/4/11 8:58 PM

334 Exploring Advanced Topics

Listing 17.5

Implementing memory management methods

-(id)retain;
{
 return self;
}

-(unsigned)retainCount;
{
 return NSUIntegerMax;
}

-(void)release;
{
 // empty
}

-(id)autorelease;
{
 return self;
}

Essentially, each of these methods is being overridden to do simply nothing. Once you’ve
implemented your singleton, to use it, you simply use the global factory method. The first time
you access it, the global instance will be initialized. All subsequent calls to the factory method
will return that original instance. Because you’ve overridden all of the memory management
methods, any attempt to retain or release that object will simply do nothing.

 N O T E
The methods described here for implementing a singleton in Objective-C are what I would call the “safe” methods. In
other words, if you are distributing your code to third parties who might misuse your singleton, the techniques shown
here are the safest. In the discussion section on this design pattern, I will also show you a shortcut “unsafe” version,
which you can also use at your discretion.

Discussion
Foundation, Cocoa, Cocoa Touch, and many other frameworks that are used in conjunction
with Objective-C make extensive use of singletons. Most often, these are used in cases where
the object in question is encapsulating access to a resource for which there can only ever be
one instance of it. For example, the NSNotificationCenter has a singleton at its heart.
Similarly, in Cocoa Touch the UIApplication, for which there is only ever one application
that you might be running in, also has a singleton.

23_9780470479223-ch17.indd 33423_9780470479223-ch17.indd 334 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 17: Objective-C Design Patterns 335

Singletons are one of the most powerful and most commonly used design patterns. They are
often used in places where developers might be tempted to use a global variable. The advan-
tages of the singleton over a global variable are that the singleton allows you better control
over exactly when the global instance is created, and also insures that there can only ever be
one global instance. Without Singletons, it might be possible for some part of your application
to reinitialize the global instance. Singletons prevent that.

The technique that I showed you previously for creating a singleton is considered to be the
“safe” technique. If you are a developer of a library for third-party consumption, or if you are
working on a team where you cannot be certain that users of your API will understand that your
object is a singleton and that it does not need to be released or retained and so on, I recom-
mend using this technique for your singletons.

However, if you are a solo developer developing your code for yourself, and you feel confident
in the fact that you know better than to release your Singleton prematurely, then a simpler ver-
sion of the singleton pattern is shown in Listing 17.6.

Listing 17.6

The cheaters version of a singleton

static MyClass *instance = nil;

+(id)sharedInstance;
{
 if(!instance)
 {
 instance = [MyClass new];
 }
 return instance;
}

This is really all you need to do to implement an unsafe singleton. All the other methods that I
described are really there to prevent you from hurting yourself with your own code. Some
things that are notably absent here are things such as, overriding the memory management
methods, thread safety, and so on. The key here is that you have to know as a user of this single-
ton that it is, in fact, a singleton and must not be released or retained. Additionally, you need to
be sure that when you are initializing your global instance that you are doing it before you
launch any external threads. Although reading the contents of the instance variable from multi-
ple threads at once is safe, it would not be safe to write to it. Therefore, you need to make sure
that your first access to the shared instance method is done prior to the creation of any threads
that might need to access the global instance.

23_9780470479223-ch17.indd 33523_9780470479223-ch17.indd 335 1/4/11 8:58 PM1/4/11 8:58 PM

336 Exploring Advanced Topics

If you are sure that you can match all of these requirements, then this is a much simpler ver-
sion of the singleton implementation. Generally speaking, this is the implementation that I
use in my code.

The study of this particular design pattern in Objective-C is useful because of its use of the fac-
tory method for its implementation. Objective-C uses factory methods more than almost any
other language that I know. Therefore, the use of a factory method to access the singleton is vir-
tually second nature to most Objective-C developers. Sometimes, when working with other lan-
guages, you have to go out of your way to prevent the developers from simply creating an
instance of your object using a standard constructor. You have to document the factory
method, and post warnings in all of your code to ensure that the developers use the factory
method. Most experienced Objective-C developers look first at the factory methods for ways to
construct new objects because typically the factory methods are more convenient than using
the standard initializes. Additionally, if you follow the “safe” singleton implementation,
Objective-C provides you with sufficient tools to prevent the unwary developer from acciden-
tally deallocating the singleton and causing bugs.

Delegating responsibility
Problem
You have two objects, one of which needs to be notified of state changes in the other.
Alternatively, one of the objects would like to give responsibility to another object for deter-
mining changes in behavior at runtime.

Solution
The solution to this problem is the delegate pattern. The delegate pattern defines a solution
wherein one object holds a reference to another object. The referenced object implements a
previously determined interface, which is used to inform the referenced object of changes
within the referencing object. Not only can this pattern be used to tell the referenced object
about state changes within the referencing object, but it can also be used to delegate responsi-
bility to the referenced object or for making decisions on behalf of the referencing object at
runtime.

For example, given our two objects Foo and Bar, Foo might choose to delegate responsibility
to Bar for the purposes of determining how to behave in the event of an error. When an error
condition occurs, the Foo object tells its delegate, Bar, that the error has occurred, and Bar is
given an opportunity to intervene.

Implementing the delegate pattern in Objective-C consists of creating a protocol defining the
delegate interface, creating a delegate object, which implements the protocol, and including a
reference to the delegate object within the delegating object. Listing 17.7 shows an example of
the protocol and implementation of the delegating object. In this case, MyClass is the object

23_9780470479223-ch17.indd 33623_9780470479223-ch17.indd 336 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 17: Objective-C Design Patterns 337

that will be delegating responsibility to the delegate. The protocol for the delegate is called
MyClassDelegate.

Listing 17.7

The delegate protocol and the interface for the delegating class.

@protocol MyClassDelegate
-(void)requiredMethod;

@optional
-(void)somethingOptional;

@end

@interface MyClass
{
 id<MyClassDelegate> delegate;
}
@property (assign) delegate;
@end

As you can see, the MyClass instance holds a reference to the delegate, which is defined to
implement the MyClassDelegate protocol.

In order for this to work, you must have previously set the delegate object on MyClass to an
instance of an object that implements the delegate protocol. A very important caveat when
working with Objective-C and delegates, is that in Objective-C, your delegate must be specified
as an assigned property so that it is not retained. Doing this helps to avoid circular references in
cases where the delegate object may have created the delegating object. If the delegating
object retains the delegate, then this circular reference would cause neither object to be able to
be deallocated.

As a corollary to this, when the delegate object is deallocated, it should also be sure to remove
itself as a delegate so that the delegating object no longer has a dangling reference to it. If you
fail to do so, this will cause an error when the delegating object attempts to make calls on the
delegate since it no longer exists.

When an event occurs which the delegate would be interested in, the MyClass instance must
call the appropriate delegate method. An example of this is shown in Listing 17.8

23_9780470479223-ch17.indd 33723_9780470479223-ch17.indd 337 1/4/11 8:58 PM1/4/11 8:58 PM

338 Exploring Advanced Topics

Listing 17.8

Calling a delegate method

@implementation MyClass
-(void)doSomethingUseful
{
 // ... useful things ...

 // now we want to notify the delegate

 [delegate requiredMethod];
}

-(void)doSomethingElse
{
 if([delegate respondsToSelector:@selector(somethingOptional)])
 [delegate somethingOptional];
}
@end

In the case where you want to use one of the optional protocol methods, you first have to
determine if the delegate implements that method. You do this by using the NSObject
method –respondsToSelector:, which will tell you if the object responds to the given
method name. This is important. If you don’t check to see if the delegate implements the
optional method before calling it and if the delegate has chosen not to implement that
method, you will get an error.

Discussion
The Delegate pattern is another extremely common and useful pattern used in Objective-C,
Foundation, and Cocoa. Throughout the frameworks, it’s used in cases where reusable compo-
nents need information from your application code in order to deal with runtime implementa-
tion details. Additionally, developers often use this pattern in cases where they might be
passing off control to another component and they want to be “called back” when the subordi-
nate component has completed whatever processing was necessary.

As I mentioned in the chapter on protocols, protocols can be used to provide a convenient
mechanism for defining an agreed-upon interface. This makes them an ideal tool for use in the
Delegate pattern. When creating reusable components, you can define a delegate protocol for
that component. Users of that component can then pick and choose the methods they need to

23_9780470479223-ch17.indd 33823_9780470479223-ch17.indd 338 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 17: Objective-C Design Patterns 339

implement based on the information they require or the information they need to provide.
Recall that protocols can specify both required and optional methods. If a particular delegate
behavior is required by your class, then be certain to use required methods on the delegate
protocol. Alternatively, if a given behavior is optional, use optional methods.

The Delegate pattern is useful to study in Objective-C because it illustrates the power of both
protocols and dynamic typing. The delegate object can be any class that implements the dele-
gate protocol. This makes this pattern uniquely useful in Objective-C. Additionally, Objective-C’s
verbose method naming standard and named parameters makes the protocol definition a self-
documenting contract between the delegating object and the delegate. This is tremendously
powerful in terms of documenting behavior. It is for this reason that I specifically chose this par-
ticular design pattern to highlight here.

Notifying objects of changes
Problem
You need to notify multiple objects of changes in state.

Solution
The Delegate pattern is an excellent choice in cases where you have a one-to-one relationship
between the delegating object and the delegate. But what about circumstances where you
need to notify multiple observers of your state changes? In these cases, instead of implement-
ing a one-to-one relationship such as the Delegate pattern, you want to implement something
like the Observer pattern.

The Observer pattern defines a pattern wherein objects may register with another object as an
observer of that object. Once an object has registered as an observer, then any events that the
Observer is interested in will be sent to the Observer when they occur.

The implementation of the Observer pattern in Objective-C is done using the
NSNotificationCenter class. This class provides a global dispatch system for observers
and events. Observers can register with the NSNotificationCenter to observe specific
events in the system. Observable objects, when these events occur, can then post notifications
to the NSNotificationCenter. When they do, any observers of those notifications will
then be notified, and can take whatever action they deem appropriate.

Implementing the Observer pattern by using the NSNotificationCenter consists of two
parts.

First, your observable object must be prepared to post notifications to the NSNotification
Center whatever observable events occur. To do this, the object accesses the global
NSNotificationCenter singleton, and uses the method -postNotificationName:
object:userInfo:. This method takes an NSString parameter specifying the name of the

23_9780470479223-ch17.indd 33923_9780470479223-ch17.indd 339 1/4/11 8:58 PM1/4/11 8:58 PM

340 Exploring Advanced Topics

notification to be sent, followed by the object sending the notification and an optional user-
Info object. An implementation, showing posting and notification is shown in Listing 17.9

Listing 17.9

Posting a notification

#define MY_FANCY_NOTIFICATION @”MY_FANCY_NOTIFICATION”

@implementation Bar

-(void)someMethod;
{
 ...
 [[NSNotificationCenter defaultCenter]
 postNotificationName:MY_FANCY_NOTIFICATION
 object:self
 userInfo:nil];
}

@end

Typically, the notification name is defined as a const NSString, such that it can be used as
shown here and so that it leverages Xcode’s code completion.

On the Observer side, the observer simply needs to register with the NSNotification
Center as an observer. When it does so, it specifies the name of the notifications it wishes to
observe as well as, optionally, what object it wishes to observe. When the given object posts
that particular notification, the Observer will receive that notification. If the observer specifies
nil for the object parameter, it will receive notifications from all objects posting the given notifi-
cation. Listing 17.10 shows an observer registering for a given notification.

Listing 17.10

Registering as an observer

-(void)viewDidLoad;
{
 [[NSNotificationCenter defaultCenter]
 addObserver:self

23_9780470479223-ch17.indd 34023_9780470479223-ch17.indd 340 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 17: Objective-C Design Patterns 341

 selector:@selector(stuffChanged:)
 name:MY_FANCY_NOTIFICATION
 object:nil];
}

When adding your object as an observer, you must provide a selector which will be called when
the notification is received. In this case, the selector being specified is the -stuffChanged:
method. This method must be specified to take a single parameter. When it is called the param-
eter that is passed will be an instance of NSNotification. This object contains information
about the notification, what object posted the notification, and the userInfo object that was
specified by that object when the notification was posted. Listing 17.11 shows the implementa-
tion of the -stuffChanged: method.

Listing 17.11

Implementation of the -stuffChanged: method

-(void)stuffChanged:(NSNotification *)inNotification;
{
 Bar *bar = (Bar *)[inNotification object];
 [bar askSomeQuestion];

 NSString *someData = [[inNotification userInfo] objectForKey:@”somedata”];
 [self doSomething];
}

Finally, an important part of being an observer is making sure that you remember to remove
yourself as an observer when you are being deallocated. Failure to do so may cause an error,
because you’re object is no longer valid but it is still referenced in the NSNotification
Center. To remove yourself as an observer from NSNotificationCenter, you call the
object method -removeObserver:.

Listing 17.12 shows an implementation of a dealloc method where the object is removing
itself as an observer from the NSNotificationCenter.

 N O T E
You need only call this method once for any given observer. Even if you are observing multiple notifications that may
be received from multiple different observable objects, using this call to remove yourself as an observer will remove
you as an observer completely for all notifications.

23_9780470479223-ch17.indd 34123_9780470479223-ch17.indd 341 1/4/11 8:58 PM1/4/11 8:58 PM

342 Exploring Advanced Topics

Listing 17.12

Removing yourself as an observer.

@implementation Foo

-(void)dealloc;
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [super dealloc];
}

@end

Discussion
The NSNotificationCenter provides the implementation of the Observer pattern in
Objective-C. It enables objects to post notifications about changes in their state and then allows
any objects which wish to be notified of those changes to observe for those notifications. The
NSNotificationCenter allows multiple objects to observe notifications and also allows
multiple objects to post a given notification. In this way, it provides a many to many relation-
ship between observers and notifiers. One question that you might be asking would be when
to use NSNotificationCenter versus the delegate pattern. Firstly, you should use the
NSNotificationCenter whenever there might be multiple parties interested in the infor-
mation that you are sending the notification about. The delegate pattern really only works in a
one-to-one relationship. You may be connected to implement an array of delegates when
working with the delegate pattern to overcome this limitation. Instead of doing this, you should
consider using the NSNotificationCenter.

Another case where the NSNotificationCenter makes a bit more sense than using a dele-
gate is in cases where the Observer and the observed object are far away from each other in
your code. In other words, if the observer and the thing that you want to observe are in totally
different subsystems, and getting references from one side of your application to the other
presents challenges, the NSNotificationCenter, being a global singleton, provides a con-
venient interface between those two objects. There are some limitations when working with
the NSNotificationCenter, specifically, it’s really only designed for passing around simple
data. It does not allow for the complex definition of delegate protocols and so on which make
working with delegates so convenient. You are limited, as far as the data passed during the
notification process to the object and the userInfo dictionary. This doesn’t mean that it is impos-
sible to send complex data, simply that it is not as convenient as the delegate protocol is.

23_9780470479223-ch17.indd 34223_9780470479223-ch17.indd 342 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 17: Objective-C Design Patterns 343

 N O T E
Another big limitation with notifications vs. delegation is that delegates can have a return value from their methods
while notifications cannot.

The Observer pattern and its Objective-C implementation, the NSNotificationCenter,
presents an interesting design pattern to study in Objective-C because of the fact that it is
implemented almost entirely through the framework classes rather than through implementa-
tion details of the Objective-C language itself. In other words, the fact that this design pattern is
implemented simply by using a standard class, NSNotificationCenter, and some stan-
dards agreed upon between the observed object and the observers make this an interesting
pattern to study. Consider the idea that as you discover design patterns in your own code, you
might be able to leverage your knowledge of this pattern and how it is implemented to create
more reusable components yourself, which can be integrated into your own code as easily.

Summary
In this chapter, I have shown you how to implement three different design patterns in
Objective-C. This is by no means a comprehensive listing of the vast catalog of potential design
patterns available. My intent was simply to introduce you to a representative few design pat-
terns so that you could get a feel for how Objective-C as a language impacts the implementa-
tion of those design patterns as compared to C++ or Java. My recommendation, for further
research on the subject, is to pick up a book on design patterns. There are several available,
including at least one which specifically addresses design patterns in Cocoa. No matter how you
approach design patterns, I do suggest that you make an effort to study them.

23_9780470479223-ch17.indd 34323_9780470479223-ch17.indd 343 1/4/11 8:58 PM1/4/11 8:58 PM

23_9780470479223-ch17.indd 34423_9780470479223-ch17.indd 344 1/4/11 8:58 PM1/4/11 8:58 PM

In This Chapter

Reading and Writing
Data with NSCoder

Learning about
serialization

Implementing the
NSCoding protocol

Using NSArchiver and
NSUnarchiver to archive

objects to disk

Many modern languages include the ability to encode
objects into data, which can be archived to disk or sent
over a network connection. This process is known as seri-

alization. The idea is that in cases where you want to send an
object from one process to another, either via disk or via network,
you need a mechanism that freezes the object in place, including
all of its data in a platform agnostic form so that it can be thawed
and reconstituted by the recipient of the object and have all of its
data intact.

Objective-C uses a suite of classes and protocols to implement seri-
alization. The centerpiece of the Objective-C serialization system is
the NSArchiver and NSUnarchiver classes. Using them, you
feed them objects which conform to the NSCoding protocol, and
they take the objects and serialize the objects to a data format
which is transferable to disk or over the network.

So to use Objective-C serialization, the first thing you need to do is
implement the NSCoding protocol on your objects.

Implementing the NSCoding
Protocol in Your Objects
The NSCoding protocol defines two methods that must be imple-
mented on your object in order to be NSCoding compliant. The first
is the -encodeWithCoder: method. This method is called by the
archiver when it needs to serialize your object. It takes an NSCoder
as a parameter. \NSCoder is an abstract base class. Typically the
actual objects that will be passed to you will be instances of
NSArchiver or NSKeyedArchiver. Using the NSCoder, you
then archive the member variables of your object into it.

Encoding objects
To serialize your member variables into the NSCoder, you use the
methods on the instance of NSCoder which has been passed into
your -encodeWithCoder: method. NSCoder provides a vari-
ety of methods for the purposes of encoding basic types as well as

24_9780470479223-ch18.indd 34524_9780470479223-ch18.indd 345 1/4/11 8:58 PM1/4/11 8:58 PM

346 Exploring Advanced Topics

objects. To encode an object into an NSCoder, you use the NSCoder methods -encode
Object: or -encodeObject:forKey:. Not all NSCoder instances work the same. Some
support keyed archiving and some do not. To determine if your instance of NSCoder supports
keyed archiving, use the method -allowsKeyedCoding. This method returns YES if the
instance of NSCoder supports keyed archiving. Any object which supports the NSCoding
protocol can be encoded using the -encodeObject... methods. Most low level Foundation
classes such as NSString, NSArray, and NSDictionary all do. An example implementa-
tion of an -encodeWithCoder: method encoding objects is shown in Listing 18.1.

Listing 18.1

A simple -encodeWithCoder: implementation

@interface MyClass : NSObject <NSCoding>
{
 Foo *memberVariable;
 Bar *anotherVariable;
 NSArray *someMemberArray;
}

@end

@implementation MyClass

...

-(void)encodeWithCoder:(NSCoder *)inCoder
{
 if([inCoder allowsKeyedCoding])
 {
 [inCoder encodeObject:memberVariable forKey:@”memberVariable”];
 [inCoder encodeObject:anotherVariable forKey:@”anotherVariable”];
 [inCoder encodeObject:someMemberArray forKey:@”someMemberArray”];
 }
 else
 {
 [inCoder encodeObject:memberVariable];
 [inCoder encodeObject:anotherVariable];
 [inCoder encodeObject:someMemberArray];
 }
}

@end

24_9780470479223-ch18.indd 34624_9780470479223-ch18.indd 346 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 18: Reading and Writing Data with NSCoder 347

If the coder does not allow keyed coding, the variables will be encoded in the order you feed
them to the NSCoder. Thus, it’s important that they also be unencoded in the same order, so
your unarchiving code will need to know that order as well. For this reason, using a keyed
archiver is usually preferable to a non-keyed one.

Keyed archiving is considered the more “modern” form of archiving. So if you do not need back-
wards compatibility with non-keyed archivers, you can safely implement this code to only
encode using keys.

 N O T E
Be sure to state that you are implementing the NSCoding protocol as part of your interface declaration.

Encoding basic types
Basic scalars like ints, floats, and structs can also be encoded using NSCoder by using the
methods defined on it such as -encodeDouble:forKey:, -encodeInt:forKey:, and
so on. If you extended the class from the last example to include some scalars and structures,
you might change the -encodeWithCoder: method to look like Listing 18.2.

Listing 18.2

@interface MyClass : NSObject <NSCoding>
{
 Foo *memberVariable;
 Bar *anotherVariable;
 NSArray *someMemberArray;
 NSRect aRect;
 int aNumber;
}

@end

@implementation MyClass

...

-(void)encodeWithCoder:(NSCoder *)inCoder
{
 if([inCoder allowsKeyedCoding])
 {
 [inCoder encodeObject:memberVariable forKey:@”memberVariable”];
 [inCoder encodeObject:anotherVariable forKey:@”anotherVariable”];
 [inCoder encodeObject:someMemberArray forKey:@”someMemberArray”];

continued

24_9780470479223-ch18.indd 34724_9780470479223-ch18.indd 347 1/4/11 8:58 PM1/4/11 8:58 PM

348 Exploring Advanced Topics

 Listing 18.2 (continued)

 [inCoder encodeRect:aRect forKey:@”aRect”];
 [inCoder encodeInt:aNumber forKey:@”aNumber”]
 }
 else
 {
 [inCoder encodeObject:memberVariable];
 [inCoder encodeObject:anotherVariable];
 [inCoder encodeObject:someMemberArray];
 [inCoder encodeRect:aRect];
 [inCoder encodeInt:aNumber];
 }
}

@end

NSCoder has a variety of these methods available. See the NSCoder documentation for more
information.

Working with object graphs
Because of the way the NSCoding protocol works, it’s expected that any given object will
encode its member variables, and each of them will encode their member variables, and so on.
So the nice thing about NSCoder is that you only really need to worry about encoding your
own state. Assuming all your member variables also implement the NSCoding protocol, you
can encode them “opaquely” and not have to think about what’s inside them.

That said, you might need to be concerned about circular references. NSCoder does not do
any kind of circular reference checking, so if you have a circular reference in your code, it may
cause issues for archiving. Another gotcha that can sometimes catch programmers unaware is
the fact that only the data itself, and not the pointers and addresses of objects, are archived.
Meaning, an archived object pointer, when unarchived, will be different from the original
pointer. Therefore, when unarchiving things, you may need to manually reconnect your refer-
ences in order to fully complete your object graph.

Using other types of data
In cases where you have data that doesn’t neatly fit into one of the scalar types or into an
object, you may need to encode that data using NSData boxing. To do this, you simply box
your data into an NSData object, and t hen encode the NSData object using the NSCoder
method -encodeDataObject:. An example of this is shown in Listing 18.3.

24_9780470479223-ch18.indd 34824_9780470479223-ch18.indd 348 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 18: Reading and Writing Data with NSCoder 349

Listing 18.3

Encoding a malloc’ed memory block in your NSCoder

@interface MyClass : NSObject <NSCoding>
{
 Foo *memberVariable;
 Bar *anotherVariable;
 NSArray *someMemberArray;
 NSRect aRect;
 int aNumber;
 char *buf;
}

@end

@implementation MyClass

// buf might be allocated using malloc(1024) etc...

...

-(void)encodeWithCoder:(NSCoder *)inCoder
{
 if([inCoder allowsKeyedCoding])
 {
 [inCoder encodeObject:memberVariable forKey:@”memberVariable”];
 [inCoder encodeObject:anotherVariable forKey:@”anotherVariable”];
 [inCoder encodeObject:someMemberArray forKey:@”someMemberArray”];
 [inCoder encodeRect:aRect forKey:@”aRect”];
 [inCoder encodeInt:aNumber forKey:@”aNumber”]
 NSData *bufData = [NSData dataWithBytes:buf length:1024];
 [inCoder encodeObject:bufData forKey:@”someData”];
 }
 else
 {
 [inCoder encodeObject:memberVariable];
 [inCoder encodeObject:anotherVariable];
 [inCoder encodeObject:someMemberArray];
 [inCoder encodeRect:aRect];
 [inCoder encodeInt:aNumber];
 NSData *bufData = [NSData dataWithBytes:buf length:1024];
 [inCoder encodeDataObject:bufData];
 }
}

@end

24_9780470479223-ch18.indd 34924_9780470479223-ch18.indd 349 1/4/11 8:58 PM1/4/11 8:58 PM

350 Exploring Advanced Topics

Decoding objects
The other side of the NSCoding protocol is used to decode objects that have been encoded.
There’s a special initializer provided specifically for this purpose called -initWithCoder:, it
is the only initializer that requires that you not call the designated initializer when you use it. An
implementation of this method for decoding our example is shown in Listing 18.4.

Listing 18.4

An example of -initWithCoder:

-(id)initWithCoder:(NSCoder *)inCoder
{
 if((self = [super init]))
 {
 if([inCoder al lowsKeyedCoding])
 {
 memberVariable =
 [[inCoder decodeObjectForKey:@”memberVariable”]
 retain];
 anotherVariable =
 [[inCoder decodeObjectForKey:@”anotherVariable”]
 retain];
 someMemberArray =
 [[inCoder decodeObjectForKey:@”someMemberArray”]
 retain];
 memberVariable =
 [[inCoder decodeObjectForKey:@”memberVariable”]
 retain];
 aRect = [inCoder decodeRectForKey:@”aRect”];
 aNumber = [inCoder decodeIntForKey:@”aNumber”];
 NSData *bufData = [inCoder decodeObjectForKey:@”someData”];
 buf = malloc(1024);
 [bufData getBytes:buf length:1024];
 }
 else
 {
 memberVariable = [[inCoder decodeObject] retain];
 anotherVariable = [[inCoder decodeObject] retain];
 someMemberArray = [[inCoder decodeObject] retain];
 memberVariable = [[inCoder decodeObject] retain];

 aRect = [inCoder decodeRectForKey:@”aRect”];
 aNumber = [inCoder decodeIntForKey:@”aNumber”];
 NSData *bufData = [inCoder decodeDataObject];

24_9780470479223-ch18.indd 35024_9780470479223-ch18.indd 350 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 18: Reading and Writing Data with NSCoder 351

 buf = malloc(1024);
 [bufData getBytes:buf length:1024];
 }
 }
 return self;
}

 C A U T I O N
The -initWithCoder: method is specified as part of the NSCoding protocol. If the object you are inheriting
from implements the NSCoding protocol, you should call [super initWithCoder:...] here instead of
[super init]. In this case, the class inherits from NSObject, which does not implement that protocol. The same goes
for the -encodeWithCoder method. It should also call -encodeWithCoder on the superclass if the super-
class implements the NSCoding protocol.

Of special note, make sure you are retaining the objects you get back from NSCoder. They fol-
low the same retain/release rules as you would use elsewhere. Your scalars and structs, how-
ever, do not need to be retained because they’re not objects.

Using NSArchiver and NSUnarchiver
After your objects support the NSCoding protocol, you can archive them and unarchive them
using NSCoders. The most common NSCoders are NSArchiver and NSKeyedArchiver,
and the corresponding decoding classes, NSUnarchiver and NSKeyedUnarchiver. Again,
NSArchiver is considered more of a legacy class, so I’ll focus here on NSKeyedArchiver.

To archive an object graph using NSKeyedArchiver, use the class method +archived
DataWithRootObject:, which will return an NSData with all the data from the root object
on down archived within it. Alternatively, you can also use the factory method +archive
RootObject:toFile: to directly write that data to a file. Listing 18.5 shows this in action.

Listing 18.5

Writing data to disk

-(void)writeDataToPath:(NSString *)inPath
{
 [NSKeyedArchiver archiveRootObject:objects toFile:inPath];
}

24_9780470479223-ch18.indd 35124_9780470479223-ch18.indd 351 1/4/11 8:58 PM1/4/11 8:58 PM

352 Exploring Advanced Topics

When this is called, NSKeyedArchiver will start with the root object you have provided, and
call -encodeWithCoder:, passing itself as the coder, then take the data it gets back from
that and write it out to disk. Because -encodeWithCoder: called -encodeWithCoder:
on all the sub-objects of the root object, they’ll all get encoded into the file. Reading data
from an archive is similarly simple. To do so, you use the NSKeyedUnarchiver method,
+unarchiveObjectWithData:, to decode from an NSData object, or +unarchive
ObjectWithFile:, to decode from a file. This is shown in Listing 18.6.

Listing 18.6

Reading data from disk

-(void)readDataFromPath:(NSString *)inPath
{
 objects = [[NSKeyedUnarchiver
 unarchiveObjectWithFile:inPath] retain];
}

Again, here NSKeyedUnarchiver will open the file and call initWithCoder on the root
object in that file. This causes all of the subobjects in the object graph to be thawed out again.

Working with Archiver File Formats
and Legacy Data
The archives written by NSKeyedArchiver can be either XML or Binary. To configure the file
format, use the method -setOutputFormat: on the NSKeyedArchiver object you create
before writing the data to disk. (This will require you to use the standard alloc/init method for
creating the archiver). You can set this value to NSPropertyListXMLFormat_v1_0 for
XML or NSPropertyListBinaryFormat_v1_0 for binary formats. Binary formats tend to
be slightly faster and smaller than XML, but are, of course, less portable.

The NSCoder system is designed for modern object graphs made up primarily of Objective-C
objects. If you have legacy binary file formats, you can always fall back to using standard C file
I/O routines to read and write them.

24_9780470479223-ch18.indd 35224_9780470479223-ch18.indd 352 1/4/11 8:58 PM1/4/11 8:58 PM

 Chapter 18: Reading and Writing Data with NSCoder 353

Summary
Object serialization in Objective-C is easy to use and powerful. You can use it for saving your
application state to disk or you can use it to send data over a network connection to another
process. In this chapter I’ve shown you how to make your objects compatible with the
NSCoding protocol, and also how to read and write your object graphs to disk using the
NSKeyedArchiver and NSKeyedUnarchiver classes. Together, these will give you
the tools needed to leverage serialization in Objective-C.

24_9780470479223-ch18.indd 35324_9780470479223-ch18.indd 353 1/4/11 8:58 PM1/4/11 8:58 PM

24_9780470479223-ch18.indd 35424_9780470479223-ch18.indd 354 1/4/11 8:58 PM1/4/11 8:58 PM

In This Chapter

Using Objective-C on
Other Platforms

Using Objective-C on
Windows, Linux, and

other platforms

Understanding
Objective-C framework

maturity

Working with Other
Libraries

Although by far the best platforms for coding Objective-C are
the ones that come from Apple, they are, by no means,
exclusive. Objective-C has quite an extensive history on

other platforms such as Linux, BSD, and even Windows. Depending
upon your exact needs, you’ll find that there are open source com-
munities that support these alternative platforms quite well. In this
chapter, I’d like to give you a brief introduction to some of these
other platforms and tell you where you can find more information
about them.

The biggest challenge when looking at Objective-C on other plat-
forms is in the support of the frameworks that make Objective-C
powerful. Porting the actual Objective-C language is a reasonably
trivial affair. Since the GNU compiler collection (gcc) began includ-
ing support for Objective-C, it has become available on virtually all
of the platforms that gcc supports. However, porting the core
frameworks is a much more daunting task.

To be sure, the Foundation framework has the greatest cross-
platform support. Since I have focused almost exclusively on the
foundation framework in this book, that means that any of the
examples in this book should, with a few exceptions, compile and
run on any of these other platforms.

 When it comes to Cocoa and some of the other higher-level frame-
works, they are generally not available on other platforms. There
are exceptions to this rule, but to be perfectly honest, you need to
be very careful when thinking about working with the GUI frame-
works if your code needs to run on platforms other than OS X.

That said, the best support for all of the frameworks that are typi-
cally used with Objective-C come from two primary projects. They
are GNUstep and Cocotron. These two open source projects take
drastically different approaches to their portability technique, but
the end result is the same in both cases, the ability to write and
compile Objective-C code with Cocoa and Foundation support on
Linux, Windows, BSD, and other platforms.

25_9780470479223-ch19.indd 35525_9780470479223-ch19.indd 355 1/4/11 8:59 PM1/4/11 8:59 PM

356 Exploring Advanced Topics

Using GNUstep
The first and oldest of these projects is the GNUstep project, which can trace its history all the
way back to the original NeXTstep days. In fact, this project was originally developed to provide
an open source alternative to the closed source NeXTstep platform. In that regard, it has done a
decent job of re-creating the NeXTstep desktop environment, including the icons, the file
browser, the mail client, and so on. See Figure 19.1.

Figure 19.1

The GNUstep environment running on Unix.

Because of its extensive history, the GNUstep project has some of the best support for
Foundation and Cocoa. However, because their goal was really to replicate the NeXTstep envi-
ronment, rather than emulating either MacOS X or the native widget set of the platform upon
which applications run, they actually include an entire NeXTstep widget set instead. This means
that if you choose to use this project to port your GUI application to Windows, your application
will actually look like a NeXTstep application when it runs on Windows. This includes everything
right down to the types of menus used. Additionally, there are issues related to the filesystem
required for running GNUstep applications. At last check, in order to run a GNUstep application
on Windows, you had to have a full-on GNUstep filesystem installed as well as numerous sup-
port libraries.

25_9780470479223-ch19.indd 35625_9780470479223-ch19.indd 356 1/4/11 8:59 PM1/4/11 8:59 PM

 Chapter 19: Using Objective-C on Other Platforms 357

All this can be disconcerting for a typical user. For the purposes of completeness, I will mention
here that there have been efforts over the last few years to add skinning support to the GNUstep
project. This would enable you to at least create an application for windows and then skin that
application with the Windows widget set. In other words, the GNUstep project is working on its
portability when it comes to graphical applications, and improving it over time, but it’s not per-
fect yet. All that said, when it comes to the Foundation framework, the GNUstep project has
some of the best, most extensive support available anywhere. I would say that if your applica-
tion is a commandline application, such as a server, and your intent is to port the application
to Windows or Linux, that the GNUstep project will very likely enable you to do exactly that.
Arguably, a good way to leverage existing Objective-C code that’s been written on MacOS X
and which you want to port to Windows might be to port the backend, underlying non-GUI
code using Objective-C and GNUstep. You can then write a native GUI that runs on top of that
backend code, communicating with it using interprocess communication or linking with it as a
library. By doing this, you get the best of both worlds. You get to port your business logic code,
while still providing a familiar native user interface to the user.

For more information about the GNUstep project visit their website at http://www.gnustep.org.

Using Cocotron
Another more recent attempt at cross-platform Objective-C has been the creation of the
Cocotron project. The Cocotron project has taken a different approach with regard to porting
applications to platforms other than MacOS X. Cocotron provides a cross compiler environment
for Xcode so that you can cross compile your application inside Xcode on your MacOS X desk-
top. Using this cross compiler, you can build for Windows, Linux, or other desktop UNIX. The
applications cross compiled in this manner look, feel, and behave exactly like native applications.

The way the Cocotron project works is by leveraging the Xcode ability to have multiple tool-
chains and SDKs installed and usable for compiling your code. The same technology that lets
you click a button and compile your code for iPhone OS or Mac OS X allows Cocotron to work
its magic.

Cocotron is an ideal solution if you feel most comfortable with MacOS X and Xcode as your
development environment. It allows you to do all of your development on MacOS X and then
simply change your SDK and recompile your application for your target platform.

As if this capability weren’t enough, Cocotron also has some of the best third party support for
the Cocoa and Foundation frameworks. Its implementation is good enough that there are actu-
ally commercial quality applications that use Cocotron today to simultaneously deploy on
MacOS X and Windows.

The biggest areas that Cocotron tends to lag behind are in networking, threading, and some
higher level framework support. These are being actively worked on however, and if you have a
sufficient budget, you can even contract the Cocotron maintainers for the purposes of improv-
ing specific parts of the libraries, which your application requires.

Figure 19.2 shows an example application written using Cocotron running on Windows and
MacOS X.

25_9780470479223-ch19.indd 35725_9780470479223-ch19.indd 357 1/4/11 8:59 PM1/4/11 8:59 PM

358 Exploring Advanced Topics

Figure 19.2

An application written using Cocotron.

If you have an adversity to developing on MacOS X as your primary development environment,
Cocotron is probably not for you. However, if your goal is simply to port an existing application
from MacOS X to Windows with as little effort as possible, Cocotron might be a good choice. At
the very least, I would say, download the project and try compiling your application with it. It
will probably take you less than a day, and it will tell you reasonably quickly whether your appli-
cation is among those that can be easily ported using this project.

For more information on the Cocotron project you can visit the Web site at www.cocotron.org.

Using other open source libraries
Cocotron and GNUstep are not the only open source alternatives to Apples Objective-C frame-
works. There are other implementations available, but most of them are limited in scope or no
longer maintained. My suggestion, when considering writing in Objective-C on platforms other
than Mac OS X or iPhone is to evaluate the two projects I have mentioned here and see if they
will suit your needs. If so, then you’re in luck!

25_9780470479223-ch19.indd 35825_9780470479223-ch19.indd 358 1/4/11 8:59 PM1/4/11 8:59 PM

 Chapter 19: Using Objective-C on Other Platforms 359

Looking Toward the Future
One of the reasons that I wanted to write this book is because I feel that Objective-C is an
underappreciated language. Its cousins, C++, Java, and others tend to receive much more
attention. I think one of the reasons that this is so is because, traditionally, Objective-C has only
been useful for developing on MacOS X.

With the advent of the iPhone and now the iPad, Objective-C has received a tremendous
amount of new attention and has been experiencing unprecedented growth in terms of new
users learning the language. This has been both a blessing and a curse.

It is a blessing because it ensures that the platform will survive for many years to come, but it is
also a curse because it demonstrates the lack of adequate standardization and documentation
for this outstanding language.

Unlike C and C++, Objective-C does not have an ISO standards body driving its specification.
Some would argue that this is actually a good thing. In fact, that may be one of the reasons that
Objective-C is as elegant and perfectly suited to its task as it is. However, the problem is that
due to this lack of standardization, there is very little adoption of Objective-C outside of its core
platforms. This means that these new developers who are coming to the platform will be lim-
ited in the future to developing only on MacOS X or iPhone OS.

No one knows what the future may bring in terms of new hardware and new platforms. When
learning a language, you are making an intellectual investment in that language and in the plat-
forms upon which that language runs. In order to ensure that an investment in Objective-C is
an investment which will pay dividends long into the future, we need to push Objective-C as a
language beyond its core platforms. It needs to gain greater support and greater adoption on
other platforms such as UNIX and Windows. I can’t say that I advocate an Objective-C ISO stan-
dardization, but I would definitely like to see improvements in third party project support on
these platforms.

To be sure, some of the projects that I introduced you to in this chapter have these ideals as
their goals. That’s excellent, and we should help support and promote those projects even if
they are not on platforms that we ourselves may favor. Keeping Objective-C alive and a viable
programming environment for different platforms helps to make your investment here more
valuable in the future.

Summary
In this chapter, I’ve introduced you to a couple of open source projects which enable you to
compile and run your Objective-C applications on platforms other than MacOS X or iPhone OS.
Though they are not perfect, they are good, and improving, and in the future they may provide
viable development platforms. Even today, there are some developers who are using these

25_9780470479223-ch19.indd 35925_9780470479223-ch19.indd 359 1/4/11 8:59 PM1/4/11 8:59 PM

360 Exploring Advanced Topics

third-party projects for porting commercial applications. In cases where developers run into dif-
ficulties using these third-party projects for porting, they can also work with the maintainers of
the projects to help improve those projects. If possible, I encourage you to do this as well. Not
only does it help in improving language support on these alternative platforms it also can help
improve your understanding of the language as well. One of the best learning environments is
in working with existing code and trying to improve it.

By encouraging a thriving alternative platform ecosystem for Objective-C, we help ensure that
our intellectual investment will continue to repay us long into the future.

25_9780470479223-ch19.indd 36025_9780470479223-ch19.indd 360 1/4/11 8:59 PM1/4/11 8:59 PM

Index

SPECIAL CHARACTERS AND
NUMERICS
-- operator, 48
- operator, 48
! operator, 48
!= operator, 48
#define directive, 229–230
#elif directive, 229, 236
#else directive, 229, 236
#end statement, 236
#endif directive, 229
#error directive, 229–230
#if directive, 229, 236
#ifdef directive, 229, 237
#ifndef directive, 237
#import directive, 229
#include directive, 229–230
#pragma directive, 229–230
#undef directive, 229
#warning directive, 229–230
% operator, 48
%= operator, 48
%ld format, 269
& (address-of operator), 44
& operator, 48
&& operator, 48
&= operator, 48
() operator, 48
(Bar) protocol, 203
(Foo) protocol, 203
* (asterisk operator), 44
* (pointer operator), 44, 89
*/ character, 35
* operator, 34, 48
*= operator, 48
*character, 141
. operator, 48
.m extension, 82
.pch extension, 7
// (double slash), 35
/ operator, 48
// syntax, 35
/* character, 35
/= operator, 48

; (semicolons), 30
@avg function, 168
@catch directive, 244
@count function, 168
@dynamic declaration, 95
@end directive, 82
@end keyword, 197
@finally directive, 249
@max function, 168
@min function, 168
@MY_IMPORTANT_DATA, 226
@optional keyword, 197, 200
@property directive, 94
@protocol Foo directive, 204
@protocol keyword, 197, 201
@sum function, 168
@synchronize keyword, 317–319
@synchronized directive, 159, 317–318
@synthesize directive, 95, 96, 319
@”this is bar” macro, 231
@try block, 249
@try directive, 247
[] (square bracket operators), 89
[] operator, 48
[foo copy] object, 112
[self init] variable, 119
[super init] variable, 119
\ character, 268
\” escape sequence, 268
\\ escape sequence, 268
\r escape sequence, 268
\t escape sequence, 268
^ character, 140–141
^ operator, 48
^= operator, 48
__block directive, 146
__DATE__ macro, 228
__FILE__ macro, 228
__LINE__ macro, 228
__TIME__ macro, 228
__weak keyword, 126
{} (curly braces), 14
~ operator, 48
+ operator, 48
++ operator, 48

26_9780470479223-bindex.indd 36126_9780470479223-bindex.indd 361 1/4/11 8:59 PM1/4/11 8:59 PM

362 Index

+= operator, 48
+alloc method, 333
+allocWithZone: method, 332
+archived DataWithRootObject: method, 351
+dataWithContentsOfURL: method, 300
+defaultCollector method, 135
+knownTimeZoneNames method, 308
+string method, 266
+stringWith Format method, 269
+stringWithCharacters:length: method, 266
+stringWithContentsOfFile:encoding:error:

method, 266
+stringWithContentsOfFile:usedEncoding:

error: method, 267
+stringWithContentsOfURL:encoding:error:

method, 267
+stringWithContentsOfURL:usedEncoding:

error: method, 267
+stringWithCString:encoding: method, 266
+stringWithFormat: method, 266, 267
+stringWithString: method, 266
+stringWithUTF8String: method, 266
+timeZoneWithName factory method, 308
< operator, 48
<< operator, 48
<<= operator, 48
<= operator, 48
<> (angle brackets), 58, 197
<value> pattern, 169
<valueName> pattern, 178
= operator, 48
== operator, 48, 265
> operator, 48
>= operator, 48
>> operator, 48
>>= operator, 48
 -= operator, 48
5555 value, 32
-accessInstanceVariables Directly method, 178

A
accessors

age, 104
atomic, 97
creating, 95
defined, 92
indexed, 172–174

KVC, 165–167, 178–181
KVC compliant, writing, 169–171
nonatomic, 97
property, synthesized, 96
unordered, 174–176

-addExecutionBlock: method, 328
-addObject: method, 282
address-of operator (&), 44
age accessor, 104
All-In-One layout option, 10
-allKeys method, 278
–allObjects method, 278, 279, 280
+alloc method, 333
+allocWithZone: method, 332
angle brackets (<>), 58, 197
anonymous categories, 216–218
Apple iPads, 359
Apple iPhones, 359
application bundles

contents of, 17
directory of, 17–18
overview, 16
properties, 23

Application Programming Interface (API)
handling errors, 241
using blocks in, 150–151

applications
foundation, 131–132
GUI, 118, 314, 322, 357
Interface Builder, 16
NeXTstep, 356

applying objects
creating employee class, 101–104
creating manager class, 104–107
tying classes together, 107–108

arbitrary datatypes, 296–297
+archived DataWithRootObject: method, 351
archiver file formats, 352
are -will Change:valuesAtIndexes:forKey:

variable, 185
argc argument, 30
argc variable, 32, 33
argv argument, 30
arithmetic, 298
arrays

dictionaries, 276–279
filtering, 292
mutability, 281–283

26_9780470479223-bindex.indd 36226_9780470479223-bindex.indd 362 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 363

overview, 273–275
sets, 280–281
using KVC with, 171–176
using with blocks to filter for primes, 156–159

ASCII encoding, 167
assign attribute, 95, 98–99
associative collections, 276–277
asterisk operator (*), 44
atomic accessor, 97
atomic flag, 319
atomicity, 319
-attemptRecoveryFromError:optionIndex:

method, 253
attributes

assign, 95, 98–99
copy, 95, 98–99
getter=<name>, 95
nonatomic, 95, 97
readonly, 95
readwrite, 95
retain, 95, 98–99, 102
searching objects for, 177–178
setter=<name>, 95
stringOnBar, 164

auto keyword, 37
automatic storage classes, 37
autorelease concept, 113–119
-autorelease method, 333
autorelease pool, 116
aVariable variable, 32
aVariable1 variable, 33
aVariable2 variable, 33
@avg function, 168

B
Bar. Bar object, 330
Bar class, 164, 171
Bar object, 336
(Bar) protocol, 203
Base SDK for All Configurations setting, 20
behavior, 92–99
__block directive, 146
blocks

applying to embarrassingly parallel tasks
creating projects, 152–156
Grand Central Dispatch, 159–162
using blocks with arrays to filter for primes, 156–159

common design patterns of
using code blocks for maps, 149–150
using in standard API, 150–151

declaration of, 140
definitions of, 142
scoping of

managing code block memory, 145–146
typedef, 147

understanding
declaring code blocks, 140–142
using code blocks, 142–144

using with collections, 292–293
using with threads

Grand Central Dispatch, 148
using GCD functions to dispatch code blocks in

threads, 148–149
blue icon, 11
BOOL type, 36
break statement, 64
Build and Run button, Editor panel, 8, 16
Build Configurations, 21
Build Independent Targets in Parallel setting, 19
build settings, 7, 18–23, 233
built-in macros, 237
BusinessLogic class, 192–193, 199
buttons

Build and Run, 8, 16
Choose, 5
Code Sense Index, 20
Configure Roots, 18
Configure Roots and SCM, 18
dialog box, 252
plus, 22
SCM, 18
stop, 320

C
C++ method, 113, 260
calculateFactorial function, 53
Calculator program, 70
callbacks, 181–183
calls, 90–92
camel case, 169
Cat concept, 77
@catch directive, 244
categories

breaking up functionality using, 212
dangers of creating on NSObject, 215–216

26_9780470479223-bindex.indd 36326_9780470479223-bindex.indd 363 1/4/11 8:59 PM1/4/11 8:59 PM

364 Index

categories (continued)
declaring, 209
declaring in header files, 211
extending class methods, 212–214
implementing methods, 210
implementing protocols with, 215
limitations of, 214–215
NSString, 271
using, 211–212

CFRetain, 134
char type, 36
Choose button, New Project dialog box, 5
circular protocol dependencies, 203–204
Clang Static Analyzer tool, 23–26
classes

associating variables with existing classes, 218–220
Bar, 164, 171
BusinessLogic, 192–193, 199
categories

breaking up functionality using, 212
declaring, 209
declaring in header files, 211
extending class methods, 212–214
implementing methods of, 210
implementing protocols with, 215
limitations of, 214–215
overview, 208
understanding the dangers of creating on

NSObject, 215–216
using, 211–212

clusters of, 120
declaring protocols implementation, 198–199
defined, 13
Employee, 93–94, 101–104
extending using anonymous categories, 216–218
file wrapper, 129, 242–243, 250
files, 81–83
Foo, 164, 217
Foundation, 319
manager, 104–107
methods of

defined, 83
writing, 87–89

MyDelegate protocol, 337
MyPoint, 186, 187
NetworkClient, 193, 197
NetworkConnector, 192–195
NSArchiver, 260, 345, 351–352

NSArray, 88, 151–152, 172–276, 291–293
NSAutoreleasePool, 260
NSBlockOperation, 151, 327
NSBundle, 260
NSCalendar, 260, 304–309
NSCoder, reading and writing with

decoding objects, 350–351
encoding basic types, 347–348
encoding objects, 345–347
implementing protocol in objects, 345
object graphs, 348
overview, 345
using NSArchiver and NSUnarchiver, 351–352
using other types of data, 348–349
working with archiver file formats and legacy

data, 352
NSCountedSet, 281
NSData, 260, 296–301
NSDate, 260, 304–305, 309
NSDateFormatter, 260, 308–309
NSDecimalNumber, 298
NSDictionary

enumerating, 286
purpose of, 151, 260
storing weak references using, 126
using dictionaries, 276–277

NSEnumerator, 68, 260, 286, 287
NSError, 251–255, 260
NSException, 244, 245, 260
NSFileHandle, 260
NSFileManager, 261
NSGarbageCollector, 134–135, 261
NSIndexSet, 151
NSKeyedArchiver, 351, 353
NSKeyedUnarchiver, 353
NSLock, 260, 315
NSMutableArray, 260, 282
NSMutableData, 296–301
NSMutableDictionary, 218- 219, 260
NSMutableSet, 261, 283, 300
NSMutableString, 209–212, 261, 265
NSNotificationCenter, 151, 261, 339, 343
NSNumber, 295–301
NSObject, 200, 215–216, 261
NSOperation, 322–328
NSOperationQueue, 151, 322–328
NSPointerArray, 285, 286
NSSet, 151, 175, 261, 280

26_9780470479223-bindex.indd 36426_9780470479223-bindex.indd 364 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 365

NSString, 151, 208, 261, 267
NSTask, 261
NSThread, 261, 319, 322
NSUnarchiver, 260, 345, 351–352
NSURL, 261
NSURLConnection, 201
NSValue, 295–301
Observer, 187, 189
overview, 78
PrimeFinder, 153, 156
someMember, 168
special object methods, 85–87
storage, 37
string, custom, 208
subclassing, 208
third-party frameworks and, 207–208
tying together, 107–108
writing methods, 87–89
writing object methods, 83–85

close method, 130
closures, 139. See also blocks
Cocoa Class selection, 9
Cocoa GUI frameworks, 321
Cocoa methods, 151
Cocoa platform, 355
Cocoa Touch framework, 334
Cocoa Touch libraries, 80
Cocotron project, 357–358
code

blocks of
declaring, 140–142
memory, 145–146
overview, 142–144
using for maps, 149–150
using GCD functions to dispatch, 148–149

synchronizing, 314–319
turning compiled into executables, 15–16
turning source into compiled, 15–16
writing, 12–14

Code Sense Index button, 20
-collectExhaustively method, 135
-collectIfNeeded method, 135
collections

enumerating, 286–288
memory management and

overview, 283–284
using specialized collections, 285–286

overview, 273

sending messages to elements, 288–289
sorting and filtering, 289–292
using blocks with collections, 292–293
working with arrays

dictionaries, 276–279
mutability, 281–283
overview, 273–274
sets, 280–281

Command Line Tool option, 5
Command-line builds use option, 22
comments, 35
commit method, 86
-compare: method, 305
compilation process

Application bundle, 23
application bundles, 16–18
Base SDK for All Configurations setting, 20
Build Configurations, 21
Build Independent Targets in Parallel setting, 19
build settings, 18–23
Code Sense Index, 20
Icon File setting, 22
icons, 22
passing constants by, 231–232
Place Build Products In settings, 19
Place Intermediate Build Files In setting, 19
Project Settings window, 19
Properties tab, 22
Rules tab, 22
SDK (Software Development Kit), 20
turning compiled code into executables, 15–16
turning source code into compiled code, 15–16
writing code, 12–14

-components SeperatedByString: method, 270
composition, 191–196
conditional statements

choosing, 64
switch statements, 63–64
ternary conditionals, 62–63
using if-else, 61–62

conditional switching, 236–237
Configurations tab, 20
Configure Roots button, Project Settings window, 18
-conformsToProtocol: method, 201
const keyword, 37, 38
constants

overview, 230–231
passing by compilation, 231–232

26_9780470479223-bindex.indd 36526_9780470479223-bindex.indd 365 1/4/11 8:59 PM1/4/11 8:59 PM

366 Index

constructing dates, 304
control variable (i), 64, 66
COOPC extension, 3
copy attribute, 95, 98–99
copy style setter, 99
-copyWithZone: method, 333
Core Foundation methods, 133
Correct Code, 26
@count function, 168
-count method, 274
-countForObject: method, 281
counting expression, 66
-countOf<ValueName> method, 178
-countOf<VariableName> method, 172, 175
Cox, Brad, 3
CPU, 156
CreateFoo method, 112
curly braces ({}), 14
custom string class, 208

D
dangling pointers, 122
data

member names, 99
reading and writing with NSCoder class

decoding objects, 350–351
encoding basic types, 347–348
encoding objects, 345–347
implementing NSCoding protocol in objects, 345
object graphs, 348
overview, 345
using NSArchiver and NSUnarchiver, 351–352
using other types of data, 348–349
working with archiver file formats and legacy data,

352
datatypes

arbitrary, 296–297
id, 27, 81, 84, 200

+dataWithContentsOfURL: method, 300
__DATE__ macro, 228
dates

comparing, 305–306
constructing, 304
using NSCalendar, 306–307
using NSDateFormatter, 308–309
working with time intervals, 304–305
working with time zones, 307–308

deadlock, 316
dealloc method

manager objects and, 106
memory management and, 119
using to write objects, 86–87
writing, 121–122

deallocation method, 130
debugging, 16
DEBUGGING macro, 226, 227
declaring

categories, 209
code blocks, 140–142
local variables, 37
objects, 89–90
protocols, 197–198
scalar variables, 36
variables, 32–35

decoding objects, 350–351
defaultCollector method, 134
+defaultCollector method, 135
#define directive, 229–230
delegate method, 338
Delegate pattern, 338–339
delegating responsibility, 336–339
dereferencing pointers, 45
-description method, 268
design patterns

block, 149–151
defined, 330
describing

delegating responsibility, 336–339
notifying objects of changes, 339–343
using singletons, 331–336

overview, 329
in solutions, 329–331

designated initializer, 86
Detail tab, 59
Detailed Analyzer output, 25
development

adding source files, 8–10
files in projects, 7–8
main Xcode window, 10–12
starting projects, 4–7

dialog box buttons, 252
diamond problem, 195
dictionaries

userInfo, 252–253
using, 276–279

26_9780470479223-bindex.indd 36626_9780470479223-bindex.indd 366 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 367

-didChangeValueForKey: method, 184
-didChange:valuesForIndexes: forKey:

variable, 185
directives

#define, 229–230
#elif, 229, 236
#else, 229, 236
#endif, 229
#error, 229–230
#if, 229, 236
#ifdef, 229, 237
#ifndef, 237
#import, 229
#include, 229–230
#pragma, 229–230
#undef, 229
#warning, 229–230
@catch, 244
@end, 82
@finally, 249
@property, 94
@protocol Foo, 204
@synchronized, 159, 317–318
@synthesize, 95, 96, 319
@try, 247
__block, 146

directories
PlugIns, 18
SDK, 20, 262
Spotlight, 18

-disable method, 135
-disableCollectionForPointer: method, 135
dispatch_block_t type, 161
dispatch_get_global_queue method, 148
dispatch_queue_create function, 148
do loops, 69
dot notation, 99–100
double slash (//), 35
double type, 35
do-while loop, 69
-dropSortedKeys method, 220
duck typing, 26
@dynamic declaration, 95
dynamic languages, 209

E
Edit Project Settings, 18
Editor panel, main Xcode window, 8, 10

elements
accessing groups of, 276
in collection classes, 274
sending messages to, 288–289

#elif directive, 229, 236
#else directive, 229, 236
else statement, 62
embarrassingly parallel tasks, 152–162
Employee class, 93, 101–104
employee class interface, 94
Employee objects, 289
-enable method, 135
-enableCollectionForPointer: method, 135
-encodeObject... methods, 346
-encodeWithCoder: method, 345, 347
encoding

objects, 345–347
types, 347–348

@end directive, 82
@end keyword, 197
#end statement, 236
#endif directive, 229
-enumerate ObjectsAtIndexes:withBlock:

method, 293
-enumerateObjectsWithOptions:usingBlock:

method, 292
enumeration

in foundation framework, 286–288
using for loops for, 66–67

-enumeratorOf<ValueName> method, 178
enums, 42–43
-enunerateObjectsUsingBlock: method, 292
#error directive, 229–230
errors

classifying errors
interrupting program flow, 240–241
overview, 239–240

mechanisms for
creating NSError object, 251–252
exceptions, 244–250
NSError in methods, 254–255
NSError userInfo dictionary, 252–253
return codes, 241–244
working with recovery attempter, 253–254

overview, 239
errors icons, 11
exceptions

handling errors, 244–250
overview, 240

26_9780470479223-bindex.indd 36726_9780470479223-bindex.indd 367 1/4/11 8:59 PM1/4/11 8:59 PM

368 Index

exceptions (continued)
raising, 244
throwing, 244–245

executables, 15–16, 18
Existing Frameworks option, 262
expanded code, 236
expressions

comments, 35
counting, 66
declaring variables, 32–35
enums, 42–43
operators, 48–50
pointers, 44–48
scalar types, 35–36
search of, 207
special variable modifiers, 37–38
structures, 38–40
ternary operator, 51
typedefs, 40–42

extending class methods, 212–214
extern keyword, 38, 56

F
Factorial.h file, 57
factorials, 51–52
factory methods, 87, 267
File Browser panel, main Xcode window, 10
File Navigation drop-down list, 12
file wrapper class, 129, 242–243, 250
__FILE__ macro, 228
files

archiver formats, 352
class, 81–83
header, 211
implementation, linking with, 58–60
nib, 132
in projects, 7–8
source, 8–10

-filterArray:withBlock: method, 159
filtering arrays, 292
filtering collections, 289–292
-filterUsingPredicate: method, 291
finalize method, 124, 129
@finally directive, 249
finite resources, 128–131
first subsection, 14
5555 value, 32

float type, 35, 39
flow

choosing statements, 64
do loops, 69
if-else statements, 61–62
interrupting, 240–241
for loops, 65–67
switch statements, 63–64
ternary conditionals, 62–63
while loops, 67–69

-fobjc-gc flag, 127
-fobjc-gc-only flag, 127
Foo class, 164, 217
[foo copy] object, 112
Foo object, 330, 336
(Foo) protocol, 203
for loop

overview, 65–66
using for fast enumeration, 66–67

forcing garbage collection, 133
formal protocols, 200–201
format strings, 267–269
foundation applications, 131–132
Foundation classes, 319
foundation framework, 259–262, 264, 355
foundation structures, 297
framework selection dialog box, 263
frameworks

foundation, 259–261
other, 261–262
overview, 259
third-party, 207–208
using in garbage collected projects, 128
using in projects

adding, 262–263
garbage collection, 264
including headers, 264
overview, 262

function declaration, 56
function definition, 56
functionality, 212
functions

@avg, 168
@count, 168
@max, 168
@min, 168
@sum, 168
@avg, 168

26_9780470479223-bindex.indd 36826_9780470479223-bindex.indd 368 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 369

calculateFactorial, 53
@count, 168
defining, 30, 54–56
dispatch_queue_create, 148
features of, 168
GCD, 148–149
implementation versus interface, 56–58
interfaces, 56–58
linking with implementation files, 58–60
LOG_LINE, 228
main, 29–30, 188
map, 149
@max, 168
@min, 168
NSLog, 30, 33, 267
objc_setAssociatedObject, 218
overview, 51–54
@sum, 168

G
garbage collection

configuring projects for, 126–128
forcing, 133
frameworks, 264
managing finite resources, 128–131
object oriented interface, 134–135
overview, 123–125
reference types, 125–126
using frameworks in projects, 128
void pointers, 133–134
working with objects in nib files, 132
writing foundation applications with, 131–132

Garbage Collection Build Settings, 127
gcc (GNU compiler collection), 355
GCD (Grand Central Dispatch)

in multiprocessing, 323
overview, 148
using, 159–162

-get<ValueName> pattern, 178
-get<Variable Name>:range: method, 173
getter=<name> attribute, 95
global variables, 33, 37, 75
globally unique identifier (GUID), 209
GNU compiler collection (gcc), 355
GNUstep project

Cocotron, 357–358
other open source libraries, 358
overview, 356–357

Grand Central Dispatch (GCD)
in multiprocessing, 323
overview, 148
using, 159–162

graphs of objects, 348
GUI applications, 118, 314, 322, 357
GUID (globally unique identifier), 209
GUID category, 209, 211, 212

H
handling errors

classifying errors
interrupting program flow, 240–241
overview, 239–240

mechanisms for
creating NSError object, 251–252
exceptions, 244–250
NSError userInfo dictionary, 252–253
NSErrors in methods, 254–255
return codes, 241–244
working with recovery attempter, 253–254

overview, 239
handling exceptions, 247
header files, 211
headers, 264
heisenbugs, 314

I
i (control variable), 64, 66
IBOutlet object, 132
Icon File setting, 22
icons

 configuring, 22
warning, 11

id datatype, 27, 81, 84, 200
#if directive, 229, 236
if statement, 61, 62
#ifdef directive, 229, 237
if-else statements, 61–62
#ifndef directive, 237
immutable Foundation classes, 319
immutable methods, 298
implementation files

example of, 14, 82–83
linking with, 58–60

implementation functions, 13, 56–58
#import directive, 229

26_9780470479223-bindex.indd 36926_9780470479223-bindex.indd 369 1/4/11 8:59 PM1/4/11 8:59 PM

370 Index

import statement, 30
#include directive, 229–230
indexed accessors, 172–174
-indexesOfObjects: method, 276
-indexesOfObjectsPassingTest: method, 293
-indexOfObject: method, 275
indirect references, 251
informal protocols, 200–201
inheritance

favoring composition over, 191–196
overview, 78–80

-init method, 119, 333
initializers, 119–121
-initWithCoder: method, 121, 350, 351
-initWithOptions: method, 285
-initWithPointer Functions: method, 286
instance variables, 35
int return code, 242
int type, 35, 44
int value, 49
Interface Builder application, 16
interface files, 13, 81-82
interface functions, 56–58
interfaces

documenting for others to implement, 195–196
object oriented, 134–135
overview, 13

interrupting program flow, 240–241
IOClient protocol, 198
iPads, 359
iPhones, 359
-isEnabled method, 135
-isEqual: method, 265, 280
isPrime: method, 159

K
key paths, 167–169
Key Value Coding (KVC)

accessing object properties using
key paths, 167–169
searching objects for attributes, 177–178
using with arrays, 171–176
using with structures and scalars, 177
writing compliant accessors, 169–171

applying Key Value Observing (KVO), 186–189
observing changes to KVC-compliant values

defining callbacks for KVO, 181–183
implementing manual notifications, 184–185

registering as observer, 179–181
removing observers, 183
understanding risks with KVO, 185–186
using KVO, 179

overview, 165–167
Key Value Observing (KVO)

accessing object properties using key value coding (KVC)
key paths, 167–169
searching objects for attributes, 177–178
using KVC with structures and scalars, 177
using with arrays, 171–176
writing compliant accessors, 169–171

applying, 186–189
observing changes to KVC-compliant values

defining callbacks, 181–183
implementing manual notifications, 184–185
registering as observers, 179–181
removing observers, 183
understanding risks, 185–186
using, 179

keyed archiving, 347
keys

NSLocalizedDescription, 253
NSLocalizedFailureReason, 253
NSLocalizedRecoveryOptionsError, 253
NSLocalizedRecoverySuggestionError, 253
NSRecoveryAttempterError, 253
NSUnderlyingError, 253
NSValueChangeIndexes, 182
NSValueChangeInsertion value, 183
NSValueChangeKind, 182
NSValueChangeNew, 182
NSValueChangeNotificationIsPrior, 182
NSValueChangeOld, 182
NSValueChangeRemoval value, 183
NSValueChangeReplacement value, 183
NSValueChangeSetting value, 183
void *, 219

keywords
@end, 197
@optional, 197, 200
@protocol, 197, 201
@synchronize, 317–319
__weak, 126
auto, 37
const, 37, 38
extern, 38, 56
static, 37–38
struct, 38–39

26_9780470479223-bindex.indd 37026_9780470479223-bindex.indd 370 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 371

+knownTimeZoneNames method, 308
KVC (Key Value Coding)

accessing object properties using
key paths, 167–169
searching objects for attributes, 177–178
using with arrays, 171–176
using with structures and scalars, 177
writing compliant accessors, 169–171

applying Key Value Observing (KVO), 186–189
observing changes to KVC-compliant values

defining callbacks for KVO, 181–183
implementing manual notifications, 184–185
registering as observer, 179–181
removing observers, 183
understanding risks with KVO, 185–186
using KVO, 179

overview, 165–167
KVC accessors, 165–167, 178–181
KVO (Key Value Observing)

accessing object properties using key value coding (KVC)
key paths, 167–169
searching objects for attributes, 177–178
using KVC with structures and scalars, 177
using with arrays, 171–176
writing compliant accessors, 169–171

applying, 186–189
observing changes to KVC-compliant values

defining callbacks, 181–183
implementing manual notifications, 184–185
registering as observers, 179–181
removing observers, 183
understanding risks, 185–186
using, 179

KVO callback method, 181

L
-lastObject: method, 275
%ld format, 269
legacy data, 352
legacy runtime, 27
libraries

open source, 358
standard, 260

__LINE__ macro, 228
linking

defined, 15
with implementation files, 58–60

LLVM 1.5 compiler, 220
local scope, 34
local variables, 34
-lockBeforeDate: method, 316
locks, 315–317
LOG_LINE function, 228
LOGVAR(someVar) line, 235
long long type, 36
long type, 35
loops

do, 69
do-while, 69
for, 65–67
while, 64, 67–69

Love, Tom, 3

M
.m extension, 82
MacOS X, 357, 359
macros

@”this is bar”, 231
__DATE__, 228
__FILE__, 228
__LINE__, 228
__TIME__, 228
DEBUGGING, 226, 227
MAX, 232
THE_KEY, 226
writing

built-in macros, 237
compilation process, 223–229
constants, 230–231
handling conditional switching, 236–237
overview, 223
passing constants by compilation, 231–232
stringification, 234–236
variables in macros, 232–234

main function, 29–30, 188
main procedure, 107
main toolbar, main Xcode window, 10
main Xcode window, 6, 11
-makeObjects PerformSelector: method, 288
-makeObjectsPerformSelector:withObject:

method, 288
manager class, 104–107
manager property, 102
manual notifications, 184–185

26_9780470479223-bindex.indd 37126_9780470479223-bindex.indd 371 1/4/11 8:59 PM1/4/11 8:59 PM

372 Index

map function, 149
maps, 149–150
MathOperations unit, 70
MathOperations.h file, 72
MathOperations.m file, 71
@max function, 168
MAX macro, 232
maxConcurrentOperationCount property, 326
member names, 99
member variables, 35
-memberOf<ValueName>: method, 178
memory leaks, 34, 111
memory management

collections and, 283–286
garbage collection

configuring projects for, 126–128
overview, 123–126
using frameworks in projects, 128

key garbage collector patterns
forcing garbage collection, 133
managing finite resources, 128–131
object oriented interfaces, 134–135
working with objects in nib files, 132
working with void pointers and garbage

collection, 133–134
writing foundation applications with, 131–132

overview, 109–112
reference counting

autorelease, 113–119
learning rules of, 112–113
writing dealloc methods, 121–122
writing initializers, 119–121

using models for projects, 135–136
memory management methods, 334
messages, 288–289
method definition, 83–84
methods

+alloc, 333
+allocWithZone:, 332
+archived DataWithRootObject:, 351
+dataWithContentsOfURL:, 300
+defaultCollector, 135
+knownTimeZoneNames, 308
+string, 266
+stringWith Format, 269
+stringWithCharacters:length:, 266
+stringWithContentsOfFile:encoding:

error:, 266

+stringWithContentsOfFile:usedEncoding:

error:, 267
+stringWithContentsOfURL:encoding:

error:, 267
+stringWithContentsOfURL:usedEncoding:

error:, 267
+stringWithCString:encoding:, 266
+stringWithFormat:, 266, 267
+stringWithString:, 266
+stringWithUTF8String:, 266
+timeZoneWithName factory, 308
-accessInstanceVariables Directly, 178
-addExecutionBlock:, 328
-addObject:, 282
-allKeys, 278
–allObjects, 278, 279, 280
-attemptRecoveryFromError:optionIndex:, 253
-autorelease, 333
C++, 113, 260
category, implementing, 210
class

extending, 212–214
overview, 83–84
writing, 87–89

close, 130
Cocoa, 151
-collectExhaustively, 135
-collectIfNeeded, 135
commit, 86
-compare:, 305
-componentseperatedByString:, 270
-conformsToProtocol:, 201
-copyWithZone:, 333
Core Foundation, 133
-count, 274
-countForObject:, 281
-countOf<ValueName>, 178
-countOf<VariableName>, 172, 175
CreateFoo, 112
+dataWithContentsOfURL:, 300
dealloc, 86–87, 106, 119, 121–122
deallocation, 130
defaultCollector, 134
+defaultCollector, 135
definition of, 83–84
delegate, 338
-description, 268
-didChangeValueForKey:, 184

26_9780470479223-bindex.indd 37226_9780470479223-bindex.indd 372 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 373

-disable, 135
-disableCollectionForPointer:, 135
dispatch_get_global_queue(), 148
-dropSortedKeys, 220
-enable, 135
-enableCollectionForPointer:, 135
-encodeObject..., 346
-encodeWithCoder:, 345, 347
-enumerate ObjectsAtIndexes:withBlock:, 293
-enumerateObjectsWithOptions:

usingBlock:, 292
-enumeratorOf<ValueName>, 178
-enunerateObjectsUsingBlock:, 292
factory, 87, 267
-filterArray:withBlock:, 159
-filterUsingPredicate:, 291
finalize, 124, 129
-get<Variable Name>:range:, 173
immutable, 298
-indexesOfObjects:, 276
-indexesOfObjectsPassingTest:, 293
-indexOfObject:, 275
-init, 119, 333
-initWithCoder:, 121, 350, 351
-initWithOptions:, 285
-initWithPointer Functions:, 286
-isEnabled, 135
-isEqual:, 265, 280
isPrime:, 159
+knownTimeZoneNames, 308
KVO callback, 181
-lastObject:, 275
-lockBeforeDate:, 316
-makeObjects PerformSelector:, 288
-makeObjectsPerformSelector:

withObject:, 288
-memberOf<ValueName>:, 178
memory management, 334
-minusSet:, 283
-nextObject, 287
NSCoder, 346, 348
NSGarbageCollector, 135
NSKeyedUnarchiver, 352
NSObject, 277, 322, 338
NSString, 182, 269–270
NSString’s -description, 268
NSTimeInterval, 304
objc_collect, 133

objc_startCollectorThread, 124
object

special, 85–87
writing, 83–85

-objectAt Index:, 275
-objectForKey:, 278
-objects ForKeys:notFoundMarker:, 278
-objectsAtIndexes:, 276
-openFileAtPath:, 242, 244
-openFileAtPath:withError:, 255
-operationCount, 326
-performSelector, 322
private, 90–92
-rangeOfString:, 270
release, 90, 333
-remove<VariableName>:, 176
-removeObject:, 281
-removeObjectForKey:, 282
-removeObserver:, 341
-resetBytesInRange:, 300
-respondsToSelector:, 202
retain, 110, 333
-retainCount, 333
-setNil ValueForKey:, 177
-setValueForKey:, 177
-setValue:forUndefinedKey:, 178
singleton factory, 332
-sortedKeysUsingSelector:, 279
-sortUsingDescriptors:, 289
-sortUsingFunction:context:, 290
-sortUsingSelector:, 290
special object, 85–87
-start, 204
+string, 266
+stringWith Format, 269
+stringWithCharacters:length:, 266
+stringWithContentsOfFile:encoding:

error:, 266
+stringWithContentsOfFile:usedEncoding:

error:, 267
+stringWithContentsOfURL:encoding:

error:, 267
+stringWithContentsOfURL:usedEncoding:

error:, 267
+stringWithCString:encoding:, 266
+stringWithFormat:, 266, 267
+stringWithString:, 266
+stringWithUTF8String:, 266

26_9780470479223-bindex.indd 37326_9780470479223-bindex.indd 373 1/4/11 8:59 PM1/4/11 8:59 PM

374 Index

methods (continued)
-stuffChanged:, 341
superclass, 214
-timeIntervalSinceDate:, 305
-timeIntervalSinceNow, 305
+timeZoneWithName factory, 308
-tryLock, 316
updateEngineSpeedFromThrottle, 93
-valueForKey:, 164, 177
-valueForKeyPath:, 164
-valueForUndefinedKey:, 178
-willChangeValueForKey:, 184
-work:, 320
working with NSErrors in, 254–255

@min function, 168
-minusSet: method, 283
models, 135–136
modern runtime, 27
modifiers of variables, 37–38
multiple inheritance, 193–194
multiple protocols, 199
multiprocessing with threads

NSOperation and NSOperationQueue
adding operations to queues, 325–326
creating operations, 323–325
manipulating queue parameters, 326
overview, 322–323
using other kinds of operations, 326–328

NSThread

accessing the main thread, 321–322
creating threads, 319–320
crossing threads using perform selector, 322
manipulating running threads, 320–321

overview, 313–314
synchronizing code

@synchronize keyword, 317–319
atomicity, 319
locks, 315–317
overview, 314–315

mutability, 281–283
mutex, 315
mutually exclusive locks, 315
@MY_IMPORTANT_DATA, 226
MyClassDelegate protocol, 337
MyPoint class, 186, 187

N
NetworkClient class, 193, 197
NetworkClient protocol, 196–200
NetworkConnector class, 192–195
New File dialog box, 8, 9
New Project dialog box, 5
-nextObject method, 287
NeXTstep application, 356
NIB (NeXTstep Interface Builder) files

overview, 16
working with objects in, 132

nil object, 85, 120
nonatomic accessor, 97
nonatomic attributes, 95, 97
NSArchiver class, 260, 345, 351–352
NSArray class, 151–152, 172–276, 291–293
NSAutoreleasePool class, 260
NSAutoreleasePool object, 118
NSBlockOperation class, 151, 327
NSBundle class, 260
NSCalendar class, 260, 304–309
NSCoder class

decoding objects, 350–351
encoding basic types, 347–348
encoding objects, 345–347
implementing NSCoding protocol in objects, 345
object graphs, 348
overview, 345
using NSArchiver and NSUnarchiver, 351–352
using other types of data, 348–349
working with archiver file formats and legacy data, 352

NSCoder method, 346, 348
NSCoder system, 352
NSCoding protocol, 345, 348, 353
NSCopying protocol, 277
NSCountedSet subclass, 281
NSData boxing, 348
NSData class

accessing raw bytes in nsdata objects, 300–301
creating nsdata objects, 299–300
purpose of, 260

NSDate class, 260, 304–305, 309
NSDate object

accessing raw bytes in, 300–301
constructing dates, 304
creating, 299–300

26_9780470479223-bindex.indd 37426_9780470479223-bindex.indd 374 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 375

NSCalendar class and, 306
NSDateFormatter class and, 309

NSDateComponents object, 306
NSDateFormatter class, 260, 308–309
NSDecimalNumber class, 298
NSDictionary class, 126, 151, 260, 276, 279
NSDictionary parameter, 182
NSEnumerator class, 68, 260, 286, 287
NSEnumerator object, 274
NSError class

creating objects, 251–252
in Foundation library, 260
userInfo dictionary, 252–253
working with in methods, 254–255
working with recovery attempter, 253–254

NSError object, 48, 240, 250–252, 254
NSException class, 244, 245, 260
NSException exception, 248
NSFileHandle class, 260
NSFileManager class, 261
NSGarbageCollector class, 134–135, 261
NSGarbageCollector methods, 135
NSIndexSet class, 151
NSInteger type, 36, 269
NSInvocationOperation operation, 326
NSKeyedArchiver class, 351, 353
NSKeyedUnarchiver class, 353
NSKeyedUnarchiver method, 352
NSKeyValueChangeIndexesKey key, 182
NSKeyValueChangeInsertion value key, 183
NSKeyValueChangeKindKey key, 182
NSKeyValueChangeNewKey key, 182
NSKeyValueChangeNotificationIsPriorKey key, 182
NSKeyValueChangeOldKey key, 182
NSKeyValueChangeRemoval value key, 183
NSKeyValueChangeReplacement value key, 183
NSKeyValueChangeSetting value key, 183
NSKeyValueObservingOptionInitial

value value, 180
NSKeyValueObservingOptionNew value value, 180
NSKeyValueObservingOptionOld value value, 180
NSKeyValueObservingOptionPrior value value, 180
NSLocalizedDescriptionKey key, 253
NSLocalizedFailureReasonKey key, 253
NSLocalizedRecoveryOptionsErrorKey key, 253
NSLocalizedRecoverySuggestionErrorKey key, 253
NSLock class, 260, 315
NSLock object, 315
NSLog function, 30, 33, 267

NSLog statement, 32
NSMutableArray class, 260, 282
NSMutableData class

accessing raw bytes in nsdata objects, 300–301
creating NSData objects, 299–300

NSMutableDictionary class, 218, 219, 260
NSMutableSet class, 261, 283, 300
NSMutableString class, 209–212, 261, 265, 271
NSNotificationCenter class, 122, 151, 261, 339, 343
NSNull value, 278
NSNumber class

doing arithmetic with NSDecimalNumber, 298
overview, 295–296
wrapping arbitrary datatypes with NSValue, 296–297
wrapping numbers with NSNumber, 297

NSNumber object, 298
NSNumber value, 177, 278
NSObject class, 80, 200, 215–216, 261
NSObject method, 277, 322, 338
NSOperation class

adding operations to queues, 325–326
creating operations, 323–325
manipulating queue parameters, 326
using other kinds of operations, 326–328

NSOperation objects, 151
NSOperation subclass, 324–327
NSOperationQueue class

adding operations to queues, 325–326
creating operations, 323–325
manipulating queue parameters, 326
used in Cocoa, 151
using other kinds of operations, 326–328

NSPointerArray class, 285, 286
NSPointerFunctionsZeroingWeakMemory option, 285
NSPredicate object, 291
NSRecoveryAttempterErrorKey key, 253
NSRect foundation structure, 297
NSSet class, 151, 175, 261, 280
NSSize, 297
NSString categories, 271
NSString class, 142, 151, 208, 261, 267
NSString constants, 220
NSString method, 182, 269–270
NSString object, 265
NSString subclasses, 208
NSString’s -description method, 268
NSTask class, 261
NSThread class, 261, 319, 322

26_9780470479223-bindex.indd 37526_9780470479223-bindex.indd 375 1/4/11 8:59 PM1/4/11 8:59 PM

376 Index

NSThread object
accessing main threads, 321–322
creating threads, 319–320
crossing threads using perform selector, 322
manipulating running threads, 320–321

NSTimeInterval method, 304
NSTimeZone object, 308
NSUInteger type, 36
NSUnarchiver class, 260, 345, 351–352
NSUnderlyingErrorKey key, 253
NSURL class, 261
NSURLConnection Cocoa class, 201, 204, 261
NSUserDefaults, 224, 230
NSValue class

doing arithmetic with NSDecimalNumber, 298
overview, 295–296
wrapping arbitrary datatypes with NSValue, 296–297
wrapping numbers with NSNumber, 297

NSValue value, 177, 278
number wrapping, 297

O
OBJC_ASSOCIATION_ASSIGN value, 219
OBJC_ASSOCIATION_COPY value, 219
OBJC_ASSOCIATION_COPY_NONATOMIC value, 219
OBJC_ASSOCIATION_RETAIN value, 219
OBJC_ASSOCIATION_RETAIN_NONATOMIC value, 219
objc_collect method, 133
objc_setAssociatedObject function, 218
objc_startCollectorThread method, 124
object file, 15
object oriented interface, 134–135
-objectAt Index: method, 275
-objectForKey: method, 278
objects

[foo copy], 112
accessing properties using KVC, 163–178
applying

classes together in the HR main, 107–108
creating employee class, 101–104
creating manager class, 104–107

Bar, 336
Bar. Bar, 330
creating classes

class files, 81–83
working with special object methods, 85–87
writing class methods, 87–89
writing object methods, 83–85

declaring, 89–90
decoding, 350–351
defined, 13
Employee, 289
encoding, 345–347
Foo, 330, 336
graphs, 348
IBOutlet, 132
id datatype, 81
implementing in protocols

avoiding circular protocol dependencies, 203–204
declaring, 197–198
declaring objects that must implement

protocols, 200
declaring that classes implement protocols, 198–199
determining if objects implement optional

methods, 201–202
formal and informal protocols, 200–201
overview, 196

implementing the NSCoding protocol in, 345
inheritance, 78–80
making calls on, 90–92
memory inside, 119–122
in nib files, 132
nil, 85, 120
notifying of changes, 339–343
NSAutoreleasePool, 118
NSData, 299–301
NSDate, 304, 306, 309
NSDateComponents, 306
NSEnumerator, 274
NSError, 48, 240, 250–252, 254
NSLock, 315
NSNumber, 298
NSOperation, 151
NSPredicate, 291
NSString, 265
NSThread, 319–322
NSTimeZone, 308
observer, 341
polymorphism, 80–81
properties

assign, retain, and copy attributes, 98–99
with different data member names, 99
dot notation, 99–100
nonatomic attribute, 97
synthesized property accessors, 96
using to declare object state, 93–96

26_9780470479223-bindex.indd 37626_9780470479223-bindex.indd 376 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 377

Root, 123
searching for attributes, 177–178
self, 120
user- Info, 340

-objects ForKeys:notFoundMarker: method, 278
-objectsAtIndexes: method, 276
Observer class, 187, 189
observer objects, 341
Observer parameter, 180
Observer pattern, 339–340, 342
observers

registering as, 179–181
removing, 183

Old-style enumeration, 68
open source libraries, 358
-openFileAtPath: method, 242, 244
-openFileAtPath:withError: method, 255
OpenStep platform, 3
-operationCount method, 326
operations

adding to queues, 325–326
creating, 323–325
kinds of, 326–328

operators
list of, 48
ternary, 51
overview, 48–50

@optional keyword, 197, 200
options

All-In-One layout, 10
Command Line Tool, 5
Command-line builds use, 22
Existing Frameworks, 262
NSPointerFunctionsZeroingWeakMemory, 285

P
parameters, 326
pass by reference, 251
pass by value, 55
patterns

describing
delegating responsibility, 336–339
notifying objects of changes, 339–343
using singletons, 331–336

overview, 329
in solutions, 329–331

.pch extension, 7
-performSelector method, 322

Place Build Products In settings, 19
Place Intermediate Build Files In setting, 19
platforms

GNUstep
open source libraries, 358
overview, 356–357
using Cocotron, 357–358

looking toward the future, 359
OpenStep, 3
overview, 355

PlugIns directory, 18
plus button, 22
Point structure, 39
pointer operator (*), 44, 89
pointer program, 45
pointer to a pointer, 251
pointers, 44–48
polymorphism, 80–81
pragma directive, 11, 229–230
Pre-Compiled Header file, 7
preprocessing, 15
PrimeFinder class, 153, 156
primes number filtering, 156–159
private methods, 90–92
procedural programming, 75
program flow

conditional statements
choosing, 64
if-else, 61–62
switch statements, 63–64
ternary conditional, 62–63

interrupting, 240–241
loops

do, 69
for, 65–66
for, using for fast enumeration, 66–67
while, 67–69

programming
languages of, 13
procedural, 75

Project Find mode, 10
Project Settings window, 18, 19
projects

Cocotron, 357–358
configuring for garbage collection, 126–128
embarrassingly parallel tasks, 152–156
files in, 7–8
GNUstep, 356–358
starting, 4–7

26_9780470479223-bindex.indd 37726_9780470479223-bindex.indd 377 1/4/11 8:59 PM1/4/11 8:59 PM

378 Index

projects (continued)
using frameworks in, 262–264
using models for, 135–136

properties
accessing using KVC, 163–178
assign, retain, and copy attributes, 98–99
with different data member names, 99
nonatomic attribute, 97
synthesized property accessors, 96
using dot notation, 99–100
using to declare object state, 93–96

Properties tab, 22
@property directive, 94
@protocol Foo directive, 204
@protocol keyword, 197, 201
protocols

examples of, 204–205
favoring composition over inheritance

documenting expected interfaces, 195–196
multiple inheritance, 193–194
solving problem using, 194–195

implementing in objects
avoiding circular protocol dependencies, 203–204
declaring, 197–198
declaring objects that must implement

protocols, 200
declaring that classes implement protocols, 198–199
determining if objects implement optional

methods, 201–202
formal and informal protocols, 200–201
overview, 196

implementing with categories, 215
overview, 191–192

public API, 218

Q
queues

adding operations to, 325–326
manipulating parameters, 326

R
raising exceptions, 244
-rangeOfString: method, 270
raw bytes, 300–301
reading data with NSCoder

decoding objects, 350–351
encoding basic types, 347–348

encoding objects, 345–347
implementing NSCoding protocol in objects, 345
object graphs, 348
overview, 345
using NSArchiver and NSUnarchiver, 351–352
using other types of data, 348–349
working with archiver file formats and legacy data, 352

readonly attribute, 95
readwrite attribute, 95
recovery attempter, 253–254
red icon, 11
reference counting

autorelease, 113–119
memory management rules, 112–113
writing dealloc methods, 121–122
writing initializers, 119–121

reference types, 125–126
registering as observer, 179–181
release method, 90, 333
-remove<VariableName>: method, 176
-removeObject: method, 281
-removeObjectForKey: method, 282
-removeObserver: method, 341
reports array, 106
Required value, 126
-resetBytesInRange: method, 300
-respondsToSelector: method, 202
responsibility delegation, 336–339
result array, 159
retain attribute, 95, 98–99, 102
retain count, 109–110
retain method, 110, 333
-retainCount method, 333
return codes, 241–244
return type definition, 140
return values, 30
Root objects, 123
Ruby language, 209
rules of memory management, 112–113
Rules tab, 22
runtime, 26–27

S
scalars

types of, 35–36
using KVC with, 177

SCM button, Project Settings window, 18

26_9780470479223-bindex.indd 37826_9780470479223-bindex.indd 378 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 379

scoping blocks
code block memory, 145–146
typedef, 147

SDK (Software Development Kit), 20
SDK directory, 20, 262
searching expressions, 207
second subsection, 14
[self init] variable, 119
self object, 120
self variable, 85
semicolons (;), 30
serialization, 345
set<Value>: property, 169
-setNil ValueForKey: method, 177
sets, 280–281
setter=<name> attribute, 95
-setValueForKey: method, 177
setValue:forKeyPath: parameter, 164
-setValue:forUndefinedKey: method, 178
single parent inheritance, 79
singleton factory method, 332
singletons, 331–336
SKPaymentTransactionObserver protocol, 201
Smalltalk language, 209
Smart groups, 6
Software Development Kit (SDK), 20
solutions, patterns in, 329–331
someData parameter, 320
someMember class, 168
-sortedKeysUsingSelector: method, 279
sorting collections, 289–292
-sortUsingDescriptors: method, 289
-sortUsingFunction:context: method, 290
-sortUsingSelector: method, 290
source code

overview, 13
turning into compiled code, 15–16

source files, 8–10
special object methods, 85–87
special variable modifiers, 37–38
specialized collections, 285–286
species inheritance tree, 79
splitting strings, 270
Spotlight directory, 18
square bracket operators ([]), 89
standard APIs, 150–151
standard libraries, 260
-start method, 204

state variables, 75
statements

#end, 236
break, 64
comments, 35
conditional, 61–64
declaring variables, 32–35
else, 62
enums, 42–43
if, 61, 62
if-else, 61–62
import, 30
NSLog, 32
operators, 48–50
pointers, 44–48
scalar types, 35–36
special variable modifiers, 37–38
structures, 38–40
switch, 63–64
ternary operator, 51
typedefs, 40–42
while, 67

states
differences with behavior, 92–99
using properties to declare, 93–96

Static Analyzer tool, 23–26
static keyword, 37–38
static typing, 26
stop button, 320
storage classes, 37
string constant equality, 266
+string method, 266
stringification, 234–236
stringOnBar attribute, 164
strings

defined, 30
format, 267–269
NSString categories, 271
NSString methods, 269–270
overview, 265–267
stringification, 234–236

+stringWith Format method, 269
+stringWithCharacters:length: method, 266
+stringWithContentsOfFile:encoding:error:

method, 266
+stringWithContentsOfFile:usedEncoding:

error: method, 267

26_9780470479223-bindex.indd 37926_9780470479223-bindex.indd 379 1/4/11 8:59 PM1/4/11 8:59 PM

380 Index

+stringWithContentsOfURL:encoding:error:
method, 267

+stringWithContentsOfURL:usedEncoding:error:
method, 267

+stringWithCString:encoding: method, 266
+stringWithFormat: method, 266, 267
+stringWithString: method, 266
+stringWithUTF8String: method, 266
struct keyword, 38–39
structs, 38
structures

overview, 38–40
using KVC with, 177

-stuffChanged: method, 341
subclassing, 208
subsections, 14
Succeeded display, 11
@sum function, 168
[super init] variable, 119
superclass methods, 214
Supported value, 126
switch statement, 63–64
switches, 69
@synchronize keyword, 317–319
@synchronized directive, 159, 317–318
synchronizing code

@synchronize keyword, 317–319
understanding atomicity, 319
using locks, 315–317

syntax
controlling program flow

conditional statements, 61–64
loops, 64–69

functions
defining, 54–56
implementation versus interface, 56–58
linking with implementation files, 58–60
overview, 51–54

overview, 29–30
statements and expressions

comments, 35
declaring variables, 32–35
enum, 42–43
operators, 48–50
pointers, 44–48
scalar types, 35–36
special variable modifiers, 37–38
structures, 38–40

ternary operator, 51
typedefs, 40–42

string declaration, 265–271
@synthesize directive, 95, 96, 319
synthesized property accessors, 96

T
tabs

character of, 268
Configurations, 20
Detail, 59
Properties, 22
Rules, 22

Target check box, 10, 60
Targets groups, 6
ternary conditionals, 62–63
ternary operators, 51, 63
THE_KEY macro, 226
third-party frameworks, 207–208
@”this is bar” macro, 231
thread safe, 313–314
threads

multiprocessing with threads, 313–314
NSOperation and NSOperationQueue

adding operations to queues, 325–326
creating operations, 323–325
manipulating queue parameters, 326
overview, 322–323
using other kinds of operations, 326–328

NSThread

accessing the main thread, 321–322
creating threads, 319–320
crossing threads using perform selector, 322
manipulating running threads, 320–321

synchronizing code
@synchronize keyword, 317–319
atomicity, 319
locks, 315–317
overview, 314–315

using blocks with, 148–149
using GCD functions to dispatch code blocks in, 148–149

throwing exceptions, 244, 245
time intervals, 305
time zones, 307–308
__TIME__ macro, 228
-timeIntervalSinceDate: method, 305
-timeIntervalSinceNow method, 305

26_9780470479223-bindex.indd 38026_9780470479223-bindex.indd 380 1/4/11 8:59 PM1/4/11 8:59 PM

 Index 381

times
comparing dates, 305–306
constructing dates, 304
intervals of, 304–305
using NSCalendar, 306–307
using NSDateFormatter, 308–309
working with time zones, 307–308

+timeZoneWithName factory method, 308
@try block, 249
@try directive, 247
-tryLock method, 316
type definition, 41
Type drop-down list, New Project dialog box, 5
typedefs, 40–42, 147
types

arbitrary datatypes, 296–297
BOOL, 36
char, 36
datatypes, 296–297
dispatch_block_t, 161
double, 35
encoding, 347–348
float, 35, 39
id datatype, 27, 81, 84, 200
int, 35, 44
long, 35
long long, 36
NSInteger, 36, 269
NSUInteger, 36
reference, 125–126
typedefs, 40–42, 147
unsigned int, 35
void* data, 133

U
#undef directive, 229
unordered accessors, 174–176
unsigned int type, 35
Unsupported value, 126
updateEngineSpeedFromThrottle method, 93
user- Info object, 340
userInfo dictionary, 252–253

V
<value> pattern, 169
-valueForKey: method, 164, 177
-valueForKeyPath: method, 164

-valueForUndefinedKey: method, 178
<valueName> pattern, 178
variables

[self init], 119
[super init], 119
a, 32
a1, 33
a2, 33
are -will Change:valuesAtIndexes:

forKey:, 185
argc, 32, 33
associating with existing classes, 218–220
control (i), 64, 66
declaring, 32–35
-didChange:valuesForIndexes: forKey:, 185
global, 33, 37, 75
instance, 35
local, 34, 37
member, 35
modifiers of, 37–38
self, 85
state, 75
using in macros, 232–234
void (^myBlock)(NSString *), 140
x, 39
y, 39

void (^myBlock)(NSString *) variable, 140
void * key, 219
void * parameter, 180
void pointers, 133–134
void* data type, 133

W
#warning directive, 229–230
warning icons, 11
__weak keyword, 126
while loop, 64, 67–69
while statement, 67
-willChangeValueForKey: method, 184
windows

build settings, 233
main Xcode, 6, 8, 10–11
Project Settings, 18–19
Xcode, 10–12

-work: method, 320
writing

class methods, 87–89
code, 12–14

26_9780470479223-bindex.indd 38126_9780470479223-bindex.indd 381 1/4/11 8:59 PM1/4/11 8:59 PM

382 Index

writing (continued)
data with NSCoder

archiver file formats
decoding objects, 350–351
encoding basic types, 347–348
encoding objects, 345–347
implementing NSCoding protocol in objects, 345
legacy data, 352
NSArchiver, 351–352
NSUnarchiver, 351–352
object graphs, 348
overview, 345
using NSArchiver and NSUnarchiver, 351–352
using other types of data, 348–349

dealloc methods, 121–122
initializers, 119–121
KVC compliant accessors, 169–171
macros

built-in, 237
compilation process, 223-229
constants, 230–231
handling conditional switching, 236–237
overview, 229–230
passing constants by compilation, 231–232
stringification, 234–236
using variables in macros, 232–234

overview, 223
object methods, 83–85

X
X argument, 233
x variable, 39
Xcode

adding source files, 8–10
executable, 18
files in projects, 7–8
main Xcode window, 10–12
starting projects, 4–7
Static Analyzer tool, 23–26

 XIB files. See NIB (NeXTstep Interface Builder) files

Y
Y argument, 233
y variable, 39
yellow icon, 11

Z
Zoom Editor Out menu, 9

26_9780470479223-bindex.indd 38226_9780470479223-bindex.indd 382 1/4/11 8:59 PM1/4/11 8:59 PM

Developers, this book belongs
on your desk!
Once you understand Objective-C and object-oriented programming, you can create apps for
the hottest devices on the market—Macs, iPhones, and iPads. And with this detailed guide, top
Mac developer and author Jiva DeVoe will have you coding in no time, even if you’re a programming
newbie. Coverage ranges from a thorough introduction to Objective-C basics to advanced techniques
used by professional coders. You’ll learn Objective-C memory management, how frameworks fi t
together, the tricky business of thread safety, where Xcode fi ts in, and much more.

• Understand Objective-C syntax, runtimes, and Xcode®—and write your fi rst program

• Create classes, work with properties, and learn about objects

• Use code blocks, threads, KVO, and protocols

• Defi ne and write macros, handle errors, and use frameworks in your projects

• Untangle threads, start using design patterns, and master advanced techniques

• Read and write data with NSCoder

• Write code for Windows®, Linux®, and other platforms

Access the latest information on Apple development
Visit www.wileydevreference.com for the latest on tools and techniques for Apple development,
as well as code and project fi les from the book.

Jiva DeVoe is the founder of Random Ideas, LLC, a software company specializing in iPhone and Mac OS X applications.
He has been writing software for nearly 25 years. His iPhone apps have been featured as Apple staff picks and in Apple
ads. He is also the author of Cocoa Touch for iPhone OS 3 Developer Reference. Contact Jiva through his blog at
www.random-ideas.net.

O
bjective-C

®

DeVoe

Reader Level: Intermediate to Advanced

Shelving Category: COMPUTERS / Programming /
Apple Programming

$39.99 USA • $47.99 CANADA

Developer
Reference

Objective-C®

www.wileydevreference.com

Developer Reference

Jiva DeVoe

	Objective-C
	About the Author
	Credits
	Preface
	Acknowledgments
	Contents
	Part I: Introducing Objective-C
	Chapter 1: Introducing Objective-C
	Using Xcode for Development
	Understanding the Compilation Process
	Using the Xcode Static Analyzer
	Understanding the Objective-C Runtime
	Summary

	Chapter 2: Understanding Basic Syntax
	Working with Statements and Expressions
	Working with Functions
	Controlling Program Flow
	Applying What You Have Learned
	Summary

	Chapter 3: Adding Objects
	Understanding Objects
	Working with Properties
	Applying Objects

	Chapter 4: Understanding Objective-C Memory Management
	Using Reference Counting
	Using Garbage Collection
	Exploring Key Garbage Collector Patterns
	Understanding What Memory Management Model to Use for Your Projects
	Summary

	Part II: Exploring Deeper Features
	Chapter 5: Working with Blocks
	Understanding Blocks
	Understanding Important Block Scoping
	Using Blocks with Threads
	Working with Common Block Design Patterns
	Applying Blocks to an Embarrassingly Parallel Task
	Summary

	Chapter 6: Using Key Value Coding and Key Value Observing
	Accessing Object Properties Using Key Value Coding
	Observing Changes to KVC-Compliant Values
	Applying Key Value Observing
	Summary

	Chapter 7: Working with Protocols
	Favoring Composition Over Inheritance
	Implementing Protocols in Your Objects
	Exploring examples of protocol use
	Summary

	Chapter 8: Extending Existing Class Capabilities
	Working with Third-Party Frameworks and Classes
	Working with Categories
	Extending Classes using Anonymous Categories
	Associating Variables with Existing Classes
	Summary

	Chapter 9: Writing Macros
	Reviewing the Compilation Process
	Defining Macros
	Summary

	Chapter 10: Handling Errors
	Classifying Errors
	Using the Different Mechanisms for Error Handling
	Summary

	Part III: Using the Foundation Framework
	Chapter 11: Understanding How the Frameworks Fit Together
	Understanding the Foundation Framework
	Using Frameworks in Your Projects
	Summary

	Chapter 12: Using Strings
	Understanding the String Declaration Syntax
	Summary

	Chapter 13: Working with Collections
	Working with Arrays
	Understanding Collections and Memory Management
	Enumerating
	Sending Messages to Elements
	Sorting and Filtering
	Using Blocks with Collections
	Summary

	Chapter 14: Using NSValue, NSNumber, and NSData
	Using NSValue and NSNumber
	Using NSData and NSMutableData
	Summary

	Chapter 15: Working with Times and Dates
	Using NSDateFormatter
	Summary

	Part IV: Exploring Advanced Topics
	Chapter 16: Multiprocessing with Threads
	Synchronizing Code
	Using NSThread
	Using NSOperation and NSOperationQueue
	Summary

	Chapter 17: Objective-C Design Patterns
	Recognizing Patterns in Solutions
	Describing Design Patterns in Objective-C
	Summary

	Chapter 18: Reading and Writing Data with NSCoder
	Using NSArchiver and NSUnarchiver
	Working with Archiver File Formats and Legacy Data
	Summary

	Chapter 19: Using Objective-C on Other Platforms
	Using GNUstep
	Looking Toward the Future
	Summary

	Index

Objective-C

