i. 0 b T. Gene Dav is

Java and Mac OS X

www.wileydevreference.com

Java’ and Mac OS° X

Java® and
Mac OS" X

T. Gene Davis

WILEY
Wiley Publishing, Inc.

Java® and Mac 0S°® X

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-52511-1

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011,
fax 201-748-6008, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2010923561

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Java is a
registered trademark of Sun Microsystems, Inc. Mac OS is a registered trademark of Apple, Inc. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com
www.wiley.com/go/permissions

To my Mom, who always told me to keep writing.

About the Author

T. Gene Davis has programmed computers professionally since the 1990s. He wrote his first
computer program on an Apple Il in the early 1980s and never stopped programming for
Apple’s computers. Years later, he switched to Java programming with the release of Java 1.1
on the Mac. He currently works as a senior Web applications programmer at the Institute for
Clean and Secure Energy. He also writes and maintains Shogi software (also known as Japanese
chess) for his company, Gene Davis Software. Prior publications include Interview with Chuck (a
book of poetry) and Learning Java Bindings for OpenGL (a programming book for hobbyists).

Credits

Acquisitions Editor
Aaron Black

Executive Editor
Jody Lefevere

Project Editor
Martin V. Minner

Technical Editor
Ben Schupak

Copy Editor
Gwenette Gaddis

Editorial Director
Robyn Siesky

Business Manager
Amy Knies

Senior Marketing Manager
Sandy Smith

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Project Coordinator
Lynsey Stanford

Graphics and Production Specialist
Andrea Hornberger

Quality Control Technician
Laura Albert

Proofreading and Indexing
C. M. Jones
BIM Indexing & Proofreading

Media Development Project Manager
Laura Moss

Media Development Assistant Project Manager
Jenny Swisher

Media Development Associate Producer
Marilyn Hummel

Contents

T T 11 et o oY T XV

Partl: Getting Startedcccccceecccvnnricscnnnccssnnecsscnnecssssnsncssssnsecsscnnsecce 1

Chapter 1: Programming JavaforOS X.....ccvieerresscecrsssnocoscannas 3
Reviewing Apple Java History 3
Installing the OS X Developer Tools 5
Exploring the Apple Developer Connection 8

Exploring Reference Library topics 8
Finding developer articles 10
Obtaining software seeds n
Benefiting from membership 12
Avoiding Deprecated Java Cocoa Libraries 13
Understanding the history of Java Cocoa libraries 13
Reviewing deprecated libraries 14
Understanding why Java Cocoa libraries were redundant 16
Exploring Available IDEs 17
Developing with Xcode 17
Developing with Eclipse 19
Developing with NetBeans 21
Summary 22
Chapter 2: Introducing the Environment.........cccciiiiienieccrnencnss 23
Configuring the JVMs 23
Identifying JVM locations 25
Setting Java Preferences with “Java Preferences” 30
Adding Libraries 32
Exploring library locations 33
Including JARs and native libraries 34
(reating custom libraries 35
Finding Environment Variables 37
Setting JAVA_HOME 37
Exploring dot files and dot folders 39
Using system-wide properties 4
Accessing 0S X environment 44
Summary 44

iX

mm

Chapter 3: Understanding Xcodecooveerrinnreeeeceernsnncccoccanns 45
Exploring Project Templates 45
(reating Java Console Application Projects 46
(reating Java application projects 55
(reating Java Applet projects 63

Using JNI Library projects 70
Highlighting Xcode Features 74
Browsing the welcome screen 74

Setting up a source code repository 76
Modifying the View 80
Watching tasks with the Activity window 84
Architecting with Xcode 85
Changing Xcode preferences 89
Inserting Java Code using macros 93

Using Organizer 94
Managing projects 95
Running projects 96
(reating Java projects from Organizer templates 9%
Summary 98
Chapter 4: Building Basic Projectsccoeevtreeieieeccesssncccssccnnss 99
Building Xcode Projects 99
Understanding the Xcode Build Process 100
Running Xcode projects 104
Debugging Xcode projects 106

Writing Ant Build Files 108
Understanding Ant 109
(reating a basic Ant build file m
Defining multiple targets 116
Learning properties and advanced elements 123
Configuring Ant options 127
Compiling from the Terminal 129
Reviewing the Java command-line tools 129
Configuring Javac 131
Scripting builds 135
Summary 14
Chapter 5: Deploying Applicationscccoeiiieeeecccessssncecssss 143
Learning Application Bundle Basics 143
Contrasting bundles and packages 144
Exploring application packages 144
Creating Icons 148
Understanding Human Interface Guidelines for icons 149
(reating icons with Photoshop 150

Lonten

Creating icons with lllustrator 161
Assembling the icon 167
(reating Packages with Jar Bundler 169
Understanding Jar Bundler options 170
Demonstrating Jar Bundler 174
Producing Installations 175
Understanding 0S X installations 176
(reating DMGs for drag-and-drop installations 176
Creating PKG bundles 178
(reating izPack installations 180
Summary 181

Part ll: Bringing Guidelines, APIs, and Languages Together 183

Chapter 6: Portingand Designingccceeeereeeennncccsaccccsncoanss 185
Exploring Mac 0S X Structure 185
Reviewing the architectural layers 186
Benefiting from 0S X frameworks 187

Using Darwin 188
Examining the BSD foundations of 0S X 189

Using Darwin tools 190
Exploring the Darwin libraries 194
Scripting Java in the shell 195
Learning the Human Interface Guidelines 197
Providing an 0S X experience 198
Designing the user interface 198
Updating software 200
Integrating 0S X technologies 210
Summary 21
Chapter 7: Integrating Windows, Menus, and Dialog Boxes.............. 213
Learning com.apple.eio.FileManager 214
Finding application bundles 214
Locating bundle resources 214

Getting and setting file types and creators 215
Investigating com.apple.eawt Classes 218
Manipulating the Dock 219
Opening the Help Viewer 222
Handling About, Preferences, and Quit 229
Persisting Preferences 234

Creating Human Interface compliant About boxes 236

Finding your mouse location 237
Summary 239

mm

Chapter 8: Embedding Cocoa Components......coeeeeeeeesssseccoscans 241
Integrating Objective-C and Java 242
Using Native in Java 243
(reating headers with javah 248
Exploring the Cside of JNI 249
(leaning Up Objective-C 251

(alling Objective-C methods 252

Converting Java Strings to NSStrings 253

Introducing Objective-C objects 254
Developing JNI with Ant 257

Coding with the CocoaComponent 261
Understanding CocoaComponent 263
Implementing sendMessage() 266

(reating Java callback methods 266

Declaring createNSViewLong() 267

Initializing native code 268

Introducing NSView. 268
Embedding NSView in Swing 269
Employing the JNI Environment 271
Obtaining a JavaVM 275
Obtaining a jobject 276
Obtaining a jmethod 277
Obtaining a JNIEnv 279
Handling Events 281
Summary 284

Part lll: Architecting Alternative Applicationsccceeevrecccnnecceess 285

Chapter 9:Understanding JNIciiiiiiiiiiieceneeccneescnnccanss 287
Reviewing NI 288
(alling native code 291
Returning native variables to Java 296
Invoking Java from native code 302
(reating JVMs 305

(alling Java methods from C 305

Implementing Java calls from native code 308

Returning Java calls to native code 309
Building JNI Applications from Ant 319
Integrating with Objective-C 321
Learning Thread Safety 322
Reusing JavaVMs references 322

Threading with JNIEnv. 323

Content

Globalizing jclasses and jobjects 323

Saving jmethodIDs 324
Converting Strings 324
Finding More JNI Details 325
Summary 328
Chapter 10: Creating SCreen Savers.......ccoeeeeeeeeccesssssccssccassss 329
Understanding Screen Savers 330
Implementing screen savers 332
Initializing 336
Starting and stopping animation 337
Drawing an animateOneFrame 338
(reating simple screen savers 338
Integrating Java Controllers 345
Wrapping Objective-C with Java 346
Creating an Objective-C base of a Java screen saver 348

Invoking a JVM for a Java screen saver 350

Interfacing with a screen saver wrapper 356

Finishing implementation of a Java screen saver 358

Assembling screen savers manually 361
Configuring SAVER Info.plist 363
Wrapping NSBezierPath Commands, 365
Summary 367
Chapter 11: Creating Terminal Applications.........cccovviiiiieeecensss 369
Learning ANSI Escape Sequences 370
Configuring Terminal emulation 32
Printing in ANSI color 379
Choosing color brightness 381

Setting background colors 382

Completing the color sequences 383

Concealing passwords 385
Introducing Terminal Uls 389
(learing the Terminal 389

Moving the cursor. 391
Interacting with the Terminal 392

Making dialog boxes and menus 397
Creating a Terminal Ul 401
Improving Terminal Uls 405
Introducing ncurses 405
Wrapping ncurses with Charva 406
Creating an advanced Terminal User Interface 41
Summary 418

Part IV: Appendixes.. 421
Appendix A: More Development Tools.......cvveieeeeiiinnnccssccannas 423
Exploring Design Tools 423
Examining MagicDraw 424

Investigating Poseidon for UML 425

Exploring Additional Java Tools 427
Reviewing JFormDesigner 427

Examining IntelliJ IDEA 429

Summary 431
AppendixB: JUNIton OS Xvvivriieeeeeernnrecssccasssssscssscasnans 433
Writing Tests with JUnit 434

Testing from Xcode with JUnit 435
Summary 453

€ 1T T o 455

Introduction
Eu -

This book is for Java programmers interested in developing OS X applications, but not inter-

ested in leaving Java behind. Java applications can look and feel just like other OS X programs.
Your Java programs can take advantage of any OS X technology.

In this book, | describe the following:

@ Dock usage for Java applications
@ Help Viewer integration

Java application bundle creation
Adding NSViews to Java windows

Java screen saver creation

¢ © © ¢

Java application deployment
@ Application menu implementation

@ Icon creation for Java applications

Apple welcomes Java development. Java programming is not an afterthought on Apple’s com-
puters. OS X was designed with Java development in mind. Java development on OS X has
changed a great deal since the first computers shipped with OS X preinstalled, but the ability to
create native feeling applications with Java on OS X has only improved.

This book is not an introduction to Java programming for first-time programmers. To read this
entire book, you need some programming experience. Basic understanding of Java is required.
Some of the more advanced chapters also require a very limited understanding of C. | make
every effort to describe in detail any code that is not Java, so you do not need a great deal of
knowledge about any languages other than Java.

If you are new to Java, or programming, keep an introductory manual close by as you work your
way through the examples in this book. Many of the examples in this book will make sense to
new programmers, as well as more experienced programmers. However, some of the advanced
topics might be beyond the beginning programmer.

Understanding the Organization
of This Book

This book is divided into three parts: Getting Started; Bringing Guidelines, APIs, and Languages
Together; and Architecting Alternative Applications. The chapters progress from introductory
material to standard integration topics to advanced integration topics.

Getting Started

Part | begins with the history of Java on Apple computers. Java and Apple actually predate the
coming of OS X. Chapter 1 explores this fascinating history.

Chapter 2 jumps into a discussion of the Java environment on OS X. This includes setting prefer-
ences for preferred Java versions. Also, | explain the JAVA_HOME on OS X and JAR installation.

In Chapter 3, | give an overview of Xcode and other development tools available for free on OS X.
Even if you use an IDE other than Xcode as your primary IDE, occasionally, you may want to start a
Java project with one of Xcode's project templates. Understanding Xcode makes this task easier.

Code does no good until compiled. Complex projects can be time-consuming to build. Chapter
4 is all about automating builds of Java applications on OS X. | explore using Xcode, Ant, and
shell scripts in the build process.

Deploying standard applications is quite different on OS X than other platforms. Chapter 5
explains details of icon creation, application bundling, and distribution unique to OS X. After
reading Chapter 5, you can distribute your applications in style—the OS X style, that is.

Bringing Guidelines, APls, and Languages Together

Part Il explains the nuts and bolts of making your Java applications behave and look like real
OS X applications. Chapter 6 reviews the architecture of OS X, along with an introduction to
Apple’s Human Interface Guidelines.

Chapter 7 contains information on implementing the application menu, the Help Viewer, and
the Dock into your application. Also, this chapter explains usage of your application bundle to
store your Java software’s resources.

Did you know that you can add Cocoa widgets and components to your Java windows? Chapter
8 explains all about adding Objective-C NSViews to your Java Windows and JFrames. This chap-
ter also begins the discussion of JNI as an interface to OS X technologies.

Architecting Alternative Applications

JNIis the official Apple-endorsed bridge between Cocoa and Java technologies. Part Il begins
with a detailed chapter explaining JNI on OS X. Chapter 9 explains using native features from Java.
Chapter 9 also explains creating JVMs from inside native code. This is called the Invocation API.

Java applications can control any Objective-C framework. However, getting the JVM is the tricky
part. Chapter 10 demonstrates wrapping the Screen Saver Framework with a Java controller.
The JVM is invoked from the native framework and then takes over from there. After under-
standing this chapter, you will realize that Java has no limits on OS X.

In Chapter 11, | explain Terminal application User Interfaces. Many applications run from the
Terminal. In fact some programmers prefer not to use GUI applications for controlling their serv-
ers. This chapter explains how to make respectable text-based Uls.

Using This Book

A minimum of Java 6 and Snow Leopard (Mac OS X 10.6) are required for making the most of
this book. | created the source code in this book on Snow Leopard. Also, the screen captures in
this book are from Snow Leopard. Earlier versions of OS X may be used for much of the book
with minor alterations to the coded examples. Screenshots of earlier versions of OS X may also
differ from Snow Leopard screenshots. Refer to Apple’s developer documentation for details of
changes to Java and OS X with the release of Snow Leopard.

I wrote this book so that reading it from cover to cover makes sense. Having said that, not
everyone has time to read hundreds of pages of documentation. So you can take shortcuts if
you are interested in reading only certain chapters.

For those interested in writing traditional applications for OS X, you definitely should read these
chapters: Chapter 2 on OS X's Java environment, Chapter 5 on deploying applications, Chapter
6 on Apple’s Human Interface Guidelines, and Chapter 7 on integrating OS X features into your
Java application.

If you want to automate your complex Java project builds, then read Chapters 2 and 4. Chapter
2 explains the Java environment, and Chapter 4 explains Ant projects and shell scripting. You
can completely automate your builds no matter how complex they are.

If your interests are in using JNI to integrate advanced OS X features into your Java applications,
then read Chapters 8, 9, and 10. Chapter 8 gives an introduction to JNI in the context of Cocoa
Components. Chapter 9 explains details of JNI on OS X, including use of the Invocation API.
Chapter 10 gives an example of creating a Java application that wraps a native framework using
the Invocation APL. In this case, the example application is a Java screen saver.

Writers of servers and server utilities should look at Chapter 11, which describes text-based User
Interfaces. Many servers are controlled via ssh or terminals, so Chapter 11 explains how
advanced applications should interact with users on the command line.

Using the Companion Web Site

All programming examples in this book are on the book’s companion Web site. Find the Web
site at the following URL

www.wiley.com/go/javamacdevref

When reading a chapter, begin by downloading the source code for the projects in that chap-
ter. Follow along with the chapter using the source from the Web site.

www.wiley.com/go/javamacdevref

Getting Started
==

In This Part

Chapter 1
Programming Java
for OS X

Chapter 2
Introducing the
Environment

Chapter 3
Understanding Xcode

Chapter 4
Building Basic Projects

Chapter 5
Deploying Applications

Programming
Java for OS X

N\
——
hat's so different about Java on a Mac? Pure Java applica-
Wtions run on any operating system that supports Java.
Popular Java tools run on OS X. From the developer’s
point of view, Java is Java, no matter where it runs.

Users do not agree. To an OS X user, pure Java applications that
ignore the feel and features of OS X are less desirable, meaning the
customers will take their money elsewhere. Fewer sales translates
into unhappy managers and all the awkwardness that follows.

In this book, | show how to build GUIs that feel and behave like OS
X users expect them to behave. | explain development tools and
libraries found on the Mac. | explore bundling of Java applications
for deployment on OS X. I also discuss interfacing Java with other
languages commonly used on the Mac.

This chapter is about the background and basics of Java develop-
ment on OS X. | explain the history of Java development. | show
you around Apple’s developer Web site. Finally, | go over the IDEs
commonly used for Java development on the Mac.

u In This Chapter

ReViEWing Apple Java HiStory Exploring the history of

Apple embraced Java technologies long before the first version of Java on Apple computers
OS X graced a blue and white Mac tower. Refugegs from the old Installing developer
tan Macs of the 1990s may vaguely remember using what was tools on OS X

called the MRJ when their PC counterparts were busy using JVMs.
Looking at the

MRJ stands for Mac OS Runtime for Java. MRJ was Apple’s version Apple Developer
of the JVM. Connection (ADC)

Introducing Java IDEs

Classic Macs running OS 8 and earlier had a wonderful GUI. Macs available for OS X

were famous for their GUIs. What Macs were not famous for were

their shells and command line interfaces. Old versions of the Mac
OS were not Unix-based or Unix-friendly.

Those were the wild days before Java-friendly IDEs such as Xcode,
Eclipse, and NetBeans ruled the world. Java used (and still uses)
command-line tools, such as ‘java,’ ‘javac,’ and ‘jar.’ These tools did
not have GUI equivalents. Apple filled the gap with GUI equivalents

= Getting >tartea

of the most useful Java tools named after their command line counterparts. Figure 1.1 shows
the MRJ folder with Apples GUI versions of the Java tools.

Figure 1.1

Classic Mac OS folder containing the MRJ GUI
versions of the Java command-line tools

0= [jIKTools——— M8
10 iterns, 1.03 GD available
=)
[
About JDK Tools Jjar Javar
Javadoc Jjavah Javakey
MRIKey rmic rmiregistry
Using the JDK Tools B
-
<Dz

The javac command-line tool found on Windows or Unix had a GUI tool on the Mac, as shown in
Figure 1.2. To compile a Java class, you double-clicked the javac application. You were pre-
sented with a form to fill out. After adding the source files, destination folder, and classpath
desired, you clicked the Do Javac button.

Figure 1.2
Classic Mac OS MRJ javac tool
~Source filea Jource encoding
Add...] pebugging Tables
-
) [(atova]] warning
A Warnings
toldzr: [| [selact... | (] Al
£ 5 [vertose
4ot 2bSyatem Folder /Extenaiona/ MR Libraries MRJCIosaca /I D
ot 2b./Systemn Folder /Extensions/ MR Libraries/MRJC|ssses/ DI M [Nptimize Code
4ot 2bsSystern Folder fExtensions /MRS Libraries/MRJClazses/ D | |
/nat2b/Systern Folder /ExRensions /MR Libraries/MRIClgsses /MR = " Do Javac]l Iz
K

Interfacing Java and native C code was another hurdle. Under Mac OS 8, a technology called
JDirect provided access to native C code on the Mac. JManager allowed C-based programs to

e (Chapter1:ProgrammingJavafor OS X =

invoke Java. JNI was also available, but JDirect and JManager were meant to be easier to use for
beginners.

With the new millennium came a new Mac OS: OS X is built on top of Darwin. Darwin provides a
shell that Java's command-line tools run from. Apple added the Terminal application to OS X,
giving access from its top-notch GUI to Darwin'’s shell. OS X came with new Java Cocoa APIs that
provided easy access to OS X libraries from Java applications. Xcode arrived and turned out to
be a Java-friendly IDE. Even OS X's new Interface Builder provided tools for easy creation of OS
X-specific Java GUIs.

The classic OS and the MRJ began to disappear. Java programmers had a new arsenal of Java
tools and libraries on OS X, and life was wonderful.

After years of real-world use, Apple discovered that Java programmers creating applications for
Mac OS X used Swing and AWT for their Graphic User Interfaces instead of the Interface Builder
and the Cocoa APIs for GUI development. Also, advanced Java programmers integrated with
Apple’s Cocoa libraries using JNI instead of Apple’s custom bridges.

Because they were not needed, the Java Cocoa libraries were deprecated. Support for building
Java Uls from inside of Interface Build was also removed. However, Xcode still supports Java
development with several Java project templates built into Xcode. Also, diehard Mac OS X Java
programmers can always use JNI to interface with Apple’s Cocoa APIs.

CROSS-REF

Java Native Interface programming specific for Mac 0S X is discussed in depth in Chapter 10.

NOTE

INIis not the only technology for interfacing Java with Mac 0S X-specific technologies. In this book, | explain Java inte-
gration with JNI, AppleScript, JavaScript, and the remaining non-deprecated Cocoa Java libraries. Integrating Java
code with most 0S X technologies is possible with a small nudge in the proper direction.

Apple continues to update Java for OS X. Many Java applications are distributed and tested spe-
cifically for OS X. Java is alive and strong on the Mac.

Installing the OS X Developer Tools

A suite of high-grade developer tools ship with every Mac. These tools include Xcode, GCC,
Dashcode, and other useful GUl and command-line tools. Xcode is a top-notch IDE with built-in
Java support. Ant and the command-line Java tools are also included. The full suite of develop-
ment tools is free with every Mac.

= eruing SsStargeg¢a .

NOTE
Ant is used by Xcode to build Java projects.

NOTE

Xcode has several predefined Java project templates. Predefined Xcode Java templates include a basic GUI application
template, a JNI template, and a command-line tool template.

The OS X developer tools are not installed by default, because only developers find the tools
useful. Install the developer tools using the following instructions:

1.
2.

3.
4.

Insert your Mac OS installation DVD.
Navigate to your XcodeTools installer.

You should find a folder called Optional Installs atthe top level. Inside that
folder is the Xcode Tools folder. Finally, in the Xcode Tools folder, you find the
XcodeTools installer, as shown in Figure 1.3.

Figure 1.3
Install DVD Xcode Tools folder

® 3 items, 29.5 MB

)

Abuout Xcode Tools.pdf

b

XcodeTools.mpkg

—

Packages

Start up the XcodeTools installer.
Continue through the installer, and choose Custom Install.

You see five packages on the Custom Install screen: Developer Tools Essentials, System
Tools, UNIX Development Support, Mac OS X 10.3.9 Support, and WebObjects.

T ————————————e S Napter 1: Programming Java 1or OS5 A =

5. select Developer Tools Essentials, System Tools, and UNIX Developer Support.
6. Click continue, and finish installing the developer tools.

You are now prepared to learn Java development on OS X.

During the OS X tools installation, developer tools Essentials is selected for you, as shown in
Figure 1.4. Essentials contains Xcode, Interface Builder, Dashcode, and GCC.

TIP

The default installation location of the 0S X developer tools is the Developer directory at the root of your primary
drive. You have the option of changing the installation location of the developer tools, but | recommend sticking with
the default Developer directory. Sticking with the Developer directory prevents confusion later when docu-
mentation says to look there for something that you don't realize you installed elsewhere.

System Tools is a collection of applications that helps you debug and analyze your applications.
Unix Development Support installs UNIX tools in the /usr directory. Make sure you select
these two packages during installation of the developer tools. You need these tools later in

the book.

Support for Mac OS X 10.3.9 may be useful to you. Some projects require support for older OS
versions. You do not need the Mac OS X 10.3.9 Support package for this book.

WebObjects allow development for Apple’s proprietary Java Web server. These applications are
typically deployed on Mac OS X Server. WebObjects and Web applications are very large topics
and are not covered in this book.

Figure 1.4
Install Xcode Tools screen

Custom Install on “Friendly™

Package Mame | Lecation | Action Size|
v Developer Tools Es ﬁ Developer 4 Install 2.0GB
™ system Tonis Install H9.5 ME
™ UNIX Development ... Install 504 MB
[Mac 05X 10.3.95... Skip 75.3 MB
[WebObjects Skip 370 MB

_\ Remaining: 308 CB
A

(Co Back) (Continue)
¥

Exploring the Apple Developer Connection

Apple provides a wealth of Developer Articles, software seeds, developer news, and mailing lists
for the community of developers making OS X their home. Apple consistently has high approval
ratings from its customers. The company is often described as having a cult-like following of
customers and developers.

After getting to know your way around Apple’s Developer Connection, you may appreciate the
support Apple gets from customers and developers a little better. The Developer Connection is
typically easy to navigate and user-friendly for anyone trying to create Mac OS X applications.
Technologies as diverse as Python, Perl, and even Java find a home on OS X. The Developer
Connection does not ignore this diversity.

Exploring Reference Library topics

Apple offers an extensive library for developers on the Developer Connection site. One of the
libraries targets Java, but several of the libraries are useful to Java developers. You do not need
a membership in the Apple Developer Connection (ADC) to view the Reference Library.

The Reference Library is on Apple’s Developer Connection site. The Developer Connection is at
http://developer.apple.com/.Get to know your way around the Web site. Knowing
the ins and outs of the Developer Connection will save you many random searches of the
Internet. Follow these steps to find the library:

1. Open http://developer.apple.com with Safari or the Web browser of your choice.
You are greeted by the Apple Developer Connection home page.

2. Lookatthe top of the Web page for the Dev Centers drop-down menu.

3. Select Mac Dev Center from the drop-down menu. This brings you to the Mac Dev
Center Web page.

4. select the link to the Mac Reference Library on the Mac Dev Center Web page.

Looking over the Mac OS X Reference Library Web page, you first notice the list of Reference
libraries on the left. More than 50 reference libraries are listed by topic, and alphabetically.
Other libraries worth noticing are Compiler Tools, User Experience, System Configuration,
Screen Saver, Carbon, Cocoa, and Preference Panes. All these topics and more are covered
in this book. These libraries are a great resource for learning additional details after reading
this book.

NOTE
Finding a link to the Developer Connection on Apple’s main Web site is difficult and maybe even impossible. You prob-
ably want to bookmark or memorize the address. The Developer Connection is found at:

http://developer.apple.com/

T ————————————e S Napter 1: Programming Java 1or OS5 A =

The Mac OS X Reference Library Web page contains a prominent tabbed pane containing
Overview, Getting Started, Required Reading, and Featured tabs. Browsing these tabs gives
you a quick overview of OS X development.

Under the tabbed view is a searchable list of documents available for OS X development. Enter
java, and search. The search returns more than 60 Java-related documents on the developer
site. The search returns a few JavaScript documents, but most are actual Java development arti-
cles and documents.

Hidden at the bottom of the page is a link to the RSS Feeds page. Traditionally, checking for the
latest and greatest news and tips required navigating to the page with the news every day or
multiple times each day. You can now avoid wasted random trips to the Reference Library just
to see if new articles of interest have appeared.

RSS stands for Really Simple Syndication. RSS is simply a custom news feed, in this case, from
the Reference Library. Apple’s Safari Web browser contains a built-in RSS reader, as shown in
Figure 1.5. Even better, bookmarking RSS feeds in Safari works the same as bookmarking
Web pages.

Figure 1.5
Built-in RSS reader of the Reference Library

Bookmarks Menu

apple. Jess/ G| O Loogle
m = umnudh Javadocs maxima finksw

Bookmarks Menu 3 Total

Cocoa Fundamentals Guide o o0 1000 00 Search Articles: 3
[—
¥ you Ara new 1 Gocon, it might saam like A vast, unchaned new world of tschnalogy, The fsanires, 1nols, a
cancapts, designs, mnmmlnw programming interfaces, and even programming language of this o
development environment may all be uniamilar. This document aases ihe iniiial 11903 10 Cocon proficiency, | Artele Langth:

an o the that is Cocoa. It introduces s features, basic " i
concapes, , and dasign panems. Gocoa Fundamentals Guide i B
struciured to lead grma]hﬂo ageneral what Cocoa is all about. & stans with Sonby:
e mos: baséc Informaton - what Cocoa is in i p d cap - and ends with an Dete
examination of the major architectures. Aead more.., ;::rm

New
Xcode Quick Tour for Mac 08 X war 20 1200 Pl

Ycode Tooks is the developer lools Dm:hags for Mav: 08 X. This Dwkape Includss an integrated suite of Recaent Articles:
snfwArE mals, e aat of Al
programeming Ebaries and Inlsrlmh The mnlarpmeu ol these Dulnlsm.‘l:mds application, which Today
provides an elegant, powerlul user imentace for creating and managing p projects i Yaswrday
Mac OF X. ¥ you're new to Xcode and you want o develop ions for Mac 05 X, i this d ! | Last Seven Days
is & good way 10 get staned. This document gives you & hands-on intraducson, in the form of iour shom Tris Martn
tutorials, o the Xcode application and some of its companion ols. Read mom,.. Last Mondh
Apple Human Interface Guidelines o 20 1200 00 Bource:
With advanced features and an refined 1 col and animation, Mac 05 X Bockmerka Menk
makes compusng even easier lor new users, while providing Mﬂfbdutﬂ\ﬂ'f hat professional users have
mhammmuummush The user intertace leatures, behaviors, and appearances deliver a well- Actions:
user availabis 1o 8l ap for Mac OS5 X_ This Updats Now
document | the primary user interface jon for Mac 05 X. about Mail Link to This Page
designing for Aqua campliance in Mac S X varsion 10,5, aifiough some of the information may apply 1o Subscriba in Mall L)
provious vors i Mao 0S5 X Thooo ignivd io essist you products thal
provide Mac U5 X users with & consistent visual and across and the 1

flcacs st Bliscl

If you browse to the Mac OS X Reference Library site with Safari, you see an RSS at the bottom
right of the page, as shown in Figure 1.6. The RSS link is a little obscure, considering the utility it
offers. Below are the steps for tracking the Reference Library RSS feed with Safari.

= Getting Startéea .

Figure 1.6
RSS link at the bottom right of the Mac OS X Reference Library Web page

Mac 05 X Reference Library
W hitp:{ fdeveloper.apple.com/mac/librany navigation

» Crearing Thumbnall PCTs Technival ObAs Cuick Time _l?fsl-lo.s-.ol
* Carrect Time Values Technical OkAs CruilckTime r199.5:0..5.-01
+ CampressSequenceBegin & Ethernet in DulekTime Technical ObAs CuickTime 1995-05-01
» Choosing the Position Where a Movie is Pasted Technical Q4As CruilckTime ’1795_“0..5. .01
» Adding QuickTime Mavie Data to Non-QuickTime Technical O&As Quick Time 1995 -05-01
Files Firas Verskon
* Actessing Decompressed Images Technical O8As QuickTime Il?QS C-.SI Pl

Did this document help you? Yes Iv's good, bur. Mot helpful.

AFPLE, visit an Apale Retail Store, of find a reseler Maing Lists BSS Feeds

verved. Terms of Use Privacy Palicy

1. click the RSS link to bring up a selection of RSS feeds offered by the Apple
Developer Connection. The link is at the bottom-right corner of many of the
Developer Connection pages.

2. Select an RSS feed from the list of Developer Connection feeds. ADC Headlines is
a good choice for keeping up with the latest Developer Connection news.

The feed appears in Safari’s built- in RSS reader.

3. Bookmark the feed by selecting Add Bookmark... from the Bookmarks menu.

Hidden at the bottom of the Mac OS X Reference Library page is the legacy documents link.
Scroll down to the bottom of the left navigation links list and find the link entitled Legacy Mac
OS X Reference Library. If you are tasked with fixing an older software project, this section is
invaluable. The Legacy Documents page looks very similar to the regular reference library.
However, the guides and code found there apply only to legacy development.

Finding developer articles

You are a Java programmer, and you want to see Java programming articles now. The Mac OS X
Reference Library is the place to begin your search. The Developer Connection has more articles
than you may ever read on Java and related topics. As | mention earlier, searching the
Documents in the Mac OS X Reference Library brings up around 60 Java-related documents.

Many useful documents are not listed specifically as Java documents, so you need to browse
around a bit. For instance, the Apple Human Interface Guidelines is invaluable for the creation

of Java applications that conform to expected OS X application behavior. The Apple Human
Interface Guidelines is listed in the Guides documents. To quickly find the link, click Guides in
the left navigation of the Mac OS X Reference Library Web page, and then type human in the
Documents search field. The remaining listed link is for the Apple Human Interface Guidelines.

TIP
The Developer Connection has three Dev Centers. The Dev Centers are targeted for iPhone, Safari, and Macs. Most of
the Java information you need is found in the Mac Dev Center.

Obtaining software seeds

To take full advantage of the Apple Developer Connection, you need an ADC Membership. Until
you have an ADC membership, you cannot download software seeds or beta releases. Look
around the Apple Developer Connection Mac Dev Center page to find a link to register for ADC
membership.

Alternately, you may click “Log in” at the top of many of the Developer Connection pages. The
login page has a link for “Join now.” This allows you to register, too.

TIP

Paid memberships are encouraged, so some pages about membership do not have a big blinking button
shouting, “Join here for free!” Just poke around a little, and you will spot the free Online membership link. On the
http://developer.apple.com/products/membership.html Web page, the linkis at the
bottom-left corner under the title ADC Online Membership.

Currently you can choose from four levels of membership: Premier, Select, Student, and Online.
The Online membership is free, but it has fewer benefits than the other paid memberships.
Online (free) memberships have access to Introductory Videos for Coding and beta releases of
new JDKs. Premier membership, costing around $3499, provides a World Wide Developer
Conference (WWDC) ticket, access to Apple’s compatibility labs, discounts on hardware pur-
chases, and more advanced technical support.

To become a member, you must accept a membership agreement. The ADC membership
agreement doesn'’t require you to spend time washing windows at the local Apple Store, but
you're wise to read through the agreement anyway to see if you feel comfortable with it.
Typically, the agreement prohibits you from talking about seeds and beta releases that you
download, other than to technical support. See the agreement for full details.

If you choose the free ADC membership, log in and look around. Often, you have access to pre-
views of future JDKs for OS X. If you are previewing these future Java releases and find bugs in
them that affect your programs, be sure to create test cases and submit bug reports with the
test cases to Apple. The developers at Apple will do their best to address them, and may even
make your job easier by fixing bugs you report before they make it into a full Java release.

Apple distinguishes between the previews available with free ADC membership and the official
Software Seeding Program. Much of the time, the online ADC membership is enough for Java

developers on OS X. However, if you want to test your software on seeds of the newest OS X
beta or try out the newest pre-release of Xcode Tools, a paid membership with ADC monthly
mailings is what you need.

Benefiting from membership

As mentioned earlier, you can choose from four types of memberships to the Apple Developer
Connection: Online, Student, Select, and Premier. Online is free and gives you access to Apple
Development Connection previews of some Java code in development. Having access to some
previews is often seen as enough by Java developers on OS X. These previews are not as numer-
ous as the actual Software Seeding Program.

If you download betas of JDKs or Xcode in development by Apple, remember that the non-
disclosure agreement required by members usually prohibits you from speaking (or writing)
about them to anyone except technical support.

TIP
You don’t need an ADC membership to sign up for the Java developer technical discussions list. This is a Mac 0S X
specific list for Java development. Subscribe at:

http://lists.apple.com/mailman/listinfo/java-dev/

NOTE
At one time, discussion of beta releases of Java on the Mac was allowed on the Mac Java developer list. Currently,
discussion of Java previews is not permitted on the list because of the ADC non-disclosure agreement.

Premier and Select members may get the Software Seeding Program in addition to their mem-
bership. Seeds often include pre-release versions of operating systems, betas of company prod-
ucts, development kits, and development tools. Currently, these may be delivered electronically
or by snail mail on DVDs.

ADC on iTunes and Coding Headstarts are two more benefits of ADC membership. ADC on
iTunes provides videos of training sessions for developers. These videos are (surprise, surprise)
viewable on iTunes. Coding Headstarts are videos dedicated to teaching developers techniques
for adding features to OS X software. The Online and Student Members have limited access to
these benefits. Premier and Select members have full access to both ADC on iTunes and Coding
Headstarts.

Student, Select, and Premier members have access to hardware discounts. A special version of
the Apple Store is available for these purchases. Of course, the number of times the discounts
can be used scales with the level of membership. Currently, Premier can purchase 10 systems
per year at the discount, Select one per year, and Student one system (ever, not per year).

All ADC members can purchase extra technical support. Premier and Select members get a lim-
ited number of technical support incidents per year but can purchase additional support as
needed. The available technical support is one-on-one time with Apple engineers selected to
help you with your specific issues. If you are a diehard cutting-edge OS X developer, you may
find this included personalized support useful. | have never needed it myself. (I like to think that
is because Macs are such a good development platform.)

Avoiding Deprecated Java Cocoa Libraries

Apple provides several Java classes directed at developers seeking to create Java desktop applica-
tions that feel and behave like native applications. Apple’s Java classes typically inhabit packages
labeled com. apple. The number of com. apple packaged classes has dropped significantly
over the last few years due to older classes being deprecated and removed. Also, Apple’s native
GUI designer, Interface Builder, has dropped direct support for Java programming.

It is tempting to believe the number of deprecated classes and lack of Interface Builder support
on OS X for Java is an indication that Java applications with native behavior can no longer be
created for OS X. The changes to Java development on OS X are rather the acknowledgement of
real-world use by Apple of development tools. These changes have occurred because Apple
understands how the majority of Java developers on their OS create native-feeling applications.

This section explains the streamlining process that has resulted in the current state of Java
applications development on OS X.

Understanding the history of Java Cocoa libraries

At the turn of the millennium when Apple introduced OS X, Java was still in its infancy. Java was
an exciting buzzword in the development world. Apple already supported Java on OS 8 and OS 9.
Apple was excited to continue supporting Java in the OS X environment.

Few of the Java GUI design tools commonly used now existed then. The GUI tools that develop-
ers used contained little ability to customize Java desktop applications to look and behave like
native applications. This especially applied to OS X.

Mac application developers used a new GUI creation utility built for OS X called Interface
Builder. Interface Builder allowed for drag-and-drop creation of application interfaces; mouse-
driven creation of connections between GUI elements and class place holders; and then either
Java or Objective-C class generation, as shown in Figure 1.7, depending on the type of project
under development. Creating Java applications with a native look and feel was easy with this
tool, because the GUI was actually native.

E Getting Started

Figure 1.7

Legacy Interface Builder’s Class Inspector with Java option
selected

800 MylavaMenultem Class Inspector

| Autributes 53] @

Language.) Objective-C
® Java View in Fditor

ClassName: MylavaMenultem

[T W
R 0 Actions)

Dutlet Name — Type

myjavaOutlet id

(Remove | [Add)

S

Apple’s Java Bridge was still a commonly used tool for interfacing Java with Cocoa libraries. The
Java Bridge was easy to use for simpler applications. JNI and the Java Bridge were both used
depending on the complexity of the application developers built.

The OS X API, called Cocoa, came in two flavors: Objective-C and Java. The APl was further
divided into the Application Kit and the Foundation API. The Application Kit contained mostly
classes that wrapped Apple’s native GUI components. The Foundation API contained classes
that supported the Application Kit and classes that contained functionality found in Cocoa, but
not in standard Java.

With the release of OS X 10.4, Apple announced that the Java Bridge and the Java Cocoa
Frameworks were deprecated. Apple dropped the Bridge in favor of JNI. The 200+ Java Cocoa
Framework classes and interfaces were deprecated and replaced by seven Apple Java Extension
classes.

Many Java programmers fond of OS X felt this was the end of native-feeling applications written
in Java. However, Java is alive and well on OS X. As | show in this book, Java still interfaces with
Apple native technologies through Apple Java Extensions, JNI, AppleScript, and JavaScript.

Reviewing deprecated libraries

The deprecated Java Cocoa Framework contained over 200 classes and interfaces. These are
deprecated and should not be used. If you inherit a Java project that uses these classes and

interfaces, begin refactoring the code to use pure Java with Apple’s Java Extensions and other
Apple-supported Java Technologies. This section is intended to give you a quick overview of
the legacy Java Cocoa Framework, so you have some idea of where to begin the refactoring
process. The rest of this book is intended to give you knowledge necessary to write Java code
that seamlessly integrates with current Apple-supported technologies.

Apple currently provides support for several Java packages. They include javax.script,
com.apple.eawt,and com.apple.eio.If your project contains packages beginning with
com.apple.cocoa, the packages need to be refactored out of your program. The com.
apple.cocoa packages are always part of the legacy Java Cocoa Framework. Any classes
contained in the com. apple. cocoa packages will cease to function on OS X at some point.

NOTE

javax.script is supported by Apple as the natural interface for AppleScript and Java. com.apple.eawt provides classes
that make Java GUIs behave like native 0S X applications. com.apple.eio contains classes that access 0S X features that
do not have parallel features in the standard Java APIs.

The Cocoa libraries are split between the Application Kit framework and the Foundation frame-
work. The Foundation framework provides base classes and utility classes that form the “foun-
dation” of Cocoa applications. The Application Kit framework provides GUI related classes.

The Java Foundation package is com. apple.cocoa. foundation. The Foundation classes
are made up of useful utilities, data types, and classes that support Cocoa design patterns that
did not exist in pure Java.

For example, several of the Java Foundation classes come in mutable and immutable varieties.
Simply put, mutable mean changeable and immutable means final, in the Java sense of final.
Having two like named classes, one optimized for changing and the other optimized for use
without changing was uncommon in Java 1.1, back in 2000. Cocoa used this paradigm, so Java
Foundation classes were created to match up with their Objective-C counterparts.

The Foundation framework’s NSObject is worth special notice. NSObject is the root
object of Cocoa Java classes. Think of it as the Cocoa counterpart to the Java Object class.
NSObject has similar functionality as Object, such as cloning, equality comparisons, and
hashing.

The Java Application Kit package is com. apple.cocoa.application. The Application Kit
provides classes that represent Apple’s OS X native GUI components and events. Some of the
native widgets include NSAlertPanel, NSComboBox, and NSMenu.

NOTE

You may have noticed that the Cocoa Java classes by convention start with NS and not 0SX as expected. NS stands for
NextStep. NextStep was an 0S that had its origins in the 1980s. NextStep evolved into OpenStep which in turn evolved
into 0S X. The NS naming convention is a reminder that 0S X is not a descendent of the classic Mac 0.

‘;;!!!;;;; Getting Started

The Applications Kit's NSApplication controls the Cocoa application event loop. Whether
opening files, terminating the program, or showing help, NSApplication handles the
events. NSApplication uses delegates to listen for applications events. Assigning methods
in other classes to handle methods as delegates replaces the need to subclass NSApplication
or provide an interface implementation as you see in pure Java applications when handling
events. NSApplication is not subclassed normally.

NOTE

The current Javadocs for com.apple packages is located at:

http://developer.apple.com/documentation/Java/
Reference/1.5.0/appledoc/api/index.html

NOTE

The legacy Java Foundation classes and interfaces are documented at:

http://developer.apple.com/documentation/
LegacyTechnologies/Cocoa/Reference/Foundation/
Java/index.html

NOTE

The legacy Java Application Kit classes and interfaces are documented at:

http://developer.apple.com/documentation/
LegacyTechnologies/Cocoa/Reference/ApplicationKit/
Java/index.html#//apple_ref/doc/uid/20001094

The Cocoa Java paradigm felt very different from pure Java because it was written to match up
with its Objective-C counterpart. With any luck, you will never need to refactor an old Java
Cocoa application to be more of a pure Java application. If the application view is simple, you
likely are better off creating a Swing view and rewriting the interface to your Java controller
from scratch. It will save you lots of time and frustration.

Understanding why Java Cocoa libraries were
redundant

The Java-based Cocoa Framework met a need that existed when OS X was first released. Along
with the Java Bridge, the Java Cocoa Framework allowed for easy integration of Java code with
native OS X frontends. Swing and AWT, at the time, were still a bit clunky and buggy. At the
time, it was common for even diehard Java developers to refer to Java GUIs as “write once,
debug everywhere.” The OS X user interface was solid, groundbreaking, and beautiful. The Java
Cocoa libraries allowed Java programmers to take full advantage of this elegant new operating
system.

e Chapter1:ProgrammingJava for OS X ;

The Java Cocoa Framework, Interface Builder, and the Java Bridge were useful for simple com-
munication between Objective-C and Java code. Soon it became clear that these two languages
were too different for easy communication. The Java Bridge could not translate advanced
behavior between code written in these two languages. Also, the libraries of GUI components
provided with the Cocoa Framework could not be mixed and matched with Swing or AWT com-
ponents. Unexpected crashes appeared if they were.

As OS X matured, so did Java. Swing and AWT views became easier to create and less buggy.
Better tools for generating Java GUIs emerged. Java developers on OS X showed a definite pref-
erence toward using Swing, AWT, and third-party libraries over Interface Builder and the Java
Cocoa libraries. With the proper subset of Java classes supported by Apple, JNI, and interfaces
with JavaScript and AppleScript, no other technologies are needed to make a Java application
feel like a fully native application.

Exploring Available IDEs

In the early days of Java development on OS X, the only choice for an OS X Java IDE was Xcode.
Now several are available. The three most common are Netbeans, Eclipse, and Xcode. All three
are excellent IDEs. All three are free (as in food). Eclipse and Netbeans have the advantage of
being Java-centric environments. Xcode has the advantage of being OS X centric.

NOTE

Two common types of free software exist. Software that is referred to as “free as in food” is software that costs
nothing. Software that is referred to as “free as in freedom” is software that makes its source code available. The
second type of software sometimes costs money. The two types of “free” software are not mutually exclusive.
Software may be “free as in food” and also “free as in freedom.”

Many arguments have occurred over which of the three free IDEs should be used on OS X. All
three are excellent IDEs and have common IDE features, including line numbering, project tem-
plates, debuggers, and version control integration. | tend to use a combination of Eclipse and
Xcode (and TextEdit) when developing on OS X. NetBeans is also a valid option. In this section,

| discuss the benefits of all three.

Developing with Xcode

If you intend to write an application that is heavy in Java code, but also integrates with native
OS X libraries or applications, you should consider using Xcode as your development environ-
ment. Figure 1.8 shows Xcode. Xcode and related tools allow for easier integration of pure Java
with OS X features. In this book, | use Xcode for most examples. Several of the chapters in this
book explain the integration of Java with Xcode-specific technologies. Install Xcode to follow
along more closely with the example code in this book.

= Getting >tartea

Figure 1.8
Xcode IDE

Groups & Files [1 = |Cade] a @
v [myUmmateapalication B [[] Mltmateapplication java
@ buisd.cmi
v [l sre
I s = - rr——rr—
£ AbouBanava = | [hMylltimateAgplication Javacl & <Noselected . ™. C. #. D @
i MtdltimateAppiicaso ST 3} o h :]
| 1| PrefPane java Q2 pritsl ke viid hand lePrafersnera(Anpl icatiorEvent &) [F4
» [l resources €@ 1f fprefs == rull) -
» [l resources_macosx # wrels « e PrefFumed i
s
’? WE % pratareneas(aly
b | bin & 1
[jars & oubsl i voied ord LePr intFi lefApp] loat fonEvent &) { {
(b G]m d hard lefuit{dppl icationEvent &) | &
m publie v it : €
» (@ Targers fln Qut{e);
» o Execumbles 7
B Erenes and Waraings n 1
¥, Find Results ™
» L8] Bookmarks ™ SatsITe(I, 150);
= % setVisibleftrue}:
=t 7)
8 Project Symibals 7
» [l implementation Files n punlte vold about{Applicotionkvent &)
» (il NIB Files ® oyt . setResizob le{talse);
5l bt B setiisiblellie);
E 1
n
" public vord preterences{ipplicationtvent &) { L
5 prel . el Resizable(fulse): -
| — - 3 =
| Debugging of “My pplicar ded Iy @Succeeded

Install Xcode for free from your 0S X installation disk.

Xcode ships with six Java-specific templates. These templates are for Java Applets, applications,
JNI applications, signed Applets, command-line tools, and Web Start applications. Programmers
interested in Java Enterprise Edition development of Web applications with JSP, Servlets, and
Enterprise Java Beans often choose NetBeans or Eclipse as their preferred environment. Xcode
is used frequently by developers of Java desktop applications and Java client applications.

Xcode has built-in support for Source Code Management (SCM). CVS, Subversion, and Perforce are
supported by the default install. Secure SSH connections to code repositories are supported also.

Xcode is highly customizable. As is expected in a modern IDE, many preference settings control
editing, builds, and code versioning. As shown in Figure 1.9, the scripting menu supports the
reorganizing, addition, and editing of custom and built-in scripts.

My favorite feature of Xcode is the ability to automatically package resources, icons, and librar-
ies into OS X application bundles. Native OS X applications are actually folders with a structured
set of files. The folders look and behave like double-clickable executable files to users on OS X.
Application bundles are the preferred distribution method for applications on OS X. If you are
distributing your applications as double-clickable JAR files, use of the application feels awkward
to OS X users.

Figure 1.9

User Scripts dialog box in Xcode

Menu and Item Titles 3 Input. { Selection g
¥ Open
s Directory: | Home Directory =)
Open Path or URL :! fbinssh
¥ Search # Opene the salected file path in TextEdit
» Comments
b Code xargs open -
b Text
» HeaderDoc a
b Property Lists

Output: | Discard Output
Errors: [Display in Alert

alla)

Developing with Eclipse

Eclipse, shown in Figure 1.10, is available on multiple operating systems. A big appeal in using
Eclipse is that if you are required to use other operating systems such as Linux, you can still use
the IDE you are comfortable with. Eclipse uses SWT instead of Swing for its interface. SWT is a
library that is OS specific. Versions of SWT are available for most major operating systems.

Figure 1.10

Eclipse in Java perspective

IFM-He 0% | BEHE &S9P o : B
13 mckage R\k me_rmﬂ D[meainsraem java sf'\\ =S A)=

: i] e

SPSp ‘_-ﬁl',_ = stekic =|
¥ |=F MyRealiyCoalApplication - £/ Ensure native INT Tibrary iz lnaded =

T s System, lowdl ibrary{"IniTest™3; !

¥ B tdefault package) ¥ Gl

> L) BrainStorm java) =

public BrainGiarm() [

TERNE Iyt Lorley B LS, System, out,prinkin{*Instonce crested)

P 4 classesjar - /System)
» 9 uljar - [System/Labrar]
® & lafar - /SystemLibra native int native_method(5tring arg);
¥ jsejar - [system/L i
» {5 eedar - [SystemiLibr
r ::1-.: charsers jar - fSystem System. out.priatin("Started uppnmnnn')-

* = AppleScriptEngine jar System. oul.println{" jove. library.path = " + System.petP)
b el CoreAudiogar - /Syst BrainStarn newjni = new &‘uinsw

= public stotic woid main (String args(]) {
4/ insert code here...

b Bdaudivjar - Sysiem
b jydeare jar - (Syvvem; |
b = dutils jar - (System/|
¥ i jal_codeejar - /Systen|

» B jicorear- sy

’.ﬁn by s are= 1. Y

= exuing>Startea

NOTE

Installing the Enterprise Java bundle of Eclipse fromhttp: / /www.eclipse.oxrg/ allows you to create
client-server applications and traditional desktop applications.

NOTE

Many developers who use Eclipse swear by JFormDesigner for Java GUI development. JFormDesigner is made by
FormDev Software found at:

http://www. formdev.com/

Eclipse has distributions and modules for many programming languages other than Java, but it
shows its real strengths in creating and maintaining Java-based projects. Projects in Eclipse can
be created based off Ant build scripts or simply using default project templates.

Eclipse makes heavy use of tabbed perspectives. Eclipse has perspectives for Java, Debugging,
Java EE, SVN, Database Development, and many more. Swapping between multiple views dur-
ing development of one project is common.

Updates and custom add-ons to Eclipse can often be accomplished from the Eclipse Software
Updates and Add-ons dialog box, shown in Figure 1.11. Very rarely do modules used by Eclipse
require anything more than a URL and a few clicks of the mouse before complete integration
into Eclipse is accomplished.

Figure 1.11

Eclipse Software Updates and Add-ons dialog box

4} para Tools Plarform Enablement for MySQL

4 Data Tools Matform Enablement for DDA Designer

4 Data Touls Matform Enalslernent fur ODA Runtime:

4} Data Toals Matform Enablement for Oracle

1§+ Data Touls Platform Enablement for PostgreSal
for

L6.24200810071455-446_KEF7d8H_W/
L6.2¥Z008L0071455-2 1 388733465154
16.2 1455-

1B.2¥20081007 1455 «i_n'ndrnm-:
1.6.24200BL0071455-442_RETTITROV)

44 Dara Tools Parf

5L Data Tools Matform Enablement for Sybase
4§ Data Tools Marform JOT Enablement

1 Data Tools Matform Model Base

'+ Data Touls Plaform Open Data Access Designes
L LU

@

1.6.2.4200801211403-

Cpen the ‘Aytgmatis Updates” preference page to set up an automatic update schedule.

162 1455440, ALY
16.2~200810071455-7A-5E91gKLIM1d
1.6.2¥200810071455-1-07w311_1228
16 7

PR
& | Avallabie Sofrware |
Name Version ~ Update...
) Apache MyFaces Trinidad Tag Support (Optional) 2.1.0420090126-1-8Z7w311_1239 .
&_‘ Axis2 Tools (Optional) 1.0.3¥200901220134-77-E_FCYQLDS! Unanatail..
4§ Dara Tools latform Connectivity 1.6.2.4200810071455-7_7K7NDn-QYK)
4# Data Tools Matfarm Enablement].[l.?.l’t‘uuﬂ|ﬂ“l|‘5\-fﬂmifﬂ?‘qnh_
1§ Data Tools Plasform Enablement for Apache Derby 162 453 zi2L
4 mata Tools Matfarm Enablement for HSOLDE 162420081007 1855-57_2_pFAICHZISL N
i+ Data Tools Platform Enablement for B4 162420081007 1455-7D4 TFERTS A58V
(4 maea Tools Plarform Enablement for JORC 162 4200810071455-3-290A5557_0°
(51 Diata Tools Patorm Enablement for Microsoft 1.6.2v200810071455-442 KET7¢7vBQL

LNapter 1. FProaramming JavaioruUus A =

Developing with NetBeans

Years ago, NetBeans was considered the slowest of the three IDEs. These days, NetBeans
responds just as you would expect any well-behaved application. NetBeans has a large user
base and is sponsored by Sun. NetBeans, shown in Figure 1.12, is a strong contender for Java
developers on OS X.

Figure 1.12
Netbeans on OS X

v ([Source Packages >
¥ [com.genedavis T e

=)
» (0 TestPackages
v (& Ubraries
» 5 JOK 1.5 (Default)
v & Test Libraries
» B JUnir 3.8.2 - Junit-3.8. 3
* B JUnit 4.5 - Junit-4.5 Ja & Saithar tzvis
public class Maim {

package eom.geredavia;

- -

i
Main java - Navigator Qo |_ & Apnzemiscin!the
public static void mein(String(] a
[Meimbers Vi] T 7§ 7000 cude application logic hore
¥ G5 Main }
@ main{ssing] args) i s

Tasks oo
| i [Fie | .| Location
% TODO code application logic here Main.... 18 _.m/geneds

Bl

0O
=
B H:HM”"Q"M = W TODO: 1 in all oiq:d iro ects

NOTE

NetBeans IDE is available in several flavors from:

http://www.netbeans.org/

NetBeans supports GUI development with the Swing GUI Builder. Swing GUI Builder provides a
drag-and-drop approach to GUI creation. Drag Swing components from the palette to the pro-
vided canvas. Swing GUI Builder, shown in Figure 1.13, comes free with NetBeans. Free is great
when your budget is tight.

As with Xcode and Eclipse, NetBeans supports C/C++ and quite a few other languages includ-
ing JavaScript, PHP, Ruby, and Python. NetBeans supports traditional application development
and enterprise Web application development. Choose from seven different bundles on the
download page athttp: //www.netbeans.org/downloads/index.html.

Figure 1.13
NetBean’s Swing GUI Builder

¥ | | G il |~ Search (M+1)

[(ource |[ORGRY |0y | @ (@ B @ 2 I L B |SPowodfes

'y The Properties window displays editable settings for the selected companents L8 Soinse

[T| Text Pane
(5] Editor Pane
(] Tree
=] Table
w Swing Menus
B Menu Bar
1= Menu
15| Menu tem
12 Menu Item | Ched
15| Menu Item / Rad
15 Popup Menu
| |Separator
* Swing Windows
awr

Summary

In this chapter, you read about the long history of Java programming on the Mac. Apple pro-
vided Java for its computers before OS X became the OS of choice for Macs. Apple introduced
Java Cocoa frameworks to ease the transition of Java programmers from the classic Mac OS
to OS X. After Java programmers made the move to OS X, Apple deprecated the Java Cocoa
frameworks.

You explored the Apple Developer Connection Web site. ADC membership comes at several
levels and with various benefits, depending on your level. Even free members have access to
articles, downloads, and tons of Java-related reference material on Apple’s developer Web site.

Three free IDEs for developing Java are available on the Mac. They are Xcode, Eclipse, and
NetBeans. All three are excellent IDEs. However, | use Xcode for the projects and examples
in this book.

Introducing the
Environment
SEE—

N o computer matches the support for Java out of the box

that you find in a Mac. OS X ships with support for Java

applets in Safari, natively packaged Java applications, a
Java-friendly IDE, native-interface APIs, and several Java tools and
applications. Support for Java upgrades is integrated into the direc-
tory structure and system updates. Apple even maintains and
builds an optimized version of Java just for the Mac.

Java configuration is different on Macs than on other computer
systems. Setting up extensions and version preferences is easy, but
it requires some explanation. Knowledge of the Terminal applica-
tion and the shell environment is useful too.

In this chapter, | cover the nuances of Java configuration on OS X.
This includes installing JAR and JNI libraries, setting the default
JVM, and properly setting JAVA_HOME. | also introduce the
Terminal application, environment properties, dot files, and stor-
age of system configurations.

Configuring the JVMs u In This Chapter

Effective Java programming on OS X requires an understanding of

the Finder and the Terminal applications. Navigation of directories Configuring Java
and running of applications by users (like you and me) is accom- preferences
plished through either the Finder or the Terminal. The Finder and Understanding
Terminal applications provided essentially the same service to classpath details

users. One is GUIl based. The other is command-line based. o
Adding libraries

The Finder application is the GUI directory and file browser for OS X. Setting JAVA_HOME
Many beginning OS X users do not even know they are using an

application to browse their desktop or hard drive. Using and creating

environment variables

The Finder is always open. Otherwise, you could not browse direc-
tories and files. The Finder is a permanent part of the Dock. On the
Dock, it is has the square smiley face icon on the far left, as shown
in Figure 2.1.

E Getting Started

Figure 2.1
Finder icon on the Dock

' B . prream.

Finder is an application that can be restarted just like any other application without restarting
the whole computer, which is nice and modular, just the way programmers like it. To restart
your Finder without restarting your computer, follow these steps:

1. Press Cmd-Opt-Esc.

This command brings up the Force Quit Applications dialog box.

2. Select Finder from the list of applications in the Force Quit Applications
dialog box.

Notice the Force Quit button'’s label changes to Relaunch.
3. Click the Relaunch button.

The Finder closes all the open Finder windows, quits, and restarts.

Knowing how to restart the Finder comes in handy later in the chapter when | discuss environ-
ment variables. Also, on the very rare occasion when the Finder stops working properly,
relaunching it may fix your problem.

The Terminal application, shown in Figure 2.2, is very similar in purpose to the Finder. The
Terminal allows command-line browsing of directories and files. It is analogous to the DOS win-
dow in Windows. Applications of all sorts are launched from the command line in the Terminal
application.

The Terminal application is a little tricky to find. You will use the Terminal constantly through-
out this book, and you'll find it invaluable after you are familiar with its use. To find the Terminal
application, open your Applications folder in a Finder window. Look for a folder called Utilities.
The Terminal application is in the Utilities folder.

Now that you can open the Terminal application, it is time to find and configure Java on your
computer.

e ________________(ChapterZ:introaucing the Environmen =

Figure 2.2

Terminal application

Winmac:~ tdaviss s

ws

Dk Lup Doumert Lounds. Huvies Pictures Files
Documcnta Library Muzic Mublic

Winmoc:~ tdavis$ s |

totnl A

drux-——---——+ 9 tdavis staff 386 Jun 38 16:16 Desktop

drwg———-—@ 24 tdavis staff 016 Jun 29 80:07 Documents
drwg———+ @ tdaviz staff 2389 Jun 38 15:51 Downloads
drux———-—s 42 tdoviz stoff 1422 Jun 27 18:43 Library

drux-——--——+ 3 tdavis staft 18 Ror 12 Z2:98 fMovies

drwg———-——+ 7 Lduvis slaff 235 Jun 8 21:29 Husic

drwg-—-—=2 7 tdavis staff 230 Hay 20 09:17 Pictures
druxr xr xs B tdaviz staff 178 Mar 12 22:48 Public
drusr—yr-xs B tdaviz =staff 178 Hor 17 77:48 Sites
winmoc:~ tdoviss |

Identifying JVM locations

Finding Java for the first time on OS X is a bit tricky. If you are an experienced Java programmer,
you might decide to check the JAVA_HOME environment variable first. From the Terminal on
my default install of OS X, executing echo $JAVA_HOME produces no results. No JAVA_HOME
variable is set.

If you are an experienced Unix programmer, you might think to check the location of the java
command-line tool. However, which java returns:

/usr/bin/java

Usually the java command is in a bin directory under JAVA_HOME. If you list the /usr direc-
tory, it reveals a directory that looks nothing like a typical JAVA_HOME, because it isn't. Enter
1s -la /usr/bin/java to find out if this is actually the java command, and you discover
that /usr/bin/javais actually a link to:

/System/Library/Frameworks/JavaVM. framework/Versions/
Current/Commands/java

By following links to links to links, eventually anyone persistent enough finds a real JAVA_HOME.
In fact, poking around the directory system exposes several versions of Java with several Home
directories. Explore this directory for an interesting exercise:

/System/Library/Frameworks/JavaVM. framework/Versions/

= Getting Startéea .

In addition, executing /usr/libexec/java_home returns the following:
/System/Library/Frameworks/JavaVM. framework/Versions/1.6.0/Home
Also, there is the /Library/Java/Home directory that turns out to be linked to:

/System/Library/Frameworks/JavaVM. framework/Home

CAUTION

If you are well versed in the art of links with 1n, you may be tempted to modify the links to java tools,
/Library/Java/Home or other directories. Using 1n to modify Java configuration links may cause
issues with using Java or Java updates later on.

You are probably wondering which path you should use for JAVA_HOME when requested by
an installation program. The correct answer is execute:

/usr/libexec/java_home

This returns the correct version path to your currently set Java home. This little app is handy
when you don’t want to fire up the JVM to find the path of home. You also can use it to dynami-
cally set JAVA_HOME in shell scripts. The returned value changes based on your Java
Preferences setting.

CROSS-REF

Terminal creation and use of shell scripts are explained in greater detail in Chapter 4, which is about building Java
apps, but the shell scripting information found there can be applied to situations other than setting up Java builds.

This is the perfect excuse to test Xcode for the first time, while verifying that /usr/libexec/
java_home actually agrees with your JVM about its home directory. The following code exam-
ple requires Xcode. If you have not yet installed the OS X developer tools, install Xcode now.

NOTE
The JavaHome Xcode project is available on the book’s Web site. Download the Chapter 2 code from the book’s Web
site to access the JavaHome Xcode project.

CROSS-REF

In Chapter 3, | explain Java tool project creation with Xcode, and an alternative approach with Organizer.

Below, | explain how to start Xcode, and "Build and Run” the Java tool project called JavaHome.
A Java tool is a simple Java application that normally starts with the java command. Typically
Java tools are used by scripts or from the command line, though no rules or regulations prevent
you from expanding a basic Java tool to be a fully windowed event-driven application.

LNAdbPter Z. introaucina tnechvironmen: =

The JavaHome project prints the location of the running JVM’s home directory. Because this
tool does not have a Window or Dialog to display the information, | describe how to build and
run the application in the Xcode Console window. This provides a display for standard output.
Follow these steps:

CROSS-REF

Instructions for installing the free 0S X developer tools were given in Chapter 1.

1. Start Xcode.

Xcode is located in /Developer/Applications. You find the Developer folder
by double-clicking your default startup disk.

2. Click File Open....
You now see the Open dialog box.

3. Select the JavaHome Xcode projects in the JavaHome project, as shown in
Figure 2.3.

Figure 2.3

Selecting the JavaHome Xcode project from the Open dialog.

(«7»] (22 =) [@JavaHome =BG
¥ DEVICES (3 bin P W Preview:
Ewnmec | G build "
2 Friendly 7 build.xml
=) Unitled & aist !
L jars *
» SHARED B JavaHome.xcodeproj
» PLACES & 1ib £
[resources r
¥ SEARCH FOR e -
(L) Today Name JavaHome xcodepro
(1) Yesterday i
() past Week Kind ¥ecode Project File
Al Size 61 KB on disk
(& All Images Created 6/27/00 12:14 PM
(5] All Movies Modified Today 8:50 PM
All Docume... Last opened Today 8:50 PM
¥ MEDIA (More info...)
I Music
5| Photos
i Movies
I i 1
al - ——— — — (— — — —— — ——— 3.
(Cancel)
]

ertting Starteo

4. cClickthe Open button to open the JavaHome project.

5. Select the JavaHome class in the Group & Files panel on the left side of the Project
window, as shown in Figure 2.4.

Figure 2.4

JavaHome class file in Project window

B [} JavaHome java

i -
* [l resources | 4 v [hJwvaHome javaid £ <No selected symbols ML AT M NF)
[Timpere java.util.s; B
=1 3 |
I [l bin 3 | jes
r s 4| | Compare the output of this applicatinon against the sutput af
= % :J.m: rilibexec/java_home
* @) Targets #| | public class JavaHome {
b o4 Executables '
¥ 3}, Find Results pubilic static void main (String argsll) {
H o ystem, out.printle
L2 Boukmarks 1 =JAVA_HOME is ——-="+
== 1 Systen.getPropertyl” jave. home" js
W froject Symbals 1 " ="}
& [l implementation Files i |
» [N Fies 16|

6. Ensure the main() method contains the following code.

The following code queries the JVM for the java . home System property.

public static void main (String argsl([])
{
System.out.println (
"JAVA_HOME 1s —--->"+
System.getProperty ("java.home") +
"<--=t)

}

7. Open the Xcode Console window found in Run=> Console, and click Build
and Run.

You should see a similar result to that shown in Figure 2.5.

CROSS-REF

Xcode projects are explained in detail in Chapter 3.

e Lhnapterz.:intfroaucina tne cnvironment

Figure 2.5

Xcode Console with correct Java Home path

a0o [JavaHome - Debugger Console =)

[Session started at 20@9-12-87 21:39:35 -8700.]
JAVA_HOME is ——»/System/Library/Frameworks/JavaVH. framework/Versions/1.6.08/
Hompe——m

The Debugger has exited with status .|

Debugging of “java® ended normally. @ Succeeded -

This program verifies that your Java tool executing from Xcode and java_home executing
from the Terminal agree. In the next section, | explain how to change the Java version pointed
to by java_home and java.home.

As | mention above, the Java home path given by the java_home application varies based on
your settings in Java Preferences. You may run into a circumstance where you must use a spe-
cific version of Java on the OS and want to ignore the directory returned by java_home.

A simple solution is to hardcode the path to the Home directory of a specific version of Java. In

the /System/Library/Frameworks/JavaVM. framework/Versions/ directory, you
see additional directories named after several versions of Java, as shown in Figure 2.6. Some of
these have Home directories in them. If you need a specific version of Java, hardcode your path
to the Home directory of the Java version you want to use.

Figure 2.6

/System/Library/Frameworks/JavaVM.
framework/Versions/ in Terminal

Winmac:~ tdaviss 1s -1 sSvsten/Library/t romeworks/Jovaii.franework/Yersions, e
Lotul 56 r
lrwsr-xr-x 1 root whecl 5 Jun 15 21:11 1.3 - 1.3.1

druxr xr-x 3 root wheel 182 Jul 18 2088 1.3.1

lrur—yr-x 1 ront wherl B dun 16 21244 1.4 .~ 1.4.7

lrusr-xr-x 1 root wheel 3 Jon 1% 85:49 1.4.1 -> 1.4

drwsir-xr-x 0 root wheel 272 Jan 14 05:40 1.4.2
lrwxr-xr-x 1 root whecl E Jun 15 21241 1.5 - 1.5.8
druxr-xr-x 8 root uwheel 272 Jan 14 85:48 1.5

lrwxr-xr-x 1 root wheel b Jun 1b Z1:44 1.6 -> 1.6.8
drwrr-xr-x 8 rool whesl 272 Hur 13 14:20 1.6.8

drwsr—xr-x 0 root wheel 272 Junm 15 21:44 A

lrwxr-xr-x 1 root wheel 1 Jun 15 21:44 Current > A
lrurr—yr-x 1 ront. wherl 3 Jum 1R 21:44 DurrentdDK - 1.5

winmoc:~ tdoviss |

hd

= Getting Startec

Using the version option of the java_home command-line tool is a better solution than hard-
coding the path of a specific Home directory. For example:

/usr/libexec/java_home -v1.5
produces the path to the 1.5 Home directory:
/System/Library/Frameworks/JavaVM. framework/Versions/1.5.0/Home

To see the manual for java_home, enterman java_home in a Terminal window. man is a
command-line tool for viewing command-line tool manuals. Use the up and down arrows to
browse up and down in man manuals. Type g to quit the man application.

CAUTION

Hardcoding paths to specific versions of JVMs is discouraged. The path may change later with a system update.
However, in some cases this still may be the solution you prefer. The preferred method to find a path to a specific Java
version is to pass a JVM version to java_home command-line tool.

CROSS-REF
Application bundles provide an Info .plist you can configure to require or suggest a version of Java that the Java
application uses. Chapter 5 provides information on Info.plist configuration.

Setting Java Preferences with “Java Preferences”

Java Preferences is found in the Applications/Utilities directory. Starting the applica-
tion, you see a window with four tabs: General, Security, Network, and Advanced. The General
preferences tab, shown in Figure 2.7, contains the option to specify the version of Java that you
want to use with either applets or Java applications.

To specify your preferred version of Java to use, drag the Java version up or down the list. The
top entry is the most preferred version of Java to use. If an application cannot be run with the
preferred version, then the next most preferred version is used.

The Java Applet Plugin section of the General preferences tab has the additional ability to spec-
ify options to use when starting applets. Click the Options... button, and the Applet Options dia-
log box becomes visible, as shown in Figure 2.8. From here, you can set applet runtime
parameters in a text box. Also, you can select to smooth text in Java applets.

Figure 2.7

Java general preferences in Java Preferences application

— | General | Security Network Advanced | —
Java Applet Phigin
JavasE 6 Ga-bin | Weh Brawsers use this arder 1o determine which version of
125 5.0 32-bit g 4 (ot ssplies
125E 5.0 64-bit st compatible architecture in this list.
J25E 1.4.2 32-bit
(" Options...) C Restore Defaults)
Drag to change the preferred version
Java Applications.
bl Java Web Start
E:f ;éué ;i _:: tools use this erder 1o determine the most appeopriate
J2SE 5.0 i wersion of the lava Virual Machine 1o use.
J25E 1.4.2 12-bir
Dvag to change the preferred version
Figure 2.8
Applet options dialog box
Applet Runtime Parameters 1.6.0_13, 64-bit
1 Smooth text in Java applets
)

Click the Advanced tab at the top of the Java Preferences window. This tab contains a host of
useful configuration settings, as shown in Figure 2.9. The advanced options include enabling
tracing, logging, and showing applet lifecycle exceptions. You can configure whether to show
or even start the Java console. You can configure many security settings as well.

= exuing>Startea

Figure 2.9

Advanced tab of Java Preferences

L

["General Security Network

¥ Debugging .
[Enahde tracing
L1 Enable legging
[Show applet lifecyele exceptions
¥ Juva console
©) Show console
() Hide consale
) Do not stan cansale
* Shortcut Creation
1) ahways aliow
) Always allew if hinted
) Prompt user
) Prampt user if hinted
) Never allaw
¥ Security

-l b

Ser Java text Input method menu key combination (Setkey.)

NOTE

If you are using a 32-bit version of Safari, then applets running inside of Safari must use a 32-bit version of Java. This
means that you are reverted to J2SE 5.0, instead of using Java SE 6, which is available only in 64-bit on 0S X. However,
Web Start applications started from a 32-bit Safari still run in Java SE 6 if desired.

TIP

If you set Java Applications to the latest version of Java in the Java Preferences, but a Java application is ignoring this
setting, check the Info . plist setting for the application. If the application has an Info . plist setting speci-
fying the use of an older version of Java, the Info . p1ist overrides the preferred setting in Java Preferences.

Adding Libraries

Java programmers speak of the classpath, clumping all classpaths into one category. Java actu-
ally has three categories of classpaths. Each of the three classpath types has a distinct purpose
and should be used properly. The purpose of this section is to review the categories of class-
paths in Java and explain their locations and uses.

The three classpath categories are user, extension, and bootstrap. These also are called the
application classpath, the optional classpath, and the core classpath, respectively. Most Java
developers mean all three when they say classpath. However, developers often only manipulate
the user classpath, avoiding the other two as much as possible.

Exploring library locations

The core classpath is reserved for the JVM’s JAR files. Only the actual implementer of the Java
Virtual Machine should be populating this classpath. The system property for the core path is
sun.boot.class.path, and it can be retrieved at runtime by the following command:

System.getProperty ("sun.boot.class.path") ;
The core path is located in the same directory as the Home directory. It is in the Classes directory.

I mentioned earlier in this chapter that the location of the active Home directory varies based on
the setting in Java Preferences. As mentioned earlier, you can find the location of the active
Home directory by calling the command-line tool /usr/1libexec/java_home. Modify the
resulting directory path by replacing Home with Classes, and you have created the active
core classpath’s path. On my system the active core path is as follows:

/System/Library/Frameworks/JavaVM. framework/Versions/
1.6.0/Classes

On your system, it may be different.

The optional classpath (or extension classpath) stores JARs that extend Java. These are JARs that
are intended for use by applications running on the computer that do not actually install the
libraries. For instance, if you create the newest and sleekest widget that everyone assumes is
available for their applications, you install the JAR'ed widget in the proper optional classpath,
and every application and applet running on the computer has instant access to it.

On OS X, three optional classpaths are active at any given time. You may be familiar with the
traditional 1ib/ext directory located in the active Java home. This directory exists on OS X,
but should not be used.

CAUTION
Do not use the Java Home directory’s 1ib / ext directory for Java optional packages. System Update tends to change
the location of this directory or even delete this directory without warning.

These are the two other optional classpaths:
/Library/Java/Extensions

/System/Library/Java/Extensions

The second path, starting with System, is for Apple’s exclusive use. That leaves /Library/
Java/Extensions for developer and application to use. /Library/Java/Extensions
has a huge benefit: If the user changes the preferred version of Java on the Mac, this optional
classpath stays active. Dependent applications keep on working. (Thanks Apple!)

‘;;!E!;;;; Getting Started

The system property for the extension classpath is java.ext.dirs. Access the java.ext.
dirs property at runtime with this command:

System.getProperty ("java.ext.dirs") ;

User (or application) classpaths are defined by default as the directory the application is started
from or the current JAR from which the application is running. If the classpath option of the
java command is redefined, then the current directory or JAR’s path must be included in the
new path.

The application classpath provides the application with the locations of additional libraries spe-
cificto it.

CAUTION

If the application classpath contains classes that already exist in one of the other classpaths, then the JVUM ignores the
duplicates in the application classpath.

The system property for the user classpath is java.class.path. To access the application
classpath at runtime, use this command:

System.getProperty ("java.class.path") ;

Including JARs and native libraries

You will need to include JARs or native libraries in your Java applications, eventually. Two com-
mon methods for including JARs are available. The first is to modify the java classpath option to
include the JARs. When modifying the java classpath option on OS X, path separators are colons
(:) and directory separators are forward slashes (/). The second method of loading needed librar-
ies is to place your JARs in the appropriate directory, so the JRE loads them when needed.

To make your JARs or native libraries available to all Java applications, place themin /Library/
Java/Extensions. Java class files are not recognized in this directory unless they are in JARs.
Native libraries used in Java Native Interface (JNI)-based applications can be placed in /Library/
Java/Extensions loose. Shared native libraries do not require packaging of any sort load
from the Extensions directory.

TIP

On 0S X, Java Native Interface libraries follow the naming convention 1ib<1libname>.jnilib. This naming
convention differs slightly from Linux or Windows.

Creating custom libraries

Any JAR file works as a library. To create a custom library using Xcode, use the JavaHome proj-
ect from earlier in this chapter and remove the main () method. Creating native libraries is not
much more difficult. Use the JniTest project from the book’s Web site to create native libraries.
Later in this book, | explain details of Ant project creation for JNI. For now, use the Xcode proj-
ect that | provide.

Creating custom libraries sounds easy because it is. Still, the following demonstration clears up
potential confusion. This simple example uses an Xcode-generated JNI project. JNI scares many
developers, but there isn't much to it. | will go easy on you for our first JNI example.

CROSS-REF
Chapter 9 covers JNI on 0S Xin depth.

CROSS-REF

In Chapter 3 | explain creating Java tool projects with Xcode and Organizer.

As a reminder, JNI applications use Java code to call a natively compiled (usually C) library. This
comes in very handy when you need to interface your application with prebuilt libraries to save
the time and expense of rewriting the libraries in pure Java. Also, if you have small chunks of
code that need optimizing in C, JNI works for that too.

In this sample, | use a default JNI Xcode project called JniTest. Xcode 3.2 does not currently have a
simple JNI project template, but | had one hanging around from Xcode 3.1. It works fine with Xcode
3.2 and with a little tweaking makes a great base template for JNI development in Xcode 3.2.

After compiling and testing the JniText project, | move the native library to the Extensions
folder and the Java class to the Desktop. At this point, running the class from the command
line works because the jnilibisin the optional classpath. Follow these steps:

1. Open Xcode and choose File> Open...

2. Choose the JniTest project file from the JniTest project, as shown in Figure 2.10.
3. Openthe projectby clicking the Open button.
4,

Open the Xcode Console by selecting Run~>Console.

5. Click Build and Run at the top of the console, as shown in Figure 2.11.

This creates the native library and class we need for our test.

Figure 2.10
Selecting the JniTest project in the Open dialog

(«l»] (22 ={m) [@iniTest ZRCY
¥ DEVICES » (@ bin P W Preview:

= winmac | " E build "

Friendly »* “ build.xml
g {irtiied) [dist »
-

» SHARED E -
» PLACES

¥ SEARCH FOR

(L) Today Mame JniTest.xcodepro)
(L) Yesterday Kind Xcode Project File
(L) Past Week Size 70 KB on disk
Created G/28/09 B:54 AM
(@l Allimages Modified Today 9:19 PM
[E] Al Movies Last opened Today 9:19 PM
[ANl Docume.. R
(_ Muoreinfo..)
¥ MEDIA B
I Music
= Photos
& Movies
I I "
e | e 13
Gpen)
]
Figure 2.11

Successful Build and Run

[5ession started at 2@e9-12-87 21:44:39 -@/ep.1
Picked up _JAVA_OPTIONS: -Xdebug -Xnoagent -
Xrunjdwp:transport=dt_lecal,cerver-y,addrecc=-8000
Listening for transport dt_local at address: BE@@
Java says ... "Well, what is it?"

THE answer is 42, or so said Douglas Adams!

The Debugger has cxited with status 8.

.ﬁwﬂlnipf!jnﬂqﬂ'ii\ddam, Y ‘;

6. Navigate in the Finder to the bin directory in your project.

The bin directory should contain the JniTest.class and the 1ibJniTest.
jnilibfiles.

7. Copy the JniTest.class to the Desktop and the libJNITest.jnilib to /Library/Java/
Extensions.

8. Open a Terminal window and navigate to the desktop by typing cd Desktop after
opening the Terminal window.

9. Enter java JniTest in the Terminal.

The output should read:

Java says ... "Well, what is it?"
THE answer 1s 42, or so said Douglas Adams!

TIP
NI builds with Xcode on 0S X 10.5 seem to require a 32-bit JUM. If Xcode fails to build the built-in JNI template on your
Mag, just change the preferred JVM to a 32-bit JRE in the Java Preferences application.

Finding Environment Variables

Every program you write has variables contained in it. You are already familiar with the creation
of variables in Java. In addition, Java gives programs access to JVM-specific system variables
called properties. Earlier in this chapter, | discussed the sun.boot .class.path, java.
ext.dirs,and java.class.path properties.

The environment that starts a Java program (or any other program) also has variables associ-
ated with it. These OS X variables are called environment variables. Earlier, | described both the
Terminal and the Finder. Both applications have environment variables. These variables are
inherited by applications opened through them.

Setting JAVA_HOME

When you type any command into the Terminal, the command is executed by a shell program.
Bash is the shell that runs by default in the Terminal window. These instructions assume bash is
your shell and running any scripts you execute. If you discover you are using a different shell,
consult the documentation for that shell. Documentation for all the common shells is just an
Internet search away.

Bash contains two types of variables: environment variables and shell variables. Environment
variables are inherited by applications opened from a Terminal window. Shell variables are not
inherited by programs opened from the Terminal window.

‘;;!!!;;;; Getting Started

TIP
Application bundles you normally open with a double-click in the Finder can be opened from the Terminal by using the
open command. For example, use open /Developer/Applications/Xcode.app.

By running applications from the Terminal, you change the set of inherited environment variables to match the parent
Terminal window instead of the Finder. Opening from the Terminal allows you to modify applications’ environment
variables from the shell.

Check the Terminal’s environment variables by entering env in the shell. Check the shell vari-
ables by typing set in the Terminal window. Notice that the shell variables include the list of
environment variables.

When set or displayed in bash, variables start with a name followed by an equal sign followed
by a value. Do not place spaces directly before or directly after the equal sign. By convention,
the names of environment variables are always completely uppercase. (Sysadmins shout a lot.)
Words in variable names are typically separated by underscores.

TIP

Type env in the Terminal, and you see the full list of environment variables. Look at the variable names and values.
One variable is named SHELL. Notice SHELL's value. If you have a default installation, it is probably bash. This is
a handy way to check which shell is running.

Create a new environment variable in a Terminal window for practice. Use this form:
export MY_VARIABLE="some value"

The export command makes variables available to the environment. Quotes are only needed if
the value contains spaces. The variable does not appear in other Terminal windows.

CROSS-REF

Shells and shell scripts are discussed in detail in Chapter 4.

As mentioned earlier, a common environment variable often available in Terminal windows is
JAVA_HOME. JAVA_HOME is discouraged on OS X in favor of other options mentioned earlier.
OS X does not come with the environment variable JAVA_HOME set by default.

Many Java-based servers and complex Java applications look for a JAVA_HOME variable when
running installation shell scripts or startup scripts. Ideally, set these applications to point to the
correct home via the java_home command-line application discussed earlier.

If you cannot get around the requirement for a JAVA_HOME environment variable, set JAVA_
HOME locally in a startup script for the application that needs it. Most applications that need
JAVA_HOME are using a script to start. The script begins with a line similar to this:

#!/bin/bash

Place the exported variable somewhere after this declaration line.

Setting JAVA_HOME locally in a startup script allows other applications that require JAVA_
HOME to have the variable set to a different value without accidentally having an application
use the wrong value.

Of course, you can hardcode the JAVA_HOME value; however, dynamically setting it to match
Java Preferences is better. Setting JAVA_HOME locally in a shell script or from the command
line to equal java_home is accomplished with this command:

export JAVA_HOME='/usr/libexec/java_home’

Notice the backticks. The backticks execute java_home and provide the return value as the
value of JAVA_HOME.

Exploring dot files and dot folders

| explained setting environment variables for the Terminal in the preceding section. These vari-
ables affect only the Terminal or applications that start from the Terminal. If you double-click an
application in the Finder, the Terminal environment variables are ignored in favor of Finder's
environment variables.

There is an easy fix for this situation. You can set environment variables for both the Terminal
and the Finder. First, you need some background information.

On OS X, and other Unix systems, users have a home directory. When you log in via telnet or ssh
or open a Terminal window, you are located in your home directory. To return to your home
directory after changing your current directory, simply enter one of the following:

cd
cd ~
The tilde at the beginning of a directory path represents your home directory.

Browsing directories in the Finder hides many files and folders from your view. This is especially
true of your home directory and the root directory. For example, open a Finder window and
navigate to the root of your default hard drive and then open a Terminal window and go to the
same location and list the root directory using these commands:

cd /
1s

You find that the directories beginning with lowercase names are visible to the Terminal, but
not immediately visible or navigable by the Finder. To get to these hidden directories in the
Finder use the Go=>Go to Folder.... menu command.

l;;!!!;;;; Getting Started

Complex applications store user state, serial numbers, preferences, file paths, URLs, and a great
deal of other information in property files that are changed constantly. By convention on OS X
and other Unix platforms, user-specific information and application state is often stored in dot
files or dot folders in the user's home directory.

Dot files (or folders) are hidden from casual users even in the Terminal. If a file or folder has a
name that begins with a dot, such as .my-folder, the Finder does not display it. Also, the 1s
command entered in a Terminal window does not display dot files and dot folders.

To display dot files in the Terminal, use this command:
1ls -a

To display dot files in the Finder, you need to issue the following command in a Terminal
window:

defaults write com.apple.finder AppleShowAllFiles -bool true

Then relaunch the Finder either through the Force Quit Applications window (explained earlier
in this chapter) or by restarting your computer. To hide dot files in the Finder (because you will
get tired of the clutter quickly), use the following command in the Terminal, followed by a
relaunch of the Finder:

defaults write com.apple.finder AppleShowAllFiles -bool false

Notice that the only difference between the two commands is the Boolean value at the end of
the command. You cannot create dot files or folders from the Finder, as shown in Figure 2.12.
Instead, use the Terminal. Follow these steps to see a demonstration:

Figure 2.12

Dialog box stating no dots allowed in folder or filenames

N You cannot use a name that begins with a dot “.",
because these names are reserved for the system.
Please choose another name.

o)

1. Open a Terminal window.
By default, you begin in your home directory.
2. Enter mkdir dirtest2toss, and press Return.

3. Entertouch filetest2toss.properties, and press Return.

4. Enterls-a and press Return.

You now see the .dirtest2toss directoryandthe .filetest2toss.
properties file.

The three commands mentioned above are: mkdir, touch, and 1s. mkdir means make direc-
tory. touch (in this case) means create a new file by this name. 1 s means list. These commands
are common on my Unix operating systems.

NOTE
The touch command line utility modifies access and modification times of files. Creating files is not its purpose.
However, creating non-existent files is a useful side effect of t ouch.

Using system-wide properties
I've given you some basic background on hidden files on OS X and a brief explanation of the
home directory, so you are now ready to understand global environment properties.

Earlier, | mentioned that setting environment variables in Terminal windows affects only that
Terminal where the change is made and the applications launched from that Terminal window.
The Finder remains unaffected by changes made to Terminal environment variables.

Apple understood the need for setting environment variables in both Terminal and Finder
spawned applications. Their solution is a hidden property file that does not exist by default
on OS X. Thefile is:

~/.MacOSX/environment.plist

From my earlier discussion of the home directory and hidden folders, you probably recognize
that the tilde represents your home directory and the directory beginning with a dot is a hidden
directory.

Check to see if the ~/ . MacOSX directory exists by typing 1s ~/ .MacOSX in the Terminal. If
the directory exists, and you have an environment.plist file in the directory already, then
you may navigate to it by using the Go to Folder... menu item under the Go menu in the Finder
application. Once there, double-click the environment .plist file to open the Property
List Editor.

If the file or folder does not exist, you can create it from the Property List Editor. The Property
List Editor is one of the developer tools installed with Xcode. The path to Property List Editor is
as follows:

/Developer/Applications/Utilities/Property\ List\ Editor.app

The Utilities directory, shown in Figure 2.13, contains the Property List Editor application
and several other useful utilities.

TIP

When giving a path from the root directory / in the Terminal, remember the Finder equivalent is found by opening
your startup drive and browsing from there.

Figure 2.13
Utilities directory containing Property List Editor.app

L

B O O .
Ll Accessibility Tuols
E3 miuetontn

¥ PLACES » [Built Examples

» SEARCH FOR '3\ CrashReporterPrefs.app
' FileMerge.app

17 Help Indexer.app
% lcon Composer.app
A |ORegistryExplorer.app
i iSync Plug-in Maker.app
» [l MacPython 2.5
& PackayeMaker.app
'_J Property List kditor.app
A SleepX.app
» [speech
& Syncrospector.app
% USB Prober.app

You can edit many types of Mac property files with Property List Editor. In this case, the prop-
erty file is environment .plist. You will learn other types of property files that the Property
List Editor manipulates throughout this book.

CAUTION

Don't forget to restart your computer after saving changes to environment .plist.

As shown in Figure 2.14, the environment .plist is an XML file with a Root node of type
Dictionary.Add children to the Root by clicking the Add Child icon at the top of the
window. When you restart the computer, all the children of Root load into your global user
environment.

Save your changes to the environment .plist to the path ~/ .Mac0SX/. This seems fairly
straight forward, but remember that you cannot see . Mac0SX, because it is hidden! Three
methods seem easiest for getting around this problem.

Figure 2.14
Property List Editor with a Root element

“~

CAUTION

Remember to save environment . plist in XML Property List format. That is the default format.

First, if . Macosx does not exist, you can create it from inside Property List Editor’s Save dialog box. Ignore the
warning about dot folders shown in Figure 2.15, and create the directory. You will automatically be placed in that
directory and can save your file there.

Figure 2.15
Warning in Save dialog box about dot folders

Names that begin with a dot "." are

'\ = reserved for the system.
\ If you decide to go ahead and use a name which
begins with a dot the file will be hidden.

i Use -.. ! M Cancel

Second, if the .Mac0SX folder exists and the environment .plist exists, navigate to the
directory using Go=> Go to Folder... in the Finder. Next, open the file by double-clicking it. Now
you simply click Save, and the plist saves to the proper location.

Third, if the . Mac0SX folder exists, but the environment .plist does not, modify Finder
temporarily to display dot folders as described earlier in this chapter. Then you may navigate to
.MacOSX to save your new environment .plist at will.

:;E!E!;;;; Getting Started

NOTE
Restarting is required to reload the current values of environment . plist. If you are setting variables globally
for both the Finder and the Terminal, you probably won't do it often enough for restarting to become a problem.

TIP

When debugging environment settings for the Finder, | suggest using the open command from the Terminal to
simulate opening from Finder. Changing environment variables in the Terminal is quick and easy between application
launches.

Accessing OS X environment

Now that you can modify environment variables for a given user account using environ-
ment.plist,itistime to look at using these variables in your Java programs.

Earlier, | explained that several Java-specific properties are accessible through the System.
getProperty () method. It might seem obvious to look for some standard property that
changes based off the environment variable name.

It turns out that accessing environment variables is much simpler than that. The method is
System.getenv (), and it takes a String for its only argument. If you have an environment
variable named MY_ PROJECT_HOME, accessing it at runtime is simply a matter of calling
System.getenv () asfollows.

String path = System.getenv ("MY_PROJECT_HOME") ;

Summary

In this chapter, | explained configuring Java and Java applications. Java ships with multiple ver-
sions of Java. New versions of Java are installed from the system updates, on occasion. Finding
a correct path to a desired Java Home directory is as simple as using the /usr/libexec/

java_home tool. Set your preferred version of Java through the Java Preferences application.

Add optional Java libraries to all Java applications by adding them to the /Library/Java/
Extensions directory. Class files must be in JARs in this directory. Native libraries for JNI do
not need JAR'ing.

Access system environment variables in Java by way of the System.getenv () method. Set
environment variables locally for a specific Terminal window and applications started from that
window, or set them globally for all applications started by the user.

Understanding Xcode
—

E ven if you use Eclipse or NetBeans as your primary IDE on

OS X, Xcode contains many useful templates for native OS X

integration. Integrating your Java application with
Objective-C, com.apple.eawt packages, Cocoa Frameworks, or
screensavers starts with Xcode.

| use Xcode for many programming examples in this book.
Understanding Xcode simplifies learning native OS X application
integration. Xcode provides programmer resources including a
quick-start welcome screen, means for modifying the view of the
IDE, macro editing, and many other features that increase your
productivity.

In this chapter, | provide an overview of creating Java projects in
Xcode. | explain Xcode features that improve your development
experience. Also, | explore the Organizer, a tool for managing and
running projects.

Exploring Project Templates

As of version 3.2, Xcode supplies one Java template. It is called the In This Chapter
JNI Library. The name “JNI Library” is deceiving. This library is actu-

ally a fully integrated Java/Cocoa application template. If you want

to see how a fully integrated Java OS X application looks in Xcode, Creating Java projects
you want to start with the JNI Library. in Xcode
The JNI Library is overwhelming, if all you want is a basic Java proj- Configuring Xcode
ect for pure or mostly pure Java development. For instance, you Creating class diagrams
may plan on doing some Objective-C work and you want to stick to with Xcode
one IDE rather than switching between a Java-specific IDE and Managing projects

Xcode constantly. with Organizer

For this reason, | start this chapter by explaining Java project cre-
ation in Xcode. This section explores Java console project creation,
Java Swing project creation, and Java applet project creation from
within Xcode. These projects allow Xcode to build, clean, and run
the projects.

Finally, | give an overview of the JNI Library project. | explain the
project creation and the overall set up of this powerful template.

Creating Java Console Application Projects

Console-based applications and tools are extremely popular among Unix developers. Many
users choose Mac OS X because it has a wonderful Terminal to complement its wonderful GUI.
This was the feature that pulled me back from the Linux world to a Mac OS X prerelease version
in 1999, and | have heard similar stories from other OS X developers.

A great example of a popular console application is grep. The grep tool is used to match pat-
terns and is combined with other command-line tools to perform searches in files, such as logs,
or directories. It is probably the favorite tool of die-hard Unix users and sysadmins.

| start with an explanation of creating an Xcode Java console application project. Typically, Java-
based console applications require a longer Java command to start than their C-based counter-
parts. This is easily fixed with a wrapper shell script.

CROSS-REF

| explain how to wrap Java console applications with shell scripts at the end of Chapter 4.

To create a Java console application project with Xcode 3.2, follow these instructions:

1. SselectFile> New Project from the Xcode menu bar.

2. Sselect Empty Project from the Other templates group on the left, as shown in
Figure 3.1.

3. Name the new project ConsoleApp.

>

Open your new project folder in the Finder.

w

Create src, resources, and lib folders in your project folder.
Adding the new folders to your project is a little tricky.

6. select your ConsoleApp project in the Groups & Files tree, control-click Add >
Existing Files... from the context menu, select the new folders, and add them.
When the dialog box appears asking for information on how to add the folders,
add them using Create Folder References for any added folders, as shown in
Figure 3.2.

Figure 3.1

Empty Project selected in New Project window

Choose a template for your new project:

' User Templates
MackUsE
0
Hacasx External Build
Application Sy
Framework & Library

‘Application Plug-in
System Plug-in

Fomer——————|
Empty Project
This is an empty project with no files, targets, or build
configurations.
[Cancel) &w_ e
~
Figure 3.2

How to add folders in Xcode

|_ Copy items into destination group's folder (if needed)

Reference Type: [Default Iuh!

Text Encoding: [Unicode (UTF-8) I‘q

(0 Recursively create groups for any added folders
{#) Create Folder References for any added folders

Add To Targets

] ConsoleApp

= Getting Startéea .

7. Create afile called build.xml at the root of your project in the ConsoleApp direc-
tory. Create the XML file from within Xcode by selecting ConsoleApp and Control-
clicking. Select Add > New File... from the context-sensitive menu. Choose Empty
File from the Other template catalog, and create the build.xml file as part of the

ConsoleApp project.

This is your Ant build file. With this setup, Xcode uses Ant when building your project.

8. Fill build.xml with the following code.

This Ant build is based loosely on the Xcode 3.1 Java tool template, but should work

with the latest version Xcode.

TIP

If you create a custombuild.sml, include the install, run, and clean targets.

CROSS-REF
| explain Ant builds in Chapter 4.

<?xml version="1.0" encoding="UTF-8"7?>
<project name="ConsoleApp"
default="install"
basedir=".">
<!-- setting up classpath for install -->
<fileset id="lib.jars" dir="1lib">
<include name="**/*_jar"/>
</fileset>
<path id="lib.path">
<fileset refid="lib.jars"/>
</path>
<target name="install"

description="Exactly what the name says.

<mkdir dir="bin"/>

<javac deprecation="on"
srcdir="src"
destdir="bin"
source="1.6"
target="1.6"
includeAntRuntime="no"
classpathref="1ib.path"
debug="true">

</Jjavac>

"

e _C(hapter 3: Unaerstanding Xcode

<!-- Assembling final JAR file -->
<mkdir dir="jars"/>

<jar jarfile="jars/${ant.project.name}.jar"
basedir="bin"
manifest="resources/Manifest">

<fileset dir="resources/"
excludes="resources/Manifest" />
<zipgroupfileset refid="lib.jars"/>
</jar>
<!l--
Create the 'dist/' directory, and
assemble in the 'dist/' directory
-—>
<mkdir dir="dist"/>
<copy toDir="dist">
<fileset dir="jars">
<include name="*.jar"/>
</fileset>
</copy>
</target>
<target name="run"
depends="install"
description="Run the console application">
<!-- Run the assembled application -->
<java classname="S${ant.project.name}"
classpath="bin"
fork="true">
</java>

</target>
<target name="clean"
description="Delete all compile directories">

<delete dir="bin"/>
<delete dir="jars"/>
<delete dir="dist"/>

</target>

</project>

9. Create ConsoleApp.java in your src directory. Create the Java file from within
Xcode by selecting src and Control-clicking. Select Add => New File... from the
context-sensitive menu. Choose Empty File from the Other template catalog as
shown in Figure 3.3, and create it in the src directory. If there is an extra reference
to the file in the Groups & Files tree, remove the reference.

= erting SsStargeg¢a .

10.

11.

Figure 3.3

Empty File selection
(i ¥atal New Flle,
Choose a template for your new file:

'aunmx L - N N

Cocoa Class ’S
Cand C++ T
User interface Assembly File Class Model Configuration Empty File
Resource settings File
Inerface Bullder Kit
L N
LEX]
exp
Exports File RTF File Shell Seript

Empty File

An emgey wext file

Cancel | Previous f Mext)
Add the following source to the ConsoleApp.java file.
import java.util.Scanner;
/ * %
* Java based console application.
*
* @author T. Gene Davis
*/
public class ConsoleApp
{
public static void main (String[] args)
{
System.out.print("What is your name? ");
Scanner scn = new Scanner (System.in);
String name = scn.nextLine();
System.out.println("Hello " + name + "!");
}
}

Add a Manifest file to the resources directory. Create the Manifest file from within
Xcode by selecting resources directory and Control-clicking. Select Add > New
File... from the context-sensitive menu. Choose Empty File from the Other
template catalog and create the Manifest file as part of the ConsoleApp project in

e _C(hapter 3: Unaerstanding Xcode =

the resources directory. If there is an extra reference to the file in the Groups &
Files tree, remove the reference.

The source for the Manifest is simply this:

Main-Class: ConsoleApp

Your project is ready to use. In fact, if you prefer building from the command line, cd to your

project root in Terminal and type ant to build your project, ant run to run your project, and
ant clean to clean your project.

If you prefer to build, run, and clean your project from inside of Xcode, you use a few more
steps to polish off your project setup. You need an Executable and a Target.

These steps give you a properly configured Target:
1. Control-click the Targets node of the Groups & Files tree.
2. Select Add=> New Target...
3. Select External Target from the Other group, as shown in Figure 3.4. Name your

new target ConsoleApp, and add it to your ConsoleApp project.

Figure 3.4

External Target selected

([&00 New Target

Choose a template for your new target:

‘:,__ﬁ Mac 05 X
Application Plug-in

BSD Aggregate Copy Files Targer External Target

System Flug-in

shell Script Target

External Target

Target that invokes an external huild system (e.g., make).

[Cancel) Previous @

ertting Starteo

4. Double-click your new ConsoleApp Target.
This brings up the Target: ConsoleApp dialog box.
5. settheBuild Tool to /usr/bin/ant.

6. setthe Arguments to -emacs $(ACTION), as shown in Figure 3.5.

Figure 3.5

Configured target dialog box

_ Target: ConsoleApp % it

© Target “ConsoleApp” of Project “ConsoleApp”

Settings show [Debug m fig
¥ietings ¥ General Settings
General Settings
Build Towl Configuration Product type: Custom Build Tool Target
Custom Bulld Semings Poduciname: | ConsolcAas

¥ Custom Build Command

Buiid Tool: fusr/bin/ant

Arguments: -emacs SIACTION)

Directory: [Choose... |
Use "3 <buildsetting>" for the value of any build setting.
Use "SACTION® for the build action (clean, install, etc).
Use "SALL_SETTINCS" for all command-line build settings.

E Pass build settings in environment

¥ Build Settings
Nama | Value

COPY_PHASF_STRIP = NO
GCCC_DYNAMIC_NO_PMC - NO
GCC_OPTIMIZATION_LEVEL -l
PRODUCT_NAME = ConsoleApp

oo

Your Target is ready to use. This allows building and cleaning of the project. Before the next
step, click Build = Build. This builds an executable JAR for setting up your Executable to run.
Next, from inside Xcode, create the Executable by taking these steps:

From the Executables context menu, select Add => New Custom Executable...

Name your executable java.
Select the path to your java command.

Thatis /usr/bin/java.

Add the new Executable to your project.

Open your new java executable by double-clicking it.

Select the General tab, shown in Figure 3.6, and set Custom directory to your

project’s dist directory.

Figure 3.6

General tab in Executable configuration

{ General | Arg Dehugging Comments }
MName: I]m]
Path: | jusr/bin/java Choose...

Full Path: fusr/bin/java

Path Type: | Absolute Path B

lse | no E suffix when Inading frameworks
Use | Pseudo terminal 9 for standard input/ouput

Set the working directory to:
() Ruild Praducts directory
() Project directory

) Custom directory Choose... |

FUsers frdavis |Decktop/chD3_prajects /ConsoleApp fdist

gerttinag H>targegp .

7. Selectthe Arguments tab shown in Figure 3.7, and add the argument -cp
ConsoleApp.jar ConsoleApp.

Figure 3.7
Arguments tab in Executable configuration

—{ General | Arguments | Dehugging Comments }

Arguments to be passed on launch:

Argument
@ -cp ConsoleApp jar ConsoleApp

th o=

Variables 1o be set in the environment:
| Name Value

k| = @

£

8. Sselectthe Debugging tab shown in Figure 3.8. Set the Java Debugger to the
default debugger. Select Wait for next launch/push notification. Deselect all
other check boxes.

Figure 3.8
Debugging tab in Executable configuration

[General Arg | Dehugging | Comments }
‘When using | Java Dehugger E
I.I;e[h!uduurminll for lard input/foutp

| Connect to executahle remotely via TCP
Connect to: user@host

V| Start executable after starting debugger

("] wair for next launch/push notification

] Break on Debugger() and DebugStr()

[Auto-attach debugger on crash

Additional directories to find source files in:

4]~ @)

&~

Your project is now set to run from Xcode. Open the Console by selecting Run=> Console. Click
the Build and Run button at the top of the console window. You interact with the console appli-
cation directly in the Debugger Console window.

Creating Java application projects

Console applications have their uses, but typical end-users prefer nice point-and-click inter-
faces. The current version of Xcode is missing a pure Swing project template. Still, setting up a
pure Swing project in Xcode is fairly easy. In fact, the console application project | explained in
the preceding section easily morphs into a GUI application by replacing all console input and
output with a Swing or AWT interface.

= exuing>Startea

In this section, | explain setting up a Swing Xcode project in detail.

Begin creating a Java Swing application project for Xcode 3.2 by following these instructions:

1.

oOunhWN

Select File=> New Project from the Xcode menu bar.

Select Empty Project from Other templates, as shown in Figure 3.1.

Name the new project GuiApp.

Open your new project folder in the Finder.

Create src, resources, and lib folders in your project folder.

Copy the resources_macosx from the book’s Web site Chapter 3 GuiApp source code.

The resources_macosx folder contains a default icon file named after the project
and an info.plist with the properties displayed in Figure 3.9. You also can create
these two items from scratch instead of downloading the files from the book’s Web site.

Figure 3.9
Thefile info.plist contains the properties for this project.
(@OoDo || Info.plist =)
Key Value
Informartion Property List (12 ftems) =
Localizatinn native development re Fnglish
Exccutable file @PROJECTNAMEASIDENTIFIERD
Get Info string
Icon file EPROUIEC TNAMEASIDEN TIFIERE.ICns
Bundle identifier com.y EPROJECT! DENTIFIERE
InfaDictionary version 6.0
Bundle name EPROJECTNAMEASIDENTIFIERD
Bundle U5 Type code APPL
Bundle versions string, short 0.1
Bundle creator 05 Type code wnn
Bundle version 0.1
¥ Java (4 items)
ClassPath SJAVAROOT/@PROJECTNAMEASIDENTIFIERE. jar
IVMVersion LG+
MainClass EPROIECTNAMEASIDENTIFIERE:
w Properties (1 item)
apple.laf.useScreenMenuBar true
75
NOTE

The resources_macosx folder for this project is on the book’s Web site.

Chapter 3: Understanding Xcod

CROSS-REF

Icon creation is detailed in Chapter 5.

CROSS-REF

info.plist filesare detailed in Chapter5.

7.

Add the new folders, including resources_macosx, to your project. This is a little
tricky. Select your GuiApp project in the Groups & Files tree. Control-click and
select Add = Existing Files... from the context menu. Then select the new project
folders and add them. A dialog box comes up asking for how to add the folders.
Add the folders using Create Folder References for any added folders, as shown
in Figure 3.2.

Create a file called build.xml at the root of your project.
This is your Ant build file. With this setup, Xcode uses Ant when building your project.
Fill build.xml| with the following code.

This Ant build is based off the Xcode 3.1 Java application template, but it should work
with the latest version Xcode. If you create a custom build.xml, include the
install, run and clean targets. | explain Ant builds in Chapter 4.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Based on Xcode 3.1 Java application template -->
<project name="GuiApp"
default="install"
basedir=".">
<property name="jvm.framework"
location="/System/Library/Frameworks/JavaVM. framework" />
<property name="apple.appstub"
location="${jvm. framework}/Resources/Mac0S/-
JavaApplicationStub" />
<property name="application.macos"
location="dist/${ant.project.name} .app/Contents/~
MacOS" />
<property name="application.macos.stub"
location="${application.macos}/${ant.project.-
name}" />
<property name="application.resources"
location="dist/${ant.project.name} .app/Contents/~
Resources" />
<property name="application.resources.java"
location="dist/${ant.project.name} .app/Contents/-
Resources/Java" />

= gerttinag H>targegp .

<fileset id="lib.jars" dir="1lib">
<include name="**/*_jar"/>
</fileset>
<path id="lib.path">
<fileset refid="1ib.jars"/>
</path>
<!-- Call mkdir and javac -->
<target name="compile"
description="Run javac">
<mkdir dir="src"/>
<mkdir dir="lib"/>
<mkdir dir="bin"/>
<javac deprecation="on"
srcdir="src"
destdir="bin"
source="1.6"
target="1.6"
includeAntRuntime="no"
classpathref="1ib.path"
debug="true">
</javac>
</target>
<!-- Create application JAR -->
<target name="jar"
depends="compile"
description="Jar everything">
<mkdir dir="jars"/>
<jar jarfile="jars/${ant.project.name}.jar"
basedir="bin"
manifest="resources/Manifest">
<!-- Inject resources -->
<fileset dir="resources/"
excludes="resources/Manifest" />

<!-- Merge library jars into final jar file -->
<zipgroupfileset refid="1ib.jars"/>
</jar>
</target>
<!-- Create the '*.app' package and copy resources -->

<target name="install"

depends="jar"

description="Make application bundle">
<mkdir dir="dist"/>
<mkdir dir="${application.resources.javal"/>
<mkdir dir="${application.macos}"/>
<copy toDir="${application.resources.javal}">

<fileset dir="jars">

e _C(hapter 3: Unaerstanding Xcode =

<include name="*.jar"/>
</fileset>
</copy>
<copy file="${apple.appstub}"
toFile="${application.macos}/S$S{ant.project.name}" />
<!-- file permissions set -->
<exec executable="/bin/chmod">
<arg line="755 '${application.macos.stub}'"/>
</exec>
<copy file="resources_macosx/Info.plist"
toFile="dist/${ant.project.name}.app/Contents/~
Info.plist">
<filterset>
<filter token="PROJECTNAMEASIDENTIFIER"
value="${ant.project.name}"/>
</filterset>
</copy>
<copy file="resources_macosx/S{ant.project.name}.icns"
toDir="${application.resources}"/>
</target>

<!-- The 'open' tool runs the application -->
<target name="run"
depends="install"
description="Run application bundle">
<exec dir="dist"
executable="/usr/bin/open"
os="Mac 0OS X">
<arg line="${ant.project.name}.app"/>
</exec>
</target>
<target name="clean"
description="Clean by deleting all compile-
directories">
<delete dir="bin"/>
<delete dir="jars"/>
<delete dir="dist"/>
</target>

</project>

10. create GuiApp.java in your src directory. Create the Java file from within Xcode by
selecting src and Control-clicking. Select Add=> New File... from the context-
sensitive menu. Choose Empty File from the Other template catalog, as shown
in Figure 3.3, and create it in the src directory. If there is an extra reference to the
file in the Groups & Files tree, remove the reference.

I;!!!!;;:;;;;!EiiiiEEEiiii!!!l

11. Addthe following source to the GuiApp.java file.

import java.awt.Color;
import java.awt.Container;
import java.awt.Graphics;
import javax.swing.JFrame;
import javax.swing.JPanel;
/**
* Java based GUI application.
*
* @author T. Gene Davis
*/
public class GuiApp
{
public static void main(String[] args)
{
JFrame appWindow = new JFrame ("GuilApp") ;
appWindow.setSize (600, 400);
Container content = appWindow.getContentPane() ;
content.add (new MyPanel()) ;
appWindow.setVisible (true) ;
}
private static class MyPanel extends JPanel
{
public void paint (Graphics g)
{
g.setColor (Color.BLUE) ;
g.drawString ("Put your app here", 10, 100);

}

12. Add aManifest file to the resources directory. Create the Manifest file from within
Xcode by selecting resources directory and Control-clicking. Select Add > New
File... from the context-sensitive menu. Choose Empty File from the Other tem-
plate catalog and create the Manifest file as part of the GuiApp project in the
resources directory. If there is an extra reference to the file in the Groups & Files
tree, remove the reference.

The source for Mani fest is simply this:
Main-Class: GuiApp
Your project is ready to use. If you prefer building from the command line, cd to your project

root in the Terminal and type ant to build your project, ant run to run your project, and ant
clean to clean your project.

If you prefer to build, run, and clean your project from inside of Xcode, you need to do a few
more steps to polish off your project setup. You need an Executable and a Target. The following
steps give you a properly configured Target:

—_______________________________________(hapter s:uvunaerstanding Acode =

« Control-click the Targets node of the Groups & Files tree.

1
2. Select Add=> New Target...
3

« Select External Target from the Other group, as shown in Figure 3.4. Name your
new target GuiApp, and add it to your GuiApp project.

4. Double-click your new GuiApp Target.
This brings up the Target dialog box titled Target: GuiApp.
5. setthe Build tool to /ust/bin/ant, as shown in Figure 3.10.

Figure 3.10
Configured GuiApp Target dialog box

0 ann Target: GuiApp =

Target: GuiApp #

@ Target “GuiApp” of Project “GuiApp”

Settings show | Debug m i
" Settings ¥ General Settings
General Settings
Build Towl Configuration Product type: Custom Build Tool Target

Custom Build Semtings Froductname: | Guid

¥ Custom Build Command

Build Tool. | fusr/binfant

Arguments: -emacs S(ACTION)

Directory: [Choose...

Use “S<bulldsetting>" for the value of any build setting.
Use "SACTION" for the build action {clean, install, etc).
Use "SALL SETTINGS' for all command-line build sattings.

[Pass build settings in environment

¥ Build Settings

Name Value
COPY_PHASE_STHIP
GCC_DYNAMIC_NO_PIC
CCC_OPTIMIZATION_LEVEL
PRODUCT_NAME

oo

U
z
o

6. Setthe Arguments to -emacs $(ACTION).

Your Target is ready to use. This allows building and cleaning of the project. Before the next
step, select Build=> Build. This creates an application bundle for setting up your Executable to
open. From inside Xcode, you create the Executable by taking the following steps:

= erting SsStargeg¢a .

1.

NOTE

Build your GuiApp project before attempting to create your Executable.

Control-click on Executables to see the context menu, and select Add > New

Custom Executable...

Name your executable GuiApp.

Select the path to your dist/GuiApp.app command.

That is your newly built application bundle.

Add the new Executable to your project.

Open your new java executable by double-clicking it.

Select the General tab.

The default settings should work, but if not, compare your settings to Figure 3.11.

Figure 3.11

General tab in GuiApp Executable configuration

{rm | Arguments = Debugging = Comments }-

Name: IGuiApp]]

Path: dist/CuiApp.app Choose...

Full Path: fUsers/tdavis/Deskiop/GuiApp.app

Path Type: | Relative to Group]

Use [na E suffix when loading framewarks
Use = Pseudo terminal B for standard input/ouput

Set the working directary to:
() Ruild Products directory
%) Project directory

() Custom directory Chouse...)

fUsersftdavis /Deskiop/ Cuidpp

No customization of the Arguments tab or the Debugging tab is necessary. Your project is now
set to run from Xcode. Click the Build and Run button at the top of the project window. You also
can open your new Swing application from inside of the Finder by double-clicking the applica-
tion bundle your project’s dist folder.

NOTE

If the GuiApp project fails to build and run properly, double-check the project against the version of the project from
the book’s Web site. Check the directory names, source code, and package contents for differences that may prevent
proper building or running of the project.

Creating Java Applet projects

Applets are a staple of Java development for the Web. Commonly, Applets supply a client tier to
multi-tier Web applications. Some Applets provide useful graphing and scientific utilities to
researchers. Applets provide simple Web-based distribution of a variety of Java applications.

As with Swing applications and Terminal applications, Applet development is easy to set up in
Xcode. As of Xcode 3.2, no built-in template for Applet project creation is available, but with a
few pointers, building and running Applets from inside Xcode is relatively painless.

To create a Java Applet application project with Xcode 3.2, follow these instructions:

1. SselectFile> New Project from the Xcode menu bar.

2. Select Empty Project from Other templates, as shown in Figure 3.1.
3. Namethenew project BasicApplet.

4, Open your new project folder in the Finder.

5. Create src, resources, and lib folders in your project folder.

6. Add the new folders to your project. Select your BasicApplet project in the Groups
& Files tree, and Control-click Add => Existing Files... from the context menu. Then
select the new folders and add them. A dialog box comes up asking for how to
add the folders. Add the folders using Create Folder References for any added
folders, as shown in Figure 3.2.

7. Create afile called build.xml at the root of your project.
This is your Ant build file. With this setup, Xcode uses Ant when building your project.
8. Fill build.xml with the following code.

This Ant build is based loosely on the Xcode 3.1 Java Applet template, but it should
work with the latest version Xcode.

<?xml version="1.0" encoding="UTF-8"7?>
<!-- Based off Xcode 3.1 Applet template build.xml -->
<project name="BasicApplet"

- | erting SsStargeg¢a .

default="install"
basedir=".">
<property name="jarfile"
location="jars/${ant.project.name}.jar"/>
<property name="html.file"
location="resources/basic_applet.html"/>
<fileset id="lib.jars" dir="1lib">
<include name="**/*_jar"/>
</fileset>
<path id="lib.path">
<fileset refid="lib.jars"/>
</path>
<!-- Call mkdir, javac and jar -->
<target name="compile"
description="mkdir, javac and jar">
<mkdir dir="lib"/>
<mkdir dir="bin"/>
<mkdir dir="jars"/>

<javac srcdir="src"
destdir="bin"
source="1.6"
target="1.6"
includeAntRuntime="no"
classpathref="1ib.path"
debug="true">

</javac>

<jar jarfile="${jarfile}"

basedir="bin">

<!-- Merge final JAR -->
<zipgroupfileset refid="lib.jars"/>
</jar>
</target>
<!-- Create and fill dist directory -->

<target name="install"
depends="compile"
description="Create and fill dist directory">
<mkdir dir="dist"/>
<copy toDir="dist">
<fileset dir="jars">
<include name="*.jar"/>

</fileset>
</copy>
<copy file="${html.file}" todir="dist"/>
</target>

<l--

The project Executable actually opens the
appletviewer. This target is here for Ant purists.
—-—>

<target name="run"
depends="install"
description="Run the JApplet in Applet Viewer.">
<exec dir="dist"
executable="/usr/bin/appletviewer"
os="Mac 0OS X">
<arg value="basic_applet.html"/>
</exec>
</target>
<target name="clean"
description="Delete build directories.">
<delete dir="bin"/>
<delete dir="jars"/>
<delete dir="dist"/>
</target>
</project>

9. Create BasicApplet.java in your src directory. Create the Java file from within
Xcode by selecting src and Control-clicking. Select Add => New File... from the
context-sensitive menu. Choose Empty File from the Other template catalog,
as shown in Figure 3.3, and create it in the src directory. If there is an extra refer-
ence to the file in the Groups & Files tree, remove the reference.

10. Addthe following source to the BasicApplet.java file:

import java.awt.Color;
import java.awt.Graphics;
import javax.swing.JApplet;
/**
* Xcode Applet project template.
*
* @author T. Gene Davis
x/
public class BasicApplet extends JApplet
{
public void paint (Graphics g)
{
g.setColor (Color.GREEN) ;
g.drawString (
"Put your JApplet here",
10,
100) ;

l;!!!!;;;; Getting Started

11.

Add an HTML file called basic_applet.html to the resources directory. Use the same
process as Step 9.

The source for the HTML file is as follows:

<html>
<head>
<title>Basic Applet</title>
</head>
<body>
<applet archive="BasicApplet.jar"
code="BasicApplet"
width=600
height=400>
Java required.
</applet>
</body>
</html>

Your Applet project is ready to use. If you prefer building from the command line, cd to your
project root with the Terminal and type ant to build your project, ant run to run your project,
and ant clean to clean your project.

If you prefer to build, run, and clean your project from inside of Xcode, you need to follow a few
more steps to polish off your project setup. You need an Executable and a Target. The following
steps give you a properly configured Target:

1.
2.
3.

4.

5.
6.

Control-click the Targets node of the Groups & Files tree.
Select Add > New Target...

Select External Target from the Other group, as shown in Figure 3.4. Name your
new target BasicApplet, and add it to your BasicApplet project.

Double-click your new BasicApplet Target.
This brings up the Target dialog box titled Target: BasicApplet.
Set the Build tool to /usr/bin/ant.

Set the Arguments to -emacs $(ACTION), as shown in Figure 3.12.

—____________________(hapters:vngaersianding Acoae

Figure 3.12
BasicApplet Target settings

@ Target “BasicApplet” of Project "BasicApplet”

Settings show | Debugy)
Fatings ¥ General Settings
Ceneral Settings
Build Toaol Configuration Product type. Custom Build Tool Target

Custom Build Sewings Product name: BasicApplen

¥ Custom Build Command
Bulld Toal: | fuse(Binfant

Arguments: | -emacs S(ACTION)

Directary: | Chuose...

Use "S=buildsetting=" for the value of asy bulld sstting.
Use "SACTION" for the build action (clean, install, ¢tc).
Use "SALL_SETTINGS for all comemand-fine build settings

[Fass huild sentings in enviranment

* Build Settings

Hame Value
COFY_PHASE_STRIP NO
CCC_DYNAMIC_NO_PIC NO
CCC_OPTIMIZATION LEVEL
PRODUCT NAME

[+ 2]

BasicAgulel

Your Target is ready to use. This allows building and cleaning of the project. Before the next
step, click Build=>Build to make sure your Applet JAR builds properly. Next, from inside Xcode,
create the Executable by taking the following steps:

1. From the Executables context menu, select Add <> New Custom Executable...
2. Name your executable appletviewer.
3. Selectthe path to your appletviewer command.
Thatis /usr/bin/appletviewer.
4. Add the new Executable to your project.
5. open your new appletviewer executable by double-clicking it.

6. Select the General tab, and set Custom directory to your project’s dist directory
as shown in Figure 3.13.

Figure 3.13

General tab for appletviewer Executable
configuration dialog box

'—"{"(hml‘l-l Arguments = Dehugging Comments]-—

Name: appletviewer

Path: | fusr/binjappletviewer Choose...

Full Path: fusr/bin/appletviewer

Path Type: | Absolute Path B

Use [(no T3] suffix when lnading frameworks
s for andard it i
Set the working directory to:

() Ruild Praducts directory

O Project directory

) Custom directory { Choose...)

flsers frdavis [Decktop /chD3_projects /RacicApplet /dist

7. Select the Arguments tab, and add the argument ‘basic_applet.html’ by clicking

the “+” button below the Arguments table as shown in Figure 3.14.

Figure 3.14

Arguments tab in appletviewer Executable
configuration

.—._{ Ceneral | Arguments | Debugging Comments]-—

Arguments to be passed on launch:

] | Argument
@ basic_applet_html

ik =

Variables to be set in the environment:
| Name Value

+]= ®

£

8. selectthe Debugging tab. Set the Java Debugger to the default debugger. Use
the default setting for this tab as shown in Figure 3.15.

= etting Startea

Figure 3.15

Applet Debugging tab in Executable
configuration

——-{ General Arguments | Dehugging | Comments }

‘When using | Java Dehugger E
Use | Pseudo | for dard input/outp

| Connect to executahle remaotely via TCP

Cannect to! user@hoct
V! Start executable after starting debugger
("] wait for next launch/push notification
Break on Debugger() and DebugStr()
¥ Auto-attach debugger on crash
Additional directories to find source files in:

ohujise @

&5

Your project is now set to run from Xcode. Click the Build and Run button at the top of the proj-
ect window. The Applet Viewer opens your HTML file and displays your Applet based on the
HTML file's applet tag.

Using JNI Library projects

Xcode provides one type of Java template: the JNI Library project. The name JNI Library is mis-
leading. This project gives developers a fully Cocoa Framework integrated template showing
Address Book integration by way of JNI.

Looking at the JNI Library project, you quickly realize it is far more complex than the three exam-
ple projects that | explained earlier in this chapter. In fact, you may need to read Chapters 4,7, 8,
and 10 before taking full advantage of the JNI Library project. It is not a project for beginners.

CROSS-REF
Chapter 9 contains a thorough explanation of JNI and tips for use of NI with Objective-C.

—_______________________________________(hapter s:uvunaerstanding Acode =

However, despite the JNI Library’s complexity, you need to start somewhere. In this section, |
explain how to set up the JNI Library project. | also give you a brief overview of the parts of the
JNI Library.

To create a default NI Library project follow these instructions:

1. SselectFile> New Project... in Xcode.

2. Selectthe Java project named JNI Library from the New Project dialog box, as
shown in Figure 3.16.

Figure 3.16
New Project dialog box with JNI Library template selected
(@06 New Project

Choose a template for your new project:

Ao || 28 R

ul
‘i Mac 05 X Cocoa Framework Cocoa Library Bundie

Application

Application Plug '\ L~
System Plug-in 1' T'[I(‘
Other L \jm
BSD C Library STL C++ Library

Q{r’; JNI Library
g i |

This project huilds a Java JNI lihrary with a hundied applicatinn
wrapper.

(CCanee) (@hosse)

3. Click the Choose... button.

4. selectalocation, and name your new project an appropriate name such as
MyJNIApplication.

5. Click the Save button.

The result is a spiffy new JNI Library project. Click the Build and Run icon at the top of the Xcode
window to make sure your new project runs properly. You should see an application window
that looks something like Figure 3.17.

Figure 3.17
The JNI Library running the Example Java App
(N0 [Example Java App
Selected Person
Name Only Friend
m Email no-reply@genedavis.com
Phone 123-456-7890
Chat only _friend7890

The Example Java App that Apple integrated with the JNI Library is a common Model View
Controller (MVCQ). If you followed the instructions in this section for creating the JNI Library proj-
ect, then yourmain () methodisin com.example.MyJNIApplication. Yourmain ()
method sets up the controller. The main controller is the ApplicationController class.
After constructing the ApplicationController, themain () method initializes the view
and model using ApplicationController’s init () method.

Your initial view is a typical JFrame constructed by the MainWindowController class. The
object name is, not too surprisingly, ma inWwindow. Nothing too inspiring.

The model is where the cool factor of this project comes to play. The model for the JNI
Application project is the local Address Book. Access to the local model is handled in the
NativeAddressBook class. The NativeAddressBook class loads the AddressBook
library and contains the native methods getMyUID () and getNativeAddressBook-
Contacts ().

NOTE
The file extension * . mindicates an Objective-C file. The file extension of * . mm indicates an Objective-C++file.
Objective-C files have header files with an * . hh extension, just as their C counterparts do.

The Objective-C implementations of the getMyUID () and getNativeAddressBookCon-
tacts () methods are in the NativeAddressBook .mfile. Look for the two INIEXPORT
method implementations near lines 47 and 68. The implementation names are very long and
contain the Java package name, class name, and the method names. The local Cocoa
AddressBook.framework is accessed in these two functions.

If you look at the targets for this project, you see three targets: the Compile Java target, the
Compile Native target, and the Assemble Application. If you are already familiar with Ant builds,
you may wonder why three targets were used instead of a single Ant build. You certainly can
arrange the entire build and clean from an Ant script. The three targets in the JNI Library project
allow for closer integration with Xcode.

Setting the Xcode Java

Whether you inherit an older Xcode Java project or create a
brand new JNI Library project, you may find that generics,
annotations, Java's foreach loops, or even newer Java syntax
additions may prevent you from compiling a Java project.
Never fear. Here is a quick project fix to get you compiling
and running.

To get your project compiling with new Java syntax, make
two changes. Change the bui 1d. sm1 compile target to
use your desired source and target Java version. Also, add
your desired JAVA_HOME to the project target Build
Settings.

Open your project’s build.xml file. The build.xml
file specifies the source version and target versions of Java to
compile against. Skim down the list of targets until you see
the compi 1e target. It looks something like this:

<target name="compile"
depends="init"
description="Compile code">
<mkdir dir="${bin}"/>
<javac deprecation="on"
srcdir="${src}"
destdir="${bin}"
source="1.3" target="1.2"
includeAntRuntime="no"
classpathref="1ib.path"
debug="${compile.debug} ">
</javac>
</target>

Notice that the source and target are setto 1.3 and 1.2
respectively. (If you are using the default build.xml
found in the Xcode 3.2 JNI Library, they both are set to 1.5.)
For a Java 6 project, | change these settings to 1 . 6. After
the change, the comp1 1 e target looks like this:

<target name="compile"
depends="init"
description="Compile code">
<mkdir dir="${bin}"/>
<javac deprecation="on"
srcdir="S${src}"
destdir="${bin}"
source="1.6" target="1.6"
includeAntRuntime="no"
classpathref="1ib.path"
debug="${compile.debug} ">
</javac>
</target>

The second change is necessary for Java projects created
with versions of Xcode before 3.2 or if you intend for Xcode
to use a different version of the JVM than your system uses.
The change is adding a JAVA_HOME property to the
Debug and Release versions of your Java project’s target.
Follow these steps:

1. Open your project’s target by double-clicking the
target bull’s eye on the left side of your project
window.

2. Navigate to Custom Build Settings.

This dialog box displays the properties that pass
to Ant when executing tasks such as compile.

3. Add a new property by clicking the plus icon
below the Build Settings table.

4. Set the name of your new property to JAVA_
HOME.

5. Set the value of your new property to your desired
Java home.

continued

continued JAVA_HOME in Custom Build Settings
Use a static rather than dynamic value here. If you are
unsure of the correct location of your desired Java home, use
the java_home tool to discover the correct directory. For
instance,

/usr/libexec/java_home 1.6

displays

/System/Library/Frameworks/
JavaVM. framework/
Versions/1.6.0/Home

Remember to add the JAVA_HOME property to Debug
on 05 X 10.5.7. Your Custom Build Settings should now con- and Release settings for your target!
tain JAVA_HOME as shown in the figure.

Highlighting Xcode Features

Sometimes IDEs are forced on us by a project requirement or an employer requirement. Most
experienced computer programmers have an IDE preference. Several Java IDEs are available for
OS X, but only Xcode completely embraces the OS X experience. The native OS X features and
feel of Xcode draw many developers to use Xcode exclusively for their work.

In this section, | explore Xcode's features above and beyond providing Java projects and Java
syntax coloring. | introduce the Welcome to Xcode screen, view customization, creating class
models, and shortcuts for common tasks. This section introduces the heart of the Xcode
experience.

Browsing the welcome screen

The first time you open Xcode, you see the Welcome to Xcode window, as shown in Figure 3.18.
The window provides quick links to recent projects, as well as quick links to common tasks per-
formed when launching Xcode.

The link most interesting to new OS X developers is probably “Getting started with Xcode”. You may
use a different IDE than Xcode for your Java development, but the preconfigured projects in Xcode
provide a wonderful starting point for applications that integrate with OS X. | suggest learning the
basics of Xcode even if you use Eclipse or NetBeans for most of your Java development.

Clicking the link labeled Getting started with Xcode on the Welcome to Xcode window brings
up the Xcode Quick Start window, shown in Figure 3.19. Glancing at this window reveals it is
more about general OS X development resources than Xcode.

Figure 3.18
Welcome to Xcode window

BasicApplet

GuiApp

ConsoleApp
.e come to CO e |t deskton)asx_jnva_hookehid jehd_projects
5 e MyjavaTonl
MR SE S B8 . hiop/osn java_buok/chO3fold/chDd_cove vd
Create a new Xcode project
S1art a new software project for Mac 05 X or
IPhone 05

Gerting stared with Xeode

|

if\ Fallow the turarial to leam how m ger productive
quickly with Xeode

.’

Apple Developer Connection
Visit the Mac and iPhone Dev Centers at
deveioper.appie.com Last opened today B:49 AM

¥ dedictop) o _java_book (ehid feh0d_piogects

1 desktop/osa_lava_book /ch01/ch03_projeas

Figure 3.19
Xcode Quick Start window

7 Show this window when Xcode launches (Cancel) (“Open)

Xcode Quick Start

Start Developing with Xcode
Get started quickly converting your Ideas into software products.
* Read More

Find and View Documentation
Learn how to quickly locate AP| reference, programming guides, and sample code.

Rresing & Quick Help Searching &
Baokmarking Sample Code
112 138 150

* Read Mare

Dewnloading

Apple Developer Connection
Learn about Apple developer programs and the resources that will help you go from

code to customer.

* Read Mane

The Welcome to Xcode window provides three quick starts for coding. The link labeled Create a
new Xcode project is a shortcut to the File> New Project... menu item. The right navigation
shows a list of recently opened projects and also the last date the project was modified. Also, if
you are looking to open a project not in the Recent Projects list, click the Open Other... button
on the bottom-left side of the welcome window.

TIP

If you uncheck the box for Show this window when Xcode launches in the Welcome To Xcode window and later want to
see the window at launch again, select Help ->> Welcome To Xcode from the Xcode menu. This opens the Welcome to
Xcode window. From there, you can reselect the box for Show this window when Xcode launches.

Setting up a source code repository

I am not sure whether any standard software development tool has more names and multiple
interpretations of its acronyms than source version control does. A Source Configuration
Management (SCM), or Software Control Management (SCM), or Software Configuration
Management (SCM), also known as a Version Control System (VCS), or simply as a repository,
provides Time-Machine-like features to software developers. It seems fitting that versioning
software has so many versions of its own identity.

SCMs have been around for many years longer than Time Machine and do not require an extra
hard drive to set up. Source Code Management focuses on source files, such as * . java files
and * . xm1 files, though any type of file can be versioned in a source code repository.

Version control is useful for teams of developers or individuals working solo. If you are working
alone on a project, you may get to a point in development where you realize you should not
have made certain changes to your source code. You wish you could go back to an earlier ver-
sion that worked better, or you simply don’t want to start completely over to get rid of some
changes you made.

With version control, this situation is no big deal. You look up your code history, pick a version
you committed sometime in the past, and revert to your earlier version of the code that you
actually like.

Version Control Systems work locally on your local hard drive or remotely served by another
computer. Remote setups work nicely as a backup of your source. If you catch a virus, or your
hard drive flakes out on you, you simply install a new hard drive and check out your project to
the new hard drive. You are up and running with minimal hassles.

If you are working on multiple computers, say a home computer and an office computer, you
commit your code to the version control server before shutting down your computer. When
you start working on your alternate computer, check out the code you last committed to the
current computer. At this point, you have the newest version and continue developing as
though you are using the same computer.

e (Chapter3:Understanding Xcode =

All these benefits apply to team development. Also, if all code for a project is committed regu-
larly to the same repository, integrate frequent automated builds and tests to keep code con-
flicts from slowing development.

The best part about Version Control Systems is that developers working on the same file (such
as a java file) can work completely independent of each other, and when they check in their
code, the merging of the code often happens without any verbal or written communication.
This is not always the case, but often automatic merges do work smoothly.

Xcode supports three Version Control Systems. They are Subversion (also known as SVN), CVS,
and Perforce. Perforce is a commercial SCM with per user licensing, educational licensing, and
free open-source licensing. CVS is open-source software, licensed under a GNU General Public
License. SVN is also open-source software, using an Apache style license.

TIP
Subversion, CVS, and Perforce all support remote versioning of code. This means that developers at different sites
working on different operating systems can all develop against the same code base.

Perforce competes against two widely supported, top-notch, free version control systems.
That's some tough competition. Perforce holds its own by producing an excellent product with
better features than its free competitors. Perforce excels at branching and merging branches.
Automated merging is a strong feature. Perforce also supports several cross-platform develop-
ment environments.

NOTE

The Perforce Web siteishttp: / /www.perforce.com/.

CVS is likely the most widely used version control system. It was released in 1990 and is free (as
in food and speech.) Age and price have both contributed to its popularity. However, CVSiis a
powerful and stable piece of technology. All other version control system developers compare
their products to CVS.

NOTE

The (VS Web siteishttp: / /www.nongnu.org/cvs/.

CollabNet Inc created Subversion (SVN) to replace CVS. Early adopters of Subversion felt CVS
was buggy and lacked features. The creators of SVN wanted to create a better CVS. Personally, |
was an early adopter of SVN because | liked the SVN rename feature.

E Getting Started

NOTE

The Subversion Web siteishttp: //subversion.tigris.org/.

NOTE

SVN saw rapid initial development. SVN developed so fast that about one year after development began, it was used
to version its own code. The pace of development allowed for a large user base in a short time.

As mentioned earlier, Xcode supports SCM but does not come pre-configured with a repository
for your projects. After you install the OS X developer tools, you have access to both SVN and
CVS. For the following example, | use SVN.

If you are working with a team, you probably already have a repository. Ask for the connection
information. For the following example, | use the HSQLDB Java project hosted on source-
forge. com. This example retrieves the current Java source of HSQLDB and adds it to the
newly created MyDB project. Follow these steps:

1.
2.
3.
4.

5.

Create a Java Tool project as described earlier in this chapter.

Name the project MyDB.

Select SCM > Configure SCM Repositories... from the SCM menu.

This opens the Xcode Preferences with the SCM tab selected.

Click the plus button under the Repositories list on the left side of the window.
The Repositories list is empty until you click the Add button.

Select a name for the repository.

| selected db_repository.

Fill in the URL. For HSQLDB, the repository is at https://hsgldb.svn.sourceforge.net/
svnroot/hsqldb.

Entering this URL causes the scheme, host, and path to automatically fill, as shown in
Figure 3.20.

Select SCM > Repositories from the Xcode menu.

The Repositories window opens. The directories found in the repository may take a
short while to become visible depending on the speed of the SVN server. Be patient.

Select src under the base/trunk directory, as shown in Figure 3.21.

Figure 3.20
Repositories list and window

7 & ¥ R ¢ EE -

Text Editing Fonts & Colors Indentation File Types Source Trees sCM Documentation
| Options SSH |
hsgldb_repository

heeps:/ /hsgldb.svn

- https
hsgldb.svn.sourceforge.net
Isvirostihsaldb

(Choply) ((Cancel) (0K

Figure 3.21
Repositories window with base/trunk/src selected

2 Indehtml
Ealis

|1y reasdme.ner
(i sample

(i stytesheets
[test-sre
[testrun
n i n
ey -
0 lisk hittps:/ [hasidb,
 list hitpse/ /hsgldk f hscldb/k

& lise hurps:/ [hsqldb
 list hups:/ { hsaldh

9. Sselectthe Export icon at the top of the Repositories window.

10. Navigate to the MyDB project directory, and select it; click the Export button, and
replace the current src directory in the MyDB project.

If you open the src folder from Xcode, you see the source for HSQLDB in addition to the origi-
nal source file created by Xcode’s Java Tool template. You cannot commit any changes back to
the HSQLDB project. This example only lets you retrieve the code anonymously.

The following example assumes that you have already created a project to import and added a
repository for importing into. Adding and configuring a repository are described in the preced-
ing example. To import a new project into a repository, follow these steps:

1. selectscm= Repositories from the Xcode menu.
This opens the Repositories window.

2. Selectthe repository for your import, and navigate to the directory you will
import your project into.

3. Clickthe Importicon at the top left of the window.

4. Navigate to the Project directory, and click the Import button.

If you have commit permissions to the repository, then your project is added to the repository.

Modifying the View
Like other modern IDEs, Xcode's view is customizable. You can tune it to suit your tastes or your

current project. Besides splitting and resizing panes, you can quickly change syntax coloring,
code folding, and the toolbar buttons.

Various layout and shortcut options are available from the menu at View => Layout. Whether
these options are available depends on which window or panel within a window has focus.
For instance, the Show/Hide Navigation Bar is not available from the Groups tree in the project
window. However, it is available from source-code editors in the same window, as shown in
Figure 3.22.

Figure 3.22

Status bar, favorites
bar, and page control
menu

Shaw N

Hide Status Bar
Show Favorites Bar
Show Page Conrtral

Lhapter 3: Understanding Xcode =

TIP

To remember the behavior of the status bar and favorites bar in Xcode, think of their Safari counterparts the Safari sta-
tus bar and the Safari bookmarks bar.

View > Layout > Hide/Show Navigation Bar toggles the navigation bar. A navigation bar is the
thin bar above an editor window, as shown in Figure 3.23. It contains, not too surprisingly, navi-
gation elements. These elements include back and forward arrows, a file history drop-down,
class hierarchy navigation, and a drop-down for selecting methods in your class to focus.

Figure 3.23
Editor window with navigation bar

<+ | [l MylavaTool java:5 ™ class MyJavaTool ™ Cyi® B @
import java.util.®; (-]

A/ Inis 15 the deroult Java ool template provided by Xcode.
public closa MydavaTool {

publie static vnid main (String args[]) {
£ nsert code here...

L] System.out printIn{"lello ¥orld!"});

10 ¥

n il

Viewr> Layout=> Hide/Show Status Bar toggles the status bar at the bottom of project and edi-
tor windows. If you are familiar with Web programming, you probably are familiar with status
bars in Web browsers. The status bar in Xcode is similar. It displays the current activities of
Xcode. For instance, if Xcode is building the project, watch the status bar and you see when it

completes the build.

Toggle the favorites bar in the Xcode window by selecting View > Layout > Hide/Show
Favorites Bar. The favorites bar works like the bookmarks bar in Safari. It is a very handy feature,
if you have a few configuration files or Java classes that you constantly modify or refer back to.

Creating a favorite on your favorites bar is not hard. Here’s how:

1. Toggleon your favorites bar while the Project window is in focus by selecting
View > Layout > Show Favorites Bar from the menu.

2. Browsetoa configuration file or source-code file in the Groups & Files tree.

3. Drag the file to the bar.

= exuing>Startea

Xcode's project window can display the source-code editor, or double-clicking a Java file opens
a detached source-code editor. If you prefer editing in a detached window instead of the Xcode
project window, you can reduce the project window to display just the Group & Files tree.

1. Toggle on the Page Control buttons while the Project window is in focus by
selecting View > Layout > Show Page Control from the menu.
2. Click the Morph button in the Page Control at the top of Xcode’s project window.

3. Optionally, hide the Page Control by selecting View > Layout > Hide Page
Control from the menu.

Now you see the Groups & Files tree and optionally the favorites bar and your customized tool-
bar, as shown in Figure 3.24.

Figure 3.24
Project window morphed via page control
®00 '

Croups & Files Bl
v h My}:‘wa'.ruul -
& build.xml
vl s
b [l resources
> [l lib
» [bin
» [l jars
>l dist
V@ Taryets
» (@ MylavaTool
b (4 Fxecutahles
» (B Errors and Warnings
w { Find Results
» L% Bookmarks
> = sem
B Project Symbols
» (i@ implementation Files
» (3] NIR Files

TIP

When using two monitors, reserve one for tools and the primary monitor for coding. To do this, morph the Project win-
dow so that only the toolbars and Group & Files tree are visible, and then place the resulting window on a second
monitor. Then open your source editor by double-clicking the file in the morphed Projects window, and maximize the
source editor on your primary monitor.

o ________________________(hapters:Understanding Xcode€ =

The display and formatting of source in editor windows is configurable, too. Selecting
View > Text reveals a menu, as shown in Figure 3.25, for changing tab settings, line wrapping,
line endings, file encodings, showing control characters, and showing spaces.

Figure 3.25

View > Text menu

Tab Settings...

Wrap Lines

Line Endings >
File Encoding >

Show Control Characters 384
Show Spaces

TIP

If the text in a source file looks wrong because of an extra line between every line of code or certain characters don’t
appear to display properly until retyped, try messing around with the settings in View > Text > Line Endings and
View > Text > File Encoding. Changing these setting may fix the editor window’s view of the source.

Showing control characters and spaces are exceptionally useful for debugging Java property
and configuration files. Sometimes, unseen control characters or extra spaces in a configuration
files are a real hassle to track down. Toggling Show Control Characters and Show Spaces
reduces debug time in these cases. The result is similar to Figure 3.26.

Figure 3.26
Show/hide control character and show/hide spaces
(o0 [J] MyjJavaTool java =]
| Cur. OS | Debug ~ | & . ﬁ
Qverview Build and Co Tasks Ungrouped Project
4 | * | [hMylavaTooljava:l § <Noselecte =, |™, | C, #, | @ |@
U] [importéjava ukil *; T m
2 L
3| | A/9Thisdisglheddeluul LJuvugTou L4 Lesp Luledpr oy idedibydicuds .
41 |
5| | publicéclassifydavaTool[
(3
7| teevoublicystaticévoldgmatng(Strinadaras (1064
B ||| et/ insertécodedhere. ..
o| | s4s448448ysten.cut printin{ Hel lotilor 1d1 ");
e
ufl s
12 3
]

Customizing the Xcode Project window'’s toolbar is another great view change that makes
development with Xcode pleasant. To quickly get to the Customize Toolbar dialog box, follow
these steps:

E Getting Started

1. Control-click to the left of the Build and Run icon or to the right of the Info icon
on the Project window’s toolbar.

In other words, Control-click the toolbar, but not on an icon it contains.
2. Select the Customize Toolbar menu item in the context menu that pops up.

3. Drag icons to the toolbar from the Customize Toolbar dialog box.

The Customize Toolbar dialog box, shown in Figure 3.27, and the toolbar are intuitive to use.
Remove icons the same way you remove them from the Dock. Just drag them off, and watch for
the satisfying puff of smoke. The icons and text available for adding to the toolbar include drop-
down menus, spaces, and a default toolbar to replace your custom setup. Drag them on to the
Project window's toolbar as desired. Rearrange the icons on the toolbar by dragging them to
their new positions.

Figure 3.27
Customize toolbar dialog box
Drag your favorite items into the toolbar...
N (= i 3
N & il
Build Run/Debug Breakpaints Clean All Build and Run/Debug
. A @ = @
Build Clean Tasks Action Class Browser
b Y .1 =] =
Find Build Reslts Debugger Show Breakpoints SEM
&
() =1 i
PRefactor Snapshots Organizer Malke Snapshat Help
B= <0 v <o T \sNo A 3
Quick Help Overview Active Target Active Architecture
Luse... 1] |.£Mo Configuratio... - | <No Exse...
Active SOK Active Build Configuration Active Executable
4 —]
7 Lf] J
nfa Inspectar S parator Flexible Space Space
A ~ a . = .nli} .
Customize I Seareh Editer Cuick Madel '
... or drag the default set into the woolbar.
L = Overview= = (&= - & . L;yl Q
Ornvlary Acticn = Reeakpeio i I And fiin/Deliog B Tatka B fofo S daare
Show | lcon and Text |81 ™ Use small size (" Dane)

Watching tasks with the Activity window

The status bar at the bottom of the Xcode Project window is great for seeing the state of builds
in Xcode. The status bar does not detail all of Xcode's activities, though. For instance, when you
create a new project, Xcode proceeds to index it. Indexing allows quick refactoring of the code.

e (Chapter3:Understanding Xcode =

The indexing activities of Xcode are not mentioned on the status bar. To see the state of index-
ing, you need to open the Activity window, shown in Figure 3.28.

To open Activity Viewer, select Window &> Activity from the menu. Activity is an unimposing
window that sits empty most of the time. It is handy to leave open on a second monitor or an
unused corner of your main monitor.

Figure 3.28
Project indexer in the Activity window
900 Ativity

¥ MyJNIApp

Project Indexer Y
Indexing “MutableArtrListimpl.class”

Architecting with Xcode

Apple includes class modeling tools in Xcode. Class models help software designers and archi-
tects to visualize code. Class models turn code into pictures. You quickly understand relation-
ships between classes with a well-organized model.

You can approach creating class models with Xcode in two ways. One is Quick Model, and the
other is Project Class Model. The end result is the same.

To create a Quick Model, follow these steps:

1. Expand your src (or Source/java) folder in the Groups & Files tree.
2. Selectthe Java class(es) you desire to model.

38-click to select individual files, or select the src folder if you want to model the
entire project source.

3. Select Design> Class Model > Quick Model from the Xcode menu.

The result should be a model that looks something like Figure 3.29. You can save a Quick Model as
a permanent part of your project at any time by selecting File> Save from the Xcode menu bar.

NOTE
The class model figures in this section are based on the source for HSQLDB located at http: / /hsgldb.org/.
HSQLDB is release under a BSD style license.

Figure 3.29
Quick Model of HSQLDB

Groups & Fies

TIP

A detail-oriented alternative to Quick Model is the Project Model approach. Project Models cre-
ate a model file as part of your chosen project. Project Models also provide a nice selection list

of classes to add to your model.

To create a Project Model, follow these steps:

1. SelectFile> New File ... from the Xcode menu bar.

In some versions of Xcode, you must open the New File dialog box from a Group &
Files folder’s context-sensitive menu. The contents of the New File dialog box may vary

based on how it is opened.

Both Quick Models and Project Models save as * . xcclassmodel files.

v B vest_index &l
& buitd_xmi D
v [e -
[1] MbcutBox java k3
1] PrefPane java v WS
w il hsgidi
[1] crientConn Connectisnk Wit No Selection
\i] ClientConnectial | DamSaurce Inner
|i] Callationjava | || Connectionf nter)
1] ColumaBase, | MADaraSowre Inter
1] ColumnSchema PosledConne Inter
| XARSsource later,
|HmpSerdet Clas
| Objectfactor Inter v
e +
/| DaeabaseURL ja | [F Prowerves [F Proweries [+ Properiies .qu_n-u;A
1] Error java bt) |» Operarions | |* operations =+ Qperations 1. apc_ra:‘
1] Errortode java “\‘\‘.
1] Expression.java,
[k oo | (SaiemeniCompeind |5 0 | (8]
ol | orghsaldn || org.hagldn org.hsaldb
|| ExpressionColu| | | Properties | |' Properties |' Properes |- Properties
(i} Expressiontike, | Operations | leoperstions | Ivoperstions | v Operstions
1| Expressioniogic |
1] Expressionopgs | 3 . |
f] ExpressionOrde. | [wmmmm.,,‘ |
[ExpressionValuy ’ﬁ% 4
1] FunctionCustor | |
(1 FunomsaLjos_| & Operarions / &
L v [RE AT (=) R
v]

Save and commit your * . xcclassmodel files to your version control system to give other developers a quick
understanding of how your code is put together.

2. Select Class Model from the Other category of file template types, as shown in

Figure 3.30.
Figure 3.30
Selecting class model
Choose a template for your new file:
"_J Mac 05 X L - L =
Cocna Class % S ﬂ
Cand Ct ¢ E . .
User Interface Assembly File Configuration
Resource Settings File
| Interface Builder Iﬂl
| ower | - -
EXp
Emprty File Exports File
et
ft Class Model
A class model file which allows you tn use the decign component of
Xcode. You need to enable indexing in Xcode.
[Cancel) _ Previous @

4

3. Click next.

4. cChoose amodel name, location, and project to add your model into, as shown in
Figure 3.31.

5. Click the Next button.

6. Add *.java files to your initial Class Model. Browse the given project tree. Select
* java files, and click the Add button, as shown in Figure 3.32.

Figure 3.31
New Class Model File dialog box

New Class Model File

Madel Name: untitled. xeclassmadel

Location: [~/Desktap/cho3 test index
Add to Project: | test_index B

Targets: @ retndex

- (Choose...)

Figure 3.32
Selecting classes for a new class model

New Class Model File

Select Croups/Files from the project and add them to "Selected Items”. A group Is tracked for
file membership while a file is explicitly tracked.

B test_index d Selected tems.
& buikd.aml O B
v [l s et
1] AboutBex java ST
[1| Prefrane java
v [hugldn

(3] ClientConnection java
(5] ClientConnectionHTTP jav.
1] Calistion java |
li & fava

3] CalumnSchema java

g s ¥

Cancel
&

7. Click the Finish button.
You now have a customized class model in your project directory. You see it in the
Group & Files section of your Xcode Project window.

e _(Chapter 3:Understanding Xcode =

Project Models are saved to a file during creation. Quick Models are not saved to a file unless
you explicitly chose to save them from the File=> Save menu item. Use Quick Models when you
do not want to save your model but just want to understand an aspect of your code.

CAUTION

Models created with Xcode are actually packages. Packages are folders that behave like a single file. For all practical
purposes, they are a file. However, if you try e-mailing the package or placing it in on a Web site, zipping it first.
Otherwise, you may not see your class model shared the way you intend.

Changing Xcode preferences

| discuss SCMs in Xcode earlier in this chapter. During the SCM discussion, | introduced the
Xcode Preferences window. Now let’s explore the Xcode Preferences window in more depth.

To open the Xcode Preferences, select Xcoder> Preferences... from the Xcode menu bar. The
Xcode Preferences window behaves like a tabbed pane. Instead of the tabs, the top portion of
the windows has icons in a scroll pane. Select the icon corresponding to the preference panel
you want to modify.

TIP

To include a preferences window like Xcode does in your own Java applications, start from the Java JNI Library tem-
plate I discussed earlier in this chapter. The ApplicationController cassis responsible for handling
Preference MenuItemevents. See the showPreferences () methodin ApplicationController.
It lacks an actual window when set up from the template, but that is just a matter of adding code to the
showPreferences () method.

Key bindings in Xcode are all customizable. Select the Key Bindings icon in the Xcode
Preferences to see the Menu Key Bindings and Text Key Bindings options, as shown in Figure
3.33. Xcode comes with four sets of predefined key bindings available from the Key Bindings
Sets drop-down list. The predefined sets of key bindings are Xcode Default, BBEdit Compatible,
Metrowerks Compatible, and MPW Compatible.

BBEdit, Metrowerks, and MPW are well known to longtime developers of OS X applications. If
none of these presets are of interest to you, create a new key binding set and customize it to
your heart’s content.

NOTE
You cannot modify any of the four initial key sets provided by Xcode. Instead, duplicate a desired key set by selecting it
and dlicking the duplicate button. Then make your changes to the duplicate key set.

= erting SsStargeg¢a .

Figure 3.33

Key Bindings preferences

& & & ¥ ¢ ¢ R

Distributed Builds Debuggeng Key Bindings Text Editing Fonts & Colors Ingentation File Type:
Key Binding Sets: | Xcode Default W () (Delete)

| di Text Key Bindings -

| Menu Key !

Action Key
» Xeode I
» File
 Egit

Undo nz
Redo s 74
Cut ux
Copy xC
Paste xy
Paste and March Style NoRv
Delete

Sebect AN xa
Duplicate

Refactar 3y

Corvert 1o Objective-C 2.0...

el

Chory) (Gl (@06

Here is an example of creating a custom key binding set with Control+C set to copy instead of
88+C. No, this is not a very Mac-like key binding, but if it makes your OS X experience more
pleasant, so be it. Follow these steps:

1. Open the Xcode Preferences window by selecting Xcode > Preferences....

2. Selectthe Key Bindings icon To open the Key Bindings panel.

3. Click the Duplicate button to create a duplicate of the current key binding set.
4

« Name your new set My Key Bindings, as shown in Figure 3.34.

Figure 3.34
Naming a new key binding set

Please enter a new name for the key binding set:
| My Key Bindings|]

(Canee) (66

e _C(hapter 3: Unaerstanding Xcode =

5. Double-click the key column next to the Copy Action in the Menu Key Bindings tab.
This selects the old key binding, if any exists.

6. Press Control+c.
You have set your new key binding for the Copy command.

7. Click the OK button to apply the changes and close the Xcode Preferences window.

Now you can copy text in the Xcode's editor window using Control+c. Somewhere an Apple
developer is rolling over in his grave.

You may revert to the original key bindings by opening the Key Bindings preference panel and
selecting Xcode Default from the Key Binding Sets drop-down list. Apply the changes by click-
ing the OK button.

TIP

Remove custom Key Binding Sets by selecting the set from the Key Binding Sets drop-down list and clicking the Delete
button. You can delete only custom Key Binding Sets. The Delete button deactivates when you select one of the four
default Key Binding Sets

Click the Text Editing icon of the Xcode Preferences window to see options for display, editing,
and saving. If you want to toggle line numbers, this is your panel. | can't live without line num-
bers, so this is my favorite preference.

The Text Editing panel, shown in Figure 3.35, has options for setting the new line character(s)
and the default file encoding. Between these settings you can probably match any file encod-
ing you ever run into. You also have the option of preserving or changing the new line charac-
ter for existing files you open.

Figure 3.35

Text Editing preferences

= ol & L d v -

Distributed Builds Debugging Key Bindings Text Editing Fonts & Colors Indentation File Types
T . —_ —_ — : L3

Display Options: Save Options:

¥ Show gutter) Save files as writable

B Show line numbers

|| Show column position Line Endings:

Hsﬂhc‘;j:d':::ldmg ribbon For new files: rﬂ‘*_(_l-ﬂ h_ﬂ

{1 Show page guide For existing files; | Preserve i+

Display at column: E0

Default File Encoding; | Unicode (UTF-8) E

Editing Optiens:
I Select to marching brace
|| Omit braces in selection

Choiy) (G (0D

= gerttinag H>targegp .

The Indentation preference panel, shown in Figure 3.36, is available by clicking the icon of the
same name. The Indentation preferences include tab settings, line wrap settings, and syntax-
aware indenting preferences. Setting tabs to spaces or literal tabs is available from this pane.
Also, you can set lines to wrap with a set indent from this pane.

Figure 3.36
Indentation preferences

Distributed Builds Debugging Key Bindings Text Editing Fonts & Colors Indentation File Type:
R ., ——
Tabs: ¥ Syntax-aware indenting

T T S Y —

Tabwickhi |3 Indent solo " by: |0
Indentwichh: |3) Automatically insert closing *f"
Line Wrapplng: f ically ind
(2 Wrap lines in editor My @ #-
“indent wrapped lines by 4 @ @ ¥ Return

{{ comments
@ indent |/ comments
Align consecutive |/ comments

(CAeply) (Cancel) (EmioNS)

You may not find File Type preferences, shown in Figure 3.37, immediately obvious. This prefer-
ence pane lists all the file extensions that Xcode is aware of with the accompanying application
with which Xcode opens the file type. If you want to open a certain file extension with a custom
application instead of editing it from within Xcode, make that change here.

Figure 3.37
File Type preferences

$ pe
o C] 7 44 b A
Hullds Debugging ey Bndings Teut Editing Fants & Calars Indentation File Types
R _ _ _ _ _ ____ _____ ______ IS L)
File Type Preferred Editor
¥ folder Default iGpen With Finder) HN
wiile Coefault (Gpen With Firder) x
file.xib External Editor (Currently nterfave Builder)
image Default Dicode Image File)
viext Default (Source Code File)
B tewn seripr Detault (Souree Cade File)
» vexn.plist Default XMLPropertylist)
textpbxproject Crefault Svurce Code File)
et xcconliy Default Rieode Configuration Settings File)
text.rtf Diefault (RTF File}
text.ces Defautt fource Code File) 4 8
newr ml Defaulr (Souree Code File) slr
(Cropy) (Cameel) (0RED)
o

Inserting Java Code using macros

Xcode comes with several built-in macros and shortcuts for entering common Java code. In the
Xcode menu, select Edit=> Insert Text Macro=> Java, as shown in Figure 3.38, to see five basic
macros. They include Catch Block, Finally Block, PrintIn() Call, Synchronized Block, and Try /
Catch Block. If you program Java, you already know what these look like.

Figure 3.38
Java macros menu

Catch Block
Finally Block

Synchronized Block
Try / Catch Block

Do not limit yourself to the Java text macros. Java is a C-based language. Several of the C mac-
ros, shown in Figure 3.39, also conform to Java syntax. For instance, selecting Edit=> Insert Text
Macro=> Cr> If Block, gives you a perfectly valid Java i f block.

Figure 3.39

Cmacros menu

#If Block

#lmport Statement
#Include Statement
#Pragma Mark
Case Block
Comment Selection
Copyright Comment
Do While Loop

Else Block

Enum Definition
For Loop

Parenthesize Selection
Printf() Call

Quote Selection
Separator Comment
Struct Definition
Switch Block

Type Definitlon

Union Definition
While Loop

Now, you may wonder what good it does you to have to navigate through multiple menus
when you could just type the code quicker. Remember my description of key binding sets ear-
lier in this chapter? You guessed it. All these macros are available in the Xcode Preferences Key
Bindings preferences panel, as shown in Figure 3.40. Make them accessible at your fingertips
with a convenient key binding of your choosing.

+
+

Figure 3.40

Key bindings for macros in preferences pane

. . : __ —

D Ruilds Key Rinding Text Fditing Fonts & Colors Indentation 1
O ________| ¥
Key Binding Sets: [Xcode Default 2] (Dupli) (Delete)

[Menu Key Bindings | Text Key Bindings |
Action Ky
" winsert Text Macro -
»C
BC+s
= HTML
¥ Java
Catch Block
Finally Block

Printin{) Call
Synchronized Block ”

38

Try / Catch Block
b Objective C
I Text macro specifications
¥ Spelling
Special Characters... LHT

foT

(Apely) (_Cancel) E50KSD)

#~

TIP
When typing a class name or object name followed by a period, use Control+. (period) to find known method or attribute
completions of the code you are typing. Cycle through known completions by repeatedly typing Control+. (period).

TIP

Type 38-+/ (slash) to quickly comment or uncomment selected code.

Using Organizer

Most IDEs allow developers to manage multiple projects. Xcode goes a step beyond managing
multiple projects. Xcode provides the Organizer.

LINADTer 5. vnaerstanaing Acoaqe =

With Organizer, add projects, folders, and files to the convenient Projects & Source tree. In
Organizer, you can create new Java templates based on the Xcode Java Templates. You can
build, clean, and run any projects managed by Xcode in Organizer. Also, the toolbar at the top
of the Organizer window is customizable in the same way as the Project window.

TIP

Control-click the Organizer toolbar to bring up the associated context menu. Select Customize Toolbar... to view the
Customize Toolbar dialog box for Organizer.

Managing projects

Open the Organizer window from the Xcode menu by selecting Window => Organizer. The first
time you open Organizer, it is blank, as shown in Figure 3.41. Not even your current project is
contained by Organizer. Any changes you make to the Projects & Sources list appear when
Organizer is opened later.

Figure 3.41
Empty Organizer view

¥ PROJECTS & SOURCES =1 =1 vl wilw Tyl

No Editor

4o 8-/ m | | 4
Adding projects, templates, and files to the Projects & Sources list is effortless. This example
shows you how to add a project to Organizer:

1. Open the Organizer window by selecting Window > Organizer in Xcode.

You do not need to have an Xcode project open in order to open Organizer.

2. Select the plus icon at the bottom left of the Organizer window, as shown in
Figure 3.42.

Selecting the plus icon opens a drop-down list containing New File, New Folder, New
From Template, and Add Existing Folder....

Figure 3.42

Drop-down list at bottom
left of Organizer

New File
New Folder
New Frum Template >

Add Existing Folder. ..

3. Select Add Existing Folder.... to bring up a standard file dialog box.
4. cChoosea project folder, and click the Open button.

The selected project becomes available in Organizer.

Running projects

With Organizer, you not only have access to the source files for multiple projects, but you also
can run any of the projects you add to Organizer. Select the root folder of the project you want
to execute, and click the Run button on Organizer’s toolbar.

If you select a project to run in Organizer and click Run, make sure you have already built the
project first. You may be in the habit of using the Build and Run button from in the Project win-
dow. The Organizer does not have a Build and Run button. Nothing too terrible happens if you
have not built your project before you click Run. Typically, you get an Xcode Console window
with an error saying “Task not found at path.”

Creating Java projects from Organizer templates

Organizer has another trick up its sleeve. You can create Java projects with Organizer. The projects
that Organizer creates are all Ant-based projects, but from inside Organizer you can build, run,
and clean those Ant projects just as you do normal Xcode projects in the Xcode project window.

Earlier in this chapter | explained the creation of Java projects in Xcode. Most of those examples
involved creating a empty Xcode project and adapting the empty project to work with an Ant-
based Java project. If you choose, you can do the same for each of these Organizer Java project
templates.

Organizer comes with five built-in Java project templates. The Java project templates, shown in
Figure 3.43, are:

e _C(hapter 3: Unaerstanding Xcode

Java Applet

Java Application
Java Signed Applet
Java Tool

¢ ¢ ¢

Java Web Start Application

Figure 3.43

Organizer Java project
template choices

Java Applet

Java Application

Java Signed Applet

Java Tool

Java Web Start Application

Create the Java project of your choice in Organizer by following these steps:

1. Sselect the “+” menu at the bottom-left corner of the Organizer window.

2. Select New From Template, as shown in Figure 3.44.

Figure 3.44

New From Template menu.

Mew Fila
MNew Folder
New From Template

Add Existing Folder...

3. SelectJava Templates. This is the only menu to choose. You can’t miss it.
4. selectalava template, such as Java Application.

5. Choose a name and location for your new Ant-based Java project, as shown in
Figure 3.45.

After you create your new Java project, it appears in the Organizer window. You can now run,
build, and clean your application from the Organizer window.

TIP
The Java projects created from the Organizer templates are standard Ant-based projects. This means that other IDEs
besides Xcode can use these projects, too.

= etting Startea

Figure 3.45

Creating a new folder from the “Java Application” template

in Organizer

Create a new folder from the “Java Application” template.

Save As: bﬂyja\mﬂpd

1@

[aip] {::Hl_i.dﬁm (umy_pm}em

W

yDEVicEs 4| Name &[Date Modificd
E Winmac
2 Friendly
) Untitied

» SHARED

¥ PLACES

4% tdavis
Py Applicati...
[Applicati...

G

b Bt -

:] i

New Folder

CROSS-REF
I explain Ant projects in depth in Chapter 4.

Summary

In this chapter, | described pure Java templ

(Cancel) (Create Folder)]

s

ate projects and the hybrid JNI Library project.

Creation of pure Java application, Applet, and command-line applications from scratch is simple
and clearly documented with sample projects on this book’s Web site. The JNI Library project is
a great place to start for more advanced users who need full OS X native framework support.

I also discuss preferences, shortcuts, and view customizations available in Xcode. Xcode
includes support for three common version control systems. Xcode also contains built-in class

diagramming tools for program architectin

g and design.

Finally, I discuss managing and running projects with Organizer. With Organizer, you manage
multiple projects and source files. Organizer also allows you to build and run the projects you

manage with it.

Building Basic Projects
——

N\

[/
riting code is important, but any code you write is irrele-
vant until it is built. During initial research phases of proj-
ects, you may have only five or ten classes to worry about

building. Early on, you may even build one class at a time. In the
beginning, you easily manage your build process.

As your project progresses, you accumulate more classes and
libraries. You start giving your manager or testers packaged builds.
You integrate your code with that of other developers. In short,
your build becomes complex. With time, the building and packag-
ing of your code can take an hour or even several hours. Spending
more time building and packaging code rather than writing it
becomes a reality.

You do not want to spend hours of your day building and packag-
ing code for your manager or testers. You are busy and don’t have
time for that. The more automation you put into your build process,
the less time you spend away from your code. This chapter explores
automating Java builds on OS X so you can focus on coding.

Building Xcode Projects uln This Chapter

Automated Java builds on OS X fall into three categories: IDE project
builds, build tool scripts, and shell scripts. Xcode is an excellent IDE, Building Java projects
freely available to OS X developers. You can use Xcode's default JNI with Xcode
Library template to set up your initial Java project build. Default
builds are used mostly in simple projects that do not involve com-
plex packaging for delivery to your manager, testers, or clients.

Understanding Ant and
build.xml files

Creating shell scripts for
Ant is a common build utility for OS X. Using Ant provides quick building Java projects
builds and delivery of code to your end user. Xcode uses Antin

building Java projects. This means that any Ant builds you write
may also integrate into your Xcode project for use with just a click
of a button in the Xcode IDE.

Shell scripts provide a third method for automating your build. OS
X contains all the common UNIX tools necessary for creating com-
plex scripted builds. Integrating your shell scripts into an existing
Ant or Xcode project is simple and provides more options for your
build process.

You also may use shell scripts and Ant builds standalone or integrated into a cron job that
results in a nightly or weekly build. Shell scripts and Ant projects both integrate with other com-
mon Java IDEs besides Xcode. In this section, however, | focus on building, running, and debug-
ging projects from Xcode. Later in this chapter, | give much more detail on scripting builds.

Understanding the Xcode Build Process

To fully master Xcode builds on OS X, you need to understand the Xcode build cycle, customiz-
ing builds with Ant, and getting down and dirty with shell scripting. With these three skills, you
will not encounter a Java build that cannot be fully automated.

In this section, | explain basic builds with Xcode. | also discuss Xcode’s tools for running and
debugging projects. Testing builds by running and debugging is essential to successful devel-
opment cycles.

Begin with a simple project. Create a new Xcode JNI Library project with the assistant. For this
project, follow these steps:

1. Click the File menu.

2. Select New Project...

3. Browse the Framework & Library templates.

4. Choose the JNI Library.

5. Name your project MyApp.

CROSS-REF
The JNI project that the Xcode assistant can create is detailed in Chapter 3. Chapter 3 also details creation of Java
Swing applications, JApplets, and Java Console applications with Xcode.

Look at the Groups & Files tree, as shown in Figure 4.1, on the left of your main Xcode window.
Folders and files are red, especially in the Products folder. Red indicates empty or non-existent.
If you look in all your project folders, you will find files, except in the folders with red names.

Click the Build and Run button in the Xcode window to see what the template gives you. After
clicking Build and Run, notice the red named files in the Products folder turn black as they are
created.

As Figure 4.2 shows, you now see a fully functional, though limited, Java JNI and Swing applica-
tion execute. Build and Run is the quickest way to run your applications or find newly coded
bugs. The keyboard shortcut is 38+Return for Build and Run.

_—____________________ Lhndaprter4a.pulaing pasic rroiecuts

Figure 4.1

Initial Xcode project window

[5] MyApp.java - MyApp
Growps & Hies] le e b % |Code [] a @
[Myaoe [m| [l mvapp.java
» | Source
| Resources L - -
¥ [l make | ¢ [DMyAppjavaclQ & <N selecred symbols S S)
" " L]
'? i 2| | £7 MyApp. java %
¥ [Framewarks 1 | £7 Myapp o
¥ | Preducts 4 [
B AddressBook.jar %| | ## Created by Terrance Davis an 18/10/89.
ry ¢ & | /# Copyright {e) 2800 __MyCompanySiner__. ALl rights reserved.
6= libAddress Bock jnilly 2l | 7¢
A MyApp.app 8| |/ For inforsation on setting Java confipuration information, including
» (@) Targets 3| |/f setting Jova properties, refer to the documentation at
H per.agple. con/techoube/iavaliava, himl
& Executabies ﬁ L{ htto:/ developer. . tech L]
¥ O, Find Results 12
+ L Bowkimarks 13| | packaye com.example;
= 35| | 1aport fevas.swing, BringUtititiess
@ Project symaals i
» [l implementation Flies 17| | import com.exomple. app. ApplicationController:
um
(B B Files 1) | 1a4)
1| | e Starting point for the application. General initislization should b
n 4 the ApplicationCentroller's init() methed. If certain kinds of non-4
n « takes too long, it should happen in @ new Thresd and off the Swing o 1
n -
M - qnur!mr tdavis
i
* mmllr elass Myapp {
27 | public statie vaid main(final Steingl) args)
» final ApplicationController app = new .lppl;nnaurantmllrrr] -
m app.inditl);
od "I - =) Ve
o
Figure 4.2
Swing Address Book application run from
default JNI template
Selectad Person
Name Terrance Davis
Email grome@genedavis.com
Phone 201 2010201
Chat

- Show Contacts

In the Groups & Files table again, look for the red circles icon that looks like a bull’s eye. Next to
it is the name Targets. Expand Targets, and you will see the MyApp target, named after your
project. Double-click the MyApp target, and the Target window opens, as shown in Figure 4.3.

Click the General tab in the MyApp target window. Notice that it contains three direct depen-
dencies: Compile Java, Compile Native, and Assemble Application. These three dependencies
are listed as targets in the Target folder of the Groups & Files tree. Each of these targets does
what its name implies. Compile Java and Compile Native take care of the Java and Objective-C
compilation for your JNI application. Assemble Application integrates the rest of the applica-
tion, but it does not assemble the application bundle.

E Getting >tartea

Figure 4.3
Target window for MyApp target

{ General | Ruild Rules Comments

Mame: MyApp
Type: Aggregate
 Direct Dependencies.
@ Compile Java
S Cornpile Native
oy Assemble Application

g

Linked Libraries

[*]
1

@,

Close the MyApp target, and open the Compile Java target, as shown in Figure 4.4. This Target
window details how the Java portion of your application builds. Normally, you do not want to

change any of these settings, but you need to understand the basics in case you do need to
customize your build.

Notice that under the Custom Build Command, the build tool selected is /usr/bin/ant. Ant

is used to build all the Java projects in Xcode. If you chose to use Maven or shell scripts instead
of Ant, this is where you make that change.

TIP

Look in your project’sbuild. :m1 file. Itis in the make folder. The Ant targets you find include cLean and

compi le. These are the bare minimum targets to implement in a custom build script if you integrate a custom Ant
build into Xcode.

The instructions for the actual Ant build are found in the build.xml file. Find this file under
your project’s make folder. Click the bui1d . xml file to see its source. You may recognize the
source as XML. If you want to customize what your Java target results are, make customizations
inthe build.xml file.discuss how to understand and create build files in great detail later in
this chapter. All that XML in the build file will make sense soon.

—___________________________(hapterA4: buldaing basic Projects

Figure 4.4

Target window for Compile Java target

Compile Java
@ Target “Compile Java” of Project “MyApp"

Serrings show | Debug ﬁ cenfiguration
Settings ¥ General Settings
General Serrings
Huild Tool Configuration Product type: Custom Build Teol Targer

Customn Build Settings Prodter e Addressbook

7 Custom Build Command

Build Tool: | fusr/binfant

Arguments: - -1 *${SRCROOTH make/ build.am!® ~debug “SACTION®

Directory. (Choose...)
Use “S<buildsetting>" for the value of any build setting.
e “SACTION” for the build action (clean, mstall, ¢tc)
Lise “SALL_SETTINGS® far all command-fine busdd settings.

[Pass huild settings in eevironment

¥ Build Settings

Name Value
PRODUCT_MAME = AddressBook

[+ X=]

So far | have shown the build from inside the Project window. Another useful view of the build
is the Build Results window. To get to the Build Results window, select Build Results under the
Build menu. The Build Results window opens, as shown in Figure 4.5, with an overview of the
build in the top half of the window.

TIP

The default organization of Xcode behaves much like a Web browser without tabs. Clicking icons and buttons often
opens new windows. If you lose track of your main project window, press zero while holding down the 88 key. Your
main project window's view returns to the front.

Click Build at the top of the Build window. You see an overview of the steps used to build your
project. The steps are presented as a collapsible tree. The root nodes are the targets | just
described. These expand to give detailed transcripts of your build. The transcripts and the over-
view are great resources for keeping track of what each of your targets is actually doing during
a build. All this information is useful when you need to find obscure bugs during a bad build.

Each successful step of the build is marked with a green check mark in the overview. If the build
fails, there are red exclamation points next to the steps that failed to complete.

Getting >tartea

Figure 4.5
Build Results window

ano [1) MyApp - Build Results —

EUTEMEW Latest Results | By Issue
Build Compile Java
Project MyApp | Configuration Debug

Build Compile Mative
g Project MyApp | Configuration Debug

> Build Assemble Application
Project MyApp | Configuration Debug

o Build Succeeded 10/10/00 4:50 PM
Nn issuss

o il S, ™ Cy ¥, B

No Editor

Debugging of “MyApg" ended normally. @Succeeded -

Deliberately introduce a broken line of code into your My2App . java file by removing a semi-
colon. Now, build your application by clicking the Build tool at the top of the Build Results win-
dow. The build fails with a satisfying red exclamation point next to the node “Run external build
tool.” Expand that node, and scroll down to see the actual error. In my case, it was this:

/Users/tdavis/Desktop/MyApp/src/java/com/example/
app/Actions.java:16: ';' expected
import javax.swing.*

Running Xcode projects

As you know, after you have your project building, you are ready to run. If there are any obvious
flaws in your program, running the code is the first method of finding them. Running in Xcode
is similar to other IDEs.

At this point you have built your application, which is called MyApp. Building your application
created a double-clickable Mac OS X application to run your Java code. You don't need to
search the file system for the double-clickable application, though. There is an easier approach
to quickly jump into the project folders.

To see your application in a Finder window:

1. Navigate to the Products folder in the Groups & Files tree on the left in your
Project window.

2. Open the Products folder to reveal the MyApp.app application.

3. Control-click MyApp.app, or right-click if you have a two button mouse.
A context menu opens, as shown in Figure 4.6.

4., select Reveal in Finder from the context menu.

Figure 4.6

Selecting Reveal in Finder
from the MyApp . app
context menu

Add S
Open With Finder

Open in Separate Editor
Add to Bookmarks

Cet Info
Rename
Touch
Untouch
Delete

Group

Preferences >

You should now have a Finder window open showing your fully functional OS X Java applica-
tion. Having access to the build is nice, but it's not as useful as running and debugging inside of
your IDE. There are several different ways to run your application from inside Xcode.

Returning to the project window, take a look at the menu items under the Run menu shown in
Figure 4.7. Running with and without debugging are the two obvious choices. However, do not
miss the Run with Performance Tool submenu. Xcode is integrated with several advanced per-
formance tools. For instance, select CPU Sampler from the Run with Performance Tool sub-
menu, and you receive real-time feedback about what your JNI application is doing with your
computer.

Optimize the application you run against quickly for release or for debugging. Locate the Build
Configuration drop-down menu at the top of either the project window or the top of the Build
Results window. Use this menu to select your Active Configuration. Your two default choices are
Debug and Release.

“ Getting Startec

Figure 4.7

Run menu contains several options
for executing your application.

Run - Breakpoints Off LHR
Debug - Breakpoints On LRY
Run with Performance Tool »
Stop {rige
Attach to Process >
Debugger o8By
Mini Debugger N
Console ¥R
Clear Console ~N#R
Show »
Debugger Display >
Variables View »
Activate Breakpoints ~ga
Stop an Objective-C Exceptions
Manage Breakpoints >

N Thread
Previous Thread

Sync with Debugger
+ Stop on Debugger()/Debugstr()
Enable Guard Malloc

As you may guess, if Debug is selected, your MyApp . app application builds with more debug
information embedded. While the resulting application may be suitable for limited testing by
select users, typically you don’t want a debug build to get out to your general user base. The
Release selection optimizes your application and removes much of the debugging information
from the application, speeding up your application in the process. Ship Release builds, and test
with Debug builds. It can’t get much easier than that.

Debugging Xcode projects

After you have found the easily spotted problems in your program by running it, it is time to
examine the workings of the code in detail. Like most modern IDEs, Xcode contains great sup-
port for debugging. Using the debugger, you can examine any section of code at runtime to
determine if the actual behavior matches the desired behavior of your program.

Debugging in Xcode is not too different from other IDEs common in the Java world. You start
with a breakpoint and create a breakpoint by clicking to the left of code, the same way you

would in other IDEs such as Eclipse. As shown in Figure 4.8, you see an arrow pointing to the
code that pauses the Debugger. For this discussion, | have placed my breakpoint at the left side
of the new ApplicationController () constructor in the main method of MyApp. java.

NOTE
Clicking a breakpoint deactivates the breakpoint but does not remove it. To remove a breakpoint, right-click (or
Control-click) the breakpoint and select Remove Breakpoint.

TIP
By default, Xcode has line numbers turned off. To turn line numbers on, select Xcode ->> Preferences..., and navigate to
the Text Editing preferences. The line numbers checkbox is on the left side of the Text Editing preference panel.

Figure 4.8

Breakpoint to the left of the MyApp constructor in MyApp . java

Hile Name — & & |Code A @

Groups & Filas | S
v [Mvaop |m1 4 myapp.app
» (L Source
| Resources - - - - - -
¥ [make | @ v [GMyAppjavala & eNo selecred symbols S 2. ic. e @@
r R wl |1 hito:/fdeveloper. aoole, condlechoubs/javaljave. hinl L]
¥ [Framewarks :: i -
¥ [Products 1] | packsge com.example;
3 AddressBouk jar Al | ; ;
= lbAddress! il ;: | import javax.swing.SwingUtilities;
{4 MyApp.app 17 | impert com.example.app.ApplicationController;
¥ () Targers] -
@ 18| | fes]
MyApp 3 | = Starting point for the applicatisn. Gemeral dnitinlization shauld b
» (@) Complle Java | 71| | = the applicatiantontraller's init{) mothod. If certain kinds of non-g
+ B Cummpile Native f| 2| | = takes ton lang, it shauld happer in a new Thread and off the Swing o
nl| e
> ohy Assembie Applicaion F] * @outhar tdovis
o Exerurables 2| w/
¥ (], Find Resubs n 5nubLu1§1ass Myhpp { (n{Hinat Stringl] i
fs 27| public static void main(final Str args
i i - final ApplicationController app = new ApplicationCentrollerlls
>3 5CM] app.initl);
@ Project Symbals n
* (il impte n SwingUtilities. invokelater (new Runnable{] {
= :“"“‘Hen Fiies - public void runf) {
w18 Files i /7 creste the Swing spplication un the EOT
u spp.stari{args):
15
% H:
37| =
|} b3
: : : =l H - ——— = —
| Behugging of “MyAnn® ended narmally. =

Open the Debugger window by clicking Debugger in the Run menu. If you click Build and
Debug at this point, you will be disappointed. Your breakpoint is ignored. You must first select
the Java Debugger for your executable, as shown in Figure 4.9.

E ertuing SsStargeg¢a .

Figure 4.9
Debugger window with Activate button

S | C. .| W

No Editor

Debugging of "MyApp® ended noemally.

1. Navigate to your Xcode project window.
2. Double-click the MyApp executable.
3. Selectthe Debugging tab in the Executable configuration.

4. selectJava Debugger from the “When using” drop-down list.

Now you are ready to debug. Click Build and Debug in the Debugger window. Your application
stops at your breakpoint.

TIP
Click the Breakpoints button at the top of the Debugger window to open the Breakpoints window. The Breakpoints
window contains information about specific breakpoints you have selected.

TIP

For direct access to the Java Debugger, click the Console button at the top right of the Debugger window.

Writing Ant Build Files

In the realm of Java programming Ant and Maven are the two most common cross-platform
build tools. Ant is installed along with Xcode and the other OS X developer tools. Java builds in
Xcode use Ant. Because of Ant’s availability and integration into Xcode, | focus on Ant builds in
this section instead of other build tools such as Maven.

In this section, | discuss enough about Ant to enable you to put together highly complex and
full-featured professional quality builds. After reading this section, you will be able to create Ant
builds that satisfy your employer’s need to automate builds and to deploy your code.

This section contains a review of XML. | discuss Ant projects, targets, properties, attributes, and
values. | discuss the depends attribute and the creation of multi-targeted builds. This section
also covers numerous task elements needed for building, cleaning, and deploying projects.
Also, | cover the exec task for integrating Ant with shell scripts and other tools.

The contents of this section do not cover all advanced Ant topics. This section does not cover
conditionals, error handling, interactive user input, and creating custom Ant modules. These
topics were left out due to space considerations and because many users have no desire to
explore these topics.

NOTE

Maven can use Ant tasks for added flexibility, so learning Ant is a good first step to learning Maven also.

Understanding Ant

Ant is a tool for compiling, cleaning, and deploying Java builds. Customizing Java builds in
Xcode requires a firm grasp of Ant. Ant builds created for OS X usually work on other operating
systems that support Java. This section introduces Ant.

Ant was created by James Duncan Davidson. Ant stands for Another Neat Tool. Think of actual
ants and how they do simple repetitive tasks over and over to produce complex results. That
was the inspiration for Ant. Ant is excellent at automating repetitive tasks that waste your time
as a developer.

When you create a bunch of code, many steps must happen before your customers use the
code. You first must compile the classes. You need to create JARs, WARs, or EARs. You must
copy images, XML, and property files to your deployment folder or folders. Often, you need to
run JUnit to test the finished version of the application before customers see it. You may even
have to copy the results to a remote server for distribution.

NOTE
JARs, WARs, and EARs are all essentially zip files. JARs package Java libraries and resources for any type of Java applica-
tion. WARs and EARs provide packaging for Web-based applications.

If you have ever had to deploy or partially deploy a program over and over and over while try-
ing to debug one line of code, you know that you can spend far more time with the list of tasks
that need to happen during compiling and deploying than you actually do coding. Worse yet,
you may find out later that your bug was really just an error in your deployment process, caused
by repeating the same brainless tasks over and over at 2 A.M.

E Getting Started

Wouldn't it be nice to have an intern or junior coder take care of these brainless tasks that are
drawing your attention away from solving bugs and writing code? Wouldn't it be nice to make a
trip to the vending machines while the tasks unrelated to fixing code were done for you?

That is what Ant is all about. Consider Ant your friendly helper. Using Ant, you can automate
builds, copying resources, run tests, and deploy finished code. You set it up once and literally
type three letters...ant. That's all.

In the Java community, Ant has gained lots of popularity, which is not surprising. Ant frees up
time for programmers so they can attend to more important tasks, such as chatting at the water
cooler. Ant is used mainly to script build processes. Ant is a Java application, so it is available on
any system with Java. Of course, that includes OS X.

NOTE

Antis an Apache project. The projecthomeisathttp: //ant . apache.org.

NOTE

Ant s a build tool. If you are more interested in a full project management tool, look into Ant combined with lvy, or
Maven standalone. lvy and Maven are popular Java-based project management tools maintained by the Apache
Software Foundation. Maven is similar in functionality to Ant plus lvy.

I do not discuss Maven or vy in this book, but you may want to explore their features on the Web. The project home
forlvyisathttp://ant.apache.org/ivy. The project home for Mavenisathttp: / /maven.
apache.org.

As mentioned earlier, Xcode uses Ant to build Java applications, so an understanding of Ant
opens up the full power of Xcode’s build process to the developer. Every Java project created
from an Xcode template comes with an Ant build.xml file that you can open and modify. Also,
double-clicking your Java target in the project window of Xcode opens the Target window with
configuration information for how Ant is set up in the project.

CROSS-REF

In Chapter 3, | give three examples of integrating custom Ant builds with new Java projects.

Check to see if you have Ant on your system. Open a Terminal window. Type ant -version. If
the result is a line telling the version and compile date of the version on your system, you have
Ant. Ant should be installed, if you have Xcode on you computer. You can check for new ver-
sions of Ant at the Apache Ant project home (http://ant.apache.org). However, Apple
does a great job of keeping the Xcode tools up to date with recent versions of Ant, so you won't
need to make checking for new versions of Ant a priority.

Creating a basic Ant build file

In this section, | discuss the basics of Ant build files. The Ant tool parses a build file to determine
how to proceed with building, cleaning, or deploying code. Understanding build files is the first
step to understanding how to use Ant.

The default build file for Antis named build.xml and is placed in the directory that the Ant
command is issued. The default build file is build.xm1, but don't feel constrained by this. You
can change the file that is executed by specifying the -buildfile option at the command
line. With your build file named my_project .xml, your command line looks like this:

ant -buildfile my_project.xml

TIP
The arguments - £ and - £i 1 e have the same function as -buildfile. Using the command ant - £ my
project .xml causes Ant to execute usingmy_project .xml instead of build.sml.

Build files for Ant are XML files. XML consists of a prolog, elements, attributes, comments, and
text. Nest elements between other elements in a similar fashion to HTML to form more complex
XML documents.

NOTE

XML s a standard for defining markup languages. The XML standard defines tag construction and how to define tag
elements and attributes. The tags used in different implementations of XML differ, but the way tags are defined, con-
structed, and interoperate remains the same from version to version.

Looking at an Xcode generated build.xml file, you will note that the first line is as follows:
<?xml version="1.0" encoding="UTF-8"?>

This is the prologue. Every XML file should start with a prologue similar to it. Notice, it contains
the version of XML used and the encoding. The encoding in this case is UTF-8, representing the
character set used. You don’t need to memorize this prologue; you can just write it once and
copy and paste it everywhere else you use it. It isn't likely to change.

XML element tags follow the prologue. Figure 4.10 shows the relationship among elements in
Ant. Elements take two forms: paired opening and closing tags such as <project></project>
or single tags such as <property />.Look for the placement of the forward slash to deter-
mine paired or single XML tags. In paired tags, the first tag doesn’t have a forward slash, but the
second tag starts with a forward slash. The first tag in a paired element is called the opening
tag. The second tag in a paired element is called the closing tag. In single tags, the tag ends
with a forward slash.

= ertuing SsStargeg¢a .

Figure 4.10

Relationship among projects, targets, properties, tasks,
attributes, and values

Property

Elements may be nested between opening and closing tags. The outer elements are called par-
ents and the inner elements are called children. Single element tags may not hold other ele-
ments. In the case of paired tags, the opening and closing tags must both be enclosed by the
same element tags. For instance, the following is valid:

<target>
<echo>
</echo>

</target>

However, the following is NOT valid XML, because the enclosed echo element does not have a
closing tag nested between the opening and closing target elements:

<target>
<echo>

</target>
</echo>

Also, the following is NOT valid XML, because you don't place an element inside of another element:

<property <echo /> />

Chapter 4: Building Basic Projeci ,::I:I:I:I

TIP

XML elements follow almost exactly the same rules as traditional HTML. The two main differences are that elements
such as <p> in HTML can get away without a closing tag (</p>) and non-paired elements like <bx> in HTML often
don’t need a trailing slash (
).

You may have already guessed that XML supports elements being presented as paired ele-
ments or as single elements. For instance, the following are equivalent, and you can use them
interchangeably:

<echo></echo>
<echo />

Attributes are always associated with an element’s opening tag. Attributes are never in a clos-
ing tag. Attributes consist of a name and a value. The value is surrounded by double or single
quotes. Attributes take the following form:

name="the_actual_name"
When the name attribute is used in a project element tag, it looks like this:

<project name="some_cool_name">
</project>

I have discussed prologues, elements, and attributes. They are all pretty simple to understand
and use. None of them is as simple as the last part of XML: text.

Text is just what it says. Text is nested in a paired element tag. Text is never outside of enclosing
element tags.

Let’s use the echo element as an example again. If you use echo with an element tag and an
attribute, it looks like this:

<echo message="I'm a an echoed message">

However, you may use text instead of an attribute. In the case of echo, it replaces the message
attribute, thus the following is a valid use of text in XML:

<echo>I'm a an echoed message</echo>

Comments are another form of tag. Instead of housing an element type, they have comments.
Comments begin with <! -- and end with -->. Comments may be nested at any level in your
XML. Anything appearing in a comment tag is ignored by Ant during the build, just as you
would expect. Be careful not to place a comment inside another comment, or Ant will not know
how to interpret it. Even a double dash (- -) without the closing angle bracket will foul up the
comment, so don't do it.

- Getting Started

CAUTION

Programmers commonly use the XML comments to disable chunks of XML during debugging of a script. Just be careful
that the XML you comment out does not already have a comment in it, or surrounding the XML in a comment tag will
result in illegal XML that will not parse properly.

As | have discussed, the default build file for Antis build.xml. The build files are XML. They
follow all the rules mentioned above about XML and additional Ant-specific rules. The Ant-
specific rules apply to what are and are not valid names for elements and attributes. The Ant-
specific rules also cover the description of valid placements of different types of XML elements
that it uses to determine the build process it executes.

Create a simple Java file to manipulate with Ant:

1. Create the file AntExample java.

2. Populate AntExample.java with the following code:

public class AntExample
{
public static void main (String args|[])

{
System.out.println("Ant done!");

}
}

3. Place this shiny new Java file in a directory by itself.

You want it by itself so other files do not inadvertently interfere with your example
Ant build.

You can easily build and run this file from either Xcode or from the command line using the
javac and java commands. Instead, use the ant command. If you cd to the directory that
contains AntExample. java, type ant, and press enter, you wait a second or so and get the
following message.

build.xml does not exist!
Build failed

No harm done. Your next step is to make the requested build.xml file:

1. Create a file named build.xml.
2. Placeitin the same directory as the AntExample. java file.

3. Fill the build file with the following text:

<?xml version="1.0" encoding="UTF-8"7?>
<project default="compile">
<target name="compile">
<javac srcdir="." />
</target>
</project>

Now when you issue the Ant command from that directory, you get the following:

Buildfile: build.xml
compile:
[javac] Compiling 1 source file
BUILD SUCCESSFUL
Total time: 0 seconds

You have written your first Ant build script. Issuing the 1s command confirms that the
AntExample.class file exists. Now do the following:

1. Takea deep breath.

2. Sstretch your legs.

3. stop by the water cooler.
4. Brag to all your co-workers.

It's okay. They already know you are a geek.

Looking at the build file, you will see three XML tags: project, target, and javac. Project is
the root element. Project defines the default command to execute. In the case of your build file,
that is the compile command.

NOTE
XML documents are set up like trees. The root element is like a trunk with nested elements representing branches.
Terminal data and attributes represent leaves.

The target element is a collection of actions collected in one command. In your file, the com-
mand is compile. It is no accident that the project default value and the target name are the
same. The ant command checks the build file for a project root element, and checks project for
a default target name to run. After finding what target name it should run, Ant makes all the
requested actions in the named target happen.

In your build file, the target contains only one action: javac. javac is the same as the Java
javac command. The javac element requires at minimum a source directory specified by the
name srcdir. AntExample. java isin the same directory as build.xml, so use a period
for your source directory. You also could use a fully qualified path to the directory.

Think of the build file in terms of Java programs. The project element is like a Java class. The tar-
get is like a method. The contents of the target are similar to the commands in a method.

Placing all your project files into one directory gets confusing. You can separate your source
and destination directories. The shell command for creating a new directory is mkdir.
Conveniently, the command for creating a directory in Ant is the same. The following line cre-
ates a new directory called build in the directory that the Ant build runs:

<mkdir dir="build/">

EEI;IIE;; Getting Started

Next, you need to let your Ant javac element know to place your compiled classes there. Add
the destdir attribute to the javac element. The entire build file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<project default="compile">
<target name="compile">
<mkdir dir="build/" />
<javac srcdir="." destdir="build/" />
</target>
</project>

Execute this build with the Ant command from the directory that contains your Java file and
build.xml.You should see, among other comments, the comment BUILD SUCCESSFUL.
The build directory is now created, and the AntExample classis in it.

TIP

The mkdir task in Ant does not error if the directory already exists. In this case, the mkdixr command is quietly
ignored.

Defining multiple targets

Ant supports multiple targets in one project. Each target is enclosed by an opening and closing
target tag. Below you see an example of a project with two targets. Your options for running
the following build script are ant and ant test, which both do the same thing because test
is specified as the project’s default target. Also, ant init is a valid command to run the init
target below. You can always specify which target you want to use, even if you want to override
the project’s default target.

<project default="test">
<target name="init"
description="Normally would do important things">
<echo message="Initializing..."/>
</target>
<target name="test"
depends="1init"
description="Testing multiple targets">
<echo message="other elements go here"/>
</target>
</project>

Notice that the test target element contains the depends attribute. Using the depends attri-
bute tells Ant that the specified target or targets must execute first. When the test target exe-
cutes, first the depends attribute is checked. Any targets that test relies on are executed before
the test target runs. The depends effect cascades, so that if the ini t target depended on
other targets, those targets would execute before init.

LNnapter 4: buliding basiC Projects =

TIP

Think of depends as you would a Java method call. depends essentially calls another target, which may in turn
call yet other targets with its own depends attribute.

Avoid circular dependencies when setting up depends attributes. If two targets depend on
each other, then the Ant command outright fails with a message signaling that the offending
targets have circular dependencies. For instance, if the above project were changed to specify
the init target depending on the test target, you would see the error shown in Figure 4.11
when attempting to execute Ant.

CAUTION
Multiple targets should never depend on each other. This is called a circular dependency. Creating a loop of target calls
will cause Ant builds to fail.

Figure 4.11
Terminal display of Ant build indicating a circular dependency

Helele
Winmoc:~ tdavisd ont
Duildfile: buildoml

I

BIITLD FATLED
Clrculor dependency: test < Inlt <- test

Total time: B ssconds
Winmoe:~ tdovisg

N

To specify multiple targets in the depends attribute, just separate the targets with commas,
like this:

depends="init, compile"

If you did not have the depends attribute in the targets above, you could still execute init
and then test targets in that order from the command line. You may specify multiple targets
with Ant from the command line. Execute the targets init and test from the command line
like this:

ant init test

Running Ant executes any given target only once. For instance, suppose you have three targets:
init, clean,and build, defined like this:

EEI;IIE;; Getting Started

<target name="init"></target>
<target name="clean" depends="init"></target>
<target name="build" depends="init, clean"></target>

If the target c1ean depended on init and the target build depended on init and clean,
you would not need to worry about the init target being executed multiple times when ant
buildis executed. The target init is specified in two different depends attributes but exe-
cutes only once.

TIP
If a target is called by multiple depends attributes during a build, it is executed the first time only. In this way,
depends is different from a Java method call.

At times, you want to discourage command-line use or misuse of a target, for instance, if a tar-
get generally runs from within a target instead of using a depends attribute. Or perhaps the
target should conditionally execute after some tasks have first executed.

In these cases, include a dash at the beginning of the target name. For example, if you have two
targets, -init and compile, you can set compile’s depends attribute to the following:

depends="-init"

This allows -init tasks to execute when ant compile executes, but not directly from the
command line.

When discouraging use of targets, avoid using the description attribute in the target. In this
way, the target is left out of the description of the project created by the command, ant
-projecthelp.

TIP
Use both a dash to start a target name and leave the description attribute out of a target when you want to discourage
the target’s public use.

Notice the description attribute in the targets above. Remember when your professors told
you to always comment your code? In Ant build files, you can comment your code in the regu-
lar XML fashion:

<!-- some comment here -->

For targets, you also can include a one line description attribute. It functions like the XML com-
ment, except it is an attribute. The description attribute has the added benefit of appearing in
the list of targets provided by the -projecthelp option of Ant. You can quickly list all targets
of a build file along with its default target by typing either of the following:

ant -projecthelp

ant -p

An added benefit of using the description attribute is that XML tools recognize the description
attribute and associate it with the proper target element. A typical XML comment does not
have this benefit. So use descriptions in any important build file.

Now | introduce a build file that matches a little more closely with the real world. In the real
world, you use packages. In the real world, you don’t know the package or class names when
you write the Ant script. In the real world, at the very least, you want a double-clickable JAR file
for quick testing. At the very minimum, you want a build file that performs clean builds.

Use a basic Java class such as the following. This time it is in a package.

package com.genedavis;
import javax.swing.*;
public class AntExample
{
public static void main (String args([])
{
JOptionPane.showMessageDialog (null, "You clicked?");
}
}

| place this Java file in a directory representing the package: com/genedavis.

Here is the build script. Do not worry if you don’t understand it yet. | go over it in detail.

<project default="build">
<target name="clean"
description="Removes previous build">
<echo message="Cleaning up old build..." />
<delete file="AllOfIt.jar" />
<delete verbose="true">
<fileset dir="build">
<include name="**/*.class" />
</fileset>
</delete>
<delete dir="build" />
</target>
<target name="build"
depends="clean"
description="Build the project">
<mkdir dir="build" />
<javac srcdir="." destdir="./build" />
<jar jarfile="Al1l0fIt.jar"
basedir="build">
<manifest>
<attribute name="Main-Class"
value="com.genedavis.AntExample" />
</manifest>
</jar>
</target>
</project>

‘;;!;!!!;; Getting Started

Two targets exist in this build: clean and build. The default target is build. The target
build does depend on clean, so clean is executed before the build tasks are executed. |
describe the clean target first.

TIP

Remember, double-clickable JARs are JAR files that specify a Main-Class in their manifest file. For example, the
JAR's manifest file may contain the single lineMain-Class: com.genedavis.AntExample if the main
method is found in that package and class.

You have seen the project, target, and echo elements before. delete, fileset, and
include are all new. delete is used three different ways in this target. delete is used to
remove a single file, to remove multiple files, and to remove a directory with all its contents.

Deleting the class files in this case was not strictly necessary, because | turn around and delete
the directory which contains them. Deleting the directory would have deleted the class files and
all other files, too. Deleting the build directory also recursively deletes all its subdirectories as
well. The extra delete task was used, just to give an example of how it is set up.

Deleting a single file is straightforward. In this case, it was a JAR file. All you need is the delete
tag and a £i1le attribute. Here is the task:

<delete file="AllO0fIt.jar" />

Deleting a single directory is also straightforward. Use the delete tag with a dir attribute,
like this:

<delete dir="build" />

TIP

Use a combination of the <delete dir="some_directory">and <mkdirdir="some_directory">
to quickly clean recursively all files from a build directory.

Deleting all the class files in the build directory, recursing through all the subdirectories in the
process, is a little more complex. First, notice that | have set the verbose attribute of delete to
true. So the opening delete tagis this:

<delete verbose="true">

If you do not have verbose set to true, then the files deleted are not enumerated. After the
script is working the way you want, that is no problem, but while writing and debugging a build
file, you want to know what is happening.

Nested in the paired delete tags, | have a set of £ileset elements. The attribute is just a
dir.Usethe fileset tag only for specifying the directory from which you want files deleted.

Nested in the £ileset tags is your include tag. Include specifies a pattern of the files that you
want to remove. In this case, include looks like this:

e Chapter4:Building Basic Projeci

< 1

<include name="**/*.class" />

The double asterisk matches zero or more directories and subdirectories. The single asterisk
matches zero or more characters in a filename.

NOTE
For the complete list of directory and file patterns supported by Ant, check the official Ant Manual athttp: //
ant .apache.org/manual/dirtasks.html#fpatterns.

Above, | store source and class files in separate directory trees, but many projects keep the
source and builds in the same tree for convenience. It is common, though obviously undesir-
able, in legacy code to have files that are compiled for which the source is lost. Obviously,
removing all compiled files is disastrous in such cases.

In projects where some (but not all) files of a given type should be removed, use the exclude
tag. In your sample project, the exclude tag is placed on the line immediately after the
include tag, so they are both nested in between the fileset tags. The exclude tag would
look something like this, if you wanted to exclude all classes named My Special from being
deleted:

<exclude name="**/MySpecial.class" />
To summarize, the sample clean target does the following:

@ lItechoes “Cleaning up old build...".
@ ItdeletesaJAR.
@ It deletes all classes in the build directory.
@ It deletes the build directory.
Consider the bui 1d target. After the c1lean target is finished, the mkdi r task is executed. The

dir attribute specifies the name of the directory to create. In this case, the directory is build.
The element looks like this:

<mkdir dir="build" />

Next, compile the Java code using the ant command for the Java tool javac. Not too surpris-
ingly, the Ant element name is also javac. The attributes are srcdir and destdir, meaning
source directory and destination directory, respectively. If you pay close attention to what the
script is doing, you notice that <javac/> recurses through subdirectories and compiles every-
thing it finds. In an actual project, you may get more files compiled than you anticipated unless
you are careful not to have any Java files in subdirectories of the specified source directory.

Here is the javac element | used:

<javac srcdir="." destdir="build" verbose="true" />

EEIEEEE;; Getting Started

The javac task above has only the attributes srcdir and destdir. Other useful attributes
include debug, deprecation, and optimize. If you build for a code release, you might
want your javac task to look more like this:

<javac srcdir="."
destdir="build"
verbose="true"
debug="false"
deprecation="true"
optimize="true"

/>

debug="false" prevents extra debug information from being placed in the compiled code.
optimize="true” tells the compiler to optimize the code. deprecation="true"” and
verbose="true"” add extra information to the output of the ant command. You may want
verbose and deprecation setto false, if you already know this is a fully working release
build.

For fun, swap out true with on or yes and false with of £ or no in the above javac task.
You will see that those additional values work just as well.

Finally, use the Ant jar task to create a double-clickable JAR. The JAR name is specified by the
jarfile element. The basedir attribute specifies which directory to recursively place into
the JARfile.

The manifest is created with the nested manifest element, which in turn holds the attribute
element. The name and value attributes of the attribute element are used to specify name/
value pairs you want to appear in the final manifest file of the JAR file. | use it to specify the
Main-Class: com.genedavis.AntExample name value pair that specifies which class
to use when the JAR is double-clicked or run with the java -jar A110£fIt.jar.Thefull jar
task looks like this:

<jar jarfile="All0fIt.jar"
basedir="build">
<manifest>
<attribute name="Main-Class"
value="com.genedavis.AntExample" />
</manifest>
</jar>

The resulting manifest is named MANIFEST . MF and placed in the META - INF directory inside
the JAR. If you extract the manifest, it will contain the following:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.0
Created-By: 1.5.0_16-133 (Apple Inc.)
Main-Class: com.genedavis.AntExample

e Chapter4:Building Basic Projeci

V4

Rememboer, if you double-click this JAR file, it has output to standard output only. To see the
output when double-clicking it, instead of running it from the command line, open the Console
application. The date and time of the application’s output appears on a line with the resulting
output. The Console application is located in the Utilities subdirectory of your
Applications directory.

Learning properties and advanced elements

In this section, | discuss how Ant uses variables. | cover common variables accessible to Ant. |
discuss various advanced tasks, such as the exec task. Also, | have a table of all the Ant tasks |
have covered, for easy reference.

Variables in Ant are called properties. Properties can be defined inside and outside of project
files. Properties are case sensitive.

Properties are defined with a name and a value in an XML element, like this.
<property name="some_name" value="some_value" />

A very common use for property elements is to define the path to a directory. This type of prop-
erty has a location attribute instead of a value attribute and would look more like this:

<property name="some_place" location="actual_path" />

Properties are accessed with the notation $ { some_property}. Forinstance, to create a build
directory with a predefined property, the XML would look like this:

<property name="build_path" location="build" />
<mkdir dir="${build_path}" />

Properties can be defined outside of targets. If you change a property element’s value inside of
a target, the new value applies to the property even when accessed inside of other targets.

To demonstrate property use, here is another complete build. xml file:
<?xml version="1.0" encoding="UTF-8"?>

<project name="property_test"
default="compile"

basedir=".">
<property name="build_message"
value="building..."/>

<property name="build_directory"
location="build"/>
<property name="source_directory"
location="src"/>
<target name="clean"
description="Removes previous build">

<!-- remove the build directory -->
<delete dir="${build_directory}" />
</target>
<target name="compile"
depends="clean"
description="Compile code in new directory">
<mkdir dir="${build_directory}"/>
<echo message="${build_message}"/>
<javac srcdir="S${source_directory}"
destdir="${build_directory}" />
</target>
</project>

Notice that three properties are defined at the top of the project and all are outside of targets.
This is the most common place to find properties defined. Two of the properties have location
attributes, while a token third has a value attribute. The build_directory property is used
in both the clean and the compi 1e targets. The properties are all accessed inside of quotes
as though they were the actual text that they are replacing. No special extra syntax is needed to
access the properties other than the standard ${ } syntax.

NOTE

All System properties available inside of Java are available to Ant when an Ant build is running.

Quite a few properties are predefined and can be accessed from within Ant. Some are from
Java’s system properties, and some are from Ant itself. Table 4.1 lists the more useful properties
that you can access in Ant builds.

Table 4.1 Ant Accessible Properties

Property Description

antfile Full path of this build file

ant.home Location of ant (same as which ant)
ant.java.version Version of Java being used

ant.project.name Value of project name attribute

ant.version Version and compile date of Ant

Basdir Directory that Ant executes from unless redefined
file.separator / onthe Mac

java.class.path All paths in the Java class path

java.ext.dirs All paths of Java extensions

java.home Actual path to Java Home

e Chapter4:Building Basic Projeci £

Property Description

java.version Version and build of Java being used

line.separator \non0SX

os.arch Hardware used by Java (probably i386)

0s.name Name of 0S (Mac 0S X)

os.version Version of the 05

path.separator : on MacorLinuxand ; on Windows

user.dir Directory user ran ant from

user.home /Users/your_home_directory
user.name Abbreviated version of login name

After creating a JAR, you may want to copy it and additional resources, such as properties files,
to a deployment folder. Perhaps you just want to place the JAR into an OS X application pack-
age. Ant provides the copy task for this.

The syntax for copy is simple. Provide a file to copy and then the directory to copy the file to.
Also, specify whether you want to overwrite existing files in the destination directory.

In the following example task, the copy task copies the file our . jar from the current direc-
tory to the /Users/myhome/Desktop/release directory and overwrites any existing
our. jar file.

<copy file="./our.jar"
todir="/Users/myhome/Desktop/release"
overwrite="true" />

If you test the copy task, you will notice that the task copies files but leaves the original behind.
So itis copying in the true sense of the word. If you want to copy the file without leaving the file
behind, use the move task. The move task has the file, todir, and overwrite attributes like
copy.

If you write complex Ant builds, eventually you will want to run a Java application or execute a
shell script or command-line tool from within the build. Never fear, Ant can do this too. The
tasks for using Java and for executing a shell command look like this:

<java classname="com.genedavis.AntTest"
classpath="build">
<arg value="some_argument_for_java" />
</java>
<exec dir="/execute/command/from/here"
executable="some_tool_to_execute">
<arg line="-args -for -tool"/>
</exec>

E Getting Startéea .

The java task is probably obvious to you as a Java programmer. However, the exec task is a little
trickier. The dir attribute is the directory that you want the command executed in. Imagine using
the cd command in the Terminal to change your directory and then executing a command from
the new directory. The executable attribute is the actual tool or shell script to execute. The
arg element is used to pass command-line arguments to the shell script or tool.

TIP

The exec taskis great for integrating Ant with shell scripts and command-line tools.

TIP

If you want to use exec to run a command-line tool and you don’t know the path to that tool, use the which com-
mand. Type which followed by the name of the tool. For example, which 1s reveals the location of the 1s com-
mand in the directory structure.

TIP

Many developer tools that you normally think of as purely GUI tools also have a command-line interface built espe-
cially for scripting. Check your documentation, and you may be surprised to find your favorite GUI development tools
can be integrated into Ant using the exec task or even their own custom Ant modules!

Here is an example of using the basic 1s command from your current directory with the argu-
ments -1la.

<exec dir="."
executable="1s">
<arg line="-la"/>
</exec>

Later in this chapter, | present writing shell scripts in greater detail. Executing tools from inside
Ant opens the full power of OS X to your build. If your computer can do it, your build can do it.

TIP
If you are using Ant from inside Xcode, you can access command-line tools and shell scripts from your Xcode Ant
build, too.

Ant tasks fall into two large categories: core tasks and optional tasks. Core tasks are tasks like
javac and copy that are available in Ant for build scripts to use. Optional tasks require at the
very least an extra JAR to be included to become available for Ant to use. Optional tasks have
additional library dependencies that core tasks do not have.

The scp task is an example of an optional task. scp cannot be used without including the
jsch.jar.The jsch. jar can be obtained from here:

http://www.jcraft.com/jsch/index.html

WAy

You must include this JAR in the classpath available to Ant for the scp task to work. You can
check the JARs in use by Ant by typing ant -diagnostics in the Terminal window. The
actual use of the scp task is then something like this:

<scp file="mydeployment.jar"
todir="username@remotehost: /my/webapps"
password="scp_password" />

Other optional tasks include such tasks as sound, splash, junit, and ftp. A good place to
check for optional and core tasks not discussed in this section is on Ant’s official project page at
http://ant.apache.org.

NOTE

You may find the complete reference to core Ant tasks and optional Ant tasks in the official Ant manual on Apache’s
Antpageathttp://ant.apache.org/manual/index.html.For quick reference, in Table 4.2 | list the
tasks | have gone over while discussing Ant.

sks Quick Reference

task attributes

copy file, todir, overwrite

delete dir, file, verbose

echo message

exec executable

jar jarfile, basedir

java classname, classpath

javac sredir, destdir, verbose, debug, deprecation, optimize
mkdir dir

move file, todir, overwrite

scp file, todir, password

Other features of Ant that | cannot address here include conditionals, error handling, interactive
user input, and creating custom Ant modules. Remember that Ant is used by Xcode to build
Java projects, so all the power of Ant is available to you in creating Java builds for OS X Xcode
projects. Ant builds also integrate with other Java IDEs such as Eclipse and NetBeans. Ant can
take care of any build that you need on OS X.

Configuring Ant options

Ant comes with several command-line options to customize the behavior of the tool. The command-
line options vary from setting the verbosity of build output to specifying the name of the build

file to something other than build.xml. Place Ant options before the names of the targets
you execute. For example, if you run a target called clean in a build file called other_
build.xml, issue the following command:

ant -f other_build.xml clean

Several of the options are not used with executed targets. For instance, use ant -h or ant -v
without a target name.

ant -h displays the list of options shown in Table 4.3.

Table 4.3 Ant Options

Options Use

-help, -h Displays the option list

-version Displays Ant’s version

-projecthelp, -p Displays project information

-buildfile, -file, -f <file> Overrides build.xml with custom build file
-find, -s <file> Finds build file looking up directory tree
-quiet, -q Displays no debug information

-verbose, -v Displays some debug information

-debug, -d Displays lots of debug information

-main <class> Specifies a custom main for Ant

-nice <number> Main thread priority (5 is default)

-emacs, -e Produces unadorned logging information
-lib <path> The search path for jars and classes
-logfile, -1 <log_file> Specifies the log file

-logger <classname> Specifies a custom logger

-listener <classname> Adds a project listener

-keep-going, -k Prevents failure of whole build on individual target failures
-D<property>=<value> Specifies name/value pair for property
-propertyfile <name> Loads properties from a file properties specified with ant’s -D option take precedence
-inputhandler <class> Chooses class to handle requested input
-noinput Prevents interactive input

-nouserlib Ignores user JARs in ${user.home}/.ant/lib
-noclasspath Ignores CLASSPATH

-autoproxy Uses the proxy settings for your 0S

-diagnostics Displays diagnostic information for Ant

Chapter 4: Building Basic Project £

Another way to view the options and some additional help is to type man ant in the Terminal.
Use the up and down arrow keys to see the full document. The g key is used to quit man. The
man tool is used to display the manual for command-line tools on OS X.

TIP

The man tool displays manuals for command-line tool usage. Type man man (yes two mans) in the Terminal for a
details manual of man's usage.

Compiling from the Terminal

In this section, | explain the differences between shells, the Terminal, and command-line tools. |
review Java's command-line tools, specifically javac, in detail. Ultimately, | steer this discus-
sion to shell scripts and supply some details about the construction of shell scripts.

Shell scripts script command-line tools. Many complex projects rely solely on shell scripts to
perform all compiling, configuring, and deploying of code. You can use shell scripts with cron
jobs to create nightly or weekly builds of your project.

Shell scripting via the Terminal is a powerful and respected approach to compiling and deploy-
ing Java projects. If you chose to rely on shell scripting in your project, some programmers may
disagree with your choice. However, no experienced programmer denies that shell scripting is a
powerful and versatile tool that can supply any needs your project demands.

NOTE
While command-line tools are usually written in Cand shell scripts are not, telling the difference based on their
behavior is often difficult. No stigma in the 0S X world is associated with using scripts instead of pre-compiled tools.

Reviewing the Java command-line tools

Many programmers who fall in love with OS X do it because of the Terminal application.

The Terminal is easy to use, is highly configurable, supports standard cut and paste, and

opens access to the shell and to a host of command-line tools that programmers find useful.
Command-line tools are applications that are accessed via a keyboard instead of a GUI interface

driven by a mouse.

NOTE

The terms Terminal, command-line tools, and shells can get a bit confusing. The Terminal is an application for
accessing shell environments. Shell environments provide a way for you to navigate and use your 0S from the
keyboard. Command-line tools run inside a shell. Command-line tools are applications written specifically for shell
environments.

Many diehard shell users actually get angry if an application requires them to use a mouse,
because it slows down their typing. The intention of shells is to give users more powerful and
precise tools than are accessible from GUIs. GUI applications are harder to script and configure
than command-line tools in the opinion of most diehard shell users.

Be careful when using command-line tools in the shell. Command-line tools are less forgiving
than their GUI cousins. If you tell your command-line tool to wipe out everything on your com-
puter, it probably will, and it will do so cheerfully without asking if you're nuts. Shell users are
expected to be careful and not depend on their environment to hold their hand asking if they
are sure they want to do what they just chose to do.

Several shell environments exist, but the default on OS X is called Bash. Bash tends to be the
most popular shell on most Unix systems. Most programs written for one shell will work in other
shells, with the exception of some scripts. (I discuss shell scripts later in this chapter.)

NOTE
Programs and tools of all types are specifically written for shell environments. This includes word processors, program-
ming tools, and even multiplayer networked games.

Java comes with a large set of command-line tools, and many more are available on the
Internet. Table 4.4 shows the Java tools that are shipped with OS X. For additional tools, check
out the MacPorts Projectat http: //www.macports.org/, and the Fink project at
http://www.finkproject.org/.

Table 4.4 JavaTools Shipped with OS X

Tool Description

Appletviewer Views applets without a Web browser
extcheck JAR versioning and conflict checker
idlj Java to CORBA interface generator
java Runs java applications

javac The Java compiler

javadoc Generates Java documentation

javah Generates C headers and stubs (JNI)
javap Disassembler for Java classes

jar Zips Java applications with the “jar” extension
jarsigner Signs JAR files

jdb A powerful Java Debugger

keytool Keystore and certificate tool

native2ascii Converts native languages to compilable Unicode Latin-1

Tool Description

policytool Policy file manager

rmic RM!I stub and skeleton generator
rmiregistry RMI registry service

rmid RMI daemon

serialver RMI tool for serialVersionUIDs
tnameserv Naming service access

All these tools have man pages. In the Terminal, you can type man followed by the name of the
tool and see a short text-based manual explaining its use. Use the up and down arrow keys to
navigate the man pages, and type g to quit reading the man page.

You will never use all these tools. However, javac is of particular interest in this discussion of
building Java projects on OS X. In the next section, | introduce more details of the javac tool.

Configuring Javac

The four basic Java command-line tools that you should know when programming Java on
OS X are java, javac, javadoc, and jar. | focus here on javac. The location of javac is
found by typing, which followed by javac. You will see that which javac returns /usr/
bin/javac.

Case closed? No.

Execute the command 1s -1a /usr/bin/javac in the Terminal and you see something
like this:

lrwxr-xr-x 1 root wheel 74 Mar 13 14:20 /usr/bin/java -> /System/Library/
Frameworks/JavaVM. framework/Versions/Current /Commands/javac

Notice that the javac location, /usr/bin/javac, is followed by -> and then a much longer
and unpleasant-looking address:

/System/Library/Frameworks/JavaVM. framework/Versions/Current/Commands /javac

This longer address looks like it is the actual location of the javac command. In fact, if you list
the directory that contains the various versions, you discover that the actual directory is this:

/System/Library/Frameworks/JavaVM. framework/Versions/A/Commands/

The redirection is all done by links. Check the man page for link by typing man 1ink in the
Terminal window. Links are like aliases, except that links are tailored to work transparently with
command-line tools and shells scripts.

=;!;!!;;, Getting Started

NOTE

Links are to Terminal applications what aliases are to Finder applications.

Scripts and command-line tools are written to work with other tools and directories that are in
predetermined locations. For instance, Ant can be written to assume that the javac command
isin /usr/bin/.If the guys over at Apple changed javac'’s location with an automatic OS X
update, Ant and a whole bunch of other applications would need to be reconfigured, or worse
yet...rebuilt.

Links come to the rescue. If you link /usr/bin/javac to the actual location of javac (orin
this case, a link to a link to the actual location), then no command-line tools or other applica-
tions break when the actual location is changed. The links just need to be kept up to date.

CAUTION

In extreme cases of debugging, you may need to change where the links in /usxr/bin/ point.|don’t recommend
this, however. If you forget to change the links back, later you may see problems related to your version of the JVM
that are hard to debug.

Several versions of the Java tools are on your OS. Apple rarely removes old versions (though
sometimes they overwrite old versions) when a new one is installed. See the complete list of
versions with this command:

ls -la /System/Library/Frameworks/JavaVM. framework/Versions
Your output will look something like this:

drwxr-xr-x 11 root wheel 374 Aug 28 14:05
drwxr-xr-x 12 root wheel 408 Aug 28 14:41

lrwxr-xr-x 1 root wheel 5 Aug 28 14:05 1.3 -> 1.3.1
drwxr-xXr-x 3 root wheel 102 Jul 20 17:35 1.3.1

lrwxr-xr-x 1 root wheel 10 Aug 28 14:05 1.5 -> CurrentdDK
lrwxr-xr-x 1 root wheel 10 Aug 28 14:05 1.5.0 -> CurrentdDK
lrwxr-xr-x 1 root wheel 5 Aug 28 14:05 1.6 -> 1.6.0
drwxr-xr-x 8 root wheel 272 Aug 28 14:41 1.6.0

drwxr-Xr-xX 9 root wheel 306 Aug 28 14:41 A

lrwxr-Xr-x 1 root wheel 1 Aug 28 14:05 Current -> A
lrwxr-xr-x 1 root wheel 3 Aug 28 14:05 CurrentJDK -> 1.6

Notice the many link (->) symbols in this list. If you explore these directories, you discover all
the common Java tools and libraries for each version of Java listed. Having all these complete
historical versions of Java allows older Java applications to run on user- or programmer-
specified JVMs.

Using javac directly from the command line is useful when you need to modify only one or few
classes. Using the javac tool directly speeds up some quick modifications and deadline-related

4: Building Basic|

| D s

hacks. It also helps debug your code in cases where you do not trust your build tools are work-

ing properly.

Table 4.5 displays the common javac options.

Table 4.5 Common Javac Options
Option Description

-Akey[=value]
-bootclasspath <path>
-classpath <path>

-cp <path>

-d <directory>
-deprecation
-endorseddirs <dirs>
-extdirs <dirs>

9
-g:{lines,vars,source}
-g:none

-help

-implicit:class
-implicit:none
-J<flag>

-nowarn

-proc:none

-proc:only

-processor <class>[,<class>,...]
-processorpath <path>
-s <directory>
-sourcepath <path>
-verbose

-encoding <encoding>
-source <release>
-target <release>
-version

X

Annotation processor options

Overrides bootstrap classes

Locates classes and annotation processors
Same as -classpath

Build location

Displays deprecation warnings

Overrides endorsed standards

Overrides extensions

Generates all debug information (more than default)
Generates specified debug information
Generates no debug information

Displays options with short descriptions
Classes generated for implicit references
No classes generated for implicit references
Runtime flags

No warnings

No annotation processing

Only annotation processing

Annotation processors

Annotation processor path

Generated source file path

Locates source files

Displays compiler actions

Source file character encoding

Accepted source version (1.3, 1.4,1.5, 5, 1.6, or 6)
(lass compatible with this release

Displays Javac version

Displays nonstandard options

The most common options that you will use are -cp (classpaths), -d (build path), and
-sourcepath (only the paths, not the source files). All these options require a path or
multiple paths. Providing these paths on OS X may be a bit different than you are use to.

On OS X relative paths start with a . / or just a dot if you are referring to the current working
directory. Indicate the path to a directory in the current working directory with a dot followed
by a forward slash, followed by the directory name and another forward slash, such as . /
some_directory/.

Specifying your build path is not exactly as you would think. If you want your class to build in
the current directory, you need to use the option -d ., that is a dash “d” followed by a space
and a period. However, if your class is in a package, the directories under the current directory
are created and the class is placed in that directory rather than the current directory. This is
annoying if you keep your classes and Java source in the same directory. Instead, compile the
source without using the —d option. This places the source file in the current directory regard-
less of whether it is part of a package.

Explicit file paths on OS X always start with a forward slash (/). Fully qualified file paths do not
begin with a drive name or letter. If you type 1s / into the Terminal, you are listing what is
referred to as the root directory. The root directory always represents the drive that the operat-
ing system started from.

The logical question is where are all the other drives located? There is a directory called
Volumes in the root directory. Its path is /Volumes. (Note the capital V.) Volumes contains
all the drives connected to your computer. If you 1s -1a /Volumes you even see a link to the
root path with the name of your boot drive for the link name.

CAUTION

One warning about using the drives in the volumes directory: If you have a raid attached to your computer, you
may see the names of each of the raid drives listed in addition to the name of the raid. If the directory you want to
access is on the raid, use the name of the raid, not the name of one of the drives in the raid, for your path.

You have already seen that the path to the root directory is a forward slash. The forward slash is
also the default directory separator on OS X. The only time you see a backslash used in directory
paths on OS X is preceding a space. Backslashes escape spaces in OS X paths. Forward slashes
are used to separate directory and filenames in paths used in all Java commands, such as
javac. If you are listing multiple paths, use a colon (:) for the separator between paths.

TIP

If you have a hard time remembering the difference between forward slashes and backslashes, you are not alone.
Most programmers start out having a hard time remembering the difference. Always judge the direction of the slash
based on the direction you draw them when writing English. Forward slashes lean forward toward the next word ina
sentence, and backslashes lean backward toward words you already read. In other words, if gravity took over, forward
slashes would tip forward and backslashes would fall over backward.

A sample javac command using the directory information | have just discussed might look
like this:

javac -cp .:/my\ classes:/my\ other\ classes -d /build MyApp.java

A source file for the class MyApp is compiled using two class paths inside directories called my
classes andmy other classes at the root. The resulting class is placed into a directory
called build, also at the root.

You do not really want to place a build, class libraries, and sources files in the root directory.
However, placing this build in the root directory shows how to use paths on OS X with Java
command-line tools’ options.

Scripting builds

Many Java developers on OS X prefer to script builds directly in the shell. Recall that the shell is
used to execute commands, such as javac or ant, and then see the results of executing those
commands.

You may run these same shell scripts from inside of Xcode by setting the Java target build tool
from /usr/bin/ant to the path and name of the shell script as the new build tool.

You also may use shell scripts from inside of Ant by using the exec tag as described earlier in
this chapter.

The default shell used by the Terminal is called Bash. If you issue the command which bash

in the Terminal, you see that bash is located in the /bin directory. Bash is not the only shell
offered in a default install of OS X and OS X tools. Other popular shells are TENEX C shell (tcsh),
KornShell (ksh), and Z shell (zsh). You can learn details about each of these shells by typing
the command man followed by the shell, for instance man tcsh. Here, | use bash because it

is the default for OS X, even though | am somewhat partial to tcsh.

NOTE
An advantage of scripting over writing a C application for the command line is the ease of interacting with existing
tools. Scripts incorporate other tools and scripts as easily as a C program includes C libraries.

Scripting directly in the shell, gives direct access to all the shell tools without using special com-
mands, such as exec in Ant. Because javac and other Java tools are directly available to
shells, scripting is a powerful and quick way to set up Java builds. Browsing the Internet, you
can find many open-source Java projects that use shell scripts to build their projects on OS X.

Shell scripts are just text files. They do not need an extension (such as . txt) though. By
convention, shell scripts either have no extension or preferably a . sh extension.

Create a text file called test . sh, and add the following lines to it.

|i!!!!!;;;;;;EEiiiiEEEiiEi!!!l

#!/bin/bash

my comment

clear

echo building the test file
javac -d . Testl.java

echo build complete

Save this file as test . sh.

Immediately, you recognize the javac command. It is entered exactly the same as it is entered
from the command line. This true of most of the commands entered into shell scripts.

The first line of the shell script, #! /bin/bash, just declares which of the shell environments
you want to execute your script. The default is bash anyway, so this line can be left out when
you know the script will always be executed in the shell it is written for. Simple scripts run on all
the common shells, so you may not need to specify which shell to use while executing simple
scripts.

The pound symbol (#) indicates a comment follows. Comments last until the newline. The #
behaves similar to a // in Java. If you wanted to put the comment after a command like clear,
just end the command with a semicolon and then proceed with your comment. It looks like this:

clear; #clearing now

The echo command works like System.out .println (“’) inJava.Itis best to surround
your output with double quotes, although for pure text, going without quotes usually does not
change the output.

Other common commands used in shell scripts are cp (copy), mv (move), mkdir (make direc-
tory), and rm (remove).

BE CAREFUL with rm. System Admins are often making jokes involving rm because of its power.
A slip of the fingers while using rm can wipe out your entire hard drive. No joke.

Now that you have been cautioned about rm, you can use it...carefully. Using rm followed by a
filename removes the file from your computer. It won’t come back, and it is not in the Trash
folder. You do not get a chance to say you did not want to do that.

If you try using rm on a folder, it fails unless you use the proper options. If you wanted to
remove a folder called my_trash_2_toss and all of the files and folders in that folder, then
this would be the command:

rm-rfmy_ trash_ 2_toss

Chapter 4: Building Basic Projeci =

CAUTION

The most common joke about misusing xm is to use this command on the root directory. Be careful. This is an easy
mistake to make while typing. If you start typing zm / something/something, but you finger slips on the
Return key just after typing rm /, you will accidentally destroy most everything on your hard drive (and maybe lose
your job in the process.) | advise always typing in the file or folder name and path before typing rm so that a stray
pinky hitting the Return key does not cause such dire results.

Done.The mkdir command is used to create directories. Follow the mkdir command with the
new folder's name.

The cp and mv command work much the same. Type the command followed by the source and
then the destination. A nice trick is to make the destination name different from the source
name. (Try that with drag and drop!)

The extension of the shell script does not make it executable. Instead, you need to use the com-
mand chmod to make the file executable. If you are in the same folder as a shell script called
test. sh, type either of the following commands:

chmod 755 test.sh

chmod +x script.sh
The version with 755 tends to be more “old school” than the version with +x. So if you want
to prove yourself young and edgy, use the second version. | am neither young nor edgy, so |
use 755.

Executing the new script is now just a matter of typing it in. Entering . / test . sh executes the
script. If you don't like using the . / before the script, you can place the script in a directory
defined by the PATH environment variable or add the script’s directory to the PATH variable.
Typically, that behavior is not wanted, because too many executables in the path can lead to
command name collisions, and then all kinds of confusion ensues.

Shell scripting provides command-line arguments, variables, functions, user input, and condi-
tionals as you would expect in any programming language.

Variables are defined without being strongly typed as you would see in Java. If the variable is a
string, use quotes to surround the value. If the value is a number, no quotes are necessary.

For instance, the following defines a string and a number:

my_special_var="This is a string value."
YOU_ARE_NUMERO=1

Typically, variable names are all caps with underscores separating words. Lowercase letters are
also acceptable, though.

E!!!!i;; Getting Started

To recover the value of a variable, precede the name with a dollar sign. Using the YOU_ARE_
NUMERO variable from above would echo the value 1 :

echo $YOU_ARE_NUMERO

Special variables are used for retrieving command-line arguments passed to the script. $#
retrieves the number of arguments passed to the script. Each variable passed in is stored in a
variable of the number of argument it is. If you typed . /test.sh I have 4 arguments, then
echo $# would echo 4, meaning there were four command-line arguments. echo $2 would
output the value have, the second command-line argument. Also, echo $4 would print the
value arguments, which is the fourth command-line argument. Notice these variables are not
zero based as themain () method's array is in Java. The value of $0 is the actual name and
path of the shell script that is being executed.

TIP
One way to remember $0 as the name and path of the shell script is to think of the command to execute the shell
script as the first argument in a zero-based array of arguments and $# as returning the highest valid argument index.

Functions in Bash are defined in multiple ways, but the easiest for Java programmers to remem-
ber is the name of the function followed by parentheses and the code surrounded by curly
braces.

my_function() {
echo hi

}
To call this function, simply add this line to your script:
my_function

The function must be defined prior to use, in a similar way to C functions. (Not very Java-like,
really.)

To pass arguments to functions, just tack on the arguments like you do to any command-line
tool. As mentioned earlier, access the number of the arguments passed to the function by using
$# and access each argument from its number. So the third argument is echoed by a line, echo
“The third argument is $3”".

NOTE
Because arguments and total argument count are retrieved the same way for functions and the script itself, you might
expect $0 to retrieve the name of the function as $ 0 retrieves the name of the script.

It doesn't. It just returns the name of the script.

You must return values from Bash functions as numeric values. The command return fol-
lowed by a number terminates a function. To retrieve the return value of a function, use $?
immediately after the function call. The return command immediately exits the function.

The command exit works the same way as return except that it exits the whole script. The exit
command takes a numeric value to return also.

TIP

The exit command is a great way to get out of a function when the purpose of the function is complete.

Getting user input and placing it into a variable is easy. Simply use the read command fol-
lowed by a variable name. The variable does not need to be previously defined to be used by
read. Here is a complete example:

#!/bin/bash

echo -n "Build the Testl class? "
read my_answer

echo "Your answer was, Smy_answer"
javac -d . Testl.java

echo build complete

Notice the option -n in the first echo. The —-n option suppresses the newline after the echoed
print.

The above code really needs some sort of check for “yes” versus “no.” You need conditionals.
Bash scripts provide for conditionals. The i f and else are present in Bash scripts but different
from Java. Here is a short example:

MY_VAR1=1

MY_VAR2=2

if [SMY_VAR1 == S$SMY_VAR2]; then
echo "equal"

else

echo "not equal"

fi

The space after the i £ and before the first square bracket is not optional. No space after the i f
means you have a broken script.

CAUTION

Remember to place the closing £i and the space between i £ and the square brace in Bash i £ statements.

Other differences from Java exist. There are no curly braces. Square brackets are used to contain
the actual condition. The condition is followed by ; then. This takes the place of the opening
curly brace you would see in Java. To close the el se, | have the strange-looking backward 1 £,
fi.The £i takes the place of a closing curly brace that you see in Java. Other than being totally
different, it is just like Java.

= Getting >tartea

The arithmetic comparisons are like Java. They are <, >, <=, >=, ==, and ! =. Bash scripts have a
set of logical operators specifically for strings. The script comparisons are = (equals), ! = (not
equals), < (less than), > (greater than), -n (not empty), and -z (empty string).

Using what | have now discussed about Bash scripting conditionals, you can rewrite the exam-
ple above that asks if you really want to compile Test1:

#!/bin/bash
echo -n
read my_answer

if [-z S$Smy_answer]; then

echo -n
read my_answer

fi

if [Smy_answer = "no"];
exit 0;

fi

javac -d . Testl.java

echo build complete

"Your answer must be yes or no:

"Build the Testl class? "

then

Now, if you type no for your response to the question, the build is not performed and the script
exits. Also, notice the check for an empty string. The -z $my_answer check is equivalent to

Java'smy_answer.isEmpty ().

Quick Manifest from the

Command Line

Here is a nice trick for whipping up a quick manifest file
without using an editor. From the Terminal window, type
these two lines:

echo Created-By: T. Gene
Davis>manifest

echo Main-Class:
MyTest>>manifest

The echo command means just that. Whatever comes after
echo is written to standard output. This is a common shell
and DOS command, so you have probably seen it before.

Why didn’t you see the text echo though? The > and >> are
to blame. The single angle bracket redirects standard output

to a file and overwrites the contents. The double angle
brackets redirect the standard output to a file appending the
contents. You may recognize this convention from some
programming languages you know.

Check the results by typing this command:
less manifest
You should see the following:

Created-By: T. Gene Davis
Main-Class: MyTest

Exit less by typing o for quit. You now have a new manifest
file for use in building a double-clickable JAR.

Lhapter 4: buliding basic Projects | = B

Summary

In this chapter, you learned to use Xcode, Ant, and shell scripts to fully automate your builds.
Xcode comes with a JNI template that already has a useful Ant build created. Custom Ant builds
allow you to expand the types of Java projects that Xcode can handle. For simple projects,
Xcode's default build script is enough.

Xcode uses Ant to build your project. With Ant, you can make extensive modifications to default
Xcode Ant builds. You can even create your own standalone Ant builds from scratch, if you do
not wish to use Xcode to perform your builds.

You also may choose to use shell scripts to perform your build. Shell scripts allow you to take
full advantage of all the UNIX command-line tools that OS X contains. You may integrate shell
scripts with an Ant build or stick with a pure shell script solution for your project’s build.

Q Deploying Applications
— E——

I n this chapter, | explore the creation of OS X application bundles

from Java applications. JAR files do not have icons associated

with them and are treated as documents by OS X until you bun-
dle them as application bundles. OS X application bundles contain
everything applications need to run. This includes libraries, images,
icons, and property files.

Part of creating a desirable application on OS X is icon creation.
Icons on OS X are works of art. As such, | explain the roles of vector
drawing programs and raster art creation in implementing beauti-
ful application icons.

Finally, | explain the installation options available for your Java
applications on OS X. Installations vary from simple drag-and-
drops, to creating more complex installers with programs like
izPack. | explain the Apple’s recommended installation method
(using DMGs) in detail.

A demo application with icon art is available from this book’s Web
site for use in producing the packages, installations, and icons
described in this chapter. The application is Checkbook Demo. It

includes two JAR libraries, command-line interface integration, an
image for an icon label, an embedded database, several source I ’ In This Chapter

files, and a basic application icon. | intend Checkbook Demo to

demonstrate deployment of a feature-rich application, not to work
as functional checkbook software. Exploring packages
and bundles

Bundling JARs into

Learning Application applications

Creating OS Xicons

Bundle BaSiCS Understanding OS X

installation options

Apple’s user base loves refinement. Since the first Mac rolled of an

assembly line, Apple has focused on improving the user experi-
ence. OS X currently spearheads the drive to impress users. In addi-
tion to being a rock-solid twenty-first century operating system,
OS X is the most luxurious of operating systems.

Double-clickable JAR files are functional, but they fail to impress
OS X users. JAR files do not have an OS X feel to them. To impress
your OS X savvy users, you need to package your Java applications
with them in mind.

- T Getting Started

Contrasting bundles and packages

Before | explain bundling of Java applications as OS X applications, | need to explain some
terms. The terms package and bundle are used almost interchangeably. In an elementary math
class some years ago, you probably learned that all squares are rectangles, but not all rectangles
are squares. A similar relationship exists between bundles and packages. Packages are always
bundles, but bundles are not always packages.

Bundles are folders with suffixes, like . app or . framework, as shown in Figure 5.1. Some bundles,
such as applications (* . app), behave to OS X users as though they are only one file. Bundles
that behave as though they are only one file are called packages. Some bundles are browsable
just like regular folders. Examples of bundles that behave similar to regular folders are frame-
works (* . framework). These are bundles, but not packages.

Figure 5.1

Directory filled with different types of OS X bundles

» DEVILES
» SHARED
» PLACES . o —
¥ SEARCH FOR -
(L) Today Activity Monitor.app JavaVM. framework
15 Yesterday
(1) Past Week o
(@ Al images @
(Gl All Movies -
(& All Dacuments Preview.app WOTD.plugin

Types of bundles include libraries, plug-ins, and document bundles. This chapter explains Java
application packaging and distribution. In the next section, | give a quick tour of a basic applica-
tion bundle before examining the JAR Bundler application.

All the applications in your /Applications folder are bundles. For your first look at the inte-
riors of application bundles, we should avoid inadvertently damaging an application you care
about. Also, you probably don’t know which of those applications are Java based, Objective-C
based, or developed with another language.

Exploring application packages

Pulling apart Java-based application packages is a good way to start learning about creating
your own application packages. Obviously, you are better off potentially destroying application
bundles that you don't care about. Avoid destroying application bundles containing applica-
tions you actually paid for.

e Chapter5:Deploying Applicat I Jo

Prior to Snow Leopard, Xcode had a handy Java application template project that built Java
application packages. Xcode version 3.2 does not have a simple built-in Java application proj-
ect, but that is only a minor hurdle. In chapter 3, | explain multiple ways to create Java based
Xcode projects. Also, later in this chapter, | explain JAR bundle creation.

This chapter isn’t about making Java based Xcode projects, so | provide a pre-constructed Java
project on the book’s Web site. The Xcode project on the Web site is called BasicAppBundle.
BasicAppBundle isaJava based application project created from the Xcode 3.1 Java Application
template. BasicAppBundle works fine in Xcode 3.2, though. Use the BasicAppBundle
project to an unlimited number of Java application bundles to experiment with.

CROSS-REF

Chapter 3 explains Java application creation with Xcode.

After downloading the BasicAppBundle project from the book’s Web site, build the applica-
tion. Building the application creates an application package in the dist directory. The dist
directory is at the root level of the BasicAppBundle project. The dist directory contains a
Java application bundle named BasicAppBundle. app. You may or may not see the . app
extension, depending on whether you have set up your system to see extensions by default.

TIP
To view file extensions by default, navigate to the Finder preferences. Select Advanced preferences and toggle the
“Show all files extensions” checkbox.

Double-clicking a normal folder opens the folder for browsing. Double-clicking the Basic
AppBundle. app runs the Java program contained in the BasicAppBundle package. To see
the contents of the BasicAppBundle. app, control-click the BasicAppBundle. app pack-
age and select Show Package Contents, as shown in Figure 5.2, from the resulting context menu.

Figure 5.2
Show Package Contents menu item

Open
Show Package Contents

Move to Trash

Get Info

Compress “BasicAppBundle.app”
Duplicate

Make Alias

Quick Look "BasicAppBundle.app”

Copy "BasicAppBundle.app”
Clean Up Selection

Label:
L B B8 § § 3§

More >

ertuing SsStargeg¢a .

Inside the BasicAppBundle, you find four files: Info.plist, BasicAppBundle, Basic
AppBundle. icns,and BasicAppBundle. jar, as shown in Figure 5.3. Java application
bundles don’t get simpler than this example.

Figure 5.3
Package contents tree fully expanded
2 Ba 1 3 =
o) - Q
* DEVICES
v [Contents
EoLINUELE * Info.plist
» PLACES v [macos

M BasicAppBundle

W SEARCH FOR
v [Resources

Adiladay % BasicAppBundie.icns
(=) Yesterday v [l Java

(L) Past Week '3 BasicAppBundie. jar
E All Images

(] All Movies

[All Documents

Every application bundle must have an executable targeting your OS. Looking at the contents
of the BasicAppBundle.app, BasicAppBundle. jar sticks out as our executable, but
that is not the case. The actual executable is located here:

Contents/MacOS/BasicAppBundle

The BasicAppBundle file is called by OS X when you double-click the BasicAppBundle.
app package. In turn, the BasicAppBundle executable starts the BasicAppBundle. jar.
The JAR file is considered a Java resource and is located here:

Contents/Resources/Java/BasicAppBundle. jar

NOTE

Application bundles are capable of hosting executables for multiple operating systems in a single application bundle.
For instance, some bundles have an executable in a folder located at content s /Macosclassic as well asan
executable in content s /Macos. In theory, an application bundle could host Windows, Linux, and 0S X applica-

tions in the same bundle.

The BasicAppBundle.app package contains an * . icns file. Icon files in OS X are created
from multiple images designed to look good at varying sizes. OS X takes care of the details of
blending the images together, creating a continuous range of sizes from 512 pixels to 16 pixels.

The icon file is here:

Contents/Resources/BasicAppBundle.icns
| explain icon creation and assembly later in this chapter.

Every application bundle hasan Info.plist.Itislocated at Contents/Info.plist.
Info.plististheinformation property list file. Open the information property list file by
double-clicking it. The Info.plist opensin the Property List Editor application, as shown in
Figure 5.4.

TIP
The Property List Editor is installed with the Xcode development tools. It is located at /Developer/
Applications/Utilities/PropertyList Editor.app.

Figure 5.4
Property List Editor with an Info.plist displayed
800 [Info.pllst

Key _value.
w Information Property List {182 iverna)
Localization native develapment rep English
Executable file BazsicAppBundle
Get Info string |
Icon file BasicAppBundle.icns.
Bunidle identifier (comywurcompany. BasicAgpBundle
Infodlienanary versian B0
Bundle name [BasicAppBundle
Bundic 05 Type cade (APPL
Bundle versions string, short 0.1
Bundle creator O Type code wm
Bundle version 0.1
vlawva 4 ltemms)
ClassParh | SJAVAROOT /RasicAppRundie. jar
IMVersion 15+
MainClass BasicAgpBundle
¥ Properties i1 item)
agple.laf. rue

Information property list files are XML files. Writing an Info.plist by hand is possible, but
extremely unpleasant and error prone. The Property List Editor makes handling Info.plists
manageable.

Most of the Keys in the Info.plist created for the BasicAppBundle. app package are
reader-friendly, even containing spaces in their names. The human readable key name is
another trick of Info.plist. To see the actual names of the keys, select View > Show Raw
Keys/Values from the Property List Editor menu. You see that Executable file is actually
CFBundleExecutable and the key Icon fileis actually CFBundleIconFile.

Possibly the most common issue faced when debugging Java applications that you received
pre-bundled has to do with the version of Java the application uses. Browse the keys in Info.
plist until you find the key named JvMversion. If your Java application fails to work
because it is using the wrong version of Java, you need to modify the JVMvVersion value.

TIP

JVMVersionin Info.plist can specify an exact Java version, the newest version of a specific release, or a
minimum release to use. Specify an exact release with a value that is just numbers and dots, such as 1. 5 . 1. Specify
the newest release of a specific version with an asterisk. A value of 1 . 4 * uses the latest version of 1.4 (1.4.2 on my
system). A value of 1 . 4+ uses the newest Java release available. On my system that is 1.6.0.

Creating Icons

Icons on OS X are beautiful works of art. The first step in creating an icon for your application is
to create various sized renderings of the art for your icon with either a raster art program like
Photoshop or a vector drawing program such as lllustrator. After you finish your artwork, you
assemble an icon using the Ilcon Composer application.

Until you fail to create your first stunning icon, you do not appreciate the time eye-catching
icons take to design and implement. An image that looks great with endless detail at 512 pixels
often looks like a blob of color at 32 or even 128 pixels. Designing an icon that looks good at
512 pixels and good at 16 pixels takes an enormous effort. On top of that, the icon must look
good when dynamically sized to other odd sizes such as 149 pixels.

Just when you are pleased with a nice square icon that looks good at every imaginable size,
your boss comes back and says, “Let’s think outside the box.” It is time to look at custom image
masks that make your icon appear round, shaped like your company logo, or some really odd
shape that only upper management truly appreciates.

Such is the life of an icon designer.

As a Java programmer working on OS X applications, you need to know the basics of icon cre-
ation. If you work for a large company, your company should find a graphic artist to create the
final icons. You, as the programmer, need to understand enough mechanics of icon creation to
explain to your graphic artist what she needs to provide for you to construct the icon.

Also, until you have final icon components from the artist, you need to create a temporary icon.
From my experience, some folks have a tough time imagining how the application works if you
merely say, “Pretend there is an icon that | double-clicked.” In the following sections, | explain
Apple’s guidelines for icon creation, basic features of Photoshop, and basic features of
lllustrator. Additionally, | give steps for creation of a quick-and-dirty icon as a placeholder until
you have final art.

Understanding Human Interface Guidelines for icons

Apple provides extensive Human Interface Guidelines for the creation of application icons. In
this section, | give a brief overview of the guidelines for creating icons that comply with Apple’s
Human Interface Guidelines.

CROSS-REF

In Chapter 6, | explore more details of Apple’s Human Interface Guidelines.

NOTE

Apple’s Human Interface Guidelines for icons are located here:

http://developer.apple.com/documentation/UserExperience/
Conceptual /AppleHIGuidelines/XHIGIcons/XHIGIcons.html#//
apple_ref/doc/uid/20000967-TP6

Beginning with OS X 10.5, Apple again pushed the envelope by demanding that icons look
good at 512x512 pixels. A 16x16 hack job by an engineer is not going to cut it in the highly
visual world of OS X. An icon that looks good at 512x512 requires an artist’s hand.

As a programmer, be aware of the icon requirements for your project. When it comes time to do
a little knowledge transfer with the icon designer, you need to let the designer know what art is
needed and what is required for your family of icons to conform to Apple’s guidelines.

Icons scale from 512x512 pixels to 16x16 pixels for OS X application icons. One icon is typically
created from five icons of various sizes. The actual square icons that need supplying during icon
creation are 512, 256, 138, 32, and 16. Creating a set of icons that act and appear as one icon
requires a base image that works at 16x16 and then more detail for the larger icons.

Most good icons do not appear not square, even though they are. Some transparency makes
icons stand out and lose their blocky feel. Transparency works for outlining the icon or adding
shadows to the icon. Use a bit mask in your icons design avoiding boxy-looking icons.

Applications and files saved from the application should have icons with a specific perspective.
Their icons should appear as though they sit or lay on a desk in front of you. Utility applications
should appear to lay flat on the computer screen in front of you. The slight difference helps
users determine what type of file or application they see, even when they are unfamiliar with
the specific application.

Application icons communicate their function at a glance. Some applications are so abstract
that an explanation through pictures is not possible, but most applications should display a
picture that relates to the primary function of the product. For instance, chess programs often

E Getting Started

display a chess piece, and word processors display pen and paper or a typewriter. In some
cases, an application-related logo is enough.

If your application is more of a utility with limited scope of use, then the colors of the icon
should tend towards grays and feel less vibrant than other icons. Utility icons should look
reserved, as if to say, “We mean business.”

TIP

Get a good feel for the difference in utility application icons and normal application icons by comparing the icons of
applicationin your /Applications/Utilities folder totheiconsinyour /Applications folder. Look
especially close at Apple’s pre-installed software for good examples.

Many complex applications come with supportive tools. For instance, many games come with
level design tools. Supportive applications should have icons that integrate the icon of the main
application that they support. Having related icons provides users with a visual clue that the
applications are also related.

If your application saves files, the saved files should have icons related to the saving application.
Typically, the base for a saved file's icon is a piece of paper with the top-right corner folded
over. An image related to the saving application’s icon should appear prominently on the paper
to allow for quick identification of which application created the document. Also, the file type
should be printed at the bottom of the paper icon.

NOTE
Java classes and JARs are treated as documents by 0S X. Check the icon associated with both. Hiding the document
status of JARs is the reason for bundling them as Java application packages.

Application plug-ins also have icons. In the case of application plug-ins, the icon should look
like a cube building block with two sides and the top displayed. The left side should contain
the application icon for the application that the plug-in is for. The right side of the block should
contain the plug-in specific icon. The top surface should be connectors found on a building
block.

TIP
The application, the files the application creates, and utility programs that support the primary application are all
related. These related files and applications should share an icon theme that makes it obvious they are related.

Creating icons with Photoshop

Photoshop is an extremely powerful program. It has a huge number of features. Entire books
and university classes exist teaching details of Photoshop’s use. The few pages | include in this
book about Photoshop do not give more than a glimpse of the power of Photoshop in the
hands of a graphic artist.

e Chapter5:Deploying Applicat

You are likely a Java programmer. You are not expected to know the details of Photoshop’s use
or to perform the duties of a graphic artist. However, you need to know some basics about
Photoshop so you can hold meaningful conversations with the actual artist explaining what is
needed. Understanding a few basics of Photoshop facilitates knowledge transfer when it is time
to get an artist to create icon images and other project art.

Also, having a temporary icon as a placeholder in your project or build scripts makes automa-
tion of builds easier. In this section, | explain important features of Photoshop and basic icon
art creation with Photoshop. | explain assembly of the application icon later in this chapter.

Photoshop is a raster art program. Raster art programs create pictures with pixels. Photoshop
has many advanced features that belong to the realm of vector art programs, but Photoshop is
easiest to understand from the perspective of raster art programs.

NOTE

Vector art programs tend to scale images sizes better than raster art programs, which is why Adobe includes many
features, such as type, as vector-based tools.

Create a new Photoshop document by selecting Filer> New.... The New dialog box appears, as
shown in Figure 5.5. Photoshop documents are images. The documents may have different
types of channels depending on the color mode selected or multiple layers that display when
selected, but Photoshop documents are only images. There is no scratch area off to the side.
Everything seen in the document window makes its way to the final image generated by
Photoshop.

Figure 5.5

New document creation dialog box

{ i

Name: icon 512¢512 =
e Casom DR
Width: 512 | [pixels oy | ([Delete Preset...)

Height: [512 [pixels ﬁ
= [] { Device Central... |

Resolution: I?Z |' pixels/inch ﬂ

Color Mode: [RGB Color 15 [8 bit L)

Background Contents: | T F “1 Image Size:
768.0K
[:] Advanced

Select a meaningful name for your document. For instance, icon_512x512 for the largest
icon art. Do not append a file type in the New document dialog box. Select the file type of your
icon art when you save the Photoshop document.

= Getting Startéea .

When creating icon art, set the Preset drop-down to Custom. Set the width and height units of
your document to pixels, and then set the width and height to 512, 256, 128, 32, or 16, depend-

ing on the image or mask that you are creating.

The color mode drop-down gives the options: Bitmap, Grayscale, RGB Color, CMYK Color, and
Lab Color. Select RGB Color 8 bit with Background Contents of Transparent for the creation of
your icon images. Bitmap and Grayscale are useful, too, if you are creating custom masks for
your icon instead of just using the icon art’s default transparency.

CAUTION

Do not use CMYK Color for creation of icon images. CMYK Color is targeted to printing and gives a more restrictive color
palette than RGB Color. It is tempting to select C(MYK over RGB, because it has more colors describing each pixel, but in

this case, more is less.

Notice the floating toolbar, shown in Figure 5.6. Most of your image manipulation starts with
this toolbar. At first glance, the floating toolbar contains 20 tools. However, every tool that has a
triangle in the lower-right corner is actually part of a tool group. Select a tool, and then click and
hold to see the tool’s entire tool group, as shown in Figure 5.7.

If you check all the toolbar tool groups, you find a total of 59 separate tools. Most of those tools
also have multiple properties that you can adjust. You have lots of options for tool use in
Photoshop.

Figure 5.6

Photoshop’s
floating
toolbar

Tk
o

~

cupesd
AEnN

o

aﬁbﬁ

G.‘G

o

e (Chaptero: Deplioving Applical

Figure 5.7

The lasso tool group

Phu-Yod L
v Poiygunal Losw Toul L
n \B MagneiclasaTool L

Don't let all those tools scare you. | explain the more useful tools in this section.

Three of Photoshop’s tool groups target selection. The Shape Selection tool group, shown in
Figure 5.8, selects circles, ovals, rectangles, and single columns or rows of pixels.

Figure 5.8
Shape selections group

m || Rectangular Marquee Tool M

{9

() Hlistical Marauee ool M
<22 Single Row Margusa Tool
 Single Column Marquee Tool
:

TIP
Add to the current selection by holding the Shift key while using a selection tool. Subtract from a current selection by
holding the Option key while using a selection tool.

In Adobe Photoshop CS4, the Quick Selection tool and Magic Wand tool, shown in Figure 5.9,
comprise another of the selection tool groups. The Quick Selection tool behaves like a combina-
tion of paintbrush and a selection tool. The Quick Selection tool is great for selecting swaths of
related regions.

The Magic Wand tool selects a single color within a specified tolerance with a single-click. If you
toggle contiguous off, then it selects a given color across the entire image instead of limiting
the selection to touching pixels that match.

Figure 5.9

The Magic Wand and
Quick Selection tool
group

;'_:\WMTM w
" v& Mayie Wart Toul w

TIP

Deselect the current selection by typing Command+D.

The most powerful group of selection tools is the lassos tool group, shown in Figure 5.7. There
are three lassos: the Lasso tool, the Polygonal Lasso tool, and the Magnetic Lasso tool. All the
lasso tools aid in outlining a selection until you close the selection. They are called lassos for
that reason.

Use the base Lasso tool by holding down the mouse button and moving the mouse around
freehand to select your outline. Releasing the mouse button stops the outline trace and closes
the outline.

The Magnetic Lasso gravitates the outline you trace to any close edge. Releasing the mouse
button does not close the outline. Instead, releasing the mouse adds a fixed point to the
outline you trace. Click and hold the mouse to continue tracing. Double-click the mouse or
continue the outline to the opening point of the outline to complete the outline and create
your selection.

Create a selection with the Polygonal Lasso tool by single-clicking to create a selection outline.
The selections are straight lines, which at first seem limiting. The Polygonal Lasso tool is the
most precise of the three lassos. It becomes the most useful selection tool when you zoom in on
an image to the point where you see individual pixels. If you need to create highly detailed
selections quickly, the Polygonal Lasso tool is your best option. As with the other lassos, double-
click at any time or single-click your initial point to close the loop and create your selection.

After you select part of an image, you can move it with the Move tool, shown in Figure 5.10. To
drag an image selection with the Move tool, click and hold within the selected area and drag
the selection to a new location. If you click and drag outside of the selection area, the entire
image moves instead of just the selected area.

Figure 5.10
Move tool

Behavior of the arrow keys differs depending on the tool type you select. If you use a section
tool, the arrows move the selection marquee without moving the selected portion of the
image. However, if you have selected the Move tool, the arrows move the selected portion of
the image with the selection marquee.

Lhapter 5: Deployving Applicaf

TIP
Change to the Move tool quickly by typing v.

Crop your image using either the Crop tool, as shown in Figure 5.11, or the Canvas Size dialog
box. The Crop tool is best for situations where the result does not need precise measurements.
The Canvas Size dialog box works best when you know the exact width and height of the new
image.

Figure 5.11
Crop tool

The Crop tool works like the Rectangular Marquee tool described previously. Select a corner of
your desired image, and drag to the opposing corner of your desired image. The resulting selec-
tion crops to the new image size when you hit the Return key. If you want to adjust the crop
area, select handles on the crop area boundary and drag the crop area boundaries to their new
location.

TIP

To deselect a crop area, press the Esc key.

Open the Canvas Size dialog box, shown in Figure 5.12, from the Image > Canvas Size... menu
item. The two key items to remember with the Canvas Size window are the units and the
anchors. Make sure you are using pixels. Percent is almost never used in the Canvas Size dialog
box, and the measurements such as Inches are more for images designed for printing.

The Canvas Size dialog box’s anchors determine where the cropping takes place. Each of the
arrows points to the side of the image that the crop is measured from. By default, the center
anchor of the Canvas Size dialog box is selected.

TIP

The Canvas Size dialog box allows you to increase the size of the image, as well as crop it. You also can crop the width
while increasing the height or crop the height while increasing the width.

A closely related dialog box is the Image Size dialog box, shown in Figure 5.13. Open the Image
Size dialog box by selecting Image=>Image Size.... The Image Size dialog box handles resolution
changes. It scales images.

= gerttinag H>targeg .

Figure 5.12

Canvas Size dialog box

— Current Size: 768.0K @
Width: 512 pixels
Height: 512 pixels m

New Size: 768.0K

Width: [512 | Cpixels T3]

Height: [512 [pixels 14
) Relative
Anchor: w f A
AR
Canvas ion color: | Bac '-:_. nd 3!
Figure 5.13
Image Size dialog box
— Pixel DI | 768.0K w

Widih: [512 [E]
Height: 512 | (pixels 74 o)

— Document Size:

Width: |7.111 | ['inches g]i

Height: [7.111 | linches T8
Resolution: |?2] pixels /inch g
"1 Scale Styles
g Constrain Proportions
[Resample Image:
[Bicubic (best for h gradients) M

Select either pixels or percent for your width and height units in the Pixel Dimensions panel.
While the Constrain Proportions check box is selected, the image scales without stretching. If
you want to change the width or height independent of the other, just uncheck the Constrain
Proportions check box.

Photoshop always stores two active colors: a foreground color and a background color, as
shown in Figure 5.14. Click either of the colors to bring up the Color Picker dialog, box as shown
in Figure 5.15, which specifies whether it is for choosing the foreground color or the back-
ground color with a label in the dialog box’s title bar.

Figure 5.14

Foreground
and background
colors

.‘;

L]

Figure 5.15
Color Picker dialog box

.% =
2
a

T [Color Libraries)

@u:[s1]* Oulfso |
Os: [19 Jx Qaf30 |
Os: [s6 |x Ob:[-s8 |
OR: [149] cls1 %
OG: [125 | M:[54 |%
O8: [245 | v %
#|947di6 | kfo |

1 Only Web Colors

To swap your foreground and background colors, click the double-headed arrow next to the
color display on the toolbar. To reset your foreground and background colors to black and
white, click the little black-and-white version of the colors on the toolbar.

Another option for selecting colors, other than the Color Picker, is the Eyedropper tool, shown
in Figure 5.16. Use the Eyedropper tool to select a color that already exists in your image. The
selection becomes the foreground color. However, swapping the foreground and background
colors, as described earlier, works for setting your chosen color to the background color.

Figure 5.16

Eyedropper
tool on the
toolbar

Brushes and pencils, as shown in Figure 5.17, are the quickest tools for freehand changes. These
tools are especially popular with users of graphics tablets such as Wacom tablets. The most
notable difference between a pencil tool and a brush tool is that the pencil has no gradient
associated with its stroke, whereas a brush tends to have fuzzy edges.

Figure 5.17

Brush and pencil

tool group

u g BrushTeal]
Jhr-ul‘hwf L

W Color Repiacement Tool B

TIP
Brush tools work best for touching up photos where lots of colors bleed together. Pencil tools work best at touching up
text and other solid colors.

A common task assigned to application developers is quick fixes to images with stray pixels of
the wrong color. Suppose, for instance, that Mr. Baus Mann intercepts you at the door at 6:30 PM
on a Friday night and asks you to remove a speck of dust that has found its way into a “vital”
image. (Of course, it can’t wait for Monday.)

Here’s how you make a quick touch up:

1. Open the image in Photoshop.
2. Usethe Eyedropper tool to select the color needed for the touchup.
3. Zoominonthe speck of dust or other nasty aberration.

Usually you want to zoom in to the point that you can make out individual pixels. This
allows you to avoid changing pixels that have not offended anyone. Zooming in and
out is accomplished with the key combinations 38+- and 88+=, respectively.

4. select the Pencil tool, and set the pencil size to 1 pixel.

5. Fix the offending pixels.

Another common task is combining images. Adding images to an existing image is almost just a
cut and paste away. Usually an image also needs some resizing. Follow these steps to import
images into Photoshop documents at your desired size and place them at your desired location:

e -

1. Openthe image you want to add to your existing Photoshop image with
Photoshop.

You now have two images open.

2. Resize the image you want to add to the desired size and resolution. Use the Crop
tool, Canvas Size dialog box, and Image Size dialog box to get the image ready
for placement.

3. Copy the image for placement.
4. Paste the copied image into the working Photoshop image.
The image appears on a new layer above the existing image. (I explain layers shortly.)

5. Sselect the Move tool, and move the pasted image to your desired location.

Yet another common task is adding words to your image. To add text to a Photoshop docu-
ment, select either the Horizontal Type tool or the Vertical Type tool, as shown in Figure 5.18.
Next, click the image to place the cursor. From that point, adding the text is similar to adding
text in Word or TextEdit.

Figure 5.18
Type tool group

= T Morizontal Type Toal T
|'I Vertical Type Tool T

1'-"311 Vertical Type Mask Tool T

TIP
The active foreground color is the color of the text you type. Change the foreground color while typing to create multi-
colored text.

When adding text or pasting images to your Photoshop document, the new text orimage
drops onto a new layer, as shown in Figure 5.19. Layers separate Photoshop document features
so they change when edited without affecting other additions to the image.

Think of layers in terms of overhead projectors. As you overlay transparencies on an overhead
projector, the entire image displayed is a combination of all the transparencies on the projector.
Layers work the same way.

Figure 5.19
Layers view

Normal ﬁﬂwﬂlr- 1ous ju)
torke (L] 7[[@] il [100%)
i Checkbook Demo

O
i |
]

£l
7]
i

Select an individual layer to make it the active layer. Only the selected layer accepts changes.
Combine all layers into one layer by flattening the image with the Layerc> Flatten Image
menu item.

Assembling a temporary icon for your Java projects is a nice touch while you wait for a real
graphic artist to create final icon artwork. Follow these steps to create basic 512x512 icon art,
as shown in Figure 5.20:

1.
2.

4.
5.

0 ®

Open the Grab application in /Applications/Utilities/.
Open your development application.

Possibly, the application runs only from inside Xcode or Eclipse at this point, but that
is okay.

Using Grab, take a screen capture of a meaningful window in your application.

Screen captures are definitely frowned on for icon art, but this is for a temporary devel-
opment icon.

Save the screen capture, and reopen it in Photoshop.

Resize the captured image to fit in a 512x512 image. Actually, make the image
small enough to place some text under it in a 512x512 image.

Create a new 512x512 RGB Photoshop document.

| use Photoshop CS4 in this example. In other versions of Photoshop, menus and fea-
tures may have slightly different names, but the process should be similar.

Paste your screen capture into the new document.
Move the document to the top portion of the document with the Move tool.

Use the Horizontal Type tool to place the name of the application under the
screen capture.

10. Export your new image using File> Save for Web & Devices... menu item.

The GIF or PNG file format works well if you want to retain transparency when the
image is used for creation of the temporary icon.

Figure 5.20
Finished 512x512 icon art of Checkbook Demo

TR T

i L= [

I
ahah 100080 | s
» macart) "
oy e -3 waon "
BT B0y M R AT 10000 e
WP DTy 1M 180.00 8
-
.2
i
||
R
¥
||
B
IF'
|}
|
I8 |
]
.
B
I‘_
n
|
n
— W
Fayment: Depasit l:_
y My
n
L}

CHECKEOOK
DEMO

100% Doc: 708.0K/2.71M I

TIP

When using GIF files, icons in 0S X are either transparent or not. The masks for icons are black and white only when
made from GIFs. Icons made from PNGs have an opacity associated with them. The masks made from PNGs are scaled
rather than black-and-white bit masks.

The next section describes using lllustrator. If you want to assemble an icon, just skip to that
section. The lllustrator section covers similar material to this section with an lllustrator emphasis.

Creating icons with lllustrator

Like Photoshop, lllustrator is an extremely powerful program. It also has a huge number of fea-
tures. Entire books and classes exist teaching details of lllustrator use. The few pages | include in
this book about Illustrator do not give more than a glimpse of its power in the hands of an artist.

You are a Java programmer. You are not expected to know the details of lllustrator use or to
perform the duties of the project graphic artist. However, you need to know some basics about
lllustrator so you can hold meaningful conversations with the actual artist, explaining what is
needed. Understanding a few basics of Illustrator facilitates knowledge transfer when it is time
for an artist to create icon images and other project art.

Also, having a temporary icon as a placeholder in your project or build scripts makes automa-
tion of builds easier. In this section, | explain important features of lllustrator and basic icon art
creation with lllustrator. | explain assembling the application Icon in the next section.

lllustrator is a vector art program. Vector art programs are good for creation of images that scale
in size. Vector art programs, such as lllustrator, describe their art in terms of Bezier curves. No
matter how large or small the images get, they stay exactly the same. That is the biggest draw
of vector art programs.

TIP

Vector art programs such as lllustrator tend to scale images very well. However, the tremendous scaling involved in 0S
Xicon art requires the project’s graphic artist to create multiple pieces of art that work on different scales. If done
properly, you may not even notice that the artist is providing multiple pieces of art instead of one piece of resized art.

On the down side, lcon Composer requires raster art such as PNGs or GIFs when constructing
icons. lllustrator typically saves files in Al or EPS formats. These formats do not work directly
with lcon Composer. Fortunately, lllustrator documents export very nicely to PNG file format.

When creating a new document in Adobe lllustrator, you have the options of Print, Web, Mobil
and Devices, Video and Film, Basic CMYK, and Basic RGB document types, as shown in Figure
5.21. Don't let all these options scare you. They are basically all the same type of document. The
real difference is in the height, width, unit of measure, and whether you are using RGB or CMYK.

Figure 5.21

Documents drop-down list

Custom

Print

Mobile and Devices
Video and Film
Basic CMYK

Basic RGE

[Document Profilel

Browse. .

Choose Web for your New Document Profile, as shown in Figure 5.22. Choosing Web sets your
color mode to RGB and your units to Pixels. You can just as easily choose Basic RGB. However,
you then must change the unit to Pixels. Not a big deal, really.

e _(Chapter5: Deploying Applicaf

Figure 5.22
Custom Web document in New Document dialog box

(S :

Name: fican_512x512] —o—)
— New Document Profile: | [Custom] B— (Cancel)
Number of Artboards: EI—| :{;[E‘j [l _:I @
Spacing: [B20 px R Gt
Size: [[Custom] -
Width: [512 px | Units: [pixels K4
Hright: [512 px | Orientation: [l T
Top Battom Left Right
Bleed: @lopx |Plopx |Flopx |Flopx |
= !

Choose one artboard. One artboard is all you need. Think of artboards as pages of your docu-
ment. For example, if you design a flyer with a front and back page in lllustrator, you set your
artboards to two instead of one.

NOTE

A big difference between Photoshop and Illustrator is that the workspace in illustrator can contain many artboards,
but Photoshop documents only contain one image. (I am ignoring channels and layers for simplicity.) lllustrator has a
large scratch area around each artboard where items are placed if you do not want them on the artboard. This is very
handy when assembling lllustrator arthoards.

Set your Width and Height to 512 px when creating icons. Not too surprisingly, that means
512 pixels. If you are making one of the other icon images, adjust the pixel width and height
accordingly.

Bleed should be left at zero. Bleed is used for print.

Let me explain bleeds. You have probably seen postcards or flyers where the picture goes all
the way to the edge of the paper or card. In large press runs, if ink is printed all the way to the
edge of the paper, it bleeds onto rollers. When the ink gets where it isn't supposed to be, it
messes up the print job, smearing and duplicating onto parts of the paper it shouldn’t be on.
So, when printing to the edge of paper, what really happens is that a paper is chosen that is
larger than the final size of the printed piece. The paper is then cut down to appear that the
printing goes all the way to the edge of the paper. The print that was cut off is called the bleed.

We don't need bleed for icons.

After you have a new document created, you notice a toolbar as in Photoshop. This toolbar is
more geared toward vector art than raster art, though.

The foundation of vector tools such as lllustrator is the Pen tool. Use the Pen tool to draw Bezier
curves. The initial click with a pen sets a first anchor point. Each additional click sets another
anchor point.

Illustrator defaults to straight lines between anchor points. To create a curve between anchors,
click and drag out handles from your new anchor point. The position of the handles in relation
to the anchors determines the curve touching that anchor.

TIP

Dealing with handles and anchors to generate curves takes some practice. If you remember any calculus, here’s a head
start. Think of your curves between anchors as functions. Visualize inflection points, minima, and maxima on that
function. Place your anchors at those points. Also, your handles must always be tangent to your anchor points.

At the bottom of the toolbar are the Fill and Stroke icons. Fill and stroke have to do with closed
polygons. For instance, if you create a square, the stroke is the outline’s color. The fill is the inte-
rior of the square.

NOTE
Photoshop has background and foreground colors on the toolbar. lllustrator has a fill color and a stroke color. Fill and
stroke are both foreground colors. The background color in lllustrator is always transparent.

If you double-click the Fill or Stroke on the toolbar, you open the Color Picker, shown in Figure
5.23. Foricons, you should use the RGB settings or enter the RGB hex number directly.

To the upper right of the Fill and Stroke icons is a double-headed arrow pointing at the Fill and
Stroke. Clicking this icon swaps the Fill and Stroke colors of the currently selected shape.

To the bottom right of the Fill and Stroke icons is the Default Fill and Stroke icon. It looks like a
smaller version of the Fill and Stroke icon. The default colors are black and white.

Figure 5.23
Color Picker

Select Color:

E—o—)
.
B (color Swatches
enp °
Os [0]%
Os: o5 |%
I Or a2 |cfo |%
Oc [13 | m: [g7 %
Os: 3 |v[r2 %

L 4 # |F24949 K: |D %

™1 Only Web Colors

e (Chaptero: Deplioving Applical

Importing images in lllustrator is called “placing” images. Select Filew> Place... to bring up

the Place dialog box, as shown in Figure 5.24. Make sure Link, Template, and Replace are
unchecked. Link is the only one checked by default. Link creates a link to the original image.
Link your images if you want changes to the original placed image to automatically appear in
the Illustrator document.

After the image is placed on the artboard, make sure you have the Selection tool chosen. The
Selection tool is the black arrow. Use the Selection tool to resize the placed image. To resize the
placed image while constraining proportions, do the following:

1. Sselectthe image.

Selecting the image makes the corner anchors available for dragging.
2. Hold down the Shift key.
3. Drag the corner anchor until the placed image is the desired size.

As you drag the anchor, the current width and height of the image are displayed to
make sizing simpler.

After the image is the desired width and height, use the Selection tool to move the image to
your desired location. Notice that lllustrator gives you visual hints when the image is centered
on the artboard.

Figure 5.24

Place dialog box

B e

I: a4 "] {== B kﬂ] [_ﬁim_PiMB M "'Q. search)
f\:Appliuu... : & checkbook_demo.icns .
" < Desktop Bl B checkbookdemo.png
(] Applicati... ! U icon_512x512.png e
(5] Develaper : icon_512x512.tif :
o § l = =
[T Documents '
>
il w.java | L
ﬂ Music inzip |v v
@ Photos zi I 1 Mame checkbookde .
| B Mavies v P- (p @ .
Enable: | All Readable Do =
[Link [Template [' Replace
¥

TIP

The default measure shown generally in lllustrator is in points. Points are a common unit used in traditional printing.
Change the default measure to pixels by selecting the menu command lllustrator => Preferences = Unit & Display
Performance.... Then choose Pixels for your General unit.

Handling text in lllustrator is easy. Select the Type tool for placing text. Click on or off the art-
board to place your cursor. Finally, use the Selection tool to move the text to your desired loca-
tion. Editing text in Illustrator is similar to using programs like TextEdit and Word. Look at the
bar just under the menu bar for fonts, sizes, alignments, and other text settings, as shown in
Figure 5.25.

Figure 5.25
Text bar in lllustrator

el D e s R I e E -]

While you wait for a graphic artist to make art for your project icon, create some basic art for
temporary placement. Follow these steps for creating basic 512x512 icon art using Illustrator:

1. Open the Grab application in /Applications/Utilities/.
2. Open your development application.

Possibly, the application runs only from inside Xcode or Eclipse at this point, but that
is okay.

3. Using Grab, take a screen capture of a meaningful window in your application.

Screen captures are definitely frowned on for icon art. That is okay for a temporary
development icon.

4. savethe screen capture.
5. Open lllustrator.
6

« Create a new document with a 512x512 artboard, and set the units to pixels and
the color mode to RGB.

7. Place your screen capture in your lllustrator document. Open the Place dialog
box by selecting the File-> Place menu item.

8. Resize the placed screen capture to fit in on the 512x512 artboard. Actually,
make the image small enough to place some text under in a 512x512 image.

9. Move the document to the top portion of the artboard with the Selection tool.

e _(Chaptero>: Deploving Applicaj

10. usethe Type tool to place the name of the application under the screen capture
on the artboard.

11. Export the image as a PNG using File=> Export... menu item.

The background is transparent by default when exporting lllustrator documents
to PNGs.

You now have an icon image, as shown in Figure 5.26. Creating an icon is explained in the next

section.

Figure 5.26

Finished 512x512 icon on Illustrator artboard

= o

Checkboo
Demo

Assembling the icon

Creating the artwork for icons requires lots of talent. Assembling the finished icon does not.
Even mask generation is automated. Create icons on OS X with Icon Composer, as shown in
Figure 5.27. Icon Composer is in the directory /Developer/Applications/Utilities/.

Images and masks are added to an icon by dragging them to panels inside the lcon Composer.
The available sizes are 512, 256, 128, 32, and 16. Usually, masks are pulled directly from the
image transparency. Occasionally, you may want to customize the masks.

Figure 5.27

Icon Composer

CHIECKECCIK
DEME

CAUTION

Be careful that any custom masks you create do not indicate opacity in areas where your image is not opaque.

After creating the icon, use the Preview tab at the bottom of Icon Composer to test the icon at a
variety of sizes and on a variety of backgrounds. Be sure to test for these problems:

@ Manually resize the icon from largest to smallest size on a neutral background.
Look for jittery transitions between icon sizes. The transform should be so smooth that
a normal user does not realize the icon is created from multiple images.

@ View the icon on several backgrounds. The image should not blend into the back-
ground. If the image gets lost in the background, consider adding silhouettes to the
icon that make it stand out on similar backgrounds.

@ Resize the icon from largest to smallest. Details should vanish from the icons, not
just become smaller. A general rule is that if a detail becomes too small to be meaning-
ful or understood, the detail should no longer be visible in the icon.

If you already have a 512x512 image, such as a GIF or PNG, to use for your icon, follow these
steps to create the icon:

1.
2.

6.

TIP

Open Icon Composer from the directory /Developer/Applications/Utilities/.
Drag the image onto the 512 panel.

This brings up a Copy dialog box, as shown in Figure 5.28.

Figure 5.28

Icon Composer’s Copy dialog box

Copy image to other sizes?

™
g\/ Would you like to copy this image w the smaller fcun
\

sizes as well?

() Use far this size only
e Copy to all smaller sizes
() Copy to smaller sizes which are smpty

(_cancel) (Cimpore)

Select Copy to all smaller sizes.
Click Import.

The image is automatically resized to fit all smaller sizes. Also, any transparency in the
image is applied to the icon masks.

Use Icon Composer’s Preview tab at the bottom of the screen to check your
handiwork.

Save your new icon as an *.icns file.

Let Icon Composer generate masks automatically from your images. You rarely need to create custom masks.

Creating Packages with Jar Bundler

Jar Bundler turns plain old JAR files into friendly OS X feeling application packages with minimal
fuss. Jar Bundler is located in /Developer/Applications/Utilities/Jar Bundler.
app. Jar Bundler is installed with your Xcode tools from your system install disk.

EEEIII;; Getting Started

Jar Bundler does just that. It creates bundles out of JAR files. The first step in creating a bundle
with Jar Bundler is creating a runable JAR file from your project. Add any resource files that
make sense to your application JAR. You do not need to make your application JAR double-
clickable. Leave libraries as separate JAR files, and add the libraries to your package using Jar
Bundler.

TIP

If you want to automate the bundle creation of your application with a tool such as Ant, use Jar Bundler once to create
a fully functional 0S X application. Then strip it down and reassemble it using your build tool.

Alternatively, create your application with Jar Bundler, and then have your build tool directly modify your working
package with new builds.

Understanding Jar Bundler options

Jar Bundler has three tabbed views: the Build Information tab, the Classpath and Files tab, and
the Properties tab. The Build Information pane handles main-class, application arguments,
and Java version settings. With the Classpath and Files pane, you configure the main applica-
tion JAR and associated library JARs used for the application. Using the Properties pane, set the
JVM options, OS X properties, and Java properties that your application uses.

In the Build Information pane, set the main class for the application, arguments to pass the
main class, the preferred JVM version, and a custom icon. To set the main class, simply type the
fully qualified class name of the main class—in other words, the package name followed by the
class name. Here's an example: com.genedavis.CheckbookDemo.

Arguments to main are command-line arguments that your application uses. These are differ-
ent from the arguments passed to your Java VM. These are the args passed to

public static void main(String[] args) {}

NOTE

Advanced Java applications often include Apache’s Command Line Interface (CLI) library. CLI takes care of parsing
command-line arguments in POSIX, GNU, Java, short and long styles. The Web site for the CLI APl is

http://commons.apache.org/cli/index.html

The CLI APl is available under an Apache style license.

Choosing a custom icon is pretty straightforward. | covered icon creation with lcon Composer
earlier in this chapter. If you change your application icon and recreate the application bundle,
the icon change does not always take right away. In cases where the icon does not change
quickly, | recommend copying an image file into the application’s Contents/Resource/

Lhapter 5: Deploving Applical

folder and then deleting the image file. That usually refreshes the bundle’s icon so the applica-
tion icon shows up properly in the Finder.

TIP
View the directory structure of an 0S X application by Control-clicking (or right-clicking) the application and choosing
Show Package Contents from the context menu.

The Build Information pane is shown in Figure 5.29. The JVM version setting in the Build
Information pane’s Options panel is easy enough, as long as you keep in mind the meanings of
* and +. The asterisk means use the newest version of this JYM release. For instance, the setting of
1.5 refers to the newest Java 5 release and ignores Java 1.6 versions. The plus means use the
newest JVM, but minimally this VM. So 1 . 5+ indicates that Java 6 should run your application, if
it is the newest JVM on the computer, but never use Java 4.

Figure 5.29
Jar Bundler’s Build Information tab

(“Build Infs Classpath and Files Properties |

_ Options for Main
Main Class: | com.genedavis CheckbookDemo = (choose..)

Arguments to Main: - demo_checkbook

~ Options

Custam lcan

[Use Macintosh Menu Bar
Anti-alias Text e

Anti-alias Graphics CHECKECOK

VM Version: L&+ 3 BEMe

After you create a JAR from your application and see that the associated libraries are also in the
JAR, then you are ready for the Classpath and Files tab of the Jar Builder, shown in Figure 5.30.
Add your JARs to the Additional Files and Resources panel using the Add... button. The
$JAVAROOT path for the JAR files is added automatically to the Additions to Classpath panel.

E Getting Started

Figure 5.30
Jar Bundler’s Classpath and Files tab

! ild Inf: 1 - Cl o -Fib 2
[Build Files p

Additional Files and Resources

i.fus!rs.'mamsm!skmhzh 111 eh0S. coue}l\\bfmmm-cll—i.i..jar |
| fusers tdavis/Desktop/525111 chis code/Wb/hsaldb.jar
I/ Users fdavis/Desktop /525111 _ch05_code Jar/checkbookdema.jar

Ao iRl

| SJAVARDOT feommans-cli- 1.2 jar

| SJAVARDOT [hag b jar
SIAVARDOT /checkbookdemo.jar

| Add... | | Delete |

f(rulelppllcmon...)

The Properties tab, shown in Figure 5.31, contains the JVM arguments, OS X properties, and
Java properties needed by your application. Don't let the number of fields and properties

on this pane deter you. Moving the mouse over any of the pane elements gives you context-
sensitive help. Also, the default properties on this pane are often enough to get your develop-
ment apps working.

Table 5.1 describes the properties available on the Properties tab of the Jar Builder.

Table 5.1 Jar Builder Properties Tab

Type The type indicator specifies this is an application. Keep the default value of APPL. Type is the
CFBundlePackageType property.

Identifier The fully qualified name of your application’smain-class.Anexampleis com. genedavis .
CheckbookDemo. This is an alternative to using the Signature property. Identifiers are not registered
with Apple. Identifiers are stored in the CFBundleIdenti £iex properties.

Signature Java applications usually use Identifiers instead of Signatures. A signature is a unique code registered with
Apple. Signatures are unique to single applications. To register your own, seeht tp: / /developer.
apple.com/datatype/.Signatureisthe CFBundleSignature property.

Version Your application version number is in the form of #.4.4. The CFBundleGet InfoString property
stores this information.

Property Description

Get-Info String This is the human readable version displayed by Finder’s Get Info command.

Short Version This is the short human readable version information.

Heap Minimum This is a shortcut for the VM option —Xms.

Size

Heap Maximum This is a shortcut for the VM option — Xmx.

Size

VM Options Options are passed directly to Java. VM Options are stored in the Java /VMOpt i ons property.

Allow Mixed This is exactly as the name implies. You would rarely need to deselect this check box.

Localizations

Development This denotes the region or language of the application.

Region

Bundle Name This is the display name of your application in the application menu. The bundle name is used if this property is
not set.

Info Dictionary This is the property file format for this bundle. Typically, you should not modify this property.

Version

Set Working This toggles the working directory to the Java folder in the bundle—thatis Contents /

Directory... Resources/Java/.Thepropertyisstoredin Java /Properties/
WorkingDirectory/ property.

Additional This holds additional key-value Java properties stored in Java /Properties/<key>.

Properties

Figure 5.31

Jar Bundler’s Properties tab

@A e

["Build Information _ Classpath and Files]

Basic Properties
Type: Signature: | 777 | Heap Minimum Size:
Version; 0.1.0 | Identifier: |wis.CheckbookD! Heap Maximum Size: |
Get-Info String: | Version 0.1 alpha Short Version; V0.1 alpha
VM Options: # Allow Mixed Localizations
Development Region: English | Bundle Name: Checkbook Demo v0_ alpha
Info Dictionary Version: &0 | Ser Warking Directory 1o Inside Application Package

fudiconat opeia

nplie_propeity

Add.Ji Delte |

(Create Application... |

- A Getting Started

Demonstrating Jar Bundler

Now that you understand Jar Bundler and how to make icons, it is time for you to create an
application bundle. For this section, | have created the Checkbook Demo application to give
you an idea of how a real application is configured with Jar Bundler. The pieces of the
Checkbook Demo and the final application bundle are both on the book’s Web site.

NOTE
The Ch05.zip file on the Web site contains the source files, classes, JARs, and the icon and images you need to complete
the bundle in this section. Ch05.zip also contains an example of the bundled application.

The Checkbook Demo has the following features:

@ Command-line arguments targeting the application

Libraries contained in external JAR files

A custom icon

A target JVM

Images loaded at runtime

About and preferences JFrames associated with the proper applications Menultems
A Bundle Name property differing from that of the Bundle’s name

© © € € € @ ¢

An embedded HSQLDB database targeting a ~/<user name>/Documents/
directory

NOTE

HSQLDB is available from http: / /hsqgldb. org/ underaBSD style license.

Now let’s create the Checkbook Demo application bundle. The steps for creating the applica-
tion icon are detailed earlier in the chapter. Modify the steps to suit your own development
project:

1. openJarBundler.

Jar Bundler is located in /Developer/Applications/Utilities/Jar
Bundler . app. You should be in the Build Information tab by default.

2. Setthe Main Class to com.genedavis.CheckbookDemo.

The Main Class is the same as the main-class property specified to make a JAR
double-clickable.

3. Setthe Arguments to Main to -f demo_checkbook.

These arguments are passed to the application’smain () method for parsing.

4 D

4, setthe JVM Version to 1.6+.

Remember that the plus sign means “highest version of Java, but minimally this
version.”

5. Chooseanicon.

Icon creation is detailed earlier in this chapter. You should find an actual artist to
create the icon’s art, but you can easily create temporary art for a placeholder icon.

6. Selectthe Classpath and Files tab.

7. Addthe common-cli-1 .2.jar, the hsqgldb.jar, and the checkbookdemo.jar to the
Additional Files and Resources.

These files are provided on the book’s Web site. The Additions to Classpath is popu-
lated automatically as you add the JAR files to Additional Files and Resources.

8. selectthe Properties tab.

9. setthe Version to 0.1.0.
10. setthe Identifier to com.genedavis.CheckbookDemo.
117. SsetGet-Info String to Version 0.1 alpha.
12. setShort Version to v0.1 alpha.
13. SetBundle Name to Checkbook Demo v0.1 alpha.
14. Click the Create Application button.

15. selectalocation on your hard drive to save the application bundle.

You now have a fully functional OS X friendly application bundle. You cannot save the Jar
Bundler configuration. However, you can easily update the directories of an application
bundle with an Ant build.

CROSS-REF
I discuss details of Ant builds in Chapter 4.

Producing Installations

Presumably, you now have a working OS X application bundle. The simplest approach to dis-
tributing your application is to zip it, stick it on a Web site or FTP site, and make the link avail-
able to your users. Remember that OS X applications are actually folder trees with many
resources. Placing the application bundle in a zip file keeps all the application’s resources
together during distribution.

To zip the application bundle, from the Finder Control-click (or right-click) the bundle and select
Compress <your app name>. Another option is to create the ZIP from the Terminal. Start by
using cd to change to the bundle’s directory, and type zip ~-rmy_app . zip * to place the
application in a zip file called my_app . zip. (If using *, make sure the application is alone in
the directory, because everything in the directory is added to your zip file.)

If you are looking for a fancier distribution, then read on. This chapter covers several common
approaches to distributing and installing OS X applications.

TIP

Get your application some publicity by submitting information about it to www . apple . com/downloads/
macosx/submit/.The listing will appear on Apple’s 0S X download page.

Understanding OS X installations

OS X installations fall into two broad categories: simple drag-and-drop installations and
installer-based installations.

If your application does not require an installer, keep it simple with a drag-and-drop installation. If
you have a basic application in a bundle that is completely self-contained, then there is little need
for a custom installer. However, even with simple application bundles, it is convenient for the
Applications folder alias to appear immediately next to the bundle your user wants to install.

More complex installations may require startup items added to the computer, user templates
for application documents, multiple application bundles with tools supporting the main appli-
cation, user editable property files, installation of command-line tools, and even system-wide
OS changes such as to properties.

Creating DMGs for drag-and-drop installations

Simple installations of the drag-and-drop variety often use DMGs. DMGs are disk images.
Double-clicking a DMG results in a virtual disk mounting on your desktop. Your application
bundle is in the newly mounted disk (maybe with a Read Me file) and is dragged by the end
user to the /Applications folder.

Apple recommends compressed disk images as the preferred application distribution method.
Create disk images with the Disk Utility application. Follow these steps to create a new disk
image with Disk Utility:

1. Double-click Disk Utility, which is located in /Applications/Utilities/.

2. Create a new disk image by clicking the New Image icon at the top of Disk Utility,
which opens a configuration dialog box, as shown in Figure 5.32, for your new
disk image.

3. Name your *.dmg in the Save As text box.

e _(Chaptero>: Deploving Applicaj

Figure 5.32
Disk Utility disk image creation dialog box

Save As: " I 8

Whara: [ﬁ_D_e_s ktop. l‘l

Volume Name: | Disk Image

Volume Size: [100 M8 -

Volume Format: [Mac OS5 Extended (Journaled) “‘

Encryption. [none kﬂ

Partitions: [Single = Apple Partition Map M

Image Format: | read/write disk image i
(Create)

4. Name your mounted volume by placing the mounted volumes name in the
Volume Name text field.

Usually, the volume name and filename are similar, if not the same.
5. cCustomize any of the dropdown configurations that fit your project.

The other configuration options are pretty much self-explanatory. However, make sure
the Volume Size is large enough to hold your application. If you require your end user
to enter a password to decrypt your image, then add encryption.

6. Click the Create button.

You now have an empty mounted disk image on your Desktop.

NOTE

Apple has an excellent resource document on application distribution at this site:

http://developer.apple.com/documentation/Porting/
Conceptual /PortingUnix/distributing/distibuting.html

TIP
Don’t worry about making a disk image that is bigger than your application needs. The DMG file compresses, taking
only the disk space actually needed for your installation.

Set up your new disk image with a drag-and-drop installation. The goal is to have your applica-
tion bundle and an alias to the /Applications directory on the new disk image. The back-
ground of the disk image root folder should contain an explanation to the end user that he
needs to drag the application to the /Applications alias.

Follow these steps to set up the disk image:

1.
2.
3.
4,
5.

6.
7.
8.

TIP

Drag a copy of your application bundle to the new disk image.
Make an alias of the /Applications folder.

Drag the alias to the new disk image.

Rename the Applications alias folder to Applications.

Add your background image to the disk image.

Usually, resources the user is not meant to see are placed off-screen so they become
visible only through scrolling.

Control-click (or right-click) the background of the disk image folder.
Select Show View Options from the context menu.
Set the background image of the disk image to a drag-and-drop graphic.

This is the image you added to the disk in Step 5.

Programmers often create a background image for the installation DMG that contains a large arrow pointing from the
application to the App1ications folderalias. The arrow usually is accompanied by a terse statement, such as
“Drag <app name> to Applications folder.”

The final task in creating your distribution DMG is converting it to a read-only volume. Follow
these steps:

1.
2.
3.
4.

From Disk Utility, select the mounted DMG.
Select Convert... from the Images menu.
Set the Image Format to read-only.

Save your image.

That's all there is to creating fancy drag-and-drop installations. In the next sections, | explain
general information about PackageMaker installations and izPack installations.

Creating PKG bundles

Though drag-and-drop is the preferred installation method, it is not the only option on OS X.
Apple also provides PKG files. PKG stands for Package. Several types of bundles on OS X are
called packages (with a lowercase p), but only PKG folders are called Packages (with an upper-
case P). In this book, | call Package bundles PKGs exclusively to avoid confusion with the
broader term package.

PKG folders bundle all the resources necessary to install an application. The only thing PKG fold-
ers don't contain to install an application is the actual installation application. Instead, when
you double-click a * . pkg, OS X starts the Installer.app. Installer understands PKGs and
uses the contents to guide your end users through the installation process.

Oddly enough, the Installer application does not create PKGs. That task falls to PackageMaker,
shown in Figure 5.33. PackageMaker is found in /Developer/Applciations/Utilities/.

Figure 5.33

PackageMaker main window

Untitled (Package)
[~ {Cconfiguration T Reauirements _Actions |

Title:
User Sees: | Easy Install Only

Install Destination: ™ Volume selected by user

T System volume
! User home directory
Certificate: @ No cartificate selectad
Drop enntents here.
Description:
i) ﬂ - L &

Be careful when creating PKGs. An improperly created PKG can at the very least lead to an unusable application, but at
the worst it can cripple the end user’s computer. Nothing shuts down a software company quicker than “bricking” a
few customers’ computers.

NOTE
A wonderful PackageMaker tutorial by Stéphane Sudre is located at

http://s.sudre.free.fr/Stuff/PackageMaker_ Howto.html

NOTE
The PackageMaker User Guide is found at the Apple Web site at

http://developer.apple.com/DOCUMENTATION/DeveloperTools/
Conceptual /PackageMakerUserGuide/Introduction/
Introduction.html

Upon opening PackageMaker, you see a dialog box requesting your organization and minimum
target OS version. As a Java developer, your organization is your root package name, something
like com.yourcompanydomain.

PackageMaker is a feature-rich installation creation tool. PackageMaker provides customization of
every step of your installation process. When you have finished configuring your installation, click
the Build icon at the top of the main PackageMaker window to create your final PKG bundle.

Creating izPack installations

Many Java applications are customized and distributed to platforms besides OS X. If your proj-
ect is one of these, then izPack is a good choice for your project. izPack is a pure Java cross-
platform installer that works well with OS X. It also supports i18n (internationalization) with

10 languages currently supported.

NOTE

izPack is available under an Apache style license from i zpack. org.

izPack emphasizes scripted builds, especially with Ant or shell scripting. Create builds in izPack
as XML description files. After the XML installation description is completed, compile your build
with izPack’s compile command. Because izPack supports both shell scripting and Ant, integra-
tion with Xcode and other popular Java IDEs is possible.

CROSS-REF

Chapter 4 discusses shell scripting, Ant, and XML, which are all useful when creating izPack installations.

As | mentioned earlier, izPack installations are compiled from XML installation description files.
Special XML tags in the description file indicate the location of resources associated with the
installation. Resources include license agreements, images, and data files.

Two installation types are supported by izPack. The traditional approach is the single file
approach. izPack creates a single JAR file as an installer. The JAR file contains all the resources
needed to complete the installation. In many cases, this works fine.

The other izPack installation solution distributes the installation between a local JAR installation
program and the Internet. The resources in this option exist on the Web. izPack pulls the
resources from the Web as needed. Depending on the user’s customizations of his installation,
this solution results in optimized downloads that waste less bandwidth.

Now you may think to yourself, “A JAR-based installer isn't very Mac-friendly.” (If you actually
thought that, give yourself a gold star!) Not to worry. Not only can you use Jar Bundler

e Chapter5:Deploying Applicat

(described earlier in this chapter) to convert izPack installation JARs into user-friendly applica-
tions, but izPack comes with a tool specifically made to do the same thing. The name of the util-
ity is izpack2app, which copies your installation JAR into a preexisting application bundle. So
whether you use izpack2app or Jar Bundler makes no difference.

Summary

This chapter is about application bundle creation and installations. Bundles are not always
packages, but packages are always bundles. Packages, such as application bundles, appear to
the user as though they are single files. Application bundles are folders that contain all the
resources an application needs to run.

Apple’s Human Interface Guidelines for application icon creation are very specific about accept-
able styles of application icons. | explain the guidelines and the use of Icon Composer for the
assembly of OS X icons. Both Photoshop and Illustrator are common tools of choice when creat-
ing icon artwork. You can create a temporary icon for use with nightly builds until you have final
artwork from your company’s graphic artist.

You assemble Java applications into full-fledged OS X application bundles with Jar Bundler.
After bundling, four types of common installations are used to deliver those applications to end
users. They are ZIP’ed bundles, drag-and-drop DMGs, PKG installation bundles, and the cross
platform installer izPack.

Bringing
Guidelines, APls,

and Languages
Q Together

CCCCCCCC
Integrating Windows,
Menus, and Dialog Boxes

CCCCCCCC

oooooooooo

Porting and Designing

zle. One company makes an OS. Another company assem-

bles hardware into a box. Yet another company creates
software to sell. Still other companies create the APIs and widgets
to mix it up with all the other companies’ offerings.

M ost computer companies build only one piece of the puz-

While Apple, like all large companies, contracts out pieces of their
products and assembles important technologies, they also are in
control of the entire product. Apple creates computers from the
ground up. Hardware, operating system, and applications are all
designed, integrated, and sold by Apple.

This end-to-end control of production gives Apple power to design
the best personal computers on the planet. Their operating system
is probably Apple’s greatest strength. OS X is designed with unpar-
alleled modularity.

Recently Apple did the incredible by moving its whole operating sys-
tem from PowerPC to Intel architecture without an entire rewrite.
Such a change is on the scale of moving a sports arena in one piece
to a new city without seeing it collapse. The move was successful in
large part because of the modular structure of Mac OS X.

In this chapter, | explain the structure of OS X. | introduce the layers
of OS X. I explore Darwin with an emphasis on BSD tools and librar-
ies. | also give a quick introduction to Apple’s Human Interface
Guidelines.

Exploring Mac OS X Structure

Mac OS X is elegant and complex. OS X is an OS on top of an APl on
top of an OS on top of a kernel. OS X is a beautiful graphic environ-
ment and a gritty nuts-and-bolts terminal-controlled interface.

OS Xis an incredible mix of powerful and pleasant technologies.

In this section, | introduce the major building blocks of OS X. Sitting
on top of Apple’s hardware, you find Darwin, the three major
developer frameworks, and the ever-pleasing human interface,

as shown in Figure 6.1.

u In This Chapter

Understanding OS X
architecture

Taking advantage of
Darwin'’s utilities
Integrating Java tools

with Darwin

Implementing acceptable
human interfaces

Creating approved
software update
dialog boxes

Figure 6.1
Layers of OS X

[Human Interface

Carbon Cocoa Java

Darwin

N)

Hardware

—

T

Reviewing the architectural layers

OS X ultimately draws its strength and portability from another operating system, Darwin.
Darwin is an OS hiding under the hood of OS X. The reason that OS X successfully moved from
PowerPC architectures to Intel-based architectures was because OS X is built on neither archi-
tecture. OS X is built on Darwin.

Apple insisted that OS X and its programming frameworks build on Darwin in a hardware
agnostic fashion. Hence, when it was time to move OS X to a new architecture, the job was to
port Darwin, not OS X. Better yet, Darwin was ported to multiple platforms before OS X was
even officially released on Macs.

Darwin sits directly on top of the Mac hardware. Darwin is the foundation under the developer-
friendly frameworks that most OS X applications are built on. Darwin also puts the Unix into OS X.

Mac OS X is fully POSIX-compliant. POSIX is an IEEE standard specifying APIs, shell interfaces,
and utilities” interfaces. POSIX standardization ensures compatibility between Unix operating
systems. Applications created on differing versions of Unix are quickly ported to new operating
systems that are POSIX-compliant. OS X enjoys this benefit, too, because hundreds of common
Unix tools and applications are available for OS X from volunteer sources.

I return to a discussion of Darwin later in this chapter.

NOTE
POSIX stands for Portable Operating System Interface for Unix. Luckily, the POSIX acronym used the X from Unix
instead of the U. Otherwise, we would all be forced to try to pronounce POSIU instead of POSIX.

Most of the applications available to everyday users of OS X are built on three frameworks:
Carbon, Cocoa, and my favorite—Java. Apple develops and maintains these three frameworks
internally. The base code used for the Java framework comes from Sun’s Java, but the actual
integration into OS X and the OS X builds are all created by Apple. Apple’s involvement in the
Java framework development ensures the closest possible compatibility between Java and the
native OS.

Carbon is a C-based framework used for porting applications in C and C++ to OS X. Carbon is
an excellent choice for porting JNI-based applications to OS X. Java applications that interface
with Carbon have access to OS X features ranging from the Quartz 2D graphics library to BSD
OS services.

Cocoa is Apple’s Objective-C framework. Your first thought may be, “How do you integrate Java
and Objective-C?” Objective-C is built on C, so JNI integrates with Objective-C. In fact, the built-
in JNI template in Xcode integrates with Cocoa rather than Carbon.

CROSS-REF

Chapter 3 contains instructions for creating a Cocoa-based JNI project in Xcode.

On top of all these frameworks sits the Human Interface. The Apple’s Human Interface has led
all other Operating Systems since the dawn of personal computing. Apple has a nearly 400-
page manual detailing how Human Interfaces on OS X should work. | briefly introduce Apple’s
Human Interface Guidelines at the end of this chapter.

Benefiting from OS X frameworks

The officially favored approach to wrapping Cocoa and Carbon frameworks for use with Java is
JNI. Other approaches such as JNA and JNAerator are also popular. Either way, the library you
wrap must contain unique functionality to make the effort worth your time.

Shown in Table 6.1 are descriptions of some important OS X frameworks. Knowing the purposes
of OS X frameworks helps you find the libraries you need and avoid spending time with libraries
that duplicate features already in Java. | give an overview of Darwin’s Unix libraries later in this
chapter.

Table 6.1 Important OS X Frameworks

Framework Description

AppleScriptKit AppleScript plug-in creation

Carbon Preferred C-based development layer

Cocoa Preferred Objective-C development layer
CoreFoundation Data types and services used by Cocoa and Carbon
CFNetwork Abstractions of networking protocols
DictionaryServices Dictionary access

JavaVM Java

LaunchServices Open applications and documents

SearchKit Text searching and indexing

ScreenSaver Screen saver interfaces

= Brinaing Guiaelines. A¥IS. anad Lanaduaaes roagethery.

Using Darwin

As | mentioned earlier, Darwin is an operating system. In fact, you can install Darwin on comput-
ers with absolutely no other operating system using ISOs provided by Apple. The Source
Browser at http://www.opensource.apple.com/static/iso/, as shown in Figure 6.2, contains links
to Darwin installations.

Figure 6.2

Apple’s open-source browser Web site

¢ [(Qr Coogle

i Parent Directory
I-
Q
*
L=
I_
s

o darwinppo-801.cdrge

darwin-701.is0.92
darwinppc-141_ cdr.gz

darwinppe-bil2.cdr.gz

darwinx86-141.is0.gz

darwinx86-602.is0.92
darwinxB86-801.is0.g2
refease-notes-1.4.1.1xt
release-notes-6.0.2.ux
release-notes-7.0.1.txt

release-notes-8.0.1.txt

€ € & & o+ sris

TIP

If you want to play around with Darwin builds and installs but do not have a spare computer lying around, think of
investing in a product such as VMware Fusion for the Mac. With VMware Fusion, not only can you use Windows from
inside your Mac, but you can install Linux, Darwin, FreeBSD, and other operating systems as though on their own com-
puter. VMware turns your computer into a virtual playground for hacking operating systems without the need for
extra hardware.

Several third-party versions of Darwin have popped up over the years. One currently popular
version is GNU-Darwin, whose home page (www.gnu-darwin.org) is shown in Figure 6.3.

— e CLhnapter o. Forting anda vesianing =

GNU-Darwin combines GNU operating systems and Darwin, providing the typical command
line driven OS and GUI capabilities through X11.

Figure 6.3
GNU-Darwin home page

806 The GNU-Darwin Distribution

Please visit our sponsors and affiliates. m

Sponsored by: P u, ¢ .
ﬂ SOURCEFORGE.NET* oywells o), |

or suppart GNU-Darwin direct! M‘{:m’: ;;l* P:"':":'w Book: |
uBod, or do soarch. | SEARGH |

e e
Distribution!

with the above link.

about - user quide - cookbook - freedom news - press - downloads - installation - =8y
- developer / cvs - community - store - webmail

GNU-Darwin aims to be the mos! free software distribution. Our mission is two-old. Focus on projects
that |everage our unigee combination of Darwin and GNL, and help users to enjoy the benalita af
soltware Ireedom. founded November 2000)

GNU-Darwin Office-1.1 for PowerPC, and x86 computers!

quick links Mac OS tested, Apple, Intel, VIA, and AMD compatiblal

User Guide, Cookbook

GNU-Darwin 05

Try OpenOffice for ppc

Web Mail GNU-Darwin: Action Amazon.com 2009-10-11 0006 on GNU-Darwin Distrbution

QOrder Discs Now Many of you will be surprised to read proclus’ profile at Amazon:

Shell Accounts hittplwww, ‘gpipdplprofile/AFTDZ97VNSEWN/ref=cm_cr_rdp_pdp
Contribute

Résumé Service After a very long boycott over scme patent issues, | perceived that -
Molari s arwi T —

L

The point is that Darwin is a powerful OS in its own right. OS X sitting on top of Darwin is really
justicing on the cake.

Saying Darwin is a customized version of FreeBSD OS is not accurate. Darwin combines Mach
3.0, FreeBSD 5, and other technologies, forming the base on which OS X rests. Mach 3.0 man-
ages protected memory, virtual memory, preemptive multitasking, cooperative threading, and
much more. Darwin is much more than a BSD OS distribution. However, for Java programmers,
Darwin'’s integrated BSD OS has special interest.

Examining the BSD foundations of OS X

Integrating Java with Cocoa or Carbon is common when porting applications to OS X. However,
if you have an application that demands access from the command line, such as via ssh, then
you may want to consider integrating your Java application directly with the BSD OS libraries
and tools found in Darwin.

EEIEIIE;; Bringing Guid

TIP
FreeBSD is available from The FreeBSD Foundation. The home pageishttp: / /www. £reebsd. org. Much of
the documentation about FreeBSD also applies to Darwin.

Darwin’s BSD implementation is fully POSIX-compliant. It contains the POSIX API. Darwin pro-
vides the command-line interaction with the operating system. Darwin supports popular script-
ing languages such as Bash, Perl, Ruby, and Python. Darwin also integrates X11, a Unix
windowing system.

Using Darwin tools

Darwin comes with standard Unix tools. These tools range from chmod and 1s to grep and
awk. It may save you time occasionally to use one of the standard Unix tools from inside your
Java application rather than recreate the tool in Java code or look all over the Internet for a Java
library that already does the job for you.

Use the Runt ime class to execute command-line tools from inside your Java application.
Calling the exec () method generates a Process object. Process contains methods for
handling the InputStreams and OutputStream connected to the executing tool.
Communication between your Java application and the Unix tool your program executes is
handled by way of these streams.

The following example, Run . java, takes a command issued as arguments to the Run class
and executes the command as though the command were run from the Terminal. Obviously,
this class is useful for its illustrative purposes, not as a replacement for Bash.

import java.util.Scanner;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
public class Run
{
public static void main(String[] args)
throws IOException
{
StringBuilder sb = new StringBuilder();
for(String arg : args)
{
sb.append(arg + " ");
}
String command = sb.toString() ;
command = command.trim() ;
Runtime rt = Runtime.getRuntime () ;
Process proc = rt.exec(command) ;
InputStream is = proc.getInputStream() ;
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);
String in;

e (Chapter6:Porting and De

do
{
in = br.readLine() ;
if (in != null)
System.out.println (
}
while (in !'= null);

}

in);

Once compiled, execute the Run class from the Terminal and pass a command as arguments to

Run. For instance,

java Run ls -la

lists a directory resulting in something similar to the following output.

total 48

drwxr-xr-x 8 tdavis
drwxr-xr-x 7 tdavis
-rw-r--r-- 1 tdavis
-rw-r--r-- 1 tdavis
-rw-r--r-- 1 tdavis
-rw-r--r-- 1 tdavis
-rw-r--r-- 1 tdavis
-rwxr-xr-x 1 tdavis

The Run class begins by concatenating the args []

It's really pretty simple.

staff
staff
staff
staff
staff
staff
staff
staff

272
238
586
124
1319
842
805
53

Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct

17
16
16
16
17
17
16
16

17:
22:
23:
23:
18:
18:
23:
23:

22
53
03
02
06
06
50
04

Hello.class
Hello.java
Run.class
Run.java
greetings.jar
hi

array passed tomain (). The resulting
String is placed in command. Next, the Runt ime object is retrieved, and its exec () method is
called with command. The result is a Process object containing the running command-line
tool. I retrieve the InputStream from the Process object and chain it in typical java. io
fashion to obtain a Buf feredReader. Finally, | read and print the lines provided to the
BufferedReader until the OutputStreamis finished as indicated by the null value.

I list common tools found in Darwin in Table 6.2. The list is not even remotely exhaustive, but it
gives you an idea of some of the common tasks already written.

Table 6.2 Common Darwin Commands

at Sets a time to execute a command

awk Scans a file and performs instructions on the matching pattern

banner Creates a huge vertical text banner base of the string passed to the command
basename Extracts a file or command name from a path and arguments

batch Executes tasks when system load permits

continued

g Bringing Guidelines, APls, and Lanqguages Together

Table 6.2 Continued

al Displays a calendar

calendar Checks a calendar file for pending appointments or events
cat Concatenates files

« GNU compiler for C, C(++ and Objective-C
«d Changes directory

chgrp Changes a file’s group ownership

chmod Changes a files permissions mode

clear (lears the Terminal

mp Byte comparison of files

comm Compares files

compress Compresses files

P Copies files

date Prints or changes the date

df Prints free disk space

diff Prints file differences

du Shows size of files or directories in disk blocks
echo Echo

expand Expands \ t to spaces

file Displays file’s type based on contents rather than extension
find Searches for files

finger Snoops information about users

fold Wraps lines of text

ftp Executes the file transfer protocol program
grep Performs a regular expression-based search
groups Prints groups to which a user belongs

head Previews first lines of a file

hostname Prints the computer’s current hostname

kill Terminates a process (Use carefully!)

last Displays login history

less Displays the contents of a file

In Creates file and directory links

login Logs users in

Ip Prints a file to the default printer

Ipg Displays a queue of running print jobs

man
mkdir
mv
nice
od
passwd
ps
pwd
rcp
rev

m
rmdir
script
sleep
sort
split
strings
sudo
tail
talk
tar

tee
telnet
time

touch

tty
ul
uncompress
uniq

units

uptime

Removes print jobs

Lists a directory

Displays a command line tool’s manual

Makes a new directory

Moves a file or directory

Modifies the priority of a command

Displays a string or file in octal, decimal, hex, or ASCII
Changes the user’s password

Displays a process status

Prints current path

Copies remote files

Displays a file with each line reversed

Deletes files or directories

Deletes directories

Makes a file called t ypescript ofan entire terminal session
Sleeps like Thread . sleep () except theincrementisin seconds
Sorts a file and prints out the results

Splits a file into 1000 line files

Finds readable strings in binary files

Performs a command as the super user

Displays the end of a file (Watch log files with tail - £.)
Chat with another shell user

Archive directories or files

Copies standard in to standard out

(reates a telnet session

Acts as a stopwatch for commands

Changes the modification time of a file to the current time and date; also used to create empty
files

Prints the terminal name

Formats underlining

Decompresses files

Outputs a file with duplicate lines removed
Converts measures into other units

Displays the length of time the computer has been running (My 0S X boxes usually measure in
months.)

continued

Bringing Guidelines, APls, and Lanqguages Together

Table 6.2 Continued

users Lists the users currently logged into the computer
unexpand Restores \ t from spaces

w Displays current activities of users logged in

wC Displays word count (Use wc —w to count words in * . tx t files.)
whatis Displays a short description of a command
whereis Displays the directory location of a command
which Displays the location of a command

who Lists the users logged in

whoami Used by the very confused

write Chat with other users

yes Repeats y \n

zcat Prints the contents of compressed files

Exploring the Darwin libraries

Darwin contains the standard Unix C libraries. JNI and JNA are common methods of interfacing
with these libraries. | list several of the common libraries in Table 6.3. All standard ANSI C librar-
ies also are available.

Table 6.3 Common Darwin Libraries

Library Description

assert Tests the truth of macros

Idap OpenLDAP API

math Math functions

memory Allocates and frees memory

ncurses A character screens display library; creates windows in the shell
pthread POSIX threading

regex Regular expression library

TIP

Explore the header files found at /usr/include/ fora more exhaustive list of POSIX Clibraries.

e (Chapter6:Porting and De

Common Unix APIs are not the only programming libraries found in Darwin. Hidden away in
Darwin is the Core Foundation framework. The Core Foundation framework serves as the base
for both the Cocoa and the Carbon programming frameworks.

Core Foundation is written in C, but many of the data types work as-is with the Cocoa
Foundation interfaces found in the Cocoa Foundation framework. Carbon-based applications
often use the data types found in the Core Foundation framework also. The Core Foundation
handles data types, strings, URLs, sockets, ports, XML, preferences, collections, dates, and times.

NOTE

Learn more details about the CoreFoundation framework by examining the included headers. All CoreFoundation
headers are found here:

/System/Library/Frameworks/CoreFoundation. framework
/Headers

NOTE

CoreFoundation is actually part of a larger library called CoreServices, which contains AE, CarbonCore, 0SServices,
CoreFoundation, CFNetwork, LaunchServices, SearchKit, and DictionaryServices.

Scripting Java in the shell

Users directly access Darwin through commands entered in the Terminal or with shell scripts. In
Chapter 4, l introduce shell scripting as it applies to compiling Java projects. Earlier in this chap-
ter, | give an example of executing shell commands from inside a Java application. Many other
uses exist for combining command-line tools, shell scripting, and Java.

NOTE

Command-line tools are often called utilities in Unix circles.

Most tools used at the command line are based on C or C++. However, you certainly can write your
own tools in Java. Of course, you can always cd to your Java tool directory and type java <insert
tool name> every time you want to use your tool, but that is too much work. After all, tools like cd
and 1s don't require that kind of exertion. Don't make your Java tools second-class citizens.

The workaround is simple. Wrap your Java file in a shell script. Your Java tool behaves just like C
and C++ tools when properly configured. For an example, | use a simple class. It accepts one
command-line argument and prints the argument:

public class Hello
{

public static void main(String[] args)

{
System.out.println("Hello " + args[0] + "!");
}

= Bringing Guidelines, APIs, and Lanquages logether

The wrapping shell script is even simpler. It simply specifies the shell as bash and executes the
java Hello Jon command. | name the shell script hi with no extension and populate it with
the following code:

#!/bin/bash
basic Java invocation
java Hello Jon

CROSS-REF

Handling arguments passed to shell scripts is explained in Chapter 4. Use your shell script to pass command-line argu-
ments to your Java tool.

The following steps turn this simple code into a full-fledged command-line tool:

1. JaryourJavaTool.
For this example, use the command jar cvf greetings.jar Hello.class.
2. Place the JAR for your Java tool in the /Library/Java/Extensions/ directory.

This directory is in the system classpath. Placing Java libraries in this directory makes
them available to all OS X applications.

3. Place your shell script in /usr/local/bin/ or another bin directory that is part of
your PATH.

Check for acceptable paths by typing env in the Terminal and checking the PATH
variable. Moving the shell script requires the command sudomv hi /usr/local/
bin/hi.

4. Make the shell script executable by entering chmod 755 hi in the Terminal.

You must perform this command while in the same directory as your shell script.

TIP
The sudo command authorizes administrative commands. Place sudo before a command that normally returns
Permission denied,and sudo gives permission. The sudo command requires an administrator password.

After completing the preceding steps, enter hi in any Terminal window and your Java tool
prints Hello Jon!, as shown in Figure 6.4.

e _Chapter 6: Porting and De

Figure 6.4

Terminal displaying results of hi command

ANO Terminal — bash — 80

Last logtn: Sun 0ct 15 18:25:Z1 on console a8
Winmac:~ tdavis$ hi

Halla Jon!

Winnoc:~ tdavist |

TIP
Passing command-line arguments to your Java tool expands its utility. Apache’s Commons CLI library handles parsing
command-line arguments nicely. The CLI home page ishttp : / /commons . apache.org/cli/.

Learning the Human Interface Guidelines

One of the greatest strengths of Mac OS X is the user experience. The consistent positive user
experience of OS X owners is the result of Apple’s extensive Human Interface Guidelines. The
Apple Human Interface Guidelines are contained in a nearly 400-page manual documented
here:

http://developer.apple.com/mac/library/documentation
/UserExperience/Conceptual /AppleHIGuidelines
/XHIGIntro/XHIGIntro.html

My goal with this section is not to abridge all 400 pages into a quick read, but to explain some
of the more important concepts of the guidelines and to expand on information about the
guidelines that | introduced earlier in this book. In this chapter, | explain fundamentals of pro-
viding a common experience for OS X users. | explain fundamentals of user interface design and
testing. This chapter expands on the software installation instructions in Chapter 5 with infor-
mation about providing software updates for your users. Finally, | give an overview of OS X
technologies that you should consider integrating with your Java applications.

Providing an OS X experience

Experts at Apple specialize in providing users with interfaces that fade into the background.
They solved many issues that prevent users from having a good experience with software. You
can benefit from their research.

Most OS X users have never read or even browsed the Human Interface Guidelines, but they
have internalized the basics. If you are new to OS X, start by exploring some applications that
came with your computer.

Take TextEdit, for example. Even before opening the application, notice the icon is simple yet
elegant. Even as a free application that ships with every Mac, TextEdit provides an icon that
scales well on the Dock when magnification is turned on. The icon is a pen and paper explain-
ing before the user opens the application or reads the name that the purpose of the application
is writing.

After you open TextEdit, the menu bar is detached from the document. Application control is
separate from the documents created by the application, separating Model and Control for
users, not just the programmer.

If the user does not like the current document, he clicks the red close button in the document
window and closes the document without closing the application. Remember that the data and
application are divorced even from the user’s perspective. So, the user now freely opens a new
document without needing to restart the application.

On the menu bar, notice a menu named after the application. Every OS X application has an
application menu. Three menu items always found in the application menu are Preferences,
About, and Quit. Your OS X users expect to find these menu items there and nowhere else.

Designing the greatest and most useful application on the planet is not enough. The first key to
success is familiarity. Create software that conforms to user’s expectations. If your software
behaves the same way other that OS X applications behave, then you don’t need to document
those features. Users familiar with OS X already know how to use those features.

Familiarity with your design paradigms prevents user disappointment and confusion. You
spend less time on supporting the software. Best of all, reviewers focus on reviewing the utility
of your software, not on complaining about your non-conformity to Ul standards. A couple of
bad reviews can seriously harm sales of your prized software. Ignoring the Human Interface
Guidelines makes you an easy target for a reviewer in a bad mood.

Designing the user interface

Users know good design. If a user opens your application and intuitively knows what to do, you
have a good start on a desirable interface. The only way to know if an interface succeeds is to
putitin front of users and get their feedback.

Releasing beta versions of your software to the public, or at the very least a large test group, is
essential. Do not let pride of authorship prevent you from changing your interface. If your beta
testers overwhelmingly hate something, change it. If your beta users overwhelmingly love a
feature, keep it. This advice sounds simple, but it's ignored far too often.

Keep clicks down. By this I mean think about what your users do most often. If their favorite fea-
ture can be reached only by browsing through three submenus and then clicking “Advanced
Features ..."” in a dialog box, you are making them work too hard. Determine what features com-
mon users of your software are using and make it easy for them to use those features.

A great technique for uncovering design flaws is to invite beta users to a free training session at
your company. Throw in free food and maybe free airfare to making it interesting. Then have
the application designers sit down and teach the beta users the software. Go around the room
answering questions. Make notes on common or tricky questions.

Hold a design meeting the morning after, and review how the trainees used the software. Could
their questions have been prevented with Ul changes? Again, do not let pride of authorship get
in the way of making a good product. Importantly, make sure someone with enough clout to
authorize design changes participates in this process, or it is all a waste of time. The entire pro-
cess is shown in Figure 6.5.

Figure 6.5
Design, code, test, and analyze

Analyze Code

As mentioned in the OS X User Interface Guidelines, your users have a mental model of the
tasks they want your software to complete. For instance, music listeners have the concept of
music sets internalized, so iTunes realizes this with Playlists. Find out how your users conceptu-
alize their solutions, and emulate this in your software.

Again, get face to face with your users. They are your domain experts. Corner them in a room
with a whiteboard. Then map out their mental processes on the white board using UML. This is
a wonderful first step to creating your Java-based OS X application.

Another key to a good user interface is “forgiveness.” Think “Undo.” Users need to feel comfort-
able exploring and testing features in your application. If they test a feature and cannot undo it,

your application is unforgiving. By allowing easy undoes of commands, you encourage your
users’ exploration of your application and provide a better user experience.

Warn users when they are about to change their data with no possibility of undoing the
change. Not warning them results in angry customer-support issues. However, warning users
provides for a better user experience.

Remember to include the option in caution dialog boxes to turn off the warning. Experienced
users will appreciate it. The example later in this chapter shows how to permanently save
option changes in an OS X fashion.

Avoid modal dialog boxes. For instance, the preferences window should not be modal. Let
users control the interface. Do not dictate to users what they will do next. Users should always
feel in charge of the software, not controlled by the software.

Plan for universal accessibility. Different users have different need and different abilities. Never
allow your application to override accessibility features.

Updating software

Provide expected OS X experiences and pleasant user interfaces through following the Apple
Human Interface Guidelines. Every part of your application’s user experience should provide
appropriate non-jarring interaction. As an example in this section, | explain the Human Interface
Guidelines on checking for software upgrades.

Make software updates a soothing experience for your users. The trick to a pleasant upgrade
experience is good timing. Requests to update software the user is not currently using are unwel-
come. Requests to upgrade software when the user is already working with the software are also
unwelcome. Bad timing is unsettling to the user and provides for a poor user experience.

OS X users are not accustomed to intrusive dialog boxes while they work. The proper time to
tell a user about upgrades is immediately after the software starts. Do not interrupt their pro-
ductivity with a dialog box sometime after they are already busy.

If you have written software to check the Internet for upgrades, you know it may take some
time to complete a check. Reasons include Internet latency or, with complex software, many
time-consuming local and remote checks. How do you prevent a long start up for your cus-
tomer and provide customers with upgrade alerts only at start up of your application?

The OS X way is as follows:

1. At startup, create a thread to check for upgrades.

2. Ifan upgrade exists, set a persistent local flag.

5.

6.

Wait for the next launch of the application.

Upon the second launch of the application, check the local flag for upgrade
information.

If the flag is set, notify the user of the update immediately at launch of the appli-
cation, before he has a chance to use the application.

If the flag is not set, repeat from Step 1 by starting a thread to check for
upgrades.

CROSS-REF

In Chapter 5, I discuss 0S X software installations and software bundling.

These standard steps avoid startup latency for the users. Also, these steps avoid unwanted
interruption of the user’s activities in your application. Obviously, happy customers buy soft-
ware, and unhappy customers don't.

Apple’s guidelines require that your program provide a preference panel to optionally deacti-
vating automated update checks and a button to “Check Now” for updates. A complex panel is
not needed. Simply add a Software Update tab to your preference window. Include a brief mes-
sage and check box for deactivating the automated checks. Also include a button with the
words “Check Now” that does just that, as shown in Figure 6.6.

TIP

Software Upgrade panes may have frequency choice, instead of a simple check box. Users may want to check weekly or
monthly instead of every time the application starts.

Figure 6.6

Preferences window containing Software Update tab

LSOO el
[General Color Edit [{ Soft Updat: ,l

Software Update checks for new versions of this application.

Automatically check for new updates

| Cherck Now)

When your flag indicates that a new upgrade exists for an application, show a dialog box giving
the user more information. Two versions of update dialog boxes exist. One is for free upgrades,
and the other is for commercial (or paid) upgrades.

The upgrade dialog boxes consist of a bold question, an explanation, three option buttons, and
a badged caution icon. Badging a caution icon means to take a standard OS X caution icon and
create a version with your application icon in the bottom-right corner. The standard caution
icon is located in the CoreTypes bundle here:

/System/Library/CoreServices/CoreTypes.bundle

Because CoreTypes is a bundle, you need to Control-click the bundle and select Show
Package Contents to browse inside the bundle. Once inside the bundle, browse to Contents/
Resources/AlertCautionIcons. icns. Base your badged icon on AlertCautionlcon.icns,
and size it to 64x64 pixels. For the example, | use a simple badged caution icon in a PNG.

CROSS-REF

In Chapter 5, | discuss *.icns bundles and Icon Composer.

Free upgrade dialog boxes should give the options to Change Preferences..., Ask Again Later, or
Upgrade Now, as shown in Figure 6.7. The Change Preferences... button should open the
Software Upgrade tab of the Preferences window. The Ask Again Later button leaves the
upgrade flag set and allows the user to continue using the application with no further interrup-
tions. The Upgrade Now button goes ahead with the upgrade of the software.

Figure 6.7
Free update dialog box

B0

A newer version of this application is available.
Do you want to upgrade your software?

This application can automatically check for new and updated versions.
App Select Software Update in the application Preferences to specify whether
to ically chack for upd.

(Change Preferences. . j (Ask Agamlmar) (Lipgrade Now)

A commercial upgrade dialog box, shown in Figure 6.8, contains a very clear message stating
that the upgrade costs money. Also, the upgrade never happens from clicking any of the but-
tons in the alert. The choices provided for users in a paid upgrade dialog box are Change
Preferences..., Ask Again Later, and Learn More.... The first two buttons behave just as in the free
upgrade dialog box. The Learn More... button opens a Web browser displaying a page with
more information about the commercial upgrade.

LNhapter 60: Porting and vesidaning =

NOTE
Paid upgrades are never performed from within the software but are downloaded as separate installations after
purchase.
Figure 6.8
Commercial update dialog box
B.0.0
A newer version of this application is available for purchase.
\ Do you want to learn more?
This application can automatically check for new and updatad versions.
£ App Select Software Update in the application Pref 1o specify whetk
L Bl T ically check for upd
(Change Preferences. ..) { Ask Again | arer) { Learn More. .. }
NOTE

Examples of the Preference window with Software Upgrade tab, as well as both the paid and free upgrade dialog
boxes, are available on the book’s Web site.

The following example illustrates doing an automated software update check and paid upgrade
dialog box. This example uses a couple of JSPs on a Tomcat Web server. The update check is
performed on localhost instead of a remote Web server. The project and Web server with
JSPs are all on the book’s Web site.

NOTE

The Tomcat Web server is a pure Java application available from the Apache Software Foundationat http: //
tomcat .apache.org/.Itisavailable as open-source software under an Apache style license.

Download the UpgradeApplication from the book’s Web site. Also download the Tomcat
server associated with the UpgradeApplication. The Tomcat server is self-contained and
needs no special installation to run on localhost.

NOTE

Localhost is a special address, meaning your local computer. To reach a Web server running on your local computer,
use the addresshttp: //localhost/.In the case of Tomcat, the server runs on port 8080, so toreacha
default installation of Tomcat running on localhost, use the addresshttp: //localhost : 8080/.

If you prefer to use a clean Tomcat installation, simply download the Core Binary Distribution
from the Tomcat site. | used version 6.0.20, but newer versions likely have the same installation
process for new Web pages. Not much has changed there in many years of Tomcat releases.

Bringing Guidelines, APls, and Languages Together

After downloading and unzipping Tomcat, make sure the * . sh files in the bin directory are
given permission to execute. Also, check Tomcat to make sure it is working properly by follow-
ing these steps:

1. Unzip Tomcat to a convenient directory.

For this example, a folder on the Desktop works.

2. Using the Terminal application, cd to the Tomcat bin directory.

3. Enter the command chmod 755 *:sh to make all Tomcat shell scripts executable.

4. start Tomcat by entering ./startup.sh in Terminal.

This command assumes you are currently in the Tomcat bin directory. You also may
start Tomcat from the main Tomcat directory by entering . /bin/startup.sh.

5. Open http://localhost:8080/ with Safari, and verify that you see the default Tomcat
installation page.

A line near the top should say something like, “If you're seeing this page via a Web
browser, it means you've set up Tomcat successfully. Congratulations!”

CROSS-REF
| explain the inner workings of shell scripts in Chapter 4. If you are curious about how the Tomcat shell scripts work,
open them in Xcode and take a look. You won't hurt anything by just looking.

TIP
To start Tomcat, enter . /startup . sh from the Terminal in Tomcat's bin directory. To stop Tomcat, enter . /
shutdown. sh from the same bin directory.

NOTE

The default Web page displayed by Tomcat is located in the ROOT folder of the webapps directory. Web pages in
Tomcat are organized as Web applications in folders of the Web application’s name inside the webapps folder.
ROOT is a special default Web application displayed at the “root” of the Web site’s URL.

Now you have verified that Tomcat works correctly. The default Web page is shown in Figure 6.9.
The two additional Web pages used in this example are in a subfolder of webapps called
upgrade_example. Check Tomcat to make sure these pages are displayed properly. The
addresses are as follows:

http://localhost:8080/upgrade_example/about_upgrade.jsp
and

http://localhost:8080/upgrade_example/get_current_build.jsp

The get_current_build. jsp displays simply 2010 as its content. The content of about_
upgrade. jsp is shown in Figure 6.10.

Figure 6.9

Tomcat's default Web page

& I(ar coogle

The Apache Software Foundation
http://www.apache.org/

If you're seeing this page via a web browser, it means you've
setup Tomcat successfully. Congratulations!

Staws
Tomeat Manager As you may have guessed by now, this is the default Tomcat home
page. It can be found on the local filesystem at:
FCATALINA_HOHE/ wobapps /ROCT/ Lndex, hitml
whare "$CATALINA_HOME" is the roat of the Tameat installation
Release Notes directory. If you're seging this page, and you don't think you should
Change Log be, then you're either a user who has arivad at new installation of
Tomeat Documentation

Tomeat, or you're an administrator who hasn't got hisfher setup quite
right. Providing the latter is the case, please refer to the Tomcat
Docum ion for more setup and inistrati o
information than is found in the INSTALL file.

NOTE: For rity , using the b is
restricted to users with role "manager”. Users are defined in

SCATALINA HOME/conf/tomcat-users.xml,

mm Included with this release are a host of sample Serviets and JSPs

Developers Mailing List (with associated source code), extensive documentation, and an
introd y guide to d web applicati

Figure 6.10
The about_upgrade. jsp Web page

|+ http:},I'Iocalhosl:so-stl,fupgrade_exarr ¢ [{(Qr Google

Information About Upgrade

Place detailed marketing information here.

If you open the get_current_build. jsp file in Xcode, you find it contains only 2010
without even a carriage return. In the about_upgrade. j sp file, you find the following code.

<html>
<head>
<title>Upgrade</title>
</head>
<body>
<hl>Information About Upgrade</hl>
<p>
Place detailed marketing information here.
</p>
</body>
</html>

Nothing in either Web page actually requires JSP over HTML at this point, but presumably you
will create more dynamic content for an actual production application. However, for a piece of
shareware or freeware, your current version page can be as simple as a single build number. At
the end of the day, the real object is to get your code working properly and in a user-friendly
manner, not to make your program jump through hoops.

CROSS-REF

In Chapter 3, | explain the creation of Java Swing application projects in Xcode.

Now we move on to examining the client application in this example. The application is an
Xcode project based on the Java application project template found in older versions of Xcode.
The project is just a starting point, and it needs some refactoring to bring it into a nice Model
View Controller paradigm. However, for the purpose of showing you a basic software update
implementation, it works just fine.

The project consists of five Java classes: AboutBox, FreeUpgradeDialog,
PaidUpgradeDialog, PreferencesJFrame, and UpgradeExample.
UpgradeExample contains the main () method at the bottom of the file. Themain ()
method contains much of the controlling implementation of the update algorithm.

Here is themain () method from the UpgradeExample class:
public static void main(String argsl[])

{

mainFrame = new UpgradeExample() ;
Preferences prefs = PreferencesJFrame.prefs;
boolean upgradeFound =

prefs.getBoolean ("upgrade_found", false);

if (upgradeFound)

JDialog dl = new PaidUpgradeDialog (mainFrame) ;
dl.setVisible(true) ;

// If this was a free upgrade the following would
// occur instead of the PaidUpgradeDialog

//JDialog d2 = new FreeUpgradeDialog (mainFrame) ;
//d2.setVisible (true) ;
}
else
{
Thread upgradeCheckThread = new Thread(new Runnable ()
{

public void run()
{
Preferences prefs = PreferencesJFrame.prefs;
boolean autoCheckPref =
prefs.getBoolean ("auto_upgrade_check", true);

if (autoCheckPref &&
BUILD NUMBER < PreferencesJFrame.checkBuild())
{
prefs.putBoolean ("upgrade_found", true);
}
}

1)
upgradeCheckThread.start () ;

}

Themain () method starts the application simply by constructing the UpgradeExample
class. The rest of the main method deals with the upgrade algorithm. You might consider mov-
ing the algorithm into a separate method in a control class in production-quality code.

First, | get the Preferences object. Java's Preferences class is found in the java.util.
prefs package introduced in Java 1.4. Itis responsible for persisting OS agnostic preferences
between invocations of your application. To obtain a properly configured Preferences object,
call Preferences.userNodeForPackage () passing in a class representative of your
application’s main Java package. For instance, | call the following in PreferencesJFrame:

Preferences.userNodeForPackage (PreferencesJFrame.class) ;

| use the Preferences object to check the status of two properties. | check the upgrade_found
property to see if the last check for an upgrade succeeded. Further down, | check whether the
auto_upgrade_check property allows my application to automatically check for newer ver-
sions on the Web.

If I have found an upgrade previously, | open a dialog box to inform the user. This is the appro-
priate time to inform the user, because the application has just started and the user has not yet
begun work with the application. This the least unsettling approach to informing the user of the
upgrade.

| provided dialog boxes for both commercial (paid) upgrades and free upgrades with this proj-
ect. To use the dialog boxes in your own project, replace the attention icon with an attention
icon badged with your application icon and modify the dialog box text.

If no upgrade was previously found, | create a Thread to check the Web, or in our case
localhost, for the current available build number. In this case, | have hardcoded the build
number as a final int. This works for a commercial upgrade, because the upgrade is
installed from a downloaded installation file or package. No automated installations happen
from within the program as they would with a free upgrade. In a free upgrade, the current ver-
sion number should persist in the application preferences so you can change the version during
an automated upgrade. Finally, | do a check of the Web server with the checkBuild ()
method described shortly.

As mentioned earlier, | provide custom JDialogs for both paid and free upgrades. If you are
familiar with Swing and AWT, nothing too surprising is hidden away in their code. Here are the
three action event handlers for PaidUpgradeDialog:

private void changePreferencesClicked (ActionEvent e)
{
UpgradeExample.prefs.setVisible(true) ;
this.setVisible(false) ;
this.dispose() ;
}
private void askAgainLaterClicked(ActionEvent e)
{
this.setVisible(false);
this.dispose() ;
}
private void learnMoreClicked (ActionEvent e)
{
try
{
String aboutURL =
"http://localhost:8080" +
" /upgrade_example/about_upgrade.jsp";
URI uri = new URI (aboutURL) ;
Desktop dt = Desktop.getDesktop() ;
dt.browse (uri) ;
}
catch (IOException ioe)
{
ioe.printStackTrace() ;

}

catch (URISyntaxException use)

{
use.printStackTrace () ;
}
finally
{
this.setVisible(false);
this.dispose() ;
}

}

The ChangePreferencesClicked () method sets the PreferencesJFrame visible so
the customer can easily modify the Software Update preferences. Ideally, the Software Update
preference tab is focused. Minimally, make the JFrame and desired tab visible.

The askAgainLaterClicked () method only disposes of the dialog box. The customer sees
this dialog box again the next time the application starts up. All flags and preferences remain
the same.

The action you want is learnMoreClicked ().Because this is a paid application, the action
opens a Web site with marketing information about the new version of your application. | per-
form the magic of opening the Web site with the Desktop object. Obtain an instance of the
Desktop with this code:

Desktop.getDesktop () ;

Open your preferred URL with a call to Desktop’s browse () method, passing in the URL as a
String.

CAUTION

This UpdateExample application relies on the Tomcat server, mentioned earlier in the chapter. Start the Tomcat server
before running the UpdateExample.app, or the example application will find no server on localhost:8080 with which
to connect.

Checking the current application version against the currently available application version
happens in the checkBuild () method. | placed the checkBuild () method in the
PreferencesJFrame class as shown here:

private int checkBuild()
{
int retval = -1;
try
{
String address =
"http://localhost:8080/upgrade_example" +
"/get_current_build.jsp";

URL url = new URL (address) ;

URLConnection connection = url.openConnection() ;

InputStream is = connection.getInputStream() ;
Scanner scanner = new Scanner (is);
retval = scanner.nextInt () ;

}
catch (MalformedURLException mue)

{

mue.printStackTrace() ;

}

catch (IOException ioe)

{

ioce.printStackTrace() ;

}

return retval;

TIP
When using java.util.prefs.Preferences, the actual preferences are stored in *.plist files in ~/Library/Preferences or
/Library/Preferences.

I check the Web site for the current version of the application using a Scanner. | simply call
scanner .nextInt () to find the build number represented as an int. Setting up the
Scanner is simple too. A Servlet, JSP, or even HTML file returns the build number, so use
a URL object created from a String containing the Web site address. Take the URL and
instantiate a URLConnection with a call to openConnection (). At this point, get an
InputStreamfrom the connection, and construct your Scanner object.

At this point, you simply need to be concerned with a couple of exceptions:
MalformedURLException and IOException.|'m sure those exceptions will never be an
issue, though. After all, the Internet never fails us. (By the way, if you believe that Internet con-
nections never have issues, | own a bridge you may be interested in purchasing.)

Integrating OS X technologies

The upgrade example in this chapter integrates OS X style menus. As you have undoubtedly
noticed by now, on OS X menus appear at the top of the screen rather than at the top of the
application JFrame. Top menus contain several special menu items, but do not require you to
leave the comfort of a pure Java language environment. In Chapter 7, | explain details of Apple-
specific Java libraries provided with OS X.

When you are ready to leave your pure Java comfort zone, OS X provides several built-in tech-
nologies to give your users a more Mac-like experience. Much of this book explains how to
interface Java applications with common OS X languages such as JavaScript, AppleScript,
Objective-C, and C to take full advantage of available Mac libraries, frameworks, and features.

e (Chapter6:Porting and De z 11

Your Java application can step outside the Java box. Consider creating advanced Screen Savers.
What useful Dashboard widgets can increase your productivity? Imagine integrating your appli-
cation with Address Book, iCal, or iTunes. Even working in the Terminal or via ssh, your com-
mand-line applications can bring a great user experience interfacing with ncurses. OS X is a
feature-rich operating system. Do not confine yourself or your creative genius.

Summary

| began this chapter by describing the architecture of OS X. The operating system is made up of
multiple modular layers. These layers include the human interface, the programming frame-
works, Darwin, and the actual Mac hardware. The modularity of OS X lends to its strength as a
modern operating system.

Darwin sits on top of the Mac hardware and is the foundation of OS X. Darwin is an operating
system in itself. Darwin is open-source software, and several operating systems are based on it.
You can integrate Java directly with Darwin through calls to Runtime’s exec () method, turn-
ing Java programs into command-line tools with shell scripts and calling Unix C libraries
included in Darwin directly with JNI.

The Human Interface interacts with OS X users. Apple provides an extensive 400-page manual
explaining proper creation of user interfaces for OS X. Apple provides several technologies for
use in your applications, including AddressBook, iTunes, and iCal. | provided the Xcode project,
UpdateExample, as an illustration of implementing the Human Interface Guidelines for software
update checks into your Java applications.

Integrating Windows,
Menus, and
Dialog Boxes

N ot too long ago, Apple deprecated and then removed all

the Cocoa Java libraries from OS X. A common perception

was that Apple was backing away from support of Java
development on OS X. This perception is not accurate. A more cor-
rect statement is that Apple has streamlined Java on OS X.

Properly written Java applications are still first-class citizens of OS
X. The application menu is fully available to Java applications.
System events such as quit events are available. Even the Help
Viewer is available to Java applications on OS X.

Using Apple’s provided libraries, you can create applications that
look and feel just like other OS X applications. You can adhere to
Apple’s Human Interface Guideline when creating your Java appli-
cations. Your users need never realize that your application is Java-

based and not written in C or Objective-C.

All this OS X integration is available without JNI. At some point, you In This Chapter

may desire to venture into the realm of JNI. JNI is the preferred
solution for interfacing Java applications with Cocoa or Carbon

frameworks in situations where Cocoa or Carbon integration is Assigning document

completely unavoidable. Most applications do not need to go to creators
this extreme. Most common integration tasks are available from Finding bundled
the packages com.apple.eioand com.apple.eawt without resources
the need for JNI. Integrating Apple menus
Chapter 8 contains an overview of JNI as used with the com. Implementing
apple.eawt.CocoaComponent class. Chapter 9 provides a preferences
deeper look at JNI for OS X Cocoa, Carbon, and Darwin integration. Locating the mouse

This chapter shields you from more complex integration and stays
in the realm of (mostly) pure Java calls involving the com. apple.
eioand com.apple.eawt packages. This chapter is a JNI-free
zone.

In this chapter, | introduce OS X file system peculiarities, such as file
types and creators. | explain Dock menu integration. | provide an
example of implementing HTML-based help books with your appli-
cations. Also, | explain the three most common application menu
items used in Java applications.

Ei!!!!;; Bringing Guidelines, APls, and Languages Together

NOTE

All the example code in this chapter is available on the book’s Web site.

NOTE

I do not discuss either the com.apple.eawt .ApplicationBeanInfo orthe com.apple.eawt.
CocoaComponent in this chapter. The ApplicationBeanInfo classis not intended for direct use in your
applications. The CocoaComponent class requires some NI, so | put off discussion of the class until Chapter 8.

Learning com.apple.eio.FileManager

The com. apple.eio package contains only one class. The class is FileManager.
FileManager contains only static methods. So you never construct FileManager
instances.

OS X disk formats save information not accessible, or at least not immediately available, with
standard Java calls. Application bundle locations, bundle resource locations, file types, and file
creators are all available through the com.apple.eio.FileManager class.

This section explores bundle locations, resource locations, file type codes, and creator codes. |
also provide an example of using the FileManager in a short program that identifies file type
codes and creator codes.

Finding application bundles

OS X developers often need to find the location of the application bundle that started their Java
application. The trick to finding the application bundle is calling the following:

FileManager.getPathToApplicationBundle ()

This class returns a Java String representing the path to your Java application bundle. As an
example, if the getPathToApplicationBundle () method is called from inside an appli-
cation named My App . app located on the Desktop, the returned String looks something
like this:

/Users/the_user_name/Desktop/My App.app

Locating bundle resources

Another common task that proves difficult without Apple’s Java APIs is finding application bun-
dle resources. Apple provides three versions of the FileManager.getResource () method
to make finding resources easy. All three methods return a String specifying the full file path to
the requested resource.

e Chapter /:integrating WWindows, iVienus, anda Dialoa B

These are the signatures of the three getResource () methods:

public static String getResource (

String fileName)

public static String getResource (

String fileName,
String subDirectory)

public static String getResource (

String fileNameWithoutExtension,
String subDirectory,
String extension)

These three methods throw FileNotFoundExceptions, as you probably expect. The first
two methods take a filename with an extension such as . txt or .png. The final method
expects the root name as the first parameter and the extension as the last parameter.

Getting and setting file types and creators

On OS X, files are identified by file extensions. Also, files are identified by types and creators. A
type identifies what type of data is in a file or if a file is executable. A creator identifies what

application should open a file. Extensions, types, and creators all serve as clues to the operating
system as to what to do with files.

CAUTION

Afile’s creator is not necessarily its actual creator. For instance, your program may export a screen capture to a PNG,
but purposely set its creator to Adobe Photoshop, because your application cannot open PNGs.

NOTE

Many files do not set their type or creator. Applications that do not set their type or creator have a default value of 0.

Types and creators are both represented by four bytes. Of course, four bytes conveniently fit
into 32bit ints. Java has lots of those.

These methods are available for handling types and creators from FileManager:

public
public
public
public
public

static
static
static
static
static

int getFileType(String fileName)
int getFileCreator(String fileName)
void setFileType(String fileName, int type)
void setFileCreator (String fileName, int creator)
void setFileTypeAndCreator (

String filename,

int type,

int creator)

= Brinainga Guidelines, APIs, and Lanauaagaes l1ogether

Each of these methods throws an TOException.

The use of these five FileManager methods is straightforward. Use full paths for the first
parameter and Java ints for the types and creators.

TIP

When “exporting” files rather than saving files from your applications, set the exported file’s creator to an application
that handles that type of file. For example, if you exported a *.png file from your application, you might set the cre-
ator to Photoshop instead of your application.

What is not so straightforward is figuring out what the common types and creators are that you
want to use when creating your documents. The FileManagerExample application that fol-
lows provides you with a quick, easy tool for finding Java ints representing types and creators.
The FileManagerExample also demonstrates the use of the FileManager class.

The source and a double-clickable Java application bundle version of this program are both
found on the book’s Web site.

package com.genedavis;

import java.awt.Container;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;

import java.io.IOException;

import javax.swing.JButton;

import javax.swing.JFileChooser;
import javax.swing.JFrame;

import javax.swing.JOptionPane;
import javax.swing.JPanel;

import com.apple.eio.FileManager;
public class FileManagerExample

{

JFrame mainFrame;

public static void main(String[] args) throws Exception
{

new FileManagerExample () ;

public FileManagerExample ()

{
mainFrame = new JFrame ("File Manager Example") ;
Container pane = mainFrame.getContentPane() ;
pane.setLayout (null);

JButton button = new JButton ("Open Dialog");
mainFrame.add(button);
button.setBounds (120, 70, 160, 32);

e Lhabter /. intearatina winaows., menus. . ana vialoa npoxes =

button.addActionListener (new ActionListener ()

{

public void actionPerformed (ActionEvent ae)

{
Thread t = new Thread(new Runnable ()
{
public void run()
{
openDialog () ;
}
)
t.start () ;
}

1)

mainFrame.setSize (400, 200);
mainFrame.setVisible (true) ;

private void openDialog /()
{
try
{
JFileChooser jfc = new JFileChooser () ;
jfc.showDialog (mainFrame, "Get Type and Creator");

File file = jfc.getSelectedFile();
String path = file.getCanonicalPath() ;

// Get the creator and type using FileManager
int creator = FileManager.getFileCreator (path) ;
int type = FileManager.getFileType (path) ;

JOptionPane.showMessageDialog (

mainFrame,
"File: " + path + "\n\n" +
"Creator: " + creator + "\n" +
"Type: " + type);

}

catch (IOException ioe)

{

ioe.printStackTrace() ;

E Bringing Guidelines, APls, and Languages Together

The book’s Web site contains the source for the FileManagerExample class. The source is in
the file_manager_example project. | created the file_manager_example project
based on the Xcode Organizer Java Application template. The project is an Ant-based project,
so you can integrate it into most popular Java IDEs.

To build the project, open Terminal from the /Applcations/Utilities/ directory.
Change your directory to the project directory root with the cd command. Enter the command
ant in the Terminal. The Ant project creates a Mac OS X application bundle and places it in the
dist/ directory. Navigate to the project dist/ directory from Finder and double-click your
new application to run the example.

CROSS-REF

In Chapter 3, | explain use of Organizer to create Java project templates.

This application opens a JFrame. The JFrame contains one button. Clicking the button opens
a file browser. Select a file with the file dialog box; and if it has a type and creator, they are dis-
played, as shown in Figure 7.1. Otherwise, 0 is displayed for each value.

Figure 7.1
Message dialog box showing a file path, type, and creator
iS00y blessaoe
File: fUsers jrdavis /Documents fhest presentation.docx
’ Creator: 1297307460
Type: 1465401934

| use the FileManager class near the end of the openDialog () method. | call both
getFileCreator () and getFileType ().Both static methods return int values. | display
those two values in the message dialog box.

Investigating com.apple.eawt Classes

Most applications need a Help Viewer, a customized Dock menu, or at least a working prefer-
ence menu item in the application menu. Intercepting system quit events, implementing an
application menu preference item, and providing menu item searching from a Help menu on
your screen menu may not “wow” your customers, but your OS X customers will notice if those
features are missing. The com. apple. eawt package contains the classes for all these tasks.

___________Chapter7:integrating Windows, Menus, and Dialog B 8 =

Manipulating the Dock

One of the most obvious features of OS X is the Dock. When magnification is turned on, beauti-
ful icons seem to burst into view as users mouse over them. Properly bundled Java applications
take full advantage of the Dock and Dock menus.

The com. apple.eawt .Application class provides several methods for manipulating the
OS X Dock. The Application’s setDockIconImage () method allows you to customize your
Dock icon beyond displaying your default application bundle icon. Also, the Application’s
setDockIconBadge () method enables system badging of the Dock icon. (In this context,
badges are small images attached to an application’s Dock icon that provide visual clues as to the
current state of the application.)

The com. apple.eawtApplication method most commonly used by Java developers is
the setDockMenu () method. This method places custom menu items and submenus on
the dock.

Follow these steps to customize the Dock menu:

1. Instantiate your application’s JFrame.

2. Createa java.awt.PopupMenu for use in the Dock.

3. Add menuitems and submenus to the PopupMenu.

4. Add your PopupMenu to your JFrame with the add() method.
5. Instantiatea com.apple.eawt.Application object.

6. Add your PopupMenu to your Application object using the setDockMenu() method.

TIP

I encourage Java application bundling on 0S X. However, if you want to forgo the joys of creating application bundles
for your Java applications and still want to have a nice-looking name and icon in the 0S X Dock, | have a couple of com-
mand line arguments for you.

The -Xdock : name=<some name> argument customizes your application name in the Dock, and the
-Xdock: icon=<some path> argument customizes your Dock icon. For example,

java -Xdock:name="My App" -cp ame.jar -
com.genedavis.ApplicationMenuExample

sets com.genedavis.ApplicationMenuExample to run under the name My App.

TIP

When running a bundled application in headless mode, meaning no menu or Dock icon, use a combination of the
java.awt .headless property set to true and LSUIElement set to 1. Set both properties in your
Info.plist.

EEEEEIE;; Bringing Guidelines, APls, and Languages Together

Some employers may not want a full application bundle created for their cross-platform Java
application. Never fear, Dock modifications are available from double-clickable JAR files as well
as bundled applications. The following example works well from the command line, a double-
clickable JAR, and an application bundle.

The following source is for the DockExample class. DockExample follows the steps | stated
for modifying the Dock menu with a PopupMenu. The DockExample class illustrates adding
custom menus and menu items to the OS X Dock. The final Dock menu for the Dock Example
program is shown in Figure 7.2. The source files for Dock Example are on the book’s Web site.

Figure 7.2

Modified Dock menu
from DockExample
class execution

Bl Dock Example

First Menu [tem
Second Menu Item
Nested Menu L

Options

Hide
Quit

package com.genedavis;
import java.awt.Menu;
import java.awt.Menultem;
import java.awt.PopupMenu;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import com.apple.eawt.Application;
public class DockExample {

public static void main(String[] args)

{

//create the JFrame
final JFrame mainFrame = new JFrame ("Dock Example") ;

// Make sure the dock exists before you
// attempt to modify it.

Application app = new Application() ;
PopupMenu popup = new PopupMenu () ;

Menu submenu = new Menu("Nested Menu");

—_____________Lhabter 7. ilhntedrating winaows. ivienus., anda vialod boxes

// create Menultems (not JMenultems)

Menultem firstItem =

new Menultem("First Menu Item") ;
Menultem secondItem =

new MenulItem("Second Menu Item") ;

Menultem thirdItem =
new MenuItem("Third Menu Item") ;

// create action listeners

firstItem.addActionListener (
new ActionListener () {
public void actionPerformed (ActionEvent ae)
{
JOptionPane.showMessageDialog (
mainFrame,
"First Action");
}
)
secondItem.addActionListener (
new ActionListener () {
public void actionPerformed (ActionEvent ae)
{
JOptionPane.showMessageDialog (
mainFrame,
"Second Action");
}
1)

thirdItem.addActionListener (
new ActionListener () {
public void actionPerformed (ActionEvent ae)
{
JOptionPane.showMessageDialog (
mainFrame,
"Third Action");
}
)

// make the JFrame visible before adding popup
mainFrame.setSize (400, 200);
mainFrame.setVisible (true) ;

//adding menus and menu items

popup.add(firstItem);

popup.add(secondItem) ;

submenu.add(thirdItem) ;
popup.add(submenu) ;

// your popup must be added to your JFrame
// even though it is used by the Dock
mainFrame.add(popup);

// finally you are ready to set the
// custom Dock menu
app.setDockMenu (popup) ;

}

The book’s Web site contains the source for the DockExample class. The source is in the
dock_example project. | created the dock_example project based on the Xcode Organizer
Java Application template. The project is an Ant-based project, so you can integrate it into most
popular Java IDEs.

To build the project, open Terminal from the /Applcations/Utilities/ directory.
Change your directory to the project directory root with the cd command. Enter the command
ant in the Terminal. The Ant project creates a Mac OS X application bundle and places it in the
dist/ directory. Navigate to the project dist/ directory from Finder and double-click your
new application to run the example.

Opening the Help Viewer

Help Viewer is the Apple help system. Help Viewer displays help books created for application
documentation purposes. OS X users are accustomed to the Help Viewer, so again, the Apple-
provided technology is the best API to use in your OS X Java applications.

In this section, | explain simple Help Viewer integration into Java applications. This section
explains Info.plist properties associated with help, help book creation, help book place-
ment, and integration into the menu bar.

Follow three steps to implement Help Viewer integration:

1. cCreateweb pages with relative links containing your support pages.
This is your help book.

2. Place your help book in a subdirectory of your application bundle’s Resources
folder.

I chose the name of help_book for the directory in this section’s example.

3. Setthe CFBundleHelpBookName and CFBundleHelpBookFolder properties in your
application’s Info.plist file.

dows, Menus, and Dialog Boxe E

As | mentioned earlier, Help Viewer displays help books. A help book, in its simplest form, is a
collection of HTML 4.01 pages. Many applications ported from other platforms already have
HTML-based help systems. HTML is a common approach for help implementation.

HTML is the language of Web pages. If you have a set of customer support pages on your Web
site, your first step in creating a help book is retrieving a copy of those pages. All image tags
and hyperlinks must contain relative links. The Web developer who set up your Web site under-
stands how to create relative links. Be sure to request relative links, or your help book may con-
tain broken links.

Your entry Web page needs the following lines of code in the header somewhere above the
title tag:

<meta http-equiv="content-type"
content="text/html;charset=is0-8859-1">
<meta NAME="AppleTitle" CONTENT="<apple title goes here>">

Change <apple title goes here> to your desired help book title. The title should not have
angle brackets.

Browse your help book with a normal Web browser, such as Safari, in order to test that all the
resources are linked properly. Move your help book into your application bundle with the fol-
lowing steps:

1. Name the entry page for your help book index.html.

The filename must be index . html in order for Help Viewer to recognize it. It is very
likely that the entry page is already named index, but with a different file extension,
such as php or jsp.

2. Create afolder for your help book under the Resources folder in the application
bundle.

3. Copy your help book into the new help book folder.

NOTE

Relative links are links that give an address “relative” to the current file and directory.

Your application bundle contains a file called Info.plist. Double-clicking the Info.plist
file opens it in the Property List Editor. Using the Property List Editor, add the
CFBundleHelpBookName and the CFBundleHelpBookFolder properties. The alternate
names for these properties are Help Book identifier and Help Book directory name.

The CFBundleHelpBookName identifies the help book to the system. Choose a name that
you feel is appropriate. The name actually displayed in the Help Viewer is taken from the HTML
file's head area.

The CFBundleHelpBookFolder names the directory under Resources in which your help
book is stored. This folder is the directory you created in Step 2 of the preceding list.

The last step to implementing a basic help book is creating your Help menu. You can use two
tricks to make the implementation easier. First, set your menu preference to screen menus. On
OS X, menus can reside in the application window or at the top of the monitor. Most OS X appli-
cation have their menus set to use screen menus instead of menus attached to windows. Set
your preferred menu style with the following line of code:

System.setProperty("apple.laf.useScreenMenuBar", "true");

Second, call openHelpViewer () onyour com.apple.eawt.Application object when
your help menu item is selected.

Create your menu bar, menus, and menu items using JMenuBar, JMenu, and JMenuItem,
just as you do with other Java applications. Also, add your JMenuBar to your JFrame as nor-
mal. Create a JMenu titled Help and add a menu item to the Help menu for opening the Help
Viewer. The action performed by the help menu item is openHelpViewer ().

That's all you need to do to create a basic OS X-compliant help book for your Java application.

When you run your Java application from the application bundle, notice that you get an extra
search field under your help menu for free. Probably the coolest feature of this free search is
that it searches for menu items matching the search parameters. For instance, if you have a
JMenuItem titled “Coolest Feature of All Time” hidden away in 16 layers of submenus, all your
user has to do is type “Coolest Feature” into Help=> Search and the built-in help system displays
the menu item they desire.

Now an example is in order. The following example is available on the book’s Web site. The
code consists of a three-file help book, one main class named HelpViewerExample, and an
application bundle.

As | just mentioned, the book’s Web site contains the source for the HelpViewerExample
class and the help files. The source is in the help_viewer_example project. | created the
help_viewer_example project based on the Xcode Organizer Java Application template.
The project is an Ant-based project, so you can integrate it into most popular Java IDEs.

To build the project, open Terminal from the /Applcations/Utilities/ directory.
Change your directory to the project directory root with the cd command. Enter the command
ant in the Terminal. The Ant project creates a Mac OS X application bundle and places it in the
dist/ directory. Navigate to the project dist/ directory from Finder and double-click your
new application to run the example.

The following three basic HTML files are interlinked creating a base help book. The file index.
html is the entry point for the help book. Help books, like Web pages, use files named index.
html for their default page.

Lhapter /7. integarating windows, ivienus, and vialod boXes =

NOTE

The official Apple Help Book Programming Guide is available here:

http://developer.apple.com/mac/library/documentation
/Carbon/Conceptual /ProvidingUserAssitAppleHelp
/user_help_intro/user_assistance_intro.html

The following source code is for the index . html page. This is the entry page for your help
book. Notice the two meta tags mentioned earlier. The meta tag containing the AppleTitle
attribute should not appear in other help book Web pages.

<html>
<head>
<meta http-equiv="content-type"
content="text/html;charset=is0-8859-1">
<meta NAME="AppleTitle" CONTENT="Help Viewer Example">
<title>Help Viewer Example</title>
</head>
<body bgcolor="white">
<hl>Help Book Example</hl>
<h2>Table of Contents</h2>
<p>This is the Help Viewer Example.</p>

Topic l</1li>
Topic 2

</body>
</html>

The following source code is for the topic_1.html page. Notice the relative hyperlinks in
anchor tags.

<html>
<head>
<title>Help Viewer Example: Topic l</title>
</head>
<body bgcolor="white">
<hl>Topic 1</hl>
<p>This is the Help Viewer Example Topic number 1.</p>

Table of Contents
Topic 2

</body>
</html>

Brinaing Guiaelines. A¥IS. anad Lanaduaaes roagethery.

The following source code is for the topic_2 .html page, for completeness:

<html>
<head>
<title>Help Viewer Example:
</head>
<body bgcolor="white">
<hl>Topic 2</hl>
<p>This is the Help Viewer Example Topic number 2.</p>

Topic 2</title>

Table of Contents
Topic 1l</1li>

</body>
</html>

| placed these three HTML files in the application bundle. Their location is Contents/
Resources/help_book. | named the help book folder help_book

The Info.plist file contains the two help book specific properties,
CFBundleHelpBookName and CFBundleHelpBookFolder, as shown in Figure 7.3.
CFBundleHelpBookName is set to the value of Help Viewer Example Help.
CFBundleHelpBookFolder is setto help_book.

Figure7.3

Info.plist for Help Viewer Example application

|| Info.plist (=)

8006

Key Value
Infarmation Property List (13 items) =
Help Book identifier Help Viewer Example Help
Help Book directory name help_book
Localization native development re English
Executable file JavahpplicationStub

Get Info string
Bundle name
Rundle versinn
Localized resources can be mixed
Bundle 05 Type code
Bundle creator O5 Type code
InfaDictionary version
Icon file
¥ Java
ClassPath
IWMVersion
MainClass
¥ Properties
apple.laf.useScreenManuBar

Help Viewer Example

n.1

E

APPL

Eiiid

6.0

help_viewer_example.icns

(4 iverns)

LJAVARDOT fhelp_viewer_sxample jar
L6+

1 irem)
true

e Chapter /:integrating WWindows, iVienus, anda Dialoa B 8 =

The following code is the source for the HelpviewerExample class. HelpViewerExample
is the only Java class in this example. In HelpViewerExample, | instantiate a com. apple.
eawt . Application object. | configure the menu bar to display as a screen menu rather than
in the Java JFrame. Next, | set up a JFrame, complete with menu bar and Help menu, and
Example Help Book menu item. Finally, | set the JFrame to visible.

package com.genedavis;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JFrame;
import javax.swing.JdMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenultem;
import com.apple.eawt.Application;
public class HelpViewerExample {
public static void main(String[] args)

{

// com.apple.eawt.Application
final Application app = new Application();

// setting the look and feel to use apple screen menu
System.setProperty("apple.laf.useScreenMenuBar", "true");

JFrame mainFrame = new JFrame("Help Viewer Example");

// configuring and adding menubar to mainFrame
JMenuBar jmb = new JMenuBar () ;

JMenu fileMenu = new JMenu("File");
JMenu editMenu = new JMenu("Edit");
JMenu windowMenu = new JMenu("Window");
JMenu helpMenu = new JMenu("Help");

jmb.add(fileMenu) ;
jmb.add(editMenu) ;
jmb.add(windowMenu) ;
jmb.add(helpMenu) ;

JMenultem newlItem = new JMenultem("New") ;
JMenultem openlItem = new JMenultem("Open...");

JMenultem cutItem = new JMenultem("Cut");
JMenultem copylItem = new JMenultem("Copy");
JMenultem pasteltem = new JMenultem("Paste");

Brindindg Guidelines, AriS, and Lanaduadagdes i1odetner. oo

JMenuIltem helpExampleItem =
new JMenultem("My Example Help Book") ;
// event that opens the help book is here
helpExampleItem.addActionListener (
new ActionListener () {
public void actionPerformed (ActionEvent ae)
{
app.openHelpViewer () ;
}
)i

fileMenu.add(newItem) ;
fileMenu.add(openItem) ;

editMenu.add(cutItem);
editMenu.add(copyItem) ;
editMenu.add(pasteltem);

helpMenu.add(helpExampleItem) ;
mainFrame.setJMenuBar (jmb) ;

// setting the size of the JFrame
mainFrame.setSize(400, 200);

// making the JFrame visible
mainFrame.setVisible(true);

}

Once bundled, the example Help menu contains a Search menu item and the Help Book
Example menu item as shown in Figure 7.4. When you select Help => Example Help Book, the
Help Viewer displays the index.html entry page, as shown in Figure 7.5.

Figure 7.4
Help menu from the Help Viewer Example application

Example Help Book

Figure 7.5

Help Viewer display of index . html for the Help Viewer
Example application

[Nals) Help Viewer Example
a-

Help Book Example

Table of Contents
This is the Help Viewer Example,
» Topic |

e Topic 2

Handling About, Preferences, and Quit

All windowed OS X applications contain an application menu. The application menu is right
next to the apple menu in the top-left corner of the screen. When Java applications are not
packaged in application bundles, the application menu is branded with the fully qualified Java
name of the application’s main class. For instance, com. genedavis.
ApplicationMenuExample is the application menu name of this section’s example when
run from a JAR, as show in Figure 7.6.

If an application is properly bundled, the title of the application menu matches the actual appli-
cation name, as shown in Figure 7.7. Many users are confused by a class name when they are
expecting an application name. Properly bundled applications present more professional-look-
ing user interfaces and confuse fewer users.

When you are ready to bundle your Java application, use the Jar Bundler application installed
with Xcode to create and properly name your application bundle. Bundling your Java applica-
tion results in a properly branded application menu. The Jar Bundler application is located in
the /Developer/Utilities/ directory.

CROSS-REF

In Chapter 5, l introduce bundling of Java applications in depth.

Figure 7.6
Application menu branded with fully qualified class name

(& comsencdnvs ApplatontisnuEsams |

E Bringing Guidelines, APIs, and Lanquages logether

Figure 7.7

A bundled application menu branded with the application name

[#& Application Menu Exampl |
TIP

The first step to creating an application bundle is packaging your Java application in a JAR file. Make a JAR file quickly
from the Finder by selecting the files and folders you desire to JAR. Next, Control-click (or right-click) the selection.
Choose Compress Items from the contextual menu. Finally, change the name of the resulting Archive . zipfile to
some_name. jar. Afterall, JAR files are really just ZIP files.

The application menu contains three menu items of interest to Java application developers. The
menu items are the About menu item, the Preferences... menu item, and the Quit menu item, as
shown in Figure 7.8. These menu items are not available through the standard Java APIs.

However, Apple provides two classes and an interface that provide access to these menu items.

TIP

Versions of the About and Quit menu items are provided by default by 0S X. However, the behavior does not satisfy the
needs of your advanced programs. For instance, if you do not handle the Quit event, your users’ unsaved documents
summarily disappear without the chance of recovery when your users accidentally quit without saving.

Figure 7.8

Application menu for Application
Menu Example

About Application Menu Example
Preferences... %,
Services >

Hide Application Menu Example $#H
Hide Others N#H
Show All

Quit Application Menu Example 3£0Q

With just a few simple steps, the About, Preferences..., and Quit menus integrate with your
application. | give a detailed example of the integration steps later in this section, but here’s a
short version:

1. Extend com.apple.eawt.ApplicationAdapter to create your own ApplicationAdapter.
2. Implement the handleAbout() method in your ApplicationAdapter.
3. Implement the handlePreferences() method in your ApplicationAdapter.

4. Implement the handleQuit() method in your ApplicationAdapter.

e ________Chapter 7: Integrating Windows, Menus, and Dialog B g 4o W s

5.

Instantiate a com.apple.eawt.Application object.

o

Call setEnableAboutMenu() on your Application object with the argument of true.

N

Call setEnablePreferencesMenu() on your Application object with the argument of
true.

8. call addApplicationListener() on your Application object with your
ApplicationAdapter implementation as the argument.

TIP
The javadoc for the Application class, the ApplicationaAdapter cass, and the
ApplicationListener interfaceis found here:

http://developer.apple.com/mac/library/documentation
/Java/Reference/JavaSE6_AppleExtensionsRef/api/com
/apple/eawt/Application.html

The Application class is the key class when integrating with the application menu.

The Application class provides the About, Preferences..., and Quit events to an
ApplicationListener.In the case of the preceding steps, the ApplicationAdapter is
an implementation of the ApplicationListener interface. Figure 7.9 is a diagram showing
the relationship of these classes with the applicable methods.

Figure 7.9

Applicationclass, ApplicationAdapter class, and
ApplicationListener interface

<<interface>>
ApplicationListener

handleAbout(event : ApplicationEvent) : void
handlePreferences(event : ApplicationEvent) : void
handleQuit(event : ApplicationEvent) : void

|

|

|

|

I

Application ApplicationAdapter

setEnabledAboutMenu(enable : boolean) : void handleAbout(event : ApplicationEvent) : void
setEnabledPreferencesMenu(enable : boolean) : void handlePreferences(event : ApplicationEvent) : void
addApplicationListener(Listener : ApplicationListener) : void handleQuit(event : ApplicationEvent) : void

The Application Menu Example application found on the book’s Web site demonstrates imple-
menting the three menu items in the application menu. The application consists of four classes.
The classes are ApplicationMenuExample, AMEListener, AMEAboutBox, and
AMEListener. The Application Menu Example is diagrammed in Figure 7.10.

g Bringing Guidelines, APls, and Languages Together

Figure 7.10

Application Menu Example application

<<interface>>
ApplicationListener

A
T
I
I
|

ApplicationAdapter

ApplicationMenuExample

main() : void
T AMEAboutBox

AMEListener K>—>

Application handleAbout() : void

handlePreferences() : void AMEPreferences
handleQuit : void

As | mentioned, the book’s Web site contains the source for the ApplicationMenuExample,
AMEListener, AMEAboutBox, and AMEListener classes. The source is in the
application_menu_example project.|created the application_menu_example
project based on the Xcode Organizer Java Application template. The project is an Ant-based
project, so you can integrate it into most popular Java IDEs.

To build the project, open Terminal from the /Applcations/Utilities/ directory.
Change your directory to the project directory root with the cd command. Enter the command
ant in the Terminal. The Ant project creates a Mac OS X application bundle and places it in the
dist/ directory. Navigate to the project dist/ directory from Finder and double-click your
new application to run the example.

The ApplicationMenuExample class contains themain () method.Inthemain ()
method, | instantiate the Application object and then set the About and Preferences...
menu items to enabled. Next, | instantiate the AMEListener and add it to the Application
object. Finally, | create the application’s JFrame.

Here is the source for the ApplicationMenuExample class:

package com.genedavis;

import javax.swing.JFrame;

import com.apple.eawt.Application;

public class ApplicationMenuExample {
public static void main(String[] args)

{

e ________Chapter 7: Integrating Windows, Menus, and Dialog B

Application app = new Application() ;

app .setEnabledAboutMenu (true) ;
app.setEnabledPreferencesMenu (true) ;

AMEListener listener = new AMEListener () ;
app.addApplicationListener (listener);

JFrame mainFrame = new JFrame ("Application Menu Example") ;
mainFrame.setSize (400, 200);
mainFrame.setVisible (true) ;

}

The AMEListener extends the ApplicationAdapter.The ApplicationAdapter isan
implementation of the ApplicationListener. Extending the ApplicationAdapter
simplifies implementing the ApplicationListener, if you do not want the bother of
implementing all the ApplicationListener methods.

The following source is the source for the AMEListener class. Notice that only the
handleabout (), handlePreferences (),and handleQuit () methods are imple-
mented. Both the AMEAboutBox and the AMEPreferences JDialogs are contained by
the AMEListener. They are merely set to visible as needed.

Notice that all three methods call setHandled (true). The system does not assume that
these three events are handled correctly. You must notify the system when each event is handled.

The handleQuit () method deserves a note or two. Quitting from the Dock, from the
application menu, and from the Command+Q key combination all require this method imple-
mentation. Providing this method implementation gives your users a natural Mac experience.
Here’s the code:

package com.genedavis;

import javax.swing.JOptionPane;

import com.apple.eawt.ApplicationAdapter;

import com.apple.eawt.ApplicationEvent;

public class AMEListener extends ApplicationAdapter
{

private AMEAboutBox about = new AMEAboutBox() ;
private AMEPreferences preferences = new AMEPreferences();

@Override
public void handleAbout (ApplicationEvent e)
{

about.setVisible(true);

e.setHandled (true) ;

Bringing Guidelines, APIS, and Lanquages logether. . .

@Override
public void handlePreferences (ApplicationEvent e)
{

preferences.setVisible(true);

e.setHandled (true) ;

}

@Override

public void handleQuit(ApplicationEvent e)

{
JOptionPane.showMessageDialog(null, "Quit handled.");
e.setHandled (true) ;
System.exit (0) ;

}

Persisting Preferences

AMEPreferences is the preferences dialog box for the Application Menu Example app. As
shown by AMEPreferences, Java applications on OS X should use the java.util.prefs.
Preferences class to persist application preferences.

CAUTION

It is very common for applications (Java and non-Java alike) on Unix operating systems to persist user preferences and
other configurations in dot directories in users” home directories. Don't let that convention throw you.

The next example is the source for the AMEPreferences class. If you run the Application
Menu Example app, you see that the preferences dialog box has one working preference, as
shown in Figure 7.11. The preference is a simple check box. The preference value is stored in the
sample_preference preference. It is retrieved with a call to getBoolean () on the
Preferences instance. It is set with a call to putBoolean () onthe Preferences object.

Figure 7.11

The preference dialog box for Application Menu
Example

B0 Eiefarences)

a Sample preference

—_____________(Chapter /7. integrating windows, ivienus, anda vialod boXes =

The only tricky part of using the java.util.prefs.Preferences class is instantiating it.
The storage location is based on the package name of the class that you pass the Preferences
constructor. | usually use the class that contains my main () method when instantiating a
Preferences constructor.

TIP

If you want to modify your Java preferences by hand, navigate to the ~ /Library/Preferences directory.
Then openthe com.apple.java.util.prefs.plist filein the Property List Editor.

CAUTION

If multiple applications use the same package to store preferences, naming conflicts can occur. When naming conflicts
occur with preferences, the applications can overwrite each other’s preferences. Choose wisely, and you will never
have naming conflicts.

package com.genedavis;
import java.awt.*;
import java.awt.event.*;
import java.util.prefs.Preferences;
import javax.swing.*;
public class AMEPreferences extends JDialog
{
private Preferences prefs =
Preferences.userNodeForPackage (
ApplicationMenuExample.class) ;
private JCheckBox sampleCheckBox;

public AMEPreferences ()

{
boolean samplePref =
prefs.getBoolean ("sample_preference", false);
initComponents () ;
sampleCheckBox.setSelected (samplePref) ;
}
private void changePreference (ActionEvent e)
{
JCheckBox jcb = (JCheckBox) e.getSource();
boolean selected = jcb.isSelected();
prefs.putBoolean ("sample_preference", selected);
}
private void initComponents ()
{

sampleCheckBox = new JCheckBox() ;
setTitle("Preferences") ;

Container contentPane = getContentPane() ;
contentPane.setLayout (new BorderLayout()) ;
sampleCheckBox.setText ("Sample preference") ;

Bringing Guidelines, APls, and Languages Together

sampleCheckBox.setHorizontalAlignment (SwingConstants.
CENTER) ;

sampleCheckBox.addActionListener (new ActionListener () {

public void actionPerformed (ActionEvent e) {
changePreference (e) ;

}

)i

contentPane.add (sampleCheckBox, BorderLayout.CENTER) ;

setSize (400, 300);

setLocationRelativeTo (null) ;

Creating Human Interface compliant About boxes

Apple’s Human Interface Guidelines are very specific about the design of About boxes. About
boxes provide branding, versioning, and copyright for your application. About boxes are
optional, but most software has them. Users often open the About box looking for contact
information.

Your About box should contain a title bar with no title. The title bar should contain the three
window control gem icons on the left side with only the red window closing icon active. About
boxes are not resizable. About boxes are modeless. Allow users to move their About boxes.
About boxes do not appear in application window lists. About boxes remain visible, even when
the application is not in focus.

These are typical contents of an About box:

@ Graphic branding, such as an application icon

@ Application name

Version info, matching the version displayed by the Finder
Copyright (optional)

Contact information (optional)

© @ @ ¢

Credits (optional)
@ A button opening a company Web page (optional)

| provide an example of an About box with the AMEAboutBox class, shown in Figure 7.12. To
conform with the Human Interface Guidelines, the AMEAboutBox is not modal. This means
that the About box does not block users from working in other windows while the About box is
open.

Also, the About box is not resizable or minimizable. The only window control that is active is the
red closing icon in the top-left corner of the About box. In Java, this is accomplished with a cus-
tom JDialog, rather than with a JWindow or JFrame. JWindows do not have the title bar
with the close control. JFrames have no way of disabling the minimize button.

e Chapter /:integrating WWindows, iVienus, anda Dialoa B

Figure 7.12
The About box for Application Menu Example

A Nelel

version info here
copyright info here

Finding your mouse location

Occasionally, you want to know where your mouse is on the screen. You can use two methods
to find your mouse location. Your choice of methods depends on the version of OS X you are
coding against.

Prior to the Java 1.5 release for OS X, finding the mouse location on the screen was handled
with the com. apple.eawt .Application class. The method getMouseLocationOn-
Screen () was called. The getMouseLocationOnScreen () returnsan AWT Point object
containing the mouse pointer’s hot spot on the monitor.

Since the release of Java 1.5, Apple deprecated the getMouseLocationOnScreen ()
method. On newer version of OS X, use a combination of the MouseInfo getPointer-
Info () method andthe PointerInfo’sgetLocation () method. The resultis the same.
The getLocation () method returns an AWT Point object.

NOTE

Location coordinates on the monitor are arranged the same way as the location in JFrames. The upper-left corner is
(0, 0) and the lower-right corneris (resolutionwidth -1, resolutionheight - 1).

CAUTION

Location coordinates can be negative when moving the mouse to a second monitor to the right or above the current
monitor.

The following example, FindTheMouse, illustrates the old and new methods for finding the
location of the mouse on the screen.

package com.genedavis;
import java.awt.MouselInfo;
import java.awt.Point;
import java.awt.PointerInfo;

E Bringing Guidelines, APIS, and Lanquages logether. . .

import com.apple.eawt.Application;
public class FindTheMouse
{

public static void main(String[] args)

{

Application app = new Application();
PointerInfo pi;
Point pl, p2;

while (true)
{

pl = app.getMouseLocationOnScreen() ;

pi = MouseInfo.getPointerInfol();
p2 = pi.getLocation();

System.out.println (
"0ld way (" + pl.x + ", " + pl.y + "), \n" +
"New way (" + p2.xX + ", " + p2.y + ")\n\n");

try
{

Thread.sleep(500) ;
}

catch (Exception e)

{3

}

To compile the com. genedavis.FindTheMouse class from the Terminal, place the class in
a directory structure matching the package structure. Then use the following command:

javac com/genedavis/FindTheMouse.java

After compiling the FindTheMouse class, use the following command to run the application
from the Terminal:

java com.genedavis.FindTheMouse

The FindTheMouse class contains only amain () method. First, | create the com. apple.
eawt .Application class, and then | put the application into an infinite while loop. The loop
checks the mouse location with the old method,

pl = app.getMouseLocationOnScreen() ;

and then checks the mouse location with the new method,

e Chapter /:integrating WWindows, iVienus, anda Dialoa B 8 =

MouseInfo.getPointerInfol() ;
pi.getLocation() ;

pi
p2

The code then prints out the locations, as shown in Figure 7.13, and sleeps for half a second. If
you see a difference between the mouse location retrieved with the old and new method, the
difference is probably because the mouse is moving while the locations are retrieved.

Figure 7.13

Results of executing the FindTheMouse class in
the Terminal

WinmaC:bin toavish jova com.genedayis.FindThetiouse
Old way (446, 123},
Mew way (446, 123)

Ol way (476, 1357,
Hew way (176, 135)

Old way (481, 128),
Hew way (401, 120)

Uld way (499, 3430,
New wuy (499, 3437

Nld way (471, 3RR),
New way (471, 358

Old way (376, 370},
Hew way (3ib, T}

Old way (443, 432),
New way (443, 437)

Old way (438, 3383,
Mew way (438, 33@)

1 |

Summary

In this chapter, | discussed the com.apple.eioand com.apple.eawt packages. OS X has
several common features not covered by the pure Java APIs, so it requires additional APIs for
Java applications to feel like native applications. These features include application bundle
resources, the Help Viewer, the Dock, and the application menu.

The com.apple.eio.FileManager contains static methods for handling OS X-specific fea-
tures related to files. FileManager includes methods for finding paths to application bundle
resources. It contains a method for finding your application’s enclosing bundle. It also contains
methods for getting and setting file types and creators.

BrINAINng Guiaelines.. ArisS. ana Landuaagaes 10aetner. s

I discussed two of the classes found in the com. apple.eawt package. The classes | explained
are the Application class and the ApplicationAdapter class. These classes contain
methods for handling Dock modifications, system events, and help books.

In this chapter, | purposely avoided discussion of the CocoaComponent class because of its
advanced nature. It requires the use of JNI. | begin discussion of JNI and OS X integration in
Chapter 8.

Embedding Cocoa
Components
—

The application menu, the Dock, the Help Viewer, and other

features are all available to your Java application. If you want
your application to look native, you can make it look and feel
like any Cocoa or Carbon application.

You can do more than just make your Java application look and
feel like Cocoa and Carbon applications. The com. apple.eawt
package contains one class that allows you to embed native GUI
widgets and interfaces directly into your JFrames and other Java
Containers. This class is the CocoaComponent class.

The CocoaComponent integrates with native Objective-C GUI
elements. The elements are Objective-C NSView objects. The
native code you write instantiates an NSView and then passes the
NSView reference back to the Java CocoaComponent. You place
the CocoaComponent in the Java Container of your choice.

Using CocoaComponents requires knowledge of JNI, C, and
Objective-C. Also, an understanding of the Cocoa framework is use-
ful. I explain the JNI, C, and Objective-C code used in this and other

chapters. | do not attempt to thoroughly teach C or Objective-C.
Rather, | attempt to give you a basic understanding of C and N In This Chapter
Objective-C as it applies to implementing CocoaComponents.

I explain JNI on OS X more thoroughly in Chapter 9. Other chapters Integrating
also use JNI as the basis of examples, such as screensaver integra- CocoaComponents
tion and ncurses support. Apple suggests using JNI for Java

interaction with native Apple technologies. Learning JNI opens

many Apple technologies to your Java application development. Building JNI applications
with Ant

Examining NSViews

In this chapter, | explain basic JNI for the integration of
CocoaComponents with Swing and AWT. | begin by explaining
basic Java interaction with Objective-C objects by way of JNI. |

Finding method
signatures with Javap

explain the creation of C header files with javah. Creating JNI headerj Wit:
ava
Of course, some C and Objective-C are involved. When | use C and Introducing Objective-C

Objective-C, | explain the details of the code so Java developers can
understand it. | give as many details as are relevant to this chapter.

After explaining the basics of JNI and Objective-C integration, |
delve into a deeper explanation of CocoaComponent use of JNI.

Events and data traveling to and from Java and Objective-C are rarely compatible. | explain
passing events in both directions, while making their data compatible. | also explain how to
avoid blocking and locking your applications while passing events around.

Integrating Objective-C and Java

Objective-C and Java are worlds apart. Pointers, defines, and other C holdovers pervade
Objective-C. Most Objective-C application developers still handle their own memory manage-
ment without the benefits of automated garbage collection. Delving into Objective-C will
remind you why you chose Java as your preferred language.

On the other hand, Objective-C is an advanced and powerful Object-Oriented language. Many
of the design patterns applied to Objective-C application development feel familiar to Java
developers. After learning Objective-C, Java developers often find themselves wishing Java had
a few of Objective-C's features.

Objective-C is based on ANSI C. Objective-C is an Object-Oriented version of C. More than one
developer has pointed to Objective-C and said Objective-C succeeded where C++ failed. If you
know a smattering of C and understand Java, learning Objective-C is easy. Expect to be produc-
tive in Objective-C in a few hours.

NOTE

Much of your understanding of Object-Oriented Programming (00P) from Java carries over to Objective-C. Often the
Objective-C syntax is very different from Java, or concepts, such as interfaces, have more richness in Objective-C, but
after the initial learning curve Objective-Cis very friendly to Java programmers.

Because Objective-C is based on C, JNIis a natural fit for integration of Java and Objective-C.
The preferred development framework supported by Apple is the Cocoa framework. The Cocoa
framework is an Objective-C framework. Full integration of your Java application with most
Cocoa libraries is only a few JNI calls and callbacks away.

Follow these steps to create a basic JNI bridge to native code:

1. Create the native code in C, Objective-C, or C++.
2. Create the Java class that will handle JNI communication.
« Label methods that will call native C methods with the native keyword.

Create private methods that your native C functions will use for callbacks to Java.

Add a static block in the Java class to load your native library.

Compile your Java class that handles the JNI interaction.

NGO UusLHW

Execute the javah command on the command to create a C header file.

9.

10.

Execute the javap command to find the method signature of your private Java
methods.

These are the methods you use to accept messages from your native code.

Write a C interface hooking up your native C, C++, or Objective-C code to your
Java class.

The Cinterface #includes the header file created with javah and implements the
callback to Java.

Compile your native source into a dynamic library for loading by your JVM.

The second example later in this chapter implements these steps. These steps are a little over-
whelming the first time, so the first example actually implements only a base subset of these
steps. The overall layout of code when hooking Java to Objective-C follows the pattern of Java
connected to C by way of JNI, and the C code communicating with Objective-C, as shown in
Figure 8.1.

Figure 8.1

Connecting Java to Objective-C by way of JNI and C

Java

— N C Objective-C

Using Native in Java

In this chapter, | present two examples. The first sample program, NativeLogExample, dem-
onstrates the creation of a simple JNI application where Java communicates unidirectionally
with an Objective-C object. | find it easiest to learn (or explain) new programming paradigms
with simple examples, so this first JNI class is stripped of all extras.

The second example, later in this chapter, details full communication from Java to an NSView
and from an NSView to a Java CocoaComponent. The second example is much more com-
plex, so unless you are already familiar with JNI on OS X, don't skip the first example.

The first example follows a shorter list of steps than mentioned previously:

1.
2.
3.
4.
5.

Create the native code in C and Objective-C.

Create the Java class that will handle JNI communication.

Label methods that will call native C methods with the native keyword.
Add a static block in the Java class to load your native library.

Compile your Java class that handles the JNI interaction.

6. Execute the javah command on the command to create a C header file.
7. Write aCinterface hooking up your native C and Objective-C.
The Cinterface #includes the header file created with javah.

8. Compile your native source into a dynamic library for loading by your JVM.

While the steps don’t appear much smaller than the preceding list, this first example requires
less complex code. Handling the callbacks is rather tricky. Callbacks require several JNI-specific
references and attaching/detaching threads. The first example has no callbacks.

CROSS-REF
I explain INI is greater detail in Chapter 9.

NOTE

The full source for the Nat i veLogExample and the other example in this chapter are on this book’s Web site.

JNI has a steep learning curve. Lots of technologies are involved. If you don’t understand some
basics of C, JNI is nearly impossible to learn. Familiarity with pointers is a must. Be sure to read
the “Overview of C Pointers” sidebar for a brief review of C pointers.

The most notable feature of Cis pointers. Pointers are loved
and hated: loved for their power and utility, hated for their
obfuscative tendencies.

Pointers are unavoidable in C. You cannot understand even
trivial C code without understanding pointers. If you haven't
touched Cin a while, you might want a quick refresher on
pointers. If you have never used C, a quick overview of point-
ers will make this chapter’s examples a little easier to follow.

When passing variables in Java method calls, the variables
may pass by value or by reference depending on the variable
type. Primitives are passed by value. All objects are passed
by reference.

C has a similar concept of passing by value and passing by
reference, except the details are not as nicely hidden as they
arein Java. In , every variable is passed by value unless you
explicitly pass it by reference.

The Cequivalent of the Java reference is the pointer. For the
purpose of this discussion, | treat pointers as though they
are just a more powerful form of reference. In C, whether a
variable is a pointer to a value or an actual value is decided
at the time of variable declaration. C introduces special
notation to handle pointer declarations and pointer use.

InC, just as in Java, the following statement declares a vari-
able i of type int:

int i;
InCand Java, thisis a value, not a pointer (or a reference). In
Java, the int i cannot be passed by reference. (Just pre-
tend Java has no auto boxing of int primatives into

Integer objects fornow.) In C, you can send a pointer to
i instead of the actual value of 1.

The notation for creating a pointer to 1 is as follows:
&1

Placing the & before the variable name returns its pointer. If
you wanted to send a pointer to i as a function argument,
the call might look something like this:

my_function(&i);

| already mentioned that C can declare variables as points
rather than values. Declare pointers in C with the * symbol.
For instance, the following code declares a pointer to an
int variable called ip:

int *ip;
In Java terminology, you just made a reference toan int.

Note that ip is not an int. The variable ip is pointer to
an int. You cannot store an int in ip; you must store an
int pointer in ip. For example, in the following code, |
create an int called 1, get a pointer to the int called 1,
and place that pointer in ip:

int i = 3;
int *ip = &i;

NOTE

Obviously, pointers are of no use if you cannot get the infor-
mation to which the pointer points. In other words, how
does C determine the int value to which ip points?

C obtains the value through another use of the * symbol.
The act of obtaining the value pointed to by the pointer is
called dereferencing. Here is an example:

int 1 = 3;
int *ip = &i;
int anotherInt = *ip;

The value stored in anotherInt is 3.

If this were all the complexity of pointers, | am sure Java
programmers would flock to C. However, C does much more
with pointers. Pointers can point to pointers. Pointers can
point to functions. You can increment pointers to perform
operations on arrays without bothering with indices.

Learning pointers takes time. After you learn pointers, C
turns into an elegant and powerful language for you. To do
any significant JNI work, you need to learn pointers.

Both Ant-based example projects for this chapter are on the book’s Web site. The first example project is named

native_log example.Thesecondisnamed nsbutton in_jframe.Because both are Ant-based proj-
ects, you can integrate into most popular IDEs. | explain Ant projects in detail in Chapter 4.

The following example is called native_log_example. The example project is found on the
book’s Web site. | provide an Ant build. xml file with the project to aid in building the proj-
ect. Later in this chapter, | go over the build.xml file provided for this project.

The following source is the NativeLogExample class. As with other Java classes, you should
put the NativeLogExample class in a file named after the class. In this case, you should
name the file Nat iveLogExample. java. Alternatively, you can open the file from the
book’s Web site.

The nativeLogExample class contains static blocks and native methods. Unless you have
written JNI applications in the past, you likely have never seen or heard of static blocks or native
methods in Java programs. Most Java applications have little use for either. However, JNI uses
both static blocks and native methods.

Bringing Guidelines, APIS, and Lanquages logether. s

The NativeLogExample class demonstrates a static block of Java code and a method with
the native label:

package com.genedavis;
import java.io.File;
import java.io.IOException;
public class NativeLogExample {
// executed during class load
static
{
// Use System.load() to load directly from a non-system
// path. Be sure to catch an IOException if used
// File 1lib = new File("objc_bin/libNativeLogger.jnilib")
// System.load(lib.getCanonicalPath());

//use System.loadLibrary () when loading from a system
//library path
System.loadLibrary ("NativeLogger") ;

}

/**
* It all begins here
*/
public static void main(String[] args)
{
NativeLogExample nl = new NativeLogExample() ;
nl.log("Hello world! (of course)");

}

// native method call
private native void log(String message) ;

}

Static blocks are code blocks that execute when the ClassLoaders loads a class. To use a
static block, place the following code outside of all methods, but inside the class definition:

static

{
// Place initialization code here.

}

Place your code between the curly braces. By convention, position static blocks somewhere
near the top of the class, so they are easily noticed. Static blocks execute before any other code,
meaning that code in static blocks executes before themain () method is called.

TIP

To learn about static blocks, try writing some purely procedural programs in Java using a static block instead of a
main() method. Static blocks do have limitations, and this is a good exercise to learn those limitations.

However, avoid static blocks when writing actual production-quality code.

Static blocks execute in the order that they load. This means that static blocks within a class
execute in the order they appear. However, if you have static blocks in multiple classes, the
order in which the classes load is undefined. Do not make static blocks in one class depend on
static blocks in another class.

Static blocks are not very object oriented, so avoid them. However, occasionally you need to
perform some class or object initialization before the main () method executes. NI library
loading and initialization of native libraries are two cases where use of static blocks is justified
in Java.

The NativeLogExample class uses a static block to load the native library NativeLogger.
(I explain creation of the Nat iveLogger library later in this chapter.) If you look around the
example code for a class named exactly “NativeLogger,” you will be disappointed.

JNI uses dynamic libraries. On OS X, the naming convention for dynamic libraries is as follows:
lib<library name>.jnilib

When loading a dynamic library for use in JNI, load the library by name and ignore the extras. In
the case of a library named Nat iveLogger, the actual filename for the library is this:

libNativeLogger.jnilib
The call for loading the Nat iveLogger library is this:
System.loadLibrary ("NativeLogger") ;

Two common ways of loading dynamic libraries exist. If your library is in the system path or
specified a known path to the JVM, System. loadLibrary () works fine. The JVM finds the
library and loads it. However, if the program knows the location of the library and the library is
not in the system path, use the System. load () method.

The System. load () method takes an absolute path as an argument. Do not worry about the
absolute path if you only know the relative path. Create a File object from your relative path,
and then call getCanonicalPath () onthe new File object. This creates an absolute path
from your relative path. The only catch (quite literally) is that the process needs to be enclosed
in a try-catch to catch potential IOExceptions.

| place one native method in the NativelLogExample class. The method is as follows:
private native void log(String message) ;

Note that it is not implemented. Native methods are implemented in native C (or C or
Objective-C) code. The naming conventions for the native implementation are nasty. You can
create the methods signatures by hand, but | do not recommend it. Instead use javah.

Bringing Guidelines, APls, and Languages Together

Creating headers with javah

Before writing the C implementations of your Java class’s native methods, run javah. The
javah tool is a command-line tool for creation of C header files from Java classes withnative
methods.

CROSS-REF

In Chapter 4, | discuss many of the common Java command-line tools. Javah is among the tools | discuss.

These are the steps for running javah:

1. Open the Terminal.

2. Determine the directories containing your compiled Java classes.
3. Determine the directory in which to place your C header file(s).
4. Run javah.

The common options are —classpath for your Java classpath and -d for the direc-
tory in which you create the new header(s).

For example, creating a C header for the implementation of the Java NativeLogExample
class might look like the following:

javah -classpath java_bin -d objc_src com.genedavis.NativeLogExample

If you want all your JNI method declarations in the same header file, use the —o option instead
of the —d option. The -o option specifies the path and name of a header file in which to place
all C method signatures.

The JNI header file is generated automatically from the NativeLogExample using javah. |
named the file | generated native_log_example_jni .h, and its source follows:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>

/* Header for class com_genedavis_NativeLogExample */
#ifndef _Included_com_genedavis_NativeLogExample
#define _Included_com_genedavis_NativeLogExample
#ifdef _ cplusplus

extern "C" {

#endif

/*

* Class: com_genedavis_NativeLogExample
* Method: log

* Signature: (Ljava/lang/String;)V
*/

A >

JNIEXPORT void JNICALL Java_com_genedavis_NativeLogExample_log
(INIEnv *, jobject, jstring);

#ifdef _ cplusplus

}

#endif

#endif

This entire header defines only one native method, 1og (). The actual C method declaration
is this:

JNIEXPORT void JNICALL Java_com_genedavis_NativeLogExample_log
(INIEnv *, jobject, jstring);

The method name log() in Java becomes this function in C:
Java_com_genedavis_NativeLogExample_log ()

At first glance, this new name seems overly complex, but the complexity prevents naming colli-
sions. Also, because javah did all the work naming the function, it is not too painful. The name
starts with “Java,” followed by the package and class name where the native method is initially
declared, and is finished off by the actual Java native method name.

CAUTION

The javah generated header file changes every time javah is run. Do not place any comments or code into header
files generated by javah, or the comments/code will vanish with your next full build.

Exploring the C side of JNI

When writing JNI bridges to Objective-C, | prefer buffering the Objective-C classes from the JNI
interface. | place the C implementations of the Java native methods in a separate Cfile. | find
this buffer prevents purely procedural code from mixing with Object-Oriented code. Generally,
you should avoid mixing the two types of programming in the same file. It makes the code
more legible.

In the case of this project, | placed the JNI implementation code inside a * . mfile. The .m exten-
sion indicates that Objective-C is found in the file. Objective-C extends ANSI C, so using
Objective-C in a file that is mostly ANSI C is convenient. In this case, Objective-C is providing
#import, instantiation of the Objective-C class NativeLogExample, and an object release
pool. Usually, C uses #include. When headers are defined improperly, #include can actu-
ally include the same library in your compiled code multiple times. Luckily, Objective-C defines
the #import that, like the Java import, prevents multiple includes of code without any addi-
tional work by you the programmer.

The following source is the implementation of the automatically generated JNI header file.
Notice the import of thenative_log_example_jni.h.Thenative_log example_
jni.h header is the header generated from the Java class containing the native 1og ()

E Brinainga Guidelines, APIs, and Lanauaagaes l1ogether

method. The filename isnle.m. As | mentioned earlier, the lowercase m in the filename exten-
sion signifies an Objective-C file.

#import <jni.h>

#import <stdio.h>

#import <Cocoa/Cocoa.h>

#import "native_log_example_jni.h"
#import "NativeLogExample.h"

// This is the entry point from Java to the Objective-C code
JNIEXPORT void JNICALL Java_com_genedavis_NativeLogExample_log
(JNIEnv * jenv, jobject job, jstring my_jstring)

// Every thread must be wrapped in an NSAutoreleasePool
// This prevents memory leaks
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

// converting the jstring to an NSString
// 1. get a jchar array from the jstring
// 2. get the length of the jstring
// 3. instantiate the NSString
// 4. free the jvm resources (no garbage collector here)
const jchar *chars = (*jenv)->GetStringChars(jenv, my_jstring, NULL);
NSUInteger str_len = (*jenv)->GetStringLength(jenv, my_jstring);
NSString *message = [NSString
stringWithCharacters: (UniChar *)chars
length:str_len];
(*jenv) ->ReleaseStringChars (jenv, my_jstring, chars);

// instantiating a NativeLogExample object
NativeLogExample *nfe = [[NativeLogExample alloc] init];

// calling the log() method on the NativeLogExample instance
// passing an NSString to the method log()
[nfe log: message];

// destroy instances
[message release];
[nfe releasel];

// destroying the NSAutoreleasePool
[pool release];

}

I start the nle . mfile by importing two standard headers. They are jni.hand stdio.h.
These are both C headers, and as you have guessed, jni . his required when implementing
JNI native methods. Next, | import the Objective-C framework called Cocoa. Finally, | import the
two project header files: native_log_example_jni.hand NativeLogExample.h
NativeLogExample.h defines the Objective-C class used in this example.

e Chapter8: Embedding Cocoa Component

NOTE

Including the stdio . h headerin Cis similar to importing the java . io. * library in Java. Both contain code nec-
essary for common 1/0 operations for their respective languages.

Cleaning Up Objective-C

C, and to a lesser extent Objective-C, requires programmers to clean up after themselves in
ways that Java programmers usually ignore. Most C and Objective-C programs do not use a gar-
bage collector of any sort. Newer releases of Objective-C come with a garbage collector, but the
garbage collection is not built with JNI in mind, so don’t use it with JNI or you may see needed
Objective-C variables garbage collected at unpleasant times.

CAUTION

Even in Java, garbage collection occasionally happens on classes being used with JNI. Watch out for class instances
that the garbage collector doesn't realize are in use. When all Java references from Java to a Java object containing JNI
callbacks disappear, the garbage collector may not notice that native code is still using the object instance. Place a ref-
erence to the Java object in a safe place, such as a static variable in an active class, to prevent it from being garbage
collected.

When Objects are created and then never removed from memory, you get a memory leak. In
trivial programs, memory leaks are not much of a problem. However, when dealing with a small
memory leak replicated thousands or millions of times, the leak can kill your application.

Objective-C environments without garbage collection handle object removal through reference
counting and auto release pools. The concept is straightforward. All Objective-C objects are
stored as references, similar to Java. Count the existing references. If the number reaches 0,
clean up the memory storing the object. Essentially, this is manual garbage collection.

Follow these steps to perform memory management of Objective-C objects:

1. cCreate areference pool.

Normal GUI-based Objective-C applications have their own reference pool. JNI applica-
tions usually need their own reference pool created.

2. Addoneto your reference count, when a new reference to your object is created.
Typically, this is automatic.

3. Subtract one from your reference count, when a reference to your object is
released.

Your reference count is decremented by calling the release method.

4. Cleanthe object out of memory when the reference count for the object reaches 0.

The reference pool and the object work together to make this happen behind the
scenes. More advanced Objective-C programmers may choose to customize this
process.

5. Remove the auto release pool from memory when it is going out of scope.

The first step of removing an auto release pool from memory is reducing all its object
reference counts to 0, thereby repeating Step 4 with each object still in the pool.

NOTE

Apple maintains extensive documentation on Objective-C memory management issues. This is a good reference to
read:

http://developer.apple.com/mac/library/documentation
/Cocoa/Conceptual /MemoryMgmt /MemoryMgmt . pdf

The call to the native implementation is a new thread as far as Objective-C is concerned. The
firstthingldoinnle.minthe Java_com_genedavis_NativeLogExample_log () func-
tion is create an instance of NSAutoreleasePool to handle reference counting. The last
thing 1 do in the same method is release the NSAutoreleasePool.

| use release methods to remove objects. The release method call does not directly clean
up Objective-C objects from memory. Instead, it reduces the reference count of the object by 1.
If the reference count reaches 0, then the object knows to clean up after itself. After the refer-
ence count reaches 0 and the object cleans up any of its used resources, the object is removed
from memory.

Calling Objective-C methods

Objective-C methods look very different from their Java equivalents. Objective-C surrounds
method calls with square brackets. Also, each parameter to an Objective-C method gets a
description built right into the code. The extra description helps Objective-C self-document.

Using an example from the nle . mfile, the following method call probably looks a little
intimidating:

[NSString stringWithCharacters:
(UniChar *) chars
length: str_len];

NSStringisaclass. stringWithCharacters isa method name. length is a continuation
of the method name, describing the second argument to the method. Both chars and str_
len are variables. (UniChar *) is simply a cast, as you expect to see in Java.

The Java equivalent of the above function call, might look like this:

String.stringWithCharactersLength ((char[]) chars, str_len);

e Chapter8: Embedding Cocoa Component ;::I:I:i:l

Converting Java Strings to NSStrings

As it turns out, NSStrings (the Objective-C equivalent to String) are not too different from Java
Strings. They share a common unicode base. That is UTF-16. The common base for NSStrings
and Java Strings makes conversion relatively simple. Four statements handle the conversion
in the native 1og () implementation.

const jchar *chars = (*jenv)->GetStringChars (
jenv,
my_jstring,
NULL) ;
NSUInteger str_len = (*jenv)->GetStringLength(jenv, my_ jstring) ;
NSString *message = [NSString
stringWithCharacters: (UniChar *)chars
length:str_len];
(*jenv) ->ReleaseStringChars (jenv, my_jstring, chars);

Follow these steps:

1. Obtain the Java String as a jchar*.

Accomplish this with a call to the GetStringChars () function contained in the JNI
environment.

2. Getthe length of the string.

The length of the string is obtained with another call to the JNI environment. Strings
are essentially character arrays in C. Because C does not track the length of arrays,
strings in C contain a value of 0 at the end of the string. (This is referred to as null termi-
nating.) You must manually place this value of 0 when creating strings in C. That is why
I need the string length.

3. Createan NSString by providing a pointer to the raw unicode characters and the
length of the final string.

4. Freethe JVM resources in the JNI environment.

Now that | have my string’s value safely copied to a shiny new NSString, it is time to
release the JNI environment's string resources. Again, | call a function in the INIEnv*
variable, named jenv, to release the resources.

CROSS-REF

In Chapter 9, | explain more Java string conversions for 0S X JNI programming.

CAUTION

Always remember to release the JNI environment resources when you are done with them. They are finite.

Ei!i!!;; Bringing Guidelines, APls, and Lanqguages Together

Introducing Objective-C objects

Objective-C is an OOP language. So of course, objects play a central role in the language. In this
section, | discuss Objective-C classes and creation of instances.

On the Java side, CocoaComponent usage consists of a Java class extending CocoaComponent.
On the Objective-C side, CocoaComponents consist of an Objective-C class implementing a
protocol called AWTCocoaComponent. (Protocols are analogous to Java interfaces.) Because
CocoaComponent requires Objective-C classes, | introduce a basic Objective-C class in this first
example. | hold off implementing the AWTCocoaComponent protocol until the second JNI
example.

NOTE
Objective-C contains protocols and interfaces. Java interfaces perform the same function as either Objective-C proto-
cols or Objective-Cinterfaces in the Java language.

Objective-C classes are often placed in one file or split into two files, mostly depending on the
style of the programmer and the complexity of the class. Objective-C classes consist of an inter-
face that defines the methods and variables contained by the class and an implementation that
implements the interface. When the class is split into two files, the interface is placed in a
header file (* . h), along with any #defines and #imports the class needs. The implementa-
tion is placed in an Objective-C file (* . m), along with a #import statement importing the class
interface. When the class is placed in only one file, the interface and implementation both go in
a file with the .m extension.

The Objective-C class | use in the first JNI example exists in two files. The header is in the file
NativeLogExample.h. The following is the source for the class interface:

#import <jni.h>
#import <Cocoa/Cocoa.h>
// defining the NativeLogExample class
@interface NativeLogExample : NSObject ({
// instance variable declarations go here
}
// one method named log takes an NSString object
-(void) log: (NSString *) message ;
@end

The interface starts by importing the Cocoa . h header. JNI uses the jni . h header, but this
class lets the n1e . m code take care of all the messy JNI. So | do notimport jni . hin thisinter-
face file. In the next example’s class header, | do import jni . h because the Objective-C class
interacts with JNI directly.

TIP

Both standard Java commenting styles are supported by Objective-C. The comment styles / / and / * * / have the
same use in Objective-C as in Java. Alas, Javadoc comments don’t have special meaning in Objective-C.

4o o B

Interfaces in Objective-C take the following form:

@interface ClassName : SomeSuperClass <ProtocolImplemented> {
variable declaration;

}

method declaration;

@end

Interfaces work differently in Objective-C than in Java. In Objective-C a declared interface is
merely a declaration of one class. Although this use of interfaces exists in Java, it is not com-
mon. Objective-C uses what are called protocols, in addition to interfaces. Protocols more
closely match the Java expectation and use of interfaces. Both Objective-C interfaces and
Objective-C protocols together equate to Java interfaces.

Instead of surrounding interface declarations with curly braces as Java does, Objective-C sur-
rounds interfaces with @interface and @end.

Interfaces defined with @interface do not extend other interfaces. (Remember, Objective-C
@interfaces are class definitions.) Instead, @interfaces extend classes. In other words,
Objective-C class extensions are handled by their class definitions—the interfaces. The colon (:)
is used in place of the keyword extends that Java uses.

Class and object scoped methods and variables are defined in @interfaces. Objects and
methods of class scope begin with a plus symbol (+). Objective-C’s + is the equivalent of Java’s
static keyword. Methods and variables of object scope begin with a minus symbol (-). In the
example code, the NativeLogExample contains one method named 1og of object scope.

The implementation of the Nat iveLogExample isin afile called NativeLogExample .m.
The implementation for the Objective-C class Nat ivelL.ogExample follows here:

#import "NativeLogExample.h"

// implementing the NativeLogExample class
@implementation NativeLogExample

// in Java this method signature would look like
// public void log (NSString message) { ... }

-(void) log: (NSString *) message {

// NSLog sends a log message to standard out
// the message must be formatted. %@ is the
// format specifier for objects. 'message' is
// an object.

NSLog(@"%@", message) ;

@end

E;!;!!!;; Bringing Guidelines, APls, and Languages Together

The class implementation imports its own interface, and that is it. By convention, the file with
the class implementation should import only one header: its interface. The interface takes care
of all other imports.

Objective-C class implementations take the following form:

#import InterfaceDeclaration
@implementation ClassName
method implementations

@end

Notice that implementations start with the @implementation and end with the @end. Some
programmers mix C-style functions into class implementations. | avoid this and instead place
needed C-style functions into separate files that | then import into the class interface for use in
the Objective-C class.

TIP

The commands @interface, @implementation, and @end are actually compiler directives, not keywords.
The use of compiler directives is not surprising because Objective-Cis built on top of ANSI C.

You can compile the C and Objective-C code using gcc directly if you like. The command for
compiling the NativeLogExample and the nle.m file is something similar to the following:

gcc
-bundle
./objc_src/nle.m
./objc_src/NativeLogExample.m
-0 ./objc_bin/libNativeLogger.jnilib
-I/System/Library/Frameworks/JavaVM. framework/Headers
-I ./objc_src/
-framework JavaVM
-framework Cocoa

The gcc command should be one line, not multiple lines. | formatted the gcc command for
legibility.

The sample gcc command assumes that you have the headers and code in a subdirectory
called objc_src. The command-line argument to create a dynamic library from the C and
Objective-C is -bundle. Sometimes, | see —dynami c instead of -bundle; however,
—dynamic can cause problems when loading multiple libraries for use with JNI. You are better
off using —bundle to generate your dynamic library.

The argument -o specifies the name of the output file. The OS X convention for naming
dynamic libraries in JNIis 1 ib<name>. jnilib. The —I argument specifies directories of
headers to search while building. The - framework argument specifies libraries used in the
build. In this case, | use the JavavM framework because the resulting library uses JNI. | also
specify the Cocoa framework because | use an NSAutoreleasePool.

e _________________Chapter 8: Embedding Cocoa Componen =

If you have followed the explanation of this first example up to this point, you have a fully work-
able Java-Objective-C application. It runs with the following command or one modified to
match your classpath:

java -Djava.library.path=objc_bin -cp java_bin/ -
com.genedavis.NativeLogExample

The output is not too spectacular, but it is a good first step. Running your new JNI application
results in output similar to the following:

2009-10-29 20:22:24.683 javal[8280:d07] Hello world! (of course)

Developing JNI with Ant

Setting up projects to handle javac, javah, and gcc is painful. If you want to move your
project to a new IDE or share the project with a programmer using a different IDE, “painful”
becomes horribly difficult. Set your build up with Ant or a similar build tool, and your project is
more portable. Ant integrates with all Java IDEs. Best of all, Ant on OS X supports gcc through
the exec tag, so even if your IDE does not officially support C or Objective-C, building the
native code is no problem.

CROSS-REF
In Chapter 4, | explain Ant build.xml files in detail.

TIP

Xcode fully supports Objective-C syntax coloring and hints, even if your favorite IDE does not. Many IDEs support exter-
nal editors for project files. Configure Xcode as your editor for *.m and *.h files. Often setting Xcode to the default
application in the Finder is enough. Sometimes your IDE needs an extra preference set in order for it to use Xcode as
the editor for *.m and *.h files. For example, in Eclipse, set the File Associations preference for *.m files and *.h files to
Xcode.

I set up an Ant build for this example in the project’s build. xml file. The source for the Ant
build.xml file follows:

<?xml version="1.0" encoding="UTF-8"?>
<project
name="Native Log Example"
default="run"
basedir=".">
<property name="java.source" value="java_src" />
<property name="objective.c.source" value="objc_src" />
<property name="java.bin" value="java_bin" />
<property name="native.bin" value="objc_bin" />

<target
name="explain"

description="Explains the objective of the build">

<echo>Building the full Java and Native source.</echo>
</target>

<target
name="clean"
description="Removes previous build">

<echo>Cleaning Java and Native bin folders...</echo>

<delete dir="s${java.bin}" />
<delete dir="s${native.bin}" />

</target>

<target
name="java-build"
depends="clean"
description="Builds the Java source">

<echo>Building Java...</echo>

<mkdir dir="S${java.bin}"/>
<javac srcdir="${java.source}" destdir="${java.bin}" />
</target>

<target
name="native-header-build"
description="Builds the native headers file">

<echo>Creating native header file...</echo>

<mkdir dir="${native.bin}"/>

<javah
outputfile="${objective.c.source}/native_log_example_jni.h"
classpath="${java.bin}">

<class name="com.genedavis.NativeLogExample" />

</javah>
</target>

<target
name="native-build"
description="Builds the native lib*.jnilib">

<echo>Creating native lib*.jnilib</echo>

<exec executable="gcc">

<arg value="-bundle"/>

<arg value="./${objective.c.source}/nle.m"/>
<arg value="./${objective.c.source}/NativeLogExample.m"/>

<arg line="-o ./${native.bin}/libNativeLogger.jnilib"/>
<arg

value="-I/System/Library/Frameworks/JavaVM. framework/Headers" />
<arg line="-framework JavavM"/>
<arg line="-framework Cocoa"/>

</exec>
</target>

<target
name="build"
depends="explain, java-build, native-header-build, native-build"
description="builds full Java and Native byte code.">
<echo>Build complete</echo>

</target>

<target
name="run"
depends="build"
description="cleans, builds, and then runs app">

<!--
java
-Djava.library.path=objc_bin
-cp java_bin/
com.genedavis.NativeLogExample
-——>
<java
classpath="${java.bin}/"
classname="com.genedavis.NativeLogExample"
fork="true">
<jvmarg value="-Djava.library.path=${native.bin}" />
</java>
</target>
</project>

| discuss most of the Ant tasks used in this build.xml in Chapter 4. However, the javah and gcc
integrations are new. The native-header-build target contains the task for javah execu-
tion. | chose the output £ile attribute instead of the destdir attribute. The outputfile
attribute specifies a file in which to place all JNI headers. The destdir specifies a directory,

and javah creates multiple header files in that directory. Typically, you use outputfile if
you have few nat ive methods to implement. Use destdir if your project has many native
methods to implement.

Alternately, if you want better control over naming and destination directories for a project with
many native methods, run the javah task several times to produce multiple header files with
names and locations of your choice.

I run the gcc command inside of an exec task. Some commands run from inside exec need a
full path specified. Because gcc is in the system path, simply executing gcc is enough. | pass
the arguments to gcc in with the arg tag. Arguments that require two parameters use the
line attribute. Arguments that require only one parameter use the value attribute.

When only building the application, use the command ant build from the Terminal. When
building and running the application, use the command ant run from the Terminal. The result
of executing ant run appears very similar to this output generated on my Mac:

Buildfile: build.xml
explain:
[echo] Building the full Java and Native source.
clean:
[echo] Cleaning Java and Native bin folders...
[delete] Deleting directory /Users/tdavis/Desktop/ch08_code/
native_log_example/java_bin
[delete] Deleting directory /Users/tdavis/Desktop/ch08_code/
native_log_example/objc_bin
java-build:
[echo] Building Java...
[mkdir] Created dir: /Users/tdavis/Desktop/ch08_code/native_
log_example/java_bin
[javac] Compiling 1 source file to /Users/tdavis/Desktop/
ch08_code/native_log_example/java_bin
native-header-build:
[echo] Creating native header file...
[mkdir] Created dir: /Users/tdavis/Desktop/ch08_code/native_
log_example/objc_bin
native-build:
[echo] Creating native 1lib*.jnilib
build:
[echo] Build complete
run:
[javal 2009-10-26 20:42:48.029 javal[3652:1303] Hello world!
(of course)
BUILD SUCCESSFUL
Total time: 2 seconds

The line tagged run indicates the following output is the result of running the freshly built
application. In this example, the output of run is:

[jJaval 2009-10-26 20:42:48.029 java[3652:1303] Hello world! (of course)

The only difference between this output and the output when running the java command
yourself is that the output is prepended with [java]. The prefix [java] indicates that the
line was generated from the java tool.

Coding with the CocoaComponent

Now that you understand basic JNI integration, simple Objective-C programming, and setting up
Ant builds for Java/Objective-C hybrid projects, you are ready to examine CocoaComponent
use. When including CocoaCompoments in your project, expect to use at least one Java class
with native declarations, at least one interface class in C, and one Objective-C class. Your applica-
tions likely need more native integration than one of each, but that is the minimum.

In the remainder of this chapter, | explain details of using the CocoaComponent. | provide an
additional example as an illustration of my explanations. The example demonstrates embed-
ding an NSButton in a JFrame. The source is available on the book’s Web site. The name of
the projectisnsbutton_in_jframe.

Integration of CocoaComponent into a JNI application is a more complex than the example
JNI project from earlier in this chapter. The main components in projects that use
CocoaComponents are the following:

@ Java-based CocoaComponent child

@ INI-based header for Java-to-C communication definitions

@ Cimplementation

@ Objective-CNSView child declaration

@ Objective-C NSView child implementation

The pieces fit together as shown in Figure 8.2.

Figure 8.2
CocoaComponent integration
N Custom
CocoaComponent C Header I”ts(xlfg‘ge
IéWT (dlass INI/C ﬁtglt.om
xtending ion F— iew
CocoaComponent Implementation Implementation

The CocoaComponent example | provide consists of the most basic code possible while mak-
ing the example useful for integration into your projects. The NSBut ton in this project is really
just a placeholder. You can substitute any NSview-based object needed in your project. You
can even substitute your own custom widgets, as long as they descend from NSvView.

| provide these project files for the next example:

@ CustomNSButton.java

nbe.h

nbe.m

¢ © ¢ ¢ ¢

NSButtonExample.java

nsbutton_example_jni.h
NSButtonExample.h

@ NSButtonExample.m

The source associations are shown in Figure 8.3. Essentially, Figure 8.2 and 8.3 are the same.
Figure 8.3 shows an actual implementation, so it appears more complex than the more concep-

tual presentation of Figure 8.2.

Figure 8.3

CocoaComponent example files

CocoaComponent

NSButtonExample

main(args : String[]) : void

mainFrame : JFrame

NSButtonExample.h

CustomNSButton
<<interface>>
nshutton_example_jni.h
nbe.m
<<interface>>
nbe.h
<<interface>> NSButtonExample.m

e _(Chapter8: Embedding Cocoa Component =

The example application creates and displays an NSButton in a JFrame, as shown in Figure
8.4. The title of the button is set with a call to CocoaComponent’s sendMessage (). When
the NSButton is clicked, a JOpt ionPane message dialog box pops up announcing the click,
as shown in Figure 8.5. The application demonstrates placement of Cocoa Application Kit GUI
elements in Java windows. The application also demonstrates events propagating from Java to
Objective-C and events propagating from Objective-C to Java.

Figure 8.4

NSView in a JFrame

Custom N5Button |

Figure 8.5
NSButton clicked

?7 You clicked the custom NSButton!

Understanding CocoaComponent

The CocoaComponent class belongs to the com. apple. eawt package. Itis part of the
Apple Java Extensions. The CocoaComponent is designed to wrap children of Objective-C's
NSView class in such a way that they integrate with AWT. The CocoaComponent class is a
child of java.awt .Canvas and behaves like any Canvas class.

To use CocoaComponent, extend it with your own class. Then add it to your own Java
Container.In my example, | add it to a JFrame’s content pane. Override the size methods
to set the minimum, maximum, and preferred size of your CocoaComponent.

Sure, it sounds easy. After you look through the source of the example CocoaComponent
child, I discuss the tricky bits.

Brindindg Guiaelines., ArFIS. and Lanaduagdes rogether.

The following is the source for the CocoaComponent child, CustomNSButton class:

package com.genedavis;
import java.awt.Dimension;
import javax.swing.JOptionPane;
import com.apple.eawt.CocoaComponent;
public class CustomNSButton extends CocoaComponent
{
// executed during class load
static
{
//used to load from a system library path
System. loadLibrary ("CustomNSButton") ;
setupNativeCallbacks () ;

/**
* Supersedes the createNSView() method.
*/

public native long createNSViewLong () ;

/**
* Performing setup on the Native end.
*/
public static native long setupNativeCallbacks() ;
/**
* This version of the createNSView() is
* not used anymore, but you need to implement
* it until it is removed from the API.
x/
@Override
public int createNSView() {
return 0;
}
/**
* Providing max size of NSButton.
*/
@Override
public Dimension getMaximumSize () {
Dimension dim = new Dimension (150, 32);
return dim;
}
/**
* Providing minimum size of NSButton.
*/
@Override
public Dimension getMinimumSize () {
Dimension dim = new Dimension (150, 32);

e dLnaprtero:cmpeaaina Locoa Lombonents

return dim;
}
/**
* Providing preferred size of NSButton.
*/
@Override
public Dimension getPreferredSize() {
Dimension dim = new Dimension (150, 32);
return dim;

}
public void setCustomTitle(String title)
{
sendMessage (1, title);// 1 arbitrarily chosen
}
/**
* Called from C. Do not call locally!
*
* Find the signature of this method in the
* compiled class by calling:
*
* javap -private -s CustomNSButton
*
* from the command line.
*/

@SuppressWarnings ("unused")
private void customButtonClicked()

{
// Remember that your system will lock up
// if you don't give back the native thread
// BEFORE trying to use Java AWT.
Thread t = new Thread(new Runnable() {
public void run()
{
JOptionPane.showMessageDialog (
null,
"You clicked the custom NSButton!");
}
)
t.start () ;
}

Four tasks in Java integrate CustomNSBut ton with its native counterpart:

¥ Implement sendMessage () calls for any messages intended to pass to the NSView.
o Create private Java methods for callbacks from the native code.

o Declare anative method, createNSViewLong ().

@ Provide a static block to load the dynamic library and initialize native code.

Implementing sendMessage()

You can send messages to your CocoaComponent’s NSView with the sendMessage ()
method. You don't need to override the sendMessage () ; you simply call it. In the
CustomNSButton class, | call the sendMessage () method from the setCustomTitle ()
method.

The sendMessage () method takes two parameters: int and Object. Neither parameter
interacts with CocoaComponent or the underlying NSview. As the software architect or pro-
grammer, you choose the values of the parameters and their meanings, and then you write the
native code to interpret the int and Object.

Normally when writing JNI, you declare nat ive methods, and all your Java to native code
communication happens with those calls. Then, after your JNI functions interpret your calls, you
pass the data to your native objects. The CocoaComponent’s sendMessage () method
removes the JNI step from your AWT to NSView communication. As | detail later, calling send-
Message () onyour CocoaComponent results in a method call directly into your NSView
implementation. Both the int and Object are passed to the NSview for handling.

Use the int parameter in sendMessage () to pass a message id. The message id represents
a native method to which you forward the message. My example uses only one message id.
However, with multiple message ids, set up a switch statement in the native code, and pass
each message off to an appropriate method for handling.

The Object parameter in sendMessage () is the data associated with the message id.
Because you are passing a java. lang.Object, there is no limit to what Object you can
send to the native code. Just keep in mind that you have to write native code to deal with
extracting data from that Object, and then you have to interpret that data in a way that makes
sense to your native code.

| recommend keeping the message Objects simple, if possible. For instance, in the sample
code | passa String.Java Strings are UTF-16 strings, just as NSStrings are. Passing Java
Strings to Objective-C and interpreting those strings is simple. When you are pressed to meet
a deadline, you will appreciate simple.

Creating Java callback methods

When Java methods are called from native code, those calls are called callbacks. At some point,
you need asynchronous method calls when using JNI. For instance, if your native code performs
a long calculation or does a network call to a busy server, you don’t want to wait for the return.

Instead, follow these steps:

1. set up a Java callback.
2. Spawn a thread in your native environment.

3. Have that thread perform a call to Java when a return value is finally available.

In the case of CustomNSButton, | wrap an NSButton. When a user clicks the button,
an event needs to propagate to the CustomNSButton class. The callback | use is the
customButtonClicked () method.

TIP

Debugging JNI is painful. Do not make it harder by reusing callback methods. Keep them private and unused by the
Java code. Call them only from native code.

JNIis not restrained by visibility. This means private methods are not hidden from native JNI
callbacks. Take advantage of it. Hide your callbacks from your Java code.

The callback method in CustomNSButton is the customButtonClicked () method. Itis
private.ldo not call the customButtonClicked () method from the Java code. | added
the @SuppressWarnings (“unused”) annotation to prevent the compiler from complain-
ing about an unused method. (The method is used by the native code via JNI.) Keeping the call-
back method private makes debugging callbacks simpler. You know the method is called
only from the native code. If the method is called when it shouldn’t be called, then you know to
look in the native code for your problem.

As soon as the callback method, customButtonClicked (), is called, | pass the datato a
new thread. | return the thread making the callback. Always return threads coming from call-
backs immediately. Otherwise, you may lock up your application or impair performance of the
native code.

Declaring createNSViewLong()

The createNSViewLong () method in CocoaComponent replaces the older (and depre-
cated) createNSView () method. The purpose of the createNSvViewLong () method is
instantiating your native NSview. The return value is a pointer to the native NSView wrapped
by your CocoaComponent. The super class, CocoaComponent, handles the connection to
your native NSView using the returned pointer.

The best way to handle the createNSViewLong () method is to make it a native method.
Let your native JNI code perform the instantiation of the NSView. After instantiating the
NSView, get your NSView's pointer and return it to Java as a long.

NOTE

The createNsvView () method returned an int. When Mac 0S X ran off a 32-bit architecture, the preferred way
to pass a pointer to Java from JNI was as an int. However, now 0S Xiis a fully 64-bit 0S. Pointers from JNI are passed
to Java as 1ong values. That is why a new createNsview () method exists.

|!i!!!E;;;;;;EEEiiE;;iiEEEEE;;ii;;ii;;EEE;EEE;:;EE;EE;;;;;;;;;;;;;;;;;

Initializing native code

Your Java program needs to initialize your native C and Objective-C code. There is nothing too
magical about initializing the native code. From the Java side, include a static block in your
Java class. In the static block, load your code from a dynamic library. After loading the native
library, call an initialization method. The initialization method is a nat ive method of your
choosing.

The only other Java code needed to initialize native code when extending CustomNSButton
is the native declaration of createNSViewLong ().The createNSViewLong () method
is called by the CocoaComponent implementation. It obtains a pointer to the underlying
Objective-C NSView.

Consider the native initialization that occurs in CustomNSButton:

static

{
System. loadLibrary ("CustomNSButton") ;
setupNativeCallbacks () ;

}

public native long createNSViewLong () ;
public static native long setupNativeCallbacks() ;

The System.loadLibrary () method loads the dynamic library containing the project’s
native code. The setupNativeCallbacks () methodis a call to a method | declared
asnative. In other words, setupNativeCallbacksc () isimplemented in the
CustomNSButton library. The method createNSViewLong () is declared asnative
with additional initialization of the native library happening after the CocoaComponent
calls the method.

I return to a detailed discussion of initialization of the native library later in this chapter. | discuss
initialization further when | discuss the JNI environment.

Introducing NSView

The CocoaComponents wrap NSViews for use in Java GUI applications. Wrapping NSView
opens up most, if not all, predefined and custom Cocoa widgets for use in AWT and Swing. To
share the significance of the Java CocoaComponent, | explain the Objective-C NSvView.

The Objective-C NSView class shares a similar position in the Cocoa framework as the java.
awt . Component class shares in the Java API. Essentially, all widgets, buttons, tools, and
panels in the Application Kit framework descend from NSView. NSView children include
NSButton, NSTabView, NSOpenGLView, and NSColorWell. The NSView contains the
largest tree in Cocoa’s Application Kit (with the exception of its parent, NSResponder).

NSView handles events and basic drawing in Cocoa applications. NSViews are placed in
NSwWindows in similar fashion as Components are placed in JFrames and Windows in Java.

NOTE

The Cocoa framework is an umbrella framework. An umbrella framework is a framework that does not contain any
libraries, just other frameworks. The Cocoa framework contains the Application Kit framework. The NSView class is
part of the Application Kit.

NOTE

The online reference for NSView is located here:

http://developer.apple.com/mac/library/documentation
/Cocoa/Reference/ApplicationKit/Classes/NSView Class
/Reference/NSView.html

The online documentation for the Application Kit framework is located here:

http://developer.apple.com/mac/library/documentation
/Cocoa/Reference/ApplicationKit/ObjC_classic/Intro
/IntroAppKit.html

Embedding NSView in Swing

As | have stated, CocoaComponents are wrappers for native NSviews. Using
CocoaComponents, you can embed NSViews in Swing and AWT just like other java . awt .
Components. Follow these steps:

1. Ssetthe layout manager for your container.
2. Construct your CocoaComponent.

3. Setthesizefor your CocoaComponet.

4. Add your CocoaComponent to a container.

No worries. After your CocoaComponent is written, the process for adding the NSView to
Swing or AWT has no unusual steps.

TIP

Common wisdom is that Swing and AWT don’t mix. Reality is that they mix fine, if you are careful. The important rule
is that you should never draw Swing components over AWT components that do not contain them.

The classic mistake is to place a Swing drop-down menu where it draws over an AWT Component not containing
the drop-down menu. In this case, the AWT component always draws over top of the Swing component.

NOTE

If downloaded from the Web site, both projects in this chapter clean, build, and run with a single command, ant.
Simply run the Terminal application found in the /Aapplications/Utilities/ directory. Change the direc-
tory to the project directory with the cd command. Finally, enter the ant command to build and run the project.

E Brinaindg Guidelines, AriS, and Lanqauages logether ...

The following code creates a JFrame and embeds a CocoaComponent in the JFrame:

package com.genedavis;
import java.awt.Container;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
public class NSButtonExample {
public static void main(String[] args)
{
// true prevents deadlock, but may cause JINI calls
// to return asynchronously instead of synchronously.
System.setProperty (
"com.apple.eawt.CocoaComponent.CompatibilityMode",
"false") ;

new NSButtonExample () ;

public NSButtonExample ()
{

final JFrame mainFrame =

new JFrame ("Custom NSButton Example");
Container pane = mainFrame.getContentPane() ;
pane.setLayout (null);

CustomNSButton button = new CustomNSButton() ;
mainFrame.add(button);

button.setSize(button.getPreferredSize());
button.setLocation (120, 70) ;

mainFrame.setSize (400, 200);
mainFrame.setVisible (true) ;

// cannot call until the button is visible
// or a null pointer exception occurs.
button.setCustomTitle ("Custom NSButton") ;

e C(haptero: Embeddaing Cocoa Componen =

These steps allow you to use the custom CocoaComponent in this code example:

1.
2.
3.
4.
5.

Create a JFrame.

Set the JFrame’s content pane layout manager.

Instantiate the class that extends CocoaComponent.

Add the CocoaComponent instance to the JFrame’s content pane.

Set the size and location of the CocoaComponent.

CAUTION
Remember that through inheritance, a class is an implementation of its parent. Therefore, | use the name
CocoaComponent frequently when referring to children of CocoaComponent.

CAUTION

In the example, | set the NSBut t on label with a call to an Objective-C method using the CocoaComponent
method, sendMessage (). To ensure that the NSview (in this case, NSBut ton) is constructed, do not
sendMessages () until the containing window or frame is set to visible.

Employing the JNI Environment

Execute the javah application against the compiled CustomNSBut ton class to generate
your needed JNI header file. Using javah from inside an Ant project makes lots of sense, too.
The Ant target for running javah in this project follows:

<target

name="native-header-build"
description="Builds the native headers file">

<echo>Creating native header file...</echo>

<mkdir dir="${native.bin}"/>

<javah
outputfile="${objective.c.source}/nsbutton_example_jni.h"
classpath="${java.bin} ">

<class name="com.genedavis.CustomNSButton" />

</javah>

</target>

NOTE

Remember that the ${some.variable.name} notation places a variable contained by ${} into the containing string.

:;!;!;!;;; Bringing Guidelines, APls, and Languages Together

The interesting part of the javah-generated header file, nsbut ton_example_jni.h,

follows:
/ *
* Class: com_genedavis_CustomNSButton
* Method: createNSViewLong
* Signature: ()J
*/
JNIEXPORT jlong JNICALL Java_com_genedavis_CustomNSButton_
createNSViewLong
(INIEnv *, jobject);
/ *
* Class: com_genedavis_CustomNSButton
* Method: setupNativeCallbacks
* Signature: ()J
*/

JNIEXPORT jlong JNICALL Java_com_genedavis_CustomNSButton_
setupNativeCallbacks
(INIEnv *, jclass);

Notice that the sendMessage () method from CocoaComponent is not represented.
CocoaComponent handles connecting the sendMessage () method directly to the underly-
ing NSView. This saves time for you as a programmer. Obviously, if you want more direct con-
trol, you can refuse to use the sendMessage () method and implement your own native
methods for sending messages to the NSView.

The code for the C implementation of the generated header is much more complex than the
earlier example’s Cimplementation. It consists of a header file and an Objective-C file. The
header, nbe . h, is simply this:

// function prototype(s) for callbacks to Java

// defining INCLUDED_NBE_H to prevent multiple inclusions
// of this code. Obviously, not a problem with the

// example, but still a good habit with C.

#ifndef INCLUDED_NBE_H

#define INCLUDED_NBE_H

void notifyJavaThatButtonWasClicked(void);

#endif

However, the Objective-C file, nbe . m, contains the source for the incoming messages, callbacks
to Java, and code for obtaining a JavaVl, jobject, jmethod, and the INTEnv references as
needed. Here is the full source:

#import <jni.h>

#import <AWTCocoaComponent.h>
#import <stdio.h>

#import <Cocoa/Cocoa.h>

#import <nsbutton_example_jni.h>

e ___________________CLhaptero. cmpeading Locoalomponents

#import <NSButtonExample.h>
#include "nbe.h"

// retaining references to jvm and methods

// never retain env references as they change
// NOTE: in C "static" means

// "global, but only visible in this file"
static JavavVM *jvm;

static jmethodID buttonClickMethod;

static jobject customNSButtonJavaObject;

// This function tells Java to provide the newest
// version of the JNI library. Otherwise, you do NOT
// have access to any features added after Java 1.1!!!
JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *vm, void *reserved)
{

jvm = vm;

return JNI_VERSION_1_6;
}
// Called from Java to set up the method ids;
// obtaining method callbacks is a potentially slow
// process, so getting them ahead of time is advised
JNIEXPORT jlong JNICALL
Java_com_genedavis_CustomNSButton_setupNativeCallbacks
(JNIEnv *env, jclass jclazz)

{

buttonClickMethod =
(*env) ->GetMethodID(
env,
jclazz,
"customButtonClicked",
R ORAVAD N

// Remember the createNSViewLong () method in the
// Java class, CustomNSButton? This is the native
// implementation of that method.
JNIEXPORT jlong JNICALL
Java_com_genedavis_CustomNSButton_createNSViewLong
(JNIEnv * env, jobject jobj)
{
// storing the Java object that called this function.
// NOTE: The object, not the class is stored
// NOTE: clean up of a global ref usually entails
// calling DeleteGlobalRef ().
customNSButtonJavaObject =
(*env) ->NewGlobalRef (env, jobj);

Brindindg Guiaelines., ArFIS. and Lanaduagdes rogether.

// Every thread must be wrapped in an NSAutoreleasePool

// This prevents memory leaks

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc]
init];

NSButtonExample *customButton = nil;

// instantiating Objective-C NSButtonExample object
customButton = [[NSButtonExample alloc] init];

// add NSButtonExample customization code here
// no customization performed in this example

// destroying the NSAutoreleasePool
// time to clean up after myself
[pool releasel;

// return reference to native custom NSButton
return (long) (uintptr_t) customButton;

// notifies Java via the callback
void notifyJavaThatButtonWasClicked(void)
{

JNIEnv *env = NULL;
jint env_error = JNI_OK;
BOOL detach = NO;

// Use the JVM reference to get an up-to-date
// JNIEnv. JNIEnv variables need constant
// updates
env_error = (*jvm)->GetEnv (
jvm,
(void **)&env,
JNI_VERSION_1_6) ;

// Making sure that this is not part of a
// Java thread yet.
if (env_error == JNI_EDETACHED)
{
// Attaching this thread to a JVM thread
env_error = (*jvm)->AttachCurrentThread (
jvm,
(void **)env,
NULL) ;

// assuming there was no error attaching the

e _(Chapter8: Embedding Cocoa Component =

// current thread to the JVM, remember to detach
// the from the JVM when done calling the Java
// method.

if (env_error == JNI_OK)

{

detach = YES;
}
}

// This is the actual method call to the method
// reference "buttonClickMethod" on the object
// "customNSButtonJavaObject".
(*env) ->CallVoidMethod (
env,
customNSButtonJavaObject,
buttonClickMethod) ;

// All done. Time to detach the thread.
if (detach)

{

(*jvm) ->DetachCurrentThread(jvm) ;

}

}

Caching the needed elements for handling callbacks from the native NSView, is a little tricky.
This section explains avoiding common pitfalls of performs and scope when arranging call-
backs; | cover JavavM pointers, jobject pointers, jmethod points, and INIEnv pointers.

Obtaining a JavaVM

JavaVM pointers represent an entire JVM. JavaVM pointers are most commonly used in creat-
ing JVMs from native code. In the case of using CocoaComponent, | don’t create a JVM from
native code. Instead, | grab a reference to the JVM for use in handling user-generated events
that need callbacks to Java.

The best way to grab a pointer to the JVM in a native library is when the JVM loads the native
library. When loading a JNI-based dynamic library, Java calls the JNI_OnLoad () function. The
first argument to JNI_OnLoad () is a JavaVM pointer.

For quick reference, here again is the code for the JNI_OnTLoad () function in nbe .m:

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *vm, void *reserved)
{

jvm = vm;

return JNI_VERSION_1_6;

:;!;!!!;; Bringing Guidelines, APls, and Languages Together

The JavavM pointer is good for as long as the JavaVvM exists. Unless you are creating and
destroying JVMs from native code, JavaVvM points won't go bad. So | grab the pointer during
the onload call and keep it in a static variable for future use.

NOTE

In(, static means something different than in Java. If stat ic is used when defining a variable outside a func-
tionin C, it restricts visibility of the variable to code in that physical file. When static is used while defining a vari-
able inside a function, the variable’s value is retained as a local variable between calls to the function.

TIP
When unloading a dynamic native library, Java calls the INI_onuUnload () function. Place your cleanup code for
the dynamic library in the INI_onUnload () function.

Obtaining a jobject

As you probably can guess, jobjects represent Java class instances. There are three types of
jobject pointers: local, global, and weak global references. Local references go out of scope
and clean up as soon as a native call returns to the JVM. Both types of global references remain
valid after the native method call returns. Both types of global references are candidates for
caching.

I choose to cache a global reference in the nbe .m example instead of a weak global reference.
The difference between weak global and standard global jobject references is that weak
global references allow for the underlying object to be garbage collected. | have no need for
garbage collecting the referenced object. Normally, the choice between weak and standard
jobject references comes down to whether the Java Object is consuming many resources.

| create the jobject reference in nbe . m, in this function:
Java_com_genedavis_CustomNSButton_createNSViewLong ()
Here is the full source for the native createNSViewLong () function:

JNIEXPORT jlong JNICALL
Java_com_genedavis_CustomNSButton_createNSViewLong
(JNIEnv * env, jobject jobj)
{
customNSButtonJavaObject =
(*env) ->NewGlobalRef (env, jobj);

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSButtonExample *customButton = nil;
customButton = [[NSButtonExample alloc] init];

[pool releasel];

e Chapter8: Embedding Cocoa Component ,::Iiliiii

return (long) (uintptr_t) customButton;

}

The callto (*env) ->NewGlobalRef (env, jobj) actually created the global jobject
reference. | store the global reference in the static variable customNSButtonJava
Object.

Obtaining a jmethod

Object references are stored in jobject pointers. So it is no surprise that method references
are stored in jmethod pointers. References to methods stay good between native calls.
Caching jmethod pointers is perfectly safe if the JVM itself won't go away.

Remember the static block in CustomNSBut ton. In the static block, | call setupNative-
Callbacks ().In the native implementation of that method, | grab the jmethod reference.
In fact, that is the only operation performed in the native implementation.

Here again is the source for quick reference:

JNIEXPORT jlong JNICALL
Java_com_genedavis_CustomNSButton_setupNativeCallbacks
(INIEnv *env, jclass jclazz)

{

buttonClickMethod =
(*env) ->GetMethodID(
env,
jclazz,
"customButtonClicked",
EONAD N

}

The function call GetMethodID () retrieves the jmethod pointer, but tonClickMethod.
The GetMethodID () function takes the INTEnv pointer, a jclass pointer, the name of the
method, and a signature for the method. The native method call provides both the INIEnv
pointer and the jclass pointer. Just use the variables passed in on the method call. The
method name, in this case “customBut tonClicked”, is just the name of the Java method.

The method signature needs a little more discussion. Potential method overloading in Java cre-
ates the need for distinguishing methods with similar names but different signatures. The for-
mat for a method signature is as follows:

(<argument><argument><...>)<return>

Methods with no arguments contain an empty set of parentheses. Methods with no return
value ends with a V. In the case of the method customButtonClicked (), the signature is
“()V". Retrieve more complex method signatures with the javap tool.

E Bringing Guidelines, APIS, and Lanquages logether. . .

The command for obtaining all the method signatures in CustomNSButton is this:
javap -s -private CustomNSButton

To run javap against your own class, just change the name of the class in the javap com-
mand to the name of your class. Run the javap tool against the compiled CustomNSButton
class, and it returns the following results:

public class com.genedavis.CustomNSButton extends com.apple.eawt.
CocoaComponent {
public com.genedavis.CustomNSButton () ;
Signature: ()V
public native long createNSViewLong () ;
Signature: ()J
public static native long setupNativeCallbacks() ;
Signature: ()J
public int createNSView() ;

Signature: ()I

public java.awt.Dimension getMaximumSize () ;
Signature: ()Ljava/awt/Dimension;

public java.awt.Dimension getMinimumSize() ;
Signature: ()Ljava/awt/Dimension;

public java.awt.Dimension getPreferredSize() ;
Signature: ()Ljava/awt/Dimension;

public void setCustomTitle(java.lang.String) ;
Signature: (Ljava/lang/String;)V
private void customButtonClicked() ;

Signature: ()V
static {};
Signature: ()V

}

Each method signature is clearly stated. Just copy the results to the GetMethodID when
retrieving jmethod references.

CAUTION

Run the javap tool against compiled classes, not source files.

TIP
Obtaining jmethod and j £ie1d (corresponding to Java attributes) pointers is relatively expensive. If you need
repeated access to Java methods or fields, cache the pointers for performance improvements.

e _________________Chapter 8: Embedding Cocoa Componen =

Obtaining a JNIEnv

JNIEnv references provide the means for calling most of the methods you need when handling
JNI native method implementations. You will get very accustomed to typing the following:

(*env) ->SomeMethodNames () ;

The pointers | discussed so far are valid between native calls. INIEnv is not valid across
threads. Never cache JNIEnv pointers.

JNIEnv pointers are the first argument to all methods in JNI, so getting a new one that is valid
on your current thread is usually not difficult when the thread is provided by the JVM. However,
when you handle threads generated by user events on an NSView, you need to get your own
JNIEnv pointer.

ThenotifyJavaThatButtonWasClicked (void) functionin nbe.m provides an exam-
ple of obtaining a INTEnv pointer from a JavaVM pointer. For convenience, the source for
notifyJavaThatButtonWasClicked (void) follows:

void notifyJavaThatButtonWasClicked(void)
{

JNIEnv *env = NULL;
jint env_error = JNI_OK;
BOOL detach = NO;

env_error = (*jvm)->GetEnv (
jvm,
(void **)&env,
JNI_VERSION_1_6) ;

if (env_error == JNI_EDETACHED)
{
// Attaching this thread to a JVM thread

env_error = (*jvm)->AttachCurrentThread (
jvm,
(void **)env,
NULL) ;

if (env_error == JNI_OK)

{
detach = YES;
}
}

(*env) ->CallvoidMethod (
env,
customNSButtonJavaObject,
buttonClickMethod) ;

}

if (detach)
{

(*jvm) ->DetachCurrentThread(jvm);

}

Follow these steps to obtain a INIEnv pointer:

1.

2.

4.

Cache a JavaVM pointer cached.

Typically, caching a JavavM pointer when your dynamic library loads is easy. Cache
the JavavM pointer when JNI_OnLoad () is called.

Declare a JNIEnv pointer.

The declaration looks like this:
JNIEnv *env = NULL;
Retrieve the correct JNIEnv pointer from the JavaVM.

This is the call:

(*jvm) ->GetEnv (
jvm,
(void **)&env,
JNI_VERSION_1_6) ;

The function GetEnv () takes a JavaVM pointer as the first argument. The
GetEnv () function takes a JNI version as the last parameter. The JNIEnv pointer is
filled with the proper value by the GetEnv () function in a similar manner because
Java methods often set the value of Java objects passed into the methods as
arguments.

Attach the current thread to the JVM.

The JNIEnv pointer does no good, if your current thread is not attached to the JVM.
The error code returned by GetEnv () indicates the attached status of the current
thread.

Check the return value against INI_EDETACHED. If the current thread is not
attached, call the following to attach the thread:

(*jvm) ->AttachCurrentThread (
jvm,
(void **)env,
NULL) ;

Finally, all this work getting a valid INIEnv allows you to perform a callback using the
CallMethod (). The actual call in nbe . mfollows:

(*env) ->CallVoidMethod (
env,
customNSButtonJavaObject,
buttonClickMethod) ;

e Chapter8: Embedding Cocoa Component ;::II:I::’

The word “void” in the CallvoidMethod () function indicates that the return value of the
method you are calling is void. If there are arguments to the method, pass the appropriate JNI
variables in to the function call as additional argument to the function call.

TIP
There are several version of the ca11*Method () function. For a complete list of provided call method functions,
see the jni . hfile. A simple search by filename in the Finder provides the location of ni . h.

Handling Events

This section explains events in the context of CocoaComponent implementations. Most
NSViews require user interaction and interaction from the Java code. Events are the last piece
of the CocoaComponent puzzle that you need to understand.

The source for the Objective-C object, NSBut tonExample, is found in the files
NSButtonExample.hand NSButtonEample.m. As always, glancing at the Objective-C
interface gives a quick overview of the Objective-C class. The following source is found in the
NSButtonExample.h file on the Web site:

#import <jni.h>

#import <AWTCocoaComponent.h>
#import <Cocoa/Cocoa.h>
#include "nbe.h"

@interface NSButtonExample : NSButton <AWTCocoaComponent> {
}

-(i1d) init;

- (void)mouseDown: (NSEvent *)theEvent;

-(void) awtMessage: (jint) awtMessagelD
message: (jobject) messageObject
env: (JNIEnv *) jni_env;
@end

From this interface, you can see the NSBut tonExample class extends NSButton.
NSButton is an NSView. Not too surprisingly, NSBut tons generate click events.

The NSButtonExample interface declares no variables.

The NSBut tonExample declares the init: method, the mouseDown: method, and the
awtMessage: method. The init: method is the class constructor. The mouseDown :
method captures clicks on the NSBut tonExample. The awtMessage : method receives
method calls from the Java CocoaComponent’s sendMessage () method.

The implementation source from NSButtonExample . m follows:

#import "NSButtonExample.h"
@implementation NSButtonExample

-
{

!/
//

}

id) init

return [super init];
(void)mouseDown: (NSEvent *)theEvent
notifyJavaThatButtonWasClicked () ;

receives sendMessage() calls
from Java CocoaComponent
void) awtMessage: (jint) awtMessagelD
message: (jobject) messageObject
env: (JNIEnv *) jni_env

// Normally I would check the id to see which
// message this was, but I only have one

// implemented, so no need for a switch

// statement this time.

// converting the jstring to an NSString
// 1. get a jchar array from the jstring
// 2. get the length of the jstring
// 3. instantiate the NSString
// 4. free the jvm resources (no garbage collector here)
const jchar *chars = (*jni_env)->GetStringChars (jni_env,
messageObject, NULL) ;
NSUInteger str_len = (*jni_env)->GetStringLength (jni_env,
messageObject) ;
NSString *message = [NSString
stringWithCharacters: (UniChar *)chars
length:str_1len];
(*jni_env)->ReleaseStringChars (jni_env, messageObject, chars);
// setting the title of this button
[self setTitle: message];

@end

When yo

9

v
v

u implement an NSView, follow this pattern:

Implement an init: method to handle configuration and initialization of the
NSView.

Implement user event handler(s).

Implement awtMessage: to handle sendMessage () from the Java
CocoaComponent

The NSBut tonExample implementation handles mouse-down events by passing the event
tothenotifyJavaThatButtonWasClicked () function found in the nbe.mfile. Oncein

the notifyJavaThatButtonWasClicked () function, retrieve a valid INIEnv
pointer, attach the current thread to the JVM, and issue a callback to the private
customButtonClicked () method in the CustomNSButton class.

After | have the Application Kit's thread in Java, create a new Thread to handle the event,
while returning the Application Kit's thread. Never allow an AWT thread to call an
Application Kit's method in a way that may block the thread, and never allow an Application
Kit's thread to call an AWT method in a way that may block the Application Kit's thread. The
JOptionPane used in this example definitely blocks, so | call it on a separate thread.

Always play nice with threads that aren’t yours. It sounds like some sort of rule of etiquette, but
it actually prevents deadlocks and perceived performance issues.

The awtMessage: method in the NSBut tonExample implementation handles incoming
sendMessage () calls. (Note that the INIEnv pointer is actually the last parameter, not the
first as you might expect with JNI related functions.) The jint is the int representing the mes-
sage id. The jobject represents the message data.

In the case of this example, the jobject is a Java String. These are conversion steps for the
jobject toan NSString:

1. oObtain the Java String as a jchar*.

You accomplish this with a call to the GetStringChars () function contained in the
JNI environment.

2. Getthe length of the string.

The length of the string is obtained with another call to the JNI environment. Strings
are essentially character arrays in C. Because C does not track the length of arrays,
strings in C contain a value of 0 at the end of the string. (This is referred to as null termi-
nating.) You must manually place this value of 0 when creating strings in C. That is why
I need the string length.

3. Createan NSString by providing a pointer to the raw unicode characters and the
length of the final string.

4. Freethe JVM resources in the JNI environment.

Now that | have my string’s value safely copied to a shiny new NSString, itis time to
release the JNI environment’s string resources. Again, | call a function in the INIEnv*
variable, named jenv, to release the resources.

Other jobject types actually require more steps to translate, so for simple messages | stick
with sending strings from Java to Objective-C.

Summary

This chapter is about using the CocoaComponent from the Apple Java Extensions’ com.
apple.eawt package. When delving into the complexities of using the CocoaComponent,
understanding the basics of JNI is helpful. Even trivial implementations of the
CocoaComponent require basic JNI skills.

Java classes that handle JNI, usually contain native Java methods and static code blocks.
The command-line tool, javah, creates JNI header files for use with C. The jawvah tool does
this by investigating a compiled class’s methods and then creates the C headers based on those
Java methods tagged with the native key word.

CocoaCompoments wrap Objective-C classes that extend NSView. Implement your
CocoaComponent on the Java side by extending CocoaComponent and implementing
the createNSViewLong () method as anative method. CocoaComponent isan AWT
Canvas, so add it to any appropriate AWT or Swing hierarchy.

Communication between Objective-C NSView implementations and Java CocoaComponent
requires the sendMessage () method and native callbacks to Java. Use the sendMessage ()
method to send messages to your native NSView implementation. Use callbacks to message Java
from your NSview when users trigger events on the NSView.

When implementing NSView objects for use in the CocoaComponent, implement the
AWTCocoaComponent protocol. The AWTCocoaComponent protocol provides the receiving
method for messages sent from the CocoaComponent’s sendMessage () method. The
awtMessage: method provides your NSView implementation with a message id, a message
object, and a copy of the current JNI environment.

As an Objective-C class, your NSView needs to define a class implementation and a class inter-
face. A * . hfile contains the interface. A * . m file contains the class implementation. Though
discouraged, both Objective-C object interface and Objective-C object implementation may
exist in a single file. If so, place them in an * . mfile.

Architecting
Alternative
Q Applications

Understanding JNI
———

A pple ships Java on every Mac. Java is an important part of

OS X. Many applications for OS X are Java-based. Apple
has a very strong commitment to providing a stable
OS X-integrated Java experience to its users.

However, Java is just a small part of OS X. | describe in earlier chap-
ters the Cocoa frameworks, Carbon frameworks, and Unix libraries.
Many of these libraries are written for C or C-based languages.

Thankfully, Java is not a C-based language. Normally, you don’t
have to worry about pointers, cleaning up memory, allocating
memory, and a host of other nasty little details that C-based lan-
guages deal with all the time.

Still, access to Cocoa, Carbon, and POSIX libraries is useful some-
times. The standard approach on OS X to access Cocoa, Carbon,
and Unix libraries from Java is Java Native Interfaces (JNI). JNI pro-
vides access to all Cocoa frameworks, Carbon frameworks, and
POSIX libraries from Java.

JNI tends to frighten beginning and advanced Java programmers.

Visions of pointers to pointers and function callbacks passed

around with esoteric #define stz.a\tements cause dread, aTd eygn In This Chapter
hardened Java programmers cringe when the acronym “JNI” is
spoken.

Creating JNI applications
Remember, the famous words of Douglas Adams. “DON'T PANIC.

INIreally isnt any more difficult than creating Java GUI layouts by Integrating JNI

hand. JNI just takes practice.” (OK, he didn't say that last bit, or the with projects
center part either.) Using Objective-C
with JNI

In Chapter 8, | explain using CocoaComponents. Cocoa
Components require JNI, so | gave a quick introduction to
C and Objective-C integration with Java in the context of

CocoaComponents. Passing strings

Understanding OS X
JNI threading

In this chapter, | explain the basics of JNI. | introduce several
opaque structures provided by JNI. | explain in detail the use of JNI
in communicating from Java to C. | also explain communicating
from C to Java.

In this chapter, | explain use of the Invocation API. The invocation API allows C-based programs to
create Java Virtual Machines dynamically. The full importance of the invocation APl becomes
apparent in Chapter 10, when | demonstrate wrapping the Cocoa Screen Saver Framework in
Java. Using the invocation framework, you can create custom Java launchers for your OS X appli-
cation bundles. You can even use the techniques in this chapter (and in Chapter 10) to wrap
Interface Builder-created views for use as your front end in otherwise pure Java applications.

Reviewing JNI

Java Native Interfaces (JNI) give Java access to native C-based programs. Consider the ubiqui-
tous nature of C. Every modern programming language with any sizable user base can interface
with C. By extension, any modern language of any import also can interact with Java, because
Java can speak C.

The key, of course, is JNI. Java programmers don’t generally like C, so JNI isn't discussed much. It
is basically the embarrassing relative no one talks about. However, the bad reputation is mostly
unjustified.

In less than 50 lines of code, you can produce a fully functional JNI program. Admittedly, it
won’t do much, but you have to start somewhere. The most basic JNI program, diagramed in
Figure 9.1, contains a Java native method, a javah-generated C header, and a short C library.

Figure 9.1

Basic JNI-based
program

Java main
application

javah-
generated
Cheader file

Dynamically
loaded
C-based library

When your Java program needs to call native libraries, follow these steps:

1. Declare your native methods in Java.

This is the easiest of the steps and requires merely that you use the native keyword
when declaring unimplemented Java methods.

2. Generate any needed C header files.

Perform this step with a call to javah. The javah command-line tool examines a
Java class looking for methods declared as native. All native method signatures are
translated into C for use in the C implementations.

3. Implement the C header files.

The C Nl libraries have several defined types that mirror Java's primitives and objects.
Implementing the native end of Java methods requires some knowledge of the Java
types available in C.

JNI requires native methods and static blocks. Native methods and static blocks don't typically
get used in Java, except when creating JNI-based calls. If this is your first experience with JNI,
you may never have heard of static blocks or the native keyword.

On the Java side, JNI uses an unimplemented native method to indicate methods imple-
mented in the C code as functions. This little bit of magic sounds too good to be true, but that
is pretty much all there is to creating a JNI method signature in Java. (Obviously, the Cimple-
mentation is a little more complex, but not much.)

A native method is declared like this:
public native void someName () ;

The return type and the parameters passed to the method can be anything found in other
methods. Native methods can be declared as static or as regular instance methods. Access
to the method can be private, protected, public, or the implicit package-private. For all
practical purposes, the method signature is similar to an abstract method signature, except that
native code contains the implementation, instead of a subclass written in Java.

The other common task on the Java end is loading native libraries that contain the implementa-
tions of native Java methods. Loading libraries for use in JNI usually happens before the pro-
gram starts. Loading the native libraries occurs in static blocks of code.

A static block of code looks like a normal static method stripped down to the curly braces.
Usually static blocks of code are placed near the top of a method declaration, to make them
stand out. A static block of code looks like this:

static

{

// expressions go here

}

NOTE

Sometimes JNI uses no native methods or static blocks of code. For instance, in the first invocation example in this
chapter, Cstarts the JUM and calls a Java method. No static block or native methods are in the first invocation example.

The two approaches most often taken when loading native libraries are calling the System
class method named 1loadLibrary () and calling the System method 1oad ().The 1oad
Library () method is used when your library is in a predefined location specified during JYM
start up. The 1oad () method is used when you load a library from a file system location
defined while your Java program is running.

The first approach to loading native libraries looks something like this:
System. loadLibrary ("SomeLibrary") ;
The second common approach is a little more complex and looks like this:

try
{
File 1lib = new File("objc_bin/libSomeLibrary.jnilib") ;
String path = lib.getCanonicalPath() ;
System.load(path);
}
catch (IOException ioe)
{
ioe.printStackTrace() ;

}

CAUTION

Remember to get the native library name correct when loading it. The filenames of dynamic NI libraries take the form
lib<name>.jnilib. However, when using the System class method loadLibrary (), refer to the
library name, not the filename.

C programs often start a JVM and call Java methods. Starting JVMs from C is rather involved, so
I save that discussion for later in the chapter. Starting a JVM and supplying that JVM with stati-
cally linked native method implementations is the realm of the Invocation API. For now, | stick
to explaining how Java programs load and call native libraries, not how C programs load and
call Java libraries.

After declaring your native methods, compile your Java class. You must now create your native
C header files. For the examples in this book, one header is all you create. Even in real-world set-
ting, programs commonly have only one class that defines native methods and only one header
file generated from that class.

Generate your C header file using javah. The javah command takes classes as arguments.
Remember to use fully qualified class names with javah. For instance:

javah com.mycompany.MyClass

Cimplementations of native Java methods must #include the C header generated by
javah. Also, the implementing C file must # include the jni.h header, but this is usually
done indirectly by the javah-generated header. The C code itself need not be complex.

e (Chapter9:Understanding JN! 2

Calling native code

Explaining JNI doesn’t teach you JNI. You need to see and try some code examples. The follow-
ing example is found on the book’s Web site. The project uses Ant, but you can build and run
just as easily from the command line or any Java-aware build tool of your choice.

The first example is the hello_darwin project. The project is split into three source files:
HelloDarwinExample.java, native_greeting_jni.h,and darwin. c.The project
implements the basic JNI example diagrammed in Figure 9.1.

The following source is the code for the Hel1loDarwinExample class.

package com.genedavis;

public class HelloDarwinExample {
// executed during class load
static

{
// used to load from a system library path
System.loadLibrary ("NativeGreeter") ;

}

public static void main(String[] args)

{

HelloDarwinExample hde = new HelloDarwinExample() ;
hde.hi();
}

// native method call
private native void hi () ;

}

The HelloDarwinExample class contains the following:

@ astaticblock
@ amain () method
@ anative method
I load the native library using the static block. | chose to use the shorter method of loading the

library, mostly because short code is easier to read. Some programmers demand that you use
the longer version. Both methods work fine.

The native method is private but does not need to be private. | could have given it any visibility.
I made this native method simple. It does not contain arguments or a return value. However,
there are no restrictions on the arguments and return values defined by native methods.

Creating a C header file from the Hel1loDarwinExample class is a simple call of javah. From
the Terminal, cd to your compiled Java class directory and use the following command:

javah com.genedavis.HelloDarwinExample

= Architecting Alternative Applications__

In the case of the chapter’s sample code from the book’s Web site, run the command from the
hello_darwin/java_bin/ directory.

If you want to specify a name for your header file, use the —o option. Your command might look
like this:

javah -o my_jni_header.h com.genedavis.HelloDarwinExample

NOTE
The javah command does not create a native declaration of themain () method, only the hi () method. Thatis
because the hi () method is declared asnative.

In the example’s project, | force the header file to the name of native_greeting_jni.h.
The following source is for the native_greeting_jni.hfile. Thenative_greeting_
jni.hfileis generated using the javah tool from the HelloDarwinExample class.

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>

/* Header for class com_genedavis_HelloDarwinExample */
#ifndef _Included_com_genedavis_HelloDarwinExample
#define _Included_com_genedavis_HelloDarwinExample
#ifdef _ cplusplus

extern "C" {

#endif

/*

* Class: com_genedavis_HelloDarwinExample
* Method: hi

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_com_genedavis_HelloDarwinExample_hi
(INIEnv *, jobject);

#ifdef _ cplusplus

}

#endif

#endif

Looking at the javah-generated header, you may notice that the header is designed to work
with C++ as well as C. This is convenient for diehard OOP programmers that want to avoid pro-
cedural programming all together. C makes tutorials easier to follow than C++, so | avoid C++ in
this book.

Notice that the file starts with this line:

/* DO NOT EDIT THIS FILE - it is machine generated */

e _(hapter9: Understanding JN\! =

You can ignore this line. Yes, the file is automatically generated. However, if you know you
won't be rewriting the header or modifying method signatures, there is nothing mystical about
the header file. In fact, you can easily copy the relevant C header source to a new header file
and use it instead. The new header might look like this:

#include <jni.h>
#ifndef _Included_com_genedavis_HelloDarwinExample
#define _Included_com_genedavis_HelloDarwinExample

/*

* Class: com_genedavis_HelloDarwinExample
* Method: hi

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_com_genedavis_HelloDarwinExample_hi
(INIEnv *, jobject);
#endif

Do whatever makes sense for your project.

CAUTION

If you modify the j avah-generated header, be careful not to destroy your changes by running javah to generate a
new version of the same file you modified. Move your changes to a new file that won't disappear if you accidentally (or
intentionally) run javah again.

In case your Cis rusty or you are learning C as you read this chapter, | provide a blow-by-blow
explanation of the header file. You can start off by thinking of C header files as similar to Java
interfaces. (I just made lots of C programmers very angry by making that statement.) As your C
improves, you will find header files to be far more interesting than Java'’s interfaces.

NOTE

Cheader files are filled with preprocessor directives and not much C. These directives are typically handled before the
C program compiles. Preprocessor directives modify the Cin your native application, preparing it for compilation.
Many C books (and classes) ignore preprocessor directives, but no one writes useful C programs without a large
number of directives.

All the lines that look like Java comments are exactly that. They are C comments. Even if the
compiler complains a bit, most C compilers support both // and /* */ style comments. C does
not have an equivalent to Javadoc comments. Sorry.

This is the first line that influences the program:
#include <jni.h>

The #include (pronounced “pound include”) acts like import does in Java. Commonly,
angle brackets surround names of system library headers and quotation marks surround library
headers you created.

This is the next important line:

#ifndef _Included_com_genedavis_HelloDarwinExample

In Java, you import classes, enums, interfaces, and packages without any concern that duplicate
import statements might cause duplicate code to actually appear multiple times in the final
running program. Java takes care of preventing duplicate imports from resulting in actual dupli-
cate code loading into the JVM.

C has no such guarantee. If you #include a header twice, the library can end up in memory
twice. C programmers use preprocessor directives to check for multiple #includes and elimi-
nate the duplicates.

In pseudo code, the preprocessor check looks like this:

Does the variable named after this header file exist?
No?

Define the variable and name it after this file.
Define the methods and do other stuff

Yes?

Return without doing anything.

You probably notice it is an 1 £ statement and has similarities to a synchronized block in Java. The
behavior is very similar, though no multithreading is involved. These statements are of note:

#ifndef _Included_com_genedavis_HelloDarwinExample
#define _Included_com_genedavis_HelloDarwinExample
/* header source goes here. */

#endif

The most important bit of the header is the function signature. It looks like this:

JNIEXPORT void JNICALL
Java_com_genedavis_HelloDarwinExample_hi
(ONIEnv *, jobject);

This function represents the Java method hi () inthe HelloDarwinExample class. The
return type is void. The function name is as follows:

Java_com_genedavis_HelloDarwinExample_hi

The two arguments to the function are a INTEnv pointer and a jobject. JNIEXPORT and
JNICALL are defined in jni . h, but you can almost always ignore them. (Ignore them, but
don’t delete them.)

You are already familiar with most of the common return types and arguments to JNI functions,
as shown in Table 9.1. The one argument that is probably new to you is the INIEnv *. INIEnv
is literally the JNI environment. It is an opaque type containing functions relating to the JNI

e (Chapter9:Understanding JN! 29D

environment. Supposing the INIEnv * variable is named env, the syntax for calling INTEnv
functions usually looks like this:

(*env) ->SomeFunction () ;

Table 9.1 Common JNI Method Arguments and Return Types

JNIC Type Java Equivalent
jclass java.lang.Class
jobject java.lang.Object
jmethod java.lang.reflect.Method
jstring java.lang.String
jdouble primitive double
jfloat primitive float
jlong primitive long

jint primitive int

jshort primitive short
jbyte primitive byte

jchar primitive char
jboolean primitive Boolean

The actual implementation of your native Java method is contained in the darwin. c file.
The following source is for the darwin. c file. The darwin. c file implements the function
definition found in the javah-generated header.

#include <stdio.h>
#include "native_greeting jni.h"

JNIEXPORT void JNICALL Java_com_genedavis_HelloDarwinExample_hi
(INIEnv * a, jobject b)

{
printf ("\n\nHello Darwin!!!\n\n");
return;

}

| have described the use of the INIEnv *, but not the purpose of the jobject. Whenever a
native Java method is implemented in C as a function, the first two arguments represent the
caller of the function. INIEnv is the JNI environment that called the function. The second argu-
ment is the Java object or class to which the native method belongs.

= Architecting Alternative Applications__

In other words, if the nat ive method was static, a reference to the containing class is
passed to the native implementation as a jclass. If the native method was in an instance
(an object, not a class), then the second argument to the native implementation is a jobject.
The jobject is a reference to the actual object that contained the native Java method.

Compiling the mixed Java-C applications by hand is a good way to get familiar with how all the
pieces fit together. It doesn’t take long to get old, though. All the JNI examples in the chapter
come with Ant projects to take care of the details for you. | describe using Ant to build JNI proj-
ects later in this chapter.

CROSS-REF
I describe Ant builds in detail in Chapter 4.

After building the Hel1loDarwinExample application, run it from the command line with the
following command:

java -Djava.library.path=objc_bin -cp java_bin/ -
com.genedavis.HelloDarwinExample

The results are shown in Figure 9.2.

Figure 9.2
The output of running the HelloDarwinExample class

Hello Dorwin! It

Winnaczhel lo_darvin tdavist |

Returning native variables to Java

JNI involves more work than pure Java. Writing JNI is worth your time only if it saves you time or
if it adds features to your program not available in Java. Believe it or not, some tasks are impos-
sible from Java, so they require JNI or similar technologies.

e —————_______________Chapter 9: Understanding JN| 24

One example of an impossible task is single character input from the Terminal. The Terminal
(like consoles in other operating systems) enters a line of text to the running program with the
user presses Return or Enter. You cannot retrieve characters as they are typed in the Terminal
from a pure Java program.

A simple JNI program provides single character reading from the Terminal. The next JNI exam-
pleis the SingleCharReader application. The SingleCharReader provides Java with the
capability to instantly read keystrokes as the user types them in the Terminal. This is useful for
command-line utilities, Terminal User Interfaces, text-based games, and any application that is
not GUI-based. (Yes, they still exist.)

Looking at the source, you see that this application is not much more complex than the first
example in this chapter. Yet, this application extends the Java APl in a useful way. JNI has that
kind of power. Sometimes, just a few lines of JNI can save you tons of work, or even save a proj-
ect from failure.

The singleCharReader project consists of one Java class, one C header file, and one

C source file, as shown in Figure 9.3. As you have already guessed, the Java class is named
SingleCharReader. The javah-generated C header is called native_getch_jni.h.
The C source file is called char_reader.c.

Figure 9.3

The organization of the SingleCharReader project

SingleCharReader

<<native>>
native_getch_jni.h

+getch() : char
+main()

<<native>>
char_reader.c

+Java_com_genedavis_SingleCharReader_getch()

The following source is for the SingleCharReader class:

package com.genedavis;

public class SingleCharReader {
// executed during class load
static

// used to load from a system library path
System. loadLibrary ("CharGrabber") ;

}

public static void main(String[] args)
{
SingleCharReader scr = new SingleCharReader () ;

System.out.println(
"Enter characters (type 'g' to quit)\n");

char myChar = ' ';

while (myChar != 'q')

{
// use native call
myChar = scr.getch();

System.out.println (
w_ sy
myChar +
||<__\n||) ;

}

// native method call
private native char getch() ;

}

The SingleCharReader class starts with a static block. The static block loads the dynamic
library named CharGrabber using the System. loadLibrary () method. As | mentioned
earlier, static blocks execute before the main method in a program, so the library is already
loaded before the application’s main () method executes.

NOTE

Because the library CharGrabber is a dynamic library, the actual filename is LibCharGrabber.jnilib.

CAUTION

Remember to include the native libraries when running your Java applications. For instance, you can add an argument
to the java command, suchas -Djava.library.path=<pathtolib>.

e _(Chapter 9: Understanaing JN\ =

The SingleCharReader contains one native method. The native method is getch (). The
method signature is as follows:

private native char getch() ;

Notice the getch () method has a return value of char. The native code returns a char to the
Java code. This is the char representing the user’'s most recent keystroke.

The SingleCharReader also contains the application’smain () method. Themain ()
method instantiates an instance of the SingleCharReader. Then loops read characters from
the user’s keystrokes until the user types q.

NOTE
The singleCharReadexr’s native method could easily be a static method, instead of an instance method.
Making an instance method is more a matter of style, and it’s up to the individual programmer.

| generate the C header with the javah tool. As | mention earlier, there is nothing magical
about this header or any header generated by javah. In fact, after you are used to the headers
generated by javah, you may choose to save yourself a step and write your own JNI headers
by hand.

The following source is for the native_getch_jni.h header file generated with javah
from the SingleCharReader class.

/* DO NOT EDIT THIS FILE - it 1s machine generated */
#include <jni.h>

/* Header for class com_genedavis_SingleCharReader */
#ifndef _Included_com_genedavis_SingleCharReader
#define _Included_com_genedavis_SingleCharReader
#ifdef _ cplusplus

extern "C" {

#endif
/*
* Class: com_genedavis_SingleCharReader
* Method: getch
* Signature: ()C
*/

JNIEXPORT jchar JNICALL
Java_com_genedavis_SingleCharReader_getch
(JNIEnv *, jobject);

#ifdef __cplusplus

}

#endif

#endif

The header file is very similar to the preceding header file. It has a check for C++ and a check for
prior #includes. The header #includes jni . h, and the header defines the project’s sole
native method implementation, getch ().

The function name is as follows:
Java_com_genedavis_SingleCharReader_getch

The name is certainly long. Glancing at it, you can see the parts easily enough. “Java” means this is
a Java native method implementation. “com_genedavis” means the implemented method is from
the com. genedavis package. “SingleCharReader” is the name of the class containing native
method definition. Finally, “getch” is the name of the actual native method implemented.

TIP

You do not have to use long function names for native implementations of NI methods. With a little extra code, you
can associate custom names with your native Java methods. | explain registering native methods later in this chapter
when | discuss Java callbacks to Capplications.

The following source is for the char_reader. c file. The char_reader. c file implements
the getch () method from the SingleCharReader class.

#include <stdio.h>
#include <termios.h>
#include <unistd.h>
#include "native_getch_jni.h"
JNIEXPORT jchar JNICALL
Java_com_genedavis_SingleCharReader_getch
(INIEnv * my_jenv, jobject my_jobj)
{
jchar ch;
struct termios old_term, new_term;
//storing the old settings
tcgetattr (STDIN_FILENO, &old_term);
// making a copy of the old settings
// to modify
new_term = old_term;
// modifying the copy of the terminal settings
// so there is no echoing and no buffering
// just flipping bits here
new_term.c_lflag &= ~(ICANON | ECHO);
// setting the modified terminal settings
// to be active
tcsetattr (STDIN_FILENO, TCSANOW, &new_term) ;
// getting the character
ch = getchar () ;
// resetting the terminal settings to the old settings
tcsetattr (STDIN_FILENO, TCSANOW, &old_term);

return ch;

e _(hapter9: Understanding JN\! =

The Java_com_genedavis_SingleCharReader_getch () function starts by defining a
jchar and two termios structs. The jchar type is the JNI version of a Java char primitive.
Structs of type termios represent the behavioral configuration of the terminal I/0. (That's ter-
minal with a lowercase “t”.) Think of termios as the developers’ terminal I/O preferences.

The tcgetattr () function populates a provided termios struct with the current internal
termios structure. | use the tcgetattr () function to save the current state of the terminal
settings before modifying them. Changing the terminal I/0 behavior in a program and not
resetting it after the program is finished is generally frowned upon.

| set the new_term struct to the same values as the 01d_term, making a clone of the current
terminal I/0 settings. | modify the new termios structure so that echo is no longer set and
buffering is turned off; then | make the new_term settings active.

Now, | can call getchar () and receive characters as the user types them. After | have a character
from the user, | reset the terminal I/0 settings with the original settings | stored in 01d_term.

CROSS-REF

I flesh out the SingleCharReader application in Chapter 11 for use in an example Terminal User Interface
application.

If you are working from the project from the book’s Web site, use the following command to
run the SingleCharReader application:

java -Djava.library.path=c_bin -cp java_bin/ -
com.genedavis.SingleCharReader

Execute the java command from the char_reader directory. The output looks similar to

Figure 9.4.

Figure 9.4

The Terminal output when running the SingleCharReader application
1) lermipalesbashies 103323

Winmoc:char_reader tdavis$ iova -Digva. L ibrary.path=c_bin -cp lova_bin/ com.genedavis.SinglecharReqder 8

Cnter characters (type 'g' to gquit) -

ol

b

Winnoc:char_reader tdavist ||

g Architecting Alternative Applications

Invoking Java from native code

Native code takes the form of fully modern Cocoa applications, pure C-based command-line
tools, or legacy code, just to name a few. Sometimes you want to run Java code from inside
native applications. Sometimes, you want to incrementally port C applications to Java. Creating
Java Virtual Machines (JVMs) from inside native applications involves JNI's Invocation API.

The first two examples in this chapter deal with calling native code from an existing JVM. Both
of those examples assume that you are running a Java application. If you want to execute Java
from a native application, those examples don't solve your problem. When you write a program
in C and execute it, no pre-existing JVM is available to execute Java byte code. In order to call
Java from native code, you need a JVM.

But where do new JVMs come from? (Admit it. You've always wanted to ask.)

New JVMs come from calls to the INI_CreateJavaVM () function. When JVMs get old, you
get rid of them with calls to DestroyJavaVvM (). There are more details, of course, but know-
ing those two functions is a good start.

CAUTION
You can create only one JVM for any process. If your program or another programmer’s plug-in might need to reuse a
JVM created with the Invocation API, do not destroy it with the (*jvm) ->DestroyJavavM (jvm) ; cll.

TIP

The Jar Bundler discussed earlier in this book uses a small native application to launch the JUM and execute the bundled
JAR file. Using the Invocation API, you can write your own custom Java application launcher. A bonus of creating your
own launcher is that you can choose a custom entry method or methods other than the traditional main () method.
Many languages besides Java run on JVMs. (For a short list, see ht tp: / /en.wikipedia.org/wiki/
List_of_JVM_languages.) If you runalanguage other than Java on a JVM, creating a custom application
launcher may make sense for your language.

Another use of custom Java application launchers is simple obfuscation of code. Starting your application from a
method other thanmain () gives hackers one more hurdle to overcome when cracking your software security.

Follow these steps for calling Java byte code from inside native applications:

1. Create JavaVMInitArgs.

Minimally, JTavavMInitArgs contain the version of NI (1.6) and the
JavaVMOption array.

2. Createa JavaVMOption array.

These options are commonly passed to the java command in the Terminal, so you
probably already know them. At the very least, you should pass in the location of your
Java classes using the -Djava.class.path=some/path/ argument. Add these
options to the JavavMInitArgs in preparation for creating the JVM.

Call INI_CreateJavavM().

Calling INI_CreateJavaVM () creates a JVM. Your new JVM just sits there doing
nothing useful until you actually call a method on it. When you execute the java
command from the Terminal, it creates a JVM with this function call and then finds the
specified class witha staticmain () method to call. However, you are under no
obligation to callamain () method.

Find the class containing the method you want to call.

Use the environment generated with the creation of the Java VM to call FindClass ().
When calling FindClass (), the naming convention for Java classes is to name the
classes as you do in Java, except that the periods are replaced with forward slashes.

Get the ID of the method you want to call.

Methods in Java are often overloaded. That means multiple methods exist in the same
class with the same name, but different method signatures. When getting methods,
you must specify both the method name and the method signature.

Call your Java method from your native program.

Call your static method from one of the many CallStaticMethod () functions.
Pass the INTEnv*, the jclass reference, and the jmethodID, followed by the
actual arguments to the Java method.

Destroy your JVM.

Destroy your JVM only if you know for sure it is not needed again. Programs can create
JVMs only once. If your application or another developer’s plug-in requires the JVM
after you destroy it, that's too bad. It's not coming back.

Creating a JVM from native code requires lots of steps. Here is an example. The project is called
first_invocation, and of course it is found on the book’s Web site.

The first_invocation project consists of a C application and a single Java class with one
short static method, as shown in Figure 9.5. The C application calls the Java method with two
ints as parameters and receives an int as a return value.

Figure 9.5

The first_invocation project

<<native>> Firstinvocation
simple_jvm_invokerc L~ 5

+advancedMath(int, int) : int

- Arcnitecting Alternative Applcations

NOTE
When examining the f£irst_invocation project, notice that the project has no header files. When creating a
JVM and calling a Java method, you likely won’t need to run javah.

The following code is the source for simple_jvm_invoker. c. This application is a native
application that starts a JVM, so themain () function is found in this C source file:

#include <jni.h>
#include <stdio.h>
int main(void)
{
// declaring the JVM and environment
// variables
JavavM *jvm;
JNIEnv *env;
// setting up arguments to JVM
JavaVMInitArgs jvm_args;
// Always declare the newest version of
// JNI you want to use. JNI_VERSION_1_6
// corresponds to Java 6.
jvm_args.version = JNI_VERSION_1_6;
// JavaVMOptions are the options
// you are already familiar with
// from the command line
JavaVMOption options[1];
// in this project the Java classes are
// all contained in the java_bin directory
options([0].optionString = "-Djava.class.path=java_bin/";
// The option array length MUST be declared.
// remember this is C, and array lengths
// are not known unless your program explicitly
// stores them.
jvm_args.nOptions = 1;
// setting the options
jvm_args.options = options;
jvm_args.ignoreUnrecognized = JNI_FALSE;

// creating the JVM
JNI_CreatedavaVM (
&jvm,
(void**) &env,
&jvm_args) ;
// obtaining the Java class com.genedavis.FirstInvocation
jclass fiClass = (*env)->FindClass (
env,
"com/genedavis/
FirstInvocation") ;

e _(Chapter 9: Understanaing JN\ =

// obtaining a reference to

// com.genedavis.FirstInvocation.advancedMath ()

jmethodID mid = (*env)->GetStaticMethodID (
env,
ficlass,
"advancedMath",
"(II)I");

// calling com.genedavis.FirstInvocation.advancedMath ()
int result = (*env)->CallStaticIntMethod (

env,

fiClass,

mid,

1,

1);

// printing the result returned from Java call
printf ("\nl+1=%d\n\n", result);

// shutting down the JVM
(*jvm) ->DestroyJavaVM (jvm) ;

Creating JVMs
You create the JVM with a call to INI_CreateJavaVM (). The source looks like this:

JNI_CreatedJavaVM (
&jvm,
(void**) &env,
&jvm_args) ;

The three arguments are jvm, env, and jvm_args. They are references to a Javavy, a
JNIEnv,and aJavavMInitArgs. The jvmand env variables are populated by the call to
JNI_CreateJavaVM ().The jvm_args variable helps initialize the JavavM.

After you have a JavaVM and a JNIEnv, you can find any class loaded by the JVM. Use the
FindClass() function. As | mentioned earlier, the first argument is the JNIEnv*. The second argu-
ment is the fully qualified Java class name as a string. Use forward slashes instead of periods in
the fully qualified class name.

Calling Java methods from C

JNI identifies Java methods by their containing class, their method name, and their type signa-
ture. Overloaded methods share class name and method name. The only distinguishing trait for
overloaded methods is their type signature.

“ Arcnitecting Aiternative Applications

Type signatures combine the return type and the arguments to a method in one symbolic
string. The type signature string contains a whole bunch of symbols that are a bit tricky to
decipher. For instance, this method

void myMethod () { ... }
has a type signature of

v
The parentheses surround the arguments, and the V is the void return type.
In this example

public int myMethod (
java.lang.Object,
byte bt,
char c,
boolean bn) { ... }

has a type signature of
(Ljava/lang/Object;BCZ)I

You may be worried about how to come up with type signatures on your own. Beginners usu-
ally use the javap tool with the —s and -private arguments. This tool displays a list of all
type signatures in the requested class.

CAUTION
Dealing with voids in type signatures is tricky. If a return type is void, use a capital v. If the argument list is empty, use
empty parentheses, not (V). The type signature () v is valid. The type signature () v is never valid.

TIP

Run javap -s <fully qualified class name> tofind the type signatures of the class’s methods.

Coming up with type signatures on your own is not hard. Keep these points in mind:
@ Type signatures end with a return type (like UML), rather than begin with a return type
as standard Java does.
@ Type signatures contain no spaces or commas.
@ Type signatures with no parameters contain a set of empty parentheses.
@ Type signatures with a void return type end in V.
@ Use Table 9.2 to look up symbols you don’t know.

e (Chapter9:Understanding JN! =

Table 9.2 Method Type Signature Symbols

Ljava/lang/Object; java.lang.Object
Ljava/lang/String; java.lang.String
Lcom/genedavis/Example; com.genedavis.Example
D double

J long

| it

S short

B byte

C char

VA Boolean

| call the Java method in the simple_jvm_invoker. c file with the following C code:

int result = (*env)->CallStaticIntMethod (
env,
fiClass,
mid,
1,
1);

The function name is CallStaticIntMethod (). The word “Static” in the function

name indicates that the Java method called is a static method. The word “Int” indicates
the return type of the function. Table 10.3 shows the JNI types used as return types to all the
CallStatic*Method() functions provided by JNI.

The CallStaticIntMethod () functionis one of many Call*Method () functions. Call
method functions come in four varieties. One variety eliminates the word “Static” from the func-
tion name. Those functions are for calling instance methods. Two other versions of call method
functions end in V and A. These accept Java method arguments differently than the method |
show. Table 9.3 contains a list of all the common CallStatic*Method () functions con-
forming to this section’s example code.

NOTE

Functions are associated with procedural programming, and methods are associated with 00P programming.
Therefore, Chas functions and Java has methods—never the other way around.

Table 9.3 JNI Call Static Methods

Call Method JNI Return Type

(allStaticVoidMethod (JNIEnv *env, jclass clazz, jmethodID methodlD, ...)
(allStaticObjectMethod (JNIEnv *env, jclass clazz, jmethodID methodiD, ...)
(allStaticDoubleMethod (JNIEnv *env, jclass clazz, jmethodID methodID, ...)
(allStaticFloatMethod (JNIEnv *env, jclass clazz, jmethodID methodlD, ...)
(allStaticLongMethod (JNIEnv *env, jclass clazz, jmethodID methodID, ...)
(allStaticintMethod (JNIEnv *env, jclass clazz, jmethodID methodID, ...)
(allStaticShortMethod (JNIEnv *env, jclass clazz, jmethodID methodID, ...)
(allStaticCharMethod (JNIEnv *env, jclass clazz, jmethodID methodlD, ...)
(allStaticByteMethod (JNIEnv *env, jclass clazz, jmethodID methodlD, ...)
(allStaticBooleanMethod (JNIEnv *env, jclass clazz, jmethodID methodlD, ...)

Implementing Java calls from native code

void
jobject
jdouble
jfloat
jlong
jint
jshort
jchar
jbyte
jboolean

As mentioned earlier, implementing Java methods for calls from native code is the same as writ-
ing normal Java. From the Java side, it is no different than writing normal Java code.

The following is the source code for the FirstInvocation class. The FirstInvocation
class contains no static blocks and no native methods. You use static blocks to load native
implementations of native methods. There are no Java callbacks to the native code, so there are

no native methods and no static blocks of code.

package com.genedavis;
public class FirstInvocation ({

public static int advancedMath (int a,

{
return a+b;

}

TIP

In this chapter’s invocation examples, | call static Java methods from native C code. | recommend sticking with
static methods when calling Java code from native applications because it is simpler. If you have a compelling
reason for calling an instance method instead, you can instantiate jobjects from jclassesand call the

methods on the jobjectsinstead.

If you use a Java method for calls from C, don’t use that same method for calls from Java code.
Eventually, you will find bugs in your JNI. You do not want to complicate debugging by sharing

Java methods with C and Java.

Lnapter Y: vunderstandaing JiN =

TIP

When creating Java methods for native code to call, usually declare the methods as private to discourage calls to
the same method from inside my Java code. This may make it harder for the JIT compiler to optimize the NI, but it's
worth it in adding dlarity to the code.

TIP
Always javadoc comment your Java methods that accept calls from native code. Make it as obvious as possible that the
Java method is accepting native calls.

When you run the simple_jvm_invoker from the Terminal, the output is similar to that
shown in Figure 9.6.

Figure 9.6

The simple_jvm_invocation output

e @

1112

Winmoc:Tirst invocation taaviss |

“~

Returning Java calls to native code

If you build a custom Java launcher, then you might get away with only C calls to Java. However,
if you want to wrap an Interface Builder project, or as in Chapter 13, a Screen Saver Framework
project, then you need to know how to make Java call callbacks to native code.

The next exampleis in the callback_from_java project on the book’s Web site. The
callback_from_java projectis set up as a Model View Controller (MVC), as shown in Figure
9.7. The example project actually contains no view code, but that is irrelevant for the example.
Use a file such as app_starter.c to wrap your favorite C-based view. Your view can be anything
from a Cocoa Interface Builder project, a Screen Saver Framework project (demonstrated in
Chapter 13), or a cross-platform Qt project.

Figure 9.7

The callback_from_java source diagram

ProcessControl

+doCodeManagementStuff()
-tinitController()

EntryPoint

-startJava()

+shutdown()

+callbackOne()
+callbackTwo()

<<native>>
app_starter.c

-shutdown_requested

+main()
+modelEventLoop()
+registerEntryPointNatives()
+EntryPoint_callbackOne()
+EntryPoint_callbackTwo()

The key to the callback_from_java projectis that the view is written in a C-based lan-
guage and completely separate from the model and controller. Only events and view updates
exchange between the controller and the view. All communication takes place through a

DataStore

+getimportantint()
+getimportantDouble()

Represents View / GUI

simple EntryPoint class that acts as a wrapper around the view.

Inthe callback_from_java project, the application starts in the view, but very quickly
passes control to ProcessControl that acts as the MVC model’s controller. Starting the
application from the view allows the view to act as a wrapper to a host of C++, C, and
Objective-C centric frameworks. Don't bother figuring out a way to launch your project differ-
ently from the original C-based technology; just wrap the technology and pass control quickly

to the application’s Java controller.

NOTE

By wrapping a C-based GUI and starting the GUI from C, you are turning your view into an extended Java application

launcher.

The following source is for the app_starter.cfile.In the callback_from_java project,
this file acts as the Java launcher and wraps the view in the EntryPoint class:

#include <jni.h>

#include <stdio.h>

#include <unistd.h>

// shutdown flag

jboolean shutdown_requested = JNI_FALSE;

// loops waiting for the controller to
// finish and request shutdown
void modelEventLoop (void)
{
int secs = 0;
// check for exit request
while (! shutdown_requested)
{
// sleeps for 1/10 second
usleep(100000) ;
printf ("woke...\n", (secs/10));

}

// Java "native" callbacks from JNI
// header file

//Class: com.genedavis.EntryPoint
/ /Method: void callbackOne (int)
void

JNICALL EntryPoint_callbackOne
(JNIEnv * env, jclass jc, jint data)
{

printf ("important int from data store: %d\n", data);

}
//Class: com.genedavis.EntryPoint
/ /Method: void callbackTwo (float)

void JNICALL EntryPoint_callbackTwo
(INIEnv * env, jclass jc, jdouble data)
{
printf ("important double from data store: %f\n", data);

}
//Class: com.genedavis.EntryPoint
//Method: void shutdown (int)

void JNICALL EntryPoint_shutdown

(JNIEnv * env, jclass jc, jint data)

{
// ignoring the data, but in a real
// application, the data variable
// represents an exit value

}

shutdown_requested = JINI_TRUE;

void registerEntryPointNatives
(INIEnv * env, jclass jc)

{

// £ill with Java's native names,
// followed by javp style signature
// and the C version of the method
// names

JNINativeMethod natives[] =

{

{

"callbackOne",
"(Iyve,
&EntryPoint_callbackOne

I
{
"callbackTwo",
" (D)vV",
&EntryPoint_callbackTwo
I
{

"shutdown",
(v,
&EntryPoint_shutdown

}

Y

// adding the methods from the C
// side instead of the Java side
(*env) ->RegisterNatives (env, jc, natives,

int main(void)

{

// declaring the JVM and environment
// variables
JavavVM *jvm;
JNIEnv *env;

// setting up arguments to JVM
JavaVMInitArgs jvim_args;

// Always declare the newest version of
// JNI you want to use. JNI_VERSION_1_6
// corresponds to Java 6.
jvm_args.version = JNI_VERSION_1_6;

3);

// JavaVMOptions are the options
// you are already familiar with
// from the command line
JavaVMOption options[1];

// in this project the Java classes are
// all contained in the java_bin directory
options[0] .optionString = "-Djava.class.path=java_bin/";

// The option array length MUST be declared.

// remember this is C, and array lengths

// are not known unless your program explicitly
// stores them.

jvm_args.nOptions = 1;

// setting the options
jvm_args.options = options;
jvm_args.ignoreUnrecognized = JNI_FALSE;

// creating the JVM
JNI_CreatedJavaVM(&jvm, (void**)&env, &jvm_args) ;

// obtaining the Java class com.genedavis.EntryPoint
jclass entryPointClass =
(*env) ->FindClass (env, "com/genedavis/EntryPoint");

// registering the statically linked native methods
// for com.genedavis.EntryPoint
registerEntryPointNatives (env, entryPointClass);

// obtaining a reference to
// com.genedavis.EntryPoint.startJava ()
jmethodID mid =
(*env) ->GetStaticMethodID (env, entryPointClass,
"startJava", " ()V");

// starting controller with a call to
// com.genedavis.EntryPoint.startJava ()
(*env) ->CallStaticVoidMethod (env, entryPointClass, mid) ;

// announcing success
printf ("\n\nStarted Conroller\n");

// Model's event loop
modelEventLoop () ;

// shutting down the JVM
(*jvm) ->DestroyJavaVM (jvm) ;

Architecting Alternative Applications

In the last section, | described most of the code found in the app_starter. c file. The impor-
tant addition is the registerEntryPointNatives () function. In this function, | do away
with both dynamic loading and long function names for native implementations of native
Java methods. The registerEntryPointNatives () function sets up the Java callbacks
to C.

| use these steps for creating Java callbacks to C:

1. Create function stubs for the native C implementations of your Java callbacks.
Note that you can create short function names. The naming convention is up to you.
2. Createand populate a JNINativeMethod array.

The JNINativeMethod array is a list of methods you want to register. Each
JNINativeMethod contains the name of the Java native method you are imple-
menting, the method type signature, and a function pointer to the local Cimplemen-
tation of the method.

3. call RegisterNatives().

RegisterNatives () takesarguments of INIEnv*, jclass,
JNINativeMethodl[], and your array length.

NOTE

The valid values of a jboolean are JNI_FALSE and JNI_TRUE.

NOTE
This example statically links the native methods called by Java, so no dynamic libraries are called. No static blocks of
code are needed in the Java source, because of the static linking of the native method implementations.

The RegisterNatives () function allows you to statically link your C implementations of
Java callbacks. That is why the EntryPoint class has no static block, as the first two examples
in this chapter contained. No rule says you have to statically link this type of project; | merely
want to demonstrate that you can statically link libraries in JNI projects.

The following source is for the EntryPoint class:

package com.genedavis;
/**

* This class is a link between the Java
based controller and C (or Objective-C)
startup code. The C-based code could
also be a full-fledged View built in
Interface Builder or another C-accessible

* ok X %

*

*/

tool.

@Qauthor T. Gene Davis

public class EntryPoint

{

Simply starts the Java-based
controller of this application.

In more advanced applications, this
could represent events from a GUI
* or from a C library.
*/
@SuppressWarnings ("unused")
private static void startJaval()

% X % ok b

{
ProcessControl pc = new ProcessControl();
pc.doCodeManagementStuff () ;
}
/**
* View update. This call is non-blocking.
* However, in cases that the thread
* potentially blocks, make Model updates on
* a separate thread!
*
* @param i just an int
*

~

public static native void callbackOne (int i) ;

*

View update. This call is non-blocking.
However, in cases that the thread
potentially blocks, make Model updates on
a separate thread!

@param d just an double

* %k kX ok 3k % X

~

public static native void callbackTwo (double d) ;

/**
* Exiting the entire application.
*/
public static native void shutdown (int exitValue) ;

g Architecting Alternative Applications___

The EntryPoint class acts as a wrapper for the C code. The C code in this example equates to
a view in similar projects. This starts the ProcessControl in the startJava() method. From that
point on, the control of the application passes to the ProcessControl, and the C code returns to
its primary function as GUI.

The startJava () method is called from the C code. It is the only method called from the C
code in this project. In a real project, you might have many events from the GUI calling several
Java methods, or you might describe all your events in such a way that they are funneled
through one Java method to the controller for handling.

The callbackOne () method, callbackTwo () method, and shutdown () method are all
native methods. Each method has a C implementation set up by the RegisterNatives ()
function call in the app_starter. cfile.

The following source is for the ProcessControl class. The ProcessControl class repre-
sents the controller in a complex Java project:

package com.genedavis;

/**

* This class represents the controller in
* a traditional Model View Control design.
* Obviously, in a real application, the

* elements of the Model View Control are
* more complex, but this simplified model
* serves to illustrate the concept.

*

* @author T. Gene Davis

*

/
public class ProcessControl
{
/**
* If the C-based code is a GUI, give
* it back its thread!
*/
public void doCodeManagementStuff ()
{
// creating a separate thread for
// the controller to use
Thread controlThread =
new Thread(new Runnable () {
public void run()
{
initController () ;
}
)

// starting the new controller thread
// the native code's thread is then

e (Chapter9: Understanding JN|

// returned.
controlThread.start () ;

}

/**
* If there is a control loop, it
* goes here.
*/

public void initController ()

{
// initializing data store
DataStore ds = new DataStore();

// represents data retrieval
int intData = ds.getImportantInt();
double doubleData = ds.getImportantDouble() ;

// Updating View ... Could be a GUI

// in some cases. If there is a potential
// for blocking, make GUI updates on a

// separate thread.

EntryPoint.callbackOne (intData) ;
EntryPoint.callbackTwo (doubleData) ;

// All done. Let C code know it's
// time to shut down the JVM.
EntryPoint.shutdown (0) ;

}

When starting a Java application from a C GUI, the GUI almost always contains some sort of
application event thread. Never hold onto event threads. Whether from Cocoa applications or
Swing projects, quickly create a new thread to handle your code and return the event thread to
its proper owner. Failing to do so often results in blocking code, and at the very least it makes
the application appear unresponsive to the user.

The first call to ProcessControl is to the doCodeManagementStuf £ () method. |
create and start a new Java Thread immediately. Then | return the native thread to its
owner. Meanwhile, my new Java Thread calls initController ().In areal application,
the initController () method is where controller setup begins and any controller
application loops start.

The following source is for the DataStore class. This class represents the model in this
MVC-based project. It contains two methods that return important numbers. Had this been
a real application, it would have hooked into a database, flat file, directory service, or other
common data store.

package com.genedavis;
/**

* This class represents the data store in

* a traditional Model View Control design.

*

* @author T. Gene Davis
*/
public class DataStore

{

/**

* Returns int 42.

*/
public int getImportantInt ()
{
return 42;
}
/**

* Returns double PI.
*/
public double getImportantDouble ()
{
return Math.PTI;

}

The output from the callback_from_java project is shown in Figure 9.8.

Figure 9.8

The callback_from_java output

:‘?

Winmac:cal lback_Trom_iava tdavis$./c_binfopp_starter

ir'm

Started Conrol ler

mportant int From doto store: 42

impuor Lunl. duuble from dulu slore: 3.141593
WokG ..

Winnac :cal tbock_fron_java tdavist ||

7~

Chapter 9: Understanding JN =

Building JNI Applications from Ant

Building JNI projects baffles many popular IDEs, so | use Ant build projects to handle the com-
plex details. Ant projects integrate into all common IDEs. By using an Ant build, the developers
on your project are not constrained to use a particular IDE, thus improving their productivity.

The following source is the build. xml file for building the HelloDarwinExample from the
beginning of this chapter:

<?xml version="1.0" encoding="UTF-8"?>

<project name="Hello World" default="run" basedir=".">
<property name="java.source" value="java_src" />
<property name="c.source" value="c_src" />
<property name="java.bin" value="java_bin" />
<property name="native.bin" value="c_bin" />

<target
name="explain"
description="Explains the objective of the build">
<echo>Building the full Java and Native source.</echo>
</target>
<target
name="clean"
description="Removes previous build">

<echo>Cleaning Java and Native bin folders...</echo>

<delete dir="${java.bin}" />
<delete dir="${native.bin}" />

</target>

<target
name="java-build"
depends="clean"
description="Builds the Java source">

<echo>Building Java...</echo>
<mkdir dir="${java.bin}"/>
<javac srcdir="${java.source}" destdir="${java.bin}" />

</target>

<target
name="native-header-build"

Arcniteciing Aiternative Appilicaztions

description="Builds the native headers file">
<echo>Creating native header file...</echo>

<mkdir dir="${native.bin}"/>

<javah
outputfile="${c.source}/native_greeting_jni.h"
classpath="${java.bin} ">

<class name="com.genedavis.HelloDarwinExample" />

</javah>
</target>

<target
name="native-build"
description="Builds the native lib*.jnilib">

<echo>Creating native lib*.jnilib</echo>

<!--

gcc
-bundle
./c_src/darwin.c
-0 ./c_bin/libNativeGreeter.jnilib
-I/System/Library/Frameworks/JavaVM. framework/Headers
-I ./objc_src/
-framework JavaVM

-——>

<exec executable="gcc">

<arg value="-bundle"/>
<arg value="./${c.source}/darwin.c"/>
<arg line="-o ./${native.bin}/libNativeGreeter.jnilib"/>
<arg value=
"-I/System/Library/Frameworks/JavaVM. framework/Headers" />
<arg line="-framework JavavM"/>

</exec>
</target>

<target
name="build"
depends=
"explain, java-build, native-header-build, native-build"
description="builds full Java and Native byte code.">

<echo>Build complete</echo>

e _(Chapter 9: Understanaing JN\

</target>

<target
name="run"
depends="build"
description="cleans, builds, and then runs app">
<!l--
java
-Djava.library.path=objc_bin
-cp java_bin/
com.genedavis.HelloDarwinExample
——>
<java
classpath="${java.bin}/"
classname="com.genedavis.HelloDarwinExample"
fork="true">
<jvmarg value="-Djava.library.path=${native.bin}" />
</java>
</target>
</project>

This Ant build.xml file contains examples of all the targets necessary to build any of the
JNI projects described in this chapter. The native-header-build target handles the javah com-
mands. The native-build target handles the gcc commands. The java-build target handles the
javac commands.

In a JNI project, | usually handle running the application outside the actual Ant project. Don't
feel constrained to do this. With a little messaging, you can run your compiled project from
within your IDE or Ant project, if you wish.

CROSS-REF

In Chapter 4, | give details of Ant project creation and use.

Integrating with Objective-C

Apple encourages Objective-C as a primary language for OS X development. Many of the frame-
works provided by OS X are written for Objective-C programs. These frameworks have no Java
equivalent.

After reading this chapter and picking up some basic Objective-C, wrapping Objective-C frame-
works in Java using JNI should not be a problem. None of the Objective-C frameworks that OS X
offers are a barrier to Java development.

When wrapping Objective-C (and C-based libraries), don't worry about wrapping every feature.
Wrap only the objects and functions that you actually plan to use. Otherwise, you'll get bogged
down in endless details that don’t pertain to your project.

| recommend avoiding direct calls to Objective-C classes from Java. Instead use a C-based buffer
file (or files), as shown in Figure 9.9. Placing the JNI code in a C file keeps the code simple to
understand and promotes easy maintenance of your JNI.

Figure 9.9

Objective-C/ Java integration

Java —— NI — C Objective-C

Learning Thread Safety

The first rule of thread safety in JNI is not to hang onto threads. This is especially the case with
AWT and Cocoa application threads. Pass your data through JNI, and then spawn a new thread
to process the data. Failing to do so may result in a deadlocked application.

A thorough quality assurance cycle to your development process is likely to catch any threading
issues you didn’t think of. However, consider the rules in this section while writing your JNI
code. Most have to do with the life of JNI references and IDs.

Reusing JavaVMs references

JavaVM references created with JNI go bad only if you destroy the JVM. Destroy a JVM if only
the application definitely doesn’t need to use it again. OS X processes can create a JVM only
once. (This limitation prevents potentially horrible memory leaks.)

Be aware that if you are working with an application that uses plug-ins, another developer may
provide a plug-in that uses Java, too. The other module may have already created a JVM before
your code loads. It also is possible that the other developer's module may need the JVM after
you are completely done with the JVM.

The proper way to create a JVM in Java is to first check for the existence of a JVM. Then, if a pre-
viously created JVM doesn’t exist, create your own. Here is a code snippet that accomplishes
just that:

JavaVvVM *jvm;

// checking for existing JVM

// This is a must! Multiple JVMs cannot be created
// 1in one process

jsize jvmCount = 0;

e (Chapter9:Understanding JN! ;::I:::i:l

int founddJVM = JNI_GetCreatedJavaVMs (&jvm, 1, &jvmCount) ;
if (foundJVM == 0 && jvmCount > 0)
{
// succeeded in getting an existing JVM
// attaching this thread
(*jvm) ->AttachCurrentThread (jvm, (void**) &env, NULL) ;
}
else
{
// no JVM found, ... creating the JVM
// this thread is automatically attached
JNI_CreatedJavaVM(&jvm, (void**)&env, &jvm_args) ;

}
Threading with JNIEnv

JNIEnv references are thread-specific. Never store or reuse a JNIEnv. Some attributes of
JNIEnv are thread-specific, so always use the provided JINIEnv.

In some cases, you may need a new JNIEnv, because none was provided or it was not passed
on to your implemented method. Don’t despair. You can always get the current INIEnv from
the JNI JavaVvM. The following code snippet grabs the current INIEnv from the JavavM:

JNIEnv *env = NULL;
jint env_error = JNI_OK;

// Use the JVM reference to get an up-to-date
// JNIEnv. JNIEnv variables need constant
// updates
env_error = (*jvm)->GetEnv (
jvm,
(void **)é&env,
JNI_VERSION_1_6) ;

Globalizing jclasses and jobjects

Both jclass and jobject are local references. These references cannot be reused in other
threads. However, both jclass and jobject local references may be changed into global
references. Global references work across threads just fine.

Two types of global references exist: strong and weak. Strong global references refer to

classes and objects that are not unloaded by the JVM until destroyed with a call to JNI's
DeleteGlobalRef () function. Weak global references may be loaded or unloaded by the
JVM, but the reference is still valid throughout the process. Weak global references are cleaned
up with a call to DeleteWeakGlobalRef ().

The following code snippet is an example of creating a weak global reference from a local
jclass reference:

Architecting Alternative Applications

jclass localJavaWrapperClass =
(*env) ->FindClass (env, "com/genedavis/OSXScreenSaverWrapper") ;
// make reference global (multi-thread accessible)
jclass javaWrapperClass =
(*env) ->NewWeakGlobalRef (env, localJavaWrapperClass) ;
// don't need local reference anymore
(*env) ->DeleteLocalRef (env, localJavaWrapperClass) ;

Follow these steps to create a global jclass or jobject:

1. oObtain alocal reference.
2. Make a global reference from the local reference.

3. Delete the local reference.

Saving jmethodIDs

Java methods in JNI are referred to by ID, not reference. The code for obtaining method IDs is
discussed earlier in this chapter. It usually looks something like this:

jmethodID mid =
(*env) ->GetStaticMethodID(env, someClassRef, "myMethod", " ()V");

JNI'method IDs do not change or expire. Also, JNI calls to obtain method IDs are relatively
expensive. Always save your method IDs to reuse in other threads.

Converting Strings

JNI uses jstrings. Cocoa uses NSStrings. Carbon uses CFStrings. Sometimes it seems
that every C-based framework and language has different conventions for handling strings. The
problem for you as a programmer is that you need to transfer string variables between these
different conventions.

On the bright side, Java and OS X character conventions both use UTF-16. If you run into con-
version examples using UTF-8 standards, be aware that the examples are outdated.

The best source for string conversion info is Technical Note TN2147 located on Apple’s devel-
oper site. The current address is:

http://developer.apple.com/mac/library/technotes/tn2005/tn2147 . html#TNTAG6

Here is an example of converting a JNI jstring to an NSString, based off Technical Note TN2147.

Follow these steps for this example:

1. Obtain the Java String as a jchar*.

Accomplish this with a call to the GetStringChars () function contained in the JNI
environment.

2. Getthe length of the string.

The length of the string is obtained with another call to the JNI environment. Strings
are essentially character arrays in C. Because C does not track the length of arrays,
strings in C contain a value of 0 at the end of the string. (This is referred to as null termi-
nating.) You must manually place this value of 0 when creating strings in C. That is why
I need the string length.

3. Createan NSString by providing a pointer to the raw unicode characters and the
length of the final string.

4. Freethe JVM resources in the JNI environment.

Now that | have the string’s value safely copied to a shiny new NSString, it is time to
release the JNI environment's string resources. Again, | call a function in the INIEnv*
variable, named jenv, to release the resources.

Here is the source for the preceding steps:

const jchar *chars = (*jenv)->GetStringChars (
jenv,
my_Jjstring,
NULL) ;
NSUInteger str_len = (*jenv)->GetStringLength(jenv, my_jstring) ;
NSString *message = [NSString
stringWithCharacters: (UniChar *)chars
length:str_1len];
(*jenv) ->ReleaseStringChars (jenv, my_jstring, chars);

Finding More JNI Details

JNIis a rich and complex subject. Using the information found in this and other chapters in this
book, you can create many useful OS X integrated applications. Even so, you may find the need
for even more information. Several Web sites give additional details about JNI. | mention three
specifically in this section.

Apple provides technical notes on many Java-related topics, including JNI. Look for Technical
Note TN2147, shown in Figure 9.10. Its title is JNI Development on Mac OS X. This technical note
gives additional information on string conversions, graphics, thread safety, and invoking JVMs
from Carbon-based and Cocoa-based applications.

= Arcniteciing Aiternative Appilicaztions

Here is the current link for Technical Note TN2147:

http://developer.apple.com/mac/library/technotes/tn2005/tn2147 .html

Figure 9.10
The JNI Development on Mac OS X Web site at developer.apple.com

Technlcal Note TN2147: JN| Development on Mac OS X,
W http:/ /developer.apple.com/mac/|ibrary/technotes/tn200s . & [Qr Loogle

CocvaComponent a
CocoaComporent (5 an extendable class which allows you to embed a native Cocoa view inside a Java container. Once
added to a container and shown, a Coccotonporent object allows the underlying Cocoa view te do all of the drawing
and event processing. This rechnalngy can be used, for example, 1o place A vetwiew from the Web Kit framewark
Inside a Java frame and Instantly wen your Java application into 2 web broweer.

A CocvaCompurent Implementation has two paris: a Java class to be instantiated and added to your AWT hierarchy: a
an Dijective=L N3View subclass which dictates the CocouComgonent, object’s runtime behavior. T create your own m
Cocoalomporenl., YOu must:

= Extend the cos.cpple.eowt Locoalosponent €lass.

. the and g methods. an the system architecture, ane of the:
methads is called around the time your Cocoateaponent. is added to the component hierarchy and returns a Jav
int for lorg) representing a pointer to your HSview. It I3 that you
createNsyievlong, which returns the painter in a B4 -bit Java lorg, and implement createNSvies to simply retur
the result of createdSViedlong cast down to a Java int (for 32-bit support).

Listing 5: createNS\iew and createNSVienlong methods

#¢ Instontigte the NSYiew on the native 3ide ond retumn it @3 o long
publie native long createssVisdong(ls

/7 Deprecoted; just cusl the correct crectel$Viewlong isplewsntotion

Lie ine ereateNsvieel) { X
KX - — — = '

Sun provided a Java Native Interfaces book with the release of Java 1.2, shown in Figure 9.11. It
has wonderful detail, and explanations cover most of the JNI specification. | especially recom-
mend reading Chapter 10: Traps and Pitfalls. Because it's written for Java 1.2, the book is a little
out of date, but still very useful.

This is the current link for the HTML version of the book found on the Web:
http://java.sun.com/docs/books/jni/html/jniTOC.html

No list of JNI resources is complete without the site for the Java 1.6 JNI Specification, shown in
Figure 9.12. The code examples in the specification tend to be C++ oriented. The main differ-
ence between using C and C++ versions of JNI is that when calling the C versions of the JNI
functions, the first parameter is usually INIEnv * env. The JNIEnv* is not presentin the C++
versions of the same JNI function calls.

The current link to the Java 1.6 JNI specification is here:

http://java.sun.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html

Figure 9.11
The Java Native Interface book site at java.sun.com

|+ [ttp:fJava.sun.com/docs, Books /jnif btmi jni TOC.htm) <

The Java Native Interface b

Contents | Prev | Next | Index Programmer's Guide and Specification
Preface

Part One: Introduction and Tutorial
1Introduction

1.1 The Java Platform and Host Envirenment
1.2 Role of the JNI

1.3 Implications of Using the JNI

1.4 When to Use the JHI

1.6 Evolution of the JI

1.6 Example Programs

1§

Figure 9.12

The Java Native Interface Specification documentation Web site
at java.sun.com

an

Ell.'! |t [P vt fjava.sun.comyjavase 6/ docs frechnotes fquides jnis. & | G Google

Java Native Interface Specification— ﬂ
Contents

Contents | Previous | Next
L Introduction

B:cksml..md I

Jayn Runtime Inerface

Architecting Alternative Applications

Finally, browse the jni . h header file. All the JNI C functions are in there. Locate a copy of
jni.h by using the Finder to search for it. Not all jni . h files are the same, though. Find the
one supplied with the Java 1.6 implementation. Open the jni . h header in Xcode for syntax
coloring.

Summary

Java applications interface with native code using JNI. C is the typical native language with
which Java interfaces. However, Java may use JNI to interface with Objective-C and C++.

JNI applications use static blocks to load dynamically linked libraries. Dynamic libraries load
using the System. loadLibrary () method. The filename of dynamic libraries takes the
form of 1ib<name>. jnilib. Dynamic libraries contain the native implementation of
native Java methods.

C-based applications create Java Virtual Machines using JNI's Invocation APl. When creating a
JavaVM for use in native applications, create the JavavMOptions and place them in the
JavavMInitArgs. Create the JavavM with a call to the JNI_CreateJavaVvM () function.

Understanding how javah and javap work helps the development process. Building JNI applica-
tions from the command line is a good learning experience, but it's slow. Use a build tool such
as Ant to automate the process.

All but the simplest JNI applications need to anticipate threading issues. Avoid blocking OS X
application threads and Java AWT threads. When in doubt, spawn a thread to return AWT and
native application threads.

Q Creating Screen Savers
—_— ——

B erkeley Systems released the famous “Flying Toasters” screen

saver in 1989. It was part of the After Dark package for Apple’s
Macintosh computers.

Flying toasters!
Wow!

It was stunning. Companies lost lots of productivity to employees
staring at their screen savers. Screen savers brought a lighthearted
element to the cold world of electronics.

Later, businesses realized that screen savers were a great place to
leave branding. Company logos floating around screens became
common. Also, marketing and sales information appeared scrolling
across the screens of unused computers in retail outlets.

Eventually someone realized that with the power of the Internet,
screen savers could extend the number-crunching capabilities
of financially limited research institutions. Projects such as
SETI@home and Climateprediction.net turn hordes of unused
computers into massive distributed supercomputers with screen

saver applications. IBM’s involvement in the World Community
Grid uses a similar approach for medical research, creating a grid -

In This Chapter

with more power than many supercomputers.

Understanding

When a computer is not in use, the screen saver activates. In most
screen savers

cases, your computer is not using its CPU to crunch numbers when

in screen saver mode. In even a small organization, that is lots of Invoking the JVM from
idle time wasted, unless, of course, you write or install your own Objective-C
screen saver to make use of that idle time. Drawing to NSViews

from Java

Screen savers range from whimsical diversions to marketing appli-
cations to number-crunching research devices. Watching screen Exploring the screen
savers is fun. Writing screen savers is even more fun. saver framework

. Constructing SAVER
At the time of this writing, no Java libraries are specifically made for bundles

writing screen savers on OS X. This does not mean you cannot write

screen savers for Java. In fact, using the techniques | discuss in this
book, writing a simple wrapper around OS X’s Cocoa Screen Saver
Framework is easy.

After you have a short JNI wrapper around an Objective-C screen
saver class, the entire world of Java opens up to writing screen
savers for OS X.

In this chapter, | explain the basics of the Screen Saver Framework. | explain the internals of
SAVER packages. | also (most important) explain how to use Java to write your own screen
savers.

Do not think for a moment that because you write Java, you cannot write OS X screen savers.
Java and OS X screen savers are a great combination. Whether you want to explore visually
entrancing screens or number-crunching applications, | explain how to get started with your
Java screen saver dream project.

Understanding Screen Savers

Before implementing a Java screen saver for OS X, you need to understand the basics of imple-
menting native Objective-C screen savers for OS X. The Screen Saver Framework for OS X is
small. It takes only a couple of minutes to understand the framework itself.

You can find Apple’s Screen Saver Framework Reference Web site, shown in Figure 10.1, here:
http://developer.apple.com/mac/library/documentation

/UserExperience/Reference/ScreenSaver/0bjC_classic/

Figure 10.1
Screen Saver Framework Reference Web site

806 Mac Dev Center: Screen Saver Framework feference

Screen Saver Framework Reference

The Screen Saver framework defines the interface for subclasses to interact with the Screen Effects user interface
feature. Screen Effects modules need to be written in Dbjective-C with its user interface implemented using
Cocoa,

[More]

Library/F

Header file directories Library/F

Class References nher References

sereensaveriefauits Sereen Saver Functions ror T8
KreeniveViow Naton ik
Index

Last updared: 2006-08-23

Yo N BN

All OS X screen savers extend the Objective-C ScreenSaverView class, shown in Figure 10.2.
The ScreenSaverView class extends NSView. NSView allows drawing on ScreenSaver
View instances.

Figure 10.2
Objective-C

ScreenSaverView
class

ScreenSaverView

initWithFrame:isPreview:
startAnimation
stopAnimation

isPreview
animateOneFrame
drawRect:
performGammaFade

CROSS-REF

You may remember NSView classes from Chapter 8. The CocoaComponent class enables the embedding of
NSView objects in Java GUIs. However, | do not use the CocoaComponent in this chapter.

When a screen saver starts up, the initWithFrame:isPreview: method initializes the
screen saver. The second BOOL parameter indicates whether the computer is actually idle or
just running the screen saver in preview mode. If your screen saver does number crunching or
data processing, you only want to draw pretty pictures (without crunching numbers) in preview
mode. System Preferences starts screen savers in preview mode when users set the screen saver
preferences and set the active screen saver.

After initialization, OS X calls the screen saver's startAnimation method. Depending on
how your screen saver works, there may be overlap between the purpose of the start
Animationand initWithFrame:isPreview: methods.

Each time the screen saver view refreshes, the animateOneFrame method is called. The
animateOneFrame method equates to the AWT paint () method. The main difference
between animateOneFrame and the paint () method is that the animateOneFrame
method is called at regular intervals, such as 30 times per second, whereas the paint ()
method waits for a repaint () request to redraw.

Implementing the drawRect : method also refreshes the screen saver view. The drawRect :
method is useful for graphics-intensive situations where you need only part of the screen
refreshed. The drawRect : method requires the animateOneFrame method to invalidate
the current screen with a call to setNeedsDisplay :.Implementing the drawRect :
method is much more involved than implementing just the animateOneFrame method.

The stopAnimation method indicates that the screen saver is shutting down. For number-
crunching screen savers, make sure your numbers get saved quickly after OS X calls this
method. If the stopAnimation method does not return quickly, expect OS X to shut down

your screen saver for you.

CAUTION

Screen saver development changed with the release of Snow Leopard (0S X 10.6). Screen savers built for previous ver-
sions of 0S X do not run on Snow Leopard. Screen savers built for Snow Leopard do not run on older versions of 0S X.

Implementing screen savers

Xcode has a screen saver project template for Objective-C-based screen savers, as shown in
Figure 10.3. Whether implementing an Objective-C screen saver or a Java screen saver, this

project template is a good starting point.

Figure 10.3

Choosing a Scree

n Saver project template in Xcode

[BO6

. User Templates.

ijlht“l

Application
Framewark & Library

Create an Objective-C screen saver project by following these steps:

1. Open

Choose a template for your new project:

B B

Audio Unit Effect Audig Unit

Image Unit Plug-in

B B

Spathight Flug-in

i s

10t Driver

Generic C4+ Plug-
in

Ceneric Kernel
Extension

&

Quick Look Plug-In

This project builds a screen saver bundle that can be used with the Screen Effects panel in the

Systern Preferences application,

Xcode.

2. SelectFilec> New Project....

1

(CCancel) (Ehooses)

Select System Plug-in from the left navigation panel.

Select Screen Saver as shown in Figure 10.3.

Click the Choose... button in the bottom corner of the dialog box.

3
4
5.
6

Name your project, as shown in Figure 10.4.

Figure 10.4

Name your screen saver project.

Save As: [base_screen_smrl J @
{d 51{::+-n-4u_u1 f('njDesktop ,.@,l Q,
¥ DEVICES al Name &] Daw Modificd
= winmar (&3 book Today, 12:22 PM
_5 Friendly (] osx..book Monday, November 23, 2009 12:15 PM
= Unuled [SAV..SAVE Today, 12:11 PM
* SHARED
¥ PLACES
i iaris
m' _«._;.__-’-.:E.‘
o\ Applicati...
m Applicati...
(1] Developer
fﬂ 2} € =] >
New Folder (save)

&~

After creating a screen saver project, Xcode's project window opens. If you do not use Xcode as
your standard IDE, the Groups & Files tree on the left side of the Xcode project window may
look a little intimidating. It looks scarier than it is. The only folder that concerns you is the
Classes folder.

In the Groups & Files tree, find the Classes folder and expand it. You should see two files in the
folder:a * .mfile and a * . h file. The * . mfile is the screen saver class implementation. Select the
screen saver class implementation, and your Xcode project window should look similar to
Figure 10.5.

NOTE

In Objective-C, the classes have separate declarations and implementations. The declaration is called an
@interfaceandplacedina * . hfile. The implementation is called a @implementation and
placedina * . mfile.

Arcniteciing Aiternative Appilicaztions

Figure 10.5
Screen saver implementation displayed in Xcode

Gruupoa-nln

B i Evecutables
w (4, Find Results

mi base_screen_saverView.m - base_screen_saver
e O i

saver]| [u) base_screen_saverView.m

¥ [base,_screen_
¥ | Classes
[i] base_screen_savervie || < ¢ 2 base_soreen_saverViewm 1 3 <hoselected symbol . L O . 0@
] ! " L]
» 2| | #f base_screen_saverView.m #3
= i 2 ::; base_screen_saver ™
¥ || Frameworks and Librarie L] #f Created by Terrance Daviz on 11/27/084.
+] Products &| [#7 Copyright (c) 2089, _ MyCompanyName__. ALl rights reserved.
(@) Targers . L

@) | #import "base_screen_saverView.h"

ol
L Bookmarks 12| | @leplesentotion base_screen_saverView
» 2 5cu 1
I Project Symbols T4 = [id)initWithFrame: (NSRect]frame LsPreview: (BDOL] isPreview
+ [l imple ion File 15 4
(@8 mplementation Files % sell = [super initWithFrame:frame isPreview:isPreviewl;
e Files 14 it (self] {
13 lzelt setAninationTimeInterval:1/38.0);
1 4
] return self; i
1
n
1| | = {woid)starténination
n
»n [super startAnimation];
%*
min - [vaid)stopAnimation
= ke
m [super stopAnimation]; v

The screen saver implementation your project starts with is a fully functional screen saver. It

draws on

ly a black screen, so it's not very exciting, but it still makes a good starting point. Try

the following steps to test your screen saver:

1.
2.

3.
4.
5.

Select Build => Build to create a screen saver from your project.
Navigate to your newly built screen saver in the Finder.

The new screen saver is most likely in your project at build/Debug/<project
name> . saver, as shown in Figure 10.6.

Copy the screen saver to your ~/Library/Screen Savers/ directory.
Open System Preferences, and select the Desktop & Screen Saver preferences.
Select your screen saver.

Your new screen saver is under the Other node near the bottom of the list, as shown in
Figure 10.7. Your screen saver should produce a perfectly unexciting solid black
screen.

Figure 10.6
Screen saver build in Debug folder

ano (] base_screen_saver —
hod LQ
v DEVICES Hame &) Date Modified
2 ey h| base_screen_saver_Preficpch Taday, 1231 PM
T watitled [base_screen_saver.xcodepraj Today, 12:37 PM
- h base_screen_saverView.h Today, 12:31 PM
PRHARED m base_screen saverview.m Today, 12:31 PM
» PLACES ¥ @ build Today, 12:37 PM
e ERRCI R [base_screen_saver.build Today, 12:33 PM
*) Today ¥ [Debug Today, 12:33 PM
< Yesterday = base_screen_saver.saver Today, 12:33 FPM
o » [English.ipro| Today, 12:31 PM
st Infa.plist Today, 12:31 PM
Al Image
ﬁ 7 : version.plist Taday, 12:31 PM
) Al Documents
e = -
11 items, 29619 L8 avalable &

Figure 10.7
Screen saver preferences with base_screen_saver selected

anc Deskiop & Screen Saver

e a

Deskiop - Screen Saver

Sriiiias
B Beach
B cosmos
P rorest

ﬁ Mature Patterns
I Paper shadow
T irhoto
* Elagged
[Last 12 Months
| ¥ Dther
[base_screen_saver
IR java_screen_saver

| =

1 Use random screen saver
|| Show with clock Start screen saver:
o
3 5 15 0 The e Kever

(_ Hot Corners,

= Architecting Alternative Applications__

In this chapter, | make the assumption that you are a Java programmer and not necessarily
familiar with Objective-C. The next few sections explain the Objective-C source for the screen
saver project you created and tested. Objective-C, like Java, is an Object-Oriented Programming
language (OOP). Many concepts you already know from Java apply to Objective-C.

NOTE

The source for the projects in this chapter is on the book’s Web site.

Initializing

You can use two methods for initializing screen savers. They are the initWithFrame:
method and the initWithFrame:isPreview: method.|use the initWithFrame:
isPreview: method for the examples, because it is used for previews as well as non-preview

initialization. The default source in the Xcode project template for
initWithFrame:isPreview: isasfollows:

(id) initWithFrame: (NSRect) frame isPreview: (BOOL)isPreview

self = [super initWithFrame:frame isPreview:isPreview];
if (self) {

[self setAnimationTimeInterval:1/30.0];
}
return self;

}

Objective-C does not always translate directly to Java, but the equivalent code using Java syn-
tax might look like this:

public Object initWithFrameAndIsPreview (NSRect frame, boolean

isPreview)
{

ScreenSaverView ssv = super.initWithFrameAndIsPreview (
frame,
isPreview) ;

if (ssv != null)

{

ssv.setAnimationTimeInterval(1/30.0);
}
return ssv;
}

Methods in Java are called using a dot notation, such as this:

someObject.myInstanceMethod () ;

In Objective-C, the same call looks like this:

[someObject myInstanceMethod];

The dot is replaced with a space, and the whole expression is surrounded with square brackets.
This part of Objective-C is easy enough for Java programmers.

Methods that begin with init in Objective-C are closely related to class constructors in Java.
Objective-C class instantiation typically looks like the following:

MyClass *mcObject = [[MyClass alloc] init];
The same code in Java looks like this:
MyClass mcObject = new MyClass() ;

The class init method is responsible for calling other appropriate init methods. This eventually
leads to the calling of your initWithFrame:isPreview: method.

In Java, this refers to the current class instance executing. The Objective-C equivalent is self.
In the default Xcode template, self is used to call the following:

[self setAnimationTimeInterval:1/30.0];

This code calls the setAnimationTimeInterval : method and sets the time interval for
calls to animateOneFrame. The argument is in parts of a second. The default setting updates
the screen 30 times per second. Thirty redraws per second should be plenty for most screen
savers.

NOTE

Colons in Objective-C method signatures indicate an argument to the function. Objective-C method names actually
split into parts describing each parameter the method takes. Objective-C methods that don’t have colons in their
names don’t take any arguments.

Starting and stopping animation

Before animateOneFrame is called, startAnimationis called. The stopAnimation
method indicates the screen saver is stopping. The default template source for both methods
follows.

- (void)startAnimation
[super startAnimation];
- (void) stopAnimation

[super stopAnimation];

i!!i!!i;> Architecting Alternative Applications___

The equivalent code using Java syntax looks like this:

public void startAnimation ()

{
super.startAnimation() ;
}
public void stopAnimation ()
{
super.stopAnimation() ;
}

Objective-C methods begin with either a minus sign or a plus sign. The minus sign indicates the
method is an instance method. The plus sign indicates the method is a class method. The Java
equivalent to the Objective-C class method is the static method. The Java equivalent to the
minus sign starting Objective-C methods is a non-static method.

Drawing an animateOneFrame

The Objective-C animateOneFrame method is called in time intervals you specify. The
default set by the Xcode template is 30 times per second. Here is the default Xcode screen
saver template code for the animateOneFrame method:

- (void)animateOneFrame

return;

}
The equivalent code using Java syntax looks like this:

public void animateOneFrame () { }

TIP

Many graphics techniques are available for drawing screen savers. The Objective-C animateOneFrame method is
a great place to test drawing code. Then after you are sure the drawing code works, wrap your drawing methods with
JNI and make them available to your Java screen savers.

Creating simple screen savers

This chapter contains two example screen saver projects. The first is a basic screen saver that
draws a woven pattern on the screen with one line. The project is called base_screen_saver.

| use the base_screen_saver toillustrate simple Objective-C screen saver implementation.
Later in the chapter, | wrap the first project in Java code and move the drawing logic (the con-
trol logic) to the Java code. Understanding the base_screen_saver isimportant, because
the Java screen saver expands on this first example. After you understand the two screen saver
examples in this chapter, the types of Java screen savers you can create are limitless.

e Chapter 10: Creating >creen>avers =

The following source is the @interface for the Objective-C base_screen_saverView
class found in the base_screen_saverView.h file. The Java equivalent of the Objective-C
@interfaceisthe Java interface. However, @interfaces are meant for use with one
and only one class.

TIP
The features of the Java interface are encompassed in Objective-C by a combination of the @interface and
the@protocol.

#import <ScreenSaver/ScreenSaver.h>

@interface base_screen_saverView : ScreenSaverView
{

double x1;

double v1;

BOOL nw;
BOOL ne;
BOOL sw;
BOOL se;

CGFloat redChoice;
CGFloat greenChoice;
CGFloat blueChoice;

NSSize screenSize;

- (void) drawScreen;
- (void) pickColor;
- (void) drawRectangleX: (CGFloat) x
v: (CGFloat) vy
width: (CGFloat) width
height: (CGFloat) height;
- (void) setColorRed: (CGFloat) red

green: (CGFloat) green
blue: (CGFloat) blue
alpha: (CGFloat) alpha;

@end

In Objective-C, * . h files contain #impozrts, variable declarations, and method declarations.
The #import in Objective-C is very similar to Java’'s import. The main difference between C's
#include and Objective-C's #import is that #import takes care of duplicate #imports
automagically.

Understanding the base_screen_saverView.hfile is a bit easier if you understand the for-
mat of Objective-C header files. The typical structure of Objective-C *.h files is as follows:

#import <Some/Libraries.h>
@interface MyClassDeclaration : MySuperClass

{

// variable declarations go here
}
// method declarations go here
@end

If you create a header without an @interface definition, then you may choose to ignore
most of this format and stick to a more traditional C-style header format. Remember, if you
stick to using #import instead of #include, you do not need to worry about duplicate
#includes.

Inthe base_screen_saverView source, only the methods and variable unique to the
base_screen_saverView class are defined. Other methods and variables that exist in the
ScreenSaverView and NSView super classes are not redefined even if they are overridden
in the child.

The following source is the implementation of the base_screen_saverView class found in
base_screen_saverView.m. The full source is a bit long, so | break it up with explanations
to make it more readable.

#import "base_screen_saverView.h"

Notice that the file includes only one import statement. The only import that should exist in an
Objective-C implementation file is the import of the interfaces file for the class. All the other
imports should appear in the * . h file.

@implementation base_screen_saverView
- (id)initWithFrame: (NSRect) frame isPreview: (BOOL)isPreview

self = [super initWithFrame:frame isPreview:isPreview];
if (self) {
[self setAnimationTimeInterval:1/30.0];
}
return self;

}

The initWithFrame:isPreview: method is untouched from the Xcode screen saver proj-
ect template. | place all the initialization code for the screen saver in the startAnimation
method.

- (void)startAnimation

[super startAnimation];
NSLog(@"started animation");

L N -

screenSize = [self bounds].size;
x1 = SSRandomFloatBetween(0.0, screenSize.width - 10.0);
vl = SSRandomFloatBetween(0.0, screenSize.height - 10.0);

int direction = SSRandomIntBetween(1l, 4);
switch (direction)
{
case 1:
nw = YES;
break;
case 2:
ne = YES;
break;
case 3:
sw = YES;
break;
default:
se = YES;
break;

}

[self pickColor];

}

In the startAnimation method, | obtain the size of the display area using the call to [self
bounds] . size. Then | generate the starting point of the weave from the width and height of
the display. After obtaining the display size, | randomly generate the initial direction of the weave.
[finish off by calling the pickColor method that randomly sets the current drawing color.

The functions SSRandomFloatBetween () and SSRandomIntBetween () are provided
by the Screen Saver Framework as utility calls. Random-number generation is so common in
screen savers that the creators of the Screen Saver Framework included both methods to make
life easier on screen saver developers.

- (void) stopAnimation

[super stopAnimation];
NSLog (@"stopped animation");
}

The stopAnimation method does not require any extra code in this example. In the next
example, the stopAnimation calls the Java wrapper to handle screen saver cleanup.

The NSLog () function is useful for debugging the Objective-C side of screen savers. Open the
Console application found at /Applications/Utilities/Console.app, and any out-
put from NSLog () is displayed.

Arcnitecting Alternative Appilications.

- (void)drawRect: (NSRect)rect

[super drawRect:rect];

(void) animateOneFrame
[self drawScreen];

return;
}

In the animateOneFrame method, | call the drawScreen method to take care of painting.
Doing the drawing in a separate method is just one step closer to the Java screen saver wrap-
per. In the next example, the screen saver drawing method is moved to the Java code.

- (BOOL)hasConfigureSheet
return NO;
- (NSwWindow*)configureSheet

return nil;

}

Configure sheets provide users the ability to change the screen saver options. Neither of the
examples in this chapter uses configure sheets. When not providing a configure sheet, return
NO from hasConfigureSheet and returnnil from the configureSheet method.

- (void) drawScreen

// set current color

[self setColorRed: redChoice
green: greenChoice
blue: blueChoice
alpha: 0.5];

// draw current position

[self drawRectangleX: x1

v: vyl
width: 10
height: 10];

// move square

if (nw)

{

x1--;
vi++;
}
else if (ne)
{
xX1++;
vi++;
}
else 1if (sw)
{
x1--;
yl--;
}
else 1f (se)
{
x1++;
yl--;
}

// bounce off walls

if (y1 < 1)
{
if (se)
{
se = NO;
ne = YES;
[self pickColor];
}
else 1f (sw)
{
sw = NO;
nw = YES;
[self pickColor];
}
}
if (yl > screenSize.height - 11.0)
{
if (ne)
{
ne = NO;
se = YES;

[self pickColor];
}
else 1if (nw)

{

ACNITeCTING AlTternative Apblications. s

nw = NO;
sw = YES;
[self pickColor];

}

if (x1 < 1)
{
if (sw)
{
sw = NO;
se = YES;
[self pickColor];
}

else if (nw)
{
nw = NO;
ne = YES;
[self pickColor];

}

if (x1 > screenSize.width - 11.0)

{

if (se)

{
se = NO;
sw = YES;

[self pickColor];
}
else 1f (ne)
{

ne = NO;

nw = YES;

[self pickColor];

}

The drawScreen method sets the current fill color and then draws a rectangle at the currently
selected location. After taking care of drawing, the method goes on to set the next location and
of the rectangle, and if necessary, select the next fill color.

Notice the use of YES and NO where in Java you see true and false. YES and NO are the
Objective-C equivalent of Java’s true and false.

- (void) pickColor

redChoice = SSRandomFloatBetween(0.0, 1.0);
greenChoice = SSRandomFloatBetween(0.0, 1.0);
blueChoice = SSRandomFloatBetween(0.0, 1.0);

- (void) drawRectangleX: (CGFloat) x
v: (CGFloat) vy

width: (CGFloat) width

height: (CGFloat) height

NSRect rectToDraw;
rectToDraw = NSMakeRect (x, y, width, height);
[NSBezierPath fillRect: rectToDraw];

}

Using NSBezierPath is only one of the methods for drawing your screen saver. Both example
screen savers in this chapter use NSBezierPath's fillRect: method to draw. | explain other
options NSBezierPath provides, near the end of this chapter.

- (void) setColorRed: (CGFloat) red
green: (CGFloat) green
blue: (CGFloat) blue
alpha: (CGFloat) alpha;

NSColor *colorToSet;

colorToSet = [NSColor colorWithCalibratedRed: red
green: green
blue: blue
alpha: alphal;

[colorToSet set];

}
@end

The two files in this chapter contain the source necessary to create the first screen saver exam-
ple. In order to explore Objective-C screen saver creation, | recommend that you modify the
behavior of this example and test it as your system screen saver. Modifying code teaches you
more about OS X screen saver creation than any amount of documentation.

Integrating Java Controllers

Now that you have seen an Objective-C screen saver, you are ready to explore Java-based
screen savers. Java screen savers on OS X wrap the Objective-C Screen Saver Framework. Java

screen savers wrap the framework by creating a child of ScreenSaverview that exposes
desired drawing methods, and then using JNI's Invocation API, Java takes control of the screen
saver's startAnimation, animateOneFrame, and stopAnimation methods.

CROSS-REF

In Chapter 9, | explain and demonstrate the JNI Invocation API. The Invocation APl is required for creation of Java
screen savers on 0S X. If you do not already understand the Invocation API, read Chapter 9 before attempting to
understand the java_screen_saver project. The java_screen_saver project builds on information
found only in Chapter 9.

In this section, | explain Java screen saver creation using the java_screen_saver project
found on the book’s Web site. | describe all the code necessary to set up a Java screen saver.
After the initial wrapping of the Objective-C screen saver is complete, any additional Java code
is just standard Java. The tricky bit is setting up your JNI to wrap the functionality of the
Objective-C screen saver that is invoked by your system.

Wrapping Objective-C with Java

The components of the java_screen_saver project are shown in Figure 10.8.

Inthe java_screen_saver project, | create a child of the Objective-C ScreenSaverView
class and name it ScreenSaverChild. | then integrate the ScreenSaverChild class with
the code in SSWrapper .m.

SSWrapper uses some Objective-C syntax, but it's written more in C fashion. SSWrapper is
not a class; it is a collection of functions. | take care of the JNI Invocation code in SSWrapper.

SSWrapper starts or obtains a JVM and obtains a global reference to the Java 0SXScreen
SaverWrapper class. The 0SXScreenSaverWrapper class is responsible for handling calls
from the underlying Objective-C and for making callbacks to the native code from Java. Because
of the brevity of this example, the 0SXScreenSaverWrapper class also creates the WeaveSS
objects. In a more flushed out program, the JNI wrapper should hand off this responsibility to a
controller class of some sort.

The Java WeavesSS class draws the actual woven patterns on the screen. Each WeaveSS
instance draws one path. The more instances of WeavesSsS that 0SXScreenSaverWrapper
creates, the more lines of color the screen saver has weaving at the same time.

e Chapter 10: Creating >creen>avers

Figure 10.8

The Java screen saver wrapping an
Objective-C ScreenSaverView

[WeaveSS |

+WeaverSS()
+drawScreen()
+pickColor()

0SXScreenSaverWrapper

-weave1: WeaveSS
-weave2 : WeaveSS
-weave3 : WeaveSS

-startAnimation()
-stopAnimation()
-animateOneFrame()
+setColor()
+drawRectangle()

<<native>>
SSWrapper.m

+startScreenSaver()
+0SXScreenSaverWrapper_setColor()
+0SXScreenSaverWrapper_drawRectangle()
+register0SXScreenSaverWrapperNatives()
+start/lVM()

+stopJVM()

+animateFrameRequest()

<<Objective-C>>
ScreenSaverChild

initWithFrame:isPreview:
startAnimation

stopAnimation
animateOneFrame
drawRectangleX:y:width:height:
setColorRed:green:hlue:alpha:

Architecting Alternative Applications__

Creating an Objective-C base of a Java screen saver

OS X needs a screen saver configuration it recognizes, so the first step of creating a screen saver
is creating the OS X interface. In this case, the interface is an Objective-C object extending the
ScreenSaverView class. The name of my ScreenSaverView child is ScreenSaver
Child. (Itis an easy name to remember, anyway.)

NOTE

Remember that Objective-C classes are often split into two files, an @interfacefileand an @implementation
file. The interface is a * . h file and the implementation is a * . mfile. For example, the Screensaverchild
interface is contained in a file named Screensaverchild.h. The ScreenSaverchildimplementation
is contained in a file named Screensaverchild.m.

The following source is for the Objective-C ScreenSaverChild interface:

#import <ScreenSaver/ScreenSaver.h>
#include "SSWrapper.h"
@interface ScreenSaverChild : ScreenSaverView

{

}
- (void) drawRectangleX: (CGFloat) x
v: (CGFloat) vy
width: (CGFloat) width
height: (CGFloat) height;

- (void) setColorRed: (CGFloat) red
green: (CGFloat) green
blue: (CGFloat) blue
alpha: (CGFloat) alpha;
@end

As you can see from the ScreenSaverChild @interface, | expose methods allowing the
drawing of rectangles and the setting of colors. Both the drawRectangleX:y:width:height:
method and the setColorRed:green:blue:alpha: method are used by callbacks from
the Java code.

The following source is for the Objective-C ScreenSaverChild implementation. This exam-
pleis very similar to the base_screen_saverView class in the first example. The main dif-
ference is that the logic from the drawScreen method inbase_screen_saverViewis
now in the Java WeaveSs class.

#import "ScreenSaverChild.h"

@implementation ScreenSaverChild
- (1d) initWithFrame: (NSRect) frame isPreview: (BOOL) isPreview

self = [super initWithFrame:frame isPreview:isPreview];
if (self) {
[self setAnimationTimeInterval:1/30.0];

return self;

- (void)startAnimation

[super startAnimation];

[self bounds].size;

NSSize screenSize =
int x1 = screenSize.width;
int yl1 = screenSize.height;

setScreenSaver (self,
startdvM() ;

(void) stopAnimation

[super stopAnimation];

stopdVM() ;

[super drawRect:rect];

(void)animateOneFrame

animateFrameRequest () ;

}
- (BOOL)hasConfigureSheet

return NO;

return nil;

NSRect rectToDraw;

rectToDraw = NSMakeRect (x, Vv,
[NSBezierPath fillRect:

(void) setColorRed:

(void) drawRectangleX:
v:

width:

height:

(CGFloat)

x1l, y1);

(void)drawRect: (NSRect) rect

(NSWindow*) configureSheet

(CGFloat) x
(CGFloat) vy
(CGFloat) width
(CGFloat) height

width, height);
rectToDraw] ;

red

Architecting Alternative Applications

green: (CGFloat) green
blue: (CGFloat) blue
alpha: (CGFloat) alpha;

NSColor *colorToSet;

colorToSet = [NSColor colorWithCalibratedRed: red
green: green
blue: blue

alpha: alphal;
[colorToSet set];

}
@end

Invoking a JVM for a Java screen saver

The next step in the process of creating a Java screen saver is creating a JVM. Also, you need to
hook up the Java and Objective-C methods. | divided this task into two files named
SSWrapper .mand SSWrapper . h. The SSWrapper . mfile is a little complex, so | break up
the source with annotations explaining the code.

The following source is for the SSWrapper . h header file. The SSWrapper . h file contains all
the #includesand #imports for the SSWrapper .mfile. The SSWrapper header does not
contain an interface definition because | did not define SSWrapper as an Objective-C class.
Nothing prevents you from making SSWrapper into a class in your Java screen savers. Above
all else, clarity in the code is most important. Make your decision based on code maintainability.

#import <Cocoa/Cocoa.h>
#include <jni.h>

#include <stdio.h>

#include <unistd.h>

#import "ScreenSaverChild.h"

lused #include instead of #import for jni.h, stdio.h,andunistd.h, because they
are all written to handle multiple includes. However, #import works in these cases too. Using
#include is just a stylistic choice here.

The following source is for the SSWrapper . mfile. The SSWrapper . m file is extremely impor-
tant to the process of creating a Java screen saver. SSWrapper . m obtains the JVM reference
and the jmethodIDs, and it registers the names and function implementations of Java’s native
callbacks.

#include "SSWrapper.h"
// shutdown flag
jboolean shutdown_requested = JNI_FALSE;

// reused JINI variables
JavaVM *jvm;

e Chapter 10: Creating >creen>avers =

jmethodID midAnimate;// an ID not a reference!

jclass javaWrapperClass;// a global, not local, reference
// Screen Saver variables

ScreenSaverChild *myScreenSaver;

jint ssWidth;

jint ssHeight;

void setScreenSaver (ScreenSaverChild *ss, int w, int h)
{

myScreenSaver = SS;

ssWidth = w;

ssHeight = h;
}

The jvm variable is literally the variable that holds a reference to the JUM. Themidanimate
jmethodID holds an ID to the Java method for animating the screen saver. The javaWrap-
perClass reference holds a global reference to the 0SXScreenSaverWrapper class. The
setScreenSaver () function stores a reference to the ScreenSaverChildinstance,
along with the width and height of the screen.

// Java "native" callbacks from JNI
// header file

//Class: com.genedavis.OSXScreenSaverWrapper

//Method: void setColor (double,double, double, double)

JNIEXPORT void

JNICALL OSXScreenSaverWrapper_setColor

(JNIEnv * env, jclass jc, jdouble red, jdouble green, jdouble
blue, jdouble alpha)

[myScreenSaver setColorRed: red
green: green
blue: blue
alpha: alphal;

}
//Class: com.genedavis.OSXScreenSaverWrapper
//Method: void drawRectangle (double,double,double,double)

JINIEXPORT void JNICALL OSXScreenSaverWrapper_drawRectangle
(INIEnv * env, jclass jc, jdouble x, jdouble y, jdouble width,
jdouble height)

[myScreenSaver drawRectangleX: x
Yy: v
width: width
height: height];

The sSwWrapper file creates two native implementations for Java callbacks:

OSXScreenSaverWrapper_setColor
OSXScreenSaverWrapper_drawRectangle

Looking at the names of both functions, it is obvious that javah did not create these method
names. The function names are far too simple to be javah-generated. Both methods are regis-
tered native methods set up by this function:

registerOSXScreenSaverWrapperNatives
Conveniently, that is the next function in the code.

JNIEXPORT void registerOSXScreenSaverWrapperNatives
(INIEnv * env, jclass jc)
{

// £ill with Java's native names,

// followed by javp style signature

// and the C version of the method

// names

JNINativeMethod natives[] =

{

"setColor",
" (DDDD)V",
&0SXScreenSaverWrapper_setColor

"drawRectangle",
" (DDDD)V",
&0SXScreenSaverWrapper_drawRectangle

Y

// adding the methods from the C
// side instead of the Java side
(*env) ->RegisterNatives (env, jc, natives, 2);

}

The register0SXScreenSaverWrapperNatives function creates a JNINativeMethod
array containing the two native methods defined by the Java 0SXScreenSaverWrapper
class. The two methods are then registered by the RegisterNatives () function. These two
function implementations are statically linked instead of dynamically linked.

void startJVM(void)
{

NSLog(@"Called startdvM()");

// declaring the JVM and environment
// variables
JIJNIEnv *env;

// setting up arguments to JVM
JavaVMInitArgs jvm_args;

// Always declare the newest version of
// JNI you want to use. JNI_VERSION_1_6
// corresponds to Java 6.
jvm_args.version = JNI_VERSION_1_6;

// JavaVMOptions are the properties
// you are already familiar with

// from the command line
JavaVMOption options[1];

// The Java JAR file is placed in the Resources
// directory of the *.saver bundle. This code
// locates the JAR file in the bundle and then sets
// the -Djava.class.path= option so that the
// JVM knows where to find the Java classes.
NSString * javaOption = @"-Djava.class.path=";
NSBundle* myBundle =
[NSBundle bundleForClass: [myScreenSaver class]];
NSString* myJar =
[myBundle pathForResource:@"weaver_screen_saver" ofType:@"jar"];
javaOption = [javaOption stringByAppendingString:myJar];
options[0] .optionString = (char*) [javaOption UTF8String];

// The option array length MUST be declared.

// Remember this is C, and array lengths

// are not known unless your program explicitly
// stores them.

jvm_args.nOptions = 1;

// setting the options
jvm_args.options = options;
jvm_args.ignoreUnrecognized = JNI_FALSE;

At this point, you are ready to create a JVM. However, screen savers are modules in a larger pro-
cess, which implies that a JVM may already exist. Never assume you are the only one creating
JVMs. Only one JVM can be created per process, so if a JVM already exists, you cannot create a

second one. Also, if a JVM was created and destroyed, you are still barred from creating another
JVM. If you are running in preview mode, because the user is using System Preferences to
choose a screen saver, and the user clicks the Test button to test your screen saver, your test
needs to grab the existing JVM from the preview screen saver instance.

In short, look for existing JVMs before creating JVMs. When finished with a JVM, remember not
to destroy it unless you are certain it is not still needed. In the case of screen savers, don't
destroy your JVMs.

// checking for existing JVM
// This is a must! Multiple JVMs cannot be created
// in one process

jsize jvmCount = 0;
int foundJVM = JNI_GetCreatedJavaVMs (&jvm, 1, &jvmCount) ;
if (founddVM == 0 && jvmCount > 0)

{
// succeeded in getting an existing JVM
// attaching this thread
(*jvm) ->AttachCurrentThread (jvm, (void**) &env, NULL) ;
}
else
{
// no JVM found, ... creating the JVM
// this thread is automatically attached
JNI_CreateJavaVM(&jvm, (void**)&env, &jvim_args) ;
}

Now, you have a JVM with a reference in your jvm variable. All that remains in this function is to
obtain a global reference to the 0SXScreenSaverWrapper class and use the reference to
obtain method IDs for the startAnimation () and the animateOneFrame () methods.

// obtaining the Java class com.genedavis.
OSXScreenSaverWrapper
jclass localJavaWrapperClass =

(*env) ->FindClass (env, "com/genedavis/
OSXScreenSaverWrapper") ;
javaWrapperClass = (*env)->NewWeakGlobalRef (env,
localJavaWrapperClass) ;// make reference permanent
// don't need reference anymore
(*env) ->DeletelLocalRef (env, localJavaWrapperClass) ;

// registering the statically linked native methods
// for com.genedavis.OSXScreenSaverWrapper
registerOSXScreenSaverWrapperNatives (env, javaWrapperClass) ;

jmethodID mid =
(*env) ->GetStaticMethodID (env, javaWrapperClass,
"startAnimation", " ()V");

e Lhapter 10 Lreating >creeno>avers =

(*env) ->CallStaticVoidMethod (env, javaWrapperClass, mid) ;

midAnimate =
(*env) ->GetStaticMethodID (env, javaWrapperClass,
"animateOneFrame", " (IIZ)V");

}

The previous function handled starting the screen saver. This includes calling the startani-
mation () method in the Java code. The code in the next two functions calls the Java methods
for animating the screen saver and stopping the screen saver.

void stopdVM(void)
{

NSLog(@"Called stopdVM()");

JNIEnv *env = NULL;
jint env_error = JNI_OK;

// Use the JVM reference to get an up-to-date
// JINIEnv. JNIEnv variables need constant
// updates
env_error = (*jvm)->GetEnv (
jvm,
(void **)&env,
JNI_VERSION_1_6);

jmethodID mid =
(*env) ->GetStaticMethodID (env, javaWrapperClass,
"stopAnimation", " ()V");
(*env) ->CallStaticVoidMethod (env, javaWrapperClass, mid) ;
// cleaning up the JVM. Do NOT destroy the JVM!
(*env) ->DeleteWeakGlobalRef (env, javaWrapperClass) ;
}
void animateFrameRequest (void)
{
JNIEnv *env = NULL;
jint env_error = JNI_OK;

// Use the JVM reference to get an up-to-date
// JNIEnv. JNIEnv variables need constant
// updates
env_error = (*jvm)->GetEnv (
jvm,
(void **)&env,
JNI_VERSION_1_6) ;

Architecting Alternative Applications__

if ([myScreenSaver isPreview])
{
(*env) ->CallStaticVoidMethod (env, javaWrapperClass,
midAnimate, ssWidth, ssHeight, JNI_TRUE) ;
}
else
{
(*env) ->CallStaticVoidMethod (env, javaWrapperClass,
midAnimate, ssWidth, ssHeight, JNI_FALSE) ;
}
}

That completes the native code and JNI necessary for the Java screen saver. When you make
your own Java screen savers, you need to create additional native methods to register with the
RegisterNatives () functions. Make sure you understand how the Java callbacks to the
native screen saver code work, and you will do fine.

TIP

If this is your first experience with the Invocation API, it may seem a bit confusing. Again, review Chapter 9, and keep
atit. The Invocation APl and JNI are not very difficult. Learning JNI and the Invocation API is mostly a matter of
patience.

Interfacing with a screen saver wrapper

Inthe java_screen_saver project, the Java code is about the same length as the native
code. In more complex screen savers, the Java code grows much larger than the native code.
Most of your variations from this example project will exist in the Java code and the implemen-
tation of 0SXScreenSaverWrapper's native methods.

All the Java communication from and to Objective-C goes through the
0OSXScreenSaverWrapper class. The 0SXScreenSaverWrapper class acts as the wrap-
per for all the native code in the screen saver. The following source is for the Java
0SXScreenSaverWrapper class:

package com.genedavis;

public class 0OSXScreenSaverWrapper

{
private static WeaveSS weavel;
private static WeaveSS weave2;
private static WeaveSS weave3;

@SuppressWarnings ("unused")
private static void startAnimation/()
{
// creating objects that control the drawing
weavel = new WeaveSS();
weave2 = new WeaveSS() ;
weavel3 = new WeaveSS() ;

}

@SuppressWarnings ("unused")
private static void stopAnimation|()
{

// cleaning up

weavel = null;

weave2 = null;

weavel3 = null;

}

@SuppressWarnings ("unused")

private static void animateOneFrame (
int width,
int height,
boolean isPreview)

weavel .drawScreen () ;
weave? .drawScreen () ;
weavel.drawScreen () ;

}

public static native void setColor (
double red,
double green,
double blue,
double alpha) ;

public static native void drawRectangle (
double x,
double vy,
double width,
double height) ;
}

The first three methods, startAnimation (), stopAnimation (), and animateOne-
Frame (), are called from the native code. They correspond to similarly named methods in the
Objective-C ScreenSaverChild class. | set these three methods as private to discourage
their use in the Java code. They are meant to be called only from the native code.

The last two methods, setColor () and drawRectangle (), are declared as native meth-
ods. These are the callbacks from Java to the native ScreenSaverChild. This example
screen saver requires only two Java native methods. NSViews accept many drawing-related
commands, so the potential list of useful native methods is very long. | give additional ideas
related specifically to NSBezierPaths, later in this chapter.

a Arcniteciing Aiternative Appilicaztions

Finishing implementation of a Java screen saver

All that's left is the code for drawing the screen saver animation. WeaveSS instances handle
drawing the screen. The following source is for the Java WeavesSs class. | break up the code
with explanations of what is occurring.

package com.genedavis;

public class WeaveSS {
private double x1;
private double yl;

private boolean nw;
private boolean ne;
private boolean sw;
private boolean se;

private double redChoice;
private double greenChoice;
private double blueChoice;

private int screenWidth;
private int screenHeight;

public WeaveSS ()
{
int direction = (int) (Math.random()*4+1) ;
switch (direction)
{
case 1:
nw = true;
break;
case 2:
ne = true;
break;
case 3:
sw = true;
break;
default:
se = true;
break;

}

pickColor () ;

x1 Math.random() * (screenWidth-12) +1;
vl = Math.random() * (screenWidth-12)+1;

Each WeavesSs object represents one woven line on the screen. The WeaveSS constructor
chooses a random movement direction for this instance. WeaveSsS chooses a random starting
color for itself by calling the pickColor () method. Finally, weavesSs chooses a starting loca-
tion for itself.

public void drawScreen/()

{

// set current color

OSXScreenSaverWrapper.setColor (
redChoice,
greenChoice,
blueChoice,
0.5);

// draw current position

0OSXScreenSaverWrapper .drawRectangle (
x1,
v1,
10,
10) ;

// move square

if (nw)

else 1f (ne)
{
xX1++;
vi++;
}
else 1f (sw)
{
x1l--;
yl--;
}
else 1f (se)

{

x1++;
yl--;

// bounce off walls

(vl < 1)

if (se)

{
se = false;
ne = true;
pickColor () ;

}

else if (sw)

{
sw = false;
nw = true;
pickColor () ;

}

(yl > screenHeight - 11.0)

if (ne)

{
ne = false;
se = true;
pickColor();

}

else if (nw)

{
nw = false;
sw = true;
pickColor () ;

}

(x1 < 1)

if (sw)

{
sw = false;
se = true;
pickColor () ;

}

else 1if (nw)

{
nw = false;
ne = true;
pickColor () ;

}

if (x1 > screenWidth - 11.0)
{

if (se)

{
se = false;
sw = true;
pickColor () ;

}

else if (ne)

{
ne = false;
nw = true;
pickColor () ;

}

}

The drawScreen () method sets the screen saver’s drawing color and draws a rectangle in
the current drawing location. After taking care of drawing based on the current color and loca-
tion, the drawScreen () method moves the drawing location one point. The drawScreen ()
method finishes by determining whether the motion direction and color should change.

public void pickColor ()

{
redChoice = Math.random() ;
greenChoice = Math.random() ;
blueChoice = Math.random() ;
}

}

ThepickColor () method randomly chooses a new color for the current WeaveSS instance.
New colors are chosen when the WeaveSS object is constructed and when it reaches the edge
of the screen and changes direction.

NOTE

Drawing to NSViews (such as a Screensaverview) is completely resolution-independent. All monitors on

0S X are considered to have 72 dots per inch (DPI), no matter what the actual screen resolution is. This means that your
drawing does not get bigger or smaller based on the resolution of the screen.

That is all the code necessary to make your own screen saver. Only one task remains. You must
package screen savers on OS X in * . saver bundles. Creating custom SAVER bundles is the
topic of the next couple of sections.

Assembling screen savers manually

Use any common build tool to assemble an OS X screen saver. Before setting up Ant or Xcode to
assemble your screen saver, you should know the manual steps for assembling SAVER bundles.

= Architecting Alternative Applications__

Assembling savers by hand is so simple that you may not get around to automating it for
a while.

For a quick screen saver prototype, follow these steps:

1. Create and build your native screen saver code.

Build your native code in Xcode using the Screen Saver project template that | dis-
cussed earlier in this chapter.

2. Build your Java code separately in your favorite Java IDE.
3. Jar your Java code.
4. Move the *saver file from Xcode project to a safe directory.

Every time you rebuild your Xcode screen saver project, your * . saver bundle is over-
written. Until you are prepared to integrate your Java and Objective-C builds, be care-
ful not to overwrite your fully assembled Java screen saver.

5. Place your JAR in the Resources directory of the *.saver bundle, as shown in
Figure 10.9.

Your Xcode-generated SAVER bundle probably contains a language-specific resource
directory, such as English.lproj.lremoved the English.lproj directory for
the java_screen_saver example, but you may choose to use it, depending on
your project.

Figure 10.9
Typical SAVER bundle contents viewed from the Finder

|7 java_screen_saver.saver

¥ DEVICES " E——————NN

3 Friendly ¥ @ Contents
= untitied _ Info.plist
¥ @l Macos
» SHARED M java_screan_saver
¥ PLACES ¥ [Resources
v e OR 3 WRAVET_SCTEBN_Saver. jar
(& Today
(5) Yesterday
(L) Past Week
Al Images
All Movies

All Documents

6. Update the SAVER's Info.plist.

This step is explained in the next section.

TIP

If you reuse a previously assembled build of your Java screen saver project, you only have to modify the Info.plist
the first time you assemble the bundle. On subsequent builds, just copy the new JAR into the Resources folder.

TIP

Control-clicka * . saver file to see the Finder context menu. Select Show Package Contents to see the directory
structure of the SAVER bundle.

CAUTION
When creating your own Java screen savers, remember to update the name and search location of the project JAR in
the invocation of the JUM. In the java_screen_saver project, this code is in the ssWwrapper .mfile.

Configuring SAVER Info.plist

When setting up a SAVER bundle, you need a properly configured Info.plist, as shownin
Figure 10.10. The Info.plist contains key information, such as the name of the Objective-C
ScreenSaverView implementation. A SAVER bundle without a properly configured Info.
plist does not work.

Figure 10.10
SAVER Info.plist

(800 | Info.plist. =)

Ky Value
Information Property List (10 items) =
Localization native development re English
Executable file Java_screen_saver
Bundle identifier com.genedavis.Weavess
InfnDictinnary versinn RO
Bundle name Jjava_screen_saver
Bundle 05 Type code BNDL
Bundle versions string, short 0.1
Bundle creator 05 Type code m
Bundle version 0.1
Principal class ScreenSaverChild
=

At a minimum, set the following properties in the Info.plist:

Executable file
Bundle identifier

o
=
@ Bundle name
=

Principal class

The Executable file is the name of the file containing the native screen saver and JVM
invocation. The Bundle identifier is a unique name for OS X to internally identify your
screen saver. | suggest using the fully qualified name of the main Java class in the Java screen
saver. The Bundle name is the name of the bundle as displayed by the System Preferences.
The Principal class is the name of the Objective-C class that extends the
ScreenSaverView class.

After you set up your SAVER bundle and properly configure your Info.plist, copy your
screen saver bundle to the ~/<username>/Library/Screen Savers directory. You can
now set your screen saver to your default screen saver. For instance, opening your screen saver
preferences after placing the java_screen_saver.saver file in the Screen Savers
directory gives you the option of selecting a screen saver named java_screen_saver, as
shown in Figure 10.11.

Figure 10.11

Selecting the java_screen_saver in the System Preferences

anc Deskiop & Screen Saver
«|» || showa | q

Deskiop - Screen Saver

Sereen Savers
B Beach)
B cosmos
P rorest
ﬁ Mature Patterns
IS Paper shadow
T irhoto
* Elagged
[Last 12 Months

| ¥ Other

I base_screen_saver

(1 Use random screen saver
|| Show with clock Start screen saver:
o
3 5 15 1] 1he e Never

(_ Hot Corners...) @

Lhapter 10: Creating >creen Savers =

Wrapping NSBezierPath Commands

Screen savers on OS X are NSViews. Because they are NSViews, all the drawing techniques
available to NSview (and there are many) are available to your Java-based screen savers. The
only catch is that you need to write wrappers for the native drawing code. Most of the hard
work is already taken care of for you in the java_screen_saver sample project. Just add to
actual wrappers to make the native drawing methods available in your Java code.

Drawing in NSView classes is detailed in Apple’s Cocoa Drawing Guide, shown in Figure 10.12.
This is the address for Apple’s Cocoa Drawing Guide Web site:

http://developer.apple.com/mac/library/documentation/Cocoa

/Conceptual/CocoaDrawingGuide/Introduction/Introduction.html

Figure 10.12
Cocoa Drawing Guide Web site

* Table uf Contents <»]

Introduction -~
» Overview of Cocoa Drawing
hi H

} e s Introduction to Cocoa

= Coordinate Systems and _ a
Transforms

e L Drawing Guide

* Faths

» Images High-guality graphics are an important part of a well-designed

application. In fact, high-quality graphics is one of the things thar sets

Mac OS5 X apart from many other operating systems. While some

* Advanced Drawing Techniques operating systems rely on flat colors and rectangular objects, Mac 05 X

» Incorporating Other Drawing wses color, transparency, and its advanced compositing system o give
Technologies programs a more fluid and inviting appearance,

Revision Mistory

* Tewt

RELATED REFERENCE

pChit-C Who Should Read This Document

NsAffineTransform L

NEBezie: h

i This document Is intended for developers who are new to drawing
N&Calar custom content using Cocoa. More advanced Cocoa developers may -
MsGradient 4

Inthe java_screen_saver project, | use a sindle NSBezier command to draw the screen
saver. The command is found in the Objective-C ScreenSaverChild class and looks like this:

[NSBezierPath fillRect: rectToDraw] ;

The NSBezierPath class is capable of much more than drawing filled rectangles. Three of
NSBezierPath’s class methods for drawing are fillRect:, strokeRect:,and strokeLine
FromPoint:toPoint:.The strokeRect: method creates an open rectangle without a fill.
The strokeLineFromPoint:toPoint: createsa line.

= Arcnitecting Alternative Apbnlications

NSBezierPath also supports full resolution-independent vector drawing. Vector drawing
consists of creating curved and straight lines in the same way that Adobe Illustrator does with
its pen tool.

For more information on the advanced features of NSBezierPath, see Apple’s Cocoa
Drawing guide, and check the class reference for the NSBezierPath on Apple’s Web site.
Find Apple’s NSBezierPath Class Reference Web site, as shown in Figure 10.13, here:

http://developer.apple.com/mac/library/documentation/Cocoa
/Reference/ApplicationKit/Classes/NSBezierPath_Class/Reference
/Reference.html

Figure 10.13
NSBezierPath Class Reference Web site

(™A™ Mac DevCenter: NSBezierPath Class Reference
! L | @ hitp:/ /developer.apple.com/mac/library/docume & (Qr Google

[Mac 0S X Reference Library

» Table of Contents | [Jump To... 31 4 >
NSBezierPath Class Reference)
Inherits from NSObject
Conforms to N5Coding
N5Copying
N5Object (NSObject)
Framework /5ystem/Library/Frameworks/ AppKit.framework
Availability Avallable in Mac 05 X v10.0 and later.
Companion guide Cocoa Drawing Guide
Declared in NSBezierPath.h

Related sample code DockTile
Sketch-112
SpeedometerView
WebKitPluginStarter
WabKitPluginWithjavaScript

Summary

Screen savers must extend the Objective-C ScreenSaverView class. This does not prevent
you from writing Java-based screen savers. It just adds an additional step. By using the JNI
Invocation API, you can interface a Java controller with a normally Objective-C framework.

| began this chapter with a simple Objective-C-based screen saver example. The example dem-
onstrated stopping and starting screen saver animation. The first example also demonstrated
animating frames of the screen saver.

The second example in this chapter expanded upon the first example. The second example is a
fully functional Java screen saver. The Objective-C screen saver is stripped of all control code
and wrapped by a second set of native code that invokes a JVM. All of the drawing logic is
moved to the Java code.

Screen savers must be bundled in SAVER bundles. The Saver bundles have the naming conven-
tion of * . saver. The SAVER bundles are set up similarly to other application bundles, except
that the class that starts the screen saver is a child of the ScreenSaverview class. Screen
saver bundles must have a properly configured Info.plist file in order to be used as a sys-
tem screen saver.

Creating Terminal
Applications
——

A dvanced programmers take the Terminal seriously. Working

from the command line is not suited to every programmer’s

taste. | know several excellent programmers who avoid the
command line whenever they can. However, dismissing the
Terminal environment entirely removes an important tool from
your repertoire.

Games, editors, utilities, and just about every type of application
imaginable are available for the Terminal. Many programmers and
system administrators refuse to code outside of the command-line
editor’'s emacs and vi. For quick edits from the Terminal, nano,
shown in Figure 11.1, makes a great tool. The point is that Terminal
applications’ use and development are popular on OS X and in the
Unix world.

If you spend much time working in the Terminal, you quickly find
Terminal applications performing tricks you never dreamed of try-
ing with System.out.println ().Advanced Terminal applica-
tions regularly hide passwords as they are entered, change the
foreground and background colors of text, manipulate the posi-

tions of cursors, and clear the Terminal of unwanted text. Truly
impressive Terminal applications even provide menu systems and In This Chapter
pop-up dialog boxes within the Terminal window.

Usually, introductory Java books and classes skip past complex Understanding CSI
Terminal application programming, sticking mostly with basic Exploring ANSI color
System.out.println () calls. When using ANSI escape
sequences, System.out.print () and System.out.
println () become powerful tools. Even the basic System. out.
print () method can produce colored and stylized Terminal output. Using Ncurses with Java

Manipulating
Terminal views

When you are ready to create dialog boxes and menus, a little JNI
makes them available through the ncurses library. The most
advanced user interfaces for the Terminal are created using ncurses.

NOTE

Many programmers refer to Terminal applications as “console” applications. On
05 X, the Console is an application used to capture logged errors and other output.
If you find yourself in a crowd of non-0S X Unix geeks, realize that their “console”
is usually synonymous with your “Terminal” and you'll fit in just fine.

Figure 11.1
Nano editor running in OS X Terminal

8ano

Main nono help text

Ihe nano editor 1s designed to emulate the Tunctionolity and ense-of-use of
Lhe UW Pivo Lexl edilor. There ore four muin secliors of Lhe edilor. The Luop
line shows the progrom wversion, the current filenanc being cdited, and whether
or not the file hos been modified. Mext iz the main editor window showing the
file hring pdited. The stotus line iz the third line from the hotbom and
shows Important messoges. The bottom two [ines show the most commonly used
shortouts in the editor.

The notation for shortcuts iz oz follows: Control-key sequences are notated
with o caret {*) symbol and caon be entered either by using the Lontrol {Ltri)
key ur pressing the Escupe (Exc) key Wwice. Escupe-key seyuences ure nolubed
with the Meta (M-) aywbol and con be entered uzing cither the Esc, Alt, or
Meta key depending on your keyboord setup. Algo, pressing Ezc twice ond then
typing o threr-digit decimal rumsher from AAA tn 78R will enter the choracter
with the corresponding value. The Tollowing keystrokes ore ovailoble in the
main editor window. Alternative keys are shown in pclrtnth:aca:l

Refresh Prev Poge Prev Line First Line -
Exit Next Moge Hext Line Lost Line =

Before continuing, keep in mind that the Terminal is not meant as a rich GUI development envi-
ronment. If you put too many bells and whistles into your Terminal applications, shell geeks will
be turned off to your application. Terminal applications should be clear and clean. Do not treat
your terminal applications as remedial GUI applications. Design your terminal applications as
no-nonsense interfaces.

Learning ANSI Escape Sequences

ANSI Escape Sequences are the basis of good command-line utility interfaces. ANSI Escape
Sequences provide commands for moving the position of the cursor on the Terminal, as well as
changing the foreground and background colors of text. ANSI Escape Sequences even provide
a code for the dreaded blinking text.

Figure 11.2 shows a simple System.out .println () printing to a custom Terminal location
and in multiple colors. | bet no one told you System. out .println() could do that!

NOTE

All the source code for the examples in this chapter is available on the book’s Web site.

The application is called AnsiDemo, and it gives a hint at what you can accomplish with a sim-
ple System.out.println ().Don’t worry too much about the details at this point. | explain
how escape sequences work in detail later in the chapter.

Figure 11.2

AnsiDemo in Terminal

Winnacibin tdavish |

Hello CIALLE

This is the source from AnsiDemo. java:

public class AnsiDemo {
public static void main(String[] args)

{

char esc = 27

String
String
String
String
String
String
String
String
String
String

System.

i

clearScreen
positionl =
position2 =
colorl = esc
color2 = esc
color3 = esc
colord = esc
color5 = esc
color6 = esc
reset = esc
out.println(

clearScreen +
positionl +

colorl
"Hello
color?2

c" +

color3

n

o" +

colord

"

L" +

color5

+

es

es
+

o+ o+ o+t

+

iv'm

7~

esc + "[20";
c + "[5;29H";
c + "[10;1H";
"[30;0m";
"[31;1m";
"[32;1m";
"[34;1m";
"[35;1m";
"[36;1m";
" [Om";

"o+
color6 +
"R" +
reset +
position2) ;

}

No special libraries are needed for displaying the colors above. Also, no special libraries are
needed for repositioning text or clearing the screen. The Terminal is configured to understand
the set of ANSI Escape Sequences that | use in this application.

Configuring Terminal emulation

Before moving on to diehard ANSI Escape Sequence usage, review the Terminal preferences.
Behaviors set in the Terminal Preferences window can make or break the usefulness of many
command-line utilities.

Command-line environments use different configurations. Typically, when programming
specifically for OS X, you get a standard default Terminal configuration. Having one standard
Terminal makes writing native OS X Terminal applications much easier than programming for
unknown command lines offered by other vendors. If you program Terminal applications for
DOS or Linux, the set of ANSI Escape Sequences varies. In fact, the entire ncurses library was
written to transparently handle the differences between terminals on different operating
systems.

| return to a discussion of ncurses later in this chapter.

Occasionally, you may use a Terminal application remotely that does not map exactly to the
behavior of your local machine. The Terminal provides a rich set of preferences for supporting
customizations to the Terminal. You can customize the look and feel, behavior, and even the
encodings supported by the Terminal on your Mac.

Open the Terminal’s Preference window by selecting Terminal => Preferences. Select the Startup
tab if it is not visible. The Startup tab, shown in Figure 11.3, displays preferences for the win-
dow’s color scheme settings and your preferred shell.

Choose the Settings tab, shown in Figure 11.4. The Settings tab displays the preset color
schemes for the Terminal. You'll find some very attractive color schemes here. However, if
you choose to create your own, just click the add button (+) at the bottom of the window.

Select the Text tab if it is not already selected, as shown in Figure 11.4. The Text tab of the
Settings window contains font preferences, text coloring preferences, and cursor preferences.
You can even change the color of your cursor.

Figure 11.3

Terminal startup preferences

On startup, open:) New window with settings:

[my_red 2

() Window group:

| None |

Shells open with: (@ Default login shell (/usr/bin/login)
O Command (complete path):
[bin/bash

Figure 11.4

Terminal text settings

- Homebrew | [Antialias tesxt EI Text
!
| # Use bold fonts | Bold Text
- my_red ! ¥ Allow blinking text
Defaulr ! Display ANSI colurs 3] setection
r_;'rl Nowel :] Use bright calors for bold text
| Cursor
n Ocean ' @ W Biock [| cursor
O — Underine
B | | OF venearoar
b8 (] Rlink cursor
4+ - %~ Defaul ®

Choose the window tab of Settings, as shown in Figure 11.5. This panel configures the default
window size, places useful information in the Terminal title bar, and configures the scrollback.
Having unlimited scrollback is useful when debugging scripts and long builds.

CAUTION
The standard Column count expected by command-line tools is 80. Changing the default size of the Terminal window
may make some older command-line utilities display improperly.

Figure 11.5

Terminal window settings

+| ——{ Text | Window | Shell —
@ Rasic -
Title
Terminal
™ Active process name] TT¥ name
My
- Horabiag [} Shell command name E Dimensions
[} Settings name] Command key
my red Back d
Default 3 A
| =] cotor
-
Window Slze
H Ocean Columns: 80 Rows: 24
-/
Serollhack
- Pro ke @ Unlimited
v
() Uimit number of rows to: 10000
|+ | - #~ Default @

Choose the Shell tab of the Settings preferences, as shown in Figure 11.6. This window allows
you to set the closing prompts. Even more interesting is the option of running a command on
Terminal startup.

Choose the Keyboard tab of the Settings tab, as shown in Figure 11.7. This panel allows you to
modify the default actions of common keyboard keys. For instance, if you use a Terminal appli-
cation at work that maps F1 differently, modify the action of that key here by double-clicking
the row. The dialog box for modifying individual keys is shown in Figure 11.8.

Figure 11.6

Terminal shell settings

[Run cammand:
W Run inside chell

When the shell exits:

| Dan't cinse the window =)
;‘LI’J:" Prompt before closing:

O Always
Novel) Never

{8) Only if there are processes other than:

Blow || &=
\ telnet

ssh
L =
ir
4 | = | #~| Defauk EE' @

Figure 11.7

Terminal keyboard settings

~—— Text Window Shell | Keyboard | Advanced
| Key | Action L
‘control cursor left \033{SD
| control cursor right \U33(5C m
end scroll to end of buffer
|F1 A0330P
i 103300
A \0330R
F4 103308
Fs 03315~
FB 03317~
) \033(18~ |
FE \033[10~ kb
F@ 1033120~ i
E - | Edit
[} Use option as meta key

= Architecting Alternative Applications__

Figure 11.8

Modifying individual keys in the
Terminal keyboard settings

Key: [end 4]
Modifier: | none n@]
Action: | scroll to end of buffer l-ﬂ

Control characlers appear as a backslash
followed by three octal digits. A backslash
will appear as double backslashes.

Perhaps the most useful feature on this page is the check box that sets the Option key to work
as your meta key. Several Terminal applications, such as emacs, require the use of a meta key
combination, which is similar to a Command- or Control-key combo. Normally on OS X you
need to use the Escape key as your meta key. The Escape key is far from the normal reach of
your pinky, so using the Escape key as a meta key is very distracting. It disrupts your workflow
when using command-line utilities.

The fix is simply to click the “Use option as meta key” check box in the Terminal Preferences’
keyboard preferences.

Choose the Advanced tab in the Settings preferences, as shown in Figure 11.9. The Advanced
tab is at the heart of making the Terminal behave correctly with remote command-line applica-
tions. The Emulation section contains a drop-down list allowing you to select how your terminal
is declared. You have these choices:

@ ansi
dtterm
rxvt
vt52
vt100
vt102
xterm

© © 0 @ e ¢

xterm-color

Figure 11.9

Terminal advanced settings

—f_ Text Window Shell £ d |

Emulation

Declare terminal as: [xterm-color

L] Delete sends Crrl-H

[Escape nun-ASCIl input

[Paste newlines as carriage returns
[7) Strict VT-100 keypad behavior
™ Scroll to bottom on input

E Novel Bell

Audible bell
[visual bell

International

|_unicode (UTF-8)

5|

|- . .
. 3 34 I P i
o 5§v| P # Set locale environment variables on startup

(@]

This set of preferences also allows you to set the keypad behavior and the beep (also officially
called the “bell”) behavior. Also, changing the international character encoding is available with

many quick choices including these:

€

Unicode (UTF-8)

Western (Mac OS Roman)
Western (ISO Latin 1)
Western (ISO Latin 9)
Western (Windows Latin 1)
Western (ASCII)

Western (NextStep)
Japanese (Mac OS)
Japanese (ISO 2022-JP)
Japanese (EUC)

Japanese (Shift JIS)

e ¢

Traditional Chinese (Big 5 HKSCS)
Korean (EUC)

Cyrillic (ISO 8859-5)

Russian (DOS)

Cyrillic (Windows)

Cyrillic (KOI8-R)

Simplified Chinese (GB 2312)

@ Central European (ISO Latin 2)

¢ 0@ ¢ ¢

By clicking the Customize Encodings List at the bottom of the drop-down, you open the
Encodings tab of the preferences, as shown in Figure 11.10.

Figure 11.10

Terminal encodings

Fnahle the encadings you will use.

) Unirode (LTF-1R)

! Unicode (LITF-7)

M Unicode (UTF-8)

! Unicode (UTF-32)

L] Unicode (UTF-16BE)
! Unicode (UTF-16LE)
I} Unicode (UTF-328BE)
[} Unicode (UTF-32LE)
™ Western (Mac OS5 Roman)
™ Western (IS0 Latin 1)
) Western (15O Latin 3)
[Western (15O Latin 9)
[Latin-us (DOS)

) Western (DOS Latin 1)
[Portuguese (DOS)

() Canadian French (DOS)

| =
v

TIP

®

If you are working in a session of emacs, vi, or nano, either locally or remotely, and the Delete key is not working prop-
erly, try toggling the “Delete sends Ctrl-H” check box in the Advanced tab of the Settings area of Terminal Preferences.

Sometimes this simple click saves you lots of hassle.

e (Chapter11:Creating Terminal Applicat

Printing in ANSI color

Now that you have reviewed the Terminal preferences affecting console applications and ANSI
escape sequences, you are ready for a better explanation of the sequences.

ANSI escape sequences affect color and position of text in terminals. The escape sequence typi-
cally takes the form ESC+ [followed by one or more numbers and ended by a letter. For exam-
ple, the following code produces a green color:

ESC[32m

Placing the escape character in a string is a bit problematic. Java does not have an escape
sequence to represent the escape character. Luckily, escape is easily represented as a char. The
char value of escape is decimal value 27. Instead of adding the escape character directly into a
String, you can set a char to the value of the escape value and then add the char to the
String.

NOTE

Escape in hex s 0x1b. In octal, the escape character is 033.

Using the escape sequence for green text that | mentioned earlier (ESC [32m), here is the code
for creating the escape sequence as a Java String:

char ESC = 27
String CSI = ESC + "[";
String green = CSI + "32m";

Notice that | named the variable containing ESC+" [“ CSI. CSl is the formal name for the begin-
ning of the escape sequence. CSl stands for Control Sequence Introducer. It is called a Control
Sequence Introducer because the character combination of ESC+ [flags the character setas a
control sequence.

NOTE

Sometimes ASCII code 155 is used as a CSl instead of the ESC+[characters used in this chapter. Code 155 is not as
widely supported, so | avoid its use.

When setting a color for text in the Terminal, the setting is usually needed only for a word or
phrase. After the word or phrase prints, you want the color to change back to the original
default the user prefers seeing. This code is used for resetting the color of text printing:

ESC[39m

E Arcnitecting Aiternative Applications

In Java code, this escape sequence reverts to default printing:

char ESC = 27
String CSI = ESC + "[";
String resetColor = CSI + "39m";

Call the reset on colors before changing to a new color. In pseudo code, setting colored text
with System.out.print () might look something like this:

set ansi color

print text

reset ansi color

set another ansi color
print text

reset ansi color

In case any of the escape sequence description is confusing, | include a sample program called
BasicColor.BasicColor prints the phrase “Basic Color” in green and then resets the text
color to the default user color, as shown in Figure 11.11.

The following source is the code for BasicColor. java:

package com.genedavis;
/**
* Run this class from the Terminal in 0OS X
* to see "Hello Color!" in green
*
* @author T. Gene Davis
*/
public class BasicColor {
public static void main(String[] args)
{
// ASCII ESC+"[" is known as a
// Control Segquence Introducer (CSI)

final char ESC = 27; // in unicode ... \u0OO01lB
final String CSI = ESC + "[";

// Changes the Terminal color to green
String green = CSI + "32m";

// Resets the Terminal color to default
String reset = CSI + "39m";

// 1. set foreground color to green
// 2. print Hello Color!
// 3. reset the foreground color
System.out.println (

green +

"Basic Color" +
reset) ;

Figure 11.11
Results of running BasicColor in Terminal

Palale) Tert

Winmac:bin toavish jova com.genedavis.BosicColor

a
Dazic Color -
Winmae:bin tdavist || ~
-
~

CAUTION

Don't forget to reset the text colors to the user’s default color scheme. Forgetting to reset the Terminal colors will

annoy your users.

Choosing color brightness

The base colors for ANSI-compliant terminals are limited to black, red, green, yellow, blue,
magenta, cyan, and white. The values for the colors are 30-37. These colors have normal and

bright versions, doubling the total colors available.

Explicitly choose the color brightness of a color by appending ; Om or ; 1m instead of just m to
the color escape sequence. The ; Om extension explicitly sets colors to their normal version. The
; 1m extension explicitly sets colors to their bright version.

For instance, this code sets the Terminal color to normal red:

ESC+[31;0m

This sequence of code sets the Terminal color to bright red:

ESC+[31;1m

Architecting Alternative Applications__

In Java, the two versions of red look like this:

char ESC = 27;

String CSI = ESC + "[";

String normalRedColor = CSI + "31;0m";
System.out.print (normalRedColor);

and

char ESC = 27;

String CSI = ESC + "[";

String brightRedColor = CSI + "31;1m";
System.out.print (brightRedColor);

When using bright colors, resetting the color with CSI+"39m"” does not completely reset the
color of text to its original color. Instead, you get a bright version of the user’s color. To work
around this, use the code CSI+"39; 0m”, which resets the user’s text color and sets the color to
the normal brightness.

TIP

ANSI escape sequences define bright, normal, and faint versions of colors. 0S X's Terminal does not support faint ver-
sions of color escape sequences. Most operating systems do not support the faint-colored escapes.

TIP

Another way to reset the text color is the ANSI escape sequence ESC+ [Om. The ESC+ [0m sequence resets all modi-
fied attributes, not just color.

Setting background colors

Text colors come in two varieties: foreground and background. Foreground colors change the
color of the text itself. Background colors change the color surrounding the text. This is similar
to the behavior of foreground and background colors in the AWT, except that background col-
ors are localized to the text drawn with them. In AWT code, background colors usually affect an
entire panel instead of a localized region.

Normal intensity background colors are specified with ESC+ [40m thru ESC+ [47m. Bright
background colors are specified with ESC+ [100m thru ESC+ [107m.

For example, the following code sets the background to bright green:

char ESC = 27;

String CSI = ESC + "[";

String brightGreenBackgroundColor = CSI + "102m";
System.out.print (brightGreenBackgroundColor) ;

Completing the color sequences

In this section, | present tables showing Java code for the ANSI escape sequences | have dis-
cussed to this point. Remembering the codes for all the foreground and background colors is
a bit intimidating until you have the pattern memorized. | provide tables listing the colors and
related sequences to make your life easier.

Table 11.1 contains the Java code necessary to use the normal ANSI color escape sequences.
Earlier in the chapter, | provided a code snippet similar to this:

char ESC = 27;

String CSI = ESC + "[";

String yourColor = CSI + "31;0m";
System.out.print (yourColor);

The variable yourColor contains the control sequence for setting the Terminal text color.
Replace CSI+"31; 0m” from this example with the following sequences, setting the
yourColor variable to your preferred sequence.

Table 11.1 Normal Foreground ANSI Colors for Terminal Text

Sequence Description

(CSI+"30;0m" Normal black foreground
CSI+"31;0m" Normal red foreground
(CSI+"32;,0m" Normal green foreground
(CSI14+"33;0m" Normal yellow foreground
CSI+"34;,0m" Normal blue foreground
(CSI+"35;,0m" Normal magenta foreground
(CSI+"36;0m" Normal cyan foreground
CSI+"37;0m" Normal white foreground

Table 11.2 details the Java code necessary to set your escape sequences to bright colors. Again,
replace the code for setting yourColor with the sequence from the table to produce the
desired text attributes.

Table 11.2 Bright Foreground ANSI Colors for Terminal Text

Sequence Description
CSI+"30;1m" Bright black foreground
CSI+"31;1m" Bright red foreground
CS1+"32;1m" Bright green foreground

continued

Table 11.2 Continued
Sequence
CSH+"33;1m"
CSH+"34;1m"
CSH+"35;1m"
CS+"36;1m"
CSI+'37;1m"

Description

Bright yellow foreground
Bright blue foreground
Bright magenta foreground
Bright cyan foreground
Bright white foreground

Table 11.3 details the Java code necessary to set your escape sequences for background colors.
Replace the code for setting yourColoxr from earlier in this section with the sequence from
the table to produce the desired escape sequence.

Table 11.3 Normal Background ANSI Colors for Terminal Text

Sequence
CSI+"40m"
CSl+"41m"
CSl+"42m"
CSl+"43m"
CSI+"44m"
CSI+"45m"
CSI+"46m"
CSI+"47m"

Description

Normal black background
Normal red background
Normal green background
Normal yellow background
Normal blue background
Normal magenta background
Normal cyan background

Normal white background

Table 11.4 details the Java code necessary to set your escape sequences for bright background
colors. Replace the code for setting yourColor from earlier in this section with the sequence
from the table to produce the desired escape sequence.

Table 11.4 Bright Background ANSI Colors for Terminal Text

Sequence
CSI+"100m"
CS1+"101m"
CS1+"102m"
CS1+"103m"

Description

Bright black background
Bright red background
Bright green background
Bright yellow background

Sequence Description

CSI+"104m"
CSI+"105m"
CSI+"106m"
CSI+"107m"

Bright blue background
Bright magenta background
Bright cyan background
Bright white background

Table 11.5 details Java code necessary to set additional escape sequences for text manipulation.
Again, replace the code for setting yourColor from earlier in this section with the sequence
from the table to produce the desired escape sequence. Also, because these are not actually
colors, you might want to change the variable name. Use the sequence CSI+"0m” to universally

reset all modified attributes.

Table 11.5 Additional ANSI settings for Terminal Text

CSl+"0m"
CS1+"39m"
CS1+"39;0m"
CSI+"1m"
CSI+"4m"
CSI+"5m"
CSI+"7m"
CSl+"8m"
CSl+"22m"
CSI+"25m"
CSI+"27m"
CS1+"28m"

Concealing passwords

Resets all attributes to user's default

Resets foreground without resetting brightness
Resets foreground and sets brightness to normal
Sets font intensity to bright (bold text)
Underlines text

Blinks

Turns negative on (visually pleasing highlight)
Turns conceal on

Sets font intensity to normal

Blinks off (Make it stop!)

Turns negative off

Turns conceal off

Entering passwords is a common task. Users do not appreciate having passwords visibly
echoed. Many work, school, and public environments allow people to see what is typed on a

screen, so most programs hide typed passwords.

Terminal applications are no different. Terminal applications prevent onlookers from reading
passwords off the screen as users type them. One method for obscuring passwords is to set the
foreground and background colors to the same value. This way, when the user types her pass-
word, bystanders cannot read the value off the screen.

Architecting Alternative Applications__

As it turns out, the Terminal already supports a shortcut for concealing the display of text,
including passwords. In Table 11.5, | introduced the “conceal on” (ESC+ [8m) and “conceal off”
(ESC+ [28m) escape sequences. Conceal on sets the current Terminal background color to the
same color as the current foreground color, thus rendering the text unreadable by onlookers.

| provide a short application called Conceal demonstrating the use of conceal on and conceal
off. The following code is the source for the file Conceal . java.

package com.genedavis;
/**
* Conceal hides text from view. Cutting and pasting
* the text into TextEdit reveals the hidden text.
*
* @Qauthor T. Gene Davis
*/
public class Conceal {
public static void main(String[] args) {
// ASCII ESC+"[" is known as a
// Control Sequence Introducer (CSI)

final char ESC = 27; // in unicode ... \u001B
final String CSI = ESC + "[";

// Hides printed text
String conceal = CSI + "8m";

// reveals printed text
String reveal = CSI + "28m";

// 1. set conceal

// 2. print Hidden text

// 3. set reveal

System.out.println(
"-->" + conceal +
"Hidden text" +

reveal + "<--");
}
}
Figure 11.12 shows the output of Conceal . java. Visually, the Conceal class prints the
following:
——s <——

If you cut and paste the entire line into a text editor such as TextEdit, you quickly see that the
hidden text is still printed. The System.out.println () textis still echoed to the Terminal,
but it is invisible to onlookers.

Figure 11.12

Results of running Conceal in Terminal

Winmac:bin toavish jova com.genedayis.Conceal

iRy

-
Winmae:bin tdavis$ |

Jr'@m

~

Printing invisible text has purpose. When a terminal ANSI escape sequence for conceal is
entered, it not only affects printing, but it also affects anything typed by a user. This includes
passwords.

Here is another Java example using the conceal escape sequence. This class is named
PasswordEntry and actually conceals the text typed by the user. The text is presumably
a password that needs obscuring:

package com.genedavis;
import java.util.Scanner;
public class PasswordEntry {
public static void main(String[] args) {
// ASCII ESC+"[" is known as a
// Control Sequence Introducer (CSI)

final char ESC = 27; // in unicode ... \uO01B
final String CSI = ESC + "[";

// Hides printed text
String conceal = CSI + "8m";

// reveals printed text
String reveal = CSI + "28m";

// prepare to read the password
Scanner scan = new Scanner(System.in);
String password;

// request the password and conceal the system in
System.out.print (

"Enter your password: " +

conceal);
password = scan.nextLine() ;

// reveal Terminal type again and share
// the password with the world
System.out.println (

reveal +

"Your password is ... " +

password) ;

}

In the PasswordEntry program, | set CST with ESC+ [. | create Strings representing con-
ceal on and conceal off with CST. Next, | print a request for a password, after which | print the
conceal escape sequence. While the Terminal is concealing text, | capture the typed password.
When the password is entered, | print the code for turning conceal off in the Terminal. All this
results in a Terminal looking something like Figure 11.13.

Figure 11.13

Results of running PasswordEntry in Terminal, when your
entered password is “ultra secret password”

LAOUO Teri L
Winmoc:bin toavish iowa com.genedayis. POSSWOrcENTTY a8
Cnter your password:
Your possword ie ... ultro secret possword
Winmoeshin tdavist

e

~

CAUTION

Don't forget to turn conceal off with code ESC+ [28m or ESC+ [0m. Failing to do so will irritate your users, as they
will not be able to see anything they type or anything your program prints.

Another common approach to entering passwords in Terminal applications is using the
Console class. The Console class contains two methods specifically for collecting
passwords from users:

public char[] readPassword/()
public char[] readPassword(String fmt, Object... args)

Both methods turn off echoing, so they are more secure than using the conceal escape
sequences. The Console class was introduced in Java 1.6.

Introducing Terminal Uls

ANSI escape sequences do much more than make colored text and hide passwords. Properly
used, entire Terminal User Interfaces can be designed using ANSI escape sequences. You still
need to learn the art of clearing the Terminal, hiding the cursor, and moving the insertion point
around the view area. After you have these tasks down, | explain the creation of Terminal User
Interfaces from scratch. Near the end of the chapter, | discuss creation of Uls using Charva

and ncurses.

Clearing the Terminal

Soon | explain moving the insertion point to any visible portion of the Terminal window. If text
is there already, you want the text erased before printing new strings. Depending on your task,
you may want to clear entire rows of text, partial rows of text, entire screens, or partial screens.
Table 11.6 shows the complete selection of clear codes for the Terminal on OS X.

The pattern for using these codes is similar to the pattern | discussed earlier in the book:

1. CreateanESC char.

The ASCII code is 27. Simply assigning the decimal number 27 to a char turns out to
be a clean and simple way to create this char.

2. Combine the ESC char with [to create the CSI.

CSls are Control Sequence Introducers. ESC+[is the most common ANSI escape
sequence initiator.

3. Createthe sequence, and store it in a String for printing.

Variable names tend to make more sense than escape sequences when reading
through code.

This code snippet creates the escape sequence for clearing the Terminal window. After creating
the escape sequence, it prints the sequence and clears the Terminal:

Architecting Alternative Applications

char ESC = 27;

String CSI = ESC + "[";

String clearTerminal = CSI + "2J";
System.out.print(clearTerminal);

Until this point, all the escape sequences ended in m. Most escape sequences do not end inm,
so don't forget to check what letter the sequence you use actually should end with.

CAUTION

Remember to use System. out .print () ratherthan System. out .print1n () when printing ANSI
escape sequences, or you end up with extra unwanted new lines in your display.

CAUTION

Clearing the Terminal does not remove the text in the Terminal. Instead, it normally scrolls the text off the screen.
Never assume that clearing the screen removes sensitive information. Closing the Terminal is the only way to ensure
that sensitive information is removed.

Table 11.6 Line and Screen Clearing Sequences
Sequence Description

CSl+"o)" Clears from current cursor position to the end of the Terminal view
S+ Clears from current cursor position to the beginning of the Terminal view
CSI+"2)" Clears the entire Terminal view

CSI+"0K" (lears from current cursor position to the end of the same line

CSI+"1K" Clears the current line of text before the cursor from the Terminal view
CSI+-"2K" Clears the entire line of text from the Terminal

When clearing the screen for a Terminal Ul, you create the illusion that your user has in fact left
the command line even though he is still in the Terminal. Nothing destroys the illusion of hav-
ing a Terminal Ul quicker than a cursor blinking away on the screen.

Luckily, ANSI escape sequences allow you to hide and show cursors at will. The codes for hiding
and showing cursors are ESC+ [2251 and ESC+ [?25h, respectively. The code snippet for hid-
ing the cursor looks like this:

char ESC = 27;

String CSI = ESC + "[";

String clearTerminal = CSI + "251";
System.out.print(clearTerminal) ;

EE—————————apter 1 1 Creating lerminal Applications

This is the code snippet for showing a previously hidden cursor:

char ESC = 27;

String CSI = ESC + "[";

String clearTerminal = CSI + "25h";
System.out.print(clearTerminal);

CAUTION
Remember to show your cursor when exiting your application, if you hid it in the application. Otherwise, your user no
longer has a cursor at the command line.

CAUTION
The sequence for hiding a cursor ends in a lower case L, not a 1 or uppercase I. Confusing these characters is easy
depending on the font in which you read them.

Moving the cursor

The last ANSI escape sequence you need before embarking on your journey into the world of
Terminal Uls is the code for moving the cursor. You can use several codes for moving the cursor,
but you likely need only two. The following sequence sets the position of the cursor in the
Terminal window:

ESC+ [<row>; <column>H
The abbreviated form places the cursor at the top-left corner of the screen:
ESC+[H
CAUTION

The x and y coordinates in the cursor moving sequence are reversed from where you expect. Row (y) comes first, not
second.

The rows and columns in the Terminal are 1 based, instead of 0 based. The default size of the
Terminal is 80 columns by 24 rows, as shown in Figure 11.14. | explain how to verify the row and
column count later in this chapter. Currently, Java does not contain any built-in methods for
verifying the row count or column count in a terminal window.

Architecting Alternative Applications

Figure 11.14
Terminal coordinates
(1,1 > (80,1)

Terminal window

Y

(1,24

The code for setting the cursor position to row 5 and column 30 looks like this:

char ESC = 27;

int x = 30;

int y = 5;

String CSI = ESC + "[";

String moveCursor = CSI + yv + ";" + x + "H";

System.out.print (moveCursor) ;
The following code places the cursor at the top-left corner of the Terminal window.

char ESC = 27;

String CSI = ESC + "[";

String moveCursor = CSI + "H";
System.out.print (moveCursor) ;

Interacting with the Terminal

At the heart of interacting with Terminal applications is the need to capture keystrokes in real
time. Some Terminal applications accept mouse events, but most users of Terminal applications
prefer to keep their hands on the keyboard. Using a mouse slows them down. Therefore,
mouse-driven Terminal Uls are not acceptable.

As | mentioned in Chapter 9, Java has no built-in method for retrieving characters from the
Terminal, before the Enter key is pressed. It turns out Java also has no build-in methods for
checking the current view size in the Terminal. In order to make an interactive Terminal applica-
tion, you must know the viewable size of the Terminal and the latest key press.

Capturing the latest Terminal key press, the viewable columns, and the viewable rows is fairly
straightforward with C. In this section, | provide a Terminal User Interface utility written with JNI
for capturing these three pieces of data.

EE—————————apter 1 1 Creating lerminal Applications =

NOTE

The lack of a console/terminal character reader in Java has been in various bug fix requests for more than 13 years. The
current bug request is bug number 6351276. The current version of the bug report is:

http://bugs.sun.com/bugdatabase
/view_bug.do?bug_i1d=6351276

CROSS-REF
I detail JNI usage on 0S Xin Chapter 9.

The Java portion of the Terminal Ul utility is named TuiUtil . java. Thisis the source for the
Javaclass TuiUtil:

package com.genedavis;
/**
* Native methods for Terminal UI.
*
* @author T. Gene Davis
*/
public class TuiUtil {
// executed during class load
static

{
// used to load from a system library path

System.loadLibrary ("TUI") ;
}

// native method call
public native char getch();

// native method call (tput cols)
public native int getTerminalColumns () ;

// native method call (tput lines)
public native int getTerminalRows() ;

}

The TuiUtil class starts with a static block. The static block loads a dynamic library called
TUI. The actual filename is 1ibTUI.jnilib.

The TuiUtil class contains three native methods: getch (), getTerminalColumns (),
and getTerminalRows ().l use an Ant script for generating the native C header file. You
may prefer to generate the C header with a direct call to javah.

The following code is the source for the JNI header file associated with the TuiUti1 class. In
the project Ant project, the JNI header file is named native_TuiUtil_jni.h:

Arcnitecting Aiternative Applications

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>

/* Header for class com_genedavis_TuiUtil */

#ifndef _Included_com_genedavis_TuiUtil

#define _Included_com_genedavis_TuiUtil

#ifdef __ _cplusplus

extern "C" {

#endif

/*

* Class: com_genedavis_TuiUtil
* Method: getch

* Signature: ()C

*/

JNIEXPORT jchar JNICALL Java_com_genedavis_TuiUtil_getch
(INIEnv *, jobject);

/*

* Class: com_genedavis_TuiUtil
* Method: getTerminalColumns

* Signature: ()I

*/

JNIEXPORT jint JNICALL Java_com_genedavis_TuiUtil_
getTerminalColumns
(ONIEnv *, jobject);

/*

* Class: com_genedavis_TuiUtil
* Method: getTerminalRows

* Signature: ()I

*/

JNIEXPORT jint JNICALL Java_com_genedavis_TuiUtil_getTerminalRows
(JNIEnv *, jobject);

#ifdef __ cplusplus

}

#endif

#endif

The three native method definitions define their return values as jchars and jints. For
simplicity, | do no implicit conversion from the underlying C code to the JNI types. | just use
jchar and jint.

The native implementation of the TuiUtil class is found in a Cfile called TuiUti1Impl.c.
Here’s the source for the native implementation of the TuiUt i1 class:

#include <stdio.h>

#include <sys/ioctl.h>

#include <termios.h>

#include <unistd.h>

#include "native_TuiUtil_jni.h"
// This Terminal Utility works

e CLhapter i1i.Lreating ierminair Appilications

// on Mac OS X and likely works on
// other *NIX operating systems
// after recompiling.
// getch()
JNIEXPORT jchar JNICALL
Java_com_genedavis_TuiUtil_getch
(JNIEnv * my_jenv, jobject my_jobj)
{
jchar ch;
struct termios old_term, new_term;
//storing the old settings
tcgetattr (STDIN_FILENO, &old_term);
// making a copy of the old settings
// to modify
new_term = old_term;
// modifying the copy of the terminal settings
// so there is no echoing and no buffering,
// just flipping bits here
new_term.c_lflag &= ~(ICANON | ECHO);
// setting the modified terminal settings
// to be active
tcsetattr (STDIN_FILENO, TCSANOW, &new_term) ;
// getting the character
ch = getchar() ;
// resetting the terminal settings to the old settings
tcsetattr (STDIN_FILENO, TCSANOW, &old_term);

return ch;

// getTerminalColumns ()
JNIEXPORT jint JNICALL
Java_com_genedavis_TuiUtil_getTerminalColumns
(JNIEnv * my_jenv, jobject my_jobj)
{

//defining a terminal size struct

struct ttysize terminal_size;

//populating the struct
ioctl (0, TIOCGSIZE, &terminal_size);

//returning the viewable columns
return terminal_size.ts_cols;

// getTerminalRows ()
JNIEXPORT jint JNICALL
Java_com_genedavis_TuiUtil_getTerminalRows

(INIEnv * my_jenv, jobject my_jobj)
{
//defining a terminal size struct
struct ttysize terminal_size;

//populating the struct
ioctl (0, TIOCGSIZE, &terminal_size);

//returning the viewable lines
return terminal_size.ts_lines;

}

The TuiUtilImpl . c file implements the three native methods defined in the TuiUtil
class. The implementations are simple, so they need no supporting methods. All three imple-
mentations are fairly generic Unix solutions, so they should work on other Unix-based operat-
ing systems besides Mac OS X.

limplement the getch () method as the Java_com_genedavis_TuiUtil_getch()
function. It defines a jchar and two termios structs. The termios structs store a con-
figuration for the Terminal. In this case, one struct stores a Terminal configuration for echo-
ing keystrokes and blocking input to the program until the Return key is pressed. These setting
are stored in the 01d_term struct while the modifications for the utility are created in a
clone called new_term. The customized settings are activated in the Terminal using the
tcsetattr () function. The getchar () function takes care of retrieving the return value for
the function, and then | reset the Terminal settings with the c1d_term struct and a call to
the tcsetattr () function.

If you want to include the getch () method in your own code, | recommend moving the code
for setting the Terminal echo and blocking to a setup function and a cleanup function, and sim-
ply perform the getchar () call during your event loop. Either way, for the purpose of explain-
ing the process of getting characters from the Terminal as they are typed, this code works.

Finding the viewable columns and rows of the Terminal is actually easier than getting the latest
keystroke. The getTerminalColumns () implementation and the getTerminalRows ()
implementation simply populate a t tysize struct with the row and column counts by passing
the struct to the ioct1 () function. The column count is stored in the ts_cols member. The
row count is stored in the ts_1ines member of the ttysize struct.

NOTE

Another solution for finding the viewable rows and columns in the Terminal is passing environment variables on
startup of your command-line utility that represent the row and column counts. The downside of this approach is that
if the Terminal view is resized after the Java application starts, the application cannot know of the change.

This JNI approach relates the current status of rows and columns even if the Terminal window changes size after the
applications starts.

Lhapter 11: Creating lerminal Applical

Making dialog boxes and menus

On the book’s Web site, | have a project that contains the TuiUt i1l and a simple Terminal
application implementation. Included in that project are a simple dialog box class and a simple
menu class. These classes are not production quality. My intention is to give you an idea of what
JNI methods and ANSI escape sequences need to go into creating even a small Terminal User
Interface.

The following source is for the TuiMessageDialog class. The TuiMessageDialog
implements a basic Terminal-based message dialog box. The dialog box functions similar to
JOptionPane's showMessageDialog () method, only with much less polish. Later in this
chapter, | present an example of a more refined ncurses approach that uses the Charva API.

package com.genedavis;
/**

* Simple message dialog box for Terminal apps.
*

* @author T. Gene Davis
*/
public class TuiMessageDialog {

// setting up the CSI
private static char ESC = 27;
private static String CSI = ESC + "[";

// preset escape sequences
private static String blackFore = CSI + "30m";

private static String redBack = CSI + "101lm";
private static String greenBack = CSI + "102m";

private static String blueBack = CSI + "104m";

private final static String reset = CSI + "Om";

/**

* Handles coloring, centering, and printing of
* message dialog box.

*

* @param message Message for dialog to display
* @param bkColor

*/

private static void showMessage (
String message,
String bkColor)

// finding the proper location of the dialog box
int cols = TuiWindow.tuiUtil.getTerminalColumns () ;

Arcniteciing Aiternative Appilicaztions

int rows = TuiWindow.tuiUtil.getTerminalRows () ;

int x = (cols - message.length()) / 2 - 1;
int y = rows / 2 - 2;

// setting the background color of the dialog box
System.out.print (

bkColor +

blackFore);

// setting the position of the dialog box

// and printing the dialog box line by line

System.out.print(CSI + v + ";" + x + "H");

for (int i=0; i< (message.length()+2) ; i++)
System.out.print (" ");

System.out.print(CSI + (y+1) + ";" + x + "H");

System.out.print (
.
message +

nony
7

System.out.print(CSI + (y+2) + ";" + x + "H");
for (int i=0; i< (message.length()+2) ; 1i++)
System.out.print (" ");

System.out.print(CSI + (y+3) + ";" + x + "H");

for (int i=0; i< (message.length()-4) ; i++)
System.out.print (" ");

System.out.print (" [OK] ") ;

// resetting the colors to user's preferences
System.out.print (reset) ;

// waiting for user acknowledgement of the
// dialog box before continuing
TuiWindow. tuiUtil.getch() ;

/**
* Displays a message in a red dialog box.
*
* @param message message to print in the dialog box
*/
public static void showRedMessage (String message)

{

showMessage (message, redBack) ;

/**

* Displays a message in a green dialog box.
*
* @param message message to print in the dialog box
*
puélic static void showGreenMessage (String message)
(showMessage (message, greenBack) ;

}

* *
/* Displays a message in a blue dialog box.
*
* @param message message to print in the dialog box
*
puélic static void showBlueMessage (String message)
{ showMessage (message, blueBack) ;

}

}

The TuiMessageDialog class contains three public static methods for displaying message
dialog boxes in green, blue, and red. The methods could just as easily indicate information, cau-
tion, and alert. Each message method passes custom drawing information (in this case, merely
color) to the private showMessage () method. The private showMessage () method does
all the real work of drawing the dialog box.

The showMessage () method uses the TuiUti1 class, previously explained, to find the
dimensions of the Terminal’s viewable area. The message box is then placed in the center of the
Terminal. The dialog box is modal and waits until the TuiUtil’'s getch () method finds a key
typed before continuing with execution. The TuiMessageDialog class does not undraw
itself, but rather allows the TuiWindow (discussed later) to repaint the Terminal view.

Again, the TuiMessageDialog is not for production code. It does not even handle messages
that need wrapping. It is simply a demonstration that, using the techniques | discuss earlier in
this chapter, you can create a usable dialog box system for your Terminal-based applications.

Using a combination of the ANSI escape sequences and the TuiUt il class that | explain earlier
in the chapter, you also can create menu bars and menus for your Terminal-based applications.
In the following code, | create a basic menu bar for the Terminal. The following code is for the
TuiMenu class. It is simply a menu bar with hard-coded menu items embedded, but it shows
what you can accomplish with techniques | showed earlier in this chapter. It is easy to imagine a
fully navigable menu system using similar techniques. However, an example that complex
would not fit into a single chapter of a book.

package com.genedavis;
/**

* Simple menu bar for Terminal apps.
*
* @author T. Gene Davis
*/
public class TuiMenu {

// setting up the CSI
char ESC = 27;
String CSI = ESC + "[";

// preset escape sequences
String initPosition = CSI + "H";
String whiteFore = CSI + "37m";
String grayBack = CSI + "100m";
String reset = CSI + "Om";
String underline = CSI + "4m";
String noUnderline = CSI + "24m";
/**

* Paints the menu bar

*/
public void paint()

{

int cols = TuiWindow.tuiUtil.getTerminalColumns () ;

System.out.print(initPosition);
System.out.print (

whiteFore +

grayBack) ;

for (int i=1; i<= cols; i++)
System.out.print (" ");

System.out.print(initPosition);
System.out.print (

o

underline +

IIGII +

noUnderline +

"reen") ;

System.out.print (" " +
underline +
"R 4
noUnderline +
"lue") ;

e _(Chapter11:Creating Ierminal Applicaj

System.out.print(" " +
underline +
"R" +
noUnderline +
"ed") ;

System.out.print (" " +
underline +
I|QI| +
noUnderline +
"uit");

System.out.print(reset);

}

The TuiMenu simply provides four menu items. Three menu items activate the three versions
of the TuiMessageDialog. The fourth menu item exits the application. The mnemonic codes
are underlined in the menu items using the ESC+ [4m sequence and underlining is stopped
using the ESC+ [24m sequence.

The menu bar is drawn by placing the cursor at the top-left corner of the screen, using the
ESC+ [H cursor moving sequence, and then printing it with a bright black background. Bright
black looks gray, in case you wondered what exactly “bright” black looks like. The proper width
of the menu bar is determined with a call to the TuiUti1 to find the current viewable width of
the Terminal window.

NOTE

If nothing else, the demonstration of creating a Terminal-based dialog box and a Terminal-based menu should
impress you with the importance of methods for getting single character input from command-line-based applications
and also obtaining the viewable dimensions of the window running the command-line application.

Currently, Java’s Console application supports neither of these basic features. | hope methods for obtaining this infor-
mation works its way into the Java specification in the near future.

Creating a Terminal Ul

For completeness, | include the TuiWindow class. Themain () method is in the TuiWindow
class. The TuiWindow class combines the TuiUtil, the TuiMenu, and the TuiMessage
Dialogin one application. The TuiWindow is not meant as a template for creating a Java-
based Terminal application. The Tuiwindow, shown in Figure 11.15, serves as a demo of how
to combine the techniques from this chapter when creating a Terminal application.

Figure 11.15

TuiWindow running in Terminal

7~

The following source is the TuiwWindow class:

package com.genedavis;
/**

* This is a basic windowed terminal application.
*
* @author T. Gene Davis
*/
public class TuiWindow {
public static TuiUtil tuiUtil = new TuiUtil();

// setting up the CSI
char ESC = 27;
String CSI = ESC + "[";

// preset escape sequences
String hideCursor = CSI + "?2251";
String showCursor = CSI + "?25h";
String reset = CSI + "Om";

String clear = CSI+"2J";

TuiMenu menubar;
/**
* Create window and start application loop
*/
public static void main(String[] args) {
TuiWindow tw = new TuiWindow () ;
tw.appLoop () ;

/**

* Initialize window, and display welcome
* message in a TuiMessageDialog

*/

public TuiWindow ()

{

menubar = new TuiMenu() ;
hideCursor () ;

paint () ;

TuiMessageDialog.showGreenMessage (
"Terminal Display Demo") ;

paint () ;

/**

* Application loop responsible for clearing
* the terminal, painting the terminal, and
* handling events for the keyboard.
*/

private void appLoop ()

{

1 1

char myChar = ;

while (myChar != 'q' && myChar != 'Q')
{

clearTerm() ;

paint () ;

// use native call
myChar = tuiUtil.getch();
handleEvent (myChar) ;

clearTerm() ;
resetColors () ;
showCursor () ;

/**
* Handle keys typed
*/
private void handleEvent (char myChar) {

Arcnitecting Alternative Apbnlications

if (myChar == 'r' && myChar != 'R')

TuiMessageDialog.showRedMessage (
"Red Chosen") ;

}
else if (myChar == 'g' && myChar != 'G')
{
TuiMessageDialog.showGreenMessage (
"Green Chosen") ;
}
else if (myChar == 'b' && myChar != 'B')
{
TuiMessageDialog.showBlueMessage (
"Blue Chosen") ;
}
}
/**

* Reset the graphics to user's preferences.
*/
private void resetColors/()

{
//Clear the entire visible display
System.out.println(reset);

}

/**

* Clear the entire visible display
*/

private void clearTerm()

{

System.out.println(clear);

/**
* Paint the Terminal window
*/
private void paint/()
{
clearTerm() ;
menubar.paint () ;

/**
* Hide Terminal's cursor
*/
public void hideCursor ()
{

System.out.println(hideCursor);

e (Chapter11:Creating Terminal Applicat

}

/**
* Show Terminal's cursor
*/
public void showCursor ()
{
System.out.println(showCursor);
}
}

The TuiWindow creates an instance of the TuiUti1 and stores it in a static variable for use in
the application. The TuiWindow also takes care of the application loop and cleans up after the
application loop receives a request to quit.

NOTE

Ifyou use the terminal_wui project from the book’s Web site, the project comes with a shell script named run to
run the built project. The shell script contains only one command:

java -Djava.library.path=c_bin -cp java_bin/ com.
genedavis.TuiWindow

You can run the project from the command line in a Terminal window using this command.

Improving Terminal Uls

Graphical User Interfaces (GUIs) provide users with pretty pictures and pleasing graphic naviga-
tion. Terminal User Interfaces (which are never called TUIs, but they should be) provide the
equivalent user experience for Terminal-based interfaces. Dialog boxes, windows, panels, and
menus are all available from inside Terminal Uls, just as they are in available in GUIs. Terminal
Uls exist mostly in server, embedded, and headless application environments where administra-
tors care for their applications by way of Terminal interfaces.

In this section, I introduce ncurses wrapped with Charva. Charva is a Java-based Terminal
User Interface API. The ncurses library is C based, so you must wrap it with a JNI library in
order to use it in Java. The remainder of this chapter covers an overview of ncurses, building
Charva for wrapping ncurses, testing Charva, and creating a Terminal Ul using standard Java
development tools.

Introducing ncurses

The ANSI escape sequences detailed earlier in this chapter are supported on most operating
systems, but usually with slight variations. Even on OS X, there is no guarantee that a new
release of Terminal will not break an application that depends on those specific codes.

For some applications and utilities, variations in ANSI escape sequences do not matter. You may
be the only one who uses the tool, or your team may be the only ones who use the tool. Not all
useful programs are intended for mass distribution.

In other cases, you want your application to work on as many versions of OS X as possible. (Oh,
and maybe to work on those other operating systems, too.) For these cases, the Unix world
came up with a solution many years ago. Itis a library called ncurses.

Ncurses is a C library for creating complex Terminal-based User Interfaces. The ncurses library han-
dles keyboard input, mouse events, cursor placement, colorizing text, and screen updating. Using
ncurses, you can manage text-based windows, menus, and panels in a platform-agnostic manner.

The ncurses libraries ship with OS X, so they are readily available. However, using them in Java
applications presents problems. Ncurses behaves differently than AWT and Swing. Also, wrap-
ping the libraries in JNI is far too difficult a task for most entry-level programmers.

Wrapping ncurses with Charva

With JNI and the ncurses library, you can create a custom API for handling Terminal User
Interfaces. However, if your goal is merely creating a Terminal application, then several free libraries
can do the wrapping for you. Charva is an excellent choice for creating Terminal-based applications.

NOTE
Another popular Terminal User Interface APl is the Java Curses Library. Java Curses Library is a SourceForge project. The
Java Curses Library, like Charva, is available under the LGPL license. See the project site here:

http://sourceforge.net/projects/javacurses/

Charva creates User Interfaces in the same way that AWT and Swing create Uls. Charva clones
the AWT and Swing APIs where possible. Sometimes, you can take a working Swing or AWT
application, change the package names of the components to charva . awt and charvax.
swing from java.awt and javax. swing, and find yourself with a working Terminal appli-
cation. The result is a Terminal-based interface instead of a graphical interface.

Charva is licensed under the GNU Lesser General Public License. The GNU Lesser General Public
License is a business-friendly version of the GNU Public License. It allows linking against Charva
without restricting licensing of code that uses Charva. APIs that extend rather than just link
against Charva have some additional restrictions. For complete details, have your corporate
lawyer examine the license that comes with Charva.

Charva is distributed in a standard * . zip file. Building Charva for OS X is fairly painless,
because it comes with an Ant project to handle all the nasty details. Once built, make sure the
JARs and native library are available to your Java project and that you are all set to make your
own Terminal applications using Charva.

NOTE

The home page for Charva is located here:

http://www.pitman.co.za/projects/charva/index.html.

LNabPter 1 1. Lreatindg ierminai Applications

CROSS-REF

I discuss using and modifying Ant scripts in Chapter 4.

To download and build Charva on OS X, follow these steps:

1.

3.

Download Charva.

Charva source code is hosted on the SourceForge site here:

http://sourceforge.net/projects/charva

Uncompress Charva either by double-clicking the Charva download in Finder or
using the unzip tool from Terminal.

A Finder window showing the extracted contents of the Charva download is shown in
Figure 11.16.

Figure 11.16
Charva unzipped

¥ DEVICES Name
2 Friendly | build.xml
2 untitled > M
[lxincsTon & |1 charaiml
" charva.ipr
it _ charva.iws
¥ SEARCH FOR =1 charva.log
(L) Today » @ docs
(L) Yesterday ¥ Bl java
(1) Past Week » [l classes
(& At images ¥ @ dist
(] All Movies ¥ @ b
(& an Documents E charva.jar
v i@ lib
E_‘ commons-logging-api.jar
-:“ commons-logging.jar
13 logaj-1.2.8.ar
* [l src
[# LICENSE.html
=] LICENSE.txt
_ log4j.properties
=) READMEtxt
> Q test
_ 1esrsh
& wintest.bat

 xtermuti

Open Terminal, and cd to the uncompressed Charva folder.

The Charva documentation refers to this folder as SCHARVA_HOME.

5.

Set the environment variable for JAVA_HOME in your current Terminal window.

Find the correct location of JAVA_HOME by issuing the /usr/libexec/java_
home command in your Terminal window. Set the JAVA_HOME environment variable
for the current Terminal window using the command export JAVA_HOME=<home>
where <home> is the location given by the command /usr/libexec/java_home.

From the Charva folder, issue the command ant compile.

Because Charva uses JNI to access ncurses, it must use native files built specifically
for OS X. All this work is automated with Ant.

From the Charva folder, issue the command ant javah.

The javah task prepares the project for building against the native libraries.
Issue the command ant compile-test from the Charva folder.

This task creates the Charva test. | explain the test shortly.

Create the JNI library with the command ant makeDLL. Enter mac_osx when the
build script requests your operating system.

After you successfully complete these steps, the Charva library is nearly ready to use. The build
process created an OS X-specific dynamic library called 1ibTerminal . jnilib. For testing
and development, place this library in /Library/Java/Extensions so Java can find and
load it when using Charva.

CROSS-REF

I discuss finding JAvA_HOME and other important Java directories correctly on 0S X in Chapter 2.

CAUTION

When testing Charva linked application installations, remove the 1LibTerminal . jnilib dynamiclibrary from
the /Library/Java/Extensions directory. Your application may find this library instead of the copy in
your installation giving you a false positive on your user installation tests.

Verify that the Charva library built properly by running the test application from the Charva

folder.

1.

2.
3.

Make the test.sh script executable by entering the following command from the
Charva directory:

chmod 755 ./test.sh
Run the test. Execute ./test.sh from the Charva directory.

Experiment with the test.

In the Charva test, there are examples of menus, the JFileChooser as shown in Figure
11.17a, assorted layouts, the JTabbedPane as shown in Figure 11.18a, buttons, and a
JProgressBar as shown in Figure 11.19a. All of these are implemented for pure Terminal-
based applications.

The test application comes with a traditional Java Swing version for comparison purposes. Run
the Java Swing version of the Charva test using the command . / test swing, from the Charva
directory. Figures 11.17b, 11.18b, and 11.19b are the Swing GUI versions of Figures 11.17a3,
11.18a,and 11.19a.

Figure 11.17

Charva JFileChooser (a); Java Swing version of the Charva
JFileChooser (b)

A Terminal — java — BOx24

a
8,0 A Flle Chooser
File:
| & tdavis 14
Name & Date Modified
= charva.log Monday, November 9, 2009 10:41 AM -
=l Desktop Monday, Novemhber 9, 2009 10-44 AM
[vocuments Sunday, Uctober 25, 2004 /157 AM
[&] pownloads Friday, November 6, 2009 12:07 PM
Ll library Thursday, November 5, 2009 916 PM
(& Movies Thursday, March 12, 2009 10:48 PM
(Gl Music Monday, June 8, 2009 9.29 PM
= pgadmin.log Sunday, luly 19, 2009 8:35 AM
| Picruras Monday, November 2, 2009 6:46 AM
L& Public Thursday, March 17, 2009 1048 PM b &
File Format: | All Files H
- rrE—— AT 1
{_ New Folder | ([Cancel) Open File

D i

TIP

If the Delete key does not work properly in Charva applications (or other Terminal applications), try setting the Delete
key to send Ctrl-+H in the Terminal preferences. That should clear up the issue.

Figure 11.18

Charva JTabbedPane (a); Java Swing version of the Charva
JTabbedPane (b)

L Nals] Terminal — java — BOx24

a
(2]] JTabbedPane Test
Press the F1, F2 and F3 keys to switch between panes
I General| Device Manager ~ Performance
System

Red Hat Linux 7.1
Registered to

Rob Pitman
& Pickwood Road
Centurion, South Africa

Computer

Genuinelntel
%86 Family 15 Model 1 Stepping 2
256 MBE RAM

OK

Figure 11.19
Charva JProgressBar (a); Java Swing version of the Charva
JProgressBar (b)

_Nale) Terminal — java — B0x24

L0 run 0 long task 1n o te threod.

"OO JProgressBar Test

Press START TASK to run a long task in a separate thread.
While the task is running, press TAB and then enter some
text in the TextField to verify that the user interface

is still responsive.

The progress bar will start in Indeterminate mode, indicating
that the task duration Is Initially unknown; then it will
ichange to determinate mode.

Enter sume text here: test

Task Progress

(stanTask) (ok) (cancel)

Creating an advanced Terminal User Interface

Charva allows you to create an advanced Terminal-based User Interface with minimal effort. |
provide an example on the book’s Web site in a folder called charva_test. For the example, |
create a Ul using JFormDesigner. JFromDesigner is a Java Ul creator. You easily can use another
Ul design tool.

After creating the Ul for your application, follow these steps:

1. Open the generated source code in your favorite IDE.

2. Modify AWT and Swing package imports to begin with charva and charvax instead
of java and javax.

Architecting Alternative Applications__

3. Change any sizes in pixels to sizes in columns and rows.

4. commentout Swing and AWT method calls that do not apply to Terminal-based
applications.

| usually end up removing methods setDefaultCloseOperation () thatdo not
apply to Terminal-based applications.

5. Compile and run from the Terminal.

I do not know of any IDEs that properly run Terminal-based applications, so you must
run the applications directly from the command line instead of clicking the “Run” but-
ton in your IDE. Compiling from an Ant script also is easier than configuring the build

from an IDE.

The charva_test project included on the Web site, shown in Figure 11.20, contains the nec-
essary Ant build script and shell script to create and run a Charva-based Terminal application.

Figure 11.20

The charva_test project’s directory viewed
in Finder

v DEVICES ——hame——

2] Friendly | build.xml
= Untitled » [java_bin
|_| KINGSTON & ¥ @l java_src
¥ Bl com
it ¥ [genedavis
¥ SEARCH FOR (i) charvaTest java
(L) Today [5 charvaTest.jfd
(L) Yesterday | Iih
(L) Past Week 2 charva.jar
(& A1 Images 7 commons-logging-api.jar
(] All Movies 2 commans-lngging jar
(3] All Documents M libTerminaljnilib
= log4j-1.2.8.jar
_ testsh
e—> s

The following source is the Ant script (build.xml) | created to build charva_test.You
easily can modify it to build your Charva-based projects:

<?xml version="1.0" encoding="UTF-8"?>

<project name="charva_test" default="java-build" basedir=".">
<property name="java.source" value="java_src" />
<property name="java.bin" value="java_bin" />

e _Chapterll:Creating lerminal Applicaj

<target
name="clean"
description="Removes previous build">

<echo>Cleaning Java and Native bin folders...</echo>

<delete dir="${java.bin}" />
<delete dir="S${native.bin}" />

</target>

<target
name="java-build"
depends="clean"
description="Builds the Java source">

<echo>Building Java...</echo>

<mkdir dir="${java.bin}"/>
<javac
srcdir="${java.source}"
destdir="${java.bin}"
classpath="1lib/charva.jar" />
</target>
</project>

The build script contains two targets, clean and java-build. The java-build targetis
the default target. The java-build target calls clean, creates the necessary java_bin direc-
tory, and finally calls javac to build the Terminal application.

Java-based Terminal utilities and other Java-based Terminal applications usually start from a
shell script. The shell script simply wraps the Java application. It provides necessary system
setup for the application before launching it. The shell script also provides any necessary
cleanup for the application when it exits.

The following is the source for the charva_test project’s shell script. The script is contained
in afile called test . sh:

#!/bin/bash

/usr/bin/java \

-Djava.library.path=1ib \

-cp ".:java_bin/:1lib/charva.jar:1lib/commons-logging.jar:1lib/
log4j-1.2.8.jar" \

com.genedavis.CharvaTest 2> SHOME/charva.log

returning the screen to a usable state

stty sane

The script defines itself as a bash script. It starts the Java application. All exceptions are
redirected to $SHOME/charva.log (charva.log in your home directory). When the Java

= Architecting Alternative Applications__

application exits, st ty sane is called to make sure the application’s Terminal preferences are
removed. However, if you break from the application with Control+C, then stty saneis
never called.

Earlier, | explained how to place your dynamic library, libTerminal . jnilib, in the Java
extensions folder for global access. This script does not require that placement. Instead, place
your 1ibTerminal . jnilibin the project 1ib director, and the application finds it just fine.

TIP

Open a second Terminal window and execute tail - £ charva . log to watch for exceptions in your Charva-
based application.

TIP

When creating a shell script to wrap a Java application, use * . sh during development. The extension makes it more
obvious that the file is shell script.

When moving the script into a production environment, remove the . sh extension, so its name blends in better with other
command-line tools like emacs, grep, ant, and so on. In this case, the test . sh script becomes simply test.

TIP

Charva applications require exception logging in order to run. The default location for logging must reside in the script
for starting the Terminal application.

The CharvaTest class contains the Ul setup and also the main method for this example. When
run, as shown in Figure 11.21, the application displays a menu bar, a label, and several check
boxes in the Terminal window. Navigate the application using mnemonics, tabs, arrows, escape,
and return.

Figure 11.21

CharvaTest application run in Terminal

Charyo Test a8
[ile ests

llzp arrows, taoh, eacape, ond return
for navigation and Selection:

——————
o bl b bk
L

£

e Lhnaprter 1i.Lreating 1erminar Appilications

The raw source generated by JFormDesigner follows. The following code contains the modifica-
tion I made in order to get the application to run in Terminal with the Charva API. The modifica-
tions were minor.

package com.genedavis;
import charva.awt.*;
import charva.awt.event.*;
import charvax.swing.*;
/**
* @author T. Gene Davis
*/
public class CharvaTest extends JFrame {

public static void main(String[] args)
{
CharvaTest ct = new CharvaTest();
ct.setVisible (true);

public CharvaTest () {
initComponents () ;
}
private void quitMIActionPerformed(ActionEvent e) {
System.exit (0);
}
private void simpleMessageMIActionPerformed (ActionEvent e) {
JOptionPane.showMessageDialog(null, "Just a message dialog.");
}
private void initComponents() {
// JFormDesigner - Component initialization - DO NOT MODIFY
//GEN-BEGIN: initComponents
menuBarl = new JMenuBar () ;
fileMenu = new JMenu();
quitMI = new JMenultem() ;
testsMenu = new JMenu() ;
simpleMessageMI = new JMenultem() ;
panell = new JPanel () ;
panel2 = new JPanel () ;
label3 = new JLabel();
checkBoxl = new JCheckBox ()
checkBox2 = new JCheckBox () ;
checkBox3 = new JCheckBox() ;
)
)
)

i

7

checkBox4 = new JCheckBox (
checkBox5 = new JCheckBox (
textareal = new JTextArea(
label2 = new JLabel();
//======== this ========
setTitle("Charva Test");
// intentionally commented out
// setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE) ;

i

i

setEnabled(false);

Container contentPane = getContentPane();

contentPane.setLayout (new BoxLayout (contentPane, BoxLayout.Y_ AXIS));
//======== menuBarl ========

fileMenu.setText ("File");

fileMenu.setMnemonic ('F');

//---- quitMI ----

quitMI.setText ("Quit");

quitMI.setMnemonic('Q"');

quitMI.addActionListener (new ActionListener ()
public void actionPerformed(ActionEvent e)

quitMIActionPerformed (e) ;

{
{

}
1)
fileMenu.add (quitMI) ;
}
menuBarl.add(fileMenu) ;
//======== testsMenu ========

testsMenu.setText ("Tests") ;
testsMenu.setMnemonic ('T') ;
//---- simpleMessageMI ----
simpleMessageMI.setText ("Simple Message");
simpleMessageMI.setMnemonic('S"');
simpleMessageMI.addActionListener (
new ActionListener () {
public void actionPerformed(ActionEvent e) {
simpleMessageMIActionPerformed (e) ;
}
})
testsMenu.add (simpleMessageMI) ;
}
menuBarl.add(testsMenu) ;
}
setJMenuBar (menuBarl) ;
//======== panell ========

//======== panel2 ========

panel2.setLayout (new BoxLayout (panel2, BoxLayout.Y_AXIS));
//---- label3 ----

label3.setText (" ")

panel2.add(label3) ;

//---- checkBoxl ----

e Lihnapter ii.Leatina i1erminarApopIlcartions

checkBox1.setText ("CheckBox 1");
panel?2.add (checkBoxl) ;
//---- checkBox2 ----
checkBox2.setText ("CheckBox 2");
panel?2.add (checkBox2) ;
//---- checkBox3 ----
checkBox3.setText ("CheckBox 3");
panel?2.add (checkBox3) ;
//---- checkBox4 ----
checkBox4.setText ("CheckBox 4");
panel?2.add (checkBox4) ;
//---- checkBox5 ----
checkBox5.setText ("CheckBox 5");
panel?2.add (checkBox5) ;
}
panell.add(panel2, BorderLayout.CENTER) ;
//---- textareal ----
textareal.setText (
"\nUse arrows, tab, escape, and return\n"+
"for navigation and selection:");
textareal.setEditable(false);
textareal.setRows (3) ;
textareal.setEnabled(false);
panell.add (textareal, BorderLayout.NORTH) ;
//---- label2 ----
label2.setText (" ");
panell.add(label2, BorderLayout.WEST) ;
}
contentPane.add (panell) ;
setSize (80, 23);
// JFormDesigner - End of component initialization
//GEN-END: initComponents
}
// JFormDesigner - Variables declaration - DO NOT MODIFY
//GEN-BEGIN:variables
private JMenuBar menuBarl;
private JMenu fileMenu;
private JMenultem quitMI;
private JMenu testsMenu;
private JMenultem simpleMessageMI;
private JPanel panell;
private JPanel panel2;
private JLabel label3;
private JCheckBox checkBox1;
private JCheckBox checkBox2;
private JCheckBox checkBox3;
private JCheckBox checkBox4;
private JCheckBox checkBox5;

private JTextArea textareal;
private JLabel label2;
// JFormDesigner - End of variables declaration //GEN-END:variables

}

As | mentioned earlier, the CharvaTest class is generated using a GUI design tool called
JFormDesigner. The import statements originally read as follows:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

To make them work with Charva, | simply changed the imports to read as follows:

import charva.awt.*;
import charva.awt.event.*;
import charvax.swing.*;

As part of the conversion to Charva, | commented out one line of code:
setDefaultCloseOperation (WindowConstants.DO_NOTHING_ON_CLOSE) ;

If you think about it, Terminal applications do not have close buttons on their title bars, so
removing this line of code makes complete sense.

The last change | make to convert this GUI to a Terminal Ul is to change the size of the JFrame
to a columns-and-rows-based size rather than the pixel-measured size generated by
JFormDesigner. The new line of code reads as follows and matches the default size of the
Terminal window when opened.

setSize (80, 23);

Obviously, more complex layouts require more modifications to work with Charva, but as this
demonstration shows, Charva does most of the work for you when creating a Terminal User
Interface.

Summary

Advanced Terminal applications, also called Console applications, have ASClI-based User
Interfaces. These interfaces use ANSI escape sequences for coloring text, clearing screens, and
changing the cursor position within the visible Terminal window.

ANSI escape sequences provide lots of variety to text applications, including password hiding.
However, basic keystroke capture is missing from Java applications run as command-line utili-
ties. Also, Java does not contain methods for tracking the viewable display of Terminal-based

e (Chapter11:Creating Terminal Applicat

Java applications. Instead, you must make calls to native C-based libraries when these features
are needed. | provide the necessary JNI in this chapter for tracking Terminal view dimensions
and keystroke capture.

Using the JNI code | provided in this chapter, | created a basic Terminal User Interface. This sam-
ple program serves to show the importance of knowing row and column counts in Terminal-
based applications and also the importance of individual char capture when running a
Terminal interface. Sun provides neither functionality in Java, but | hope they will in the future,
because developers continue to express interest in these features.

Charva, Java Curses Library, and other third-party APIs fill the need for Terminal-based User
Interface APIs. Most Terminal-based Ul APIs link to the ncurses library. Ncurses is the native
library that handles ANSI escape sequence differences between operating systems.

In this chapter, explain installation and use of Charva. Charva is built as a drop-in replacement
for Swing and AWT in Terminal-based environments. Substitute charva . awt and charvax.
swing package names for java.awt and javax.swing packages to get regular Java Swing
and AWT Uls to run from Terminal. Minor modifications are sometimes required, but not many.
Most Java GUI development utilities create Charva-based Uls with little extra work from you, the
developer.

Appendixes
aa

In This Part

Appendix A
More Development
Tools

Appendix B
JUniton OS X

Q More Development Tools
— ——

I discuss Xcode and several other development tools in this book.

Most of the applications reviewed are free (as in food). Some are
open source. In this book, | definitely shy away from commercial
development tools.

Some commercial tools for Java development are worth a special
mention. | have chosen the following tools for mention because of
their utility and popularity.

Oh, and they work great on OS X, too!

Exploring Design Tools

Two types of people create computer programs: programmers and
developers.

Programmers sit down at a computer and pound out code until
something is finished. Programs written this way usually work but
are filled with spaghetti code and poor or no modularity. Often,

adding desired features to the resulting programs gets harder and
harder until finally the code base is thrown away and the process . .
starts over from scratch. In This Appendix

Developers desgn flrst and thgn write clgan modular code. It takes Investigating UML
longer at the beginning to design and write good code. The plus design tools
side is that with proper planning and refactoring, the code base)
lasts without complete rewrites. Also, adding features to well- '“t"°d"’C'"9
designed programs is much easier. In the long run, developers JFormDesigner
cost less than programmers. Examining another

. . Java IDE
Many developers use the Unified Modeling Language (UML) for

designing applications. UML is a design language that expresses
itself as diagrams. Diagram types include class diagrams, sequence
diagrams, use case diagrams, activity diagrams, and many more.

While full round-trip design and development is possible with
many UML tools, most developers use UML only to visualize diffi-
cult tasks or complex concepts. You can create UML diagrams as
detailed or sparse as needed.

L g S Rbbendadixes

There are several UML design tools for Java code. Two favorites that run well on OS X are
MagicDraw and Poseidon for UML. | discuss both in this appendix.

Examining MagicDraw

MagicDraw, shown in Figure A.1, is a UML-based software architecture modeling tool. As is
inherently the case with UML tools, it works for business process modeling and general process
modeling also. MagicDraw is owned by No Magic, Inc. No Magic’'s Web site is:

http://www.magicdraw.com

Figure A.1
MagicDraw

IDEELDE N0 -

| [ser..appiechcain.. 180 |) %) 1 30 5 9 B 9 0 9

E&mn Wo [eom EE s
03 €3 0 Conainment - | ®] = %] 3 i 1 1
o #e (27 |la-med|aclons oo
3 Comman -
= Data AL _ | [packege Dasal [Control | -
2 Relations ::D‘:m 1
 Texd =
- Model 1 Anchar
WView A Dependency
B ’
Control B Image Shape

=
Control
= ':i

Class Diagram |
B Class *
o Interface

- 1 Package view | : . |modei|
T ST TN [ovoe B | R = =

800 daem . Association
o Aggregation *
« Composition
A4 Interface R... *
n A Usage i
7 Abstraction *
= Instance

4 Link

¥ Information F...|

Diagram Control (0, 152) =

MagicDraw is well organized with icons for all commonly used diagram types across the top of
the main window. Common components of diagrams are arranged just to the left of the main
diagram window. All diagrams, classes, and packages arranged in a project tree also are visible
during design.

Further detailed properties are available for manipulation simply by double-clicking elements
in the main diagram display. The properties dialog box, shown in Figure A.2, allows access to

e _________________Appendix A: Viore Develiopment 100| =

a great number of settings by means of a navigation tree. Attributes, operations, relations,
documentation, and much more are available for each diagram element through the properties
dialog box.

Figure A.2
MagicDraw properties dialog box for a class named Control

Dare e]
mh BB - = History: [Control 18]

=l Control Centrol

- Documentation Hyperlinks i =
[Usage in Diagrams . E . 2 P s | 163 J

-4 Anribuees
¢ Parts B Class |
L Operations ame (S |
LY Signal Receptions Owner [= Data
Behaviors Applied Sterevtyoe

Y Template Parameters Base Classifier

[Inner Elements Realized Interface
(i Relations

] Wislbiliny public

Ll Ta

Tl Cnpnslmms I3 Abstract ™ false
ToDo

Name
The name of the NamedElement.

(" Clase) (" Rack (" Farward (Help)

MagicDraw comes in several editions targeting everyone from open-source and student devel-
opers with the community edition to high-end professional software architects. MagicDraw
Reader is a nice addition, allowing free reading and previewing of MagicDraw diagrams (for
instance, by your clients).

Investigating Poseidon for UML

MagicDraw is not the only software modeling tool available on OS X. Poseidon for UML by
Gentleware AG, shown in Figure A.3, is another wonderful UML diagramming tool for OS X.
Their Web site is:

http://www.gentleware.com

Poseidon for UML features include Java code generation and reverse engineering for full round-
trip design and development. It supports UML documentation creation, as shown in Figure A4,
in HTML or Word. Also, Poseidon for UML allows class diagrams to be automatically arranged
onscreen.

Figure A.3
Poseidon for UML

[:XeX:)
flle Ean

AWlew Creare Dingram Align Gemermtion Pjug-iss Help

[Diviwan | [Hmoes || Bgmueina |

Untitled - Poseidon for UML Standard Edition

BOHSY % @ o @ PFI330e RRERE

£ Padtage I BBiET T DAt

evIol DY &0°

& MY model 1
B model 10

B commnt

o model 1.1

tf}mf

Model->Control

[=[)

] view

Model

BT ViewesContnl Mame |]
tm:‘::::;;:l 1 AT]
Figure A.4
UMLdoc generation dialog box
@oe Default Book

~Beok Templaes | Book Defaun Book
alyse Book
Desisn Dask ([Gomem [sgrtngs |
Complete Dok Chapter Tree A Project Tree
2 B Deraun pook i) Untitled
B (] Taste of Contems I I‘dﬂz of Contemts
& P models 5‘::,,,1
[W medern B ciastes
|—|T =] ? classer T s
S — B T dependencies | & == Diagram Tree
- [& =2 Diagram Tree B class diagrams
[®cenenon | [# croueTempiue & I ctass s I) model 1§
Rkl & 71 B model 1.4 7 gl g
= @@ L
e index
B Name index @ Diagram indes
] T Type index
¥ S Diagram indes
TIe CHAPEr Tree CAn e 36010 TeArTSnge the Hbdes of The Droject Tree can he dragged to
[belere I Luptiate] | [eoneer st o A elected bask he Ehpter tres

| enerstewimi | [Generste word | |

J[

Ok

oty Il Cancel

ADDendaix A. iviore peveiopment 1001s =

Poseidon for UML comes in several editions, including Community Edition, Standard Edition,
and Professional Edition.

Exploring Additional Java Tools

| want to mention two additional tools for Java development: JFormDesigner and IntelliJ IDEA.
JFormDesigner is a user interface design tool targeting Swing interfaces. IntelliJ IDEA is a com-
mercial IDE that is very popular among Java developers. Of course, both applications work well
on OS X.

Reviewing JFormDesigner

| briefly mentioned JFormDesigner in Chapter 1. JFormDesigner, shown in Figure A.5, is a favor-
ite in the world of Java GUI development. JFormDesigner is maintained by FormDev Software
GmbH. Their Web site is:

http://www.jformdesigner.com

Figure A.5

JFormDesigner

MWV LR X O (Bmmt WEO S [meaw v @- O
| , . | | 2 structure B
- s : { [tform
IAO0sss———————| ML b e
id ¥ [dialogPane [BorcerLayaut]
[_] contentpanel [tormLayout]
@ Choose bean v | bumongar [Formiayou
(= Companents
G " - =4 cancelBurenn (Cancel’)
T PexeField
5 ICombobax
= jsutton
1 JCheckBox - " .
s =1 Properties > 5 A
& JRadichuran bl | o - Yalun
Tl Nested Class Name
e i t! oK }i (Cancel]| Variabte Mame ahllution
L5 MrextArea m Variabie Modifiers orivate
Lhe Local Variable 1 talse
[JFormamedTe.. Gen, Getter Mathod O tase
1 Wariable Anmotations (lva 51
Tt) Type Parameters ava 5)
] Mrextpane Custom Creation Code
Pre-Creation Code
& Egmarpane Pat- Creation Cade
- Fre-initalization Code
Ca Conmainers Past-Initialization Code
| Ca windaws
| [Merus
| 2 Keoodies
(& Custom Praperties | Code Generatian |
e licensed to Terrance Davis

= SRRENL

JFormDesigner integrates nicely with OS X, using the top menu bar and command keys as you
would expect them. It is so easy to use that you probably won’t need to look at the documenta-
tion before creating your first layout. Don’t be fooled by the excellent interface; JFormDesigner
has lots of advanced GUI design features hidden inside.

Design GUIs with JFormDesigner by dragging and dropping widgets from a component palette.
The component palette supports customization, even the addition of new beans, shown in

Figure A.6. Anytime during design of a GUI, you can test it with the convenient play icon at the
top of the window.

Figure A.6
Add bean dialog box

Add heans to the palette
Select the class names of a JavaBeans that you want to add.

t[Search | JARs |

Search for class name (7 = any character, * = any String):

Matching classes:

! Is container

Add to palette categery: | Custom B (New..)

(CCancel) (oK

JFormDesigner handles creation and management of events for GUl components. Properties of
selected component are in panel to the right of the design panel, for easy access. Assign widget
custom code generation for creation or initialization by accessing one of the custom code dia-
log boxes, as shown in Figure A.7.

JFormDesigner is an extremely powerful Swing layout tool that still manages ease of use.

Figure A.7

Custom widget code creation dialog box

0006 Custom Creation Code

Custom code for creation of the component.

|

ﬂﬂ-l.‘.ﬂlti.ﬂ Code>
m:i.d:l- annotations>

Creation Code>

<Post-Creation Code>

qn-:nithuutim Codu>
¥ (someValue);

<Post-Initialization

<k y i
Custom code overview: Insert Variable »

Examining IntelliJ IDEA

IntelliJ IDEA is a popular alternative to the common free Java-friendly IDEs. IntelliJ IDEA, shown
in Figure A.8, is maintained by JetBrains s.r.o. Their Web address is:

http://www.jetbrains.com

Figure A.8

Display of Intelli) Project XML data in the Project view of IntelliJ IDEA

[v|p®|dw|B|@

3
= dule 3 MedicalModule.ipf
@ DM:IMmilnr:jm | T MedicalModule. 1pr.] |E
X UTF=0" 7> [
cpnjm nlnhmu-- Talan® vorsiome"d" 2, i.‘ Es
<aptiss mamas’ m JANS_ON_MANE" “hﬂ- "false” /> :E
[MedicalModule qmg;_- el o [
w7 MedicaiModule {/Users/| elasa="javaz. meing. an 5 mebowts i@
v Dosre =rpmpnm=- I3
el . Bwing. JComponent " |
@ G ; S h el iy’ cieoen: Jeva: ey Bootema) |13
ﬂ&dlumulw.:w: </propartica> (k3
b | s ios class="4 ek = ;3
" class="jav [t
1 Libraries el 1 |
wm sl g s 1-1- lang,Btring” /> —
wm L =" L dLint I
T A e seentasgnon] (1B
class="§ ek e _,E'
names” lowed" clags=" ?s
</properticas |
~propurtios class="javax.swing.J8lider"> L=
ThmaeGi14des {ariliod” Chaame"javn.iang.000 e
<property name="Jslider. p . Boof |
w!::’gnu- dnvax. meing. JTakla"> ?“
<property name="Table.isFilelist’ class="java,lasg.Boo| :g‘
n-- “ clasg="java.lan y |
PP~ — T w2
3 Web Preview | | 3 &: TODO
11 | linset [UTF-8 & Default | < 5 LBEM of 174M

= MIRERGKE

IntelliJ IDEA provides quick code generation. This includes getter and setter creation and gener-
ation of override methods. Other shortcuts built into IntelliJ IDEA include code block enclosing
for try/catch and if/else blocks.

IntelliJ IDEA contains a GUI design tool, shown in Figure A.9. The GUI tool supports Java layouts,
JGoodies Forms, and IntelliJ GridLayoutManager. IntelliJ IDEA migrates hand-coded GUIs and
GUIs built with other design tools to IntelliJ IDEA.

Figure A.9
GUI Designer
(@ N N [MedicalMa T ile] - [Med el -
cET|HG A RAAA e ME-re SR ADH
| & Choose Ui Designer Form Locale = | | @ 3
[Medical C3Medical Medical B3 src W B form
IS |5 ShutbownForm.farm -« |]) El
ShutDownFormi : | v swng 4|l
IParl] & | |l HSpacer
= || 5 burton1 : jaunon| (M 5@ " I vspa
¥4 Horicontal Spacer | || | v @.llu—/?-' |_|JI!.|m-:|(‘r
| T vertical Spacer i & JScroiia 2
For—— i o paon (M
|| property Value | (@) JRadiosurh |||
; field nibuttonl & v JChee =
wawmc':‘;m (5 JLabel B
E - b ||
| H Bl | =] JPassward H
| VerticalCenter [l Formanes |
| Indent o [ITextArea
Minimu (=1, =1] | | @
S preternict; 13 (6 repane) iz
Maxima[-1, -1] [JEditorPar: |15
= Client FU i [JComboio. |13
backgn[] [238.. hie =
enabler W b ! v gf,:, L §
) Show expert... | [|+ G > 1)
L [N - adnd
%; Web Preview | | 2 6. TODO
I & Default | [| & B8N of 174m

IntelliJ IDEA supports UML class diagramming, shown in Figure A.10. IntelliJ can create class dia-
grams automatically from existing Java code. As mentioned above, UML is a popular tool for
examining object-oriented programs written in languages such as Java.

IntelliJ IDEA has tough competition from several good free IDEs. It remains popular because it
has a good set of features. Overall, IntelliJ IDEA is a solid tool for serious developers.

Figure A.10

UML class diagram
:-:"-é-"'!i M b [MedicalMo]i= Do
CE|HG | X RB (AR tE|[HE~re| LB
5 . ¥
3 Medic Jule 51574 MedicalModule 55 MedicalModule 853 sre (@ DeviceMonitos
(gl (1) DMInterface.java

(@) DeviceMonitor.java x| i 'DeviceMonitor’ Class Diag

raveowT \weaa@Sflaese -

.

| &8 2: structure | [_E 1 Project

(©% Object| ()% Anotherlnterface| (1% DMinterface|

‘f_‘ : g——— 2

*/ (i) @ DeviceMonitor -

3lDig danel @_| AMIA f3 | saunos :eg

552 |

5 Web Preview | | T B: TODO
| Default | o |15 [163M of 17amM

Summary

In this appendix, | discuss four additional commercial tools for Java development on OS X. They
are MagicDraw, Poeidon for UML, JFormDesigner, and IntelliJ IDEA.

MagicDraw and Poseidon for UML both come in several editions. As with many commercial
products, Poseidon for UML is available as a 30-day evaluation copy. (Inquire with MagicDraw'’s
sales department for any comparable offers.) Both companies offer limited Community editions
not only to help out open-source projects, but also to get you interested in buying their other
editions. Whether you simply want a good design tool for visualization of difficult chunks of
code or you want full round-trip design and development, both products supply targeted edi-
tions for you.

= "PPERTINES

JFormDesigner is a GUI design tool targeting Swing development. Simply drag and drop GUI
components onto a WYSIWYG layout window to create intricate graphic user interfaces.
JFormDesigner integrates as a plug-in with several popular Java IDEs, such as NetBeans, Eclipse,
and IntelliJ IDEA.

IntelliJ IDEA is a popular commercial alternative to the various free Java IDEs. It currently comes
with a 30-day free trial so you can take it for a test drive. IntelliJ IDEA supports JEE and standard
Java development. IntelliJ IDEA comes with a GUI design tool, as well as class diagramming
capabilities.

JUniton OS X
——

—
[/
Unit is a Java test-driven development (TDD) framework.
J Traditional software development starts with some sort of
requirement documents, followed by massive amounts of pro-
gramming, and finishes off with some sort of manual or automated
testing. Test-driven development starts with requirements, fol-
lowed by the writing of automated tests, and concludes with the

creation of the computer program that allows the previously writ-
ten tests to pass.

The mental reordering that test-driven development requires can
make you dizzy at first. It is not for every company. However, test-
driven development leads to well-thought-out programs that are
easier to maintain than the spaghetti that result from no planning.

JUnit also works for regression testing and more casual testing
efforts. Create regression tests by finding bugs in your code. Next,
create a test that fails because of the bug. Finally, fix the program,
and the test passes. Leave the tests in place, and run these tests fre-
quently to ensure that the bugs do not reappear.

Regression testing is great for projects with lots of developers

working on the same code. If the project is managed without clear
definitions as to who owns and makes changes to specific code, a In This Appendix
programmer may fix a bug that creates other bugs. When another

programmer comes along and fixes those other bugs, the pro-
grammer may introduce the original bug while fixing the new Exploring testing types
bug(s). This cycle goes around and around, frustrating developers Understanding the JUnit

and their management.
Integrating JUnit

Write a regression test before fixing a test. If you have introduced a with Xcode
new bug inadvertently, the programmer who fixes it will not fix it
by reintroducing the old bug. The key is to run these tests as part of
every bug fix and to consider the bug still open if the fix does not
pass the regression tests.

JUnit is nearly synonymous with testing Java code. In this appen-
dix, | give an introductory example of JUnit’s use and explain how
to integrate testing with JUnit into Xcode.

Writing Tests with JUnit

The JUnit team realized that programmers are always busy. A deadline is always looming. They
knew that if JUnit wasn't easy to use, JUnit wouldn't be used. As a result, implementing JUnit
tests requires little new knowledge. By learning one annotation and one method call, you can
successfully write complex test suites. You just can't get much easier than that.

NOTE
JUnit is open-source software. JUnit is licensed under Common Public License - v 1.0. The current JUnit license is
located athttp://junit.sourceforge.net/cpl-v10.html.

NOTE

The JUnit homeis located at http: / /www. junit .org/.

To implement a JUnit test, follow these steps:

1.
2.

3.
4.

5.

Choose a class with methods you want to test.

Create a class to do the testing.

I call this the test class.

Create methods to perform tests.

Use the annotation @Test for test methods.

Do not put the @Test on support methods that do not assert anything.

Use assertion methods to perform the tests.

Run JUnit using the java command. The target main classis org. junit.runner.
JUnitCore.JUnitCore is followed by a space-separated list of test classes. Running
tests from the command line takes the following form:

java -cp <tests and JUnit> org.junit.runner.JUnitCore <test classes>

I give a working example of using JUnit from the Terminal later in this appendix.

NOTE

The Terminal application is located in /Applications/Utilities/.

AbbendaixXx b JUNIton Uo A =

Testing from Xcode with JUnit

JUnit integrates with most build environments. Integrating JUnit with Xcode does not get as
much attention as integrating with Eclipse or NetBeans, so few (if any) tutorials explain Xcode/

JUnit integration. This section fills the gap by explaining how to integrate JUnit with Xcode. |
use JUnit 4.6 and Xcode 3.2 for the following example.

NOTE

The Xcode project for this example is on the book’s Web site. Download the Xcode project for this appendix to avoid
creating the XcodeAndJuni t project manually.

Begin by creating a Java Tool project in Xcode for this integration example:

1. Sselect File> New Project from the Xcode menu bar.

2. Select Empty Project from the Other templates group on the left, as shown in
Figure B.1.

Figure B.1
Empty Project selected in New Project window

Choose a template for your new project:

External Build
Application | System
Framework & Library
Application Plug=in
System Plug-in

Q Empty Project

This is an empty praject with no files, targets, or build
configurations.

g

7.

Name the new project XcodeAndJUnit.

Open your new project folder in the Finder.

Create src, resources, and lib folders in your project folder.
Adding the new folders to your project is a little tricky.

Select your XcodeAndJUnit project in the Groups & Files tree, Control-click
Add > Existing Files... from the context menu, select the new folders, and add
them. When the dialog box appears asking for information on how to add the
folders, add them using Create Folder References for any added folders, as
shown in Figure B.2.

Figure B.2
How to add folders in Xcode

{:]Copt,r items into destination group's folder (if needed)

Reference Type: | Default v

Text Encoding: | Unicode (UTF=8)]

() Recursively create groups for any added folders
®) Create Folder References for any added folders

Add To Targets

¥ (G XcodeAnd)Unit

{ Cancel) € Add)

Create a file called build.xml at the root of your project in the XcodeAndJUnit
directory. Create the XML file from within Xcode by selecting XcodeAndJUnit
and Control-clicking. Select Add > New File... from the context-sensitive menu.
Choose Empty File from the Other template catalog and create the build.xml file
as part of the XcodeAndJUnit project.

This is your Ant build file. With this setup, Xcode uses Ant when building your project.
Fill build.xml with the following code.

This Ant build is based loosely on the Xcode 3.1 Java tool template, but should work
with the latest version Xcode.

AbbendaiX b JuUuNnitonus A

CROSS-REF

I explain additional details of Xcode project creation in Chapter 3.

<?xml version="1.0" encoding="UTF-8"?>
<!l--
Based off Xcode 3.1 Java Console Application Project
This is standard Ant, and will work in Xcode 3.2 also.
-—>
<project
name="XcodeAndJUnit"
default="install"
basedir=".">
<property name="src" location="src"/>
<property name="bin" location="bin"/>
<property name="jars" location="jars"/>
<property name="lib" location="1lib"/>
<property name="dist" location="dist"/>
<property name="resources" location="resources"/>
<property name="resources_macosx"
location="resources_macosx"/>
<property name="compile.debug" value="true"/>
<!-- 1ib directory should contain any pre-built jar files
needed to build the project -->
<fileset id="lib.jars" dir="${lib}">
<include name="**/*_jar"/>
</fileset>
<path id="lib.path">
<fileset refid="1lib.jars"/>
</path>
<!-- Initialization target, for any prelimary setup needed
to build -->
<target name="init" description="Preparation">
<mkdir dir="${src}"/>
<mkdir dir="${lib}"/>
</target>
<target
name="compile"
depends="1init"
description="Compile code">
<mkdir dir="${bin}"/>
<javac
deprecation="on"
srcdir="${src}"
destdir="${bin}"
source="1.6" target="1.6"

= e

includeAntRuntime="no"
classpathref="1ib.path"
debug="${compile.debug} ">
</javac>
</target>
<target
name="jar"
depends="compile"
description="Build jar">
<mkdir dir="${jars}"/>
<jar
jarfile="${jars}/${ant.project.name}.jar"
basedir="${bin}"
manifest="${resources}/Manifest">
<!-- Inject resources -->
<fileset
dir="${resources}/"
excludes="${resources}/Manifest"/>

<!-- Merge library jars into final jar file -->
<zipgroupfileset refid="1lib.jars"/>
</jar>
</target>
<target

name="install"
depends="jar"
description=
"Put all the pieces together in the dist directory">
<mkdir dir="${dist}"/>
<!-- Copy jars -->
<copy toDir="${dist}">
<fileset dir="S${jars}">
<include name="*.jar"/>
</fileset>
</copy>
</target>

<target
name="run"
depends="install"
description="Run the tool">
<java
classname="S${ant.project.name}"
classpath="${bin}"
fork="true">
</java>
</target>
<target
name="clean"
description="Remove build and dist directories">
<delete dir="s{bin}"/>

T ————————_________ADDbendiX b JUuniton O A =

<delete dir="${jars}"/>
<delete dir="${dist}"/>
</target>
</project>

9. Create XcodeAndJUnitjava in your src directory. Create the Java file from within
Xcode by selecting src and Control-clicking. Select Add > New File... from the con-
text-sensitive menu. Choose Empty File from the Other template catalog as
shown in Figure B.3 and create it in the src directory. If there is an extra reference
to the file in the Groups & Files tree, remove the reference.

Figure B.3
Empty File selection
fiFalts) New File
Choose a template for your new file:
'Qmmﬂ B = 1 o
 Cocoa Class S N
Cand C++ e
User interface Assembly File Class Model Configuration Empty File
Ratouree: settings File
Inerface Builder Kit
- =N L
b0y @
Exports File BTF File Shell Seript
. Empty File
An emary text file.,
C Cancel) Previous E Mext)
4]

10. Add the following source to the XcodeAndJUnit java file.

import java.util.*;
import com.genedavis.*;
public class XcodeAndJUnit

{

public static void main (String argsl[])

{
BillOfMaterials bom = new BillOfMaterials() ;
bom.addGlass (6) ;
bom.addSteel (10) ;
bom.add0il (1) ;
bom.printBill () ;

}

—

11. Add aManifest file to the resources directory. Create the Manifest file from within
Xcode by selecting resources directory and Control-clicking. Select Add > New
File... from the context-sensitive menu. Choose Empty File from the Other tem-
plate catalog and create the Manifest file as part of the ConsoleApp project in the
resources directory. If there is an extra reference to the file in the Groups & Files
tree, remove the reference.

The source for the Manifest is simply this:
Main-Class: XcodeAndJUnit

Your project is not quite ready to use. There are still a few steps to complete. You need an
Executable and a Target.

These steps give you a properly configured Target:
1. Control-click the Targets node of the Groups &Files tree.

2. Select Add=> New Target...

3. Select External Target from the Other group, as shown in Figure B.4. Name your
new target XcodeAndJUnit, and add it to your XcodeAndJUnit project.

Figure B.4

External Target selected

CIers) New Target

Choose a template for your new targat:

‘:,_’ Mac 05 X
Cocna @ @ @
Application Plug-in

BSD Aggregate Copy Flles Targer External Target

System Flug-in

shell Script Target

External Target

Target that invakes an external build system (e.g., make).

I Cancel Previous w

-

AbbendaiX b JuUuNnitonus A L N -

4. Double-click your new XcodeAndJUnit Target.

This brings up the Target: XcodeAndJUnit dialog box.
5. settheBuild Tool to /usr/bin/ant.
6. Setthe Arguments to -emacs $(ACTION), as shown in Figure B.5.

Figure B.5
Configured target dialog box

L Hale] Target: XcodeAnd|Unit =
2 '

al'. odr.AndJUnil % —— - - g— = v
® Target "XcodeAnd|Unit" of Project “XcodeAnd]Unit"
Settings show [Debug Ea fi i

“Settings ¥ General Settings
Ceneral Sext
Build Tool € Preduct type: Custom Build Tool Target

Custom Buil Product name: XcodeAnd)Unit

¥ Custom Build Command

Build Tool. fusr/binfant

Arguments: -emarcs STACTION)

Directory: [Chanose...
Use “S<buikdsetting>* for the value of any build setting.
Use "SACTION" for the build action (clean, install, etc).
Lize "SALL_SFTTINGS” for all command-line huild settings.

Pass build settings in environment
g

¥ Build Settings

| Name Value
COPY_PHASE_STRIP NO

GCC_DYNAMIC_NO_PIC = NO
GCC_OPTIMIZATION_L FVFL - O
PRODUCT_NAME ~ XcodeAnd)Unit

[+ 1=

Your Target is ready to use. This allows building and cleaning of the project. Before the
next step, temporarily comment out the code in your XcodeAndJUnit classmain ()
method and the import statements, and then click Build => Build. This builds an
executable JAR for setting up your Executable to run. You should be building a class
that only hasamain () method. (Remember to uncomment the code after the
Executable is set up.)

- Ly Hbbenaixes

Next, from inside Xcode, create the Executable by taking these steps:

1. From the Executables context menu, select Add > New Custom Executable....
2. Name your executable java.
3. Selectthe path to your java command.
Thatis /usr/bin/java.
4. Add the new Executable to your project.
5. Open your new java executable by double-clicking it.

6. Select the General tab, shown in Figure B.6, and set Custom directory to your
project’s dist directory.

Figure B.6
General tab in Executable configuration

———[General | Arguments = Dehugging Comments }

Name: java

Path: | jusr/binfjava Choose...

Full Path: fusr/bin/java

Path Type: | Absolute Patn B

lse | no E suffix when Inading frameworks
Use | Pseudo terminal 9 for standard input/ouput

Set the working directory to:
() Ruild Praducts directary
() Project directory

® Custom directory Choose... |

U ftriavis | Desktop XrodeAnd]linit/dist

HADDendaix p. Juniton vy j —

7. Sselectthe Arguments tab shown in Figure B.7, and add the argument -cp
XcodeAndJUnit.jar XcodeAndJUnit.

Figure B.7

Arguments tab in Executable configuration

—{ General | Arguments | Dehugging Comments }

Arguments to be passed on launch:

Argument
= =cp XeodedndUnit Jar XeodeAndUnit

Variables to be set in the environment:
| Name Value

l+]= (:})¢

8. Sselectthe Debugging tab shown in Figure B.8. Set the Java Debugger to the
default debugger. Select Wait for next launch/push notification. Deselect all
other check boxes.

- 1 L Hbbenaixes

Figure B.8

Debugging tab in Executable configuration

{ General | Arguments ' Dehugging l Comments }

‘When using | GDR E
Use | Pseudo | for dard
| Debug executahle remately via SSH

Cannect to: user@host
|_] Start executable after starting debugger
4 Wait for next launch/push notification
] Break on Debugger() and DebugStr()
] Auto-attach debugger on crash
Additional directories to find source files in:

ohujise @

|

Your project is almost ready to use. In fact, if you select Runt> Console, you can select
Build and Run from the Console window to run the application. You won't see
anything interesting, though. You have all the code in yourmain () method
commented out.

Next, | explain adding JUnit to your project.

JUnit is conveniently packaged as a single JAR. The junit. jar is available from http: //
www.junit.org/.The junit.jarisnamed junit-<version number>. jar.|referto
itas the junit. jar for simplicity.

If you are working from a previously built Xcode project, your project contains a jar directory.
When including the junit.jar in an Xcode project, placing the junit. jar in the project’s
jars/ directory may be your first impulse. Xcode’s build.xml contains a clean target that

e _Appendixb:Juniton OS5 A

deletes the jars/ directory. If you place the junit. jar in the jars/ directory, every time
you clean your project, you also have to add JUnit back to the project.

A closer look at build.xml shows the comment “lib directory should contain any pre-built jar
files needed to build the project.” Place the junit.jar in the 1ib/ directory. Any JAR'ed
libraries used to build the project should be placed in the 1ib/ directory.

All JAR'ed libraries placed in the 1ib/ directory end up repackaged in the project JAR. In our
case, that is the XcodeAndJUnit . jar.Bundling junit. jar is fine during development,
but it should be avoided for release builds. Also, remove test classes from release builds.

For this section’s example, | jar junit . jar and the test classes in the build. If you want to pre-
vent junit.jar and test classes from being built, you can place them in separate test directo-
ries, and then create and name the directories something like test_liband test_src so
they are easily identifiable. Then create a new external target and modify the build. xm1 file
so that Ant builds and bundles the tests only when the new target is used.

CROSS-REF
I discuss Ant and build.xml files at length in Chapter 4.

The example code in this section requires Java 1.6. The Java target in Xcode uses Ant. On some
OS X distributions, Ant—when run from Xcode—defaults to an older version of Java that can-
not build this example’s source. A quick fix is to include the JAVA_HOME property in the
Target's Build Settings, as shown in Figure B.9, with the value being the path to /System/
Library/Frameworks/JavavVM. framework/Versions/1.6.0/Home ora similar
Java Home directory.

Figure B.9
Target with JAVA_HOME property

< | = [Target XcodeAndiunit 5 <™ Colf. | W @

@ Target “XcodeAnd]Unit” of Project “XcodeAnd]Unit™

Settings shaw | Debug g eanfiguratian

whettings ¥ Build Sertings
General Settings .

Build Tool Configuration Name Value
Custom Build Settings COPY_PHASE_STRIP NO

GEC_DYMAMIC_NO_PIC = NO

GCC_CENERATE DEBUCGING SYMBOLS = YES

GEC_OPTIMIZATION_LEVEL -8

JAVA_HOME = [Systeen)Library)Framewarks [Javavi
PRODUCT_NAME = XeodeAndjUnit

ac

—

CROSS-REF

Java home paths are discussed in detail in Chapter 2.

In this book, | harp on never hard coding JAVA_HOME. However, development environments
are usually personalized to individual projects, computers, and developers. It is very likely that
you do not want the target’s version of Java in your project to change when you change the

Java Preferences. This is one of those rare cases where hard coding JAVA_HOME makes sense.

The code example for this appendix consists of three classes and an enum. This Xcode project
represents a rudimentary bill of materials generator. The code is contained in
XcodeAndJUnit.java, Pricing.java,BillOfMaterials. java, and
BillOfMaterialsTest.java.

NOTE

If you have not yet uncommented the code in the XcodeAndJunit dass, do so now.

The XcodeAndJUni t class creates and prints a bill of materials. This class contains the
main () method. XcodeAndJUni t is not used during the JUnit test. Deleting this
class has absolutely no affect on running the test. This class demonstrates the use of the
BillofMaterials class thatis the object of the example test.

Once again, here is the code for XcodeAndJuUnit:

import java.util.*;
import com.genedavis.*;
public class XcodeAndJUnit
{
public static void main (String argsl[])
{
BillOfMaterials bom = new BillOfMaterials();

bom.addGlass (6) ;
bom.addSteel (10) ;
bom.addoil (1) ;

bom.printBill () ;
}

The Pricing enum contains three materials (STEEL, OIL, and GLASS) that are initialized to
a unit price in cents. In a real accounting program, | might use BigDecimal, but ints repre-
senting cents work in this limited example. The single method, getPricePerUnit (), is
provided.

— _____________________mAbpbendalx p.Juniton uUs A

Here is the code for Pricing:

package com.genedavis;
public enum Pricing
{
STEEL (5000),
OIL (100),
GLASS (1500) ;
private final int pricePerUnit;

private Pricing(int ppu)
{

this.pricePerUnit = ppu;
}
public int getPricePerUnit ()
{

return pricePerUnit;

}

The class | will test with JUnitis BillO0fMaterials.BillOfMaterials offers methods for
adding units of glass, oil, and steel to the current bill of materials. The added items are stored
inthe 1ineItems HashMap<String, Integer>.TheprintBill () method calls the
getTotalCost () method and the getBi11Body () methods and then prints the results.

Here is the source forBillOfMaterials:

package com.genedavis;
import java.util.*;
import static com.genedavis.Pricing.*;
public class BillOfMaterials
{
HashMap<String, Integer> lineltems =
new HashMap<String, Integer>();

public BillOfMaterials() {}

public void addGlass (int quantity)

{
int ppu = GLASS.getPricePerUnit();
int price = ppu*quantity;
lineItems.put ("Glass", price);

public void addSteel (int quantity)

{
int ppu = STEEL.getPricePerUnit () ;
int price = ppu*quantity;

lineltems.put ("Steel", price);

public void addOil (int quantity)

{
int ppu = OIL.getPricePerUnit () ;
int price = ppu*quantity;
lineltems.put ("Oil", price);

public int getTotalCost()

{
int total = 0;

for (Map.Entry<String, Integer> entry : lineltems.entrySet())

{

int value = entry.getValue() ;
total += value;

return total;

public String getBillBody ()

{
String billBody = "";

for (Map.Entry<String, Integer> entry : lineltems.entrySet())

{

int value = entry.getValue() ;
int dollars = value / 100;
String cents = Integer.toString(value) ;

cents = cents.substring(cents.length() - 2);

String product = entry.getKey () ;

billBody += product+" S$"+dollars+"."+cents+"\n";

return billBody;

S —————_____________Appendix B:Juniton OS5 A

public void printBill()
{

int total = getTotalCost();
String billBody = getBillBody () ;

int dollars = total / 100;
int cents = total % 100;

System.out.print (billBody) ;
System.out.println("\n\n total: $"+dollars+"."+cents) ;
}

Finally, I can show you the actual test class, Bi110fMaterialsTest. Comparing the test
method of BillOfMaterialsTest with themain () method of XcodeAndJUnit,
you see a strong correspondence. Both create and setupaBillOfMaterials. However,
BillOfMaterialsTest attempts to assert the value of the Bil10fMaterials
getTotalCost () method

The @Test annotation and the assertTrue () method make this test work. The packages
imported are org.junit.* and org.junit.Assert. *.Once imported, the assert
True () method and the @Text annotation are available. The @Test annotation marks a
method as being a JUnit test. The assertTrue () method is the actual test. Using only one
annotation and one method, you can build very powerful unit tests for your projects.

TIP

Many other assert methods are available. See the JUnit documentation available on the JUnit Web site for more infor-
mation about available assert methods and combining JUnit tests.

Here is the source code for the JUnit test class, Bil1l0fMaterialsTest:

package com.genedavis;
import org.junit.*;
import static org.junit.Assert.*;
public class BillOfMaterialsTest
{

@Test

public void testBillOfMaterials/()

{

BillOfMaterials testBom = new BillOfMaterials() ;

= Apbenaixes

testBom.addGlass (6) ;
testBom.addSteel (10) ;
testBom.add0il (1) ;

int testTotal = testBom.getTotalCost();
assertTrue (testTotal == 59100) ;

}

If you have not yet done so, add these three new classes () to the src/com/genedavis directory
of your project. You need to create the com and genedavis directories. After you add these
classes to your src/ directory, shown on the far left of Figure B.10, click Build and Run from the
Xcode Console. This verifies that the project is working properly. After running your project, you
are ready to test.

Figure B.10
Xcode project window with all Java source files in the directory tree on the left

i terials java 32 3 a
v [xcodeandiunit 4| [import static cam,gencdavis.Pricing.+;]
* [l hib 3 i
,E"m““ & Eublu class BillofHaterials
X 7
- Manifest 5 HashMap<String, Integer> lineltems = new HashMapeString, Integers(:
v 5l s o
[T) XeodeAngjunit java 1) public Bill0Materiatsl) {3
[l com 7 public void addGlassiint quantity)
[wenedavis 13| {
[+ BiBOMaterials.§ 14 int ppu = GLASS.getPricePerUnit();
" 15 int price = ppusguantity;
1] BinoMMazerialsT 14} LlineTtens.put{"Glass", price):
L] Pricing java bt
i belicond :: bl 4 add5teel(int tity)
| ublic void addSteellint quan
¥ (&) Targets = { s o,
* (@ *eodeAndivnin n int ppu = STEEL.getPricePerinit();
¥ (4 Executables =i :nt ?:::r = ;pr»:?umlutrr; 58)
! ineltems.put{“steel”, pries);
e e
w (] Find Results ”
Ll Bookmarks o public wnid addbiliint quantity)
& I
. | int ppu = OIL.getPricePerUnitil;
B Project Symbols n int price = ppusquantity:
¥ [implementation Fites m lineltems.put{“0il ", pricel;
[l MIB Files n L
1 public int getTotalCosti} —
M 1 84
3
Debugging of “java” ended normally. @ Succeeded

If you want to run JUnit only from the command line at this point, these instructions will take
care of runningthe BillOfMaterialsTest:
1. Open the Terminal.

2. Change your directory, using cd, to the bin/ directory in your Xcode
XcodeAndJUnit project.

e _Appendixb:Juniton OS5 A =

3. Usethe command java -cp .../lib/junit-4.6.jar org.junit.runner.JUnitCore
com.genedavis.BillOfMaterialsTest

You should see a result similar to Figure B.11.

Figure B.11
JUnit test results shown in the Terminal

f8no. bask
Wnmac:bin toavist jova -cp LD Junit-4.6.30r org.Junit.runner.Junt ’:
Loure cum.yereuy iz Bi LIOMHuler iulsTesl

Mnit version 1.6

Time: A_AA7
08 (1 Lest)

Winmoc:bin tdavis$ |

MRl =)

Running the test from inside of Xcode is not much different, and it may be even easier after it
has been configured. The following instructions configure and run the JUnit test from Xcode:

1. Double-click the Executables java leaf of the Group & Files tree on the left side of
your Xcode project window.
This brings up the Executable “java” Info dialog box.

2. Click the Arguments tab.
The Arguments tab is shown in Figure B.12.

3. Addanother -cp argument that reads as follows:

-cp XcodeAndJUnit.jar org.junit.runner.JUnitCore com.genedavis.
BillOfMaterialsTest

4. select the new -cp argument, and unselect the original -cp argument.

Do not delete the old argument, because you will want to use it when rebuilding the
project. Only one of these -cp arguments may be selected at a time.

Figure B.12
Executable arguments dialog box tab with new -cp

[General |

£l ¢ Debugging Ce

Arguments to be passed on launch:

|
[-cp XeodeAnd|Unit.jar XcodeAnd]Unit
- cp XeodeAnd)Unit.jar org.junit.runner JUnitCore com.gencdavis.BillOfMaterialsTest

oE
‘Variables to be set in the environment:

| Name | Value
)

Clicking Build and Run in the Xcode Console should result in output similar to Figure B.13.

Figure B.13
Xcode Console test result

[Session started at J889-12-22 89:57:21 -8784.]
Jumit varsien 4.6

Time: 0.005
0K (1 tect)

The Debugger has exited with status 8.

Dehugging of Java” enied normally, Sucereded |

AbbendaiX b JuUuNnitonus A =

Summary

In this appendix, | explained the uses of JUnit. JUnit is written with test-driven development in
mind. JUnit works well for regression testing and more casual testing strategies also.

JUnit is designed for simplicity of use. By learning as little as one annotation and one assertion
method, you can create complex test suites. The annotation is @Test, and the assertion
method is assertTrue ().

Integrate JUnit with Xcode by placing the junit. jar in the build path. Create one or more
JUnit test classes. The last step is to add a new -cp XcodeAndJUnit.jar org.junit.
runner .JUnitCore <tests list>argument to the Java executable and run the tests

—_——
[/
About Box A window designed to display the
application name, copyright holder, software

version number, and a link to the creator’'s Web

site. On OS X, the About Box is accessed from the
Application Menu.

Address Book An OS X application designed to
track contact information for friends, family, and
business associates. Applications that need access
to contact information or need to retain contact
information on OS X should always interface with
this application.

admin (administrator) A user who is all-powerful
on a particular computer. The administrator has all
permissions to do anything on the computer.

Adobe Systems, Inc. Adobe Systems is known for
their graphics and Web design software. Adobe
owns Photoshop, Illustrator, Flash, Acrobat, and
Dreamweaver. Find Adobe at www . adobe . com.

alpha channel Indicates the transparency of a
given image.

alpha release A software release for testing
purposes. Alpha releases typically do not have a
stable feature set, meaning features may be added
or removed before the software application
reaches beta.

Ant Target-based build tool. Ant builds consist of
one or more files organized into a project contain-
ing targets and targets containing individual tasks.

Apache The Apache Software Foundation respon-
sible for organizing many popular open-source,
business-friendly projects. Apache also refers to
their most popular project, an HTTP server.

API (Application Programming Interface) A
collection of libraries for use in software
development.

Glossary

app Short for software application.

Apple Menu The menu at the top left hand corner
of an OS X Desktop. The Apple Menu contains
System-related menu items and is visible from all
applications. The Apple Menu takes its name from
the prominent apple-shaped icon on the menu bar.

AppleScript Natural-language-based scripting
language for cross-process scripting on OS X.
AppleScript allows properly written applications
(including Java applications) to act together for
common task resolution.

Applet Bundled AppleScript applications or Java

Applications embedded in Web pages. These two

meanings have nothing to do with each other and
can lead to confusion in certain discussions.

Applet Launcher GUI application for testing Java
Applets without a Web browser.

appletviewer A command-line application pro-
vided for quick display of Java Applets without the
need of a Web browser.

Application Menu Found just right of the Apple
Menu. The Application Menu contains an applica-
tion’s About, Preferences..., and Quit menu items.

architecture The hardware of a computer. OS X
tends to be mostly architecture agnostic.

Archive.zip The default name of a Finder com-
pressed ZIP file. Change this name to prevent
name collisions.

arguments Parameters passed to a program on
startup or passed to a function/method while
running.

ASCIl (American Standard Code for Information
Interchange) Pronounced “as key.” This is a text-
based format limited in utility to Roman-based
languages. Superseded by Unicode-8.

asynchronous Happening independently. For
instance, methods are asynchronous when their
return value is sent by a different thread, often
after the original method has returned.

AWT (Abstract Window Toolkit) Also jokingly
referred to as Another Window Toolkit. This is the
original Java windowing toolkit, later expanded
by Swing.

badging Placing a small version of an application
icon on an alert or information icon. A badge
appears in the lower-right corner of an alert or
information icon in a dialog box. Badging acts as a
visual queue to users, indicating the application to
which a dialog box belongs.

base directory The directory that holds an
application’s folders, data, and executable files.
The base directory of OS X also is called the root
directory.

Bash The default Unix shell used in Terminal on
OS X.

batch A script that processes data, repeating the
same changes to multiple pieces of data.

BBEdit Bare Bones Software’s text editor. The
Bare Bones Software Web site is located at www .
barebones.com.

beta Feature-complete test release of software.
The beta release comes after an alpha release and
before a Golden Master release. Beta releases
should contain a fixed set of features that will not
change before final release of the software. Beta
releases often contain features that do not yet
work. Beta releases give developers a chance to
test software for bugs with real users before
declaring the software finished.

Bezier curve A curved path defined by two points
and two control points. These curves may be
chained to define complex curving paths.

Bezier path See Bezier curve.

binary Base 2 number system.
bitmap A file format defining images.

bleed An area of printed material designed to be
cut off, producing the illusion that printing went
to the edge of the paper. Using bleeds instead of
actually printing to the edge of paper prevents
ink build up on press rollers and reduces the
likelihood of ghost images appearing on printed
material.

block A chunk of code surrounded by curly
braces. Also, a mechanism for stopping a threads
execution until some event occurs.

bookmark A quick link to section of code in
Xcode. Also, bookmarks are used in Web browsers,
such as Safari, providing quick access to Web

pages.

boot Starting of an application, especially the
starting of OS X.

bootstrap A situation involving two events
depending on the other event happening first. The
prototypical example of a bootstrap problem is,
“which came first, the chicken or the egg?” In pro-
gramming, this kind of problem usually occurs
when a program (or OS) cannot be built until it has
first been run (indicating it was already built).

breakpoint A pointin code where execution is
paused for debugging.

bridge Mechanism allowing two disparate tech-
nologies to communicate. For example, a bridge

allows Java and Objective-C to communicate and
act as one program.

BSD (Berkeley Software Distribution) Berkeley
Unix. This is a Unix, but not a Linux.

build.xml Default project file for Ant builds.

bundle A folder containing a collection of related
files on OS X.

S — a2

callbacks Allows a function to call back to the
executing code. Usually associated with passing of
function pointers.

Carbon Along with Java and Cocoa, represents
one of the main programming frameworks avail-
able on OS X.

cc An alias for gcc on OS X.

Charva Terminal-based User Interface framework.
Charva is designed to work as a replacement for
Swing and AWT in environments that demand a
text-based interface. This is common with termi-
nal- and server-based applications.

clean Refers to the process of deleting compiled
classes and assembled products in preparation for
building from scratch.

CLI (Command Line Interface) Text-based inter-
faces such as Terminal for controlling Operating
Systems. Many Unix programmers prefer CLIs for
their simplicity and speed.

CMYK Four-color process common in printing.
Cis cyan. M is magenta. Y is Yellow. K is black.

Cocoa Along with Java and Carbon, represents
one of the main programming frameworks avail-
able on OS X.

Console On OS X, Console is an application for
tracking System logs. Often, Unix gurus refer to
applications such as Terminal as a console (with a
lowercase “c”).

Controller Manages the View and Model in a
Model-View-Controller environment. Controllers
are the brains of applications.

CORBA (Common Object Request Broker
Architecture) A cross-language, cross-platform
standard for inter-process communication.

cron job A task that repeats at specified intervals,
such as nightly or weekly. The cron daemon is
responsible for the execution of the tasks.

CSl (Control Sequence Introducer) Indicates the
beginning of ASCll-based control sequences for
changing the display preferences of text outputin
Terminal windows.

curses Common Unix library for controlling termi-
nal output.

CVS (Concurrent Versioning System) GNU GPL
software for versioning software. Similar to SVN in
capabilities.

Darwin OS X is built on top of Darwin. Darwin is a
POSIX-compliant operating system. Several oper-
ating systems are derived from Darwin.

data store Any mechanism for data storage,
including databases, flat files, and directory services.

DMG Disk image file format used for distribution
of applications for OS X.

DPI (Dots Per Inch) OS X monitors in Cocoa and
Carbon are represented programmatically as 72
dots per inch, but likely have more actual pixels
per inch. Carbon and Cocoa drawing is resolution-
independent.

Eclipse A popular free open-source IDE for devel-
opment of Java, C, PHP, and other languages.
Eclipse is written in Java and is very popular for
Java development on OS X.

emacs Popular Terminal-based text editor
for OS X.

enterprise Applications that run companies. If an
application is multi-tiered, networked, database-
driven, capable of scaling, and integral to a busi-
ness’s success, it is often referred to as an
enterprise application.

EPS (Encapsulated PostScript) File format
designed for storing vector-based graphics.

Finder GUI application responsible for user inter-
action with the OS. Similar in function to the text-
based Terminal application.

flatten Process of composing one image raster
image from multiple layers of images. This is a
common task in Photoshop and other image-
processing programs.

folding Collapsing the view of code or comments
in an IDE. Eclipse, Xcode, and other common IDEs
provide folding to make program source code
more legible.

fork Creating a duplicate process to run the same
program. Similar in function to spawning threads,
but much more resource intensive.

framework Code libraries that are related and
possibly bundled together.

FreeBSD A variant of BSD. See BSD.

freeware Software that is provided for use free
of charge. Freeware is often open-source, but not
always open-source.

FTP (File Transfer Protocol) Protocol for transfer-
ring files over network connections.

gcc (GNU Compiler Collection) GNU’s command-
line compiler used for compiling Objective-C, C,
and C++ on OS X. Xcode uses gcc for compiling
many project templates.

Gentleware AG Creator of Poseidon for UML, a
round-trip UML architecting tool for Java.

GIF (Graphics Interchange Format) A raster art
image format popular on the Web. Very useful for
storing images with a limited number of colors.

GM See Golden Master.

GNU (GNU’s Not Unix) Free open-source POSIX
operating system. Not to be confused with BSD.

GNU-Darwin A variant of BSD based on Darwin.
See BSD.

Gold Master A production-quality release. This is
usually the final build of a software product before
it is sold to customers.

GUI (Graphical User Interface) A mouse and
picture driven interface for users. Contrasts sharply
with TUIs that are normally text and keyboard
driven.

Help Viewer Displays application-specific help
files. Help Viewer is available to all properly con-
structed GUI programs on OS X, including Java
applications.

home See home directory.

home directory Location of user’s personal files
and directories, including Desktop and Library.
Usually, this directory is located at /Users/
<username>.

HSQLDB Free, open-source, business friendly
embeddable database with an extremely small
footprint. HSQLDB is also a pure Java application.

HTML (HyperText Markup Language) The lan-
guage in which Web pages are written. In syntax,
HTML is very similar to XML.

Human Interface Guidelines Apple’s recommen-
dations for creating user-friendly applications that
fit the look and feel of standard OS X applications.

ICNS File format for OS X icons.

Illustrator Vector art program produced by
Adobe.

Info.plist XML file found in application bundles
describing the bundle, resource locations, and the
other properties of the bundle. Opens with
Property List Editor for convenient editing.

Intellij IDEA A popular commercial IDE for
Java development. It is sold by JetBrains at
www.Jjetbrains.com

1zPack Java-based packaging and deployment
software. IzPack is open-source software and dis-
tributed under a business-friendly Apache License.
Itis found at i zpack.org (without “www".)

Java Never heard of it.

JAVA_HOME The home directory of the Java
installation currently in use. Java home is available
by issuing the command /usr/libexec/
java_home from the Terminal.

javah Command-line tool for generating C
header files. Used when implementing native
Java methods.

javap Class disassembler for Java. Useful when
looking for method signatures needed in native
C-based JNI code.

JetBrains Creators of Intellij IDEA. Their Web site
iswww. jetbrains.com.

JGoodies Producers of Java Ul libraries and tools.

JNA A wrapper intended to make writing JNI
simpler.

JNAerator A GUI-based JNA automation tool.

JNI (Java Native Interface) Provides Java integra-
tion with C and C++. Apple provides JNI support as
the main integration technique between Java, C,
and Objective-C frameworks on OS X.

JSP (JavaServer Pages) Java Web site design lan-
guage. JSP compiles to Servlets that extend the
server they run on.

JUnit The most popular Java-based testing frame-
work.

kernel The software responsible for direct com-
munication between the OS and the hardware.
OS X uses the Mach microkernel.

ksh (KornShell) Command-line shell used in
Terminal.

legacy Any OS, framework, application, or utility
that was replaced with newer software.

Leopard OS X version 1.5 released in October
2007.

LGPL (Lesser GNU Public License) Less-
restrictive GNU license designed to allow
linking to commercial software.

lifecycle The cycle of creation, maintenance, and
decommissioning of software. Usually extended
through good design and maintenance practices.

localhost The local computer. Also known as
Internet Protocol address 127.0.0.1.

Mach The microkernel used by Darwin. See also
kernel.

MagicDraw UML design tool by No Magic, Inc.

make A GNU build tool. Make was the inspiration
for Ant.

man Command-line tool for displaying of utility
manuals in Terminal.

Maven An alternative Java-based build tool.
Maven is roughly equivalent to Ant using lvy.

Metrowerks The original developer of the
CodeWarrior development tools popular on Macs
before the release of OS X.

mnemonic Keyboard commands that trigger GUI
events such as the selection of a Java Menultem.

modal Blocking. For instance, modal dialog boxes
block the application from accepting input until
the dialog box is dismissed.

MPW (Macintosh Programmer’s
Workshop) Development environment for
Macintosh computers predating OS X.

MRJ (Mac OS Runtime for Java) The Java run-
time for Mac systems predating OS X.

S ——

MVC (Model-View-Controller) A design para-
digm that separates data, display, and manage-
ment into modules call the Model, the View, and
the Controller, respectively.

Nano Command-line text editor. Replaces Pico.
ncurses Builds on the curses library.

NetBeans A popular Java IDE sponsored by Sun
Microsystems. NetBeans works well on OS X.

NS (NextStep) The predecessor to OS X. OS X is
derived from NextStep. The tag of NS is still found
on many of the classes and methods used in devel-
oping OS X applications.

Objective-C Apple’s answer to C++. Objective-C
advocates say Objective-C is the Object-Oriented
Programming language that C++ was meant to
become but failed at becoming.

Objective-C++ Objective-C-based language inte-
grated to work with C++.

OpenStep An APl specification released to the
public by Next and Sun Microsystems. Closely
related to NextStep.

Operating System The application in charge of
hiding low-level activities of the computer, such as
booting and starting user applications.

package A bundle that behaves as thoughiitis
one file rather than a folder. Applications on OS X
are bundles that are packages.

Perl (Practical Extraction and Report Language)
Also known jokingly as the Pathologically Eclectic
Rubbish Lister. Perl is the most-influential scripting
language in the history of computers and the
Internet. Larry Wall developed Perl in the late
1980s.

Photoshop Raster art creation program sold by
Adobe Systems, Inc.

PHP A Web application development scripting
language occupying a similar feature space as JSP.

pixel One colored dot displayed on a monitor.

PKG Application distribution format used by the
Installer application.

plug-in A module used to extend an application
or service.

PNG (Portable Network Graphics) A raster-
based graphics file format.

Poseidon for UML A round trip UML design and
development tool for Java. It is developed by
Gentleware AG, located at www . gentleware . com.

POSIX (Portable Operating System Interface for
Unix) IEEE Unix Operating System definition.

PowerPC PC architecture used by Macs before
the transition to Intel-based architectures.

pthread The underlying thread system on OS X.
All threads on OS X at some level are pthreads.

Python A popular open-source dynamic language.
Quartz The underlying image processor for OS X.

RAID (Redundant Array of Inexpensive

Disks) Configures multiple disks to operate one
large disk or multiple disks to act as backups for
each other.

raster Representation of images as bitmaps.

refactor The process of fixing and updating code
in small chunks while adding new features, thus
extending the overall life expectancy of the
software.

regex (regular expressions) Pattern-matching
languages for matching text patterns. Most mod-
ern regular expression syntaxes (including Java's)
are based on Larry Wall’s Perl regular expression
syntax.

RGB (Red Green Blue) Three-color representa-
tion of images for display on computer monitors.

root Refers to root access and sometimes the root
directory.

root access Complete administrative access.
See admin.

root directory The base directory of the operat-
ing system. Usually indicated by '/".

Round Trip Design and Development Many
UML design tools offer the feature of creating
diagrams from code and generating code from
diagrams. Using this feature is Round Trip Design
and Development.

RSS (Really Simple Syndication) Formats for fre-
quently updating information over the Web.

Ruby An interpreted open-source programming
language.

SAVER Bundle format used for OS X screen savers.

scp Command-line tools for copying files over ssh.

seed Prerelease software intended to help devel-
opers prepare for upcoming software releases.

Servlet Java classes designed as extensions to
Java servers. One of the most common Java
servers using Servlets is Tomcat.

shareware Software released for distribution in
an attempt to increase sales. Most shareware lacks
features available to the purchasers of the same
product. Most shareware is not open-source or
completely free.

shell A text-based environment designed to run
in applications like Terminal. Shells provide text-
based interfaces with Operating Systems.

Snow Leopard OS X Version 10.6. Released in
September 2009.

ssh Text-based remote login client. Frequently
used to admin remote servers.

Sun Microsystems, Inc. Creators and maintainers
of Java.

svn Command-line utility for running Subversion
client. Subversion is a software version control
system.

synchronous Synchronous methods return nor-
mally in the same thread that called them. This dif-
fers from their multi-threaded asynchronous
counterparts.

tecsh A shell for use in Terminal.

Terminal Text-based application responsible for
user interaction with the OS. Similar in function to
the GUI-based Finder application.

terminate Exit a program or shell script.
Accomplished in Java with System.exit(0);.

TextEdit Apple’s basic text editor shipped
with OS X.

thread Similar to a fork, but remains in a single
process; not as resource intensive. Threads exe-
cute code from the same program simultaneously.

toggle The act of selecting or deselecting a
check box.

Tomcat A popular Java-based Web server pro-
duced by the creators of Apache. The Web site is
tomcat.apache.org.

TUI In this book, refers to Terminal User Interfaces,
but more commonly refers to Text User Interfaces.

Ul (User Interface) A description including both
GUIs and TUIs. User Interfaces define application
users’ interaction with applications. Uls include
buttons, windows, text fields, menus, and so on.

UML (Unified Modeling Language) Diagram-
based software description language. UML is use-
ful for quick overviews of software architecture,
but is also used for full round-trip design and
development.

vi Popular Terminal-based text editor. The vi
application is available on most Unix Operating
Systems, and some non-Unix Operating Systems.

VirtualBox A virtual machine designed to run
Windows, Linux, BSD, and other operating systems
on OS X computers.

VM (Virtual Machine) Software that allows run-
ning of virtual computers on your computer. Java
runs on a Virtual Machine called the JVM. Other
popular VMs for OS X often run entire operating
systems, such as VirtualBox and VMware Fusion.

VMware Fusion A virtual machine designed to
run and integrate windows on OS X computers.

wrapper A class or library designed to hide imple-
mentation details of another class or library.

WWDC (Worldwide Developer Conference)
Apple’s annual developer conference featuring
Apple technologies.

WYSIWYG (What You See Is What You Get)
Computer monitor display that exactly resembles
the final printed output. Apple developed a strong
relationship with the printing industry based on
this popular feature.

X X Window System for local and remote access
to computers. X is another option in addition to
the Finder and Terminal for controlling your OS. X
ships with OS X, Linux, and various Unix-like oper-
ating systems.

X11 See X.

Xcode The Objective-C-based development IDE
that ships with OS X. This IDE works with many lan-
guages including Java.

XML (Extensible Markup Language) Language
used for defining other markup languages. XML is
used to define views, property files, Ant build proj-
ects, and a host of other applications.

ZIP Compression application and format. OS X
ships with a command-line zip utility.

zsh The Z shell. Used in Terminal for executing
scripts and control of the command line.

Index

\ o\ /
—_—— ——
R .
Symbols and Numerics pocuments drop-down st 162
: (colon), 34,134 New document dialog box, 163
** (double asterisk), 120 Pen tool, 163
= (equals), 140 Place dialog box, 165
/ (forward slash), 34, 134 Selection tool, 165-166
> (greater than), 140 Stroke icon, 164
< (less than), 140 Type tool, 166-167
I=(not equals), 140 Adobe Photoshop
(pound), 136 Bitmap color mode, 152
~ (tilde), 41 Brush tool, 158
Canvas Size dialog box, 155, 156, 159
A color mode drop-down, 152

Color Picker dialog box, 156-157
Constrain Proportions check box, 156
Crop tool, 155,159

CYMK Color mode, 152

defined, 460

Eyedropper tool, 157, 158

Flatten Image menu, 160

floating toolbar, 152

Grayscale color mode, 152
Horizontal Type tool, 159

Image Size dialog box, 155, 156, 159
Lab Color mode, 152

Lasso tool, 154

lasso tool group, 153

About boxes, 236-237, 455
About menu, 230-231
about_upgrade.jsp file, 205
AboutBox class, 206
Abstract Window Toolkit (AWT)
components, 269
defined, 456
overview, 5, 16-17
Activity window (Xcode), 84-85
ADC (Apple Developer Connection)
ADC on ITunes, 12
Coding Headstarts, 12
developer articles, finding, 10-11

rr:]oerrr:qebperlghg, 81 i layers, 159-160
.e ship, Magic Wand tool, 153
overview, 8

Magnetic Lasso tool, 154
New document dialog box, 151
Pencil tool, 158
Polygonal Lasso tool, 154
Quick Selection tool, 153
Rectangular Marquee tool, 155
RGB Color mode, 152
Shape Selection tool, 153
Vertical Type tool, 159
Adobe Systems, Inc., 455
AE, 195
-Akey [=value] option, 133
Allow Mixed Localizations property (Jar Bundler), 173
alpha channel, 455
alpha release, 455
AMEAboutBox class, 232, 236

Premier members, 12-13
Reference Library, 8-10
Select members, 12-13
Software Seeding Program, 12
Student members, 12
ADC Headlines, 10
ADCon ITunes, 12
Add bean dialog box (JFormDesigner), 427
Add Child icon, 42
Additional Properties property (Jar Bundler), 173
Address Book, 72, 455
AddressBook library, 72
administrator, 455
Adobe lllustrator
creating icons with, 161-167
defined, 458

i rj'

AMEListener class, 232-233
AMEPreferences class, 234

American Standard Code for Information Interchange

(ASCII), 455
anchor points, 164

animateOneFrame method, 331,337, 342, 354, 357

Another Neat Tool. See ANT
ansi, 376

ANSI escape sequences, 370-371, 379-380, 390

AnsiDemo, 370-372
AnsiDemo. java, 371-372
Ant. See also Java Native Interface (JNI)
build files, creating, 111-116
build.xml file, 257-259, 319-321
checking if installed on system, 110
core tasks, 126-127
defined, 455
developing JNI with, 257-261
installing, 5
Javafile, creating, 114
multiple targets
basedir attribute, 122
builg, 117-118, 121
clean, 117-118, 121
compile, 118
depends attribute, 116-117
deprecation, 122
description attribute, 118
destdir attribute, 121
init, 117-118
-init, 118
manifest, 122
srcdir attribute, 121
test, 117-118
verbose, 122
new versions, checking for, 110
optional tasks, 126-127
options
-autoproxy, 128
-buildfile, 128
-d,128
-D<property>=<vale>, 128
-debug, 128
-diagnostics, 128
-e, 128
-emacs, 128
-f<file>, 128
-file, 128

-find, 128
-h, 128
-help, 128
-inputhandler<class>, 128
-k, 128
-keep-going, 128
-l<log_file>, 128
-lib<path>, 128
-listener <classname>, 128
-logfile, 128
-logger <classname>, 128
-main<class>, 128
-nice<number>, 128
-noclasspath, 128
-noinput, 128
-nouserlib, 128
-p, 128
-projecthelp, 128
-propertyfile<name>, 128
-q, 128
-s<file>, 128
user .name, 128
-v, 128
-verbose, 128
-version, 128

options, configuring, 127-129

overview, 109-110

project home, 110

properties
ant.file, 124
ant.home, 124
ant.java.version, 124
ant.project.name, 124
ant.version, 124
Basdir, 124
build_directory, 124
clean target, 124
compile target, 124
file.separator, 124
java.class.path, 124
java.ext.dirs, 124
java.home, 124
java.version, 125
line.separator, 125
os.arch, 125
os.name, 125
os.version, 125
path.separator, 125

use.dir, 125
user.home, 125
user .name, 125
tasks
copy, 127
delete, 127
echo, 127
exec, 127
jar, 127
java, 127
javac, 127
mkdir, 127
move, 127
scp, 127
uses of, 6,99, 102
ant -projecthelp command, 118
antbuild command, 260
AntExample.class file, 115
AntExample.java, 114
ant.file property, 124
ant . home property, 124
ant.java.version property, 124
ant .project.name property, 124
antrun command, 260
ant.version property, 124
Apache, 455
app, 455
app_starter.c file, 311
Apple Developer Connection (ADC)
ADCon ITunes, 12
Coding Headstarts, 12
developer articles, finding, 10-11
home page, 8
membership, 12-13
overview, 8
Premier members, 12-13
Reference Library, 8-10
Select members, 12-13
Software Seeding Program, 12
Student members, 12
Apple Human Interface Guidelines, 11
Apple Java Extension classes, 14
Apple Menu, 455
AppleScript, 455
AppleScriptKit, 187
Applet, 455
Applet Debugging tab, 70

Applet Launcher, 455
AppleTitle attribute, 225
appletviewer command, 67-69, 130, 455
application bundles
creating, 230-231
finding, 214
moving help book into, 223
resources, 214-215
Application class, 231
application classpaths, 32-34
Application Kit, 14
Application Menu, 455
Application Menu Example, 230-232
application packages, 144-148
application plug-ins, icons for, 150
Application Programming Interface (API), 455
ApplicationAdapter, 232-233
ApplicationController () constructor, 107
ApplicationController class, 72, 89
ApplicationDeveloper, 231
ApplicationListener, 231
ApplicationMenuExample class, 232
architectural layers, 186
architecture, 455
Archive.zip, 455
args[] array, 191
arguments, 455
Arguments tab, 54, 442, 451
arithmetic comparisons, 140
artboards, 163
ASCIl (American Standard Code for Information), 455
askAgainLaterClicked () method, 209
Assemble Application, 101
assert library (Darwin), 194
assertTrue method, 446
asynchronous, 456
at command (Darwin), 191
attributes, 113
auto release pool, 252
-autoproxy option (Ant), 128
awk command (Darwin), 191
AWT (Abstract Window Toolkit)
components, 269
defined, 456
overview, 5, 16-17
AWCocoaComponent protocol, 254
awtMessage: method, 281, 282, 283

nde

E rm .

background colors

icons, 157

text, 382
badging, 456
banner command (Darwin), 191
Basdir property, 124
base directory, 456
base_screen_saver, 335, 338-340, 348
base_screen_saverView class, 340, 348
basedir attribute, 122
basename command (Darwin), 191
Bash, 135, 456
bash script, 413
basic_applet.html file, 61, 66
BasicAppBundle, 145-146
BasicAppBundle.app, 145-146,
BasicAppBundle.icns, 146
BasicAppBundle. jar, 146
BasicApplet.java, 65
BasicColor, 380-381
batch, 456
batch command (Darwin), 191
BBEdit, 456
BBEdit Compatible key bindings, 89
Berkeley Software Distribution (BSD), 456
Berkeley Systems, 329
beta, 456
beta testers, 199
beta versions, 199
Bezier curves, 162, 163, 456
BillOfMaterials class, 446-449
BillOfMaterialsTest class, 449-452
bin directory, 204
binary, 456
bitmap, 456
Bitmap color mode (Photoshop), 152
bleeds, 163, 456
blinking text, code for, 370
block, 456
bookmark, 456
BOOL parameter, 331
boot, 456
-bootclasspath<path> option, 133
bootstrap, 456
breakpoint, 107, 456
bridge, 456
browse () method, 209

Brush tool (Photoshop), 158
BSD (Berkeley Software Distribution), 456
BSD OS, 189
Buf feredReader, 191
Build and Debug button, 107-108
Build and Run button, 55, 84, 100
Build Information tab (Jar Bundler), 170-171
Build menu, 103
Build Results window, 103-104
buildtarget, 117-118, 121
build tool scripts, 99
build_directory property, 124
-buildfile option (Ant), 111,128
build.xml file
basic Ant build file, 111
building JNI applications from Ant, 319-321
creating, 114-115
defined, 456
developing JNI with Ant, 257-259
Java Applet application project, 63-65
Java console application project, 48-49
Java Swing application project, 57-59
MyApp target, 102
property, 123-124
Xcode Java compiler, 73
-bundle, 256
Bundle identifier, 364
Bundle name, 364
Bundle Name property (Jar Bundler), 173
bundles
creating, 230-231
defined, 456
finding, 214
moving help book into, 223
vs. packages, 144
PKG, creating, 178-180
resources, 214-215
buttonClickMethod, 277

C

C macros menu, 93
C programming language

header files, 290

pointers, 244-245
cal command (Darwin), 192
calendar command (Darwin), 192
Call*Method () functions, 307

callback_from_java project, 309-310
callbackOne () method, 316
callbacks
creating, 266-267, 314
defined, 457
handling, 244
callbackTwo () method, 316
CallMethod () function, 280
Callstatic*Method () function, 307
CallStaticIntMethod () function, 307
CallStaticMethod () function, 303
CallvVoidMethod () function, 281
Canvas Size dialog box (Photoshop), 155, 156, 159
Carbon, 187,457
CarbonCore, 195
cat command (Darwin), 192
Catch Block macro, 93
caution dialog boxes, 200
cc command (Darwin), 192, 457
cd command (Darwin), 192
CFBundleExecutable, 147
CFBundleHelpBookFolder property, 222, 223-224, 226
CFBundleHelpBookName property, 222, 223-224, 226
CFBundlelconFile, 147
CFNetwork, 187, 195
CFStrings, 324
ChangePreferencesClicked () method, 209
char_reader directory, 301
char_reader.c file, 300
CharGrabber dynamic library, 298
Charva. See also TUI (Terminal User Interface)
defined, 457
documentation, 407
downloading, 407-408
overview, 405
test application, 408-411
verifying library, 408-411
website, 406
wrapping ncurses with, 406-411
charva_test folder, 411
charva.awt, 406
CharvaTest class, 414-418
charvax.swing, 406
Checkbook Demo application bundle, 174-175
checkbuild () method, 209-210
chgrp command (Darwin), 192
children, 112
chmod command (Darwin), 137,192

e

circular dependency, 117
class files, deleting, 120
class models
adding *java files to, 87
file extension, 86
Project Model, 85-89
Quick Model, 84-85
selecting, 87
selecting classes for, 88
Classes directory, 33
classic Mac OS folder, 4
classic Mac OS MRJ java tool, 4
ClassLoaders, 246
Classpath and Files tab (Jar Bundler), 170, 171-172
-classpath option, 248
-classpath<path> option, 133
classpaths
application, 32-34
core, 32-34
optional, 32-34
clean, 457
cleantarget, 117-118, 120, 121, 124,413
clear command (Darwin), 192
closing tags, 111-113
cmp command (Darwin), 192
CMYK, 457
Cocoa
Application Kit, 14
defined, 187, 457
Foundation API, 14
libraries, 15
Cocoa Drawing Guide, 365-366
Cocoa Foundation, 195
CocoaComponent. See also Java Native Interface (JNI);
Objective-C
callbacks, creating, 266-267
createNSViewLong () method, 267
example files, 262
handling events, 281-283
integration, 261
Java, 254
JavaVvM pointer, 275-276
JFrame, 270-271
jmethod pointers, 277-278
JNIEnv pointers, 279-281
jobject pointers, 276-277
NSView, 268-269
Objective-C, 254

Hes

CocoaComponent (continued)

overview, 241

sendMessage () method, 266

source for CustomNSButton class, 264-266

using, 263
Cocoa.h header, 254
Coding Headstarts, 12
CollabNet Inc., 77
colon (3), 34,134
color brightness, choosing, 381-382
color mode drop-down (Photoshop), 152
Color Picker dialog box (Photoshop), 156-157
Column count (Terminal), 374
com.apple.cocoa, 15
com.apple.cocoa.foundation, 15
com.apple.eawt, 15,218
com.apple.eio, 15
com.apple.eio package, 214
com/genedavis package, 119
comm command (Darwin), 192
Command Line Interface (CLI), 170, 457
command-line tools, 129-131, 195-196
commands (Darwin). See also Darwin (operating system)

at, 191

awk, 191

banner, 191

basename, 191

batch, 191

cal, 192

calendar, 192

cat, 192

cc, 192,457

cd, 192

chgrp, 192

chmod, 137,192

clear, 192

cmp, 192

comm, 192

date, 192

af, 192

diff, 192

du, 192

expand, 192

file, 192

find, 192

finger, 192

fold, 192

ftp, 192

grep, 192
groups, 192
head, 192
hostname, 192
kill, 192

last, 192

1dap library, 194
less, 192

1n, 192

login, 192

1p, 192

1pg, 192

1prm, 193

1s,193

man, 193

math library, 194
memory library, 194
mkdir, 193

mv, 193

ncurses library, 194
nice, 193

od, 193

passwd, 193

ps, 193

pthread library, 194
pwd, 193

rcp, 193

regex library, 194
rev, 193

rm, 193

rmdir, 193
script, 193
sleep, 193

sort, 193

split, 193
strings, 193
sudo, 193

tail, 193

talk, 193

tar, 193

tee, 193

telnet, 193
time, 193

touch, 193

tty, 193

ul, 193
uncompress, 193
unexpand, 194

unig, 193
units, 193
uptime, 193
users, 194
w, 194
wc, 194
whatis, 194
whereis, 194
which, 194
who, 194
whoami, 194
write, 194
ves, 194
zcat, 194
comments, 113
commercial software upgrades, 202-203
Common Object Request Broker Architecture (CORBA), 457
Common Public License, 434
Commons CLI library, 197
Compile Java, 101, 102
Compile Native, 101
compile target, 118, 124
compilers, 293
Conceal, 386-387
Concurrent Versioning System (CVS), 18, 77,457
configure sheets, 342
Configured GuiApp Target dialog box, 61
configureSheet method, 342
Console, 457
Console class, 389
ConsoleApp.java file, 49-50
Constrain Proportions check box (Photoshop), 156
Container, 263
control characters, showing/hiding, 83
Control Sequence Introducer (CSI), 389, 457
Controller, 457
Copy dialog box (Icon Composer), 169
copy task, 125,127
Core Binary Distribution, 203
core classpaths, 32-34
core tasks (Ant), 126-127
CoreFoundation, 187, 195
CoreServices, 195
CoreTypes bundle, 202
-cp argument, 451
cp command, 136-137, 192
-cp<path> option, 133, 134
createNSViewLong () function, 276-277

nge

createNSViewLong () method, 266, 267, 268
cron job, 457
Crop tool (Photoshop), 155, 159
CSI (Control Sequence Inducer), 457
curses, 457
cursors

hiding, 390-391

moving, 391-392

showing, 390-391
Custom Build Command, 102
custom libraries, 35-37
Custom widget code creation dialog box (JFormDesigner), 427
customButtonClicked () method, 267,277
Customize Encodings List, 378
Customize Toolbar dialog box (Xcode), 83-84
CustomNSButton class, 264-266, 267, 268,271, 278
CVS (Concurrent Versioning System), 18, 77, 457
CYMK Color mode (Photoshop), 152

D

-d option, 248
-d option (Ant), 128
-d<directory> option, 133,134
-D<property>=<value> option (Ant), 128
Darwin (operating system)
command-line tools, 195-196
commands

at, 191

awk, 191

banner, 191

basename, 191

batch, 191

cal, 192

calendar, 192

cat, 192

cc, 192,457

cd, 192

chgrp, 192

chmod, 137,192

clear, 192

cmp, 192

comm, 192

date, 192

ag, 192

diff, 192

du, 192

expand, 192

= —

Darwin (operating system), commands (continued)

file, 192

find, 192
finger, 192
fold, 192

ftp, 192

grep, 192
groups, 192
head, 192
hostname, 192
kill, 192

last, 192

1dap library, 194
less, 192

1n, 192

login, 192

1p, 192

1pg, 192

1prm, 193
1s,193

man, 193

math library, 194
memory library, 194
mkdir, 193

mv, 193
ncurses library, 194
nice, 193

od, 193

passwd, 193

ps, 193
pthread library, 194
pwd, 193

rcp, 193

regex library, 194
rev, 193

rm, 193

rmdir, 193
script, 193
sleep, 193
sort, 193
split, 193
strings, 193
sudo, 193

tail, 193

talk, 193

tar, 193

tee, 193
telnet, 193

time, 193
touch, 193
tty, 193
ul, 193
uncompress, 193
unexpand, 194
uniqg, 193
units, 193
uptime, 193
users, 194
w, 194
wc, 194
whatis, 194
whereis, 194
which, 194
who, 194
whoami, 194
write, 194
ves, 194
zcat, 194
defined, 457
libraries
assert, 194
ldap, 194
math, 194
memory, 194
ncurses, 194
pthread, 194
regex, 194
link to installations, 188
overview, 5, 186
shell scripts, 195-196
third-party versions, 188-189
tools, 190-191
darwin. c file, 295
data store, 457
DataStore class, 317
date command (Darwin), 192
Debug folder, 335
-debug option (Ant), 128
Debugger window, 107-108
debugging, 106-108
Debugging tab, 54-55, 442-443
delete task, 120,127
DeleteGlobalRef () function, 323
DeleteWeakGlobalRef () function, 323
dependencies, 101
depends attribute, 116-117

deprecation, 122
-deprecation option, 133
dereferencing, 245
description attribute, 118
design tools
Intellij IDEA, 429-431
JForm Designer, 427-429
MagicDraw, 424-425
overview, 423
Poseidon for UML, 425-427
Desktop, 209
Desktop & Screen Savers preferences, 334
destdir, 121,260
DestroyJavavM () function, 302-305
Dev Centers, 11
Developer Connection
ADC on ITunes, 12
Coding Headstarts, 12
developer articles, finding, 10-11
home page, 8
membership, 12-13
overview, 8
Premier members, 12-13
Reference Library, 8-10
Select members, 12-13
Software Seeding Program, 12
Student members, 12
Developer directory, 7
Developer folder, 27
Developer Tools Essentials, 6-7
Development Region property (Jar Bundler), 173
df command (Darwin), 192
-diagnostics option (Ant), 128
dialog boxes, 397-401
DictionaryServices, 187, 195
diff command (Darwin), 192
directories, deleting, 120
disk images (DMG)
converting to read-only volume, 178
creating, 176-177
defined, 451
setting up, 178
Disk Utility application, creating disk images with, 176-177
dist directory, 145
DMG (disk images)
converting to read-only volume, 178
creating, 176-177
defined, 457
setting up, 178

Do Javac button, 4
Dock
customizing menu, 219-221
Findericon, 24
overview, 23
dock_example project, 222
doCodeManagementStuff () method, 317
Documents drop-down list (lllustrator), 162
dot files, 39-41
dot folders, 39-41
dot notation, 336
double asterisk (**), 120
DPI (Dots Per Inch), 457
drag-and-drop installations, 176-178
drawRect : method, 331
drawRectangle method, 357
drawScreen method, 342, 344, 348, 361
dtterm, 376
du command (Darwin), 192
-dynamic, 256
dynamic libraries, 247

-e option (Ant), 128
EAR files, 109
echo command, 140, 192
echo task (Ant), 127
Eclipse. See also NetBeans; Xcode
defined, 457
in Java perspective, 19-20
overview, 19-20
Software Updates and Add-ons dialog box, 20
Editor window (Xcode), 81
elements, 111-113
else, 139
emacs, 457
-emacs option (Ant), 128
Empty File selection (Xcode), 49-50
Empty Project (Xcode), 46-47, 435
empty string, 140
Emulation section (Terminal), 376-377
Encapsulated Postscript (EPS), 457
-encoding<encoding> option, 133
Encodings tab (Terminal), 378
@end command, 255, 256
-endorseddirs<dirs> option, 133
English.lproj directory, 362
enterprise, 457

= rm .

EntryPoint class, 311-313,314-316
env variable, 304-305
environmental variables, 37-38

environment.plist property file, 42-44

EPS (Encapsulated Postscript), 457
equal (=), 140
escape character, 379
Escape key, 376
Example Help Book, 228
exclude tag, 121
exec () method, 190
exec task, 126, 127, 260
exec task (Ant), 127
executable attribute, 126
Executable file, 364
Executables
adding to project, 53
appletviewer, 67-70
Arguments tab, 54, 68-69
creating, 62-63
Debugging tab, 55, 69-70
General tab, 53, 68
Executables argument dialog box, 452
exit command, 139
expand command (Darwin), 192
exporting files, 216
extcheck command-line tool, 130
-extdirs<dirs> option, 133
Extensible Markup Language (XML)
attributes, 113
comments, 113
defined, 462
elements, 112
invalid, 112
opening and closing tags, 111-113
prologue, 111
text, 113
Extensions, 33
External Target, 51, 61, 440
Eyedropper tool (Photoshop), 157, 158

F

-£,111
-f<file> option (Ant), 128
favorites bar (Xcode), 81
£i,139

-file, 111

file command (Darwin), 192
File object, 247
-file option (Ant), 128
File Transfer Protocol (FTP), 458
File Type preferences, 92
FileManager class, 214,215
FileManagerExample class, 216-218
FileManager.getResource () method, 214
FileNotFoundExceptions, 215
files

creators, 215-218

dot, 39-41

exporting, 216

types, 215-218
file.separator property, 124
fileset tag, 120
Fill icon (lllustrator), 164
fillRect: method, 345, 365
final int, 208
Finally Block macro, 93
find command (Darwin), 192
-find option (Ant), 128
FindClass(), 303
Finder

defined, 457

icon, 23

overview, 23

restarting, 24
FindtheMouse class, 237-239
finger command (Darwin), 192
first_invocation project, 303-304
Firstinvocation class, 308
flatten, 458
Flatten Image menu (Photoshop), 160
floating toolbar (Photoshop), 152
fold command (Darwin), 192
folders, 39-41
folding, 458
Force Quit Applications dialog box, 24
foreground color, 157, 382, 383-384
fork, 458
FormDev Software, 20
forward slash (/), 34, 134
Foundation API, 14
Foundation classes, 15
-framework argument, 256
frameworks, 144, 458
free software upgrades, 202

FreeBSD OS, 189-190, 458
FreeUpgradeDialog class, 206
freeware, 458

FTP (File Transfer Protocol), 458
ftp command (Darwin), 192
function signature, 294

G

-g option, 133

-g:{lines,vars, source} option, 133
garbage collector, 251

gcc (GNU Compiler Collection), 458

gcc command, 256, 260

General tab, in Executable configuration, 442
Gentleware AG, 425, 458
get_current_build. jsp file, 205, 206
getBillBody () method, 446

getBoolean () method, 234
getCanonicalPath(), 247

getch () method, 299, 393,396

getchar (), 301,396

GetEnv () function, 280

getFileCreator () method, 218
getFileType () method, 218

Get-Info String property (Jar Bundler), 173
getLocation () method, 237
GetMethodID () function, 277
getMouseLocationOnScreen () method, 237
getMyUID () method, 72
getNativeAddressBookContacts () method, 72
getPathToApplicationBundle () method, 214
getResource () methods, 215
GetStringChars () function, 253
getTerminalColumns () method, 393,396
getTerminalRows () method, 393,396
getTotalCost () method, 446

GIF files, 161, 458

global reference, 276

-g:none option, 133

GNU (GNU'’s Not Unix), 458

GNU Compiler Collection, 458

GNU Lesser General Public License, 406

GNU Public License, 406

GNU-Darwin, 188-189, 458

Gold Master, 458

Grab application, 160, 166

graphic tablets, 158

graphical user interface (GUI)
accessibility, 200
caution dialog boxes, 200
defined, 458
design flaws, uncovering, 199
designing, 198-200
modal dialog boxes, avoiding, 200
in0S 8,3
Undo feature, 199-200
warning, 200
Graphics Interchange Format (GIF), 458
Grayscale color mode (Photoshop), 152
greater than (>), 140
grep command (Darwin), 192
Group & Files tree, 82, 100, 333
groups command (Darwin), 192
GUI (graphical user interface)
accessibility, 200
caution dialog boxes, 200
defined, 458
design flaws, uncovering, 199
designing, 198-200
modal dialog boxes, avoiding, 200
in0S 8,3
Undo feature, 199-200
warning, 200
GuiApp.java file, 59-60

* hfile, 254, 333, 339, 348
-h option (Ant), 128
handleaAbout () method, 233
handlePreferences () method, 233
handleQuit () method, 233
hasConfigureSheet, 342
head command (Darwin), 192
header files, 290-293
Heap Maximum Size property (Jar Bundler), 173
Heap Minimum Size property (Jar Bundler), 173
hello_darwin project, 291
HelloDarwinExample class

C header file, 291-293

main () method, 291

native method, 291

running, 296

source code, 291

static block, 291

help book

creating, 222

default page, 224

index.html file, 225-226

moving into application bundle, 223

overview, 223

relative links, 223
Help Book Example menu, 228
-help option (Ant), 128
-help option (javac), 133
Help Viewer

defined, 458

help book, 222-229

Help menu, 228

index.html, 229

integration, 222
HelpViewerExample class, 224, 226-227
hi () method, 292, 294
Hide/Show Favorites Bar (Xcode), 81
Hide/Show Navigation Bar (Xcode), 80-81
Hide/Show Status Bar (Xcode), 81
Home directory, 29-30, 37-39, 458
Horizontal Type tool (Photoshop), 159
hostname command (Darwin), 192
HSQLDB, 458
HSQLDB Java project, 78-80, 85-86
HTML (HyperText Markup Language), 458
Human Interface, 187
Human Interface Guidelines

for About boxes, 236

defined, 458

foricons, 149-150

links, 11

OS X applications and, 198

overview, 197

for software updates

caution icon, 202

commercial upgrade dialog box, 202-203

flag, 200-201
free upgrade dialog box, 202
overview, 200
startup latency, avoiding, 200-201
Tomcat Web server, 203-204
upgrade dialog boxes, 202

user interface design, 198-200

-Iargument, 256
ICNS, 458
Icon Composer, 162, 167-169
icons
application, 149-150
application plug-ins, 150
assembling, 167-169
creating, 148, 169
creating with lllustrator, 161-167
creating with Photoshop, 150-161
file format, 458
Human Interface Guidelines, 149-150
location of file, 147
overview, 147
pixel sizes, 149
resizing, 168
transparency, 149
utility, 150
viewing on several backgrounds, 168
IDE project builds, 99
Identifier property (Jar Bundler), 172
IDEs (Integrated Development Environments)
Eclipse, 19-20
defined, 457
in Java perspective, 19-20
overview, 19-20
Software Updates and Add-ons dialog box, 20
NetBeans, 21-22
defined, 460
overview, 21-22
Swing GUI Builder, 21-22
website, 21
Xcode. See Xcode
idl3j command-line tool, 130
if statement, 139, 294
Illustrator
creating icons with, 161-167
defined, 458
Documents drop-down list, 162
Fill icon, 164
New document dialog box, 163
Pen tool, 163
Place dialog box, 165
Selection tool, 165-166
Stroke icon, 164
Type tool, 166-167
Image Size dialog box (Photoshop), 155, 156, 159

rm ; =

images, resizing, 165 @interface, 255,333,339
@implementation command, 256,333 Interface Builder, 13-14
-implicit:none option, 133 interfaces, 255
#import, 249, 350 international character coding, 377-378
#include, 243, 249, 290, 293-294, 300, 350 invisible text, printing, 387
include tag, 120, 121 ioctl () function, 396
Indentation preference panel, 92 IOException, 216
index.html file, 225-226, 229 ip variable, 245
indexing, 84-85 iTunes, 199
Info Dictionary Version property (Jar Bundler), 173 Ivy, 110
Info.plist file, 32, 146,147,222, 223,226,363-364, 458 IzPack, 459
information property list file, 147 izPack installations, 180-181
inheritance, 271
init () method, 72

: J

init: method, 281, 282

init target, 117-118 -J<flag> option, 133

-init target, 118 J2SE5.0,32

initController() method, 317 J2SE 6,32

initwithFrame: method, 336 Jar Bundler
initWithFrame:isPreview: method, 331,336, 340 Build Information tab, 170-171
-inputhandler<class> option (Ant), 128 Checkbook Demo, 174-175

Insert Text Macro, 93-94 Classpath and Files tab, 171-172
installations creating application bundle with, 174-175
drag-and-drop, 176178 creating packages with, 169-175
installer-based, 178 location of, 169, 230
izPack, 180-181 options, 170-173
overview, 175-176 overview, 169-170

Package bundles, 178-180 properties
Installer.app, 179 Additional Properties, 173

installer-based installations, 178 Allow Mixed Localizations, 173
int parameter, 245, 266 Bundle Name, 173
Integrated Development Environments (IDEs) Development Region, 173

Eclipse, 19-20 Get-Info String, 173
defined, 457 Heap Maximum Size, 173
in Java perspective, 19-20 Heap Minimum Size, 173
overview, 19-20 Identifier, 172
Software Updates and Add-ons dialog box, 20 Info Dictionary Version, 173
NetBeans, 21-22 Set Working Directory, 173
defined, 460 Short Version, 173
overview, 21-22 Signature, 172
Swing GUI Builder, 21-22 Type, 172
website, 21 Version, 173
Xcode. See Xcode M thions, 173
Intel-based architecture, 186 Properties tab, 172-173
Intellij IDEA tabbed views, 170
defined, 458 jar command-line tool, 130
GUI design tool, 430 JARfiles, 33,34, 109, 122, 143

support for UML class diagramming, 430-431 Jjar task (Ant), 127
website, 429 jarsigner command-line tool, 130

= rm .

Java
application bundles
creating, 230-231
finding, 214
moving help book into, 223
resources, 214-215
command-line tools, 129-131
compiler, 73-74

converting Strings to NSStrings, 253

macros, 93-94
tools, 26, 195-196
Java 1.6 JNI specification, 326
Java Applet project
basic_applet.html file, 66
BasicApplet.java, 65
build.xml file, 63-65
empty project, selecting, 63
Executables, 67-70
folders, adding, 63
new project, 63
Target, 66-67
Java Application Kit package, 15
Java application projects
adding, 95-96
creating from templates, 96-98
debugging, 106-108
HSQLDB Java, 78-80, 85-86
Java Applet
basic_applet.html file, 66
BasicApplet.java, 65
build.xml file, 63-65
empty project, selecting, 63
Executables, 67-70
folders, adding, 63
new project, 63
Target, 66-67
Java console application
build.xml file, 48-49
ConsoleApp.java file, 49-50
empty project, selecting, 46-47
Executables, 53-55
folders, adding, 46-47
Manifest file, 50-51
naming, 46
new project, 46
Target, 51-52
Java Swing application
build.xml file, 57-59
empty project, selecting, 56

Executable, 62-63
GuiApp. java file, 59-60
Manifest file, 60
naming, 56
new project, 56
resources_macosx folder, 56-57
Target, 60-61
JNI Library, 71-72
running, 96, 104-106
Java Bridge, 14,17
Java class, compiling, 4
Java Cocoa, APIs, 5
Java Cocoa Framework
deprecated libraries, 14-15
uses of, 17
Java Cocoa libraries
Application Kit framework, 15
Foundation framework, 15
history, 13-14
redundant, 16-17
java command-line tool, 130
Java console application project
build.xml file, 48-49
ConsoleApp.java file, 49-50
empty project, selecting, 46-47
Executables, 53-55
folders, adding, 46-47
Manifest file, 50-51
naming, 46
new project, 46
Target, 51-52
Java Debugger, 54, 107-108
Java Foundation, 15
Java Native Interface (JNI). See also Ant; Objective-C
arguments and return types
jboolean, 295
jbyte, 295
jchar, 295
jclass, 295
jdouble, 295
jfloat, 295
jint, 295
jlong, 295
jmethod pointers, 295
jobject pointers, 295
jshort, 295
jstring, 295
book site, 327
building applications from Ant, 319-321

rm ; =

call static methods, 308 Java Preferences, 30-32
calling Java methods from C, 305-308 Java screen savers
converting Strings, 324 finishing implementation of, 358-361
defined, 459 interfacing with wrapper, 356-357
developing with Ant, 257-261 invoking JVM for, 350-356
dynamic libraries, 247 Objective-C base of, 348-350
environment, 271-275 overview, 345-346
header fille, 249-250 wrapping Objective-C with Java, 346-347
HelloDarwinExample class Java Swing application project
C header file, 291-293 build.xml file, 57-59
main () method, 291 empty project, selecting, 56
native method, 291 Executable, 62-63
running, 296 GuilApp.java file, 59-60
source code, 291 Manifest file, 60
static block, 291 naming, 56
implementing Java calls from native code, 308-309 new project, 56
integrating with Objective-C, 321-322 resources_macosx folder, 56-57
invoking Java from native code, 302-305 Target, 60-61
Java 1.6 specification, 326 java task (Ant), 126, 127
jclasses, 323 Java Virtual Machines (JVMs)
jobject, 323-324 creating, 305
libraries, 34 for Java screensaver, 350-356
method type signature symbols, 307 locations, 25-30
native code, calling, 291-296 references, using, 322-323
native methods, 288-289 JAVA_HOME, 25-26, 37-39, 73-74, 408, 444-445, 459
Objective-Cin, 187, 249-257 java-buildtarget, 413
overview, 287-288 javac command
returning Java calls to native code, 309-318 directory information, 135
returning native variables to Java, 297-301 options, 133
reusing JavaVMs references, 322-323 shell scripts, 136
saving jmethodIDs, 324 javac command-line tool, 26
SingleCharReader configuring, 131-135
char_reader.c file, 300 defined, 130
main () method, 299 GUl tool, 4
native method, 299 javac element, 115-116, 121-122
native_getch_jni.h header file, 299-300 javac task, 127
organization of, 297 java.class.path property, 34, 124
overview, 297 javadoc command-line tool, 130
source code, 297-298 java.ext.dirs property, 34, 124
static blocks, 298 javah command
static blocks, 290 creating C header files with, 242, 244, 248-249, 289-290
technical note, 325-326 defined, 130, 459
thread safety, 322 native declaration, 292
threading with JNIEnv, 323 running, 248
type signatures, 306-307 using from inside Ant project, 271
use of, 14,213 java.home, 29
using native in, 243-244 JavaHome project, 26

Java Native Interface Specification, 327 java.home property, 124

= rm .

java.io, 191 JNA, 459
javap command, 243, 278, 459 JNAerator, 459
javap command-line tool, 130 JNI (Java Native Interface). See also Ant

JavaServer Pages (JSP), 459
java.version property, 125
JavaVM, 187
JavaVvM pointer, 275-276
JavaVMinitArgs, 302
javaWrapperClass reference, 351
javax.script, 15
jboolean, 295,314
jbyte, 295
jchar, 295,394
jclass, 295,303, 323-324
jdb command-line tool, 130
JDialog, 208, 236
JDirect, 4-5
jdouble, 295
jenv function, 253
JetBrains, 459
jfield pointers, 278
JFileChooser, 409
jfloat, 295
JFormDesigner
designing GUIs with, 427
designing TUIs with, 411
overview, 427-428
raw source generated by, 415
website, 20, 427
JFrame
creating, 270-271
displaying NSButton in, 263
embedding CocoaComponent in, 270-271
embedding NSButton in, 261
location coordinates, 237
MainWindowController class, 72
opening, 218
rmber, 261
setting up, 227
jint, 295,394
jlong, 295
JManager, 4-5
JMenu, 224
JMenuBar, 224
JMenultem, 224, 227-228
jmethod pointers, 277-278, 295
jmethodID, 303, 324
JMVersion, 148

arguments and return types, 295

jboolean, 295

jbyte, 295

jchar, 295

jclass, 295

jdouble, 295

jfloat, 295

jint, 295

jlong, 295

Jjmethod pointers, 295

jobject pointers, 295

jshort, 295

jstring, 295
book site, 327
building applications from Ant, 319-321
call static methods, 308
calling Java methods from C, 305-308
converting Strings, 324
defined, 459
developing with Ant, 257-261
dynamic libraries, 247
environment, 271-275
header fille, 249-250
HelloDarwinExample class

C header file, 291-293

main () method, 291

native method, 291

running, 296

source code, 291
implementing Java calls from native code, 308-309
integrating with Objective-C, 321-322
invoking Java from native code, 302-305
Java 1.6 specification, 326
jclasses, 323
jobject, 323-324
libraries, 34
method type signature symbols, 307
native code, calling, 291-296
native methods, 288-289
Objective-Cin, 187, 249-257
overview, 287-288
returning Java calls to native code, 309-318
returning native variables to Java, 297-301
reusing JavaVMs references, 322-323
saving jmethodIDs, 324

SingleCharReader
char_reader. c file, 300
main () method, 299
native method, 299
native_getch_jni.h header file, 299-300
organization of, 297
overview, 297
source code, 297-298
static blocks, 298
static blocks, 290
technical note, 325-326
thread safety, 322
threading with JNIEnv, 323
type signatures, 306-307
use of, 14,213
using native in, 243-244
JNI header file, 393-394
JNI Library project
creating, 100
using, 70-72
JNI_CreatejavaVM () function, 302,303
JNI_OnLoad () function, 275
JNICALL, 294
JNIEnv, threading with, 323
JNIEnv pointer, 279-281, 294-295
JNIEnv*, 326
JNIEXPORT method, 72,294
jni.h headerfile, 250, 254, 328
jnilib classpath, 35
JniTest, 35-37
jobject pointers, 276-277, 283, 294, 295, 323-324
JOptionPane, 397
JOptionPane message dialog box, 263
JProgressBar, 409,411
jsch.jar, 126
jshort, 295
jstring, 295
JTabbedPane, 409-410
JUnit
defined, 459
implementing tests, 434
license, 434
overview, 433
testing from Xcode with
configuring Target, 440-441
creating Executable, 442-444
creating Java Tool project, 435-440
XcodeAndUnit project, 436-440
writing tests with, 434

junit.jar, 444-445
jvm variable, 305, 351
JVM Version, 175
jvm_args variable, 304-305
JVMs (Java Virtual Machines)
creating, 305
for Java screensaver, 350-356
locations, 25-30
references, using, 322-323
JWindows, 236

K

-k option (Ant), 128
-keep-going option (Ant), 128
kernel, 459

key bindings, 89-91

Keyboard tab (Terminal), 374-375
keytool command-line tool, 130
kill command (Darwin), 192
Kornshell, 135, 459

L

-l<log_£file> option (Ant), 128
Lab Color mode (Photoshop), 152
lasso tool group (Photoshop), 153
Lasso tool (Photoshop), 154
last command (Darwin), 192
LaunchServices, 187, 195
layers (Photoshop), 159-160
Layout (Xcode), 80
1dap library (Darwin), 194
learnMoreClicked () method, 209
legacy, 459
Leopard, 459
less command (Darwin), 192
less than (<), 140
Lesser Gnu Public License (LGPL), 459
LGPL (Lesser Gnu Public License), 459
1libfolder, 46, 56, 63
-lib<path> option (Ant), 128
libCharGrabber.jnilibfile, 298
libraries

adding, 32

Cocoa, 15

custom, creating, 35-37

rm ;

libraries (continued)
Darwin, 194-195
assert, 194
ldap, 194
math, 194
memory, 194
ncurses, 194
pthread, 194
regex, 194
deprecated, 14-15
dynamic, 247
Java Cocoa
Application Kit framework, 15
Foundation framework, 15
history, 13-14
redundant, 16-17
JNI, naming, 34
locations, 33-34
native, 34
libTerminal.jnilib, 414
lifecycle, 459
line numbers, 107
line.separator property, 125
-listener <classname> option (Ant), 128
1n command (Darwin), 192
load method, 290
loadLibrary() method, 290
local reference, 276
localhost, 208,459
-logfile option (Ant), 128
-logger <classname> option (Ant), 128
login command (Darwin), 192
1p command (Darwin), 192
1pg command (Darwin), 192
1prm command (Darwin), 193
1s command, 115,126, 193
1s.mkdir command, 40-41

* .mfile, 249, 254, 333, 339, 348
Mac Dev Center, 8
Mac OS 8
GUIs in, 3
JDirect, 4-5
JManager, 4-5
Mac OS Runtime for Java (MRJ)
defined, 459
folder, 4

javac command-line tool, 4
overview, 3
Mac OS X
About menu, 229-237
architectural layers, 186
BSD foundations of, 189-190
Darwin libraries, 190-194
Darwin tools, 190-194
developer tools, installing, 5-7
Dock, 219-222
frameworks, 187
Help Viewer, 222-229
Preferences menu, 230-231
Quit menu, 230-231
shell scripts, 195-197
updating software, 200-210
Mac OS X 10.3.9 Support, 6-7
Mach, 459
Mach 3.0, 188-189
Macintosh Programmer’s Workshop (MPW), 459
.MacOsx folder, 42-43
MacPorts Projects, 130
macros, 93-94
Magic Wand tool (Photoshop), 153
MagicDraw, 424-425, 459
Magnetic Lasso tool (Photoshop), 154
main () method, 28,72, 138, 206-207, 291, 292
-main<class> option (Ant), 128
mainWindow object, 72
MainWindowController class, 72
make, 459
man, 459
man command (Darwin), 193
man command-line tool, 30
manifest, 140
Manifest file, 50-51, 60
MANIFEST.MF, 122
math library (Darwin), 194
Maven, 110, 459
memory library (Darwin), 194
memory management, 251-252
Menu Key Bindings, 89-91
menus, 397-401
meta key, 376
META-INF directory, 122
Metrowerks, 459
Metrowerks Compatible key bindings, 89
midAnimatejmethodID, 351

miregistry command-line tool, 131
mkdir command, 40-41, 121, 136-137, 193
mkdir task, 127
mkdir task (Ant), 127
mnemonic, 459
modal, 459
modal dialog boxes, avoiding, 200
Model View Controller (MVC), 72, 309, 460
models
adding * java files to, 87
file extension, 86
Project Model, 85-89
Quick Model, 84-85
selecting, 87
selecting classes for, 88
monitors
primary, 82
two, using, 82
Morph (Xcode), 82
mouseDown: method, 281
MouselnfogetPointerinfo() method, 237
move task (Ant), 125, 127
MPW (Macintosh Programmer’s Workshop), 459
MPW Compatible key bindings, 89
MRJ (Mac OS Runtime for Java)
defined, 459
folder, 4
javac command-line tool, 4
overview, 3
multiple targets
basedir attribute, 122
build, 117-118,121
clean, 117-118, 121
compile, 118
depends attribute, 116-117
deprecation, 122
description attribute, 118
destdir attribute, 121
init, 117-118
-init, 118
manifest, 122
srcdir attribute, 121
test, 117-118
verbose, 122
mv command, 136-137, 193
MyApp target
dependencies, 101
target window, 102

MyApp . java, 104, 107
MyDB project, 78-80

-n (not empty), 140
-n option, 139
Nano editor, 370, 460
native code, initializing, 268
native keyword, 242, 243
native libraries, 34, 298
native method, 72, 247, 288-289, 291
native_getch_jni.h header file, 299-300
native_greeting_jni.hfile, 292
native_log_example project, 245
native_log_example_7jni.h header file, 250
native_TuiUtil_jin.h headerfile, 393-394
native2ascii command-line tool, 130
NativeAddressBook class, 72
native-header-build target, 259
NativeLogExample class, 245-246, 255-256
NativeLogExample program, 243-244
NativeLogExample.h header file, 250, 254
NativeLogger library, 247
Navigation Bar (Xcode), showing/hiding, 80-81
nbe . mfile, 280
ncurses

defined, 460

library, 194

overview, 405-406

wrapping with Charva, 406-411
NetBeans. See also Eclipse

defined, 460

overview, 21-22

Swing GUI Builder, 21-22

website, 21
New Class Model File dialog box, 88
New document dialog box

lllustrator, 163

Photoshop, 151
New File dialog box (Project Model), 86
New From Template menu, 97
New Project window (Xcode), 435
new_term, 301, 396
NextStep, 15, 460
nice command (Darwin), 193
-nice<number> option (Ant), 128
nle.mfile, 250,252
No Magic, Inc., 424

e

rm ;

-noclasspath option (Ant), 128
-noinput option (Ant), 128
not equals (!=), 140
notifyJavaThatButtonWasClicked () function,
282-283
notifyJavaThatButtonWasClicked (void) function,
279

-nouserlib option (Ant), 128
-nowarn option, 133
NSApplication, 16
NSAutoreleasePool, 252,256
NSBezierPath class, 365-366
NSBezierPath method, 345
NSButton, 261, 263, 268, 271
NSButtonExample, 281-283
NSColorWell, 268
NSLog () function, 341
NSObject, 15
NSOpenGLView, 268
NSResponder, 268
NSString class, 252, 253, 283, 324
NSTabView, 268
NSView. See also CocoaComponent

children, 268

drawing in, 365

drawing on ScreenSaverView instances, 331

embedding in Swing, 269

in JFrame, 263

online reference, 269

overview, 241

screen resolution, 361
null terminating, 253, 283, 325

(0

-o argument, 256
-o option, 248
objc_src subdirectory, 256
Object parameter, 266
Obijective-C. See also Java Native Interface (JNI)
class implementations, 256
classes, 254
creating JNI bridge to native code, 242-243
defined, 460
garbage collector, 251
integrating JNI with, 321-322
interfaces, 255
JNI header file, 249-250

memory management, 251-252
methods, 338
methods, calling, 252
NSView
children, 268
drawing in, 365
drawing on ScreenSaverView instances, 331
embedding in Swing, 269
in JFrame, 263
online reference, 269
overview, 241
screen resolution, 361
objects, 254-257
overview, 14, 242
protocols, 255
screen savers
creating project, 332-333
drawing, 342, 345
drawing animateOneFrame for, 338
initializing, 336-337
naming project, 333
starting and stopping animation, 337-338
Objective-C++, 460
Object-Oriented Programming (OOP), 242, 336
od command (Darwin), 193
o0ld_term, 301
0ld_termstruct, 396
Online members (Developer Connection), 12-13
OOP (Object-Oriented Programming), 242, 336
openConnection(), 210
openDialog () method, 218
openHelpViewer (), 224
opening tags, 111-113
OpenStep, 15, 460
operating system, 460
optional classpaths, 32-34
optional tasks (Ant), 126-127
options (Ant)
-autoproxy, 128
-buildfile, 128
-d,128
-D<property>=<vale>, 128
-debug, 128
-diagnostics, 128
-e, 128
-emacs, 128
-f<file>, 128
-file, 128

-find, 128
-h, 128
-help, 128
-inputhandler<class>, 128
-k, 128
-keep-going, 128
-l<log_file>, 128
-lib<path>, 128
-listener <classname>, 128
-logfile, 128
-logger <classname>, 128
-main<class>, 128
-nice<number>, 128
-noclasspath, 128
-noinput, 128
-nouserlib, 128
-p, 128
-projecthelp, 128
-propertyfile<name>, 128
-q, 128
-s<file>, 128
user.name, 128
-v, 128
-verbose, 128
-version, 128

Organizer
empty view, 95
opening, 95-96
overview, 94-95
projects, adding, 95-96
projects, creating from templates, 96-97
projects, running, 96

0S8
GUIsin, 3
JDirect, 4-5
JManager, 4-5

0OS X
About menu, 229-237
architectural layers, 186
BSD foundations of, 189-190
Darwin libraries, 194-195
Darwin tools, 190-194
developer tools, installing, 5-7
Dock, 219-222
frameworks, 187
Help Viewer, 222-229
Preferences menu, 230-231
Quit menu, 230-231

shell scripts, 195-197
updating software, 200-210
user interface, 197-200
os.arch property, 125
os.name property, 125
OSServices, 195
os.version property, 125

0SXScreenSaverWrapper class, 346, 351, 354, 356

outputfile attribute, 259-260
OutputStream, 191
overloaded methods, 305
overwrite attribute, 125

P

-p option (Ant), 128
Package (PKG) bundles, 178-180
PackageMaker, 179-180
packages

application, 144-148

vs. bundles, 144

creating with Jar Bundler, 169-175

defined, 460
file format, 460
overview, 89

Page Control (Xcode), 82

paid upgrade dialog box, 202-203

PaidUpgradeDialog, 208

paint () method, 331

paired tags, 111

parents, 112

passwd command (Darwin), 193
PassWordEntry class, 387-388
passwords, concealing, 385-389
PATH variable, 137
path.separator property, 125
Pen tool (lllustrator), 163

Pencil tool (Photoshop), 158
Perforce, 18,77

Perl (Practical Extraction and Report Language), 460

Photoshop
Bitmap color mode, 152
Brush tool, 158

Canvas Size dialog box, 155, 156, 159

color mode drop-down, 152

Color Picker dialog box, 156-157
Constrain Proportions check box, 156

Crop tool, 155,159

rm .

Photoshop (continued)
CYMK Color mode, 152
defined, 460
Eyedropper tool, 157, 158
Flatten Image menu, 160
floating toolbar, 152
Grayscale color mode, 152
Horizontal Type tool, 159
Image Size dialog box, 155, 156, 159
Lab Color mode, 152
Lasso tool, 154
lasso tool group, 153
layers, 159-160
Magic Wand tool, 153
Magnetic Lasso tool, 154
New document dialog box, 151
Pencil tool, 158
Polygonal Lasso tool, 154
Quick Selection tool, 153
Rectangular Marquee tool, 155
RGB Color mode, 152
Shape Selection tool, 153
Vertical Type tool, 159
PHP, 460
pickColor method, 359,361
pixel, 460
PKG, 460
Place dialog box (lllustrator), 165
Playlist (iTunes), 199
plug-in, 460
PNG files, 161,167, 215, 460
PointerInfo, 237
pointers, 244-245
policytool command-line tool, 131
Polygonal Lasso tool (Photoshop), 154
Portable Network Graphics (PNG), 460
Portable Operating System Interface for Unix (POSIX), 186,
190, 460
Poseidon for UML, 425-427, 460
pound symbol (#), 136
PowerPC architecture, 186, 460
preferences
Java, 30-32
modifying, 235
naming conflicts in, 235-236
persisting, 234-235
Terminal
advanced settings, 376-377
color schemes, 372

encodings, 378
international character coding, 377-378
keyboard settings, 374-375
shell settings, 374-375
startup, 372-373
text setting, 372-373
window settings, 374
Xcode, 89-92
Preferences constructor, 235
Preferences menu, 230-231
pPreferences object, 234
Preferences window (Xcode), 89-92
PreferencesJFrame class, 206, 207, 209-210
Premier members (Developer Connection), 12-13
preprocessor check, 294
Pricing enum, 446
primary monitor, 82
Principal class, 364
printBill () method, 446
PrintIn() Call macro, 93
private access, 289
-private argument, 306
privateButtonClicked () method, 283
Process object, 190-191
ProcessControl class, 316-317
-processor<class>[,<class>, ...] option, 133
-processorpath<path> option, 133
-proc :none option, 133
-proc:only option, 133
Products folder, 100, 104-105
project element, 115
Project indexer, 85
Project Model, 85-89
Project window (Xcode)
favorites bar, 81-82
toolbar, 83-84
-projecthelp option, 118
-projecthelp option (Ant), 128
projects
adding, 95-96
creating from templates, 96-98
debugging, 106-108
empty, 46-47,435
HSQLDB Java, 78-80, 85-86
Java Applet
basic_applet.html file, 66
BasicApplet.java, 65
build.xml file, 63-65
empty project, selecting, 63

Executables, 67-70
folders, adding, 63
new project, 63
Target, 66-67

Java console application
build.xml file, 48-49

ConsoleApp.java file, 49-50
empty project, selecting, 46-47

Executables, 53-55
folders, adding, 46-47
Manifest file, 50-51
naming, 46
new project, 46
Target, 51-52

Java Swing application
build.xml file, 57-59

empty project, selecting, 56

Executable, 62-63
GuiApp.java file, 59-60
Manifest file, 60
naming, 56

new project, 56

resources_macosx folder, 56-57

Target, 60-61
JNI Library, 71-72
JniTest, 35-37
managing, 95-96
running, 96, 104-106
templates, 96-98
Xcode, 99-108

prologue, 111
properties (Ant)

ant.file, 124
ant .home, 124
ant.java.version, 124
ant.project.name, 124
ant.version, 124
Basdir, 124
build_directory, 124
clean target, 124
compile target, 124
defined, 123
file.separator, 124
java.class.path, 124
java.ext.dirs, 124
java.home, 124
java.version, 125
line.separator, 125

os.arch, 125
os.name, 125
os.version, 125
path.separator, 125
use.dir, 125
user.home, 125
user.name, 125

Properties tab (Jar Bundler), 170, 172-173
Property List Editor, 41-43, 147, 235
-propertyfile<name> option (Ant), 128

protected access, 289
@protocol, 339

protocols, 255

ps command (Darwin), 193
pthread, 460

pthread library (Darwin), 194
public access, 289
putBoolean () method, 234
pwd command (Darwin), 193
Python, 460

Q

—-g option (Ant), 128
Quartz, 460
Quick Model, 84-85, 89

Quick Selection tool (Photoshop), 153

Quick Start window (Xcode), 75
-quiet option (Ant), 127
Quit menu, 230-231

RAID (Redundant Array of Inexpensive Disks), 460

random-number generation, 341
raster, 460

rcp command, 193

read command, 139

read-only volume, 178

Rectangular Marquee tool (Photoshop), 155

refactor, 460

Reference Library, 8-10

regex (regular expressions), 460
regex library (Darwin), 194

registerEntryPointNatives () function,311-313
RegisterNatives () function, 314,351,356
registerOSXScreenSaverWrapper function, 351

regression tests, 433
relative links, 223

rm .

Relaunch button, 24
release method, 251
repaint () method, 331
Repositories list, 78-79
repository
directories, 78
importing new project into, 80
list, 79
naming, 78
setting up, 76-80
URL, 78
version control systems, 76-77
window, 79
resizing images, 165
resources directory, 66
resources folder, 46, 56, 63
resources_macosx folder, 56-57
return command, 138-139
rev command (Darwin), 193
Reveal in Finder, 105
RGB (Red Green Blue), 461
RGB Color mode (Photoshop), 152
rm command, 136-137, 193
rmdir command, 193
rmic command-line tool, 131
rmid command-line tool, 131
root
access, 461
defined, 461
directory, 42
element, 43
folder, 204
Round Trip Design and Development, 461
RSS (Real Simple Syndication), 461
RSS Feeds page, 9-10
Ruby, 461
Run class, 190-191
Run with Performance Tool submenu, 105
Runtime class, 190
rxvt, 376

S

-s argument, 306
-s<directory> option, 133
-s<£file> option (Ant), 128
Safari
32-bit version, 32
Reference Library RSS feed, 9-10

SAVER, 461
* saver file, 362, 363
SAVER Info.plist, 363-364
Scanner object, 210
scanner.nextInt (),210
scp, 461
scp task, 126-127
screen capture, 160, 166
screen resolution, 361
Screen Saver Framework for OS X, 330
Screen Saver Framework Reference Web site, 330
screen savers
assembling manually, 361-363
base_screen_saver, 335, 338-340
creating, 338-345
in Debug folder, 335
drawing, 342, 345
drawing animateOneFrame for, 338
implementing, 332-333
Info.plist, 363-364
initializing, 336-337
Java
finishing implementation of, 358-361
interfacing with wrapper, 356-357
invoking JVM for, 350-356
Objective-C base of, 348-350
overview, 345-346
wrapping Objective-C with Java, 346-347
Objective-C
creating project, 332-333
drawing, 342, 345
drawing animateOneFrame for, 338
initializing, 336-337
naming project, 333
starting and stopping animation, 337-338
overview, 329-330
project
creating, 332-333
naming, 333
templates, 332
prototype, 362-363
refreshing, 331
SAVER Info.plist, 363-365
setting as default, 364
shutting down, 332
in Snow Leopard, 332
starting, 331
starting and stopping animation, 337-338
testing, 334

wrapping NSBezierPath commands, 365-366

wrapping Objective-C with Java, 346-361
ScreenSaver framework, 187
ScreenSaverChild

callbacks, 357

class, 346, 365

instance, 351

interface, 348
ScreenSaverchild.h file, 348
ScreenSaverChild.mfile, 348
ScreenSaverView class, 331, 346, 347
script command (Darwin), 193
SearchKit, 187, 195
seed, 461
Select members (Developer Connection), 12-13
Selection tool (lllustrator), 165-166
sendMessage () method, 263, 266, 271, 281, 282
serialver command-line tool, 131
Servlet, 461
Set Working Directory property (Jar Bundler), 173
setAnimationTimeInterval: method, 337
setColor method, 357
setDefaultCloseOperation () method, 412
setHandled (true), 233
setNeedsDisplay:, 331
setScreenSaver function, 351
Settings tab (Terminal), 372
setupNativeCallbacks() method, 268, 277
Shape Selection tool (Photoshop), 153
shareware, 461
shell, 129-130, 461
shell scripts, 99-100, 129, 135-140, 195-196
Shell tab (Terminal), 374
shell variables, 37-38
Short Version property (Jar Bundler), 173
Show Favorites Bar (Xcode), 81
Show Package Contents menu, 145
Show Spaces (Xcode), 83
Show Status Bar (Xcode), 81
showMessageDialog () method, 397-399
showPreferences () method, 89
shutdown () method, 316
Signature property (Jar Bundler), 172
simple_jvm_invocation output, 309
simple_jvm_invoker. c file, 304-305, 307
single tags, 111
SingleCharReader

char_reader.c file, 300

main () method, 299

m .
native method, 299

native_getch_jni.h header file, 299-300
organization of, 297
overview, 297
source code, 297-298
static blocks, 298
sleep command (Darwin), 193
Snow Leopard, 332,461
Software Configuration Management (SCM), 76-80
Software Seeding Program, 12
Software Update tab, 201, 203
software updates
caution icon, 202
commercial upgrade dialog box, 202-203
flag, 200-201
free upgrade dialog box, 202
overview, 200
startup latency, avoiding, 200-201
Tomcat Web server, 203-204
upgrade dialog boxes, 202
Software Updates and Add-ons dialog box (Eclipse), 20
Software Upgrade panes, 201
sort command (Darwin), 193
Source Code Management (SCM), 18, 76-80
source code repository
directories, 78
importing new project into, 80
list, 79
naming, 78
setting up, 76-80
URL, 78
version control systems, 76-77
window, 79
-source<release> option, 133
SourceBrowser, 188
source-code editor, 82
-sourcepath<path> option, 133, 134
spaces, showing/hiding, 83
split command (Darwin), 193
src folder, 46, 56, 63, 85
srcdir attribute, 121
ssh, 461
SSRandomFloatBetween () function, 341
SSRandomIntBetween () function, 341
SSwWrapper . h header file, 350
SSWrapper .mfile, 350
startAnimation method, 337-338, 340-341, 354-355, 357
startJava () method, 316
Startup tab (Terminal), 372

rm .

static block, 246-247, 268, 290, 291, 298
static method, 338
status bar (Xcode), 81
stdio.h header file, 250
stopAnimation method, 332,337-338, 341, 357
Strings, 253, 324-325, 388
strings command (Darwin), 193
stringWithCharacters method, 252
Stroke icon (lllustrator), 164
strokeLinefromPoint:toPoint: method, 365
strokeRect: method, 365
Student members (Developer Connection), 12-13
Subversion, 18, 77
sudo command (Darwin), 193
Sudre, Stéphane, 179
Sun Microsystems, Inc., 461
sun.boot.class.path, 33
@SuppressWarnings annotation, 267
svn, 461
Swing

embedding NSView in, 269

overview, 5, 16-17
Swing GUI Builder, 21-22
Synchronized Block macro, 93
synchronous, 461
System method, 290
System Preferences, 331
System Tools, 6-7
System Update, 33
System.getenv () method, 44
System.getProperty () method, 34,44
System.load () method, 247
System.loadLibrary () method, 247,268
System.out.print () method, 369, 380, 390
System.out.println(), 369,370, 386, 390
system-wide properties, 41-43

T

tail command (Darwin), 193
talk command (Darwin), 193
tar command (Darwin), 193
Target
configuring, 51-52, 60-61, 66-67, 440-441
JAVA_HOME property, 445-446
MyApp target, 101-102
opening, 101
target element, 115

-target<release> option, 133
Target:ConsoleApp dialog box, 52
Target:GuiApp dialog box, 61
targets, multiple
basedir attribute, 122
build, 117-118,121
clean, 117-118, 121
compile, 118
depends attribute, 116-117
deprecation, 122
description attribute, 118
destdir attribute, 121
init, 117-118
-init, 118
manifest, 122
srcdir attribute, 121
test, 117-118
verbose, 122
Target:XcodeAndJUnit dialog box, 441
tasks (Ant), 127
tcgetattr () function, 301
tcsetattr () function, 396
tcsh, 461
Technical Note TN2147,324-326
tee command (Darwin), 193
telnet command (Darwin), 193
templates, 96-98
TENEX C shell, 135
Terminal
applications
ANSI escape sequences, 370-372, 379-380
AnsiDemo, 270-272
choosing color brightness, 381-382
completing color sequences, 383-385
concealing passwords, 385-389
configuring emulation, 372-378
entering passwords, 389
overview, 369-370
printing in ANSI color, 379-385
setting background colors, 382
background colors, 384-385
BasicColor, 380-381
columns, 391, 396
command-line browsing with, 24
command-line tools, 129-131
compiling from, 129-140
coordinates, 392
defined, 461

environmental variables, 37-39, 41
finding, 24
foreground color, 383-384
interacting with, 392-396
javac, configuring, 131-135
opening, 24
overview, 23
preferences
advanced settings, 376-377
color schemes, 372
encodings, 378
international character coding, 377-378
keyboard settings, 374-375
shell settings, 374-375
startup, 372-373
text setting, 372-373
window settings, 374
root directory, 42
rows, 391, 396
shell scripts, 129, 135-140
shell variables, 37-39
single character input, 297
storing configuration, 396
text colors, 382
user interfaces. See also graphical user interface (GUI)
advanced, creating, 411-418
clearing screen, 389-391
creating, 401-405
dialog boxes, 397-401
hiding and showing cursors, 390-391
improving, 405-411
menus, 397-401
moving cursor, 391-392
ncurses, 405-406
terminate, 461
termios, 301
@Test annotation, 446
test target, 117-118
test.shfile, 135-136
Tex Key Bindings, 89-91
text, 113
editing, 166
text colors, 382
Text Edit, 461
Text Editing (Xcode)
icon, 91
panel, 91
Text menu (Xcode), 83

Text tab (Terminal), 372
TextEdit, 198
thread, 461
thread safety, 321-322
tilde (~), 41
time command (Darwin), 193
tnameserv command-line tool, 131
todir attribute, 125
toggle, 461
Tomcat Web server, 203-204, 461
toolbar (Xcode Project window), 83-84
topic_1.html page, 225
touch command, 40-41, 193
Try/Catch Block macro, 93
ts_cols member, 396
ts_lines member, 396
tty command (Darwin), 193
ttysize struct, 396
TUI (Terminal User Interface)
advanced, creating, 411-418
clearing screen, 389-391
creating, 401-405
defined, 461
dialog boxes, 397-401
hiding and showing cursors, 390-391
improving, 405-411
menus, 397-401
moving cursor, 391-392
ncurses, 405-406
TuiMessageDialog class, 397-401
Tuivutil class
JNI header file, 393-394
native implementation of, 394-396
native methods, 393
source code, 393
TuiUtilImpl.c file, 394-396
TuiUtil.java, 393
TuiWindow class, 401-405
. txt file extension, 215
Type property (Jar Bundler), 172
type signatures, 306-307
Type tool (lllustrator), 166-167

U

Ul (user interface)
accessibility, 200
caution dialog boxes, 200

rm .

Ul (user interface) (continued)
defined, 461
design flaws, uncovering, 199
designing, 198-200
JFormDesigner, designing with
GUIs, 427
overview, 427-428
raw source generated by, 415
TUIs, 411
website, 20, 427
modal dialog boxes, avoiding, 200
Terminal. See also Charva
clearing screen, 389-391
creating, 401-405,411-418
dialog boxes, 397-401
hiding and showing cursors, 390-391
improving, 405-411
menus, 397-401
moving cursor, 391-392
ncurses, 405-406
Undo feature, 199-200
ul command (Darwin), 193
UML (Unified Modeling Language), 423, 462
UML class diagram, 431
UMLdoc generation dialog box, 425
uncompress command (Darwin), 193
Undo feature, 199-200
unexpand command (Darwin), 194
Unified Modeling Language (UML), 423, 462
unig command (Darwin), 193
units command (Darwin), 193
Unix, 4
UNIX Development Support, 6-7
updates
caution icon, 202
commercial upgrade dialog box, 202-203
flag, 200-201
free upgrade dialog box, 202
overview, 200
startup latency, avoiding, 200-201
Tomcat Web server, 203-204
upgrade dialog boxes, 202
upgrade_example, 204
UpgradeApplication, 203
UpgradeExample class, 206-207
uptime command (Darwin), 193
URLConnection, 210
“Use option as meta key” check box, 376

use.dir property, 125
user classpaths, 34
user interface (Ul), 200
accessibility, 200
caution dialog boxes, 200
defined, 461
design flaws, uncovering, 199
designing, 198-200
JFormDesigner, designing with
GUls, 427
overview, 427-428
raw source generated by, 415
TUIs, 411
website, 20, 427
modal dialog boxes, avoiding, 200
Terminal. See also Charva
clearing screen, 389-391
creating, 401-405,411-418
dialog boxes, 397-401
hiding and showing cursors, 390-391
improving, 405-411
menus, 397-401
moving cursor, 391-392
ncurses, 405-406
Undo feature, 199-200
warning, 200
User Scripts dialog box (Xcode), 19
user . home property, 125
user .name option (Ant), 128
user .name property, 125
users command (Darwin), 194
UTF-8 encoding, 111
UTF-16 encoding, 253, 324
Utilities directory, 41-42
Utilities folder, 24
utility icons, 150

Vv

-v option (Ant), 128
value attribute, 260
variables, 37-39, 123
vector art programs, 162
verbose, 122
-verbose option
Ant, 128
javac, 133
Version Control System (VCS), 76-80

rm -

-version option design tools, 423
Ant, 128 editor window, 81
javac, 133 IDE, 18
Version property (Jar Bundler), 172 Java Applet project, 63-70
Vertical Type tool (Photoshop), 159 Java compiler, setting, 73-74
virtual machine, 462 Java console application project, 46-51
VirtualBox, 462 Java macros, inserting, 93-94
vl, 462 Java Swing application project, 56-61
VM Options property (Jar Bundler), 173 JavaHome project, 26-30
VMWare Fusion, 188, 462 Jave-specific templates, 18
Volumes directory, 134 JNI Library project, 70-72
vt52,376 key bindings, 89-91
vt100, 376 layout, 80-81
vt102, 376 modifying view in, 80
navigation bar, 80-81

w Organizer

empty view, 95
w command (Darwin), 194 opening, 95-96
WAR files, 109 overview, 94-95
warning users, 200 projects, adding, 95-96
we command (Darwin), 194 projects, creating from templates, 96-97
weak global reference, 276 projects, running, 96
WeavesSs class, 346, 348, 358, 361 overview, 5, 17-19
webapps directory, 204 packages, 89
WebObjects, 6-7 page control, 82
welcome screen, 74-76 predefined Java project templates, 6
Welcome to Xcode window, 75-76 preferences, 89-92
whatis command (Darwin), 194 projects
whereis command (Darwin), 194 debugging, 106-108
which command (Darwin), 194 running, 104-106
who command (Darwin), 194 window, 81-82
whoami command (Darwin), 194 Quick Start window, 75
World Community Grid, 329 Source Code Management, 18
Worldwide Developer Conference (WWDC), 462 source code repository
wrapper, 462 directories, 78
write command (Darwin), 194 importing new project into, 80
WYSIWYG (What You See Is What You Get), 462 list, 79

naming, 78
x setting up, 76-80

. URL, 78

X (Wln?low System), 462 version control systems, 76-77
-X option, 133 R

window, 79

.xcclassmodel files, 86

Xcode. See also Eclipse; NetBeans
Activity window, 84-85
class models, 85-89
creating custom libraries with, 35-37
debugging in, 106-108
defined, 462

status bar, 81

testing from, with JUnit
configuring Target, 440-441
creating Executable, 442-444
creating Java Tool project, 435-440
XcodeAndUnit project, 436-440

Xcode (continued)
testing with JUnit, 435-452
toolbar, 83-84
User Scripts dialog box, 19
welcome screen, 74-76
Xcode 3.2, 35
XCode Console, 452
Xcode Default key bindings, 89
Xcode Tools
installing, 6-7
screen, 7
XcodeAndUnit class, 446
XcodeAndUnit project, 436-440
XcodeTools installer, 6
XML (E