84 / Hardwired Conorol O 379

requires excessive work to obtain the simplified input equations for the flip-flops.
Here, the design can be simplified if we take into consideration the fact that the
decoder outputs are available for use in the design. Instead of using flip-flop out-
puts as the present state conditions, we might as well use the outputs of the
decoder to obtain this information. These outputs supply a single signal repre-
senting each of the possible present states of the circuit, Moreover, instead of
using maps to simplify the flip-flop equations, we can obtain them directly by
inspection of the state table. For example, from the nexi-state conditions in the
table, we find that the next state of M, is equal to 1 when the present state is
IDLE and input 5 is equal to 1 or when the present state is MULI and input 2 is
equal to 0. These conditions give

Dy =IDLE-G+MULL- Z

for the I input of the M, flip-flop. Similarly, the I input of the M, flip-flop is
‘D-‘ﬂ = MULO

Mote that these equations derived by inspection from the state table use the state
names rather than the state variable names, since the decoder producing the state
symbols is present. In some cases, it may be possible to find simpler I} flip-lop
input equations by using the state variables directly instead of the states. We can
remove redundancy and reduce cost by writing the Boolean equations for the
decoder and applying a simplification program to the set of control equations.

The logic diagram for the control appears in Figure 8-10. It consists of a two-
bit register with flip-flops M, and M, and a 2-to-4-line decoder. The three outputs

t t Initialize
— D C
2 D M _D—C'lear_c

7-‘[>°ij >C DECODER IDLE
N ’ MULD
I T
2 MULL _ shift_dec
— Al A
M,
D -
> C
= Load
o 1 =

Clock

O FIGURE 8-10
Control Unit for Binary Multiplier Using a Sequence Register and a Decoder

380 O CHAPTER 8§ / SEQUENCING AND CONTROL

of the decoder are used to generate the control outputs, as well as inputs to the
next-state logic. The outputs Initialize, Clear_C, Shift_dec, and Load are deter-
mined from Table 8-1. Initialize and Shift_dec are already available as signals, so
that only labeled output lines are added. However, as shown in the figure, we must
add logic gates for Clear_C and Load. We complete the binary multiplier design by
connecting the outputs of the control unit to the control inputs of the datapath.

One Flip-Flop per State

Another possible method of control logic design is the use of one flip-flop per state.
A flip-flop is assigned to each of the states, and at any time, only one of the flip-
flops contains a 1, with all the rest containing 0. When the 1 is in the flip-flop
assigned to a particular state, the sequential circuit is in that same state. The single
1 propagates from one flip-flop to another under the control of decision logic. In
such a configuration, each flip-flop represents a state that is present only when the
single 1 is stored in the flip-flop.

It is obvious that, short of some error detection or correction techniques, this
method uses the maximum number of flip-flops for the sequential circuit. For
example, a sequential circuit with 12 states using minimum variable encoding
needs four flip-flops. With one flip-flop per state, the circuit requires 12 flip-flops,
one for each state. At first glance, it may seem that this method would increase the
cost of the system, since more flip-flops are used. But the method offers some cost
advantages that may not be apparent. One advantage is the simplicity with which
the logic can be designed—merely by inspection of the ASM chart or state dia-
gram, No state or excitation tables are needed if D flip-flops are employed. This
offers a savings in design effort.

Figure 8-11 shows the symbol replacement rules for transforming an ASM
chart into a sequential circuit with one flip-flop per state. These rules are most
easily applied to an ASM chart representing only sequencing information, such as
that of Figure 8-9. Each rule specifies the replacement of a component of an ASM
chart with a logic circuit. As shown in Figure 8-11(a), the state box is replaced by
a D flip-flop labeled with the name of the state. The entry to the state box corres-
ponds to the D input to the flip-flop. The exit of the state box corresponds to the
output of the flip-flop.

In Figure 8-11(b), the scalar decision box is replaced by a 2-way demulti-
plexer. The signal corresponding to the entry to the decision box is sent to one of
two exit lines, depending on the value of signal X. If X is 0, the signal is sent to the
exit 0 line; if X is 1, the signal is sent to the exit 1 line. So, for example, if the single
1 in the circuit is on the entry to the decision box, and X is 0, the 1 is passed to the
exit 0 line. The demultiplexer acts like a switch that directs the 1 through the paths
in the circuit corresponding to paths in the ASM chart.

In Figure 8-11(c), the vector decision box is replaced by an n-way demulti-
plexer. The signal corresponding to the entry to the decision box is sent to one of the
2% —1 lines, depending on the value of the signal vector X = Xy, ..., X,,;. If X is 0, the
signal is sent to the exit 0 line; if X is 9, the signal is sent to the exit 9 line. So, for
example, if the single 1 in the circuit is on the entry to the decision box, and X is 9,

8- / Hardwired Conrol O 381

Entry
l Entry
State
D State
—C D
l Exit
Exit
. () State box
Entry

Entry

L DEMUX
EN D,
0 1

XA Dy —§|

Lo Exit1 Exit1 Exit 0
(b) Scalar Decision Box
Entry Entry
l L DEMUX
A Ey Dy— Exit 0
Exit () =+— b —Exit 1
Exit]l +— X, X,,.X,_; |- Xo— A Dy .
e X _ H D B
V_bEth b X1 —aA, pn _ [Exit2" =1
(€} Vector Decision Box
Entry1 Entry2 Entry 1 Entry 2
Exit
Estry {d) Junction Exit
Entry
X

Exit1 Control

(&) Conditional Output Box

O FIGURE 8-11
Transformation Rules for Control Unit with One Flip-Flop per State

382 0O CHAPTER &/ SEQUENCING AND CONTROL

the 1 is passed to the exit 9 line. The demultiplexer acts like a switch that directs the
1 through the paths in the circuit corresponding to paths in the ASM chart.

The junction in Figure 8-11(d) is any point at which two or more directed
lines in the ASM chart join together. If a 1 is present in the circuit on any line cor-
responding to one of the entry paths, then it must appear on the line corresponding
to the exit path, giving that line the value 1. If none of the lines corresponding to
entry paths into the junction have the value 1, then the exit line must have the
value (). Thus, the junction is replaced by an OR gate.

With these four transformations, the sequencing part of the ASM chart can
be replaced by a circuit with one flip-flop per state, just by inspection. In order to
handle outputs, it is merely a matter of attaching control lines to the proper loca-
tions in the circuit or adding output logic. The outputs are based on the original
ASM chart or the control signal table derived from the chart. Attaching a control
line based on an ASM chart is illustrated by the conditional output box shown in
Figure 8-11(e). The conditional output box in the ASM chart is just replaced by a
connection in the circuit. But to cause the output actions to happen, a control line
is tapped from the connection and labeled with the output variable, The transfor-
mation is shown in blue for clarity.

We now use these transformations to find the control unit with one flip-flop
per state for the binary multiplier.

EXAMPLE 8-1 Binary Multiplier

The ASM chart in Figure 8-9 will be used for the sequencing part of the design,
Mote that the binary codes given are ignored, since they were for the former design
approach. The resulting logic diagram is shown in Figure 8-12.

First, we replace each of the three state boxes by a D flip-flop labeled with
the name of the state, as indicated by the circled 1's in the figure. Second, each of
the decision boxes is replaced by a demultiplexer with the decision variable as its
selection input, as indicated by the circled 2's in the figure. Third, each junction is
replaced by an OR gate, as indicated by the circled 3's. Finally, the connections
represented by the directed lines in the ASM chart are added from the outputs to
the inputs of the corresponding components.

To handle the control outputs, we can use either Table 8-1 or the original ASM
chart in Figure 8-7. From the table, we see that the Boolean function for Initialize is
already available in the logic diagram, so we simply add the output labeled Initial-
ize. Likewise, the output for Shift_dec can be added. For Clear_C and Load, how-
ever, logic gates are added. All of the output connections and logic added are
designated by the circled 4's in Figure 5-12.

One final issue in the design of the control logic with one flip-flop per state
is initialization to the state having a 1 in the IDLE flip-flop and a 0 in all of the
others. This can be done by using an asynchronous PRESET input on the IDLE
flip-Alop and an asynchronous CLEAR on the other flip-flops. If only an asyn-
chronous CLEAR is available, rather than both PRESET and CLEAR, a NOT
gate can be placed just before the D input and another NOT gate just after the

B-4 / Hardwired Conrol O 383

@
IDLE @
D
> C @
DEMUX
EMN Dy—
G Ay Dy
@
Initialize
® ®
__D——Ciea: ¥
MULO (D) Qy—
D | J Load
C
i MLILI @ @
—D Shift_dec
> C
Clock @
DEMUX
—{ EN 1y
Z—a, Dy —‘

O FIGURE 8-12
Control Unit with One Flip-Flop per State for the Binary Multiplier

output of the IDLE flip-flop. Then the IDLE flip-flop will actually contain a 0
when in state IDLE and a 1 at all other times. This permits the asynchronous
CLEAR to be used to initialize all three flip-flops in the circuit. It should be
noted that, other than for resetting the circuit. the use of asynchronous flip-flop
inputs for implementing ASMs or other sequential circuits is generally poor

design practice. -

384 0O CHAPTER 8/ SEQUENCING AND CONTROL

Once the basic design of the control logic with one flip-flop per state is com-
pleted, it may be desirable to refine the design. For example, if there are a number
of junctions connected together by lines, the OR gates that resulted from the trans-
formation may be combined. Also, demultiplexers cascaded with each other may
be combined. Other logic reduction or and technology mapping may also be
applied to the design.

8-5 HDL REPRESENTATION OF THE BINARY
MuLtiPLiIER—VHDL

The binary multiplier just studied can be represented during the design process as a
behavioral VHDL description. Such a description for a 4-bit version of the multiplier
appears in Figures 8-13 and 8-14. This VHDL code represents the block diagram in
Figure 8-6 and the ASM chart in Figure 8-7. The VHDL code consists of entity
binary_multiplier and an architecture behawvior_4. The architecture contains
two assignment statements and three processes, The processes are similar to those
used for the sequence recognizer in Chapter 6. The primary difference is that the
output function process has been replaced by a process describing the datapath regis-
ter transfers. Due to this change, the VHDL representation corresponds more closely
to the description in Table 8-1 and the ASM chart in Figure 8-9 than to the ASM
chart in Figure 8-7.

In the entity, multiplier inputs and outputs are defined. At the beginning of
the architecture, a type declaration defines the three states. Internal signals, some
of which will generate registers are declared next. Among these are state and
next_state for the control, registers &, B, F and Q, and flip-flop C. Also, interme-
diate signal 2 is declared for convenience. Next, an assignment is made which
forces z to be 1 whenever P contains value 0. Following this, the outputs of concat-
enated registers A and Q are assigned to the multiplier output MULT_0UT. This is
necessary, rather than making & and ©Q circuit outputs, to permit & and Q to be used
within the circuit.

The remainder of the description consists of the three processes. The first
process describes the state register and includes a RESET as well as the clocking.
The second process describes the next state function from Figure 8-8. Note that,
since clocking and RESET are included in the state register, they do not appear
here. In the sensitivity list, all signals that can affect the next state, G, 2, and state
are included. Otherwise, this process resembles that for the next_state process
in the sequence recognizer,

The final process in Figure 8-14 describes the datapath function. Since the
conditions for performing an operation are defined in terms of the states and
inputs, this process also implicitly defines the control signals given in Table B-1.
These control signals do not appear explicitly, however. Since the datapath func-
tion has registers as all assignment destinations, all transfers are controlled by CLX.
Since contents will be loaded into these registers before the multiply operation is
ever performed., it is unnecessary to provide a reset for these registers. The first i £
statement controls the loading of the multiplicand in register & and the second if
statement controls the loading of the multiplier into register Q.

8-5 / HDL Representation of the Binary Multiplie—VHDL O 385

== Binary Multiplier with n = 4: VHDL Descripticn
-- See Figures 8-6 and 8-7 for block diagram and ASM Chart
library ieee;
use ieee.std logic 1164.all;
use ieee.std logic_unsigmed. all;
entity binary multiplier is
port (CLE, RESET, G, LOADE, LOADQ: im =td_logic;
MULT IN: in std logic wvector{3 dowmto 0);
MULT_CUT: out std_logic_wvector (7 downto 0));
end binary multiplier;

architecture behavior 4 of binary multiplier is
type state_type is (IDLE, MULO, MULL);
signal state, next_state : state_type;
signal A, B, Q: std_logic_wvector(3l downto 0);
signal P: std_logic_vector(l downto 0);
signal C, Z: std_logic;

bagin
Z£ <= F(1) WOR P(D);
MULT OUT <= A & Q;

state register: process (CLE, RESET)
begin
if (RESET = 'l') then
state <= IDLE;
elgif (CLE‘event and CLE = 'l') then
state <= next_state;
end if;
end process;

next_state_func: process (G, Z, state]
begin
case =tate is
when IDLE =>
if G = 'l' then
next_state <= MULO;
alse
next_state <= IDLE;
end if;
when MULD =>
next_ state <= MULL;
when MULL =>
if Z = 'l' then
next_state <= IDLE;
else
next_state <= MULOD;
end if;

O FIGURE 8-13
VHDL Description of a Binary Multiplier

386 0O CHAPTER 8/ SEQUENCING AND CONTROL

end case;
end process;

datapath func: process (CLK)
variable Ch: std logic_wvector (4 downto 0];
begin
if (CLE‘event and CLK = 'l') then
if LOADE = 'l' then
B == MULT_IN;
end if;
if LOADD = '1l' then
Q <= MULT IN;
end if;
case =tate is
when IDLE =>
if G = '1l' than

C <= '0';
A <= "0000";
P <= "11%;
end if;
when MULD ==
if Qid) = '1l' than
CA := ('O & A) + {'0" & B):
else
CA 1= C & A;
aend if;
C <= Ca(d);

A <= CA(3 downto 0);
when MIL1L =>
C <= "'0";
A == C & A3 downto 1};
0 == A(0) & Q{3 downto 1);
P<=P- "01";
end case;
end if;
end process;
end behavior_4;

O FIGURE 8-14
VHDL Description of a Binary Multiplier {Continued)

The register transfers directly involved in the multiplication are controlled by
a ease statement dependent upon the control state, input G, and internal signals
2 {0) and Z. These transfers are outlined in Figure 8-7 and Table 8-1. Representa-
tion of the addition in state MULO requires some effort. First of all, to perform
addition on std_logic vectors, a use statement appears just before the entity decla-
ration for the package iecee.std_logic_unsigned.all. In addition to the
sum from the addition, we also need to transfer the carry out, C,,,. from the addi-
tion into C, To achieve this, we perform a 5-bit addition with 0's appended to the

8-6 / HDL Representation of the Binary Multiplier—Verilog O 387

left of A and B and the result assigned to a 5-bit variable CA. The alternative would
be to write C & & as the transfer destination, but use of concatenation & in destina-
tions is not permitted in VHDL. Since CA is a variable, its value is assigned imme-
diately and is available for assignment to C and A after the i£ statement. In state
MUL1, the shift is performed by using concatenation, as was done in the example in
Chapter 5. P is decremented by subtracting a 2-bit constant with value 1.

This description can be simulated to validate its correctness and synthesized
to automatically produce the logic if desired.

8-6 HDL REPRESENTATION OF THE BINARY
MULTIPLIER—VERILOG

The binary multiplier just studied can be represented during the design process as
a behavioral Verilog description. Such a description for a 4-bit version of the multi-
plier appears in Figures 8-15 and 8-16. This Verilog code represents the block dia-
gram in Figure 8-6 and the ASM chart in Figure 8-7. The Verilog code is contained
in a module binary_multiplier_v. The description contains two assignment
statements and three processes. The processes are similar to those used for the
sequence recognizer in Chapter 4. The primary difference is that the output func-
tion process has been replaced by a process describing the datapath register trans-
fer. Due to this change, the Verilog representation corresponds more closely to the
description in Table 8-1 and the ASM chart in Figure 8-9 than to the ASM chart in
Figure 8-7.

At the beginning of the description, multiplier inputs and outputs are
defined. A parameter declaration defines the three states and their binary codes.
Internal signals of type register are defined. Among these are the state and
next_state for the control, registers A, B, P and Q, and flip-lop C. Based on
clocking specifications, most of these will become actual positive-edge-triggered
registers. The notable exception is next_state. Also, intermediate signal 2 of
type wire is declared for convenience. Next, an assignment is made which forces 2
to be 1 whenever P contains value 0. This assignment uses the operation OR (| Jas
a reduction operator. Reduction is the application of an operator to a wire or regis-
ter that combines the individual bits. In this case, the application of OR to P causes
all bits of P to be ORed together. Since the OR is preceded by a -, that overall
operation performed is a NOR. Other operators may also be applied as reduction
operators. The second assignment statement assigns the outputs of concatenated
registers A and Q to the multiplier output MULT_0UT. This is done for convenience
to make that output a single structure.

The remainder of the description consists of the three processes. The first
process describes the state register and includes a RESET as well as the clocking.
The second process describes the next state function from Figure 8-9, Note that
since clocking and RESET are included in the state register, they do not appear
here. In the event control statement, all signals that can affect the next state, G, Z,
and state are included. Otherwise, this process resembles that for the next state
process in the sequence recognizer.

388 O CHAPTER 8/ SEQUENCING AND CONTROL

// Binary Multiplier with n = 4: Verilog Description
// See Figures 8-6 and 8-7 for block diagram and ASM Chart

module binary multiplier v (CLE, RESET, G, LOADE, LOADQ,
MUOLT_IN, MOLT OUT);

input CLE, RESET, G, LOADE, LOADQ;

input [3:0] MULT _IN;

cutput [7:0] MULT_OUT;

reg [1:0] state, next state, P;

parameter IDLE = 2°'L00, MULO = 2°h01l, MUL1 = Z2'b10;

reg [3:0] A, B, Q;

reg C;

wire Z;

asgign Z = ~| P;
assign MULT OUT = {A,Q};

//state register
always@ (posedge CLK or posedge RESET)
begin

if (RESET == 1)

state <= IDLE;

else

state <= next_state;
end

finext state function
always@ (G or Z or state)

begin
case [(state)
IDLE:
i1f (G == 1)
next_state <= MULO;
else
next_state <= IOLE;
MULQD :
next_state <= MUJL1;
ML :
if (Z == 1)
next_state <= IDLE;
alse
next_state <= MULQ;
endcase
end

//datapath function
always@ (posedge CLE)

O FIGURE 8-15
Verilog Description of a Binary Multiplier

8-6 / HDL Representation of the Binary Multiplier—Verilog O 389

begin
if (LOADE == 1)
B <= MULT TM;
if (LoaD) == 1)
Q <= MULT IN;:
case (state)

IDLE:
if (G == 1)
begin
C == 0;
A <= 4'b0O000;
P == 2'bll;
end
MULD :

if (QI0) == 1)
{C, A} = A + B;

MULL:
begin
Ce= 1k
A <= {C, Al3:1]};
Q == {A[0], Q[3:1]);
P <= P - 2'b01;
end
endcase
end
endmodule

O FIGURE 8-16
Verilog Description of a Binary Multiplier (Continued)

The final process describes the datapath function. Since the conditions for
performing an operation are defined in terms of the states and inputs, this process
also implicitly defines the control signals given in Table 8-1. These control signals
do not appear explicitly, however. Since the datapath function has registers as all
assignment destinations, all transfers are controlled by CLE. Since contents will be
loaded into these registers before the multiply operation is ever performed, it is
unnecessary to provide a reset for these registers. The first 1 statement controls
the loading of the multiplicand into register B and the second if statement con-
trols the loading of the multiplier into register Q.

The register transfers directly involved in the multiplication are controlled by
a case statement dependent upon the control state, input G, and internal signals
©(0) and 2. These transfers are outlined in Figure 8-7 and Table 8-1. Representa-
tion of the addition in state MULO uses concatenation of C and A to obtain the carry
out, C,,. for loading into C. Verilog does permit the used of two 4-bit operands
with a 5-bit result for the addition. In state MULL, the shift is performed by using
concatenation as was done in the example in Chapter 5. P is decremented by sub-
tracting a 2-bit constant with value 1.

390 O CHAPTER 8/ SEQUENCING AND CONTROL

This description can be simulated to validate its correctness and synthesized
to automatically produce the logic if desired.

8-7 MICROPROGRAMMED CONTROL

A control unit with its binary control values stored as words in memory is called a
microprogrammed control. Each word in the control memory contains a microin-
struction that specifies one or more microoperations for the system. A sequence of
microinstructions constitutes a microprogram. The microprogram is usually fixed at
the system design time and so is stored in ROM. Microprogramming involves plac-
ing representations for combinations of values of control variables in words of
ROM. These representations are accessed via successive read operations for use by
the rest of the control logic. The contents of a word in ROM at a given address
specify the microoperations to be performed for both the datapath and the control
unit. A microprogram can also be stored in RAM. In this case, it is loaded at sys-
tem startup from some form of nonvolatile storage, such as a magnetic disk. With
either ROM or RAM, the memory in the control unit is called confrol memory. If
RAM is used, the memory is referred to as writable control memory.

Figure 8-17 shows the general configuration of a microprogrammed control.
The control memory is assumed to be a ROM within which all control micropro-
grams are permanently stored. The control address register (CAR) specifies the
address of the microinstruction. The control data register (CDR). which is optional,
may hold the microinstruction currently being executed by the datapath and the
control unit. One function of the control word is to determine the address of the
next microinstruction to be executed. This microinstruction may be the next one in
sequence, or it may be located somewhere else in the control memory. Therefore,
one or more bits that specify the method for determining the address of the next
microinstruction are present in the current microinstruction. The next address may
also be a function of status and external control inputs. When a microinstruction is
executed, the next-address generator produces the next address. This address is
transferred to the CAR on the next clock pulse and is used to read the next micro-
instruction to be executed from ROM. Thus, the microinstructions contain bits for
activating microoperations in the datapath and bits that specify the sequence of
microinstructions executed.

The next-address generator, in combination with the CAR, is sometimes called
a microprogram sequencer, since it determines the sequence of instructions read
from control memory. The address of the next microinstruction can be specified in
several ways, depending on the sequencer inputs. Typical functions of a micropro-
gram sequencer are incrementing the CAR by one and loading the CAR. Possible
sources for the load operation include an address from control memory, an exter-
nally provided address, and an initial address to start control unit operation.

The CDR holds the present microinstruction while the next address is com-
puted and the next microinstruction is read from memory. The CDR breaks up the
long combinational delay paths through the control memory followed by the data-
path. Its presence allows the system to use a higher clock frequency and process
information faster. The inclusion of a CDR in a system, however, complicates the

8-7 / Microprogrammed Control O i

Control
inputs Status signals from datapath

| b d

Mext-address
generator

-.|.- Sequencer

Control address
register

=1- Control address

v

Address

Control
memory
(ROM)

Data

I .

i e s . e I
Control data register I
(optional) :

Mext-address Control Control signals
information outputs o datapath

O FIGURE §-17
Microprogrammed Control Unit Organization

sequencing of microinstructions, particularly when decisions are made based on
status bits. For simplicity in our briefl discussion, we omit the CDR and take the
microinstructions directly from the ROM outputs. The ROM operates as a combi-
national circuit, with the address as the input and the corresponding microinstruc-
tion as the output. The contents of the specified word in ROM remain on the
output lines as long as the address value is applied to the inputs. No read/write sig-
nal is needed, as it is with RAM. Each clock pulse executes the microoperations
specified by the microinstruction and also transfers a new address to the CAR. In
this case, the CAR is the only component in the control that receives clock pulses
and stores state information. The next-address generator and the control memaory
are combinational circuits, Thus, the state of the control unit is given by the con-
tents of the CAR.

Microprogrammed control has been a very popular alternative implementa-
tion technique for control units for both programmable and nonprogrammable sys-
tems. However, as systems have become more complex and performance
specifications have increased the need for concurrent parallel sequences of activities,
the lockstep nature of microprogramming has become less attractive for control unit

392 [O CHAPTER 8/ SEQUENCING AND CONTROL

implementation. Further, a large ROM or RAM tends to be much slower than the
corresponding combinational logic. Finally, HDLs and synthesis tools facilitate the
design of complex control units without the need for a lockstep programmable
design approach. Overall, microprogrammed control for the design of control units,
particularly direct datapath control in CPUs, has declined significantly. However, a
new flavor of microprogrammed control has emerged, for implementing legacy com-
puter architectures. These architectures have instruction sets that do not follow con-
temporary architecture principles. Nevertheless, such architectures must be
implemented due to massive investments in software that uses them. Further, the
contemporary architecture principles must be used in the implementations to meet
performance goals. The control for these systems is hierarchical with micropro-
grammed control selectively used at the top level for complex instruction implemen-
tation and hardwired control at the lower level for implementing simple instructions
and steps of complex instructions at a very rapid rate. This flavor of microprogram-
ming is covered for a Complex Instruction Set Computer (CISC) in Chapter 12.

Information on the more traditional flavor of microprogrammed control, derived
from past editions of this text, is available in a supplement, Microprogrammed
Control, on the Companion Website for the text.

8-8 CHAPTER SUMMARY

This chapter has examined the interaction between datapaths and control units and
the difference between programmed and nonprogrammed systems. The algorith-
mic state machine (ASM) is a means for representing and specifying control func-
tions. A binary multiplier was used to illustrate ASM chart formulation. Two
implementation approaches to sequential circuit design, sequence register plus
decoder and one flip-flop per state, were provided, in addition to the basic design
procedure in Chapter 4. VHDL and Verilog alternatives for describing combina-
tions of datapath and control were also illustrated, Finally, microprogrammed con-
trol was briefly discussed.

REFERENCES

1. Mano, M. M. Computer Engineering: Hardware Design: Englewood Cliffs,
NI: Prentice Hall, 1988.

2, Mano, M. M. Digital Design, 3rd Ed. Englewood Cliffs, NJ: Prentice Hall,
2002.

3. [EEE Standard VHD L Language Reference Manual. (ANSUIEEE 5td 1076-
1993; revision of IEEE Std 1076-1987). New York: The Institute of Electrical
and Electronics Engineers, 1994,

4. SwitH, D. 1. HDL Chip Design. Madison, AL: Doone Publications, 1996,

TEEFE Standard Description Language Based on the Verilog{ TM) Hardware

Description Language (IEEE 5td 1364-1995). New York: The Institute of

Electrical and Electronics Engineers, 1995,

]

Problems O 393

6. PALNITKAR, S. Verilog HDL: A Guide to Digital Design and Synthesis. SunSoft

Press (A Prentice Hall Title), 1996.

7. THoMAS, D. E., anD P. R. MooRBY. The Verilog Hardware Description

Language 4th ed. Boston: Kluwer Academic Publishers, 1998,

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates a
solution is available on the Companion Website for the text.

8-1.

B2

8-3

*A state diagram of a sequential circuit is given in Figure 8-18. Find the
corresponding ASM chart. Minimize the chart complexity by using both
vector and scalar decision boxes. The inputs to the circuit are X, and X, and
the outputs are Z, and Z,.

*Find the response for the ASM chart in Figure 8-19 to the following
sequence of inputs (assume that the initial state is ST1):

A: 6 1 1 ¢ 11 0 1

B: 1 1 01 0 1 0 1

c: 0 1 01 01 0 1

State: 5T1

Z:
An ASM chart is given in Figure 8-19. Find the state table for the
corresponding sequential circuit.

Find the ASM chart corresponding to the following description: There are
two states, A and B. If in state A and input X is 1, then the next state is A. If
in state A and input X is 0, then the next state is B. If in state B and input ¥
is 0, then the next state is B. If in state B and input Y is 1, then the next state
is.A. Output £ is equal to 1 while the circuit is in state B.

O FIGURE §-18
State Diagram for Problem 8-1

394

O CHAPTER 8 / SEQUENCING AND CONTROL

ST1 1

T3

O FIGURE 8-19
ASM Chart for Problem 8-2 and Problem 8-3

*Find the ASM for a circuit that detects a difference in value in an input
signal X" at two successive positive clock edges. If X has different values at
two successive positive clock edges, then output Z is equal to 1 for the next
clock cycle. Otherwise, output Z is 0.

+The ASM chart for a synchronous circuit with clock CK for a washing
machine is to be developed. The circuit has three external inputs, START,
FULL, and EMPTY (which are 1 for at most a single clock cycle and are
mutually exclusive), and external outputs, HOT, COLD, DRAIN, and
TURN. The datapath for the control consists of a down-counter, which has
three inputs, RESET, DEC, and LOAD. This counter synchronously
decrements once each minute for DEC = 1, but can be loaded or
synchronously reset on any cycle of clock CK. It has a single output, ZERO,
which is 1 whenever the counter contains value zero and is 0 otherwise.

B-7.

Problems 0O 395

In its operation, the circuit goes through four distinct cveles, WASH, SPIN,
RINSE, and SPIN, which are detailed as follows:

WASH: Assume that the circuit is in its power-up state IDLE. If START is 1
for a clock cycle, HOT becomes 1 and remains 1 until FULL = 1, filling the
washer with hot water. Next, using LOAD., the down-counter is loaded with a
value from a panel dial which indicates how many minutes the wash cycle is to
last. DEC and TURN then become 1 and the washer washes its contents. When
ZERO becomes 1, the wash is complete, and TURN and DEC become (0.

SPIN: Next, DRAIN becomes 1, draining the wash water. When EMPTY
becomes 1, the down-counter is loaded with 7. DEC and TURN then
become 1 and the remaining wash water is wrung from the contents. When
ZERO becomes 1, DRAIN, DEC, and TURN return to 0.

RINSE: Next, COLD becomes 1 and remains 1 until FULL = 1, filling the
washer with cold rinse water. Next, using LOAD, the down-counter is loaded
with value 10. DEC and TURN then become 1 and the washer rinses its con-
tents. When ZERO becomes 1, the rinse is complete, and TURN and DEC
become 0.

SPIN: Next, DRAIN becomes 1, draining the rinse water. When EMPTY
becomes 1, the down-counter is loaded with 8. DEC and TURN then
become 1 and the remaining rinse water is wrung from the contents. When
ZERO becomes 1, DRAIN, DEC, and TURN return to 0 and the circuit
returns to state IDLE.

{a) Find the ASM chart for the washer circuit.

(b) Modify your design in part (a) assuming that there are two more inputs,
PAUSE and STOP. PAUSE causes the circuit, including the counter, to
halt and all outputs to go to 0. When START is pushed, the washer
resumes operation at the point it paused. When STOP is pushed, all
outputs are reset to 0 except for DRAIN which is set to 1. When
EMPTY becomes 1, the state returns to IDLE.

Find an ASM chart for a traffic light controller that works as follows: A
timing signal T is the input to the controller. T defines the yellow light
interval, as well as the changes of the red and green lights. The outputs to the
signals are defined by the following table:

Output Light Controlled

GMN Green Light, North/South Signal
YN Yellow Light, North/South Signal

RN Red Light, North/South Signal
GE Green Light, East/West Signal
YE Yellow Light, East/West Signal

RE Red Light, East/West Signal

396

g

8-10.

8-11.

812

8-13.

8-14.

8-15.

§-16.

O CHAPTER § / SEQUENCING AND CONTROL

While T = 0, the green light is on for one signal and the red light for the
other. With T = 1, the vellow light is on for the signal that was previously
green, and the signal that was previously red remains red. When T becomes
{}, the signal that was previously vellow becomes red, and the signal that was
previously red becomes green. This pattern of alternating changes in color
continues. Assume that the controller is synchronous with a clock that
changes much more frequently than input 7.

“Implement the ASM chart in Figure 8-19 by using one flip-flop per state.

*Implement the ASM chart in Figure 8-19 by using a sequence register and
decoder,

+Implement the ASM chart derived in Problem 8-6(a) by using one flip-flop
per state.

*Multiply the two unsigned binary numbers 100110 (multiplicand) and 110101
(multiplier) by using both the hand method and the hardware method.

Manually simulate the process of multiplying the two unsigned binary
numbers 1010 {multiplicand) and 1011 {multiplier). List the contents of
registers A, O, F, and C and the control state, using the system in Figure 8-6
with n equal to 4 and with the hardwired control in Figure 8-12.

Determine the time it takes to process the multiplication operation in the
digital system described in Figure 8-6 and Figure 8-9. Assume that the
register has n bits and the interval for a clock cvele is fnanoseconds.

Prove that the multiplication of two n-bit numbers gives a product of no
more than 2n bits. Show that this condition implies that no overflow can
occur in the final result in the multiplier circuit defined in Figure 8-6,

Consider the block diagram of the multiplier shown in Figure 8-6. Assume

that the multiplier and multiplicand consist of 16 bits each.

(a) How many bits can be expected in the product, and where is it available?

(b) How many bits are in the P counter, and what is the binary number that
must be loaded into it initially?

(¢) Design the combinational circuit that checks for zero in the P counter.

*Design a digital system with three 16-bit registers AR, BR, and CR and 16-bit

data input IN to perform the following operations, assuming a two's complement

representation and ignoring overflow:

(a) Transfer two 16-bit signed numbers to AR and BR on successive clock
cycles after a go signal G becomes 1.

{b) If the number in AR is positive but nonzero, multiply the contents of BR
by two and transfer the result to register CR.

() If the number in AR is negative, multiply the contents of AR by two and
transfer the result to register CR.

(d) If the number in AR is zero, reset register CR to 0,

Problems O 397

8-17. +Modify the multiplier design in Figure 8-6 and the ASM chart in Figure 8-7

8-18.

8-19.

8-20.

8-21.

8-22

to perform 2's complement signed-number multiplication using Booth's
algorithm, which employs an adder—subtractor. The decision to add, to
subtract, or to do nothing is made on the basis of the current least significant
bit (LSB) in the O register and on the previous LSB bit from the Q register
before (J was shifted right. Thus, a flip-flop must be provided to store the
previous LSB from the @ register. The initial value of the previous least
significant bit is to be 0. The following table defines the decisions:

LSB of @ Previous LSB of @ Action

Leave partial product unchanged
Add multiplicand to partial product
Subtract multiplicand from partial product

0
0
1
1 Leave partial product unchanged

Lo — T — |

+Design a digital system that multiplies two unsigned binary numbers by the
repeated addition method. For example, to multiply 5 by 4, the digital system
adds the multiplicand four times: 5 + 5 + 5 + 5 = 20. Let the multiplicand be
in register BR, the multiplier in register AR, and the product in register PR.
An adder circuit adds the contents of BR to PR, and AR is a down-counter.
A zero-detection circuit 2 checks when AR becomes zero after each time
that it is decremented. Design the control by the flip-flop per state method.

*Write, compile, and simulate a VHDL description for the ASM shown in
Figure 8-19. Use a simulation input that passes through all paths in the ASM
chart, and include both the state and output £ as simulation outputs. Correct
and resimulate your design if necessary.

*Write, compile, and simulate a Verilog description for the ASM in Figure
#-19. Use code 00 for state ST1, 01 for state ST2, and 10 for state ST3. Use a
simulation input that passes through all paths in the ASM chart, and include
both the state and Z as simulation outputs. Correct and resimulate your
design if necessary.

Perform the design in Problem 8-5 using Verilog instead of an ASM chart.
Use state names S0, 51, 82, ... | and codes that are the binary equivalent of
the integer in the state name. Compile and simulate your design using a
simulation input that thoroughly validates the design and that provides
both state and 7 as simulation outputs. Correct and resimulate your design
if necessary.

+Perform the design in Problem 8-7 using VHDL instead of an ASM chart.
Compile and simulate your design by running the traffic licht through two
full cycles. Use realistic intervals for T and a slow clock. Adjust the clock
intervals if necessary to avoid long simulation times,

398 0O CHAPTER 8 / SEQUENCING AND CONTROL

| | |

J. +Fertorm the design in Problem U— using Verilog mstead of an L chart.
Compile and simulate your design by running the traffic light through two
full cycles. Use the state assignment method in Problem 8-21. Use realistic
intervals for T and a slow clock. Adjust the clock intervals if necessary to
avoid long simulation times.

MEMORY BASICS

proportion of all digital systems. Random-access memory (RAM) stores

data termporarily, and read-only memory {(ROM) stores data permanently.
ROM is one form of a variety of components called programmable logic devices
{PLDs) that use stored information to define logic circuits.

Our study of RAM begins by looking at it in terms of a model with inputs, outputs, and
signal timing. We then use equivalent logical models to understand the internal
workings of RAM chips. Both static RAM and dynamic RAM are considered. The
various types of dynamic RAM used for movement of data at high speeds between
the CPU and memory are surveyed. Finally, we put RAM chips together to build
simple RAM systems,

In many of the previous chapters, the concepts presented were broad, pertaining to
much of the generic computer at the beginning of Chapter 1. In this chapter, for the
first time, we can be more precise and point to specific uses of memory and related
components. Beginning with the processor, the internal cache is largely very fast
BAM. Outside the CPU, the extarnal cache is largely fast BAM. The RAM subsystem,
by its very name, is a type of memory. In the VO area, we find substantial memory for
storing information about the screen image in the video adapter. RAM appears in disk
cache in the disk controller, to speed up disk access. Aside from the highly central
role of the RAM subsystem in storing data and programs, we find memory in various
forms applied in most subsystems of the generic computer,

M emory is a major component of a digital computer and is present in a large

0-1 MeMORY DEFINITIONS

In digital systems, memory is a collection of cells capable of storing binary informa-
tion. In addition to these cells, memory contains electronic circuits for storing and
retrieving the information. As indicated in the discussion of the generic computer,
memory is used in many different parts of a modern computer, providing temporary

o 399

400 O CHAPTER 2/ MEMORY BASICS

or permanent storage for substantial amounts of binary information. In order for
this information to be processed, it is sent from the memory to processing hardware
consisting of registers and combinational logic. The processed information is then
returned to the same or to a different memory. Input and output devices also inter-
act with memory. Information from an input device is placed in memory so that it
can be used in processing. Output information from processing is placed in memory,
and from there it is sent to an output device.

Two types of memories are used in various parts of a computer: random-
access memory (RAM) and read-only memory (ROM). RAM accepts new
information for storage to be available later for use. The process of storing new
information in memory is referred to as a memory write operation. The process
of transferring the stored information out of memory is referred to as a mem-
ory read operation. RAM can perform both the write and the read operations,
whereas ROM as introduced in Chapter 3, performs only read operations.
BEAM sizes may range from hundreds to billions of bits,

9-2 RANDOM-ACCESS MEMORY

Memory is a collection of binary storage cells together with associated circuits
needed to transfer information into and out of the cells. Memory cells can be
accessed to transfer information to or from any desired location, with the access
taking the same time regardless of the location, hence, the name random-access
memory. In contrast, serial memory, such as is exhibited by a magnetic disk or tape
unit, takes different lengths of time to access information, depending on where the
desired location is relative to the current physical position of the disk or tape.

Binary information is stored in memory in groups of bits, each group of
which is called a word. A word is an entity of bits that moves in and out of
memaory as a unit—a group of 1's and 0's that represents a number, an instruc-
tion, one or more alphanumeric characters, or other binary-coded information.
A group of eight bits is called a byre. Most computer memories use words that
are multiples of eight bits in length. Thus, a 16-bit word contains two bytes, and
a 32-bit word is made up of four bytes. The capacity of a memory unit is usually
stated as the total number of bytes that it can store. Communication between a
memory and its environment is achieved through data input and output lines,
address selection lines, and control lines that specify the direction of transfer of
information. A block diagram of a memory is shown in Figure 9-1. The » data
input lines provide the information to be stored in memory, and the n data out-
put lines supply the information coming out of memory. The & address lines
specify the particular word chosen among the many available, The two control
inputs specify the direction of transfer desired: the Write input causes binary
data to be transferred into memory, and the Read input causes binary data to be
transferred out of memory.

The memory unit is specified by the number of words it contains and the
number of bits in each word. The address lines select one particular word. Each
word in memory is assigned an identification number called an address. Addresses

9-2 / Random-Access Memory 0O 401

ln data input lines

; Memory unit
k address lings — :

k
Read 2% words

Write —™ 1 bits per word

ln data output lines

O FIGURE 9-1
Block Diagram of Memory

range from 0 to 2% — 1, where k is the number of address lines. The selection of a
specific word inside memory is done by applying the k-bit binary address to the
address lines. A decoder accepts this address and opens the paths needed to select
the word specified. Computer memory varies greatly in size. It is customary to
refer to the number of words (or bytes) in memory with one of the letters K (kilo),
M (mega), or G (giga). K is equal to 21, M is equal to 227, and G is equal to 230
Thus, 64K = 216 M = 221 and 4G = 232,

Consider, for example, a memory with a capacity of 1K words of 16 bits
each. Since 1K = 1024 = 2% and 16 bits constitute two bytes, we can say that the
memory can accommodate 2048, or 2K, bytes. Figure 9-2 shows the possible con-
tents of the first three and the last three words of this size of memory. Each word
contains 16 bits that can be divided into two bytes. The words are recognized by
their decimal addresses from 0 to 1023. An equivalent binary address consists of
10 bits. The first address is specified using ten (s, and the last address is specified
with ten 1's. This is because 1023 in binary is equal to 1111111111. A word in
memory is selected by its binary address. When a word is read or written, the
memory operates on all 16 bits as a single unit.

Memory address

Binary ~ Decimal ~ Memory contents
DOODOO0000 0| 10010101 01011100
D000 1| 10101011 10001001

000000010 2 (0001101 01000110

R

1111111101 1021 10011101 Qa1
11111 1022 | 00001101 00011110
1111111111 1023 110117 10 00100100

O FIGURE 9-2
Contents of a 1024 X 16 Memory

402 [O CHAPTER 9 / MEMORY BASICS

The 1K x 16 memory of the figure has 10 bits in the address and 16 bits in each
word. If, instead, we have a 64K % 10 memory, it is necessary to include 16 bits in the
address, and each word will consist of 10 bits. The number of address hits needed in
memory is dependent on the total number of words that can be stored there and is
independent of the number of bits in each word, The number of bits in the address
for a word is determined from the relationship 2% =m , where m1 is the total number
of words and k is the minimum number of address bits satisfying the relationship.

Write and Read Operations

The two operations that a random-access memory can perform are write and read. A
write is a transfer into memory of a new word to be stored. A read is a transfer of a
copy of a stored word out of memory. A Write signal specifies the transfer-in opera-
tion, and a Read signal specifies the transfer-out operation. On accepting one of these
control signals, the internal circuits inside memory provide the desired function.

The steps that must be taken for a write are as follows:

1. Apply the binary address of the desired word to the address lines,
2. Apply the data bits that must be stored in memory to the data input lines.
3. Activate the Write input.

The memory unit will then take the bits from the data input lines and store them in
the word specified by the address lines.
The steps that must be taken for a read are as follows:

1. Apply the binary address of the desired word to the address lines,
2. Activate the Read input.

The memory will then take the bits from the word that has been selected by the
address and apply them to the data output lines. The contents of the selected word
are not changed by reading them.

Memory is made up of RAM integrated circuits (chips), plus additional logic
circuits. RAM chips usually provide the two control inputs for the read and write
operations in a somewhat different configuration from that just described. Instead
of having separate Read and Write inputs to control the two operations, most inte-
grated circuits provide at least a Chip Select that selects the chip to be read from or
written to and a Read/Write that determines the particular operation. The memory
operations that result from these control inputs are shown in Table 9-1.

The Chip Select is used to enable the particular RAM chip or chips contain-
ing the word to be accessed. When Chip Select is inactive, the memory chip or
chips are not selected, and no operation is performed. When Chip Select is active,
the Read/Write input determines the operation to be performed. While Chip
Select accesses chips, a signal is also provided that accesses the entire memory. We
will call this signal the Memory Enable.

Timing Waveforms

The operation of the memory unit is controlled by an external device, such as a
CPU. The CPU is synchronized by its own clock pulses. The memory, however,

9-2 / Random-Access Memory O 403

O TABLE 9-1
Control Inputs to a Memory Chip

Chip select Read/Write

cs RIW Memory operation

] b Mone

1 0 Write to selected word

1 1 Read from selected word

does not employ the CPU clock. Instead, its read and write operations are timed
by changes in values on the control inputs. The access time of a memory read oper-
ation is the maximum time from the application of the address to the appearance
of the data at the Data Output. Similarly, the write cycle tirme is the maximum time
from the application of the address to the completion of all internal memory oper-
ations required to store a word. Memory writes may be performed one after the
other at the intervals of the cycle time. The CPU must provide the memory control
signals in such a way as to synchronize its own internal clocked operations with the
read and write operations of memory. This means that the access time and the
write cycle time of the memory must be related within the CPU to a period equal
to a fixed number of CPU clock pulse periods.

Assume, as an example, that a CPU operates with a clock frequency of
50 MHz, giving a period of 20 ns (1 ns = 1077 5) for one clock pulse. Suppose now
that the CPU communicates with a memory with an access time of 65 ns and a
write cycle time of 75 ns. The number of clock pulses required for a memory
request is the integer value greater than or equal to the larger of the access time
and the write cycle time, divided by the clock period. Since the period of the CPU
clock is 20 ns, and the larger of the access time and write cycle time is 75 ns, it will
be necessary to devote at least four clock pulses to each memory request.

The memory cycle timing shown in Figure 9-3 is for a CPU with a 50 MHz
clock and memory with a 75-ns write cycle time and a 65-ns access time. The write
cycle in part (a) shows four pulses T'1, T2, T3, and T4 with a cycle of 20 ns. For a
write operation, the CPU must provide the address and input data to the memory.
The address is applied, and Memory Enable is set to the high level at the positive
edge of the T'1 pulse. The data, needed somewhat later in the write cycle, is applied
at the positive edge of T2. The two lines that cross each other in the address and
data waveforms designate a possible change in value of the multiple lines. The
shaded areas represent unspecified values. A change of the Read/Write signal to
0 to designate the write operation is also at the positive edge of T2. To avoid
destroying data in other memory words, it is important that this change occur after
the signals on the address lines have become fixed at the desired values. Otherwise,
one or more other words might be momentarily addressed and accidentally written
over with different data. The Read/Write signal must stay at 0 long enough after
application of the address and Memory Enable to allow the write operation to
complete. Finally, the address and data signals must remain stable for a short time
after the Read/Write goes to 1. again to avoid destroying data in other memory

404 0O CHAPTER 9/ MEMORY BASICS

Clock T1 T2 T3 T4 Ti

Address D(_ Address valid x |
i \
a;?: | _X Data valid _X ||

-+ Tins -

(a) Write cvele

-— N ng ——

Clock Ti T2 T3 T4 _/T\
Adddress D(Address va!;d X I
Memory

enable \

Read/
Write
Data Data valid
output | X X |
* ——f5 ns -
(b) Read cyele
O FIGURE 9-3

Memory Cycle Timing Wavelorms

words. At the completion of the fourth clock pulse, the memory write operation
has ended with 5 ns to spare, and the CPU can apply the address and control sig-
nals for another memory request with the next 71 pulse,

The read cycle shown in Figure 9-3(b) has an address for the memory that is
provided by the CPU. The CPU applies the address, sets the Memory Enable to 1,
and sets Read/Write to 1 to designate a read operation, all at the positive edge of
T'l. The memory places the data of the word selected by the address onto the data
output lines within 65 ns from the time that the address is applied and the memory
enable is activated. Then, the CPU transfers the data into one of its internal regis-
ters during the positive transition of the next T1 pulse, which can also change the
address and controls for the next memory request.

9-3 / SRAM Integrated Circuits O 405

Properties of Memory

Integrated circuit RAM may be either static or dvnamic. Static RAM (SRAM) con-
sists of internal latches that store the binary information. The stored information
remains valid as long as power is applied to the RAM. Dynamic RAM (DRAM)
stores the binary information in the form of electric charges on capacitors. The
capacitors are accessed inside the chip by n-channel MOS transistors. The stored
charge on the capacitors tends to discharge with time, and the capacitors must be
periodically recharged by refreshing the DR AM. This is done by cycling through the
words every few milliseconds, reading and rewriting them to restore the decaying
charge. DRAM offers reduced power consumption and larger storage capacity in a
single memory chip, but SRAM is easier to use and has shorter read and write
cvcles. Also, no refresh is required for SEAM.

Memory units that lose stored information when power is turned off are said
to be volatile. Integrated circuit RAMs, both static and dynamic, are of this cate-
gory, since the binary cells need external power to maintain the stored information.
In contrast, a nonvelatile memory, such as magnetic disk, retains its stored informa-
tion after the remowval of power. This is because the data stored on magnetic compo-
nents is represented by the direction of magnetization, which is retained after
power is turned off. Another nonvolatile memory is ROM, discussed in Section 3-9.

9-3 SRAM INTEGRATED CIRCUITS

As indicated earlier, memory consisits of RAM chips plus additional logic. We will
consider the internal structure of the RAM chip first. Then we will study combina-
tions of RAM chips and additional logic used to construct memory. The internal
structure of a RAM chip of m words with n bits per word consists of an array of mn
binary storage cells and associated circuitry. The circuity is made up of decoders to
select the word to be read or written, read circuits, write circuits, and output logic.
The RAM cell is the basic binary storage cell used in the RAM chip, which is typi-
cally designed as an electronic circuit rather than a logic circuit. Nevertheless, it is
possible and convenient to model the RAM chip using a logic model.

A static RAM chip serves as the basis for our discussion. We first present
RAM cell logic for storing a single bit and then use the cell in a hierarchy to
describe the RAM chip. Figure 9-4 shows the logic model of the RAM cell. The
storage part of the cell is modeled by an SR latch. The inputs to the latch are
enabled by a Select signal. For Select equal to 0, the stored content is held. For
Select equal to 1, the stored content is determined by the values on B and B . The
outputs from the latch are gated by Select to produce cell outputs C and C. For
Select equal to 0, both C and C are 0, and for Select equal to 1, C is the stored
value and C is its complement.

To obtain simplified static RAM diagrams, we interconnect a set of RAM
cells and read and write circuits to form a RAM bir slice that contains all of the cir-
cuitry associated with a single bit position of a set of RAM words. The logic dia-
eram for a RAM bit slice is shown in Figure 9-5(a). The portion of the model
representing each RAM cell is highlighted in blue. The loading of a cell latch is

406 [0 CHAPTER 9/ MEMORY BASICS

Select
B g 0 }——0C
T (=
- R 0 3—3—
RAM cell
O FIGURE 94
Static RAM Cell

now controlled by a Word Select input. If this is 0, then both S and R are 0, and the
cell latch contents remain unchanged. If the Word Select input is 1, then the value
to be loaded into the latch is controlled by two signals B and B from the Write
Logic. In order for either of these signals to be 1 and potentially change the stored
value, Read/Write must be 0 and Bit Select must be 1. Then the Data In value and
its complement are applied to B and B, respectively, to set or reset the latch in the
RAM cell selected. If Data In is 1 the latch is set to 1, and if Data In is 0 the latch
1s reset to 0, completing the write operation.

Only one word is written at a time. That is, only one Word Select line is 1, and
all other Word Select lines are 0. Thus, only one RAM cell attached to B and B is
written. The Word Select also controls the reading of the RAM cells, using shared
Read Logic. If Word Select is 0, then the stored value in the SR latch is prevented
by the AND gates from reaching the pair of OR gates in the Read Logic. But if
Word Select is 1, the stored value passes through to the OR gates and is captured
in the Read Logic SR latch. If Bit Select is also 1, the captured value appears on
the Data Out line of the RAM bit slice. Note that for this particular Read Logic
design, the read occurs regardless of the value of Read/Write .

The symbol for the RAM bit slice given in Figure 9-5(b) is used to represent
the internal structure of RAM chips. Each Word Select line extends beyond the bit
slice, so that when multiple RAM bit slices are placed side by side, corresponding
Word Select lines connect. The other signals in the lower portion of the symbol
may be connected in various ways, depending on the structure of the RAM chip.

The symbol and block diagram for a 16 x 1 RAM chip are shown in Figure 9-6.
Both have four address inputs for the 16 one-bit words stored in RAM. There are
also Data Input, Data Output, and Read/Write signals, The Chip Select at the chip
level corresponds to the Memory Enable at the level of a RAM consisting of multi-
ple chips. The internal structure of the RAM chip consists of a RAM bit slice having
16 RAM cells. Since there are 16 Word Select lines to be controlled such that one
and only one has the value logic 1 at a given time, a 4-to-16-line decoder is used to
decode the four address bits into 16 Word Select bits.

The only additional logic in the figure is a triangular symbol with one normal
input, one normal output, and a second input on the bottom of the symbal. This
symbol is a three-state buffer that allows construction of a multiplexer with an

9-3 / SRAM Integrated Circuis O 407

Word Select
select
0
B 1 C
‘. S Q F: %
D e
" selec
. E R O . !
- RAM cell
* RAM cell
i Word .
. select T
. 1
Word Select 2 RAM cell
select :
-1 .
-
| - Word o
—S Q D select T
m—1
RAM cell
R o
RAM cell
Read/ Write
Ej logic
rw (‘w [J — Data in
— 5 Q Data out |-
Data in Bead/! Bit
Write select
—HR O | |
] (b)) Symbaol
Write logic
- I Read logic Data out
Read/ Bit
Write select

{a) Logic diagram

O FIGURE 9-5
RAM Bit Slice Model

arbitrary number of inputs. Three-state outputs are connected together and
properly controlled using the Chip Select inputs. By using three-state buffers on
the outputs of RAM chips, these outputs can be connected together to provide the
word from the chip being read on the bit lines attached to the RAM outputs, The
enable signals in the preceding discussion correspond to the Chip Select inputs on
the RAM chips. To read a word from a particular RAM chip, the Chip Select value
for that chip must be 1, and for all other chips attached to the same output bit lines,
the Chip Select must be 0. These combinations containing a single 1 can be
obtained from a decoder.

408 0O CHAPTER 9 / MEMORY BASICS

4-10-16
Basadei D Word select 1 i [
Az Ay 2 1
2 RAM cell
Ay — Ay a2 3
. [
A Ay~ 2l 3
3] RAM cell
Ap— Ay —| 20 7
161 8
EAaM
9
-
10 b
L] -
Data Data 11]
input | I_ output 12 J
13
14
Read/ | 15 i
Write
Memory _| RAM cell
enable
Read™WTrit
(a) Symbol Iu;?: STy
Data input ———— Data in
Data
Data out output
Read/ Bit
Write select

ReadWrite 4'

Chip select

(b} Block diagram

O FIGURE 9-6
16-Word by 1-Bit RAM Chip

Coincident Selection

Inside a RAM chip, the decoder with k inputs and 2% outputs requires 2¥* AND
gates with k inputs per gate if a straightforward design approach is used. In addi-
tion, if the number of words is large, and all bits for one bit position in the word
are contained in a single RAM bit slice, the number of RAM cells sharing the read
and write circuits 15 also large. The electrical properties resulting from both of

9-3 / SRAM Integrated Circuis 0O 409

these situations cause the access and write cycle times of the RAM to become long,
which is undesirable.

The total number of decoder gates, the number of inputs per gate, and the
number of RAM cells per bit slice can all be reduced by employing two decoders
with a coincident selection scheme. In one possible configuration, two k/2-input
decoders are used instead of one k-input decoder. One decoder controls the word
select lines and the other controls the bit select lines. The result is a two-dimensional
matrix selection scheme. If the EAM chip has m words with 1 bit per word, then the
scheme selects the RAM cell at the intersection of the Word Select row and the Bit
Select column. Since the Word Select is no longer strictly selecting words, its name is
changed to Row Select. An output from the added decoder that selects one or more
bit slices is referred to as a Column Select.

Coincident selection is illustrated for the 16 X 1 RAM chip with the structure
shown in Figure 9-7. The chip consists of four RAM bit slices of four bits each and has
a total of 16 RAM cells in a two-dimensional array. The two most significant address
inputs go through the 2-to-4-line row decoder to select one of the four rows of the
array. The two least significant address inputs go through the 2-to-4-line column
decoder to select one of the four columns {RAM bit slices) of the array. The column
decoder is enabled with the Chip Select input. When the Chip Select is 0, all outputs
of the decoder are () and none of the cells is selected. This prevents writing into any
RAM cell in the array. With Chip Select at 1, a single bit in the RAM is accessed. For
example, for the address 1001, the first two address bits are decoded to select row 10
{24 of the RAM cell array. The second two address bits are decoded to select column
01(1;5) of the array. The RAM cell accessed. in row 2 and column 1 of the array, is cell
9 (105 013). With a row and column selected, the Read/Write input determines the
operation. During the read operation (Read/Write = 1), the selected bit of the
selected row goes through the OR gate to the three-state buffer. Note that the gate is
drawn according to the array logic established in Figure 3-22. Since the buffer is
enabled by Chip Select, the value read appears at the Data Output. During the write
operation { Read/Write = 0), the bit available on the Data Input line is transferred
into the selected RAM cell. Those RAM cells not selected are disabled, and their pre-
vious binary values remain unchanged.

The same RAM cell array is used in Figure 9-8 to produce an 8 x 2 RAM
chip (eight words of two bits each). The row decoding is unchanged from that in
Figure 9-7; the only changes are in the column and output logic. Since there are
just three address bits, and two are handled by the row decoder, the column
decoder has only one address bit and Chip Select as inputs and produces just two
Column Select lines. Since two bits at a time are to be written or read, the Column
Select lines go to adjacent pairs of RAM bit slices. Two input lines, Data Input 0
and Data Input 1, each go to a different bit in all of the pairs. Finally, correspond-
ing bits of the pairs share output OR gates and three-state buffers, giving output
lines Data Qutput 0 and Data Output 1. The operation of this structure can be
illustrated by the application of the address 3 (011;). The first two bits of the
address, 01, access row 1 of the array. The final bit, 1, accesses column 1, which con-
sists of bit slices 2 (10;) and 3 (11,). So the word to be written or read lies in RAM
cells 6 and 7 (011 0; and 011 1,), which contain bits (0 and 1, respectively, of word 3.

410 0O CHAPTER 9 / MEMORY BASICS

Row decoder
2etar-d
i T I I I
Ay— 2
RAM cell BAM cell RAM cell RAM call
o 1 2 8,
Ay— ¥
1
I I I I
Row RAM cell RAM cell RAM cell RAM cell
4 5 & 7
select
2 - - -
I] 1 1
RAM cell RaAM cell RaAM cell RAM cell
9 1 11
3 T
| | |]
RAM cell RAM cell RAM cell RAM cell
12 13 14 15
Read Write ReadWrite ReadWrite Read Wite
lowgic logic logic logic
Drata i Dhana i Dinta in Data m
Dhata aut b= Data oud = Diaia oul b= Data out
Read/ Bi Reasl! Bn Read! Bt Readd Bt
Write select Write select Write select Write select
Drata mpat g . . |
ReadWite
- X l .3
Column select Drata
o i E 3 autput

Codumn | 2-to-4 Decoder
deeoder | with enable

i » Enable

AI l"II

Chap select

O FIGURE 9-7
Diagram of a 16 x 1 RAM Using a 4 x 4 RAM Cell Array

We can demonstrate the savings of the coincident selection scheme by con-
sidering a more realistic static RAM size, 32K x 8. This RAM chip contains a total
of 256K bits. To make the number of rows and columns in the array equal, we take
the square root of 256K, giving 512 = 2% So the first nine bits of the address are
fed to the row decoder and the remaining six bits to the column decoder. Without
coincident selection, the single decoder would have 15 inputs and 32,768 outputs.
With coincident selection, there is one 9-to-512-line decoder and one 6-to-64-line
decoder. The number of gates for a straightforward design of the single decoder
would be 32,800. For the two coincident decoders, the number of gates is 608,
reducing the gate count by a factor of more than 50. In addition, although it
appears that there are 64 times as many Read/Write circuits, the column selection

9-4 / Array of SRAM ICs O 411

Row decoder
2-bin-4
Decoder] I 1 T T
A;—] 12
RAM cell RAM cell RAM cell RAM cell
i] 1 2 3
Ay—12
1
[| I I
Row RAM cell RAM cell RAM cell RAM cell
wrlect 4 3 & 1
2 % >
[| I I
RAM cell RAM cell FAM cell RAM cell
8 E 10 1
]
] [I
RAM cell RAM cell RAM cell RAM cefl
12 13 14 15
Read Write RieadWrite Read Write Read Write
logic logic logic logic
Dhaila im —{ Diatain Ikats in Dhata in
Drata ot = Diata ot |5 Drata ot 5 Data oul
Rend' Bit Reasd! Bit Read’ Bit Read’ Bit
Wiite select White seleqt Wie select Write select
Dintm inpat]
Data ingat 1
Read™Wrile
Column select [Data
o 1 oatput 0
Ciolemn Jein-? Decader R— e .
degoder with enable
Data
30 abilie
2 I:mfk ' tput 1
[
Ay Chip select
O FIGURE 9-8

Block Diagram of an 8 = 2 RAM Using a 4 x 4 RAM Cell Array

can be done between the RAM cells and the Read/Write circuits, so that only the
original eight circuits are required. Because of the reduced number of RAM cells
attached to each Read/Wrile circuit at any time, the access time of the chip is also
improved.

9-4 ARrRrAY OF SRAM ICs

Integrated circuit RAM chips are available in a variety of sizes. If the memory unit
needed for an application is larger than the capacity of one chip, it is necessary to
combine a number of chips in an array to form the required size of memory. The
capacity of the memory depends on two parameters: the number of words and the

412 O CHAPTER 9/ MEMORY BASICS

11ﬂmLt':r ﬂl LL per wurJ. ln mcrease 1n the number of words requires that we

increase the address length. Every bit added to the length of the address doubles
the number of words in memory. An increase in the number of bits per word
requires that we increase the number of data input and output lines, but the
address length remains the same,

To illustrate an array of RAM ICs, let us first introduce a RAM chip using
the condensed representation for inputs and outputs shown in Figure 9-9. The
capacity of this chip is 64K words of 8 bits each. The chip requires a 16-bit address
and 8 input and output lines. Instead of 16 lines for the address and 8 lines each for
data input and data output, each is shown in the block diagram by a single line.
Each line has a slash across it with a number indicating the number of lines repre-
sented. The CS (Chip Select) input selects the particular RAM chip, and the R/W
(Read/Write) input specifies the read or write operation when the chip is
selected. The small triangle shown at the outputs is the standard graphics symbol
for three-state outputs. The CS input of the RAM controls the behavior of the data
output lines. When C& = (), the chip is not selected, and all its data outputs are in
the high-impedance state. With C§ = 1, the data output lines carry the eight bits of
the selected word,

Suppose that we want 1o increase the number of words in the memory by
using two or more RAM chips. Since every bit added to the address doubles the
binary number that can be formed, it is natural to increase the number of words in
factors of two. For example, two RAM chips will double the number of words and
add one bit to the composite address. Four RAM chips multiply the number of
words by four and add two bits to the composite address.

Consider the possibility of constructing a 256K x 8 RAM with four 64K x 8
RAM chips, as shown in Figure 9-10. The eight data input lines go to all the chips.
The three-state outputs can be connected together to form the eight common
data output lines. This type of output connection is possible only with three-state
outputs. Just one chip select input will be active at any time, while the other three
chips will be disabled. The eight outputs of the selected chip will contain 1's and
0’s, and the other three will be in a high-impedance state, presenting only open
circuits to the binary output signals of the selected chip.

The 256K-word memory requires an 18-bit address. The 16 least significant
bits of the address are applied to the address inputs of all four chips. The two most

fdk =B RAM

8
Tnput dala—af— DATA W ———— Output data

Address —/—]6 ADRS

Chip select 5
FeadWrite RW
O FIGURE 9-9

Symbol for a 64K = 8 RAM Chip

9-4 / Array of SRAM ICs O 413

64K * 8 RAM

decoder
EN DATA v

3 2 1 0 ADRS
e

Read/ RW
Write

Memory
enable

065,535
64K x 8 RAM

DATA v
ADRS

cs

RW

65,536-131,0T1
64K x E RAM

DATA v
ADRS
Cs

RW

131,072-196,607
K = 8 RAM

DATA v
ADRS
s

RW

e

Y
196,608-262,143 Output data

O FIGURE 9-10
Block Diagram of a 256K x 8 RAM

significant bits are applied to a 2 x 4 decoder. The four outputs of the decoder are
applied to the CS inputs of the four chips. The memory is disabled when the EN
input of the decoder, Memory Enable, is equal to 0. All four outputs of the
decoder are then 0, and none of the chips is selected. When the decoder is enabled,
address bits 17 and 16 determine the particular chip that is selected. If these bits

414 O CHAPTER 9/ MEMORY BASICS

16 input data lines

* I

16
Address —=
4K = 8 RAM 4K 2 8 RAM
8 b
7 DATA v T DATA v
-~ ADRS > ADRS
Chip select s [
Read/ Write RW BW

y o

16 output data lines

O FIGURE 9-11
Block Diagram of a 64K % 16 RAM

are equal to 00, the first RAM chip is selected. The remaining 16 address bits then
select a word within the chip in the range from 0 to 65,535. The next 65,536 words
are selected from the second RAM chip with an 18-bit address that starts with 01
followed by the 16 bits from the common address lines. The address range for each
chip is listed in decimal under its symbol in the figure.

It is also possible to combine two chips to form a composite memory con-
taining the same number of words, but with twice as many bits in each word.
Figure 9-11 shows the interconnection of two 64K x 8 chips to form a 64K x 16
memory. The 16 data input and data output lines are split between the two chips.
Both receive the same 16-bit address and the common C§ and R/'W control inputs.

The two technigues just described may be combined to assemble an array of
identical chips into a large-capacity memory. The composite memory will have a
number of bits per word that is a multiple of that for one chip. The total number of
words will increase in factors of two times the word capacity of one chip. An exter-
nal decoder is needed to select the individual chips based on the additional address
bits of the composite memory.

To reduce the number of pins on the chip package, many RAM ICs provide
common terminals for the data input and data output. The common terminals are
said to be bidirectional, which means that for the read operation they act as out-
puts, and for the write operation they act as inputs. Bidirectional lines are
constructed with three-state buffers and are discussed further in Section 2-8. The
use of bidirectional signals requires control of the three-state buffers by both Chip
Select and Read/Write .

9.5/ DRAM ICs O 415

9-5 DRAM ICs

Because of its ability to provide high storage capacity at low cost, dynamic RAM
(DRAM) dominates the high-capacity memory applications, including the primary
RAM in computers. Logically, DRAM in many ways is similar to SRAM. How-
ever, because of the electronic circuit used to implement the storage cell, its elec-
tronic design is considerably more challenging. Further, as the name “dynamic”
implies, the storage of information is inherently only temporary. As a consequence,
the information must be periodically “refreshed” to mimic the behavior of static
storage. This need for refresh is the primary logical difference in the behavior of
DRAM compared to SRAM. We explore this logical difference by examining the
dynamic RAM cell, the logic required to perform the refresh operation, and the
impact of the need for refresh on memory system operation,

DRAM Cell

The dynamic RAM cell circuit is shown in Figure 9-12(a). It consists of a capaci-
tor C and a transistor T. The capacitor is used to store electrical charge. If there is
sufficient charge stored on the capacitor, it can be viewed as storing a logical 1. If
there is insufficient charge stored on the capacitor, it can be viewed as storing a
logical 0. The transistor acts much like a switch, in the same manner as the trans-
mission gate introduced in Chapter 2. When the switch is “open.” the charge on
the capacitor roughly remains fixed, in other words, 15 stored. But when the
switch is “closed,” charge can flow into and out of the capacitor from the external
Bit (B) line. This charge flow allows the cell to be written with a 1 or (0 and to be
read.

In order to understand the read and write operations for the cell, we will use
a hydraulic analogy with charge replaced by water, the capacitor by a small storage
tank, and the transistor by a valve. Since the bit line has a large capacitance, it is
represented by a large tank and pumps which can fill and empty this tank rapidly.
This analogy is given in Figures 9-12(b) and 9-12(c) with the valve closed. Note
that in one case the small storage tank is full representing a stored 1 and in the
other case, it is empty representing a stored (. Suppose that a 1 is to be written into
the cell. The valve is opened and the pumps fill up the large tank. Water flows
through the valve, filling the small storage tank as shown in Figure 9-12(d). Then
the valve is closed, leaving the small tank full which represents a 1. A 0 can be writ-
ten using the same sort of operations, except that the pumps empty the large tank
as shown in Figure 9-12(e).

Now, suppose we want to read a stored value and that the value is a 1 corre-
sponding to a full storage tank. With the large tank at a known intermediate level,
the valve is opened. Since the small storage tank is full, water flows from the small
tank to the large tank increasing the level of the water surface in the large tank
slightly as shown in Figure 9-12(f). This increase in level is observed as the reading
of 1 from the storage tank. Correspondingly, if the storage tank is initially empty,
there will be a slight decrease in the level in the large tank in Figure 9-12(g), which
15 observed as the reading of a 0 from the storage tank.

416 O CHAPTER 9/ MEMORY BASICS

Select

T To Pump
’ 1

|
DR AM cell m j

{a) (b) (e}

Select 7 E 17_ _(J E [)_|
. B & E . (@) (e)

- C DRAM cell
model

(h} (£ (g

O FIGURE 9-12
Dynamic RAM cell, hydraulic analogy of cell operation, and cell model

In the read operation just described, Figures 9-12(f) and 9-12(g) show that,
regardless of the initial stored value in the storage tank, it now contains an inter-
mediate value which will not cause enough of a change in the level of the external
tank to permit a 0 or 1 to be observed. So the read operation has destroved the
stored value; this is referred to as a destructive read. To be able to read the original
stored value in the future, we must restore it (i.e., return the storage tank to its
original level). To perform the restore for a stored 1 observed, the large tank is
filled by the pumps and the small tank fills through the open valve. To perform the
restore for a stored 0 observed, the large tank is emptied by the pumps and the
small tank drains through the open valve.

In the actual storage cell, there are other paths present for charge flow, These
paths are analogous to small leaks in the storage tank. Due to these leaks, a full
small storage tank will eventually drain to a point at which the increase in the level
of the large tank on a read cannot be observed as an increase, In fact, if the small
tank is less than half full when read. it is possible that a decrease in the level of the
large tank may be observed. To compensate for these leaks, the small storage tank
storing a 1 must be periodically refilled. This is referred to as a refresh of the cell
contents. Every storage cell must be refreshed before its level has declined to a
point at which the stored value can no longer be properly observed.

Through the hydraulic analogy, the DRAM operation has been explained.
Just as for the SRAM, we employ a logic model for the cell. The model shown in
Figure 9-12(h) is a D latch. The C input to the D latch is Select and the D input to
the D latch is B. In order to model the output of the DRAM cell, we use a three-
state buffer with Select as its control input and C as its output. In the original elec-
tronic circuit for the DRAM cell in Figure 9-12(a), B and C are the same signal,
but in the logical model they are separate, This is necessary in the modeling pro-
cess Lo avold connecting gate outputs together.

95 /DRAM ICs O 417

DRAM Bit Slice

Using the logic model for the DRAM cell, we can construct the DRAM bit-slice
model shown in Figure 9-13. This model is similar to that for the SRAM bit-slice in
Figure 9-5. It is apparent that, aside from the cell structure, the two RAM bit slices
are logically similar. However, from the standpoint of cost per bit, they are quite
different. The DRAM cell consists of a capacitor plus one transistor. The SRAM
cell typically contains six transistors, giving a cell complexity roughly three times
that of the DRAM. Therefore, the number of SRAM cells in a chip of a given size

Word Select
select
D #
B C
D Q
—C DRAM cell Word
model select]
. 0
-
: DREAM cell
Word
= select
. :]
Word Select DRAM cell
select :
an - 1 .
1 -
-
select -
-1 |
Ol 2 < DRAM cell
ReadWrite
lagic
3 Sense — Data in
amplifier] Data_ﬂl-ll =
Data in Read/ Bit
Write select
(b} Symbaol
Write logic T
Bit Read logic Data out
Read/ L
Write sClc

(a) Logic diagram

O FIGURE 9-13
DRAM Bit Slice Model

418 0O CHAPTER 9 / MEMORY BASICS

15 Lss lLan uneatLird ol those in the DRAM. The DRAM cost per bit is less than
1/3 the SRAM cost per bit, which justifies the use of DRAM in large memories.

Refresh of the DRAM contents remains to be discussed. But first, we need to
develop the typical structure used to handle addressing in DRAMs, Since many
DRAM chips are used in a DRAM, we want to reduce the physical size of the
DEREAM chips. Large DRAMSs require 20 or more address bits, which would require
20 address pins on each DRAM chip. To reduce the number of pins, the DRAM
address is applied serially in two parts with the row address first and the column
address second. This can be done since the row address, which performs the row
selection, is actually needed before the column address, which reads out the data
from the row selected. In order to hold the row address throughout the read or
write cycle, it is stored in a register as shown in Figure 9-14. The column address is
also stored in a register. The load signal for the row address register is RAS
(Row Address Strobe) and for the column addresses is CAS (Column Address
Strobe). Note that in addition to RAS and CAS, control signals for the DRAM
chip include R/W (Read/Write), and OE (Output enable). Note that this design
uses signals active at the LOW (0} level.

The timing for DRAM write and read operation appears in Figure 9-15(a).
The row address is applied to the address inputs, and then RAS changes from 1 to
0, loading the row address into the row address register. This address is applied to
the row address decoder and selects a row of DRAM cells. Meanwhile, the column

Refresh
= controller

Relresh
counter ———
: ¥ M
Row Row address g DR{&M DR‘.ﬁ‘M DR’.ﬂ"M
T - S - 2 . bit bit it
s s z |- | stice || stice slice
T § 1 T
Tl % Row timing -
RAS ¥ logic
— Column timing .
CAS - Logie ‘_: Input/Output Logic
RAW =]
OE ¥ T_ _T_ il T
Column Column address :
B e register . Column decoder
Data in!
Drata out
O FIGURE 9-14

Block Diagram of a DRAM Including Refresh Logic

95 /DRAM ICs O 419

- g —

Clock T1 T2 T3 T4
Row Column
Address Address Address

[N §

Output
enable
Read/
Write \\
Data :
75 ns -
(a) Write cycle

-2 s ——=

Clock Tl T2 T3 T4 Tl
Address Row X Column
Address Address
RAS “

Y

Data Hi-Z

Data valid

. 65 ns : -
(b} Read cycle

O FIGURE 9-15
Timing for DRAM Write and Read Operations

420 O CHAPTER 9/ MEMORY BASICS

address is applied, and then CAS changes from 1 to 0, loading the column address
into the column address register. This address is applied to the column address
decoder, which selects a set of columns of the RAM array of size equal to the num-
ber of RAM data bits. The input data with Read/Write = 0 is applied over a time
interval similar to that for the column address. The data bits are applied to the set
of bit lines selected by the column address decoder which, in turn apply the values
to the DRAM cells in the selected row, writing the new data into the cells. When
CAS and RAS return to 1, the write cycle is complete and the DRAM cells store
the newly written data. Note that the stored data in all of the other cells in the
addressed row has been restored.

The read operation timing shown in Figure 9-15(b) is similar. Timing of the
address operations is the same. However, no data is applied and Read/Write is 1
instead of 0. Data values in the DRAM cells in the selected row are applied to the
bit lines and sensed by the sense amplifiers. The column address decoder selects
the values to be sent to the Data output, which is enabled by Output enable . Dur-
ing the read operation, all values in the addressed row are restored.

To support refresh. additional logic shown in color is present in the block dia-
gram in Figure 9-14. There is a Refresh counter and a Refresh controller. The
Refresh counter is used to provide the address of the row of DRAM cells to be
refreshed. It is essential for the refresh modes that require the address to be pro-
vided from within the DRAM chip. The refresh counter advances on each refresh
cycle. Due to the number of bits in the counter, when it reaches 2" — 1, where n is
the number of rows in the DRAM array, it advances to 0 on the next refresh. The
standard ways in which a refresh cycle can be triggered and the corresponding
refresh types are as follows:

1. RAS only refresh. A row address is placed on the address lines and RAS is
changed to 0. In this case. the refresh addresses must be applied from outside
the DRAM chip, typically by an IC called a DRAM controller.

2. CAS before RAS refresh. The CAS is changed from 1 to 0 followed by a
change from 1 to 0 on RAS. Additional refresh cycles can be performed by
changing RAS without changing CAS. The refresh addresses for this case
come from the refresh counter, which is incremented after the refresh for
cach cycle.

3. Hidden refresh. Following a normal read or write, CAS is left at (f and RAS
is cycled, effectively performing a CAS before RAS refresh. During a hidden
refresh, the output data from the prior read remains valid. Thus, the refresh is
hidden. Unfortunately, the time taken by the hidden refresh is significant, so
a subsequent read or write operation is delayed.

In all cases, note that the initiation of a refresh is controlled externally by
using the RAS and CAS signals. Each row of a DRAM chip requires refreshing
within a specified maximum refresh time, typically ranging from 16 to 64 millisec-
onds (ms). Refreshes may be performed at evenly spaced points in the refresh
time, an approach called distributed refresh. Alternatively, all refreshes may be
performed one after the other, an approach called burst refresh. For example, a
4M x 4 DRAM has a refresh time of 64 ms and has 4096 rows to be refreshed. The

9.6/ DRAM Trpes O 421

length of time to perform a single refresh is 60 ns, and the refresh interval for dis-
tributed refresh is 64 ms/4096 = 15.6 microseconds (us). A total time out for refresh
of 0.25 ms is used out of the 64 ms refresh interval. For the same DEAM, a burst
refresh also takes 0.25 ms. The DRAM controller must initiate a refresh every 15.6
us for distributed refresh and must initiate 4,096 refreshes sequentially every 64 ms
for burst refresh. During any refresh cycle, no DRAM reads or writes can occur.
Since use of burst refresh would halt computer operation for a fairly long period,
distributed refresh is more commonly used.

9-6 DRAM TYPES

Ower the last two decades, both the capacity and speed of DRAM has increased
significantly. The quest for speed has resulted in the evolution of many types of
DRAM. Several of the DRAM types are listed with brief descriptions in Table 9-2.
Of the memory types listed, the first two have largely been replaced in the market-
place by the more advanced SDRAM and RDRAM approaches. Since we have
chosen to provide a discussion of error-correcting codes (ECC) for memories on
the text website, our discussion of memory types here will omit the ECC feature
and focus on synchronous DRAM, double data rate synchronous DRAM, and
Rambus® DRAM. Before considering these three types of DRAM, some of the
underlying concepts are covered briefly.

First of all, all three of these DRAM types work well because of the particu-
lar environment in which they operate. In modern high-speed computer systems,
the processor interacts with the DRAM within a memory hierarchy. Most of the
instructions and data for the processor are fetched from two lower levels of the
hierarchy, the L1 and L2 caches. These are comparatively smaller SRAM-based
memory structures that are covered in detail in Chapter 14. For our purposes, the
key issue is that most of the reads from the DRAM are not directly from the CPU,
but instead are reads initiated to bring data and instructions into these caches. The
reads are in the form of a line (i.e., some number of bytes in contiguous addresses
in memory) that is brought into the cache. For example, in a given read, the 16
bytes in hexadecimal addresses 000000 through 00000F would be read. This is
referred to as a burst read. For burst reads, the effective rate of reading bytes,
which is dependent upon reading bursts from contiguous addresses, rather than the
access time is the important measure. With this measure, the three DRAM types
we are discussing provide very fast performance.

Second, the effectiveness of these three DRAM types depends upon a very
fundamental principle involved in DRAM operation, the reading out of all of the
bits in a row for each read operation. The implication of this principle is that all of
the bits in a row are available after a read using that row if only they can be accessed.
With these two concepts in mind, the synchronous DRAM can be introduced.

Synchronous DRAM (SDRAM)

The use of clocked transfers differentiates SDRAM from conventional DREAM. A
block diagram of a 16-megabyte SDRAM IC appears in Figure 9-16. The inputs

422 [0 CHAPTER 9/ MEMORY BASICS

1LY

DRAM Types

Type

Abbreviation

Description

Fast Page Maode
DRAM

FPM DRAM

Takes advantage of the fact that, when a row is
accessed, all of the row values are available to be
read out. By changing the column address, data
from different addresses can be read out without
reapplying the row address and waiting for the
delay associated with reading out the row cells to
pass il the row portion of the addresses match.

Extended Data Out-
put DREAM

EDO DEAM

Extends the length of time that the DRAM holds
the data values on its output, permitting the
CPU 1o perform other tasks during the access
since it knows the data will still be available.

Synchronous DRAM

SDREAM

Operates with a clock rather than being asyn-
chronous. This permits a tighter interaction
between memory and CPU, since the CPU
knows exactly when the data will be available.
SDRAM also takes advantage of the row value
availability and divides memory into distinet
banks, permitting overlapped accesses,

Diouble Data Rate
Synchronous DREAM

DDR SDRAM

The same as SDRAM except that data output is
provided on both the negative and the positive
clock edges,

Rambus® DRAM

RDREAM

A proprietary technology that provides very high
memory access rates using a relatively narrow
bus.

Error-Correcting
Caode

ECC

May be applied to most of the DRAM types
above to correct single bit data errors and ofllen
detect double errors,

and outputs differ little from those for the DRAM block diagram in Figure 9-14
with the exception of the presence of the clock for synchronous operation. Inter-
nally, there are a number of differences. Since the SDRAM appears synchronous
from the outside, there are synchronous registers on the address inputs and the
data inputs and outputs. In addition, a column address counter has been added,
which is key to the operation of the SDRAM. While the control logic may appear
to be similar, the control in this case is much more complex since the SDRAM has
a mode control word that can be loaded from the address bus, Considering a 16
MB memory, the memory array contains 134,217,728 bits and is almost square,
with 8,192 rows and 16,384 columns. There are 13 row address bits. Since there are

9.6 / DRAM Types O 423

CLK, |
&, . Ll w 8 D(7:0)
WE Comtrol x = O = A
R__‘d*—sn- logic H - = 2 Memory cell array
g g 7 g 5
— l=- = o IR 2
B J’:E E: - I £
[L z :| | = AR
& & e &
A(11:0) ,l. E
1103 logic K
: 1 5
7 2
& Column decoder o
21 =
i 2
: + :
* Col address counter g
T a8

O FIGURE 9-16
Block Diagram of a 16MB SDRAM

8 bits per byte, the number of column addresses is 16,384 divided by 8, which
equals 2048, This requires 11 column address bits, Note that 13 plus 11 equals 24
giving the correct number of bits to address 16MB.

As with the regular DRAM, the SDRAM applies the row address first fol-
lowed by the column address. The timing, however, is somewhat different, and
some new terminology is used. Before performing an actual read operation from a
specified column address, the entire row of 2045 bytes specified by the applied row
address is read out internally and stored in the /O logic. Internally, this siep takes
a few clock cycles. Next, the actual read step is performed with the column address
applied. After an additional delay of a few clock cycles, the data bytes begin
appearing on the output, one per clock period. The number of bytes that appear,
the burst length, has been set by loading a mode control word into the control logic
from the address input.

The timing of a burst read cycle with burst length equal to four is shown in
Figure 9-17. The read begins with the application of the row address and the row
address strobe (RAS), which causes the row address to be captured in the address
register and the reading of the row to be initiated. During the next two clock peri-
ods, the reading of the row is taking place. During the third clock period, the col-
umn address and the column address strobe are applied, with the column address
captured in the address register and the reading of the first data byte initiated. The
data byte is then available to be read from the SDRAM at the positive clock edge
occurring two cycles later. The second, third, and fourth bytes are available for
reading on subsequent clock edges. In Figure 9-17, note that the bytes are pre-
sented in the order 1, 2, 3, 0. This is because, in the column address identifying the

424 0O CHAPTER 9 / MEMORY BASICS

|‘“1(‘LK—"'|

A[]DRESS(ROW X X COL X
Dr\Tf‘h(_X Bl X B2 X B3 X Bl

= tre

0O FIGURE 9-17
Timing Diagram for an SDREAM

 d

byte immediately needed by the CPU, the last two bits are 01. The subsequent
byvtes appear in the order of these two bits counted up modulo (burst length) by
the column address counter, giving addresses ending in 01, 10, 11, and 00, with all
other address bits fixed.

It is interesting to compare the byte rate for reading bytes from SDEAM to
that of the basic DRAM. We assume that the read cycle time fge for the basic
DRAM is 60 ns and that the clock period i i for the SDRAM is 7.5 ns. The byte
rate for the basic DRAM is one byte per 60 ns, or 16.67 MB/sec. For the SDRAM,
from Figure 9-17, it requires 8.0 clock cycles, or 60 ns, to read four bytes, giving a
byte rate of 66.67 MB/sec, If the burst is eight instead of four bytes, a read cycle
time of ™ ns is required, giving a byte rate of 58.89 MB/sec. Finally, if the burst is
the entire 2048-byte row of the SDRAM, the read cyvcle time becomes 60 + (2048 —
4) % 7.5 = 15,39 ns, giving a byte rate of 133.07 MB, which approaches the limit of
one byte per 7.5 ns clock period.

Double Data Rate SDRAM (DDR SDRAM)

The second DREAM tvpe, double data rate SDRAM (DDR SDRAM) overcomes
the preceding limit without decreasing the clock period. Instead, it provides two
bytes of data per clock period by using both the positive and negative clock edges.
In Figure 9-17. four bytes are read, one per positive clock edge. By using both
clock edges, eight bytes can be transferred in the same read cycle time i, For a
7.5 ns clock period, the byte rate limit doubles in the example to 266.14 MB/sec.

9-6 / DRAM Trpes O 425

Additional basic techniques can be applied to further increase the byte rate.
For example, instead of having single byte data, an SDRAM IC can have the data
I/O length of four bytes (32 bits). This gives a byte rate limit of 1.065 GB/sec with a
7.5 ns clock period. Eight bytes gives a byte rate limit of 2.130 GB/sec.

The byte rates achieved in the examples are upper limits. If the actual
accesses needed are to different rows of the RAM, the delay from the application
of the RAS pulse to read out the first byte of data is significant and leads to perfor-
mance well below the limit. This can be partially offset by breaking up the memory
into multiple banks where each of the banks performs the row read independently.
Provided that the row and bank addresses are available early enough, row reads
can be performed on one or more banks while data is still being transferred from
the currently active row. When the column reads from the currently active row are
complete, data can potentially be available immediately from other banks, permit-
ting an uninterrupted flow of data from the memory. This permits the actual read
rate to more closely approach the limit. Nevertheless, due to the fact that multiple
row accesses to the same bank may occur in sequence, the maximum rate is not
reached.

RAMBUS® DRAM (RDRAM)

The final DRAM type to be discussed is RAMBUS DREAM (RDRAM). RDRAM
ICs are designed to be integrated into a memory system that uses a packet-based
bus for the interaction between the RDRAM ICs and the memory bus to the pro-
cessor, The primary components of the bus are a 3-bit path for the row address, a 5-
bit path for the column address, and a 16-bit or an 18- bit path for data. The bus is
synchronous and performs transfers on both clock edges, the same property pos-
sessed by the DDR. SDRAM. Information on the three paths mentioned above is
transferred in packets that are four clock cycles long, which means that there are
eight transfers/packet. The number of bits per packet for each of the paths is 24
bits for the row address packet, 40 bits for the column address packet, and 128 bits
or 144 bits for the data packet. The larger data packet includes 16 parity bits for
implementing an error-correcting code. The RDRAM IC employs the concept of
multiple memory banks mentioned earlier to provide capability for concurrent
memory accesses with different row addresses. RDRAM uses the usual row
activate technique in which the addressed row data of the memory is read. From
this row data, the column address is used to select byte pairs in the order in which
they are to be transmitted in the packet. A typical timing picture for an RDRAM
read access is shown in Figure 9-18. Due to the sophisticated electronic design of
the RAMBUS system, we can consider a clock period of 1875 ns. Thus, the time
for transmission of a packet is tpaer= 4 x L.875 = 7.5 ns. The cycle time [or access-
ing a single data packet of 8 byte pairs or 16 bytes is 32 clock cycles or 60 ns as
shown in Figure 9-18. The corresponding byte rate is 266,67 MB/sec. If four of the
byte packets are accessed from the same row, the rate increases to 1.067 GB/sec.
By reading an entire RDRAM row of 2048 bytes. the cycle time increases to 60 +
(2048 - 64) = 1.875/4 = 990 ns or a byte rate limit of 2048/(990 = 10¥) = 2.069
MB/sec, approaching the ideal limit of 4/1.875 ns or 2.133 GB/sec.

426 0O CHAPTER 9 / MEMORY BASICS

| I""-lu:LR

- tpa g

<ROW’X| Xrow)
K XeoL X p
W DATA ¥ b

tne

DATA

Fa

¥

O FIGURE 9-18
Timing of a 16MB RDRAM

9-7 ARRAYS OF Dynamic RAM ICs

Many of the same design principles used for SRAM arrays in Section 9-4 apply to
DRAM arrays. There are, however, a number of different requirements for the
control and addressing of DRAM arrays. These requirements are typically handled
by a DRAM controller, The functions performed by a DRAM controller include
the following:

1. controlling separation of the address into a row address and a column
address and providing these addresses at the required times,

2. providing the RAS and CAS signals at the required times for read, write,
and refresh operations,

3. performing refresh operations at the necessary intervals, and
4. providing status signals to the rest of the system (e.g., indicating whether the
memaory is busy performing refresh).

The DRAM controller is a complex synchronous sequential cireuit with the exter-
nal CPU clock providing synchronization of its operation.

9-8 CHAPTER SUMMARY

Memory is of two types: random-access memory (RAM) and read-only memory
{(ROM}. For both types, we apply an address to read from or write into a data

R

Problems 0O 427

word. Read and write operations have specific steps and associated timing parame-
ters, including access time and write cycle time. Memory can be static or dynamic
and volatile or nonvolatile. Internally, a RAM chip consists of an array of RAM
cells, decoders, write circuits, read circuits, and output circuits, A combination of a
write circuit, read circuit, and the associated RAM cells can be logically modeled
as a RAM bit slice. RAM bit slices, in turn, can be combined to form two-dimen-
sional RAM cell arrays, which, with decoders and output circuits added, form the
basis for a RAM chip. Output circuits use three-state buffers in order to facilitate
connecting together an array of RAM chips without significant additional logic.
Due o the need for refresh, additional circuitry is required within DRAMs, as well
as in arrays of DRAM chips. In a quest for faster memory access, a number of new
DRAM types have been developed. The most recent forms of these high-speed
DRAMSs employ a synchronous interface that uses a clock to control memory
ACCEesses,

Error detection and correction codes, often based on Hamming codes, are used to
detect or correct errors in stored RAM data. Material from Edition 1 covering
these codes is available on the Companion Website for the text.

Material covering VHDL and Verilog for memories is available on the Companion
Website [or the text.

REFERENCES

1. WESTE. N. H. E., AND EsHrAGHIAN, K. Principles of CMOS VLST Design: A
Svystermns Perspective, 2nd ed. Reading, MA: Addison-Wesley, 1993,

2. Micron Technology, Inc, Micron 256Mb: x4, x8, x/6 SDRAM.,
www.micron,.com, 2002,

3. Micron Technology, Inc. Micron 64Mb: x32 DDR SDRAM. www.micron.com,
2001,

4. SoBeLMan, M., “Rambus Technology Basics,” Rambus Developer Forum.
Rambus, Inc., October 2001.

5. Rambus, Inc. Rambus Direct RDRAM 128/144-Mbit (256x16/18x32s) -
Preliminary Information, Document DLO0SY Version 1.11.

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates a
solution is available on the on the Companion Website for the text.

9-1. *The following memories are specified by the number of words times the
number of bits per word. How many address lines and input-output data
lines are needed in each case? (a) 16K = &, (b) 256K = 16, (c) 64M = 32, and
(d)2G = &

9-2. Give the number of bytes stored in the memories listed in Problem 9-1.

428

9-3.

9-4.

9-5.

9-7.

9-10.

9-11.

9-12.

O CHAPTER % / MEMORY BASICS

*Word number (835)); in the memory shown in Figure 9-2 contains the
binary equivalent of (15,103),. List the 10-bit address and the 16-hit
memory contents of the word.,

A 64K x 16 RAM chip uses coincident decoding by splitting the internal
decoder into row select and column select. (a) Assuming that the RAM cell
array is square, what is the size of each decoder, and how many AND gates
are required for decoding an address? (b) Determine the row and column
selection lines that are enabled when the input address is the binary
equivalent of (32000),,.

Assume that the largest decoder that can be used in an m x 1 RAM chip has

13 address inputs and that coincident decoding is employed. In order to

construct RAM chips that contain more 1-bit words than m, multiple RAM

cell arrays, each with decoders and read/write circuits, are included in the

chip.

(a) With the decoder restrictions given, how many RAM cell arrays are
required to construct a 512 M x 1 RAM chip?

(b) Show the decoder required to select from among the different RAM
arrays in the chip and its connections to address bits and column
decoders.

A DRAM has 14 address pins and its row address is 1 bit longer than its
column address. How many addresses, total, does the DRAM have?

A 256Mb DEAM uses 4-bit data and has equal length row and column
addresses. How many address pins does the DR AM have?

A DRAM has a refresh interval of 128 ms and has 4096 rows. What is the
interval between refreshes for distributed refresh? What is the minimum
number of address pins on the DRAM?

*(a)How many 128K = 16 RAM chips are needed to provide a memory
capacity of 1M bytes?

(b) How many address lines are required to access 1M bytes? How many of
these lines are connected to the address inputs of all chips?

(c) How many lines must be decoded to produce the chip select inputs?
Specify the size of the decoder.

Using the 64K = 8 RAM chip in Figure 9-9 plus a decoder, construct the
block diagram for a 512K = 16 RAM.

Explain how SDRAM takes advantage of the two-dimensional storage array
to provide a high data access rate.

Explain how a DDRAM achieves a data rate that is a factor of two higher
than a comparable SDEAM.

COMPUTER. DESIGN
BASICS

microoperations and a control unit that determines the sequence of

microoperations was introduced. In this chapter, we define a generic computer
datapath that implements register transfer microoperations and serves as a
framework for the design of detalled processing logic. The concept of a control word
provides a tie between the datapath and the control unit associated with it.

The generic datapath combined with a control unit and memory forms a programmable
system, in this case, a simple computer. The concept of an instruction set architecture
{ISA) is intfroduced as a means of specifying the computer. In order to implement the
ISA, a control unit and the generic datapath are combined to form a CPU (Central
Processing Unit). In addition, since this is a programmable system, memories are also
present for storage of programs and data. Two different computers with two different
control units are considered, The first computer has two memories, one for instructions
and one for data, and performs all of its operations in a single clock cycle. The second
computer has a single memory for both instructions and data and a more complex
architecture requiring multiple clock cycles to perform its operations.

In the generic computer at the beginning of Chapter 1, register transfers, micro-
operations, buses, datapaths, datapath components, and control words are used quite
broadly. Likewise, control units appear in most of the digital parts of the generic
computer, The design of processing units consisting of contral units interacting with
datapaths has its greatest impact within the generic computer in the CPU and FPU in
the processor chip. These two components contain major datapaths that perform
processing. The CPU and the FPU perform additions, subtractions, and most of the
other operations specified by the instruction set.

I n Chapter 7, the separation of a design into a datapath that implements

O 429

430 0O CHAPTER 10/ COMPUTER DESIGN BASICS

10-1 INTRODUCTION

Computers and their design are introduced in this chapter. The specification for a
computer consists of a description of its appearance to a programmer at the lowest
level, its instruction set architecture (ISA). From the ISA, a high-level description of
the hardware to implement the computer, called the computer architecture, is for-
mulated. This architecture, for a simple computer, is typically divided into a data-
path and a control, The datapath is defined by three basic components:

L. aset of registers,
2. the microoperations that are performed on data stored in the registers, and
3. the control interface.

The control unit provides signals that control the microoperations performed
in the datapath and in other components of the system, such as memories. In addi-
tion, the control unit controls its own operation, determining the sequence of
events that occur, This sequence may depend upon the results of current and past
microoperations executed. In a more complex computer, typically multiple control
units and datapaths are present.

To build a foundation for considering computer designs, initially, we extend
the ideas in Chapter 7 to the implementation of datapaths. Specifically, we consider
a generic datapath, one that can be used, in some cases in modified form, in all of
the computer designs considered in the remainder of the text. These future designs
show how a given datapath can be used to implement different instruction set archi-
tectures by simply combining the datapath with different control units.

10-2 DATAPATHS

Instead of having each individual register perform its microoperations directly,
computer systems often employ a number of storage registers in conjunction with a
shared operation unit called an arithmeticiogic unii, abbreviated ALUL To perform
a microoperation, the contents of specified source registers are applied to the
inputs of the shared ALU. The ALU performs an operation, and the result of this
operation is transferred to a destination register. With the ALU as a combinational
circuit, the entire register transfer operation from the source registers, through the
AL, and into the destination register is performed during one clock cycle. The
shift operations are often performed in a separate unit, but sometimes these opera-
tions are also implemented within the ALTL

Recall that the combination of a set of registers with a shared ALU and inter-
connecting paths is the datapath for the system. The rest of this chapter is con-
cerned with the organization and design of datapaths and associated control units
used to implement simple computers. The design of a particular ALU is under-
taken to show the process involved in implementing a complex combinational cir-
cuit. We also design a shifter, combine control signals into control words, and then
add control units to implement two different computers.

10-2 / Datapaths [0 431

The datapath and the control unit are the two parts of the processor, or CPU,
of a computer. In addition to the registers, the datapath contains the digital logic
that implements the various microoperations. This digital logic consists of buses,
multiplexers, decoders, and processing circuits. When a large number of registers is
included in a datapath, the registers are most conveniently connected through one
or more buses. Registers in a datapath interact by the direct transfer of data, as
well as in the performance of the various types of microoperations. A simple bus-
based datapath with four registers, an ALUL and a shifter is shown in Figure 10-1.
The shading and blue signal names relate to Figure 10-10 and will be discussed in
Section 10-5. The black signal names are used here to describe the details in Figure
10-1. Each register is connected to two multiplexers to form ALLU and shifter input
buses A and B. The select inputs on each multiplexer select one register for the cor-
responding bus. For Bus B, there is an additional multiplexer, MUX B, so that con-
stants can be brought into the datapath from outside using Constant in. Bus B also
connects to Data out, to send data outside the datapath to other components of the
system, such as memory or input-output. Likewise, Bus A connects to Address out,
to send address information outside of the datapath for memory or input-output.

Arithmetic and logic microoperations are performed on the operands on the
A and B buses by the ALU. The G select inputs select the microoperation to be
performed by the ALU. The shift microoperations are performed on data on Bus B
by the shifter. The H select input either passes the operand on bus B directly
through to the shifter output or selects a shilt microoperation, MUX F selects the
output of the ALU or the output of the shifter. MUX D selects the output of MUX
F or external data applied to Data in to be applied to Bus D. The latter is con-
nected to the inputs of all the registers. The destination select inputs determine
which register is loaded with the data on Bus D. Since the select inputs are
decoded, only one register Load signal is active [or any transfer of data into a regis-
ter from Bus D. A Load enable signal that can force all Load signals to () using
AND gates is present for transfers that are not to change the contents of any of the
four registers.

It is useful to have certain information, based on the results of an ALU oper-
ation, available for use by the control unit of the CPU to make decisions. Four sta-
tus bits are shown with the ALU in Figure 10-1. The status bits, carry C and
overflow ¥, were explained in conjunction with Figure 5-9. The zero status bit Zis 1
if the output of the ALU contains all zeros and is 0 otherwise. Thus, Z = 1 if the
result of an operation is zero, and Z = 0 if the result is nonzero, The sign status bit
N (for negative) is the leftmost bit of the ALU output, which is the sign bit for the
result in signed-number representations. Status values from the shifter can also be
incorporated into the status bits if desired.

The control unit for the datapath directs the information flow through the
buses, the ALU, the shifter, and the registers by applying signals to the select
inputs, For example, to perform the microoperation

Rl R2+R3

the control unit must provide binary selection values to the following sets of control
inputs:

432 0O CHAPTER 10 / COMPUTER DESIGN BASICS

Load enable A select B select
Write A address B address
D data n
]
Load 3
| % » RO 2} 2}
n [n,
—,.h‘ —
—I Y Load
- K1 ¥
L4 15
I n 4
i L MUY
L i Ea 2
—‘;"—1 w1 3
{1 EA%
MUX
—[_\ Load M 2 |2
e {3
o | 1,
ey
Load Ra
n} n
01 2 3 y
L',‘._ Register file
Decoder
Dnddiess A data B data
2 Constant in —0 L
o | A |
Drestination select n 0
MB select
MUX B
Bus A 1 " der&es
- = ut
Bus B = - Data
A~ “" gn Out
(i select H select
5::4 a e 3
801l Ca :
V +—— Arithmetic/logic O0—=ly Shifter =0
d unit (ALL
i G H
N 3 n |
Z Zero Detect[—% ¥ %
0 T
MF select —— MUX F Function unii
B
Data 1
i l’ ata In
0 1
MDD select —]
ML
= Fus D MUX D

O FIGURE 10-1
Block Diagram

of a Generic Datapath

10-3 / The Arithmetic/Logic Unit [0 433

. A select, to place the contents of R2 onto A data and, hence, Bus A.

2. B select, to place the contents of R3 onto the O input of MUX B; and MB
select, to put the 0 input of MUX B onto Bus B.

3. G select, to provide the arithmetic operation A + B.

4. MF select, to place the ALU output on the MUX F output.

5. MD select, to place the MUX F output onto Bus D.

6. Destination select, to select R1 as the destination of the data on Bus D.

7. Load enable, to enable a register—in this case, R1—to be loaded.

The sets of values must be generated and must become available on the cor-
responding control lines early in the clock cycle. The binary data from the two
source registers must propagate through the multiplexers and the ALU and on into
the inputs of the destination register. all during the remainder of the same clock
cycle. Then, when the next positive clock edge arrives, the binary data on Bus D is
loaded into the destination register. To achieve fast operation, the ALU and shifter
are constructed with combinational logic having a limited number of levels, such as
a carry-lookahead adder.

10-3 THE ArRiTHMETIC/LOGIC UNIT

The ALU is a combinational circuit that performs a set of basic arithmetic and
logic microoperations. The ALU has a number of selection lines used to determine
the operation to be performed. The selection lines are decoded within the ALU, so
that k selection lines can specify up to 2* distinct operations.

Figure 10-2 shows the symbol for a typical n-bit ALU. The n data inputs from
A are combined with the n data inputs from B to generate the result of an operation

e
Data -w=l A
input A e
-
- Gy —
— Ay]
Gy — Data
tput G
15 a-bit e
-
Data —d By arithmetic! L e
input B - logic
: unit
S T (ALLD
Carry input ——= T, Cout — Carry output
Operation [—* 5
select 5,
Mode select ——=] 54

O FIGURE 10-2
Symbal for an n-Bit ALL

434 0O CHAPTER 10/ COMPUTER DESIGN BASICS

CITI L

n

A = X
n n-bit n
B ——| parallel = G=X+Y +
adder
i n
E input .l v

pp— logic
5 —

= 'I:"\Clut

O FIGURE 10-3

Block Diagram of an Arithmetic Circuit

at the & outputs. The mode-select input §; distinguishes between arithmetic and
logic operations. The two Operation select inputs 5, and S and the Carry input G,
specify the eight arithmetic operations with §; at . Operand select input 5, and
specifly the four logic operations with 5, at 1.

We perform the design of this ALU in three stages. First, we design the arith-
metic section. Then we design the logic section, and finally, we combine the two
sections to form the ALLL

Arithmetic Circuit

The basic component of an arithmetic circuit is a parallel adder, which is con-
structed with a number of full-adder circuits connected in cascade, as shown in
Figure 5-5. By controlling the data inputs to the parallel adder, it is possible to
obtain different types of arithmetic operations. The block diagram in Figure 10-3
demonstrates a configuration in which one set of inputs to the parallel adder is
controlled by the select lines 5, and §;. There are n bits in the arithmetic circuit,
with two inputs A and B and output . The n inputs from B go through the B input
logic to the ¥ inputs of the parallel adder. The input carry C;, goes in the carry
input of the full adder in the least-significant-bit position. The output carry C,,, is
from the full adder in the most-significant-bit position. The output of the parallel
adder is calculated from the arithmetic sum as

G=X+Y+C,

where X is the n-bit binary number from the inputs and ¥ is the n-bit binary num-
ber from the B input logic. €y, is the input carry, which equals 0 or 1. Note that the
symbol + in the equation denotes arithmetic addition.

10-3 / The Arithmetic/Logic Unit O 435

O TABLE 10-1
Function Table for Arithmetic Circuit

Select Input G=A+Y+C,
5, & Y Cii=0 Gy, =1
0 0 all0's (7 = A (transfer) 7 = A~+1 (increment)
o 1 B G = A+ B(add) G=A+8+1
1 0 B G=A+8 G = A+ B +1 (subtract)
A | all 1's G = A —1 (decrement) G = A (transfer)

Table 10-1 shows the arithmetic operations that are obtainable by controlling
the value of ¥ with the two selection inputs §; and 5, If the inputs from B are
ignored and we insert all 0's at the ¥ inputs, the output sum becomes G = A + 0 +
C;,. This gives G = A when C;; = 0 and G = A + 1 when G, = 1. In the first case, we
have a direct transfer from input A to output G. In the second case, the value of A is
incremented by 1. For a straight arithmetic addition, it is necessary to apply the B
inputs to the ¥ inputs of the parallel adder. This gives G = A + B when G, = 0.
Arithmetic subtraction is achieved by applying the complement of inputs B to the ¥
inputs of the parallel adder, to obtain & = A + B +1 when G, = 1. This gives A
plus the 2’s complement of B, which is equivalent to 2's complement subtraction. All
1's is the 2's complement representation for —1. Thus, applying all 1's to the ¥ inputs
with €, = 0 produces the decrement operation G = A = 1.

The B input logic in Figure 10-3 can be implemented with n multiplexers. The
data inputs to each multiplexer in stage i for i = 0,1,....,.n—1 are 0, B, B;, and
1, corresponding to selection values 5,5y 00, 01, 10, and 11, respective]}r.l'l‘hus, the
arithmetic circuit can be constructed with n full adders and » 4-to-1 multiplexers.

The number of gates in the B input logic can be reduced if, instead of using
4-to-1 multiplexers, we go through the logic design of one stage (one bit) of the B
input logic. This can be done as shown in Figure 10-4. The truth table for one typical

Inpuis Output
S S B | Y,
o0 0 0 Y;=0 Sa
bo1)0 o0 01 11 10
o010 n Y, =8
D11 1 0 1
1 0 0 1 1fl =B
1 0 1 0 5 [1] 1 | 1 1
1 1 0 1 Y=1 NS
11 1 1 B;
- (k) Map Simplification:
{a)Truth table Y, = BS, + B;S,

O FIGURE 10-4
B Input Logic for One Stage of Arithmetic Circuit

436 0O CHAPTER 10/ COMPUTER DESIGN BASICS

Cin
5
5 s
Ay o B
0 FA |G,
>o x
A
JEI = X
: FA |G,
>0 -
LC2
As — X,
B
: |)- FA |G
i
."C_;_
Ay . — I
S } FA |Gy
o
_.j) Y
>0) B
=

i

O FIGURE 10-5
Logic Diagram of a 4-bit Arithmetic Circuit

stage i of the logic is given in Figure 10-4(a). The inputs are §,. 5,, and B;, and the
output is ¥;. Following the requirements specified in Table 10-1, we let ¥; = 0 when
&, 5y = 00, and similarly assign the other three values of ¥; for each of the combina-
tions of the selection variables. Output ¥; is simplified in the map in Figure 10-4(b),
to give

Y; = BS,+BS,

where §; and 5, are common to all n stages. Each stage 7 is associated with input B;
and output ¥; for i = 0,1, 2,....n — 1. This logic corresponds to a 2-to-1 multi-
plexer with B, on the select input and 8, and S5, on the data inputs,

Figure 10-5 shows the logic diagram of an arithmetic circuit for n = 4. The
four full-adder (FA) circuits constitute the parallel adder. The carry into the first
stage is the input carry Cj,. All other carries are connected internally from one
stage to the next. The selection variables are 5;, 5, and C,. Variables 5, and 5

10-3 / The Arithmetic/Logic Unit O 437

—] A-10-1
i S MUX
S‘I S‘J
5 S Output Operation
Aq
B, o 0 |G=AxB | AND

G=AvB OR
0| G=ADB XOR
1 | G=A NOT

=
- — = =

(b} Function Table

3

90

(a) Logic Diagram

O FIGURE 10-6
One Stage of Logic Circuil

control all ¥ inputs of the full adders according to the Boolean function derived in
Figure 10-4(b). Whenever G, is 1, 4 + ¥ has 1 added. The eight arithmetic opera-
tions for the circuit as a function of §,, 8,, and C,, are listed in Table 10-2, It is
interesting to note that the operation G = A appears twice in the table. This is a
harmless by-product of using C;; as one of the control variables while implement-
ing both increment and decrement instructions.

Logic Circuit

The logic microoperations manipulate the bits of the operands by treating each bit
in a register as a binary variable, giving bitwise operations. There are four com-
monly used logic operations—AND, OR, XOR (exclusive-OR), and NOT—from
which others can be conveniently derived.

Figure 10-6{a) shows one stage of the logic circuit. It consists of four gates
and a 4-to-1 multiplexer, although simplification could yield less complex logic.
Each of the four logic operations is generated through a gate that performs the
required logic. The outputs of the gates are applied to the inputs of the multiplexer
with two selection variables §, and S;;. These choose one of the data inputs of the
multiplexer and direct its value to the output, The diagram shows a typical stage
with subscript i. For the logic circuit with » bits, the diagram must be repeated n
times, for i = 0, 1, 2,.... n — 1. The selection variables are applied to all stages. The
function table in Figure 10-6(b) lists the logic operations obtained for each combi-
nation of the selection values,

Arithmetic/Logic Unit

The logic circuit can be combined with the arithmetic circuil to produce an ALLL
Selection variables 8, and §; can be common to both circuits, provided that we use
a third selection variable to differentiate between the two. The configuration for
one stage of the ALU is illustrated in Figure 10-7. The outputs of the arithmetic

438 0O CHAPTER 10/ COMPUTER DESIGN BASICS

G = ——Ci 4y
A ki One stage of
B = B; arithmetic
% 5, circuit 2-ta-1
S g 0 MUX
L 4 Gi
1
L. Ay 5
B One stage of
=15, logic circuit
[SI
5
O FIGURE 10-7

One Stage of ALU

and logic circuits in each stage are applied to a 2-to-1 multiplexer with selection
variable 5;. When §; = 0. the arithmetic output is selected, and when §, = 1, the
logic output is selected. Note that the diagram shows just one typical stage of the
ALU; the circuit must be repeated n times for an n-bit ALU. The output carry C,.,
of a given arithmetic stage must be connected to the input carry C; of the next
stage in sequence. The input carry to the first stage is the input carry G, which also
acts as a selection variable for the arithmetic operations.

The ALU specified in Figure 10-7 provides eight arithmetic and four logic
operations. Each operation is selected through the variables S, §,, S, and G,
Table 10-2 lists the 12 ALU operations. The first eight are arithmetic operations

O TABLE 10-2

Function Table for ALU

Operation Select

S; 5 = C.. Operation Function
0 0 0 0 G=4A Transfer A
0 0 0 1 G=A+1 Increment 4
0 0 1 0 G=A+E Addition
0 0 1 1 G=4+8+1 Add with carry input of 1
0 1 0 0 G=A+8 A plus 1's complement of B
] 1 0 1 G=A+F+1 Subtraction
0 1 1 i G=4-1 Decrement A
0 1 1 1 G=A Transfer A
i X 0 0 G = AnB AND
1 X 0 1 G =AvE OR
1 X 1 0 G =AER HOR
1 X 1 1 — MNOT (1's complement)

10-4 / The Shifter O 439

and are selected with 5; = (.. The next four are logic operations and are selected
with §; = 1. To provide selection codes using as few bits as possible, §; and C; are
used to control the selection of the logic operations instead of 5; and §,. Selection
input §; has no effect during the logic operations and is marked with X to indicate
that its value may be either 0 or 1. Later in the design, it is assigned value 0 for
logic operations.

The ALU logic we have designed is not as simple as it could be and has a
fairly high number of logic levels, contributing to propagation delay in the circuit.
With the use of logic simplification software, we can simplify this logic and
reduce the delay. For example, it is quite easy to simplify the logic for a single
stage of the ALU. For realistic n, a means of further reducing the carry propaga-
tion delay in the ALU, such as the carry lookahead adder from Section 5-2, is
usually necessary.

10-4 THE SHIFTER

The shifter shifts the value on Bus B, placing the result on an input of MUX F The
basic shifter performs one of two main types of transformations on the data: right
shift and left shift.

A seemingly obvious choice for a shifter would be a bidirectional shift register
with parallel load. Data from Bus B can be transferred to the register in parallel
and then shifted to the right, the left, or not at all. A clock pulse loads the output of
Bus A into the shift register, and a second clock pulse performs the shift. Finally, a
third clock pulse transfers the data from the shift register to the selected destination
register.

Alternatively, the transfer from a source register to a destination register
can be done using only one clock pulse if the shifter is implemented as a combina-
tional circuit as done in Chapter 5. Because of the faster operation that results
from the use of one clock pulse instead of three, this is the preferred method. In a
combinational shifter, the signals propagate through the gates without the need
for a clock pulse. Hence, the only clock needed for a shift in the datapath is for
loading the data from Bus H into the selected destination register.

A combinational shifter can be constructed with multiplexers as shown In
Figure 10-8. The selection variable § is applied to all four multiplexers to select the
type of operation within the shifter. § = 00 causes B to be passed through the
shifter unchanged. § = 01 causes a right-shift operation and 5 = 10 causes a left-
shift operation. The right shift fills the position on the left with the value on serial
input Ig. The left shift fills the position on the right with the value on serial input
I; . Serial outputs are available from serial output R and serial output L for right
and left shifts, respectively.

The diagram of Figure 10-8 shows only four stages of the shifter, which has n
stages in a system with n-bit operands. Additional selection variables may be
emploved to specify what goes into I and [I; during a single bit-position shift. Note
that to shift an operand by m > 1 bit positions, this shifter must perform a series of
m 1-bit position shifts, taking m clock cycles.

440 0O CHAPTER 10/ COMPUTER DESIGN BASICS

B." BE B By
Serial
output L
Serial
output B
- [
01 2M 01 M { M 0 2 M
5 U u u u
X .4 X X
gind
H; H; H, Hy
O FIGURE 10-8

4-Bit Basic Shifter

Barrel Shifter

In datapath applications, often the data must be shifted more than one bit position
in a single clock cycle. A barrel shifter is one form of combinational circuit that
shifts or rotates the input data bits by the number of bit positions specified by a
binary value on a set of selection lines. The shift we consider here is a rotation to
the left, which means that the binary data is shifted to the left, with the bits coming
from the most significant part of the register rotated back into the least significant
part of the register.

A 4-bit version of this kind of barrel shifter is shown in Figure 10-9, It consists
of four multiplexers with common select lines §; and ;. The selection variables
determine the number of positions that the input data will be shifted to the left by
rotation. When §;5; = 00, no shift occurs, and the input data has a direct path to
the outputs. When 5,5, = 01, the input data are rotated one position, with D
going to ¥y, D going to ¥5, D; going to Y3, and D going to ¥j,. When 8,5, = 10,
the input is rotated two positions, and when 5|5, = 11, the rotation is by three hit
positions. Table 10-3 gives the function table for the 4-bit barrel shifter. For each

O TABLE 10-3

Function Table for 4-Bit Barrel Shifter

Select Output
5, 5 ¥ Y, Y, Yo Operation
0 0 F Dy by Dy Mo rotation
0 1 F Iy Dy Dy Rotate one position
1 0 m Iy 05 Dy Rotate two positions
1 1

Rotate three positions

10-5 / Datapath Representation [0 441

D, 0 D, Dy

Sy
S, - . 5
1 l | |
3 2 T 08 S5 2 1 0% %5 210851321085
M M M M
u] u U
X X X X
T3 Y Y, Ya

O FIGURE 10-9
4-Bit Barrel Shifter

binary value of the selection variables, the table lists the inputs that go to the cor-
responding output. Thus, to rotate three positions, §;.5; must be equal to 11, caus-
ing Dy to go to ¥3, Dy to go to ¥y, D; to go to Yy, and D; to go to ¥5. Note that,
by using this left-rotation barrel shifter, one can generate all desired right rotations
as well. For example, a left rotation by three positions is the same as a right rota-
tion by one position in this 4-bit barrel shifter. In general, in a 2"-bit barrel shifter,
i positions of left rotation is the same as 2" — i bits of right rotation.

A barrel shifter with 2" input and output lines requires 2" multiplexers, each
having 2" data inputs and n selection inputs. The number of positions for the data
to be rotated 1s specified by the selection variables and can be from 0 to 2" — 1
positions. For a large n, the fan-in to gates is too large, so larger barrel shifters con-
sist of layers of multiplexers, as shown in Section 12-2, or of special structures
designed at the transistor level.

10-5 DATAPATH REPRESENTATION

The datapath in Figure 10-1 includes the registers, selection logic for the regis-
ters, the ALU, the shifter, and three additional multiplexers. With a hierarchical
structure, we can reduce the apparent complexity of the datapath. This reduction
is important, since we frequently use this datapath. Also, as illustrated by the reg-
ister file to be discussed next, the use of a hierarchy allows one implementation
of a module to be replaced with another, so that we are not tied to specific logic
implementations.

A typical datapath has more than four registers. Indeed, computers with 32 or
more regislers are common. The construction of a bus system with a large number

442 0O CHAPTER 10 / COMPUTER DESIGN BASICS

of registers requires different techniques. A set of registers having common micro-
operations performed on them may be organized into a register file. The typical reg-
ister file is a special type of fast memory that permits one or more words to be read
and one or more words to be written, all simultaneously. Functionally, a simple reg-
ister file contains the equivalent of the logic shaded in blue in Figure 10-1. Due to
the memory-like nature of register files, the A select, B select, and Destination
select inputs in the fipure, become three addresses. As shown in Figure 10-1 in blue
and on the register file symbol in Figure 10-10, the A address accesses a word to be
read onto A data, the B address accesses a second word to be read onto B data, and
the I address accesses a word to be written into from [data. All of these accesses

n g
#
r
D data
——= Write
ﬂmt’—h- D address
20X n
Register file
=1 A address B address "n:“
A data B data
Constant in .‘:1 n}
n ¥ ¥
1 [1]
MB select = MUXB
Bus A
= I:" > Address out
BusB n,
> = Data out
L 3 k
4 A B
F§ —
V-
C+— Function
unit
Bo—
Z -~
F
n
n; = Data in
¥ lr
0 1
MD select — ™ pux D

O FIGURE 10-10
Block Diagram of Datapath Using the Register File and Function Unit

10-5 / Datapath Representation [443

O TABLE 10-4

G Select, H Select, and MF Select Codes Defined

in Terms of FS Codes

MF G H

F5(3:0) Select Select(3:0) Select{3:0) Microoperation
0000 0 0000 XX F=4A
0001 0 ool X F=A+1
0010 0 0010 XX F=A+BH
0011 0 D011 XX F=A+B+1
0100 0 0100 XX F=A+B
0101 0 0101 XX F=A+B+1
otio 0 0110 XX F=A-1
0111 0 0111 XX F=A
1000 0 1 X00 xX F= AR
1001 0 1X01 X F=AvE
1010 0 1X10 XX F=A®B
1011 0 1X11 XX F=A
1100 1 AKX i} F=E
1101 1 WK 01 F=sB
1110 1 OO0 10 F=3slB

occur in the same clock cycle. A Write input corresponding to the Load Enable signal
is also provided. When at 1, the Write signal permits registers to be loaded, during the
current clock cycle, and, when at 0, prevents register loading. The size of the register
file is 2™ x n, where m is the number of register address bits and »n is the number of
bits per register. For the datapath in Figure 10-1, m = 2, giving four registers, and n is
unspecified.

Since the ALU and the shifter are shared processing units with outputs that are
selected by MUX F it is convenient to group the two units and the MUX together to
form a shared function unit. Gray shading in Figure 10-1 highlights the function unit,
which can be represented by the symbol given in Figure 10-10. The inputs to the func-
tion unit are from Bus A and Bus B, and the output of the function unit goes to MUX
D. The function unit also has the four status bits V, C, N, and Z as added outputs.

In Figure 10-1, there are three sets of select inputs: the & select, H select,
and MF select. In Figure 10-10, there is a single set of select inputs labeled FS, for
“function select.” To fully specify the function unit symbol in the figure, all of the
codes for MF select, G select, and H select must be defined in terms of the codes
for FS. Table 10-4 defines these code transformations. The codes for FS are given
in the left column. From Table 10-4, it is apparent that MF is 1 for the leftmost
two bits of FS both equal to 1. If MF select = 0, then the G select codes determine
the function on the output of the function unit. If MF select = 1, then the H select
codes determine the function on the output of the function unit. To show this
dependency, the codes that determine the function unit outputs are highlighted in
blue in the table. From Table 10-4, the code transformations can be implemented
using the Boolean equations: MF = F3 B, Gy = F5,. G = B, Gy = F1, Gy = Fy, Hy =
F|.. and Hu = .F[}.

444 0O CHAPTER 10/ COMPUTER DESIGN BASICS

The status bits are assumed to be meaningless when the shifter is selected,
although in a more complex system, shifter status bits can be designed to replace
those for the ALU whenever a shifter microoperation is specified. Note that the
status bit implementation depends on the specific implementation that has been
used for the arithmetic circuit. Alternative implementations may not produce the
same results,

10-6 THE CoNTROL WORD

The selection variables for the datapath control the microoperations executed
within the datapath for any given clock pulse. For the datapath in Section 10-5, the
selection variables control the addresses for the data read from the register file, the
function performed by the function unit, and the data loaded into the register file,
as well as the selection of external data. We will now demonstrate how these con-
trol variables select the microoperations for the datapath. The choice of control
variable values for typical microoperations will be discussed, and a simulation of
the datapath will be illustrated,

A block diagram of a datapath that is a specific version of the datapath in
Figure 10-10 is shown in Figure 10-11(a). It has a register file with eight registers,
RO through R7. The register file provides the inputs to the function unit through
Bus A and Bus 8. MUX B selects between constant values on Constant in and
register values on B data. The ALU and zero-detection logic within the function
unit generate the binary data for the four status bits: V (overflow), C (carry), N
(sign}), and Z (zero). MUX D selects the function unit output or the data on Data
in as input for the register file.

There are 16 binary control inputs. Their combined values specify a control
word. The 16-bit control word is defined in Figure 10-11(b). It consists of seven
parts called fields, each designated by a pair of letters. The three register fields are
three bits each. The remaining fields have one or four bits. The three bits of DA
select one of eight destination registers for the result of the microoperation. The
three bits of AA select one of eight source registers for the Bus A input to the
ALU. The three bits of BA select a source register for the 0 input of the MUX 8.
The single MB bit determines whether Bus B carries the contents of the selected
source register or a constant value. The 4-bit FS field controls the operation of the
function unit. The FS field contains one of the 15 codes from Table 10-4. The sin-
gle bit of MD selects the function unit output or the data on Data in as the input
to Bus D. The final field, RW, determines whether a register is written or not.
When applied to the control inputs, the 16-bit control word specifies a particular
microoperation.

The functions of all meaningful control codes are specified in Table 10-5. For
each of the fields, a binary code for each of the functions is given. The register
selected by each of the fields DA, AA, and BA is the one with the decimal equiva-
lent equal to the binary number for the code. MB selects either the register
selected by the BA field or a constant from outside of the datapath on Constant in.
The ALU operations, the shifter operations, and the selection of the ALU or

10-6 / The Control Word [445

’ !
RW| 0 Write D data
E—-‘—
DA |14 ————————p=| Db addreess
13— Exn
Register file
AAll] ———————| A address B address f+———— & [BA
— A data B data
“/r nk
Constant in ——Il,;l
r
1 0
MB[6 » MUXB
Bus A n
i Address out
Bus B n,
s = Data oul
L L
A B
W — c 5
] Function 4 |Fs
Z = e— 2
ny + I:’ Data in
L
0 1
MDE—* MUX D
Bus D!
(a) Block Diagram
1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
DA AA Ba | M FS MIE
B D|w

() Control word

O FIGURE 10-11
Datapath with Control Variables

shifter outputs are all specified by the FS field. The field MD controls the informa-
tion to be loaded into the register file. The final field, RW, has the functions No
Write, to prevent writing to any registers, and Write, to signify writing to a register.

446 [CHAPTER 10/ COMPUTER DESIGN BASICS

O TABLE 10-5
Encoding of Control Word for the Datapath
DA, AA, BA MB FS MD RW
Function Code Function Code Function Code Function Code Function Code
RO 000 Register 0 F=A 0000 Function 0 No write 0
R1 001 Constant 1 F=A+1 0001 Dataln 1 Write 1
R2 010 F=A+B 0010
R3 011 F=A+B+1 0011
R4 100 F=A+E 0100
R3 101 F=A+B+1 01
R 110 F=4-1 0110
R7 111 F=A 0111
F=AnB 1000
F=AvE 1001
F=AERB 1010
oA 1011
F=R 1100
F=s B 110
F=sl B 1110

The control word for a given microoperation can be derived by specifying the
value of each of the control fields. For example, a subtraction given by the statement

Rl<R24+R3+1

specifies R2 for the A input of the ALU and R3 for the B input of the ALU. It also
specifies function unit operation F = A + B +1 and selection of the function unit
output for input into the register file. Finally, the microoperation selects R1 as the
destination register and sets RW to 1 to cause R1 to be written. The control word
for this microinstruction is specified by its seven fields, with the binary value for
each field obtained from the encoding listed in Table 10-5. The binary control word
for this subtraction microoperation, 001_010_011_0_0101_0_1, (with underline *_"
used for convenience to separate the fields) is obtained as follows:

Field: DA AA BA MB FS MD RW
Symbolicc R1 R2 R3 Register F=A+B+1 Function Write
Binary: 001 010 011 O 0101 0 1

The control word for the microoperation and those for several other microopera-
tions are given in Table 10-6 using symbolic notation and in Table 10-7 using
binary codes.

The second example in Table 10-6 is a shift microoperation given by the
statement

R4+sl R6

10-6 / The Control Word O 447

O TABLE 10-6
Examples of Microoperations for the Datapath, Using Symbolic Notation

Micro-

operation DA AA BA MB FS MD RW
R1«<R2-R3 Rl R2 R3 Register F=A+B+1 Function Write
R4sl Ra R4 — Rb6 Register F=3lB Function Write
R7+«R7+1 R7T R7 — Register F=A+1 Function Write
Rl1+ R0 +2 Rl R0 — Constant F=A+R Function Write
Data out« R3 —_ — R3 Register — — Mo Write
R4e«Datain R4 — — - — Datain Write
R« RS RO RO Register F=AGH Function Write

This statement specifies a shift left for the shifter. The content of register R6,
shifted to the left, is transferred to R4. Note that because the shifter is driven by
the B bus, the source for the shift is specified in the BA field rather than the AA
field. From the knowledge of the symbols in each field, the control word in binary
is derived as shown in Table 10-7. For many microoperations, neither the A data
nor the B data from the register file is used. In these cases, the respective symbolic
field is marked with a dash. Since these values are unspecified, the corresponding
binary values in Table 10-7 are Xs. Continuing with the last three examples in Table
10-6, to make the contents of a register available to an external destination only,
we place the contents of the register on the B data output of the register file, with
RW = No Write () to prevent the register file from being written. To place a small
constant in a register or use a small constant as one of the operands, we place the
constant on Constant in, set MB to Constant, and pass the value from Bus B
through the ALL and Bus D to the destination register. To clear a register to 0,
Bus D is set to all 's by using the same register for both A data and B data with an
XOR operation specified (F5 = 1010) and MD = (. The DA field is set to the code
for the destination register, and RW is Write (1).

O TABLE 10-7
Examples of Microoperations from Table 10-6, Using Binary Control Words

Micro-

operation DA AA BA MB Fs MD RW
Rl<R2-R3 001 010 011 O o 0 1
R4 «sl R6 100 XXX 110 0 1110 1] 1
R7T«—R7+1 111 111 XXX 0 (001 0 1
Rl=RO+2 o01 0on XXX 1 00110 0 1
Data out+—R3 XXX XXX 011 0O XXX X]
R4« Data in 100 X0 XXX X WX 1 1
R5«0 101 000 000 0 1010 0 1

448 0O CHAPTER 10 / COMPUTER DESIGN BASICS

[t is apparent from these examples that many microoperations can be per-
formed by the same datapath. Sequences of such microoperations can be realized
by providing a control unit that produces the appropriate sequences of control
words.

To complete this section, we perform a simulation of the datapath in Figure
10-11. The number of bits in each register, n, is equal to 8. An unsigned decimal
representation, which is most convenient for reading the simulation output, is used
for all multiple bit signals. We assume that the microoperations in Table 10-7, exe-
cuted in sequence, provide the inputs to the datapath and that the initial content
of each register is its number in decimal (e.g.. R5 contains (000 0101); = (5)0).
Figure 10-12 gives the result of this simulation. The first value displaved is the
Clock with the clock cycles numbered for reference. The inputs, outputs, and state
for the datapath are given roughly in the order of the flow of information through
the path. The first four inputs are the primary control word fields, which specify
the register addresses that determine the register file outputs and the function
selection. Next are inputs Constant in and MB, which control the input to Bus B,

dock’ 1 |2 _Ja3al _J4 _JTsL Jel _J7L [&8
DA {1) £} Iz - RS [[4 Is —
AA 2 [0 7 [0 =
BA {3 |6 [0 13 [u —
Fs {5 i I T2 o [in ==
Constant_in X 12 Ix
ME - 1 —
Address_out {2 [0 17 Jo =
Data_out {3 o [0 1z | E] I (] —_—
Data_in ———{18 ___ ——1{18 _—
MD -
RW / e} —
regl 0
regl | [255 2
freg2 2
regd 3
regd 4 [1Z B
regh 3 ' fo
regh 6
reg? 7 I8
Status_bits{ 2 o [0 1 X

O FIGURE 10-12
Simulation of the Microoperation Sequence in Table 10-7

10-7 / A Simple Computer Architecrure [0 449

Following are the outputs Address out and Data out, which are the outputs from
Bus A and Bus B, respectively. The next three variables—Data in, MD, and RW—
are the final three inputs to the datapath. They are followed by the content of the
eight registers and the Status bits, which are given as a vector (V, C, N, Z). The ini-
tial content of each register is its number in decimal. The value 2 is applied to
Constant only in cycle 4 where MB equals 1. Otherwise, the value on Constant in
is unknown as indicated by X, Finally, Data in has value 18, In the simulation, this
value comes from a memory that is addressed by Address out and that has value
18 in location 0 with unknown values in all other locations. The resulting value,
except when Address out is 0, is represented by a line midway between 0 and 1
indicating the value is unknown.

Of note in the simulation results is that changes in registers as a result of a
particular microoperation appear in the clock cycle after that in which the microop-
eration is specified. For example, the result of the subtraction in clock cycle 1
appears in register R1 in clock eycle 2. This is because the result is loaded into flip-
flops on the positive edge of the clock at the end of the clock cycle 1. On the other
hand, the values on the Status bits, Address out, and Data out appear in the same
clock cycle as the microoperation controlling them., since they do not depend on a
positive clock edge occurring. Since there is no combinational delay specified in
the simulation, these values change at the same time as the register values. Finally,
note that eight clock cycles of simulation are used for seven microoperations so
that the values in the registers that result from the last microoperation executed
can be observed. Although Status bits appear for all microoperations, they are not
always meaningful. For example, for the microoperations, R3 = Data out and R4 «
Data in, in clock cycles 5 and 6, respectively, the value of the status bits does not
relate to the result since the Function unit is not used in these operations. Finally,
for RS « RO @& RO in clock cycle 7, the arithmetic unit is not used, so the values of
V and C from that unit are irrelevant, but the values for N and Z do represent the
status of the result as a signed 2's complement integer.

10-7 A SimMPLE COMPUTER ARCHITECTURE

We introduce a simple computer architecture to obtain a beginning understanding
of computer design and to illustrate control designs for programmable systems. In
a programmable system, a portion of the input to the processor consists of a
sequence of instructions. Each instruction specifies the operation the system is to
perform, which operands to use for the operation. where to place the results of
the operation and, in some cases, which instruction o execute next. For the pro-
grammable system, the instructions are usually stored in memory, which is either
EAM or ROM. To execute the instructions in sequence, it is necessary to provide
the address in memory of the instruction to be executed. In a computer, this
address comes from a register called the program cownter (PC). As the name
implies, the PC has logic that permits it to count. In addition, to change the
sequence of operations using decisions based on status information, the PC needs
parallel load capability. So, in the case of a programmable system, the control unit

450 0O CHAPTER 10/ COMPUTER DESIGN BASICS

contains a PC and associated decision logic, as well as the necessary logic to inter-
pret the instruction in order to execute it. Executing an instruction means activat-
ing the necessary sequence of microoperations in the datapath (and elsewhere)
required to perform the operation specified by the instruction. In contrast to the
preceding, note that for a nonprogrammable system, the control unit is not
responsible for obtaining instructions from memory, nor is it responsible for
sequencing the execution of those instructions. There is no PC or similar register
in such a system. Instead, the control unit determines the operations to be per-
formed and the sequence of those operations, based on only its inputs and the sta-
tus bits.

We show how the operations specified by instructions for the simple com-
puter can be implemented by microoperations in the datapath, plus movement of
information between the datapath and memory. We also show two different con-
trol structures for implementing the sequences of operations necessary for control-
ling program execution. The purpose here is to illustrate two different approaches
to control design and the effects that such approaches have on datapath design and
system performance. A more extensive study of the concepts associated with
instruction sets for digital computers is presented in detail in the next chapter, and
more complete CPU designs are undertaken in Chapter 12.

Instruction Set Architecture

The user specifies the operations to be performed and their sequence by the use of
a program, which is a list of instructions that specifies the operations, the operands,
and the sequence in which processing is to occur. The data processing performed
by a computer can be altered by specifying a new program with different instruc-
tions or by specifying the same instructions with different data. Instructions and
data are usually stored together in the same memory. By means of the techniques
discussed in Chapter 12, however, they may appear to be coming from different
memories. The control unit reads an instruction from memory and decodes and
executes the instruction by issuing a sequence of one or more microoperations. The
ability to execute a program from memory is the most important single property of
a general-purpose computer. Execution of a program from memory is in sharp
contrast to the nonprogrammable multiplier control unit considered earlier, which
executes only a single, fixed operation.

An instrucrion 1s a collection of bits that instructs the computer to perform a
specific operation. We call the collection of instructions for a computer its instruc-
tion set and a thorough description of the instruction set its instruction set architec-
fre (185A). Simple instruction set architectures have three major components: the
storage resources, the instruction formats, and the instruction specifications.

Storage Resources

The storage resources for the simple computer are represented by the diagram in
Figure 10-13. The diagram depicts the computer structure as viewed by a user pro-
gramming it in a language that directly specifies the instructions to be executed. It

10-7 / A Simple Computer Architecrure [0 451

Program counter
(PC)
Instruction
memaory
25 % 16
Register file
Bx 16
Data
memory
2% % 16

O FIGURE 10-13
Storage Resource Diagram for a Simple Computer

gives the resources the user sees available for storing information. Note that the
architecture includes two memories, one for storage of instructions and the other
for storage of data. These may actually be different memories, or they may be the
same memory, but viewed as different from the standpoint of the CPU as discussed
in Chapter 12. Also visible to the programmer in the diagram is a register file with
eight 16-bit registers and the 16-bit program counter.

Instruction Formats

The format of an instruction is usually depicted by a rectangular box symbolizing
the bits of the instruction, as they appear in memory words or in a control register,
The bits are divided into groups or parts called fields. Each field is assigned a spe-
cific item, such as the operation code, a constant value, or a register file address.
The various fields specify different functions for the instruction and, when shown
together, constitute an instruction format.

The operation code of an instruction, often shortened Lo “opeode,” 1s a group
of bits in the instruction that specifies an operation, such as add, subtract, shift, or
complement. The number of bits required for the opcode of an instruction is a
function of the total number of operations in the instruction set. It must consist of
at least s bits for up to 2™ distinet operations. The designer assigns a hit combina-
tion (a code) to each operation. The computer is designed to accept this bit config-
uration at the proper time in the sequence of activities and to supply the proper
control word sequence to execute the specified operation. As a specific example,
consider a computer with a maximum of 128 distinct operations, one of them an

452 0O CHAPTER 10/ COMPUTER DESIGN BASICS

addition operation. The opcode assigned to this operation consists of seven bits
0000010, When the opcode 0000010 is detected by the control unit, a sequence of
control words is applied to the datapath to perform the intended addition.

The opcode of an instruction specifies the operation to be performed. The
operation must be performed using data stored in computer registers or in memory
(i.e., on the contents of the storage resources). An instruction, therefore, must
specify not only the operation, but also the registers or memory words in which the
operands are to be found and the result is to be placed. The operands may be
specified by an instruction in two ways. An operand is said to be specified explicitly
if the instruction contains special bits for its identification. For example, the instruc-
tion performing an addition may contain three binary numbers specifying the regis-
ters containing the two operands and the register that receives the result. An
operand is said to be defined implicitly if it is included as a part of the definition of
the operation itself, as represented by the opcode, rather than being given in the
instruction. For example, in an Increment Register operation, one of the operands is
implicitly +1.

The three instruction formats for the simple computer are illustrated in
Figure 10-14, Suppose that the computer has a register file consisting of eight regis-
ters, R0 through R7. The instruction format in Figure 10-14{a) consists of an opcode
that specifies the use of three or fewer registers, as needed. One of the registers is
designated a destination for the result and two of the registers sources for operands.
For convenience, the field names are abbreviated DR, for “Destination Register,”
SA for “Source Register A.” and SB for “Source Register B.” The number of regis-
ter fields and registers actually used are determined by the specific opcode. The
opcode also specifies the use of the registers. For example, for a subtraction opera-
tion, suppose that the three bits in SA are 010, specifying R2, the three bits in SB

15 9 8 6 5 3 2 0
Destination Source reg- Source reg-
Opcode register (DR) ister A (SA) ister B (SB)

{a) Register
15 9 8 6 5 32 0
Opeode repiter (DR) | isterA (SA) | Operand (OP)

{b) Immediate

15 9 8 6 5 12 0

Address (AD) Source reg- Address (AD)
Opcode {Left) ister A (SA) {Right)

(c) Jump and Branch

O FIGURE 10-14

Three Instruction Formats

10-7 / A Simple Computer Architeceure [453

are 011, specifying R3, and the three bits in DR are 001, specifying R1. Then the
contents of K3 will be subtracted from the contents of R2, and the result will be
placed in R1. As an additional example, suppose that the operation is a store (to
memory). Suppose further, that the three bits in SA specify R4 and the three bits in
SB specify RS. For this particular operation, it is assumed that the register specified
in SA contains the address and the register specified in SB contains the operand to
be stored. 50 the value in K5 is stored in the memory location given by the value in
R4. The DR field has no effect, since the store operation prevents the register file
from being written.

The instruction format in Figure 10-14(b), has an opcode, two register fields,
and an operand. The operand is a constant called an immediate operand. since it is
immediately available in the instruction. For example. for an add immediate opera-
tion with SA specified as R7, DR specified as R2, and operand OP equal to 011, the
value 3 is added to the contents of R7, and the result of the addition is placed in
R2. Since the operand is only three bits rather than a full 16 bits, the remaining 13
bits must be filled by using either zero fill or sign extension as discussed in Chapter
5. In this ISA, zero-fill is specified for the operand.

The instruction format in Figure 10-14(c), in contrast to the other two for-
mats, does not change any repister file or memory contents. Instead, it affects the
order in which the instructions are fetched from memory. The location ol an
instruction to be fetched is determined by the program counter denoted by PC.
Ordinarily, the program counter fetches the instructions from sequential addresses
in memory as the program is executed. But much of the power of a processor
comes from its ability to change the order of execution of the instructions based on
results of the processing performed. These changes in the order ol instruction exe-
cution are based on the use of instructions referred to as jumps and branches.

The example format given in Figure 10-14(c) for jump and branch instruc-
tions has an operation code, one register field SA. and a split address field AD. If a
branch (possibly based on the contents of the register specified) is to occur, the
new address is formed by adding the current PC contents and the contents of the 6-
bit address field. This addressing method is called PC relative and the 6-bit address
field, which is referred to as an address offset 15 treated as a signed two’s comple-
ment number. To preserve the two’s complement representation, sign extension is
applied to the 6-bit address to form a 16-bit offset before the addition. If the lefi-
most bit of the address field AD is a 1, then the 10 bits to its left are filled with 1's
to give a negative two’s complement offset. 1f the leftmost bit of the address field is
0, then the 10 bits to its left are filled with 0"s to give a positive two’s complement
offset. The offset is added to the contents of the PC to form the location from
which the next instruction is to be fetched. For example, with the PC value equal to
55, suppose that a branch is to occur to location 35 if the contents of R6 is equal to
zero. The opeode would specify a branch on zero instruction, SA would be specified
as k6, and AD would be the 6-bit, two’s complement representation of — 20. If R6
is zero, then PC contents becomes 55 + (= 20) = 35 and the next instruction would
be fetched from address 35. Otherwise, if K6 is nonzero, the PC will count up to 56
and the next instruction will be fetched from address 56. This addressing method
alone provides only branch addresses within a small range below and above the PC

454 0O CHAPTER 10/ COMPUTER DESIGN BASICS

valuc. 'I'he jump provides a broader range of addresses by using the unsigned con-
tents of a 16-bit register as the jump target.

The three formats in Figure 10-14 are used for the simple computer to be dis-
cussed in this chapter. In Chapter 11, we present and discuss more generally other
instruction types and formats.

Instruction Specifications

Instruction specifications describe each of the distinct instructions that can be
executed by the system. For each instruction, the opcode is given along with a
shorthand name called a mnemonic, that can be used as a symbolic representation
for the opcode. This mnemonic, along with a representation for each of the addi-
tional instruction fields in the format for the instruction, represents the notation
to be used in specifying all of the fields of the instruction symbolically. This sym-
bolic representation is then converted to the binary representation of the instruc-
tion by a program called an assembler. A description of the operation performed
by the instruction execution is given, including the status bits that are affected by
the instruction. This description may be text or may use a register transfer-like
notation.

The instruction specifications for the simple computer are given in Table 10-8.
The register transfer notation introduced in previous chapters is used to describe

O TABLE 10-8

Instruction Specifications for the Simple Computer

Status

Instruction Opcode Mnemonic Format Description Bits
Move A 0000000 MOVA RDRA R[DR] « R[SA] N,Z
Increment 0000001 INC RD.RA R[DR] « R[SA] +1 NZ
Add 0000010 ADD RD.RA RB R[DR] « R[SA] + R[SB] NZ
Subtract 0000101 SUB RDEA RB R|DR] « R[SA] - R[SB] N,Z
Decrement 0000110 DEC RED.EA R|DR] « R[SA]-1 MNZ
AND 0001000 AND RDRA.RE R[DR]« R[SA] ~ R[SB] N, Z
OR 001001 OR RDRA RE R[DR]« R|SA]v R[SB] NZ
Exclusive OR 0001010 XOR RDRA RB R[DR]+« R[SA] & R[SB| NZ
NOT 0001011 NOT RD.RA R[DR] « R[5A] NZ
Move B 0001100 MOVB RDRB R[DR] « R[SB]
Shift Right 0001101 SHR RDRB R|DR] « sr R[SB]
Shift Left 0001110 SHL RDRB R|DR] « sl R[SB]
Load Immediate 1001100 LDI RD, OP R[DR] « «f OP
Add Immediate 1000010 ADI RDRA.OP R[DR] « R[SA] + zf OP
Load 0010000 LD RDRA R[DR] & M[SA]
Store 0100000 ST RARB M[SA] « R[5B]

Branch on Zero 1100000 BRZ RAAD if (R[SA]=0) PC & PC +se AD
Branch on Negative 1100001 BRN RAAD if (R[SA] <0) PC & PC +se AD
Jump 1110000 JMP RA PC « R[SA]

10-7 / A Simple Computer Architecrure [0 455

the operation performed, and the status bits that are valid for each instruction are
indicated. In order to illustrate the instructions, suppose that we have a memory
with 16 bits per word with instructions having one of the formats in Figure 10-14.
Instructions and data, in binary, are placed in memory as shown in Table 10-9, This
stored information represents the four instructions illustrating the distinct formats.
At address 25, we have a register format instruction that specifies an operation to
subiract R3 from R2 and load the difference into R1. This operation is represented
symbolically in the rightmost column of Table 10-9. Note that the 7-bit opcode for
subtraction is 0000101, or decimal 5. The remaining bits of the instruction specify
the three registers: 001 specifies the destination register as R1, (010 specifies the
source register A as R2, and 011 specifies the source register B as R3.

In memory location 335 is a register format instruction to store the contents of
R5 in the memory location specified by R4, The opcode 15 0100000, or decimal 32,
and the operation is given symbolically, again, in the rightmost column of the fig-
ure. Suppose A4 contains 70 and R5 contains 80. Then the execution of this instruc-
tion will store the value 80 in memory location 70, replacing the original value of
192 stored there.

At address 45, an immediate format instruction appears that adds 3 to the
contents of A7 and loads the result into R2. The opcode for this instruction 1s 66,
and the operand to be added is the value 3 (011) in the OP field, the last three bits
of the instruction.

In location 55, the branch instruction previously described appears. The
opcode for this instruction is 96, and source register A is specified as R6. Note that
AD (Left) contains 101 and AD (Right) contains 100. Putting these two together

O TABLE 10-9
Memory Representation of Instructions and Data
Dacimal Decimal
Address Memory Contents Opcode Other Flelds Operation

25 | 0000101001 010011 | 5(Subtract) DR:1,5A:2.5B:3 Rl R2-R3

35 | 0100000000 100101 | 32(Store) SA:4,SB:S M[R4] « RS
45 | 1000010010 111011 | 66 (Add DR:2,SA:7,0P33 R2Ze R7+3
Immediate)
55 | 1100000101 110100 | 96 (Branch AD:44,SA:6 If R6 =0,
on Zero) PC «— PC - 20
ST =T

70 | 00000000011000000 | Data = 192. After execution of instruction in 35,
Data = 80.

456 O CHAPTER 10/ COMPUTER DESIGN BASICS

and applying sign extension, we obtain 1111111111101100, which represents — 20 in
two's complement. If register K6 is zero, then — 20 is added to the PC to give 35, If
register RO is nonzero, the new PC value will be 56. It should be noted that we
have assumed that the addition to the PC content occurs before the PC has been
incremented which would be the case in the simple computer, In real systems, how-
ever, the PC has sometimes been incremented to point to the next instruction in
memory. In such a case, the value stored in AD needs to be adjusted accordingly to
obtain the right branch address,

The placement of instructions in memory as shown in Table 10-9 is quite arbi-
trary. In many computers, the word length is from 32 to 64 bits, so the instruction
formats can hold much larger immediate operands and addresses than those we
have given. Depending on the computer architecture, some of the instruction for-
mats may occupy two or more consecutive memory words. Also, the number of reg-
isters is often larger, so the register fields in the instructions must contain more bits.

At this point, it is vital to recognize the difference between a computer oper-
ation and a hardware microoperation. An operation is specified by an instruction
stored in binary, in the computer’s memory. The control unit in the computer uses
the address or addresses provided by the program counter to retrieve the instruc-
tion from memory. It then decodes the opcode bits and other information in the
instruction to perform the required microoperations for the execution of the
instruction. In contrast, a microoperation is specified by the bits in a control word
in the hardware which is decoded by the computer hardware to execute the micro-
operation. The execution of a computer operation often requires a sequence or
program of microoperations, rather than a single microoperation.

10-8 SINGLE-CyCLE HARDWIRED CONTROL

The block diagram for a computer that has a hardwired control unit and that
fetches and executes an instruction in a single clock cycle is shown in Figure 10-15.
We refer to this computer as the single-cycle computer. The storage resources,
instruction formats, and instruction specifications for this computer are given in the
previous section. The datapath shown is the same as that in Figure 10-11 with m = 3
and n = 16, The data memory M is attached to the Address out, Data out, and Data
in by connections to the datapath. It has a single control signal MW which is 1 to
write the memory, and 0 otherwise.

The Control unit appears on the left in Figure 10-15. Although not usually
thought of as part of the control unit, the instruction memory, together with its
address inputs and instruction outputs, is shown for convenience with the control
unit. We do not write to the instruction memory, in theory, making it a combina-
tional rather than a sequential component. As previously discussed, the PC pro-
vides the instruction address to the instruction memory, and the instruction output
from the instruction memory goes to the control logic, which, in this case, is the
instruction decoder. The output from the instruction memory also goes to Extend
and Zero fill, which provide the address offset to the £C and the constant input,
Constant in, to the datapath, respectively. Extension appends the leftmost bit of
the 6-bit address offset field AD to the left of AD, preserving its two’s complement

10-8 / Single-Cycle Hardwired Conerol O 4537

24 lR{E.‘L"&} I TR 2:00)
C - Branch
N == Control -DC

7 - Jump Address

Tt

PIB Address

LBC Instruction :l'
mEemory RW - D
Thdirtitinn DA —= RI:F:stcr
AA— A" g l—BaA
'.-IZ.E' t'III
IRZD) L2 M[Constant
Instruction decoder "
10
mux B[~ MB
Address out
Bus Aj Bus B i Bl
MW
DBAMFMRMP] B] IJ,
AAABSDWWLEBC ES A B Data in Addres
CONTROL
Wty ’ Daia
alid Funcpl:m memory
N unil
z Data out
F
Data in
1
MDD ==
Bus D MUX D
DATAPATH

0O FIGURE 10-15
Block Diagram for a Single-Cyele Computer

representation. Zero fill appends 13 zeros to the left of the operand (OP) field of
the instruction to form a 16-bit unsigned operand for use in the datapath. For
example, operand value 110 becomes 00000000000001 10 or +6.

The PC is updated in each clock cycle. The behavior of the PC, which is a
complex register, is determined by the opcode, N, and Z, since C and V are not used
in this control unit design. If a jump occurs, the new PC value becomes the value on
Bus A. If a branch is taken, then the new PC value is the sum of the previous PC
value and the sign-extended address offset, which in two's complement can be
either positive or negative. Otherwise, the PC is incremented by 1. A jump occurs
for bit 13 in the instruction equal to 1. For bit 13 equal to 0, a conditional branch
occurs. The status bit that is the condition for the branch is selected by bit 9 of the
instruction. For bit 9 equal to 1, N is selected and, for bit 9 equal to 0, Z is selected.

458 0O CHAPTER 10 / COMPUTER DESIGN BASICS

All parts of the computer that are sequential are shown in blue. Note that
there is no sequential logic in the control part other than the PC. Thus, aside from
providing the address to the instruction memory, the control logic is combinational
in this case. That fact, combined with the structure of the datapath and the use of
separate instruction and data memories, allows the single-cycle computer to obtain
and execute an instruction from the instruction memory, all in a single clock cycle.

Instruction Decoder

The instruction decoder is a combinational circuit that provides all of the control
words for the datapath, based on the contents of the fields of the instruction. A num-
ber of the fields of the control word can be obtained directly from the contents of the
fields in the instruction. Looking at Figure 10-16, we see that the control word fields
DA, AA, and BA are equal to the instruction fields DR, SA, and SB, respectively.
Also, control field BC for selection of the branch condition status bits is taken
directly from the last bit of Opcode. The remaining control word fields include data-
path and data memory control bits MB, MD, RW, and MW. There are two added bits

Instruction
Cpeode DR A 5B
15 14 13 12 11 10 9 B0 3=3 2=
|
]
19-17 16-14 13-11 10 9-f 5 4 3 2 1 0
DA AA A MB F& MD | RW |[MW | PL | JB | BC

Control word

O FIGURE 10-16
Diagram of Instruction Decoder

10-8 / Single-Cyele Hardwired Control 0O 459

for the control of the PC, PL, and JB. If there is to be a jump or branch, PL = 1, load-
ing the PC. For PL = 0, the PC is incremented. With PL = 1, JB = 1 calls for a jump,
and JB = 0 calls for a conditional branch. Some of the single bit control word fields
require logic for their implementation. In order to design this logic, we divide the
various instructions possible for the simple computer into different function types
and then assign the first three bits of the opcode to the various types. The instruction
function types shown in Table 10-10 are based on the use of specific hardware
resources in the computer, such as MUX B, the Function unit, the Register file, Data
memory, and the PC. For example, the first function type uses the ALU, sets MUX B
to use the Register file source, sets MUX D to use the Function unit output, and
writes to the Register file. Other instruction function types are defined as various
combinations of use of a constant input instead of a register, Data memory reads and
writes, and manipulation of the PC for jumps and branches.

By looking at the relationship between the instruction function types and
the necessary control word values needed for their implementation, bits 15
through 13 and bit 9 were assigned as shown in Table 10-10. This assignment
attempted to minimize the logic required to implement the decoder. To perform
the design of the decoder, the values for all of the single bit fields in the control
word were determined from the function types and entered into Table 10-10. Note
that there are a number of don't care (X) entries. Treating Table 10-10 as a truth-
table and optimizing the logic functions, the logic for the single bit outputs of the
instruction decoder in Figure 10-16 results. In the optimization, the four unused
codes for bits 15, 14, 13, and 9 were assumed to have X values for all of the single
bit fields. This implies that if one of these codes occurs in a program, the effect is
unknown. A more conservative design specifies RW, MW, and PL all zero for
these four codes to insure that the storage resource state is unchanged for these

O TABLE 10-10
Truth Table for Instruction Decoder Logic

Instruction Bits Control Word Bits
Instruction Function Type 15 14 13 8 MB MD RW MW FPFL JB BC
Function unit operations using 0 0 0 X 0o 0 1 0 0 X X
registers
Memory read 0 0 1 X 0 1 1 0 0 X X
Memory wrile [} 1 0 X o X 0 1 0
Function unit operations using 1 0 0 X 1 0 [
register and constant
Conditional branch on zero (£) 1 1 0 0 X X 0 0 1 0 o0
Conditional branch on negative (N)1 1 0 1 X X 0 o0 1 0 1

Unconditional Jump 1] 1 X X X 0 0 1 1 X

460 O CHAPTER 10/ COMPUTER DESIGN BASICS

unused codes. The optimization results in the logic in Figure 10-16 for implement-
ing MB, MD3, RW, MW, PL, and JB.

The remaining logic in the decoder deals with the FS field. For all but the
conditional branch and unconditional jump instructions, bits 9 through 12 are fed
directly through to form the FS field. During conditional branch operations, such
as Branch on Zero, the value in source register A must be passed through the ALLU
s0 that the status bits N and Z can be evaluated. This requires FS = 0000, The use
of bit 9. however, for status bit selection for conditional branches, requires at times
that bit 9, which controls the rightmost bit of FS, be a 1. The contradiction in values
between bit 9 and FS is resolved by adding an enable on bit 9 that forces F5; to
zero whenever PL = 1 as shown in Figure 10-16.

Sample Instructions and Program

Six instructions for the single-cycle computer are listed in Table 10-11. The symbolic
names associated with the instructions are useful for listing programs in symbolic
form rather than in binary code. Because of the importance of instruction decoding,
the rightmaost six columns of the table show critical control signal values for each
instruction, based on the values obtained using the logic in Figure 10-16.

Now suppose that the first instruction, “Add Immediate™ (ADI), is present on
the output of the instruction memory shown in Figure 10-15, Then, on the basis of
the first three bits of the opeode, 100, the outputs of the instruction decoder have
the values MB = 1. MD = 0, RW = I, and MW = 0. The last three bits of the
instruction, OP,, are extended to 16 bits by zero fill. We denote this in a register
transfer statement by 2 Since MB is 1, this zero-filled value is placed on Bus B.
With MD equal to 0, the function unit output is selected, and since the last four
bits of the opcode, 010, specily field FS, the operation is 4 + B. So the zero-filled
value on Bus B is added to the contents of register SA, with the result presented
on Bus D. Since RW = 1, the value on Bus D is written into register DR. Finally,
with MW = (), no write into memory occurs. This entire operation takes place in a
single clock cycle. At the beginning of the next cycle, the destination register is
written and, since PL = (. the PC is incremented o point to the next instruction.

The second instruction, LI, is a load from memory with opcode 0010000. The
first three bits of this opeode, 001, give control values MD = 1, RW = 1, and MW
= (). These values, plus the register source field SA and register destination field
DR. fully specify this instruction, which loads the contents of the memory address
specified by register SA into register DR. Again, since PL = 0, the PC is incre-
mented. Note that the values of IB and BC are ignored, since this is neither a jump
nor a branch instruction.

The third instruction, ST, stores the contents of a register in memory. The first
three bits of the opeode, 011, give control signal values MB = (0, RW = 0, and MW
= L. MW = | causes a memory write operation, with the address and data from the
register file. RW = () prevents the register file from being written. The address for
the memory write comes from the register selected by field SA, and the data for
the memaory write come [rom the register selected by SB, since MB = (). The DR
feld, although present, is not used. since no wrile oceurs to a register,

O TABLE 10-11

Six Instructions for the Single-Cycle Computer

Operation Symbolic

code name Format Description Function ME MD RW MW PL JB BC

oo ADI Immediate Add immediate RIDR|—R[SA]+2fH2Z) 1 0 o 0
operand

0010000 LD Register Load memory RIDR] = M[R[SA]] o 1 1 0
content into
register

0100000 ST Register Store register MIRISA]]— R[SB] 0 1 0 a
content in
MEMory

noo1in - S0 Register Shift left ER[DR]«sIR[SE] o 0 1 0

aooin11l - NOT Register Complement RIDR]« R[5A] 0 0 { 1
register

100000 BRE Jump/Branch If R[SA] =0, branch If R[SA] =10, 1 0 0 0
ta PC + se AD PO~ PC +seAl,

If R[SA] # 0,PC+ PC +1

[oTuoy) pasmpiep] APAD-[EWIS / §-01

9% O

462 0O CHAPTER 10/ COMPUTER DESIGN BASICS

Because this computer has load and store instructions and does not combine
loading and storing of data operands with other operations, it 1s referred to as hav-
ing a load/store architecture. The use of such an architecture simplifies the execu-
tion of instructions,

The next two instructions use the Function unit and write to the Register file
without immediate operands, The last four bits of the opcode, the value for the FS
field of the control word, specify Function unit operation. For these two instruc-
tions, only one source register. R[SA] for the NOT and R[SB] for the shift left, and
a destination register are involved.

The final instruction is a conditional branch and manipulates the PC value, It
has PL = 1, causing the program counter to be loaded instead of incremented, and
JB = 0, causing a conditional branch rather than a jump. Since BC = 0, register
R[5A] is tested for a value of zero. If R[SA] equals zero, the PC value becomes PC
+ se AD, where se stands for sign extend. Otherwise, PC is incremented. For this
instruction, the DR and 5B fields become the 6-bit address field AD, which is sign
extended and added to the PC,

To demonstrate how instructions such as these can be used in a simple pro-
gram, consider the arithmetic expression 83 — (2 + 3). The following program per-
forms this computation, assuming that register R3 contains 248, location 248 in
data memory contains 2, location 249 contains 83, and the result is to be placed in
location 250

LD R1,R3 Load R1 with contents of location 248 in memory (K1 = 2)
ADI RLR1.3 Add 3 to R1 (R1 = 5)

NOT R1,R1 Complement K1

INC RLERI Increment R1 (R1 = —5)

INC R3R3 Increment the contents of B3 (R3 = 249)

LD R2 R3 Load R2 with contents of location 249 in memory (R2 = 83)
ADD R2, RI,RI Add contents of R1 to contents of B2 (R2 = 78)

INC R3R3 Increment the contents of 83 (R3 = 250)

ST R3 R2 Store R2 in memaory location 250 (M[250] = 78)

The subtraction in this case is done by taking the 2's complement of {2 + 3) and
adding it to 83; the subtraction operation SUB could have been used as well. If a
register field is not used in executing an instruction, its symbolic value is omitted.
The symbaolic values for the register-type instructions, when the latter are present,
are in the order DR, 5A, and 5B. For immediate types, the fields are in the order
DR, 5A, and OF To store this program in the instruction memory, it is necessary (o
convert all of the symbolic names and decimal numbers used to their correspond-
ing binary codes,

Single-Cycle Computer Issues

Although there may be instances in which single-cycle computer timing and con-
trol strategy 1s useful, it has a number of shortcomings, One shortcoming is in the

10-8 / Single-Cycle Hardwired Contral 00 463

area of performing complex operations. For example, suppose that an instruction is
desired that executes unsigned binary multiplication using an add-and-shift algo-
rithm. With the given datapath, this cannot be accomplished by a microoperation
that can be executed in a single clock cycle. Thus, a control organization that pro-
vides multiple clock cycles for the execution of instructions is needed.

Also, the single-cycle computer has two distinct 16-bit memories, one for
instructions and one for data. For a simple computer with instructions and data in
the same 16-bit memory, two read accesses of memory are required to execute an
instruction that loads a data word from memory into a register. The [first access
obtains the instruction, and the second access, if required, reads or writes the data
word, Since two different addresses must be applied to the memory address inputs,
at least two clock cycles, one for each address, are required for obtaining and execut-
ing the instruction. This can also be accomplished casily with multiple-cycle control,

Finally, the single-cycle computer has a lower limit on the clock period based
on a long worst case delay path. This path is shown in blue in the simplified dia-
gram of Figure 10-17. The total delay along the path is 17 ns. This limits the clock
frequency to 58.8 MHz, which, although it may be adequate for some applications,

=t
PC 1 ns _r

}

Instruction
MEmory

i

Register file
(Read) e

¥

MUXB 1ns
¥

Function
unit ar 4 ns
Data memory

¥
| MUXD 1ns |
'

Register file 3 ns
(Write) *

4 ns

=)

O FIGURE 10-17
Worst Case Delay Path in Single-Cyele Computer

464 0O CHAPTER 10/ COMPUTER DESIGN BASICS

is too slow for a modern computer CPUL In order to have a higher clock frequency,
either the delays of the components on the path or the number of components in
the path must be reduced. If the delays of the components cannot be reduced,
reducing the number of components in the path is the only alternative. In Chapter
12, pipelining of the datapath reduces the number of components in the longest
combinational delay path and permits the clock frequency to be increased. A pipe-
lined datapath and control given in Chapter 12, demonstrates the improved CPU
performance that can be obtained.

10-9 MuLTIPLE-CYCLE HARDWIRED CONTROL

To demonstrate multiple-cycle control, we use the architecture of the simple com-
puter, but modify its datapath, memory, and control. The goal of the modifications
is to demonstrate the use of a single memory for both data and instructions and to
demonstrate how more complex instructions can be implemented by using multiple
clock cycles per instruction. The block diagram in Figure 10-18 shows the modifica-
tions to the datapath, memory. and control.

The changes to the single-cycle computer can be observed by comparing Fig-
ures 10-15 and 10-18. The first modification. which is possible with, but not essential
to, multiple-cycle operation, replaces the separate instruction memory and data
memory in Figure 10-15 with the single Memory M in Figure 10-18. To fetch
instructions, the PC is the address source for the memory, and to fetch data. Bus
A is the address source. At the address input to memory, multiplexer MUX M
selects between these two address sources. MUX M requires an additional control
signal, MM, which is added to the control word format. Since instructions from
Memory M are needed in the control unit, a path is added from its output to the
instruction register IR in the control unit.

In executing an instruction across multiple clock cyeles, data generated dur-
ing the current cycle is often needed in a later cycle. This data can be temporarily
stored in a register from the time it is generated until the time it is used. Registers
used for such temporary storage during the execution of the instruction are usually
not visible to the user (i.e.. are not part of the storage resources). The second mod-
ification provides these temporary storage registers by doubling the number of reg-
isters in the register file. Registers O through 7 are storage resources and registers 8
through 15 are used only for temporary storage during instruction execution, so
are not part of the storage resources visible to the user. The addressing of 16 regis-
ters requires 4 hits, and becomes more complex, since addressing of the first eight
registers must be controlled from the instruction and the control unit, and the sec-
ond eight registers are controlled from the control unit. This is handled by the Reg-
ister address logic in Figure 10-18 and by modified DX, AX, and BX fields in the
control word, The details of this change will be discussed later when the control is
defined.

The PC is the only control unit component retained and it must also be modi-
fied. During the execution of a multiple-cycle instruction, the PC must be held at
its current value for all but one of the cycles. To provide this hold capability, as well

10-9 / Multiple-Cycle Hardwired Control [0 465

as an increment and two load operations, the PC is modified to be controlled by a
2-bit control word field, PS. Since the PC is controlled completely by the control
word, the Branch control logic previously represented by BC is absorbed into the
Control Logic block in Figure 10-18,

Because of the multiple cycles of the modified computer, the instruction
needs to be held in a register for use during its execution since its values are likely
to be needed for more than just the first cycle. The register used for this purpose
is the instruction register IR in Figure 10-18, Since the IR loads only when an
instruction is being read from memaory, it has a load-enable signal IL that is added
to the control word. Because of the multiple-cycle operation. a sequential control
circuit, which can provide a sequence of control words for microoperations used

¥
¥
44 RW— 1616
X
DR % | Register "?" DA Register
16} S.-"hvj‘_‘-i" address file
log = A A Al
r | F‘Hﬂf" g
& TR {xt(
¥ Opcode DR SA) S AXE
Trar 3F 3 _'l' 1
¥ F ¥ (I
mux g[<MB
ab ta Contral State Buz B ¥ r
4 Bus A MM, o
[i FIMUX M
¥ ¥ Data MW | Addresy
4 + B o ¥ E THIN
Control Logic Fsﬁ-’?:- Datain Address
j C Function Memory
H N unit M
: 57
PIID 1 -+ [Data out
51,:;(?%]3:'5%'1&”{:’3 £ Datain |
He L;u-_u-_-_ i Dratapath ¥]
control I control ¥]
1 —
¢! BusD IMUXD

MICROPROGRAMMED CONTROL DATAPATH

O FIGURE 10-18
Block Diagram for a Multiple-Cycle Computer

466 [0 CHAPTER 10/ COMPUTER DESIGMN BASICS

27 2423222120 17 16 1312 987 4

I M
L B

7

O |
27 =
== 1~
2= |=

N5 Ps DX AX BX

O FIGURE 10-19
Control Ward Format for Multiple-Cyele Computer

to interpret the instruction is required and replaces the Instruction decoder. The
sequential control unit consists of the Control state register and the combinational
Control logic. The Control logic has the state, the opcode, and the status bits as its
inputs and produces the control word as its output. Conceptually, the control word
is divided into two parts, one for Sequence control, which determines the next state
of the overall control unit, and one for Datapath control, which controls the micro-
operations executed by the Datapath and Memory M as shown in Figure 10-18,
The 28-bit modified control word is given in Figure 10-19 and the definitions of
the fields of the control word are given in Table 10-12 and 10-13. In Table 10-12, the
fields DX, AX, and BX control the register selection. If the MSB of one of these
fields is 0, then the corresponding register address DA, AA, or BA is that given by
O DR,0I SA, and D || SB, respectively. If the MSB of one of these fields is 1, then
the corresponding register address is the contents of the field DX, AX, or BX. This

O TABLE 10-12
Control Word Information for Datapath

DX AX BX Code MB Code FS Code MD RW A MW Code
R|DRE| R[SA]R[SB]OKEX Register 0 f=4 000 Fnlit Mo Address No 0
write Out wrile
K& RE it 1000 Constant 1 F=4+1 0001 Data In Write PC Write 1
R9 R9 RS 1001 F=A+EH GOL0
R10 R10 R10 1010 Unused 0011
R11 R11 K11 1011 Unused (10K
RI12 R12 R12 1100 F=A+H+1 00
RI3 R13 R13 1101 F=4-1 0110
Rl4 Rl4 Rl14 1110 Unused o111
R15 R15 RI15 1111 F=AnB 100K
F=AvE 1001
F=ASB 1010
F=A 1011
F=R 1100
F=srB 1101
F=slg 1110

Unused 1111

10-9 / Multiple-Cycle Hardwired Control [0 467

selection process is performed by the Register address logic, which contains three
multiplexers, one for each of DA, AA, and BA, controlled by the MSB of DX, AX,
and BX, respectively. Table 10-12 also gives the code values for the MM field,
which determines whether Address out or PC serves as the Memory M address.
The remaining fields in Table 10-12, MB, MD, RW, and MW, have the same func-
tions as for the single-cycle computer.

In the sequential control circuit, the State control register has a set of states,
just as a set of flip-flops in any other sequential circuit, has. At the level of our dis-
cussion, we assume that each state has an abstract name which can be used as both
the state and the next state value. In the design process, a state assignment needs to
be made to these abstract states. Referring to Table 10-13, the field NS in the con-
trol word provides the next state for the Control State register. We have assigned
four bits for the state code, but this can be modified as necessary depending on the
number of states needed and the state assignment used in the design. This particu-
lar field could be considered as integral to the control and sequential circuit and
not part of the control word, but it will appear in the state table of the control in
any case. The 2-bit PS field controls the program counter, PC. On a given clock
cycle the PC holds its state (00), increments its state by 1 (01), conditionally loads
PC plus sign-extended AD (10), or unconditionally loads the contents of R[SA]
(11). Finally, the instruction register is loaded only once during the execution of an
instruction. Thus, on any given cycle, either a new instruction is loaded (IL = 1) or
the instruction remains unchanged (IL = 0).

Sequential Control Design

The design of the sequential control circuit can be done using techniques from
Chapter 6 and Chapter 8. However, compared to the examples there, even for this
comparatively simple computer, the control is quite complex. Assuming there are
four state variables, the combinational Control logic has 15 input variables and 28
output variables. It turns out that a condensed state table for the circuit is not too
difficult to develop, but manual design of the detailed logic is very complex, making
the use of a PLA or logic synthesis more viable options. As a consequence, we focus
on state table development rather than detailed logic implementation

We begin by developing an ASM chart that represents the instructions that
can be implemented with the minimum number of clock cycles. Extensions of this

O TABLE 10-13
Control Information for Sequence Control

NS PS IL

Mexl State Action Code Action Code

Gives next state Hold FC (0 Noload 0
of Control State Ine PC 01 Load instr. 1
Register Branch 10

Jump 11

468 0O CHAPTER 10/ COMPUTER DESIGN BASICS

chart can then be developed for implementation of instructions requiring more
than the minimum number of clock cycles. The ASM charts provide the informa-
tion needed to develop the state table entries for implementing the instruction
set. For instructions requiring a memory access for data as well as for the instruc-
tion itself, at least two cycles are required. It is convenient to separate the cycles
into two processing steps: instruction feich and instruction execution. On the basis
of this division, the ASM chart for the two-cycle instructions is given in Figure 10-
20). The instruction fetch occurs in state INF at the top of the chart. The PC con-
tains the address of the instruction in Memory M. This address is applied to the
memory, and the word read from memory is loaded into the IR on the clock pulse
that ends state INF. The same clock pulse causes the new state to become EXO0. In
state EX0, the instruction is decoded by use of a large vector decision box and the
microoperations executing all or part of the instruction appears in a conditional
output box. If the instruction can be completed in state EXD, the next state is INF
in preparation for fetching of the next instruction. Further, for instructions that
do not change PC contents during their execution, the PC is incremented. If addi-
tional states are required for instruction execution, the next state is EX1. In each
of the execution states, there are 128 different input combinations possible, based
on the opeode. When the status bits are used, typically one at a time, the output
of the vector decision box feeds one or more scalar decision boxes as illustrated
for the branch instructions on the lower right of Figure 10-20.

MNext, we describe a sampling of the instruction executions specified by the ASM
chart in Figure 10-20. The first opcode is 0000000 for the move A, (MOWVA) instruction,
This instruction involves a simple transfer from the source A register to the destination
register, as specified by the register transfer shown in state EX0 for the instruction
opcode. Although the status bits N and # are valid, thev are not used in the execution
of this instruction. The PC is incremented on the clock edge ending state EX0, an
action that occurs for all but branch and jump instructions in the ASM chart.

The third opcode is 0000010 for the ADD instruction with the register trans-
ter for addition shown. In this case, status bits V, C, N, and £ are valid, although
not used. The eleventh opcode, 001N, is the load (LD instruction, which uses
the value in the register specified by SA for the address and loads the data word
from Memory M into the register specified by DR. The twelfth opcode, 0100000, is
for the store (ST) instruction, which stores the value in register SB into the loca-
tion in Memory M specified by the address from register SA. The fourteenth
opcode, 1001100, is add immediate { ADI), which adds the zero-filled value of the
OP field, the rightmost three bits of the instruction, to the contents of register 54
and places the result in the register DR.

The sixteenth opcode, 1100001, is the branch on negative (BRN) instruction.
The decoding of this instruction causes the value in the register specified by SA to
be passed through the Function unit in order to evaluate status bits N and Z. The
values N and Z then propagate back to the Control logic. Based on the value of N,
the branch is taken or not taken by adding the extended address AD from the
instruction to the value in the PC or incrementing the PC, respectively. This is rep-
resented by the scalar decision box for N shown in Figure 10-20.

10-9 / Multiple-Cycle Hardwired Control O 469

INF i

PC «PC+1 '
3

IR « M[PC]

EX0

RIDR] « R[SAJ_ 00G0M0T
+1 OO0

Oipeode

A

(L CHICH

MO0, (RIDR] & RISB])
RIDR] < M[R[SA]]

~ R[SB|

RIDR] «— R[SA]
v R[SB

RIDR] ¢+ R[SA
@ R[SB

R[DR] & R[5A]

(0 L0000
R[DR] + R[5A] 001
+ R[SB] {010 |
ifi
R[DR] + R[SA]
+ R[5B] +1
R[DR] + R[SA]
_.J
RIDR] + R[SA]

Mg g

M[R[SA]] & R[SB]

O FIGURE 10-20
Basic ASM Chart for Multiple-Cyele Computer

O TABLE 10-14
State Table for Two-Cycle Insiructions

Inputs Outputs
State Next —— R o
state | P M M R MM
Opcode VCNZ LS DK AX BX B FS D WMW Comments
INF X000 000 EX0 1 00 X000 0000 X0 X X0 X 0 1 0 IR « M[PC]
EX0 0000000 XXXX INF 0 01 0000 OXXC XXXX X 0000 0 1 X 0 |MOVA |R[DR]« R[SA]J*
EX0 0000001 00 INF 0 01 OX00 OXXX XXXX X 0001 0 1 X O |INC |R[DR]« R[SA]+1°
EX0 0000010 XXX INF 0 01 OXXX OXXX OXXX 0 0010 0 1 X 0 |ADD |R[DR]« R[SA]+ R[SB]*
EX0 0000101 XXXX INF 0 01 OXXX OXXX OXXX 0 0101 0 1 X 0 |SUB |R[DR}« R[SA]+ R[SB]+ 1*
EX0 0000110 XXXX INF 0 01 OKKX OXX(XXXX X 0110 0 1 X 0 |DEC |R[DR]« R[SA]+ (-1)*
EX0 0001000 XXXX INF 0 01 OXXX OXXX OXXX O 1000 0 1 X O |AND |R[DR]« R[SA] » R[SBJ*
EX0 0001001 X000 INF 0O 01 OXX{ OXXX OXXX 0 1000 ©0 1 X 0 |OR R[DR] « R[SA] v R[SB]*
EX0 0001010 XXX INF 0 01 OXXX OXX{ OXXX 0 1010 0 1 X 0 |XOR |R[DR]« R[SA] @ R[SB]*
EX0 0001011 XxxX INF 0 Ol OXXX OX0X XXXX X 1011 0 1 X 0 |NOT |R[DR]<« R[SA]*
EX0 0001100 XX¥X INF 0 01 OXXX XXXX OXX(0 1100 0 1 X 0 |MOVB |R[DR]« R[SB]*
EX0 0010000 XXX INF 0 01 OXXX O¥XX XXXX X XXX 1 1 0 0|LD R[DR] « M[R[SA]]*
EX0 0100000 XXX INF 0 01 XXXX OXXX OXXX 0 XX¥x % 0 0 1|ST M[R[SA]] « R[SB]*
EX0 1001100 XXX INF 0 01 OXXX 000 XXX 1 1100 0 1 0 0 |LDI R[DR| « zf OP*
EX0 1000010 XXXX INF 0 01 OXXX OXXX XXXX 1 0010 0 1 0 0 |ADI |R[DR]« R[SA] + zf OP*
EX0 1100000 XXX1 INF 0 10 XXX OO0 XX X 0000 X 0 0 0|BRZ |PC— PC+seAD
EX0 1100000 XXX0 INF 0 01 XXXX OXXX 000 X 0000 X 0 0 0|BRZ |PCe—PC+1
EX0 1100001 XX1X INF 0 10 XXXX OXXX 000 X 0000 X 0 0 0|BRN |PCe PC+scAD
EX0 1100001 XX0X INF 0 01 XXXX OXXX 0000 X 0000 X O 0 0|BRN |PCe—PC+1
EX0 1110000 XXX INF 0 11 XXX OXXX X000 X 0000 X 0 0 0|[IMP |PC« R[SA]

* For this state and input combination, PC «— PC + 1 also occurs.

SOISVH NOISHA MILNdWOD 7 01 ¥Y3IdVHD O O0OLF

10-9 / Multiple-Cycle Hardwired Control O 471

From this ASM chart, the state table for the sequential control circuit can be
developed as shown in Table 10-14, The present states are given as abstract state
names, and the opcodes and status bits serve as inputs. In the case of the status bits,
only those bits that are used in the instruction are specified. By using combinations
of bits and multiple status bit patterns, it is possible to specify functions of status
bits. Note that many of the entries in Table 10-14 contain Xs, symbolizing “don’t
cares.” For these entries, the input or resource is not used in the given microopera-
tion or the specific bits of the code that are X are not used for controlling it. [t is a
useful exercise to determine how each of the entries in Table 10-14 is obtained,
based on Table 10-12, Table 10-13, and Figure 10-20.

It is interesting to briefly compare the timing of the execution of instructions
in this organization with that for the single-cycle computer. Each instruction
requires two clock cycles to fetch and execute, compared with one clock cycle for
the single-cycle computer. Because the very long delay path from the PC through
the Instruction memory. Instruction decoder, datapath, and branch control is bro-
ken up by the instruction register, the clock periods are somewhat shorter. Never-
theless, due to setup time requirements for the added flip-flops in the /R and a
potential imbalance in delays for the various paths through the circuit, the overall
time taken to execute an instruction could be just as long as or longer than in the
single-cycle computer. So what is the benefit of this organization other than ability
to use a single memory? The next two instructions give the answer.

The first instruction to be added is a *load register indirect” (LRI), with
opcode 0010001. In this instruction, the contents of register SA address a word in
memory. The word, which is known as an indirect address, is then used to address
the word in memory that is loaded into register DR. This can be represented sym-
bolically as

RIDR] e~ M[M[R[SA]]

The ASM chart for the execution of this instruction is given in Figure 10-21.
Following the instruction fetch, the state becomes EXO0. In this state, R[SA]
addresses the memory to obtain the indirect address, which is then placed in tem-
porary register R8. In the next state, EX1, the next memory access occurs with
the address from R8. The operand obtained is placed in R[DR] to complete the
operation, and the PC is incremented. The ASM then returns to state INF to
fetch the next instruction. The vector decision box for opcode is required for all
states, since these same states are used by other instructions for their execution.
Clearly, with two accesses to Memory M, this instruction could not be executed
by the single-clock-cyele computer or using two clock cycles in the multiple-cycle
computer. Also, to avoid disturbing the contents of registers RO through R7
(except for R[SA]), the use of register RS for temporary storage is essential. The
LRI instruction requires three clock cycles for its execution. To accomplish the
same operation in the single-cycle computer requires two LD instructions, taking
two clock cycles. In the multiple-cycle computer. due to two instruction fetches
and two data accesses, it would require two LD instructions, but would take four
clock cycles. So the LRI instruction gives an improvement in execution time in
the latter case,

472 O CHAPTER 10 / COMPUTER DESIGN BASICS

EX(

EX1

RS < M[R[SA]]
R[DR]« M[RS]
O FIGURE 10-21

ASM Chart for Register Indirect Instruction

Q0100

To IF

The final two instructions to be added are “shift right multiple” {SRM) and
“shift left multiple” (SLM), with opcodes 0001101 and 0001110, respectively. These
two instructions can share most of the microinstruction sequence to be used. SEM
specifies that the contents of register SA are to be shifted to the right by the num-
ber of positions given by the three bits of the OP field, with the result placed in
register DR. The ASM chart for this operation (and for SLM) is given in Figure 10-
22. Register R9 stores the number of bit positions remaining to be shifted, and the
shifting is performed in register R8.

Initially, the contents of R[SA] to be shifted is placed in R8. As it is loaded
into RE, it is checked to see if it is 0 and shifting is not needed. Likewise, the shift
amount being loaded into RY is checked to see whether it is 0, meaning that shift-
ing is not needed. If either case is satisfied, the instruction execution is complete,
and the ASM flow returns to state INE Otherwise, a right-shift operation is per-
formed on the contents of register RE. RY is decremented and tested to see
whether it will be 0. If R9 # 0, then the shift and decrement are repeated. If R9 =0,
then the contents of RS have been shifted by the number of bit positions specified
by OP, so the result is transferred to R[DR] to complete the instruction execution,
and the ASM flow returns to state INF.

If both the operand and the shift amount are nonzero, SRM, including fetch,
requires 25 + 4 clock cycles, where s is the number of positions shifted. The range
of clock cycles required, including the instruction fetch, is from 6 to 18. If the same
operation were implemented by a program using the right-shift instruction plus
increment and branching, then 3s + 3 instructions would be required giving 65 + 6
cycles. The improvement in the required number of clock eyeles is 45 + 2, 50 6 to 30
clock cycles are saved in the multiple-cycle computer for a nonzero operand and
shift amount. Also, five fewer memory locations are required for storage of the
SRM instruction, in contrast to that for the program.

10-9 / Multiple-Cycle Hardwired Control O 473

EXD

01110

Opcode

Im
'

Opcode

‘

T

O FIGURE 10-22
ASM Chart for Right-Shift Multiple Instruction

O TABLE 10-15
State Table for Illustration of Instructions Having Three or More Cycles

Inputs Outputs
State :':::: T_ ; Comments
Opcode VCNZ LPS DX AX BX MB FS MD BRW MM W
EX0D 0010001 XKKEX EX1 0 00 1000 Oxxx XXXX X 0000 1 1 X 0 [LRI R8«M[R[SA],—-EX]1
EX1 0010001 X(XX INF O 01 OXXX 1000 XXX X 0000 1 1 X O|LRI |R[DR]« M[RS].—INF*
EX0O 0001101 X0 EX1 0 00 1000 OXxx Xx¥X X 0000 0 1 X 0 |1SEM RSi—Rﬁh],? —=EX1
EXD Q0o 1o FERA INF 0O 01 1000 O0xxx xxxk X 0000 0 1 X 0 [SRM REB—R|SA]Z:—INF*
EXI1 00T KXo EXZ2 0 00 1001 XxxX XX 1 1100 0 1 X 0 [SEM R 2l OP.Z :—EX2
EX1 0001 1m XXX INF O 01 1001 X¥xxX xXxxx 1 1100 0O 1 X 0 (SEM 9 [ORZ:—=INF*
EX2 00011m XXX EX3 0 00 1000 XxXxxX 1000 o0 1101 0 1 ¥ 0 (SEM KR8 & sr RE,—=EX3
EX3 OO0 XXX0 EX2 0 00 1001 1001 XXXX X 0110 O 1 ¥ 0 |5EM R9 &« RY-1,7 :-EX2
EX3 0001101 XXx1 EX4 0 00 1001 1001 XXXX X 0110 O 1 X 0 |S5KM R9+— R9-1.7Z—EX4
EX4 0001101 Xaxx INF O 01 OxxX 1000 XXxX X 0000 0O 1 ¥ 0 |S5RM R[DR] ¢+ R8,— INF*
EX0 Q001110 X0 EX1 0 00 1000 OXXX XXKX X 0000 O 1 ¥ 0 |SLM RBi— R{SA],E —=EX1
EX0 0001110 Kl INF O 00 1000 OXXx XXXX X 0000 O 1 ¥ 0 |SLM RB—R|SA],Z:—INF*
EX1 0001110 w0 EX2 0 01 1000 XXX XXXX 1 1100 O 1 ¥ 0 |SLM R9 zf OP,Z :=EX2
EX1 0001110 nExl INF O 01 10001 XXXX XX¥X 1 1100 0O 1 ¥ 0|S5LM RO« zf OP.Z:—=INF*
EX2 0001110 WO EX3 0 00 1000 XXXX 1000 O 1110 O 1 X 0|SLM RB 5] RR,—=EX3
EX3 0001110 XXKXD EX2 0 00 1001 1001 XXXX X 010 0 1 X 0|S5LM RY « R9-1,7Z :—EX2
EX3 0001110 K1 EX4 0 00 1001 1001 XXXX X 0110 0O 1 X 0 |5LM RY+ R9-172:—EX4
EX4 Q001110 XXXX INF 0 01 OX¥¥X 1000 XXXx X 0000 O 1 X 0 |S5LM R|DR)] «R8& — TF*

SOISVE NOISTA WALNAWOD / 01 YALdVHD O ¥LF

*For this state and inpul combination, PC +« PC + 1 also occurs.

1010 / Chapter Summary 0O 475

In the ASM chart in Figure 10-22, the states INF and EX0 (and EX1) are the
same as those used for the two-cycle instructions in the ASM chart in Figure 10-20
and for the LRI instruction in Figure 10-21. Also, implementation of the left shift
multiple operation is shown in Figure 10-22 in which, based on the opcode, the left
shift of RS replaces the right shift of R8. As a consequence, the logic implementing
the states used for implementation of these two instructions can be shared. Fur-
ther, the logic used for the sequencing of the states can be shared between the
SRM and SLM instruction implementations.

The state table specification in Table 10-15 is derived by using the informa-
tion from the ASM chart in Figure 10-22, and Tables 10-12 and 10-13. The codes
are derived from the register transfer and sequencing action described in the com-
ments on the right in the same way that Table 10-15 was derived.

Implementation of the LRI and SEM instructions illustrates the flexibility
achieved using multiple-cycle control. Implementation of additional instructions is
explored in the problems at the end of the chapter.

10-10 CHAPTER SUMMARY

In the first part of the chapter, the concept of datapaths for information processing
in digital systems was introduced. Among the major components of datapaths are
register files, buses, arithmetic/logic units (ALUs), and shifters. The control word
provides a means of organizing the control of the microoperations performed by
the datapath. These concepts were combined into the concept of a datapath, which
serves as a basis for exploring computers in the remainder of the text.

In the second part of the chapter, control design for programmed systems
was introduced by examining two different implementations of basic control units
for a simple computer architecture. We introduced the concept of instruction set
architectures and defined instruction formats and operations for the simple com-
puter. The first implementation of this computer is capable of executing any
instruction in a single clock cycle. Aside from having a program counter and its
logic, the control unit of this computer consists of a combinational decoder circuit,

Among the shortcomings of the single-cycle computer are limitations on the
complexity of the instructions that can be executed on it, problems with the inter-
face to a single memory, and the relatively low clock frequencies attained. To deal
with the first two of these shortcomings, we examined a multiple-cycle version of
the simple computer in which a single memory is used and instructions are imple-
mented using two distinet phases: instruction fetch and instruction execution. The
remaining issue of long clock cycles is dealt with in Chapter 12 by introducing pipe-
lined datapaths and control.

REFERENCES
1. Mawo, M. M. Computer Engineering: Hardware Design: Englewood Cliffs,
NI: Prentice Hall, 1988.
2. Maxno, M. M. Computer Svstem Architecture, 3rd Ed. Englewood Cliffs, NY:
Prentice Hall, 1993,

476

O CHAPTER 10 / COMPUTER DESIGN BASICS

3. ParTeRsoN, D. A, anD). L. HENNESSY. Computer Organization and Design:
The Hardware/Software Interface, 2nd ed. San Francisco, CA: Morgan
Kaufmann, 1995,

4. Hennessy,) L., AND D. A, PATTERSON. Compuier Architecture: A Quantitative
Approach, 2nd ed. San Francisco, CA: Morgan Kaufmann, 1996,

PROBLEMS
|I |

W The plus (+) indicates a more advanced problem and the asterisk (*) indicates a
solution is available on the Companion Website for the text.

10-1.

10-2.

10-3,

10-4.

10-5.

A datapath similar to the one in Figure 10-1 has 128 registers. How many
selection lines are needed for each set of multiplexers and for the decoder?

*Given an 8-bit ALU with outputs F; through F; and available carries Cy
and 5, show the logic circuit for generating the signals for the four status
bits N (sign), Z (zero), V {overflow), and C (carry).

*Design an arithmetic circuit with two selection variables §; and 5, and two
n-bit data inputs A and B. The circuit generates the following eight
arithmetic operations in conjunction with carry Cj;:

51 sg Cn=10 G =1

00 F=A+B(add) F = A+H+1 (subtract A — B)
0 1 F=A+R F=A+B+1 (subtract B— A)
1 0 F = A —1{decrement) F=A+1{increment)

1 1

F=A(l'sComplement) F=A+1(2 Complement)

Draw the logic diagram for the two least significant bits of the arithmetic
circuit.

*Design a 4-bit arithmetic circuit, with two selection variables §; and S,
that generates the following arithmetic operations:

55, Ch=10 Cin =1

0o F=A+8 (add) F=A+B+1

01 F = A (transfer) F = A +1 (increment}
Lo F = B {complement) F = B +1 (negate)

11 F=A4A+8 F=A+B8+1 (subtract)

Drraw the logic diagram for a single bit stage.

Inputs X; and Y¥; of each full adder in an arithmetic circuit have digital logic
specified by the Boolean functions

10-6.

10-7.

10-8.

10-9.

Problems O 477

X;=A, Y =BS+BCu
where § is a selection variable, Cj,, is the input carry, and A, and B; are input
data for stage ©.

(a) Draw the logic diagram for the 4-bit circuit, using full adders and
multiplexers.

{b) Determine the arithmetic operation performed for each of the four
combinations of § and C;: 00,01, 10, and 11.

#*Design one bit of a digital circuit that performs the four logic operations

of exclusive-OR, exclusive-NOR,, NOR, and NAND on register operands A

and B with the result to be loaded into register A. Use two selection

variables.

{a) Using a Karnaugh map, design minimum logic for one typical stape, and
show the logic diagram.

{b) Repeat (a), trying different assignments of the selection codes to the
four operations to see whether the logic for the stage can be simplified
further,

+Design an ALU that performs the following operations:

A+B sl A

A+B+1 AvB
B ADB
B+1 AnB

Give the result of vour design as the logic diagram for a single stage of the

ALU. Your design should have only a single carry line between stages and

three selection bits. If you have access to logic simplification software,

apply it to the design to obtain reduced logic.

*Find the output Y of the 4-bit barrel shifter in Figure 10-9 for each of the

following bit patterns applied to 8y, 55, D3, Dy, Dy, and Dy

(a) 000101 (b) 010011

(c) 101010 (d) 111100

Specify the 16-bit control word that must be applied to the datapath of

Figure 10-11 to implement each of the following microoperations:

(a) RO—R1+R7 (b) R7«0
{c) R6«sl R6 (d) R3+—srR4
(e) R1«—R7+1 (I R2«— R4 — Constant in

(g) R1<—R2ER3 {h) R5« Datain

478

10-10.

10-11.

10-12,

10-13.

O CHAPTER 10 / COMPUTER DESIGN BASICS

*Given the following 16-bit control words for the datapath of Figure 10-11,
determine (a) the microoperation that is executed and (b) the change in the
contents of the register for each control word (assume that the registers
are 8-bit registers and that, before the execution of a control word, they
contain the wvalue of their number (e.g.. register R5 contains 05 in
hexadecimal)). Assume that Constant has value 6 and Data in has value 1B,
both in hexadecimal.

(a)101 100101 010000 1 (d) 107 000 D00 0 0000 0 1
(b)110010 1000 0101 0 1 (e)100 1000001 110101
(c)101 1100000 11000 1 (£)011 0000000 0000 1 1
Given the sequence of 16-bit control words below for the datapath in

Figure 10-11 and the initial ASCII character codes in 8-bit registers,
simulate the datapath to determine the alphanumeric characters in the
registers after the execution of the sequence. The result is a scrambled
word: what is it?

011011 001 0001001 RO 00000000
100 100 001 0 1001 01 k1 00100000
101 101 001 0 101001 RZ 01000100
001001 0000 1011 01 R3 01000111
001 001 000 00001 01 R4 01010100
110110001 0010101 R5 01001100
111111001 001010 1 R6 D100
00T 1171 000 0 0000 01 K7 0100100

A datapath has five major components, A through E, attached in a loop from

register file to register file similar to that in Figure 10-17. The maximum delay

of each of the components is 4, 2 ns: B, 1 ns; C, 3 ns; D, 4 ns; and E, 4 ns.

(a) What is the maximum clock frequency that can be used for the
datapath?

(b) The datapath is to be changed to one that is pipelined using three
stages. How should the components be combined into stages, and what
is the maximum clock frequency that can be achieved?

(¢) Repeat (b) for four pipeline stages.

A computer has a 32-bit instruction word broken into fields as follows:
opcode, 6 bits; two register fields. 6 bits each; and one immediate
operand/register field, 14 bits,

(a) What is the maximum number of operations that can be specified?

(b} How many registers can be addressed?

(¢) What is the range of unsigned immediate operands that can be
provided?

10-14.

10-15.

10-16.

Problems O 479

(d) What is the range of signed immediate operands that can be provided,
assuming that bit 13 is the sign bit?

*A digital computer has a memory unit with a 32-bit instruction and a
register file with 32 registers. The instruction set consists of 110 different
operations. There is only one type of instruction format, with an opcode
part, a register file address, and an immediate operand part. Each
instruction is stored in one word of memory.

(a) How many bits are needed for the opcode part of the instruction?
(b) How many bits are left for the immediate part of the instruction?

(c) If the immediate operand is used as an unsigned address to memory,
what is the maximum number of words that can be addressed in
memaory?

(d) What are the largest and the smallest algebraic values of signed 2's
complement binary numbers that can be accommodated as an
immediate operand?

A digital computer has 32-bit instructions. There are a number of
different instruction formats and the number of bits in each format used
for opcodes varies depending on the bits needed for other fields. If the
first bit of the opcode is (0, then there are 4 opcode bits. If the first bit of
the opcode is 1 and the second bit of the opcode is 0, then there are 6
opeode bits. If the first bit of the opeode is 1 and the second bit of the
opcode is 1, then there are 8 opcode bits. How many distinct opcodes are
available for this computer?

The single-cycle computer in Figure 10-15 executes the five instructions
described by the register transfers in the table that follows.

(a) Complete the following table, giving the binary instruction decoder
outputs from Figure 10-16 during execution of each of the instructions:

Instruction—Register
Transfer DA |AA |BA|MB | FS |MD | RW | MW)| PL | JB

R[0] = R[T1ER([3]

R[1]+M[R[4]]

R[Z]«R[5] +2

R[3]«sl R[]

if (R{[4] =D
PC—PC + se PC
else PC—PC +1

480 0O CHAPTER 10/ COMPUTER DESIGN BASICS

(b) Complete the following table, giving the instruction in binary for the
single-cycle computer that executes the register transfer (if any field is
not used, give it the value 0):

Instruction—Register Transfer Opcode | DR | SA | SB or Operand

R[0] = srR[7]
R[1]« M[R[6]]
R[2]«R[5] +4
R[3]—R[4]E R[3]
R|4]«R[2] — R[1]

10-17. Using the information in the truth table in Table 10-10, verify that the
design for the single-bit outputs in the decoder in Figure 10-16 is correct.

10-18, Manually simulate the single-cycle computer in Figure 10-15 for the
following sequence of instructions, assuming that each register initially
contains contents equal to its index (i.c., R0 contains 0, R1 contains 1, etc.):

SUB RO, R1, R2
5UB R3, R4, R5
SUB R6, R7, RO
SUB RO, RO, R3
SUB RO, RO, R6
ST R7, RO

LD R7. R6

ADI RO, R6. 0
ADIR3 R6,3

Give (a) the binary value of the instruction on the current line of the results
and (b) the contents of any register changed by the instruction, or the
location and contents of any memory location changed by the instruction
on the next line of the results. The results are positioned in this fashion
because the new values do not appear in a register or memory, due to the
execution of an instruction, until after a positive clock edge has occurred.

10-19. Give an instruction for the single-cycle computer that resets register R4 to ()
and updates the Z and N status bits based on the value 0 transferred to R4,
(Hint: Try the exclusive-OR.) By examining the detailed ALU logic,
determine the values of the V and (status bits,

10-20. List the control logic state table entries for the multiple-cycle computer
(see Table 10-15) that implement the following register transfer statements.
Assume that in all cases the present state is EX0 and the opcode is 0010001.

(a) R3«R1—-R2, = EX] Assume DR=3.5A=1,5B=2.
(b) R8esr R8, = INF Assume DR=5SB=35

10-21.

10-22.

10-23.

10-24.

Problems O 481

{c) if (N =0)then (PC—=PC +se, =INF)else (PC—PC+1, =INF)
(d) Roe—R6,Ce0, = INF Assume DR = S5A = 6.

Manually simulate the SRM instruction in the multiple-cyvcle computer for
operand 0001001101111000 for OP = 6.

A new instruction is to be defined for the multiple-cycle computer with
opcode 0010001. The instruction implements the register transfer

R[DR]« R[SB] + M|R[SA])

Find the ASM chart for implementing the instruction, assuming that
0010001 is the opcode. Form the part of the control state table that
implements this instruction.

Repeat Problem 10-22 for the two instructions: Add and check OV (AOV),
described by the register transfer

RIDR)«—RISA] + R[SB],V:E8«1,V:R8<0

and BRanch on oVerflow (BRV), described by the register transfer

R8«RB,V:PC—PC +se AD,V:PC—PC +1

The opcode for AOV is 1000101 and, for BRV, is 1000110. Note that
register B8 is used as a “status” register that stores the overflow result V for
the previous operation. All of the values N, Z, C and V could be stored in
R& to give a complete status on the prior arithmetic or logic operation.

+A new instruction is to be defined for the multiple-cycle computer. The
instruction compares two unsigned integers stored in register R[SA] and
R[SB]. If the integers are equal, then bit {} of R[DR] is set to 1. If R[SA] is
greater than R[SB], then bit 1 of R[DR] is set to 1. Otherwise, bits 0 and |
are both 0. All other bits of R[DR] have value 0. Find the ASM chart for
implementing the instruction, assuming that 0010001 is the opcode. Form
the part of the control state table that implements this instruction.

INSTRUCTION SET
ARCHITECTURE

p to this point, much of what we have studied has focused on digital system

design, with computer components used as examples. In this chapter, the

material studied becomes decidedly more specialized, dealing with
instruction set architecture for general-purpose computers. We will examine the
operations that the instructions perform and focus particularly on how the operands
are obtained and where the results are stored. In our studies, we will contrast two
distinet classes of architectures: reduced instruction set computers (RISCs) and
complex instruction set computers (CISCs). We will classify elementary instructions
into three categories: data transfer, data manipulation, and program control. In each
of these categories, we will elaborate on typical elementary instructions.

In light of this change in focus, the general-purpose parts of the generic computer at
the beginning of Chapter 1, including the central processing unit (CPU) and the
accompanying floating-point unit (FPU), are heavily shaded. In addition, since a small
general-purpose microprocessor may be present for controlling keyboard and monitor
functions, we have lightly shaded these components. Aside from addressing used to
access memory and 'O components, the concepts studied apply less to other areas
of the computer. Increasingly, however, small CPUs are appearing more and maore in
the VO components, giving a changing picture of the role of general-purpose
instruction set architectures in the generic computer,

11-1 CoMPUTER ARCHITECTURE CONCEPTS

The binary language in which instructions are defined and stored in memory is
referred to as machine language. A symbolic language that replaces binary opcodes
and addresses with symbolic names and that provides other features helpful to the
programmer is referred to as assembly language. The logical structure of computers is

O 483

484 0O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

normally described in assembly language reference manuals. Such manuals explain
various internal elements of the computer that are of interest to the programmer,
such as processor registers. The manuals list all hardware-implemented instructions,
specify the symbolic names and binary code format of the instructions, and provide a
precise definition of each instruction. In the past, this information represented the
architecture of the computer. A computer was composed of its architecture, plus a
specific implemeniation of that architecture. The implementation was separated into
two parts: the organization and the hardware, The organization consists of structures
such as datapaths, control units, memories, and the buses that interconnect them.
Hardware refers to the logic, the electronic technologies employed. and the various
physical design aspects of the computer. As computer designers pushed for higher
and higher performance, and as increasingly more of the computer resided within a
single IC, the relationships among architecture, organization, and hardware became
so intertwined that a more integrated viewpoint became necessary. According to this
new viewpoint, architecture as previously defined is more restrictively called instruc-
tion set architecture (15A), and the term architecture is used to encompass the whole
of the computer, including instruction set architecture, organization, and hardware.
This unified view enables intelligent design trade-offs to be made that are apparent
only in a tightly coupled design process. These trade-offs have the potential for pro-
ducing better computer designs. In this chapter, we focus on instruction set architec-
ture. In the next, we will look at two distinet instruction set architectures, with a focus
on implementation using two very different organizations,

A computer usually has a variety of instructions and multiple instruction formats.
It 1s the function of the control unit to decode each instruction and provide the control
signals needed to process it. Simple examples of instructions and instruction formats
were presented in Section 10-7. We will now expand this presentation by introducing
typical instructions found in commercial general-purpose computers. We will also
investigate the various instruction formats that may be encountered in a typical com-
puter, with an emphasis on the addressing of operands. The format of an instruction is
depicted in a rectangular box symbolizing the bits of the binary instruction. The bits are
divided into groups called fields. The following are typical fields found in instruction
formats:

1. An epcode field, which specifies the operation to be performed,

2. An address field, which provides either a memory address or an address for
selecting a processor register.
3. A mode field, which specifies the way the address field is to be interpreted.

Other special fields are sometimes employed under certain circumstances—for
example, a field that gives the number of positions to shift in a shift-type instruc-
tion or an operand field in an immediate operand instruction,

Basic Computer Operation Cycle

In order to comprehend the various addressing concepts to be presented in the
next two sections, we need to understand the basic operation cycle of the

11-2 / Operand Addressing O 485

computer. The control unit of a computer is designed to execute each instruction of
a program in the following sequence of steps:

1. Fetch the instruction from memory into a control register.
Decode the instruction,

. Locate the operands used by the instruction.

Fetch operands from memory (if necessary).

Execute the operation in processor registers.

Store the results in the proper place.

Go back to step 1 to fetch the next instruction.

MmN

As explained in Section 10-7, there is a register in the computer called the pro-
gram counter (PC) that keeps track of the instructions in the program stored in
memory. The PC holds the address of the instruction to be executed next and is
incremented by one each time a word is read from the program in memory. The
decoding done in Step 2 determines the operation to be performed and the address-
ing mode of the instruction. The operands in Step 3 are located from the addressing
mode and the address field of the instruction. The computer executes the instruction,
storing the result, and returns to Step 1 to fetch the next instruction in sequence.

Register Set

The register set consists of all registers in the CPU that are accessible to the pro-
grammer. These registers are typically those mentioned in assembly language pro-
gramming reference manuals. In the simple CPUs we have dealt with so far, the
register set has consisted of the programmer-accessible portion of the register file
and the PC. The CPUs can also contain other registers, such as the instruction reg-
ister, registers in the repister file that are accessible only to microprograms, and
pipeline registers. These registers, however, are not directly accessible to the pro-
grammer and, as a consequence, are not a part of the register set, which represents
the stored information in the CPLU that instructions can access. Thus, the register
set has a considerable influence on instruction set architecture.

The register set for a realistic CPU can become quite complex. For the discussion
in this chapter, we add two registers to the set we have used thus far: the processor sta-
tus register (PSR) and the stack pointer (SFP). The processor status register contains flip-
lops that are selectively set by status values C, N, V. and Z from the ALU. These stored
status bits are used to make decisions that determine the program flow, based on ALU
resulis or the contents of registers. The stored status bits in the processor status register
are also referred to as the condition codes or the flags. Additional bits in the PSR will
be discussed when we cover associated concepis in this chapter.

11-2 OPERAND ADDRESSING

Consider an instruction such as ADD, which specifies the addition of two operands
to produce a result. Suppose that the result of the addition is treated as just another
operand. Then the ADD instruction has three operands: the addend, the augend, and

486 [0 CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

the result. An operand residing in memory is specified by its address. An operand
residing in a processor register is specified by a register address, a binary code of n
bits that specifies one of 2" registers in the register file. Thus, a computer with 16 pro-
cessor registers, say, R0 through R15, has in its instructions one or more register
address fields of four bits. The binary code 0101, for example, designates register R3.

Some operands, however, are not explicitly addressed, because their location is
specified either by the opcode of the instruction or by an address assigned to one of the
other operands. In such a case, we say that the operand has an implied address. If the
address is implied, then there is no need for a memory or register address field for the
operand in the instruction. On the other hand. if an operand has an address in the instruc-
tion, then we say that the operand is explicitly addressed or has an explicit address.

The number of operands explicitly addressed for a data manipulation operation
such as ADD is an important factor in defining the instruction set architecture for a
computer. An additional factor is the number of such operands that can be explicitly
addressed in memory by the instruction. These two factors are so important in defin-
ing the nature of instructions that they act a means of distinguishing different instruc-
tion set architectures. They also govern the length of computer instructions.

We begin by illustrating simple programs with different numbers of explicitly
addressed operands per instruction. Since each explicitly addressed operand has up
to three memory or register addresses per instruction, we label the instructions as
having three, two, one, or zero addresses. Note that, of the three operands needed
for an instruction such as ADD, the addresses of all operands not having an
address in the instruction are implied.

To illustrate the influence of the number of operands on computer programs,
we will evaluate the arithmetic statement

X=A+B)yC+D)

using three, two, one, and zero address instructions. We will assume that the oper-
ands are in memory addresses symbolized by the letiers A, B, C, and D and must
not be changed by the program. The result is to be stored in memory at a location
with address X, The arithmetic operations to be used in the instructions are addi-
tion, subtraction, and multiplication, denoted by ADD, SUB, and MUL, respec-
tively. Further, three operations needed to transfer data during the evaluation are
move, load, and store, denoted by MOVE. LD, and ST. respectively. LD moves an
operand from memory to a register and 5T from a register to memory. Depending
on the addresses permitted, MOVE can transfer data between registers, between
memory locations, or from memory to register or register to memory.

Three-Address Instructions

A program that evaluates X = (4 + B)(C + D) using three-address instructions is
as follows (a register transfer statement is shown for each instruction):
ADDTILA.B M[T1]« M[A] + M[B]
ADDT2,C,D M[T2]<M[C] + M| D]
MUL X, T1, T2 M[X]+— M[T1] x M[T2]

11-2 / Operand Addressing [0 487

The symbol M[A] denotes the operand stored in memory at the address symbol-
ized by A. The symbol x designates multiplication. T1 and T2 are temporary stor-

age locations in memory.
This same program can use registers as the temporary storage locations:

ADDRLA.B Rl M[A] + M[E]
ADDR2 C.D R2e M[C] + M[D]
MUL X,R1, R2 M[X]—R1 X R2

Use of registers reduces the memory accesses required from nine to five. An advan-
tage of the three-address format is that it results in short programs for evaluating
expressions. A disadvantage is that the binary coded instructions require more bits to
specify three addresses, particularly if they are memory addresses.

Two-Address Instructions

For two-address instructions, each address field can again specify either a possible
register or a memory address. The first operand address listed in the symbolic
instruction also serves as the implied address to which the result of the operation is
transferred. The program is as follows:

MOVETL A M[T1]—M[A]

ADDTLB M[T1]<M[T1] + M[B]
MOVE X, C M[X]«—M[C]

ADD X, D M[X]+ M[X] + M[D]
MUL X, T1 M[X]+— M[X] = M[T1]

If a temporary storage register R1 is available, it can replace T1. Note that this program
takes five instructions instead of the three used by the three-address instruction program.

One-Address Instructions

To perform instructions such as ADD, a computer with one-address instructions
uses an implied address—such as a register called an accumularor ACC—for
obtaining one of the operands and as the location of the result. The program to
evaluate the arithmetic statement is as follows:

LD A ACCeMIA]
ADD B ACC«ACC+M[B]
ST X M[X]«ACC

LD C ACCeM(C)

ADD D ACC«ACC +M[D)]
MUL X ACC«ACC X M[X]
ST X M[X]«ACC

488 O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

All operations are done between the ACC register and a memory operand. In this
case, the number of instructions in the program has increased to seven and the
memory accesses is also seven,

Zero-Address Instructions

To perform an ADD instruction with zero addresses, all three addresses in the
instruction must be implied. A conventional way of achieving this goal is to use a
structure referred to as a stack, which is a mechanism or structure that stores infor-
mation such that the item stored last is the first retrieved. Because of its “last in, first
out” nature, a stack is also called a last in, first out (LIFO) quene. The operation of a
computer stack is analogous to that of a stack of trays or plates in which the last tray
placed on top of the stack is the first to be taken off. Data manipulation operations
such as ADD are performed on the stack. The word at the top of the stack is referred
to as TOS. The word below it in the stack is referred to as TOS_ . When one or more
words are used as operands for an operation, they are removed from the stack. The
word below them then becomes the new TOS, When a resulting word is produced, it
is placed on the stack and becomes the new TOS. Thus, TOS and a few locations
below it are the implied addresses for operands, and TOS is the implied address for
the result. For example, the instruction that specifies an addition is simply

ADD
The resulting register transfer action is TO8S« TOS + TOS5_, . Thus, there are no
registers or register addresses used for data manipulation instructions in a stack
architecture. Memory addressing, however, is used in such architectures for data
transfers, For imstance, the mstruction

PUSH X
results in TO8 «— M X, a transfer of the word in address X in memaory Lo the top
of the stack. A corresponding operation,
POP X

results in M| X« TS | a transfer of the entry at the top of the stack to address X
In Memaory.

The program for evaluating the sample arithmetic statement for the zero-
address situation is as follows;

PUSH A TOS<—M[A]
PUSH B TOS<M|[B]
ADD TOS<TOS+TOS_,
PUSH C TOS<—M[(C]
PUSH D TOS<M[D]
ADD TOS<TOS+TOS_,
MUL TOSTOS X TOS_,
POP X M[X]<TOS

11-2 / Operand Addressing O 489

This program requires eight instructions—one more than the number required by
the previous one-address program. However, it uses addressed memory locations
or registers only for PUSH and POP and not to execule data manipulation instruc-
tions involving ADD and MUL.

Addressing Architectures

The programs just presented change if the number of addresses to the memory in
the instructions is restricted or if the memory addresses are restricted 1o specific
instructions. These restrictions, combined with the number of operands addressed,
define addressing architectures. We can illustrate such architectures with the evalu-
ation of an arithmetic statement in a three-address architecture that has all of the
accesses to memory. Such an addressing scheme is called a memory-to-memory
architecture. This architecture has only control registers, such as the program
counter in the CPU. All operands come directly from memory, and all results are
sent directly to memory. The formats of data transfer and manipulation instruc-
tions contain from one to three address fields, all of which are used for memory
addresses. For the previous example, three instructions are required, but if an extra
word must appear in the instruction for each memory address, then up to four
memory reads are required to fetch each instruction. Including the fetching of
operands and storing of results, the program to perform the addition would require
21 accesses to memory. If memory accesses take more than one clock cycle, the
execution time would be in excess of 21 clock periods. Thus, even though the
instruction count is low, the execution time is potentially high. Also, providing the
capability for all operations to access memory increases the complexity of the con-
trol structures and may lengthen the clock cycle. Thus, this memory-to-memory
architecture is typically not used in new designs.

In contrast, the three-address regisier-io-regisier or load/store architecture,
which allows only one memory address and restricts its use to load and store types
of instructions, is typical in modern processors. Such an architecture requires a
sizeable register file, since all data manipulation instructions use register operands.
With this architecture, the program to evaluate the sample arithmetic statement is
as follows:

LD RLA Rl MI[A]
LD R2,B R2 M|B]
ADD R3,R1,R2 R3«RIl+R2
i RLE R1eM[C]
LD R2,D R2e M[D)

ADD RI1.R1,R2 Rl R1+R2
MUL RI1 RLR3 R1«—R1 % R3
5T X, Rl M[X]«R1

490 0O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

Note that the instruction count increases to eight compared to three for the
three-address, memory-to-memory case. Note also that the operations are the
same as those for the stack case, except for the need for register addresses. By
using registers, the number of accesses to memory for instructions, addresses, and
operands is reduced from 21 to 18, If addresses can be obtained from registers
instead of memory, as discussed in the next section, this number can be further
reduced.

Variations on the previous two addressing architectures include three-address
instructions and two-address instructions with one or two of the addresses to mem-
ory. The program lengths and number of memory accesses tend to be intermediate
between the previous two architectures. An example of a two-address instruction
with a single memory address allowed is

ADD Rl A R1+«R1+ M[A]

This type of architecture is a register-memory architecture and remains prevalent
among the current instruction set architectures, primarily to provide compatibility
with older software using a specific architecture.

The program with one-address instructions illustrated previously gives the
single-accurnulator architecture. Since this architecture has no register file, its single
address is for accessing memory. It requires 21 accesses to memory to evaluate the
sample arithmetic statement. In more complex programs, significant additional
memory accesses would be needed for temporary storage locations in memory.
Because of its large number of memory accesses, this architecture is inefficient and,
as a consequence, is restricted to use in CPUs for simple, low-cost applications that
do not require high performance.

The zero-address instruction case using a stack supports the concept of a
stack architecture. Data manipulation instructions such as ADD use no address,
since they are performed on the top few elements of the stack. Single memory-
address load and store operations, as shown in the program to evaluate the sam-
ple arithmetic statement, are used for data transfer. Since most of the stack is
located in memory, one or more hidden memory accesses may be required for
each stack operation. As register-register and load/store architectures have made
strong performance advances, the high frequency of memory accesses in stack
architectures has made them unattractive. However, recent stack architectures
have begun to borrow technological advances from these other architectures.
These new architectures store substantial numbers of stack locations in the pro-
cessor chip and handle transfers between these locations and the memory trans-
parently. Stack architectures are particularly useful for rapid interpretation of
high-level language programs in which the intermediate code representation uses
stack operations.

Stack architectures are compatible with a very efficient approach to expres-
sion processing which uses postfix notation rather than the traditional infix nota-
tion to which we are accustomed. The infix expression

(A+B)xC +(DxE)

11-2 / Operand Addressing O 491

O FIGURE 11-1

Graph for Example of Conversion from Infix 1o
RPN

with the operators between the operands can be written as postfix expression

AB+CxDEx+

Postfix notation is called reverse Polish notation (RPN), named for Polish mathe-
matician Jan Lukasiewicz, who proposed prefix (the reverse of postfix) notation.

Conversion of (A + B)x C + (D % E) to RPN can be achieved graphically
as shown in Figure 11-1. When the path shown traversing the graph passes a
variable, that variable is entered into the RPN expression. When the path
passes an operation for the final time, the operation is entered into the RPN
expression.

It is very easy to develop a program for an RPN expression. Whenever a
variable is encountered, it is pushed onto the stack. Whenever an operation is
encountered, it is executed on the implicit address TOS, or addresses TOS and
TOS_,, with the result placed in the new TOS. The program for the example
RPN expression is

PUSH A
PUSH B
ADD
PUSHC
MUL
PUSH D
PUSHE
MUL
ADD

The execution of the program is illustrated by the successive stack states shown
in Figure 11-2. As an operand is pushed on the stack, the stack contents are
pushed down one stack location. When an operation is performed, the operand
in the TOS is popped off and temporarily stored in a register, The operation is
applied to the stored operand and the new TOS operand, and the result
replaces the TOS operand.

492 0O CHAPTER 11/ INSTRUCTION SET ARCHITECTURE

L a] | B] |a=8 | ¢]| [ta+Brxc] D
A+B (A+By=C
E D xE [(a+B)xC+DxE|
D (A+B)xC
(A+B)%xC

O FIGURE 11-2
Stack Activity for Execution of Example Stack Program

11-3 ADDRESSING MODES

The operation field of an instruction specifies the operation to be performed.
This operation must be executed on data stored in computer registers or memory
words, How the operands are selected during program execution is dependent on
the addressing mode of the instruction. The addressing mode specifies a rule for
interpreting or modifying the address field of the instruction before the operand
is actually referenced. The address of the operand produced by the application of
such a rule is called the effective address. Computers use addressing-mode tech-
nigues (o accommodate one or both of the following provisions:

1. To give programming flexibility to the user via pointers to memory, counters
for loop control, indexing of data, and relocation of programs.

2. To reduce the number of bits in the address fields of the instruction.

The availability of various addressing modes gives the experienced programmer
the ability to write programs that require fewer instructions. The effect, however,
on throughput and execution time must be carefully weighed. For example, the
presence of more complex addressing modes may actually result in lower through-
put and longer execution time. Also, most machine-executable programs are pro-
duced by compilers that often do not use complex addressing modes effectively.

In some computers, the addressing mode of the instruction is specified by a
distinct binary code. Other computers use a commaon binary code that designates
both the operation and the addressing mode of the instruction. Instructions may be
defined with a variety of addressing modes, and sometimes two or more addressing
modes are combined in one instruction.

An example of an instruction format with a distinct addressing-mode field is
shown in Figure 11-3. The opcode specifies the operation to be performed. The

Cipeode Miode Address or operand

O FIGURE 11-3
Instruction Format with Mode Field

11-3 / Addressing Modes O 493

mode field is used to locate the operands needed for the operation. There may or
may not be an address field in the instruction. If there is an address field, it may
designate a memory address or a processor register. Moreover, as discussed in
the previous section, the instruction may have more than one address field. In
that case, each address field is associated with its own particular addressing
mode.

Implied Mode

Although most addressing modes modify the address field of the instruction, there
is one mode that needs no address field at all: the implied mode. In this mode, the
operand is specified implicitly in the definition of the opcode. It is the implied
mode that provides the location for the two-operand-plus-result operations when
fewer than three addresses are contained in the instruction. For example, the
instruction “complement accumulator™ is an implied-mode instruction because the
operand in the accumulator register is implied in the definition of the instruction.
In fact, any instruction that uses an accumulator without a second operand is an
implied-mode instruction. For example, data manipulation instructions in a stack
computer, such as ADD, are implied-mode instructions, since the operands are
implied to be on top of stack.

Immediate Mode

In the immediate mode, the operand is specified in the instruction itself. In other
words, an immediate-mode instruction has an operand field rather than an address
field. The operand field contains the actual operand to be used in conjunction with
the operation specified in the instruction. Immediate-mode instructions are useful,
for example, for initializing registers to a constant value,

Register and Register-Indirect Modes

Earlier, we mentioned that the address field of the instruction may specify either
a memory location or a processor register. When the address field specifies a pro-
cessor register, the instruction is said to be in the register mode. In this mode,
the operands are in registers that reside within the processor of the computer.
The particular register is selected from a register address field in the instruction
format.

In the register-indirect mode, the instruction specifies a register in the proces-
sor whose content gives the address of the operand in memory. In other words, the
selected register contains the memory address of the operand, rather than the
operand itsell. Before using a register-indirect mode instruction, the programmer
must ensure that the memory address is available in the processor register. A refer-
ence to the register is then equivalent to specifying a memory address. The advan-
tage of register-indirect mode is that the address field of the instruction uses fewer
hits to select a register than would have been required to specify a memory address
directly.

494 O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

An autoincrement or autodecrement mode is similar to the register-indirect
mode, except that the register is incremented or decremented after (or before)
its address value is used to access memory. When the address stored in the regis-
ter refers to an array of data in memory, it is convenient to increment the register
after each access to the array. This can be achieved by using a separate register-
increment instruction. However, because it is such a common requirement, some
computers incorporate an autoincrement mode that increments the content of
the register containing the address after the memory data are accessed.

In the following instruction, an autoincrement mode is used to add the con-
stant value 3 to the elements of an array addressed by register R1:

ADD (R1)+,3 M[R1]e—M[R1]+3,R1«<Rl +1

R1 is initialized to the address of the first element in the array. Then the ADD
instruction is repeatedly executed until the addition of 3 to all elements of the
array has occurred. The register transfer statement accompanying the instruction
shows the addition of 3 to the memory location addressed by R1 and the incre-
menting of R1 in preparation for the next execution of the ADD on the next ele-
ment in the array.

Direct Addressing Mode

In the direct addressing mode, the address field of the instruction gives the address
of the operand in memory in a data transfer or data manipulation instruction. An
example of a data transfer instruction is shown in Figure 11-4. The instruction in
memory consists of two words. The first, at address 250, has the opecode for “load
to ACC” and a mode field specilfying a direct address. The second word of the

Memory
250 Opcode Mode
PC = 250
251 ADRS
252 Next instruction
ACC l
Program
Opeode: Load ACC
Mode: Direet address
ADRS: S00 <00 €00
Operation: ACC =500 I’
Data
O FIGURE 11-4

Example Demonstrating Direct Addressing for a Data Transfer Instruction

11-3 / Addressing Modes O 495

instruction, at address 251, contains the address field, symbolized by ADRS, and is
equal to 500. The PC holds the address of the instruction, which is brought from
memaory using two memory accesses. Simultaneously with or after the completion
of the first access, the PC is incremented to 251, Then the second access for ADRS
occurs and the PC is again incremented. The execution of the instruction results in
the operation

ACC« M[ADRS]

Since ADRS = 500 and M[500] = 800, the ACC receives the number 800, After the
instruction is executed, the PC holds the number 252, which is the address of the
next instruction in the program.

Now consider a branch-type instruction, as shown in Figure 11-5. If the
contents of ACC equal 0, control branches to ADRS; otherwise, the program
continues with the next instruction in sequence. When ACC = 0, the branch to
address 500 is accomplished by loading the value of the address field ADRS into
the PC. Control then continues with the instruction at address 500, When
ACC # 0, no branch occurs, and the PC, which was incremented twice during the
fetch of the instruction, holds the address 302, the address of the next instruction
in sequence.

Sometimes the value given in the address field is the address of the operand,
but sometimes it is just an address from which the address of the operand is calcu-
lated. To differentiate among the various addressing modes, it is useful to distin-
guish between the address part of the instruction, as given in the address field, and
the address used by the control when executing the instruction. Recall that we
refer to the latter as the effective address.

Memory
300 Opcode Muode
PC = 300
3 ADRS
302 MNexl mstruction
ACC 4‘
Program
Opeode: Branch if ACC = 0 +
Mode: Drirect address 500 Tiskracting
ADRS: 500 R
Operation: PCe500if ACC =0 +
PC 302 if ACC # 0
Program

O FIGURE 11-5
Example Demonstrating Direct Addressing in a Branch Instruction

496 O CHAPTER 11/ INSTRUCTION SET ARCHITECTURE

Indirect Addressing Mode

In the indirect addressing mode, the address field of the instruction gives the
address at which the effective address is stored in memory. The control unit fetches
the instruction from memory and uses the address part to access memory again in
order to read the effective address. Consider the instruction “load to ACC" given
in Figure 11-4. If the mode specifies an indirect address, the effective address is
stored in M[ADRS]. Since ADRS = 500 and M[ADRS] = 800, the effective
address is 800, This means that the operand loaded into the ACC is the one found
in memory at address 800 (not shown in the figure).

Relative Addressing Mode

Some addressing modes require that the address field of the instruction be added
to the content of a specified register in the CPU in order to evaluate the effective
address. Often, the register used is the PC. In the relative addressing mode, the
effective address is calculated as follows:

Effective address = Address part of the instruction + Contents of PC

The address part of the instruction is considered to be a signed number that can be
either positive or negative. When this number is added to the contents of the PC.
the result produces an effective address whose position in memory is relative to the
address of the next instruction in the program.

To clarify this with an example, let us assume that the PC contains the num-
ber 250 and the address part of the instruction contains the number 500, as in
Figure 11-5, with the mode field specifyving a relative address. The instruction at
location 250 is read from memory during the fetch phase of the operation cycle,
and the PC is incremented by 1 to 251. Since the instruction has a second word, the
control unit reads the address field into a control register, and the PC is incre-
mented to 252, The computation of the effective address for the relative addressing
mode is 252 + 500 = 752, The result is that the operand associated with the instruc-
tion is 500 locations away, relative to the location of the next instruction,

Relative addressing is often used in branch-type instructions when the branch
address is in a location close to the instruction word. Relative addressing produces
more compact instructions, since the relative address can be specified with fewer
bits than are required to designate the entire memory address,

Indexed Addressing Mode

In the indexed addressing mode, the content of an index register is added 1o the
address part of the instruction to obtain the effective address. The index register
may be a special CPU register or simply a register in a register file. We illustrate
the use of indexed addressing by considering an array of data in memory. The
address field of the instruction defines the beginning address of the array. Each
operand in the array is stored in memory relative to the beginning address. The dis-
tance between the beginning address and the address of the operand is the index

11-3 / Addressing Modes O 497

value stored in the register. Any operand in the array can be accessed with the
same instruction, provided that the index register contains the correct index value.
The index register can be incremented to facilitate access to consecutive operands.

Some computers dedicate one CPU register to function solely as an index
register. This register is addressed implicitly when an index-mode instruction is
used. In computers with many processor registers, any CPU register can be used as
an index register. In such a case, the index register to be used must be specified
with a register field within the instruction format.

A specialized variation of the index mode is the base-register mode. In this
mode, the contents of a base register are added to the address part of the instruc-
tion to obtain the effective address. This is similar to indexed addressing, except
that the register is called a base register instead of an index register. The difference
between the two modes is in the way they are used rather than in the way
addresses are computed: an index register is assumed to hold an index number that
is relative to the address field of the instruction; a base register is assumed to hold
a base address, and the address field of the instruction gives a displacement relative
to the base address.

Summary of Addressing Modes

In order to show the differences among the various modes, we will investigate the
effect of the addressing mode on the instruction shown in Figure 11-6. The instruc-
tion in addresses 250 and 251 is “load to ACC.” with the address field ADRS (or an
operand NBR) equal to 500. The PC has the number 250 for fetching this instrue-
tion. The contents of a processor register R1 are 400, and the ACC receives the result
after the instruction is executed. In the direct mode, the effective address is 500, and
the operand to be loaded into the ACC is 800, In the immediate mode, the operand
500 is loaded into the ACC. In the indirect mode, the effective address is 800, and the
operand is 300. In the relative mode, the effective address is 500 + 252 = 752, and
the operand is 6(H). In the index mode, the effective address is 500 + 400 = 900,
assuming that R1 is the index register. In the register mode, the operand is in R1,
and 400 is loaded into the ACC. In the register-indirect mode, the effective address is
the contents of R1, and the operand loaded into the ACC is 700.

Table 11-1 lists the value of the effective address and the operand loaded into
the ACC for seven addressing modes. The table also shows the operation with a
register transfer statement and a symbolic convention for each addressing mode.
LDA is the symbol for the load-to-accumulator opcode. In the direct mode, we use
the symbol ADRS for the address part of the instruction. The # symbol precedes
the operand NBR in the immediate mode. The symbol ADRS enclosed in square
brackets symbolizes an indirect address, which some compilers or assemblers des-
ignate with the symbol @. The symbol $ before the address makes the effective
address relative to the PC. An index-mode instruction is recognized by the symbol
of a register placed in parentheses after the address symbol. The register mode is
indicated by giving the name of the processor register following LDA. In the regis-
ter-indirect mode, the name of the register that holds the effective address is
enclosed in parentheses.

498 [O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

PC =250

R1 =400

ACC

Opeode: Load to ACC

O TABLE 11-1

Memory

50| Opeode Mode
251 ADRS or NER = 50
252 Mext instruction
400 TiH

SO0 B0

752 600

800 300

%00 200

O FIGURE 11-6
Mumerical Example for Addressing Modes

Symbeolic Convention for Addressing Modes

Refers to Figure 11-6

Contents

Addressing Symbolic Register Effective

mode convention transfer address of ACC
Drirect LDA ADRS ACC—M[ADRS] 300 B0
lmmediate LDA #NBR ACC«NBR 231 300
Indirect LDA [ADRS] ACC— M[M[ADRS]] B0 300
Relative LDA SADRS ACC—M[ADRS + PC] 732 600
Index LDA ADRS (R1) ACC+—M[ADRS +R1] 900 200
Register LDA R1 ACC«R1 —- 400
Register-indirect LDA (R1) ACC— M[R1] 400 00

11-4 / Instruction Set Architecrures 0O 499

11-4 INSTRUCTION SET ARCHITECTURES

Computers provide a set of instructions to permit computational tasks to be car-
ried out. The instruction sets of different computers differ in several ways from
each other. For example, the binary code assigned to the opcode field varies widely
for different computers, Likewise, although a standard exists (see Reference 7).
the symbolic name given to instructions varies for different computers. In compar-
ison to these minor differences, however, there are two major types of instruction
set architectures that differ markedly in the relationship of hardware to software:
Complex instruction set computers (CISCs) provide hardware support for high-
level language operations and have compact programs: Reduced instruction set
computers (RISCs) emphasize simple instructions and flexibility that, when com-
bined, provide higher throughput and faster execution. These two architectures
can be distinguished by considering the properties that characterize their instruc-
tion sels,
A RISC architecture has the following properties:

1. Memory accesses are restricted to load and store instructions, and data
manipulation instructions are register-to-register,

2. Addressing modes are limited in number.

3. Instruction formats are all of the same length.

4. Instructions perform elementary operations.

The goal of a RISC architecture is high throughput and fast execution. To
achieve these goals, accesses to memory, which typically take longer than other
elementary operations, are to be avoided, except for fetching instructions. A
result of this view is the need for a relatively large register file. Because of the
fixed instruction length, limited addressing modes, and elementary operations,
the control unit of a RISC is comparatively simple and is typically hardwired. In
addition, the underlying organization is universally a pipelined design as covered
in Chapter 12.
A purely CISC architecture has the following properties:

1. Memory access is directly available to most types of instructions.
2. Addressing modes are substantial in number.

3. Instruction formats are of dilferent lengths.

4, Instructions perform both elementary and complex operations.

The goal of the CISC architecture is to match more closely the operations used in pro-
gramming languages and to provide instructions that facilitate compact programs and
conserve memory. In addition, efficiencies in performance may result through a reduc-
tion in the number of instruction fetches from memory, compared with the number of
elementary operations performed. Because of the high memory accessibility, the regis-
ter files in a CISC are smaller than in a RISC. Also, because of the complexity of the
instructions and the variability of the instruction formats, microprogrammed control is
often used. In the quest for speed, the microprogrammed control in newer designs is
likely to be controlling a pipelined datapath. CISC instructions are converted to a

500 O CHAPTER i1 / INSTRUCTION SET ARCHITECTURE

sequence of RISC-like operations that are processed by the RISC-like pipeline as dis-
cussed in detail in Chapter 12,

Actual instruction set architectures range between those which are purely
RISC and those which are purely CISC, Nevertheless, there is a basic set of ele-
mentary operations that most computers include among their instructions. In this
chapter, we will focus primarily on elementary instructions that are included in
both CISC and RISC instruction sets. Most elementary computer instructions can
be classified into three major categories: (1) data transfer instructions, (2) data
manipulation instructions, and (3) program control instructions.

Data transfer instructions cause transfer of data from one location to
another without changing the binary information content. Data manipulation
instructions perform arithmetic, logic, and shift operations. Program control
instructions provide decision-making capabilities and change the path taken by
the program when executed in the computer. In addition to the basic instruction
sel, a computer may have other instructions that provide special operations for
particular applications.

11-5 DATA TRANSFER INSTRUCTIONS

Data transfer instructions move data from one place in the computer to another
without changing the data. Typical transfers are between memory and processor
registers, between processor registers and input and output registers, and among
the processor registers themselves.

Table 11-2 gives a list of eight typical data transfer instructions used in many
computers. Accompanying each instruction is a mnemonic symbol, the assembly
language abbreviation recommended by an IEEE standard (Reference 6). Differ-
ent computers, however, may use different mnemonics for the same instruction
name, The load instruction is used to designate a transfer from memory to a pro-
cessor register. The store instruction designates a transfer from a processor register
into a memory word. The move instruction is used in computers with multiple pro-
cessor registers to designate a transfer from one register to another. It is also used
for data transfer between registers and memory and between two memory words,

O TABLE 11-2

Typical Data Transfer Instructions
Narme Mnemonic
Load LD
Store ST
Move MOVE
Exchange XCH
Push FUSH
Pop POP
Input IN

Output ouT

11-5 / Data Transfer Instructions O 501

The exchange instruction exchanges information between two registers, between a
register and a memory word, or between two memory words. The push and pop
instructions are for stack operations described next.

Stack Instructions

The stack architecture introduced earlier possesses features that facilitate a num-
ber of data-processing and control tasks. A stack is used in some electronic calcu-
lators and computers for the evaluation of arithmetic expressions. Unfortunately,
because of the negative effects on performance of having the stack reside prima-
rily in memory, a stack in a computer tyvpically handles only state information
related to procedure calls and returns and interrupts, as explained in Section 11-8
and Section 11-9.

The stack instructions push and pop transfer data between a memory stack
and a processor register or memory. The push operation places a new item onto the
top of the stack. The pop operation removes one item from the stack so that the
stack pops up. However, nothing is really physically pushed or popped in the stack.
Rather, the memory stack is essentially a portion of a memory address space
accessed by an address that is always incremented or decremented before or after
the memory access. The register that holds the address for the stack is called a
stack pointer (SP) because its value always points to TOS, the item at the top of the
stack. Push and pop operations are implemented by decrementing or incrementing
the stack pointer.

Figure 11-7 shows a portion of a memory organized as a stack that grows from
higher to lower addresses. The stack pointer, §F, holds the binary address of the item
that is currently on top of the stack. Three items are presently stored in the stack: A,
B, and C, in consecutive addresses 103, 102, and 101, respectively. Item C 15 on top of
the stack, so SP contains 101. To remove the top item, the stack is popped by reading
the item at address 101 and incrementing SP. Item B is now on top of the stack, since

Memaory
Address
1642
SP =10 —- L 101
B 102
A 103
24
104

o W

O FIGURE 11-7
Memory Stack

502 O CHAPTER 11/ INSTRUCTION SET ARCHITECTURE

SF contains address 102, To insert a new item, the stack is pushed by first decrement-
ing SP and then writing the new item on top of the stack. Note that item C has been
read out of the stack, but is not physically removed from it. This does not matter as
far as the stack operation is concerned, because when the stack is pushed, a new item
is written over it regardless of what was there before.

We assume that the items in the stack communicate with a data register Rl or a
memory location X, A new item is placed on to the stack with the push operation as
follows:

SPeSP -1
M[S5P]«— R1

The stack pointer is decremented so that it points at the address of the next word.
A memory write microoperation inserts the word from R1 onto the top of the
stack. Note that SF holds the address of the top of the stack and that M[SP]
denotes the memory word specified by the address presently in SP. An item is
deleted from the stack with a pop operation as follows:

R1« M[5F]
SPeSP+1

The top item is read from the stack into R1. The stack pointer is then ineremented
to point at the next item in the stack, which is the new top of the stack.

The two microoperations needed for either the push or the pop operation are
an access to memory through 5P and an update of §P. Which microoperation is
done first, and whether 5P is updated by incrementing or decrementing it, depends
on the organization of the stack. In Figure 11-7, the stack grows by decreasing the
memory address. By contrast, a stack may be constructed to grow by increasing the
memory address. In such a case, §P is incremented for the push operation and dec-
remented for the pop operation. A stack may also be constructed so that SP points
to the next empty location above the top of the stack. In that case, the sequence of
microoperations must be interchanged.

A stack pointer is loaded with an initial value, which must be the bottom
address of an assigned stack in memory. From then on, SP is automatically decre-
mented or incremented with every push or pop operation. The advantage of a
memory stack is that the processor can refer to it without having to specify an
address, since the address is always available and automatically updated in the
stack pointer.

The final pair of data transfer instructions, input and output, depend on the
tvpe of input-output used, as deseribed next.

Independent versus Memory-Mapped I/O

Input and output (I/O} instructions transfer data between processor registers and
input and output devices. These instructions are similar to load and store instruc-
tions, except that the transfers are to and from external registers instead of

11-6 / Data Manipulation Instructions [503

memory words, The computer is considered to have a certain number of input and
output ports, with one or more ports dedicated to communication with a specific
input or output device. A port is typically a register with input and/or output lines
attached to the device. The particular port is chosen by an address, in a manner
similar to the way an address selects a word in memory. Input and output instruc-
tions include an address field in their format, for specifying the particular port
selected for the transfer of data.

Port addresses are assigned in two ways. In the independent IO system, the
address ranges assigned to memory and /O ports are independent from each
other, The computer has distinct input and output instructions, as listed in
Table 11-2, containing a separate address field that is interpreted by the control
and used to select a particular I/O port. Independent IO addressing isolates
memory and /O selection, so that the memory address range is not affected by
the port address assignment. For this reason, the method is also referred to as an
isolated IO configuration,

In contrast to independent I/O, memory-mapped I/0, assigns a subrange of
the memory addresses for addressing I/O ports. There are no separate addresses
for handling input and output transfers, since 1/0 ports are treated as memory
locations in one common address range. Each I/O port is regarded as a memory
location, similar to a memory word. Computers that adopt the memory-mapped
scheme have no distinet input or output instructions, because the same instrue-
tions are used for manipulating both memory and /O data. For example, the
load and store instructions used for memory transler are also used for IO trans-
fer, provided that the address associated with the instruction is assigned to an /'O
port and not to a memory word. The advantage of this scheme is the simplicity
that results with the same set of instructions serving for both memory and /O
HCCess,

11-6 DATA MANIPULATION INSTRUCTIONS

Data manipulation instructions perform operations on data and provide the com-
putational capabilities of the computer. In a typical computer, data manipulation
instructions are usually divided into three basic types:

1. Arithmetic instructions.
2. Logical and bit manipulation instructions.
3. Shift instructions,

A list of elementary data manipulation instructions looks very much like the
list of microoperations given in Chapter 10. However, an instruction is typically
processed by executing a sequence of one or more microinstructions, A micro-
operation is an elementary operation executed by the hardware of the com-
puter under the control of the control unit. In contrast, an instruction may
involve several elementary operations that fetch the instruction, bring the
operands from appropriate processor registers, and store the result in the spec-
ified location,

5304 O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

Arithmetic Instructions

The four basic arithmetic instructions are addition, subtraction, multiplication, and
division. Most computers provide instructions for all four operations. Some small
computers, however, have only addition and subtraction instructions; on such com-
puters, multiplication and division must be carried out by means of programs. The
four basic arithmetic operations are sufficient for formulating solutions to any
numerical problem when they are used with numerical analysis methods.

A list of typical arithmetic instructions is given in Table 11-3. The increment
instruction adds one to the value stored in a register or memory word. A common
characteristic of the increment operation, when executed on a computer word, is
that a binary number of all 1's produces a result of all ('s when incremented. The
decrement instruction subtracts one from a value stored in a register or memory
word, When decremented. a number of all (s produces a number of all 1's.

The add, subtract, multiply, and divide instructions may be available for dif-
ferent types of data. The data type assumed to be in processor registers during the
execution of these arithmetic operations is included in the definition of the opcode.
An arithmetic instruction may specify unsigned or signed integers, binary or deci-
mal numbers, or floating-point data. The arithmetic operations with binary integers
were presented in Chapter 1 and Chapter 5. The floating-point representation is
used for scientific calculations and is presented in the next section.

The number of bits in any register is finite; therefore, the results of arithmetic
operations are of finite precision. Most computers provide special instructions to
facilitate double-precision arithmetic, A carry flip-flop is used to store the carry
from an operation. The instruction “add with carry™ performs the addition with
two operands plus the value of the carry from the previous computation. Similarly,
the “subtract with borrow™ instruction subtracts two operands and a borrow that
may have resulted from a previous operation. The subtract reverse instruction
reverses the order of the operands, performing B — A instead of A — B. The negate
instruction performs the 2's complement of a signed number, which is equivalent to
multiplying the number by —1,

O TABLE 11-3

Typical Arithmetic Instructions
Mame Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB
Subtract reverse SUBR

Megate NEG

11-6 / Data Manipulation Instructions 0O 505

Logical and Bit Manipulation Instructions

Logical instructions perform binary operations on words stored in registers or
memory words. They are useful for manipulating individual bits or a group of bits
that represent binary-coded information. Logical instructions consider each bit of
the operand separately and treat it as a Boolean variable, By proper application of
the logical instructions, it is possible to change bit values, to clear a group of bits, or
to insert new bit values into operands stored in registers or memaory.

Some typical logical and bit manipulation instructions are listed in Table 11-4.
The clear instruction causes the specific operand to be replaced by s, The set
instruction causes the operand to be replaced by 1's. The complement instruction
inverts all the bits of the operand. The AND, OR, and XOR instructions produce
the corresponding logical operations on individual bits of the operand. Although
logical instructions perform Boolean operations, when used on words they often
are viewed as performing bit manipulation operations. There are three bit manipu-
lation operations possible: A selected bit can be cleared to 0, set to 1, or comple-
mented. The three logical instructions are usually applied to do just that.

The AND instruction is used to clear a bit or a selected group of bits of an
operand to 0. For any Boolean variable X, the relationship X-0 = 0 dictates that
a binary variable ANDed with a 0 produces a (1 and similarly, the relationship
X1 = X dictates that the variable does not change when ANDed with a 1. There-
fore, the AND instruction is used to selectively clear bits of an operand by AND-
ing the operand with a word that has (s in the bit positions that must be cleared
and 1's in the bit positions that must remain the same. The AND instruction is also
called a mask because, by inserting 07s, it masks a selected portion of an operand,
AND is also sometimes referred to as a bir clear instruction.

The OR instruction is used to set a bit or a selected group of bits of an operand 1o 1.
For any Boolean variable X, the relationship X + 1 = 1 dictates that a binary variable
ORed with a 1 produces a |; similarly, the relationship X' + 0 = X dictates that the variable
does not change when ORed with a 0. Therefore, the OR instruction can be used to selec-
tively set bits of an operand by ORing the operand with a word with 1's in the bit positions
that must be set to 1. The OR instruction is sometimes called a bit set instruction.

O TABLE 11-4

Typical Logical and Bit Manipulation Instructions
MName Mnemaonic
Clear CLR
Set SET
Complement NOT
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC

Complement carry COMC

506 O CHAPTER 11/ INSTRUCTION SET ARCHITECTURE

The XOR instruction is used to selectively complement bits of an operand.
This is because of the Boolean relationships X&1 = X and X&0 = X . A binary
variable is complemented when XORed with a 1, but does not change value when
XOFRed with a 0. The XOR instruction is sometimes called a bii complement
instruction.

Other bit manipulation instructions included in Table 11-4 clear, set, or com-
plement the carry bit. Additional instructions clear, set, or complement other sta-
tus bits or flag bits in a similar manner.

Shift Instructions

Instructions to shift the content of an operand are provided in several varieties.
Shifts are operations in which the bits of the operand are moved to the left or to
the right. The incoming bit shifted in at the end of the word determines the type of
shift. Instead of using just a 0, as for sl and sr in Chapter 10, here we add further
possibilities. The shift instructions may specify either logical shifts, arithmetic shilts,
or rotate-type operations.

Table 11-5 lists four types of shift instructions. The logical shift inserts) into
the incoming bit position after the shift. Arithmetic shifts conform to the rules for
shifting two’s complement signed numbers. The arithmetic shift right instruction
preserves the sign bit in the leftmost position. The value of the sign bit is shifted to
the right together with the rest of the number, but the sign bit itself remains
unchanged. The arithmetic shift left instruction inserts 0 into the incoming bit in
the rightmost position and is identical to the logical shift left instruction. The two
instructions may differ, however, in that an arithmetic shilt lett may set the over-
flow status bit ¥, while a logical shift left does not affect V.

The rotate instructions produce a circular shift: the values shifted out of the
outgoing bit of the word are not lost, as in a logical shift, but are rotated back into
the incoming bit. The rotate-with-carry instructions treat the carry bit as an exten-
sion of the register whose word is being rotated. Thus, a rotate left with carry trans-
fers the carry bit into the incoming bit in the rightmost bit position of the register,
transfers the outgoing bit from the lefimost bit of the register into the carry, and

O TABLE 11-5

Typical Shifi Instructions
Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL
Rotate right with carry RORC

Rotate left with carry ROLC

11-7 / Floaring-Point Computations 0O 507

shifis the entire register to the left. Some computers have a multiple-field format
for the shift instruction. One field contains the opcode, and the others specify the
type of shift and the number of positions that an operand is to be shifted. A shift
instruction may include the following five fields:

OF REG TYPE RL COUNT

OP is the opcode field for specifying a shift, and REG is a register address that
specifies the location of the operand. TYPE is a 2-bit field that specifies one of the
four types of shifts (logical, arithmetic, rotate, and rotate with carry). while RL is a
1-bit field that specifies whether a shift is to the right or the left. COUNT is a k-bit
ficld that specifies shifts of up to 2* — 1 positions. With such a format, it is possible
to specify the type of shift, the direction of the shift, and the number of positions to
be shifted, all in one instruction.

11-7 FLOATING-POINT COMPUTATIONS

In many scientific calculations, the range of numbers is very large. In a computer,
the way to express such numbers is in floating-point notation. The floating-point
number has two parts, one containing the sign of the number and a fraction (some-
times called a mantissa) and the other designating the position of the radix point in
the number and called the exponent. For example, the decimal number +6132.789
is represented in floating-point notation as

Fraction Exponent

+.6132789 + 0

The value of the exponent indicates that the actual position of the decimal
point is four positions to the right of the indicated decimal point in the fraction.
This representation is equivalent to the scientific notation +.6132789 x 10",
Decimal floating-point numbers are interpreted as representing a number in
the form

Fx 108

where Fis the fraction and £ the exponent. Only the fraction and the exponent are
physically represented in computer registers; radix 10 and the decimal point of the
fraction are assumed and are not shown explicitlv. A floating-point binary number
is represented in a similar manner. except that it uses radix 2 for the exponent. For
example, the binary number +1001.11 is represented with an 8-bit fraction and 6-
bit exponent as

Fraction Exponent
01001110 000100

508 0O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

'“w fraction has a 0 in the leftmost position to denote a plus. The binary point of
the fraction follows the sign bit, but is not shown in the register. The exponent has
the equivalent binary number +4. The floating-point number is equivalent to

Fx 25 = +(0.1001110), x 2**

A floating-point number is said to be normalized if the most significant digit of the
fraction is nonzero. For example, the decimal fraction 0.350 is normalized, but 0.0035 is
not. Normalized numbers provide the maximum possible precision for the floating-
point number. A zero cannot be normalized because it does not have a nonzero digit; it
is usually represented in floating-point by all (1’s in both the fraction and the exponent.

Floating-point representation increases the range of numbers that can be accom-
modated in a given register. Consider a computer with 48-bit registers. Since one bit
must be reserved for the sign, the range of signed integers will be =(2*" — 1), which is
approximately +10'. The 48 bits can be used to represent a floating-point number,
with one bit for the sign, 35 bits for the fraction, and 12 bits for the exponent, The
largest positive or negative number that can be accommodated is thus

+'|:J. o 2—35} w -2+2lf:h'|'.'-'

This number is derived from a fraction that contains 35 1's, and an exponent with a sign
bit and 11 1's. The maximum exponent is 2!' — 1, or 2047, The largest number that can
be accommodated is approximately equivalent to decimal 1005, Although a much
larger range is represented, there are still only 48 bits in the representation. As a conse-
quence, exactly the same number of numbers are represented. Hence, the range is
traded for the precision of the numbers, which is reduced from 48 bits to 35 bits.

Arithmetic Operations

Arithmetic operations with floating-point numbers are more complicated than with
integer numbers, and their execution takes longer and requires more complex hard-
ware. Adding and subtracting two numbers requires that the radix points be aligned,
since the exponent parts must be equal before adding or subtracting the fractions.
The alignment is done by shifting one fraction and correspondingly adjusting its
exponent until it is equal to the other exponent. Consider the sum of the following
oating-point numbers:

5372400 % 102
+ 1580000 x 101

It is necessary that the two exponents be equal before the fractions can be added.
We can either shift the first number three positions to the left or shift the second
number three positions to the right. When the fractions are stored in registers,
shifting Lo the left causes a loss of the most significant digits. Shifting to the right
causes a loss of the least significant digits. The second method is preferable because
it only reduces the precision, whereas the first method may cause an error. The

11-7 / Floating-Point Computations [509

usual alignment procedure is to shift the fraction with the smaller exponent to the
right by a number of places equal to the difference between the exponents. After
this is done, the fractions can be added:

.5372400 x 10*
+ .0001580 x 107

.5373980 x 10*

When two normalized fractions are added, the sum may contain an overflow
digit. An overflow can be corrected by shifting the sum once to the right and incre-
menting the exponent. When two numbers are subtracted, the result may contain
most significant zeros in the fraction, as shown in the following example:

56780 % 109
-.56430 x 10°

00350 % 109

A floating-point number that has a 0 in the most significant position of the fraction is
not normalized. To normalize the number, it is necessary to shift the fraction to the
left and decrement the exponent until a nonzero digit appears in the first position,
In the preceding example, it is necessary to shift left twice to obtain .35000 = 107 In
most computers, a normalization procedure is performed after each operation to
ensure that all results are in normalized form,

Floating-point multiplication and division do not require an alignment of the
fractions. Multiplication can be performed by multiplying the two fractions and add-
ing the exponents. Division is accomplished by dividing the fractions and subtracting
the exponents. In the examples shown, we used decimal numbers to demonstrate
arithmetic operations on floating-point numbers. The same procedure applies to
binary numbers, except that the base of the exponent is 2 instead of 10.

Biased Exponent

The sign and fraction part of a floating-point number is usually a signed-magnitude
representation. The exponent representation employed in most computers is
known as a biased exponeni. The bias is an excess number added to the exponent
so that, internally, all exponents become positive. As a consequence, the sign of the
exponent is removed from being a separate entity.

Consider, for example, the range of decimal exponents from —99 to +99.
This is represented by two digits and a sign. If we use an excess 99 bias, then the
biased exponent e will be equal to e = E + 99, where E is the actual exponent. For
E= -9 wehavee = =99 + 99 = (; and for E = +99, we have e = 99 + 99 = 195,
In this way, the biased exponent is represented in a register as a positive number in
the range from D0(to 198. Positive-biased exponents have a range of numbers from
099 to 198. Subtraction of the bias, 99, gives the positive values from 0 to +99,
Megative-biased exponents have a range from 098 to 000, Subtraction of 99 gives
the negative values from —1 to =99,

510 0O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

The advantage of biased exponents is that the resulting floating-point num-
bers contain only positive exponents. It is then simpler to compare the relative
magnitude between two numbers without being concerned with the signs of their
exponents. Another advantage is that the most negative exponent converts to a
biased exponent with all ('s. The floating-point representation of zero is then a
zero fraction and a zero biased exponent, which is the smallest possible exponent.

Standard Operand Format

Arithmetic imstructions that perform operations with floating-point data often use
the suffix F. Thus, ADDF is an add instruction with floating-point numbers. There are
two standard formats for representing a floating-point operand: the single-precision
data type, consisting of 32 bits, and the double-precision data type, consisting of 64
bits. When both types of data are available, the single-precision instruction mne-
monic uses an FS suffix, and the double precision uses FL (for “floating-point long™).

The format of the IEEE standard (see Reference 7) single-precision floating-
point operand is shown in Figure 11-8. It consists of 32 bits. The sign bit 5 designates
the sign for the fraction. The biased exponent ¢ contains 8 bits and uses an excess 127
number. The fraction f consists of 23 bits. The binary point is assumed to be immedi-
ately to the left of the most significant bit of the ffield. In addition, an implied 1 it is
inserted to the left of the binary point, which, in effect, expands the number to 24
bits representing a value from 1.0, to 1.11...1,. The component of the binary float-
ing-point number that consists of a leading bit to the left of the implied binary point,
together with the fraction in the field, is called the significand. Following are some
examples of field values and the corresponding significands:

f Field Significand Decimal Equivalent
1. .. 0 1.100...0 1.50
010, .0 1.010 ... 0 1.25
000, .. 0 LO0o, . o 1.00*

*Assuming the exponent is not equal to (0. . .0

Even though the f field by itself may not be normalized, the significant is
always normalized because it has a nonzero bit in the most significant position.
Since normalized numbers must have a nonzero most significant bit, this 1 bit is not
included explicitly in the format, but must be inserted by the hardware during
arithmetic computations. The exponent field uses an excess 127 bias value for nor-
malized numbers. The range of valid exponents is from —126 (represented as

O FIGURE 11-8
IEEE Floating-Point Operand Format

11-7 / Floating-Point Computations O 511

00000001) through +127 (represented as 11111110). The maximum (11111111} and
minimum (0000000) values for the e field are reserved to indicate exceptional con-
ditions. Table 11-6 shows the biased and actual values of some exponents,
Normalized numbers are numbers that can be expressed as floating-point
operands in which the ¢ field is neither all 0's nor all 1’s. The value of the number is
derived from the three fields in the format of Figure 11-8 using the formula

(=YX)

The most positive normalized number that can be obtained has a 0 for the sign bit
for a positive sign, a biased exponent equal to 254, and an f field with 23 1's. This
gives an exponent E = 254 — 127 = 127. The significant is equalto 1 + 1 — 272 =
2 — 2. The maximum positive number that can be accommodated is

+2127 x (222°13)

The smallest positive normalized number has a biased exponent equal to ODO0001
and a fraction of all (s. The exponent is £ = 1 — 127 = —126, and the significant is
equal to 1.0. The smallest positive number that can be accommodated is +2-126,
The corresponding negative numbers are the same, except that the sign bit is nega-
tive. As mentioned before, exponents with all (’s or all 1's (decimal 255) are
reserved for the following special conditions:

1. When ¢ = 255 and f = 0, the number represents plus or minus infinity. The
sign is determined from the sign bit #.

2, When ¢ = 255 and f# 0, the representation is considered to be not @ number,
or NaN, regardless of the sign value. NaNs are used to signify invalid opera-
tions, such as the multiplication of zero by infinity.

3. When ¢ = Dand f= 0, the number denotes plus or minus zero.

4. When e = 0, and f+0, the number is said to be denormalized. This is the
name given to numbers with a magnitude less than the minimum value that is
represented in the normalized format.

O TABLE 11-6
Evaluating Biased Exponents

Biased exponent e = E + 127

Exponent E

in decimal Decimal Binary

—126 —126+127=1 (0000

—0 =001 + 127 = 126 01111110
LY 000 + 127 =127 01111111

00 001 + 127 = 128 10000000

+ 126 126 + 127 = 253 11111101

+127 127 + 127 = 254 11111110

512 O CHAPTER 11/ INSTRUCTION 5ET ARCHITECTURE

11-8 ProGramM CONTROL INSTRUCTIONS

The instructions of a program are stored in successive memory locations. When
processed by the control, the instructions are read from consecutive memory loca-
tions and executed one by one. Each time an instruction is fetched from memory,
the PC is incremented so that it contains the address of the mext instruction in
sequence. In contrast, a program control instruction, when executed, may change
the address value in the PC and cause the flow of control to be altered. The change
in the PC as a result of the execution of a program control instruction causes a
break in the sequence of execution of instructions. This is an important feature of
digital computers, since it provides control over the flow of program execution and
a capability of branching to different program segments, depending on previous
computations,

Some typical program control instructions are listed in Table 11-7. The
branch and jump instructions are often used interchangeably to mean the same
thing, although sometimes they are used to denote different addressing modes. For
example, the jump may use direct or indirect addressing, whereas the branch uses
relative addressing. The branch (or jump) is usually a one-address instruction.
When executed, the branch instruction causes a transfer of the effective address
into the PC. Since the PC contains the address of the instruction to be executed
next, the next instruction will be fetched from the location specified by the effec-
tive address.

Branch and jump instructions may be conditional or unconditional. An
unconditional branch instruction causes a branch to the specified effective address
without any conditions. The conditional branch instruction specifies a condition
that must be met in order for the branch to occur, such as the value in a specified
register being negative. If the condition is met, the PC is loaded with the effective
address, and the next instruction is taken from this address. If the condition is not
met, the PC is not changed, and the next instruction is taken from the next location
in sequence.

The skip instruction does not need an address field. A conditional skip
instruction will skip the next instruction if the specified condition is met. This is

O TABLE 11-7

Typical Program Conirol Instructions
Name Mnemaonic
Branch BR
Jump IMP
Skip next instruction | SKFP
Call procedure CALL
Return from procedure RET
Compare (by subtraction) CMP

Test (hy ANDing) TEST

11-8 / Program Contral Instructions O 513

accomplished by incrementing the PC during the execute phase of the instruction, in
addition to incrementing it during the fetch phase. If the condition is not met, control
proceeds to the next instruction in sequence, at which point the programmer may
insert an unconditional branch instruction. Thus, a conditional skip instruction fol-
lowed by an unconditional branch instruction causes a branch if the condition is not
met. This contrasts with a single conditional branch instruction, which causes a
branch if the condition is met. Since the skip involves the execution of two instruc-
tions, it is slower and uses more instruction memaory.

The call and return instructions are used in conjunction with procedures.
Their performance and implementation are discussed later in this section.

The compare instruction performs a comparison via a subtraction, with the
difference not retained. Instead, the comparison causes a conditional branch,
changes the contents of a register, or sets or resets stored status bits. Similarly, the
test instruction performs the logical AND of two operands without retaining the
result and executes one of the actions listed for the compare instruction,

Based on their three possible actions, compare and test instructions are viewed
to be of three distinct types, depending upon the way in which conditional decisions
are handled. The first type executes the entire decision as a single instruction. For
example, the contents of two registers can be compared and a branch or jump taken
if the contents are equal. Since there are two register addresses and a memory
address involved, such an instruction requires three addresses. The second type of
compare and test instruction also uses three addresses, all of which are register
addresses. Considering the same example, if the contents of the first two registers are
equal, a 1 is placed in the third register. If the contents are not equal, then a 0 is
placed in the third register. These two types of instruction avoid the use of stored sta-
tus bits. In the first case, no such bit is required, and in the second case, a register is
used to simulate the presence of a status bit. The third type of compare and test, with
the most complex structure, has compare and test operations that set or reset stored
status bits. Branch or jump instructions are then used to conditionally change the
program sequence. This third type of compare and test instruction is the focus of dis-
cussion in the next subsection.

Conditional Branch Instructions

A conditional branch instruction is a branch instruction that may or may not cause
a transfer of control, depending on the value of stored bits in the PSR. Each condi-
tional branch instruction tests a different combination of status bits for a condition.
If the condition is true, control is transferred to the effective address. If the condi-
tion is false, the program continues with the next instruction.

Table 11-8 gives a list of conditional branch instructions that depend directly
on the bits in the PSR. In most cases, the instruction mnemonic is constructed with
the letter B (for “branch™) and a letter for the name of the status bit. The letter N
(for “not”™) is included if the status bit is tested for a 0 condition. Thus, BC is a
branch if carry = 1, and BNC is branch if carry = (.

The zero status bit £ is used to check whether the result of an ALU opera-
tion is equal to zero. The carry bit C is used to check the carry after the addition

514 0O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

U MABLE {14

Conditional Branch Instructions Relating to Status Bits

in the PSR
Branch condition Mnemonic Test condition
Branch if zero BZ Z=1
Branch if not zero BNZ Z=10
Branch if carry BC C=1
Branch if no carry BNC C=0
Branch if minus BN N=1
Branch if plus BNN N=0
Branch if overflow BV Vo=
Branch if no overflow BNV V=0

or the borrow after the subtraction of two operands in the ALU. [t is also used in
conjunction with shift instructions to check the value of the outgoing bit. The
sign bit N reflects the state of the leftmost bit of the output from the ALU N =0
denoies a positive sign and N = 1 a negative sign. These instructions can be used
to check the value of the leftmost bit, whether it represents a sign or not. The
overflow bit V is used in conjunction with arithmetic operations with signed
numbers.

As stated previously, the compare instruction performs a subtraction of two
operands, sav, A — B. The result of the operation is not transferred into a destina-
tion register, but the status bits are affected. The status bits provide information
about the relative magnitude between A and B. Some computers provide special
branch instructions that can be applied after the execution of a compare instruc-
tion. The specific conditions to be tested depend on whether the two numbers are
considered to be unsigned or signed.

The relative magnitude between two unsigned binary numbers A and B can
be determined by subtracting A — B and checking the C and £ status bits. Most
commercial computers consider the C status bit as a carry after addition and a bor-
row after subtraction. A borrow occurs when A < B because the most significant
position must borrow a bit to complete the subtraction. A borrow does not occur if
A = B, because the difference A — B is positive. The condition for borrowing is the
inverse of the condition for carrying when the subtraction is done by taking the 2's
complement of B. Computers that use the C status bit as a borrow after a subtrac-
tion complement the output carry after adding the 2's complement of the subtra-
hend and call this bit a borrow. The technique is typically applied to all instructions
that use subtraction within the functional unit, not just the subtract instruction. For
example, it applies to compare instructions.

The conditional branch instructions for unsigned numbers are listed in
Table 11-9. It is assumed that a previous instruction has updated status bits C and
Z after a subtraction A—B or some other similar instruction. The words “higher,”
“lower,” and “equal” are used to denote the relative magnitude between two
unsigned numbers. The two numbers are equal if A = B. This is determined from

11-8 / Program Control Instructions [0 515

O TABLE 11-9
Conditional Branch Instructions for Unsigned Numbers

Branch condition Mremonic Condition Status bits®
Branch if higher BH A=B C+Z=10
Branch if higher or equal BHE A=8 cC=10
Branch if lower BL A=<B C=1
Branch if lower or equal BLE A=HR C+Z=1]
Branch if equal BE A=EB Z =1
Branch if not equal BNE A#+B Z=10

*Mote that C here is a borrow bit.

the zero status bit Z, which is equal to 1 because A — B = (. A is lower than B and
the borrow C = 1 when A < B. For A to be lower than or equal to B (A =8), we
must have C = 1 or Z = 1. The relationship A = B, is the inverse of A=F8 and is
detected from the complemented condition of the status bits. Similarly, A= B is
the inverse of A < B,and A # B is the inversec of A = B.

The conditional branch instructions for signed numbers are listed in Table 11-10.
Again, it is assumed that a previous instruction has updated the status bits N, V, and
Z after a subtraction A — B. The words “greater,” “less,” and “equal™ are used to
denote the relative magnitude between two signed numbers. If ¥ = (), the sign of the
difference is positive, and A must be greater than or equal to B, provided that V' = 0,
indicating that no overflow occurred. An overflow causes a sign reversal, as discussed
in Section 5-4. This means that if ¥ = 1 and ¥V = 1, there was a sign reversal, and the
result should have been positive, which makes A greater than or equal to B. There-
fore, the condition A =8 is true if both N and V are equal to 0 or both are equal to
I. This is the complement of the exclusive-OR operation.

For A to be greater than bul not equal to B (A = B), the result must be posi-
tive and nonzero. Since a zero result gives a positive sign, we must ensure that the
Z bit is 0 to exclude the possibility that A = B. Note that the condition (N&E V') +
Z = (I means that both the exclusive-OR operation and the Z bit must be equal
to (. The other two conditions in the table can be derived in a similar manner. The
conditions BE (branch on equal) and BNE (branch on not egual) given for
unsigned numbers apply to signed numbers as well and can be determined from
Z =1 and Z = 0, respectively.

O TABLE 11-10
Conditional Branch Instructions for Signed Numbers

Branch condition Mnemonic Condition Status bits
Branch if greater BG A=B (INEVI+ Z=10
Branch if greater or equal BGE Az=B NE&EV =0
Branch if less BL A=<B NEV =1

Branch if less or equal BLE A=§h (NEVI+ £ =1

516 0O CHAPTER 11/ INSTRUCTION SET ARCHITECTURE

: |
Procedure Call and Return Instructions

A procedure is a self-contained sequence of instructions that performs a given com-
putational task. During the execution of a program, a procedure may be called to
perform its function many times at various points in the program. Each time the
procedure is called, a branch is made to the beginning of the procedure to start
executing its set of instructions, After the procedure has been executed, a branch is
made again to return to the main program. A procedure is also called a subroutine.

The instruction that transfers control to a procedure is known by different
names, including call procedure, call subroutine, jump to subroutine, branch to sub-
routine, and branch and link. We will refer to the routine containing the procedure
call as the calling procedure. The call procedure instruction has a one-address field
and performs two operations, First, it stores the value of the PC, which is the
address following the call procedure instruction, in a temporary location. This
address is called the refurn address, and the corresponding instruction is the coni-
nuation point in the calling procedure. Second, the address in the call procedure
instruction—the address of the first instruction in the procedure—is loaded into
the PC. When the next instruction is fetched, it comes from the called procedure.

The final instruction in every procedure must be a return to the calling proce-
dure. The return instruction takes the address that was stored by the call procedure
instruction and places it in the PC. This results in a transfer of program execution
back to the continuation point in the calling procedure.

Different computers use different temporary locations for storing the return
address. Some computers store it in a fixed location in memory, some store it in a
processor register, and some store it in a memory stack. The advantage of using a
stack for the return address is that, when a succession of procedures are called, the
sequential return address can be pushed onto the stack. The return instruction
causes the stack to pop, and the contents of the top of the stack are then trans-
ferred to the PC. In this way, a return is always to the program that last called the
procedure. A procedure call instruction using a stack is implemented with the fol-
lowing microoperations:

SPeSP -1 Decrement stack pointer
M[SP] e« PC Store return address on stack
PC « Effective address Transfer control to procedure

The return instruction is implemented by popping the stack and transferring
the return address to the PC:
PC— M[SP] Transfer return address to PC

SPeSP+1 Increment stack pointer

By using a procedure stack, all return addresses are automatically stored by the
hardware in the memory stack. Thus, the programmer does not have to be concerned
about managing the return addresses for procedures called from within procedures.

11-9 / Program Interrupt O 517

11-9 ProGrAM INTERRUPT

A program interrupt is used to handle a variety of situations that require a depar-
ture from the normal program sequence. A program interrupt transfers control
from a program that is currently running to another service program as a result of
an externally or internally generated request. Control returns to the original pro-
gram after the service program is executed. In principle, the interrupt procedure is
similar to a call procedure, except in three respects:

1. The interrupt is usually initiated at an unpredictable point in the program by
an external or internal signal, rather than the execution of an instruction.

2. The address of the service program that processes the interrupt request is
determined by a hardware procedure, rather than the address field of an
instruction.

3. In response to an interrupt, it is necessary to store information that defines
all or part of the contents of the register set, rather than storing only the pro-
gram counter.

After the computer has been interrupted and the appropriate service pro-
gram executed, the computer must return to exactly the same state that it was in
before the interrupt occurred. Only if this happens will the interrupted program be
able to resume exactly as if nothing happened. The state of the computer at the
end of an execution of an instruction is determined from the contents of the regis-
ter set. In addition to containing the condition codes, the PSR can specify what
interrupts are allowed to occur and whether the computer is operating in user or
system mode. Most computers have a resident operating system that controls and
supervises all other programs. When the computer is executing a program that is
part of the operating system, the computer is placed in system mode, in which cer-
tain instructions are privileged and can be executed in the system mode only, The
computer is in user mode when il executes user programs, in which case it cannot
execute the privileged instructions. The mode of the computer at any given time is
determined from a special status bit or bits in the PSK.

Some computers store only the program counter when responding to an
interrupt. In such computers, the program that performs the data processing for
servicing the interrupt must include instructions to store the essential contents of
the register set. Other computers store the entire register set automatically in
response to an interrupt. Some computers have two sets of processor registers, so
that when the program switches from vser to system mode in response to an inter-
rupt, it is not necessary to store the contents of processor registers because each
computer mode employs its own setl of registers.

The hardware procedure for processing interrupis is very similar to the execu-
tion of a procedure call instruction. The contents of the register set of the processor
are temporarily stored in memory, typically by being pushed onto a memory stack,
and the address of the first instruction of the interrupt service program is loaded into
the PC. The address of the service program is chosen by the hardware. Some com-
puters assign one memory location for the beginning address of the service program:

518 0O CHAPTER 11/ INSTRUCTION SET ARCHITECTURE

the service program must tLen determine the souree of the interrupt and proceed to
service it. Other computers assign a separate memory location for each possible
interrupt source. Sometimes, the interrupt source hardware itself supplies the
address of the service routine. In any case. the computer must possess some form of
hardware procedure for selecting a branch address for servicing the interrupt.

Most computers will not respond to an interrupt until the instruction that is
in the process of being exceuted is completed. Then, just before going to fetch the
next instruction, the control checks for any interrupt signals. If an interrupt has
oceurred, control goes to a hardware interrupt cycle. During this cycle, the contents
of some part or all of the register set are pushed onto the stack. The branch address
for the particular interrupt is then transferred to the PC, and the control goes to
fetch the next instruction, which is the beginning of the interrupt service routine.
The last instruction in the service routine is a return from the interrupt instruction.
When this return is executed, the stack is popped to retrieve the return address,
which is transferred to the PC as well as any stored contents of the rest of the
register set, which are transferred back to the appropriate registers.

Types of Interrupts

The three major types of interrupts that cause a break in the normal execution of a
program are as follows:

1. External interrupts.
2. Internal interrupts.
3. Software interrupts.

Exiternal interrupis come from input or output devices, from timing devices,
from a circuit monitoring the power supply, or from any other external source.
Conditions that cause external interrupts are an input or output device requesting
a transfer of data, an external device completing a transfer of data, the time-out of
an event, or an impending power failure. A time-out interrupt may result from a
program that is in an endless loop and thus exceeds its time allocation. A power
failure interrupt may have as its service program a few instructions that transfer
the complete contents of the register set of the processor into a nondestructive
memory such as a disk in the few milliseconds before power ceases.

Internal interrupis arise from the invalid or erroneous use of an instruction or
data. Internal interrupts are also called traps. Examples of interrupts caused by
internal conditions are an arithmetic overflow, an attempt to divide by zero, an
invalid opcode, a memory stack overflow, and a protection violation. A profeciion
vielation is an attempt to address an area of memory that is not supposed to be
accessed by the currently executing program. The service programs that process
internal interrupts determine the corrective measure to be taken in each case.

External and internal interrupts are initiated by the hardware of the com-
puter. By contrast, a sefiware interrups is initiated by executing an instruction. The
software interrupt is a special call instruction that behaves like an interrupt rather
than a procedure call. It can be used by the programmer to initiate an interrupt

11-9 / Program Interrupt O 519

procedure at any desired point in the program. Typical use of the software inter-
rupt is associated with a system call instruction. This instruction provides a means
for switching from user mode to system mode. Certain operations in the computer
may be performed by the operating system only in system mode. For example, a
complex input or output procedure is done in system mode. In contrast, a program
written by a user must run in user mode. When an input or output transfer is
required, the user program causes a software interrupt, which stores the contents
of the PSR {with the mode bit set to “user™), loads new PSR contents (with the
mode bit set to “system™), and initiates the execution of a system program, The
calling program must pass information to the operating system in order to specify
the particular task that is being requested.

An alternative term for an interrupt is an exception, which may apply only to
internal interrupts or to all interrupts, depending on the particular computer
manufacturer. As an illustration of the use of the two terms, what one programmer
calls interrupt-handling routines may be referred to as exception-handling routines
by another programmer.

Processing External Interrupts

External interrupts may have single or multiple interrupt input lines. If there are
more interrupt sources than there are interrupt inputs in the computer, two or
more sources are ORed to form a common line. An interrupt signal may originate
at any time during program execution. To ensure that no information is lost, the
computer usually acknowledges the interrupt only after the execution of the cur-
rent instruction is completed and only if the state of the processor warrants it.

Figure 11-9 shows a simplified external interrupt configuration. Four external
interrupt sources are ORed to form a single interrupt input signal. Within the CPU
is an enable-interrupt flip-lop (E7) that can be set or reset with two program
instructions: enable interrupt (ENI) and disable interrupt (IDSI). When ET is 0, the
interrupt signal is neglected. When £ is 1 and the CPU is at the end of executing
an instruction, the computer acknowledges the interrupt by enabling the interrupt
acknowledge output INTACK. The interrupt source responds to INTACK by pro-
viding an interrupt vector address /VAD to the CPU. The program-controlled Ef
flip-flop allows the programmer (o decide whether to use the interrupt facility. If a
DSI instruction to reset £ has been inserted in the program, it means that the pro-
grammer does not want the program to be interrupted. The execution of an ENI
instruction to set Ef indicates that the interrupt facility will be active while the pro-
gram is running.

The computer responds to an interrupt request signal if £/ = 1 and execution
of the present instruction is completed. Typical microinstructions that implement
the interrupt are as follows:

SP—SP—-1 Decrement stack pointer
M[SP]l«PC Store return address on stack
SP—SF—-1 Decrement stack pointer

520 0O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

M|SP)« PSR Store processor status word on stack
Ele0 Reset enable-interrupt flip-flop
INTACK «1 Enable interrupt acknowledge
PC—IVAD Transfer interrupt vector address to PC

Go to fetch phase,

The return address available in the PC is pushed onto the stack, and the PSR
contents are pushed onto the stack. EJ is reset to disable further interrupts. The
program that services the interrupt can set EI with an instruction whenever it is
appropriate to enable other interrupts. The CPU assumes that the external source
will provide an JVAD in response to an INTACK. The IVAD is taken as the
address of the first instruction of the program that services the interrupt. Obvi-
ously, a program must be written for that purpose and stored in memory.

The return from an interrupt is done with an instruction at the end of the
service program that is similar to a return from a procedure. The stack is
popped, and the return address is transferred to the PC. Since the ET flip-flop is
usually included in the PSR, the value of EJ for the original program is returned
to Ef when the old value of the PSR is returned. Thus, the interrupt system is
enabled or disabled for the original program, as it was before the interrupt
occurred.

External interrupls Central processing unit (CPL)

End of execution
of instruction

i

E'_
E|_

El —
Enable-interrupt
flip-flop
INTACK Interrupt acknowledge
Interrupt vector | ITWAD To memory
address ol PC I_"'s[ai:k

O FIGURE 11-9

Example of External Interrupt Configuration

11-10 / Chapter Summary O 521

11-10 CHAPTER SUMMARY

In this chapter, we defined the concepts of instruction set architecture and the
components of an instruction and explored the effects on programs of the maxi-
mum address count per instruction, using both memory addresses and register
addresses. This led to the definitions of four types of addressing architecture:
memory-to-memaory, register-to-register, single-accumulator, and stack. Address-
ing modes specify how the information in an instruction is interpreted in deter-
mining the effective address of an operand.

Reduced instruction set computers (RISCs) and complex instruction set com-
puters (CISCs) are two broad categories of instruction set architecture, A RISC
has as its goals high throughput and fast execution of instructions. In contrast, a
CISC attempts to closely match the operations used in programming languages
and facilitates compact programs.

Three categories of elementary instructions are data transfer, data manipu-
lation, and program control. In elaborating data transfer instructions, the concept
of the memory stack appears. Transfers between the CPU and 1/O are addressed
by two different methods: independent I/O, with a separate address space, and
memory-mapped 1/0, which uses part of the memory address space. Data manipu-
lation instructions fall into three classes: arithmetic, logical, and shift. Floating-
point formats and operations handle broader ranges of operand values for arith-
metic operations.

Program control instructions include basic unconditional and conditional
transfers of control, the latter of which may or may not use condition codes. Proce-
dure calls and returns permit programs to be broken up into procedures that per-
form useful tasks. Interruption of the normal sequence of program execution is
based on three types of interrupts: external, internal, and software. Also referred to
as exceptions, interrupts require special processing actions upon the initiation of
routines to service them and upon returns to execution of the interrupted programs.

REFERENCES

1. Maxo, M. M. Computer Engineering: Hardware Design. Englewood Cliffs,
MNJ: Prentice Hall, 1988,

2. Goobman, 1., AnD K. MiLLER A Programmer’s View of Compuier
Architecture. Fort Worth, TX: Saunders College Publishing, 1993,

3. Hexnessy,] L., AND D. A, PATTERSON Computer Architecture: A
Quantitative Approach, 2nd Ed. San Francisco, CA: Morgan Kaufmann, 1996,

4. Mano, M. M. Computer System Architecture, 3rd Ed. Englewood Cliffs, NJ:
Prentice Hall, 1993,

5. ParrErson, D. AL AND J. L. HENNESSY Computer Organization and Design:
The Hardware/Software Interface, 2nd Ed. San Mateo, CA: Morgan
Kaufmann, 1998,

6. IEEE Standard for Microprocessor Assembly Language. (1IEEE Std 694-1985.)
New York, NY: The Institute of Electrical and Electronics Engineers.

522 O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

7. IEEE Standard for Binary Floating-Point Arithmetic. (ANSI/IEEE Std
T54-1985.) New York, NY: The Institute of Electrical and Electronics
Engineers.

re
\

L

¢

11-1.

11-2.

11-3.

11-4.

11-5.

PRrROBLEMS

’fﬁ” The plus (+) indicates a more advanced problem and the asterisk (*) indicates a
"‘w solution is available on the Companion Website for the text.

Based on operations illustrated in Section 11-1, write a program to evaluate
the arithmetic expression

X=(A-B)yx(A+Cy=x(B—-D)
Make elfective use of the registers to minimize the number of MOV or LD
instructions where possible,

(a) Assume a register-to-register architecture with three-address
instructions.

(b} Assume a memory-to-memory architecture with two-address
instructions.

(e) Assume a single-accumulator computer with one-address instructions,

“Repeat Problem 11-1 for
Y¥={A+B)XC+(D-EXF)
Aldl operands are initially in memory and DIV represents divide.

*A program 1s to be written for a stack architecture for the arithmetic
exXpression
X=(A-B)x(A+Cy=x(B-1I

(a) Find the corresponding RPN expression.
(b} Write the program using PUSH, POP, ADD, MUL, SUB, and DIV
instructions.

(c) Show the contents of the stack after the execution of cach of the
instructions,

Repeat Problem 11-3 for the arithmetic expression
(A+B)X C+(D—(EX F)

A two-word instruction is stored in memory at an address designated by the
symbol W. The address field of the instruction (stored at W + 1) is
designated by the symbol ¥. The operand used during the execution of the
instruction is stored at an address symbolized by Z. An index register
contains the value X. State how Z is calculated from the other addresses if
the addressing mode of the instruction is (a) direct; (b) indirect; (c) relative;
{d) indexed,

11-6.

11-L.

11-8.

11-9.

11-10.

11-11.

Problems O 523

A two-word relative mode branch-tvpe instruction is stored in memory at
location 207 and 208 (decimal). The branch is made to an address
equivalent to decimal 195, Let the address field of the instruction (stored at
address 208) be designated by X.

{a) Determine the value of X in decimal.

{b) Determine the value of X in binary, using 16 bits. (Note that the
number is negative and must be in 2's complement notation. Why?)

Repeat Problem 11-6 for a branch instruction in locations 143 and 144 and
a branch address equivalent to 1000, All values are in decimal,

How many times does the control unit refer to memory when it fetches and
executes a two-word indirect addressing-mode instruction if the
instruction is (a) a computational type requiring one operand from a
memaory location with the return of the result to the same memory
location; (b} a branch type?

A instruction is stored at location 300 with its address ficld at location 301,
The address field has the value 211. A processor register R1 contains the
number 189, Evaluate the effective address if the addressing mode of the
instruction is (a) direct; (b) immediate: (¢} relative; (d) register indirect;
(e} indexed with R1 as the index register,

*A computer has a 32-bit word length, and all instructions are one word in

length. The register file of the computer has 16 registers.

{a) For a format with no mode fields and three register addresses, what is
the maximum number of opcodes possible?

(b) For a format with two register address fields, one memory field, and a
maximum of 100 opcodes, what is the maximum number of memory
address bits available?

A computer with a register file, but without PUSH and POP instructions, is
to be used to implement a stack. The computer does have the following
register indirect modes:

Register indirect + increment:

LD R2 R1 R« M[R1]
Rl«—R1+1
STR2R1 M[R1]«R2
Rle—R1+1

Decrement + register indirect:
LD R2Z Rl Rle—R1-1
R2— M[R1]
ST R2Z R1 Rl«—Rl1-1
MI[R1]«<R2

524 O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

11-12.

11-13.

11-14.

11-15.

11-16.

11-17.

11-18.

11-19.

Show how these instructions can be used to provide the equivalent of PUSH
and POP by using the instructions and register B6 as the stack pointer.

A complex instruction, push registers (PSHR), pushes the contents of all of
the registers onto the stack, There are eight registers, R0 through R7, in the
CPU. A corresponding instruction, POPR, pops the saved contents of the
registers back from the stack into the registers.

(a) Write a register transfer description for the execution of PSHE.

(b) Write a register transfer description for the execution of POPR.

A computer with an independent 1/0 system has the input and output
instructions
IN R[DR] ADRS

OUT ADRS R[SB]

where ADRS is the address of an /O register port. Give the equivalent
instructions for a computer with memory-mapped L/O.

#Assume a compuler with 8-bit words for the multiple-precision addition of
two 32-bit unsigned numbers,

IFC624 7B + 0057 ED 4B

(a) Write a program to execute the addition, using add and add with carry
instructions,

(b) Execute the program for the given operands. Each byte is expressed as
a 2-digit hexadecimal number.

Perform the logic AND, OR. and XOR with the two bytes 00110101 and
10111001,

Given the 16-bit value 1010 1001 0111 1100, what operation must be

performed, and what operand is needed, in order to

{a) set the least significant 8 bits to 1's?

{b) complement the bits in odd positions (The leftmost bit is 15 and the
rightmost bit is 0)?

(¢} clear the bits in odd positions 1o (s?

*An 8-bit register contains the value 01101001, and the carry bit is equal
to 1. Perform the eight shift operations given by the instructions listed in
Table 11-5 as a sequence of operations on this register.

Show how the following two floating-point numbers are to be added to get
a normalized result:
(—.12345 % 1073) + (+.71234 = 1071)

* A 36-bit floating-point number consists of 26 bits plus sign for the fraction
and 8 bits plus sign for the exponent. What are the largest and smallest
positive nonzero quantities for normalized numbers?

11-20.

11-21.

11-22.

11-23.

11-24.

11-25.

11-26.

Problems O 525

*A 4-bit exponent uses an excess 7 number for the bias. List all biased
binary exponents from +8 through —7.

The IEEE standard double-precision floating-point operand format
consists of 64 bits. The sign occupies 1 bit, the exponent has 11 bits, and the
fraction occupies 52 bits. The exponent bias is 1023 and the base is 2. There
is an implied bit to the left of the binary point in the fraction. Infinity is
represented with a biased exponent equal to 2047 and a fraction of 0.

{a) Give the formula for finding the decimal value of a normalized number,

{b) List a few biased exponents in binary, as is done in Table 11-6.

(c) Calculate the largest and smallest positive normalized numbers that can
be accommodated.

Prove that if the equality 2* = 0¥ holds, then y = 0.3x. Using this
relationship, calculate the largest and smallest normalized floating-point
numbers in decimal that can be accommodated in the single-precision
IEEE format.

*It is necessary to branch to ADRS if the bit in the least significant position
of the operand in a 16-bit register is equal to 1. Show how this can be done
with the TEST {Table 11-7) and BNZ (Table 11-8) instructions.

Consider the two 8-bit numbers A = 00101101 and B = 01101001,

(a) Give the decimal equivalent of each number, assuming that (1) they are
unsigned and (2) they are signed 2's complement.

{(b) Add the two binary numbers and interpret the sum, assuming that the
numbers are (1) unsigned and (2) signed two's complement.

{¢) Determine the values of the C (carry), Z (zero), N (sign), and V
{overflow) status bits after the addition.

(d) List the conditional branch instructions from Table 11-5 that will have a
true condition,

*The program in a computer compares two unsigned numbers A and B by

performing a subtraction A — B and updating the status bits,

LetA = 01011101 and B = 01011100.

(a) Evaluate the difference and interpret the binary result.

(b) Determine the values of status bits C (borrow) and Z {zero).

{c) List the conditional branch instructions from Table 11-9 that will have a
true condition,

The program in a computer compares two signed 2’s complement numbers
A and B by performing subtraction A — B and updating the status bits.
LetA = 11011110 and £ = 11010110,

{a) Evaluate the difference and interpret the binary result.

(b) Determine the value of status bits NV (sign), Z (zero), and V' (overflow),

(¢) List the conditional branch instructions from Table 11-10 that will have
a true condition.

526 [O CHAPTER 11 / INSTRUCTION SET ARCHITECTURE

11-27.

11-28.

11-29.

11-30.

11-31.

*The top of a memory stack contains 3000, The stack pointer SF contains
2000, A two-word procedure call instruction is located in memory at
address 2000, Tollowed by the address field of 0301 at location 2001, What
are the contents of PC, 5P, and the top of the stack

(a) before the call instruction is fetched from memory?
{b) after the call instruction is executed?
{c) after the return from the procedure?

A computer has no stack, but instead uses register R7 as a link register (i.e.,
the computer stores the return address in R7).

(a) Show the register transfers for a branch and link instruction.

(b} Assuming that another branch and link is present in the procedure
called, what action must be taken by software before the branch and
link occurs?

What are the basic differences between a branch, a procedure call, and a
program interrupt?

*Give five examples of external interrupts and five examples of internal
interrupts. What is the difference between a software interrupt and a
procedure call?

A computer responds to an interrupt request signal by pushing onto the
stack the contents of the PC and the current PSR. The computer then reads
new PSR contents from memory from the location given by the interrupt
vector address (/VAD). The first address of the service program is taken
from memory at location IVAD + 1,

(a) List the sequence of microoperations implementing the interrupt.

(b} List the sequence of microoperations implementing the return from
interrupt.

RISC AND CISC
CENTRAL PROCESSING
UNITS

ts purpose is to decode instructions recelved from memory and perfarm

transfer, arithmetic, logic, and control operations with data stored in internal
registers, memory, or 1/O interface units. Externally, the CPU provides one or more
buses for transferring instructions, data, and control information to and from
components connected to it

In the generic computer at the beginning of Chapter 1, the CPU is a part of the
processar and is heavily shaded. CPUs, however, may also appear elsewhere in
computers. Small, relatively simple computers called microcontrollers are used in
computers and in other digital systems to perform limited or specialized tasks. For
example, a microcontroller is present in the keyboard and in the monitor in the generic
computer; thus, these components are also shaded. In such microcontrollers, tha
CPU may be quite different from those discussed in this chapter. The word lengths
may be shart (e. g., eight bits), the number of registers small, and the insfruction sets
limited, Parformance, relatively speaking, is low, but adequate. Most important, the
cost of these microcontrollers is very low, making their use cost effective.

The approach in this chapter builds upon and parallels that in Chapter 10. It begins by
converting the datapath in Chapter 10 to a pipelined datapath. A pipelined control unit
is added to form a reduced instruction set computer (RISC) that is analogous to the
single-cycle computer. Problems that arise due to the use of pipelining are introduced
and solutions are offered in the context of the RISC design. Next, the contral unit is
augmented to provide a complex instruction set computer (CISC) that is analogous to
the multiple-cycle cormputer, A brief overview of some of the methods used to
enhance pipelined processor performance is presented. Finally, we relate the design
ideas discussed to general digital system design.

T he central processing Unit (CPU) is the key component of a digital computer.

o 527

528 O CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

12-1 PrPELINED DATAPATH

Figure 10-17 was used to illustrate the long delay path present in the single-cycle
computer and the resultant clock frequency limit. With a narrower focus,
Figure 12-1(a) illustrates maximum delay values for each of the components of a
typical datapath. A maximum of 4 ns (3 ns + 1 ns} is required to read two operands
from the register file or to read one operand from the register file and obtain a
constant from MUX B. A maximum of 4 ns is also required to execute an opera-
tion in the functional unit. Finally, a maximum of 4 ns (1 ns + 3 ns) is reguired to
write the result back into the register file, including the delay of MUX D. Adding
these delays, we find that 12 ns are required to perform a single microoperation.
The maximum rate at which the microoperations can be performed is the inverse
of 12 ns (i.e., 83.3 MHz). This is the maximum frequency at which the clock can be
operated, since 12 ns is the smallest clock period that will allow each microopera-
tion to be completed with certainty. As illustrated in Figure 10-17, delay paths that

[Clock
¥ Ans 3 ' ins
J’—-:'lnck _WB +—
Register file OF Register file I
Ins 3 ns
l I
MUXB| 1ns MUXB| 1 ns
¥
_oF I s
EX
v " i l 1 ns

Function unit 4 ng 2 Function unit 4 ns

|Mux|:)i L ns EX __._ —
WB

1 ns
] J.

&

{a) Conventional (b} Pipelined

O FIGURE 12-1
Datapath Timing

12-1 / Pipelined Datapath 0O 529

pass through both the datapath and the control unit limit the clock frequency to an
even smaller value. For the datapath alone and for the combination of the datapath
and control unit in the single-cvcle computer. the execution of a microoperation
constitutes the execution of an instruction. Thus, the rate of execution of instruc-
tions equals the clock frequency.

MNow suppose that the datapath execution rate is not adequate for a particular
application, and that there are no faster components available with which to
reduce the 12 ns required to complete a microoperation, Still, it may be possible to
reduce the clock period and increase the clock frequency. This can be done by
breaking up the 12-ns delay path with registers. The resulting datapath, sketched in
Figure 12-1(b), is referred to as a pipelined datapath, or just a pipeline.

Three sets of registers break the delay of the original datapath into three
parts. These registers are shown crosshatched in blue. The register file contains the
first set of registers. Cross-hatching covers only the top half of the register file,
since the lower half is viewed as the combinational logic that selects the two regis-
ters to be read. The two registers that store the A data from the register file and the
output of MUX B constitute the second set of registers, The third set of registers
stores the inputs to MUX [,

The term “pipeline,” unfortunately, does not provide the best analogy for the
corresponding datapath structure. A better analogy for the datapath pipeline is a
production line. A common illustration of a production line is an automated car
wash in which cars are pulled through a series of stations at which a particular step
of car washing is performed:

1. Wash - Flush with hot, soapy water,
2. Rinse - Flush with plain warm water, and
3. Dry - Blow air over the surface.

In this example, the processing of a vehicle through the car wash consists of three
steps and requires a certain amount of time to complete. Using this analogy, the
processing of an instruction by a pipeline consists of # > 2 steps and requires a cer-
tain amount of time to complete. The length of time required to process an instruc-
tion is called the latency time. Using the car wash analogy, the latency time is the
length of time it takes for a car to pass through the three stations performing the
three steps of the process. This time remains the same regardless of whether there
is a single car or there are three cars in the car wash at a given time.

Continuing this analogy, with the pipeline datapath corresponding to the car
wash, what corresponds to the nonpipelined datapath? A car wash with all of the
steps available at a single station, with the steps performed senally. We now can
compare the analogies, thereby comparing the pipelined and nonpipelined datap-
ath. For the multiple station car wash and the single station car wash, the latencies
are approximately the same. So by poing to the multiple station car wash, there is
no decrease in the time required to wash a car. However, suppose that we consider
the frequency at which a washed car emerges from the two types of car washes. For
the single station car wash, this frequency is the inverse of the latency time. In con-
trast, for the multiple station car wash with three stages, a washed car emerges at a

530 O CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

frequency of three times the inverse of the hatency time. 'l'Lus. there 15 a factor of
three improvement in the frequency or rate of delivery of washed cars. Based on
the analogy to pipelined datapaths with » stages and nonpipelined datapaths, the
former has a processing rate or throughput for instructions that is » times that of
the latter.

The desired structure, based on the nonpipelined, conventional datapath
described in Chapter 10, is sketched in Figure 12-1(b). The operand fetch (OF) is
stage 1, the execution (EX) is stage 2, and the write-back (WB) is stage 3. These
stages are labeled at their boundaries with appropriate abbreviations. At this point,
the analogy breaks down somewhat because the cars move smoothly through the
car wash while the data within the pipeline moves synchronously with a clock con-
trolling the movement from stage to stage. This has some interesting implications.
First of all, the movement of the data through the pipeline is in discrete steps
rather than continuous, Second, the length of time in each of the stages must be the
clock period and is the same for all stages. To provide the mechanism separating
the stages in the pipeline, registers are placed between the stages of the pipeline.
These registers provide temporary storage for data passing through the pipeline
and are called pipeline plaiforms.

Returning to the pipelined datapath example in Figure 12-1(b), Stage 1 of the
pipeline has the delay required for reading the register file followed by selection by
MUX B.This delay is 3 plus 1 ns, or 4 ns. Stage 2 of the pipeline has the 1 ns delay
of the platform plus the 4 ns delay of the functional unit, giving 5 ns. Stage 3 has
the 1 ns delay of the platform, the delay for the selection by MUX D, and the delay
for writing back into the register file, This delay is 1 + 1 + 3, for a total of 5 ns.
Thus, all flip-lop-to—flip-flop delays are at most 5 ns, allowing a minimum clock
period of 5 ns (assuming that the setup times for the flip-flops are zero) and a max-
imum clock frequency of 200 MHz, compared with the 83.3 MHz for the single
state datapath. This clock frequency corresponds to the maximum throughput of
the pipeline which is 200 million instructions per second. about 2.4 times that of
the nonpipelined datapath. Even though there are three stages, the improvement
factor is not three. This is due to two factors: (1) the delay contributed by the pipe-
line platforms and (2) the differences between the delay of the logic assigned to
each stage. The clock period is governed by the longest delay, rather than the aver-
age delay assigned to any stage.

A more detailed diagram of the pipelined datapath appears in Figure 12-2. In
this diagram, rather than showing the path from the output of MUX D to the regis-
ter file input, the register file is shown rwice—once in the OF stage, where it is read,
and once in the WB stage, where it is written,

The first stage, OF, is the operand fetch stage. The operand fetch consists of
reading register values to be used from the register file and, for Bus B, selecting
between a register value or a constant by using MUX B. Following the OF stage is
the first pipeline platform. The pipeline registers store the operand or operands for
use in the next stage during the next clock cyele.

The second stage of the pipeline is the execute stage, denoted EX. In this
stage, a function unit operation occurs for most microoperations, The results pro-
duced from this stage are captured by the second pipeline platform.

12-1 / Pipelined Darapach O 531

________________ Register
file

OF 1 Al - A data B datal= BA
Operand Feich (OF)

Constant in

Adddress oul
Diata out
! ¥
A B
2 Fy ——
Execute (EX)
o Function
2 Uit
C -
N —]
7] F
Data in

i] 1
MD =1 "Mux D
3
Write-back (WB) - : L SN
WB : s
""""""""""" ﬁﬁ'—p—"'%\u e
file (same
as above)

O FIGURE 12-2
Block Diagram of Pipelined Datapath

The third and final stage of the pipeline is the write-back stage, denoted WB.
In this stage, the result saved from the EX stage, or the value on Data in, is
selected by MUX D and written back into the register file at the end of the stage.
In this case, the write part of the register file is the pipeline platform. The WB

532 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

stage completes the execution of each microoperation that requires writing to a
repister.

Before leaving the car wash analogy, we examine the cost of the single-
stage car wash versus that of the three-stage car wash. First, even though the
three-stage car wash washes vehicles three times as fast as the single-stage car
wash does, it costs three times as much in terms of space. Plus, it has the over-
head of the mechanism to move the cars along through the stages. So it appears
that it is not very cost effective compared with having three single-stage assem-
bly stations operating in parallel. Nevertheless, from a business standpoint, it has
proven to be cost effective. In terms of the car wash, can you figure out why? In
contrast, for the pipelined datapath, pipeline platforms cut a single datapath into
three pieces. Thus, a first order estimate of the cost increase is mainly that of the
pipeline platforms.

Execution of Pipeline Microoperations

There are up to three operations at some stage of completion in the car wash at
any given time. By analogy, we should be able to have three microoperations at
some stage of completion in the pipelined datapath at any given time.

We now examine the execution of this sequence of microoperations with
respect to the stages of the pipeline in Figure 12-2. In clock period 1, microoperation
1 1s in the OF stage. In clock period 2, microoperation 1 is in the EX stage, and
microoperation 2 is in the OF stage. In clock period 3, microoperation 1 is in the WB
stage, microoperation 2 is in the EX stage, and microoperation 3 is in the OF stage.
So at the end of the third clock period, microoperation 1 has completed execution,
microoperation 2 is two-thirds finished, and microoperation 3 is one-third finished.
So we have completed 1 + 2/3+ 1/3 = 2.0 microoperations in three clock periods, or
15 ns. In the conventional datapath, we would have completed execution of micro-
operation 1 only, So, indeed, the pipelined datapath performance is superior in this
example.

The procedure we have been using to analyze the sequence of microopera-
tions so far is somewhat tedious. So to finish the analysis of the timing of the
sequence, we will use a pipeline execution partern diagram, as shown in Figure 12.3,
Each vertical position in this diagram represents a microoperation to be per-
formed, and each horizontal position represents a clock cycle. An entry in the dia-
gram represents the stage of processing of the microoperation. So, for example, the
execution (EX) stage of microoperation 4, which adds the constant 2 to R0, occurs
in clock cycle 5.

We can see from the overall diagram that the sequence of seven microopera-
tions requires nine clock cycles to execute completely. The time required for execu-
tion is 9 % 5 = 45 ns, compared to 7 % 12 = 84 ns for the conventional datapath. Thus,
the sequence of microoperations is executed about 1.9 times faster.

Mow let us examine the pipeline execution pattern carefully. In the first two
clock cycles, not all of the pipeline stages are active, since the pipeline is filling. In
the next five clock cycles, all stages of the pipeline are active, as indicated in blue,
and the pipeline is fully utilized. In the last two clock cycles, not all stages of the

12-2 / Pipelined Control 0O 533

Clock cvele
1 2 3 d A [7 B 9
R1+—R2 - R3 1 OF EX WH
Rd+«—slRo 2 OF EX WB

RT7T+—R7T + 1 3 OF EX WB

Rl+=R0+2 4 OF EX WE
Data out <R3 5 OF EX | WB
R4 +Datain @ OF EX WE

R0 7 OF EX WB
Microoperation

O FIGURE 12-3
Pipeline Execution Patlern for Microoperation Scquence

pipeline are active, since the pipeline is emptying. If we want to find the maximum
possible improvement of the pipelined datapath over the conventional one, we
compare the two when the pipeline is fully utilized. Over these five clock cycles, 3
through 7, the pipeline executes (5 x 3} + 3 = 5 microoperations in 25 ns. In the
same time, the conventional datapath executes 25 + 12 = 2.083 microoperations. So
the pipelined datapath executes at best 5 + 2.083 = 2.4 times as many microopera-
tions in a given lime as the conventional datapath. In this ideal situation, we say
that the throughput of the pipelined datapath is 2.4 times that of the conventional
one. Mote that filling and emptying reduce the pipeline speed below the maximum
of 2.4. Additional topics associated with pipelines—in particular, providing a con-
trol unit for a pipelined datapath and dealing with pipeline hazards—are covered
in the next two sections.

12-2 PreELINED CONTROL

In this section, a control unit is specified to produce a CPU by using the datapath
from the last section. Since the instruction must be fetched from a memory as well
as executed, we add a stage to the analogous car wash used for illustration in that
section. Analogous to the instruction fetch from the instruction memory, the oper-
ations in the car wash are specified by order sheets, produced by an attendant, that
permit the functions performed in the stages of the car wash to vary. The order
sheet, which is analogous to an instruction, accompanies the car as it moves down
the line.

Figure 12-4 shows the block diagram of a pipelined computer based on the
single-cycle computer. The datapath is that of Figure 12-2. The control has an
added stage for instruction fetch that includes the PC and instruction memory. This
becomes stage 1 of the combined pipeline. The instruction decoder and register file
read are now in stage 2, the function unit and data memory read and write are in
stage 3, and the register file write is in stage 4. These stages are labeled at their

534 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

Address
Stage Instruction
1 MEmory
Instruction
IF
DOF ch_i.sTcr
file
AA =1 A data B dataf-=— BA
St —_———— = i
iﬂ.ﬁ e | Fem fill
Instruction decoder L
[MUX B | MB
l Ty oy
AABAMEB Y Y ¥ ¥ Y
DOF @ _____ N \L I\N _____ Data A \\l Ty Data B
EX + + Address out
FS MW
- b
P
F§ =] Address
[ey ;
Stigc T Fu::ﬁ“" Daia
3 N MEmMOTy
Yol B 1 F Data out
Dhata in |
Data out MW
3 L _* i
EX 1 : -". Data F L _'_ — Data 1
o %ﬁ ''''''' &ﬁ -------- iy
Stage DA MD RWw ! !
4 MD MUX D
r
WEB RW — o Pt
— HbE DA == \aaior
file (same
CONTROL DATAPATH | 46 above)

O FIGURE 12-4
Block Diagram of Pipelined Computer

12-2 / Pipelined Control 0O 535

boundaries with appropriate abbreviations, In the figure, we have added registers
to the pipeline platforms between stages, as necessary to pass the decoded instruc-
tion information through the pipeline along with the data being processed. These
additional registers serve to pass along the instruction information, just as order
information was passed along in the car wash.

The added first stage is the instruction fetch stage. denoted by IF, which
lies wholly in the control. In this stage, the instruction is fetched from the
instruction memory, and the value in the PC is updated. Due to additional com-
plexities of handling jumps and branches in a pipelined design, PC update is
restricted here to an increment, with a more complete treatment provided in
the mext section. Between the first stage and the second stage is an interstage
pipeline platform that plays the role of instruction register, so it has been
labeled IR.

In the second stage, DOF for decode and operand feich, decoding of the IR
into control signals takes place. Among the decoded signals, the register file
addresses AA and BA and the multiplexer control signal MB are used in this stage
for operand fetch. All other decoded control signals are passed on to the next pipe-
line platform, to be used later. Following the DOF stage is the second pipeline plat-
form, whose registers store control signals to be used later. The third stage of the
pipeline is the execulion stage, denoted EX. In this stage, an ALU operation, a shift
operation, or a memory operation is executed for most instructions. Thus, the con-
trol signals used in this stage are FS and MW. The read part of the data memory M
is considered a part of the stage. For a memory read, the value of the word
addressed is read to Data out from the data memory. All of the resulis produced
from this stage, plus the control signals for the last stage, are captured by the third
pipeline platform. The write part of data memory M is considered a part of this plat-
form, so a memory write may occur here. The control information held in the final
pipeline platform consists of DA, MD, and RW, which are used in the final write-
back stage, WB.

The location of the pipeline platforms has balanced the partitioning of the
delays, so that the delays per stage are no more that 5 ns. This gives a potential
maximum clock frequency of 200 MHz, about 3.4 times that of the single-cycle
computer. Note, however, that an instruction takes 4 » 5 = 20 ns to execute. This
latency of 20 ns compares to that of 17 ns for the single-cycle computer. So if only
one instruction at a time is being executed, even fewer instructions are executed
per second than for the single-cycle computer.

Pipeline Programming and Performance

Il our hypothetical car wash is extended to four stages, there are up to four opera-
tions at some stage of completion at any given time. By analogy, then, we should be
able to have four instructions at some stage of completion in the pipeline of our
computer al any given time. Suppose we consider a simple calculation: Load the
constants 1 through 7 into the seven registers R1 through R7. respectively. The pro-
gram to do this is as follows (the number on the left is a number to identify the
instruction):

536 O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

LDIR1.1
LDIR2,2
LDIR3 3
LDI R4, 4
LDIRs, 5
LDI Ré. &
LDIRT.T

- S b B W R =

Let us examine the execution of this program with respect to the stages of the
pipeline in Figure 12-4. We employ the pipeline execution pattern diagram shown
in Figure 12-5. In clock period 1, instruction 1 is in the IF stage of the pipeline. In
clock period 2, instruction 1 is in the DOF stage and instruction 2 is the IF stage. In
clock period 3, instruction 1 is in the EX stage, instruction 2 is in the DOF stage,
and instruction 3 is in the IF stage. In clock period 4, instruction 1 is in the WB
stage, instruction 2 is in the EX stage, instruction 3 is in the DOF stage, and
instruction 4 is in the IF stage. So at the end of the fourth clock period, instruction
1 has completed execution, instruction 2 is three-fourths finished, instruction 3 is
half finished, and instruction 4 is one-fourth finished. So we have completed 1 +
34 + 1/2 + 1/4 = 2.5 instructions in four clock periods, or 20 ns. We can see from
the overall diagram that the complete program of seven instructions requires 10
clock eyeles to execute. Thus, the time required is 50 ns, compared to 119 ns for the
single-cycle computer, and the program is executed about 2.4 times faster.

Now suppose that we examine the pipeline execution pattern carefully. In the
first three clock cycles, not all of the pipeline stages are active, since the pipeline is
filling. In the next four clock cycles, all stages of the pipeline are active, as indicated
in blue, and the pipeline is fully utilized. In the last three clock cycles, not all stages
of the pipeline are active, since the pipeline is empiving. If we want to find the

Clock cycle

1 2 3 4 5 [7 B 9 11
| IF DOF | EX WhE
2 IF DOF | EX WhE
3 IF DOF | EX WB
4 IF DOF| EX | WB
3 IF DOF | EX WH
fi IF DOF| EX WB
7 IF DOF| EX WH

Instruction

O FIGURE 12-5
Pipeline Execution Pattern of Register Number Program

12-3 / The Reduced Instruction Set Computer [537

maximum possible improvement of the pipelined computer over the single-cycle
computer, we compare the two in the situation in which the pipeline is fully uti-
lized. Over these four clock cycles, or 20 ns, the pipeline executes 4 x 4 + 4 = 4.0
instructions. In the same time, the single-cycle computer executes 20 + 17 = 1.18
instructions. So in the best case, the pipelined computer executes 4 + 1.18 = 3.4
times as many instructions in a given time as the single-cycle computer does. In this
ideal situation, we say that the throughput of the pipelined computer is 3.4 times
that of the single-cycle computer. Note that even though the pipeline has four
stages, the pipelined computer is not four times as [ast as the single-cycle com-
puter, because the delays of the latter cannot be divided exactly into four equal
pieces and the delays of the added pipeline platforms. Also, filling and emptying
the pipeline reduces its speed enough that the speed of the pipelined computer is
less than the ideal maximum speed of 3.4 times as fast as the single-cycle computer.

The study of the pipelined computer here, along with the single-cycle com-
puter and multiple-cycle computer in Chapter 10, completes our examination of
three computer control organizations. Both the pipelined datapaths and the con-
trols we have studied here are simplified and missing elements. Next we present
two CPU designs that illustrate combinations of architectural characteristics of the
instruction set, the datapath, and the control unit. The designs are top down, but
reuse prior component designs, illustrating the influence of the instruction set
architecture on the datapath and control units, and the influence of the datapath
on the control unit. The material makes extensive use of tables and diagrams.
Although we reuse and modify component designs from Chapter 10, background
information from these chapters is not repeated here. Pointers, however, are given
to earlier sections of the book, where detailed information can be found.

The two CPUs presented are for a RISC using a pipelined datapath with a
hardwired pipelined control unit and a CISC based on the RISC using an auxiliary
microprogrammed control unit. These two designs represent two distinct instruc-
tion set architectures with architectures using a common pipelined core that con-
tributes enhanced performance.

12-3 THE REDUCED INSTRUCTION SET COMPUTER

The first design we examine is for a reduced instruction set computer with a pipe-
lined datapath and control unit. We begin by describing the RISC instruction set
architecture, which is characterized by load/store memory access, four addressing
modes, a single instruction format length, and instructions that require only ele-
mentary operations. The operations, resembling those that can be performed by the
single-cyele computer, can be performed by a single pass through the pipeline. The
datapath for implementing the ISA is based on the single-cycle datapath initially
described in Figure 10-11 and converted to a pipeline in Figure 12-2. In order to
implement the RISC instruction set architecture, modifications are made to the
register file and the function unit. These modifications represent the effects of a
longer instruction word length and the desire to include multiple position shifis
among the elementary operations. The control unit is based on the pipelined

538 0O CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

control unit in Figure 12-4. Modifications include support for the 32-bit instruction
word and a more extensive program counter structure for dealing with branches in
the pipeline environment. In response to data and control hazards associated with
pipelined designs, additional changes will be made to both the control and datapath
to sustain the performance gain achieved by using a pipeline.

Instruction Set Architecture

Figure 12-6 shows the CPU registers accessible to the programmer in this RISC.
All registers are 32 bits. The register file has 32 registers, R0 through R31. R0 is a
special register that supplies the value zero when used as a source and discards the
result when used as a destination. The size of the programmer-accessible register
file is comparatively large in the RISC because of the load/store instruction set
architecture. Since the data manipulation operations can use only register oper-
ands, many active operands need to be present in the register file. Otherwise,
numerous stores and loads would be needed to temporarily save operands in the
data memory between data manipulation operations. In addition, in many real
pipelines, these stores and loads require more than one clock eycle for their execu-
tion. To prevent these factors from degrading RISC performance, a larger register
file is required.

In addition to the register file, only a program counter, PC, is provided. If
stack pointer-based or processor status register-based operations are required, they
are simply implemented by sequences of instructions using registers.

Figure 12-7 gives the three instruction formats for the RISC CPU. The for-
mats use a single word of 32 bits. This longer word length is needed to hold realistic
address values, since additional instruction words for holding addresses are difficult
to accommodate in the RISC CPU. The first format specifies three registers. The
two registers addressed by the 5-bit source register fields SA and SB contain the
two operands. The third register, addressed by a 5-bit destination register field DR,
specifies the register location for the result. A 7-bit OPCODE provides for a maxi-
mum of 128 operations.

R =1
Rl
PC
.
- Program counter
F31
Register file

O FIGURE 12-6
CPU Register Set Diagram for RISC

12-3 / The Reduced Instruction Set Computer [539

31 25 24 20 19 15 14 10 9 0
2
Three-register type | OPCODE DR SA 8B b /// i - '
s /" ..-"
Two-register type| OPCODE DR 5A Immediate
Branch| QOPCODE DR SA Target offset
O FIGURE 12-7

RISC CPU Instruction Formats

The remaining two formats replace the second register with a 15-bit constant.
In the two-register format, the constant acts as an immediate operand and, in the
branch format, the constant is a target offset. The target address is another name
for the effective address, particularly if the address is used in a branch instruction.
The target address is formed by adding the target offset to the contents of the PC.
Thus, branching uses relative addressing based on the updated value of the PC. In
order to branch backward from the current PC location, the offset, regarded as a
2's complement number with sign extension is added to the PC. The branch
instructions specify source register 5A. Whether the branch or jump is taken is
based on whether the source register contains zero. The DR field is used to specify
the register in which to store the return address for the procedure call. Finally, the
rightmost 5 bits of the 15-bit constant are also used as the shift amount SH for
multiple bit shifts.

Table 12-1 contains the 27 operations to be performed by the instructions. A
mnemonic, an opeode, and a register transfer description are given for each opera-
tion. All of the operations are elementary and can be described by a single register
transfer statement. The only operations that can access memory are Load and
Store. A significant number of immediate instructions help to reduce data memory
accesses and speed up execution when constants are employed. Since the immedi-
ate field of the instruction is only 15 bits, the leftmost 17 bits must be filled to form
a 32-bit operand. In addition to using zero fill for logical operations, a second
method used is called sign extension. The most significant bit of the immediate
operand, bit 14 of the instruction. is viewed as a sign bit. To form a 32-bit 2’s-com-
plement operand, this bit is copied into the 17 bits. In Table 12-1 the sign extension
of the immediate field is denoted by se IM. The same notation, se /M, also repre-
sents the sign extension of the target offset field discussed previously.

The absence of stored versions of status bits is handled by the use of three
instructions: Branch if Zero (BZ), Branch if Nonzero (BNZ), and Set if Less Than
(SLT). BZ and BNZ are single instructions that determine whether a register oper-
and is zero or nonzero and branch accordingly. SLT stores a value in register

540 O CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

O TABLE 12-1

RISC Instruction Operations

Symbolic

Operation Motation Opcode Action
No Operation NOP Q000000 MNone
Move A MOVA 1000000 R[DR] « R[SA]
Add ADD 0000010 R[DR] « R[SA] + R[SB]
Subtract 5UB 0000101 R[DR] « R[SA] + R[SB] + 1
AND AND 0001000 R[DR] «— R[SA] ~ R[SB]
OR OR 0001001 R[DR)] « R[SA] v R[SB]
Exclusive-OR XOR 0001010 R[DR] « R[SA] & R[SB]
Complement NOT 000101 R[DR] « R[SA]
Add Immediate ADI 0100010 R[DR] « R[SA] + se IM
Subtract Immediate 5Bl 0100101 R[DR] « R[SA] + ise M) + 1
AND Immediate ANI 0101000 R[DR] « R[SA] ~ (01l {M)
OR Immediate ORI 0101001 R[DR] « R[SA] « (01 IM)
Ealuec- Ol XRI 0101010 R[DR] « R[SA] & (01l IM)
Immediate
Add Immediate
Unsigned AIU 1000010 R[DR] « R[SA] + (01l IM)
Subtract Immediate : -
\idipnad SIU 1000101 R[DR] « R[SA] + (01 IM) + 1
Move B MOVE 0001100 R[DR] « R[SB]|
Logical Right Shift
hy%H Bits LSR 0001101 R[DR] « lsr R[SA] by SH
Logical Left Shift
by SH Bits LSL 0001110 R[DR] « Isl R|SA] by SH
Load LD 0010000 R|DR] « M[R[SA])
Store ST 0100000 MR[SA]] « R[SB]
Jump Register IMR 1110000 PC « R[SA]
Set if Less Than SLT oo If R[SA] < R[S8] then R[DR] = 1
Branch on Zero BZ 1100000 If R[SA] = 0, then PC « PC + 1 + se (M
Branch on Nonzero BNZ 1010000 If R[SA] #0,then PC « PC+ | + se M
Jump IMP Hoon - PC«— PC+ 1+ se M
Jump and Link IML 0110000 PC+ PC+ 1+ seIM R[DR] « PC+ 1

R[DR] that acts like a negative status bit, If R[5A] is less than R[5B].a 1 is placed
in register R[DR]; if R[SA] is greater than or equal to R[SB], a 0 is placed in
R[DR]. The register R[DR] can then be examined by a subsequent instruction to
see whether it is zero (0) or nonzero (1). Thus, using two instructions, the relative
values of two operands or the sign of one operand (by letting R[SF] equal R0) can

be determined.

The Jump and Link (JML) instruction provides a mechanism for implement-
ing procedures. The value in the PC alter updating is stored in register R[DR], and
then the sum of the PC and the sign-extended target offset from the instruction is
placed in the PC. The return from a called procedure can use the Jump Register

12-3 / The Reduced Instruction Set Computer 00 541

instruction with SA equal to DR for the calling procedure. If a procedure is to be
called from within a called procedure, then each successive procedure that is called
will need its own register for storing the return value. A software stack that moves
return addresses from R[DR] to memory at the beginning of a called procedure
and restores them to R[SA] before the return can also be used.

Addressing Modes

The four addressing modes in the RISC are register, register indirect, immediate,
and relative. The mode is specified by the operation code, rather than by a separate
mode field. As a consequence. the mode for a given operation is fixed and cannot
be varied. The three-operand data manipulation instructions use register mode
addressing. Register indirect, however, applies only to the load and store instruc-
tions, the only instructions that access data memory. Instructions using the two-reg-
ister format have an immediate value that replaces register address SB. Relative
addressing applies exclusively to branch and jump instructions and so produces
addresses only for the instruction memory.

When programmers want to use an addressing mode not provided by the
instruction set architecture, such as indexed addressing, they must use a sequence
of RISC instructions. For example, for an indexed address for a load operation, the
desired transfer is

RI1S&MIR5 +0111]
This transfer can be accomplished by executing two instructions:

AIU R9.R5.1
LD RI5RY

The first instruction, Add Immediate Unsigned, forms the address by appending 17
(s to the left of [and adding the result to R3. The resulting effective address is
then temporarily stored in RY. Next, the Load instruction uses the contents of R9
as the address at which to fetch the operand and places the operand in the destina-
tion register R15. Since, for indexed addressing, [is regarded as a positive offset in
memory, the use of unsigned addition is appropriate. Sequences of operations for
implementing addressing modes is the primary justification for having unsigned
immediate addition available.

Datapath Organization

The pipelined datapath in Figure 12-2 serves as the basis for the datapath here, and
we deal only with modifications. These modifications affect the register file, the
function unit, and the bus structure. The reader should also refer to the datapath in
Figure 12-2 and the new datapath shown in Figure 12-8 in order to understand fully
the discussion that follows. We treat each modification in turn, beginning with the
register file.

In Figure 12-2, there are 16 16-bit registers, and all registers are identical in
function. In the new datapath, there are 32 32-bit registers. Also, reading register

542 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

Address
h 4 Instruction
ED MEmory
Instruction
S8 .
EC—I ------ T e DOF
IM = IRy, 32 % 32
= Register file
§ SH=IRy with RO = 0
Instruction decoder B ot B g BA
T ¥ 11 .
MA MB AA BACS Ty
+ Y ¥ ¥
1 041 0
| SH MA= MUx A |Mux B[MB
] 1 Y Y Y 1 + Bus A ¥ ¥ Bus B DOF
TN NN N RN R AN N |- =
T
BA A
BS PS5 MWTFS SH Addreis
- Data
1! L 3 y
z IMEmOry
TH ==l A B
FS — Data out
) F={ Modified il T

itpgister file
withRO =10 WE

O FIGURE 12-8
Pipelined RISC CPU

12-3 / The Reduced Instruction Set Compurer O 543

RO gives a constant value of zero. If a write is attempted into R0, the data will be
lost. These changes are implemented in the new register file in Figure 12-8. All data
inputs and the data output are 32 bits. To correspond to the 32 registers, the
address inputs are five bits. The fixed value of (0 in R0 is implemented by replacing
the storage elements for R0 with open circuits on the lines that were their inputs,
and with constant zero values on the lines that were their outputs.

A second major modification to the datapath is the replacement of the single-
bit position shifter with a barrel shifter to permit multiple-position shifting. This
barrel shifter can perform a logical right or logical left shift of from 0 to 31 posi-
tions. A block diagram for the barrel shifter appears in Figure 12-9, The data input
is 32-bit operand A, and the output is 32-bit result G. Left/right, a control signal
decoded from OPCODE, selects a left or right shift. The shift amount field SH =
TR(4:A)) specifies the number of bit positions to shift the data input and takes on
values from {1 through 31. A logical shift of p bit positions involves inserting p zeros
into the result. In order to provide these zeros and simplify the design of the
shifter, we will perform both the left and right shift by using a right rotate. The
input to this rotate will be the input data A with 32 zeros concatenated to its left. A
right shift is performed by rotating the input p positions to the right; a left shift is
performed by rotating 64 — p positions to the right. This number of positions can
be obtained by taking the 2's complement of the 6-bit value of 0 || SH.

The 63 different rotates can be obtained by using three levels of 4-to-1 multi-
plexers, as shown in Figure 12-8. The first level shifts by (), 16, 32, or 48 positions,
the second level by 0, 4, 8, or 12 positions, and the third level by 0, 1, 2, or 3 posi-
tions. The number of positions for A to be shifted, 0 through 63, can be imple-
mented by representing 0 || SH as a three-digit base-4 integer. From left to right,
the digits have weights 4% = 16, 4! = 4 _and 4" = 1. The digit values in each of the
positions are 0, 1, 2, and 3. Each digit controls a level of the 4-to-1 multiplexers, the

Leftiight 0 SH

3
r 4 on A
Selective I
2's complement 64
2 2L 2L T
i # # . . . L
- 47 4-tr+] multiplexers {rotate right (0, 16, 32, or 48 bit positions)
1

AT b

]

I
e ‘"'r 4-to-1 multiplexers (rotate right 0,4, 8, or 12 bit positions)
i

3:1*

L |32 4t0-1 multiplexers (rotate right 0. 1, 2, or 3 bit positions)

32*
G

O FIGURE 12-9
32-bit Barrel Shifter

544 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

most significant digit controlling the first level, the least significant the third level.
Due to the presence of 32 zeros in the 64-bit input, fewer than 64 multiplexers can
be used in each level. A level requires the number of multiplexers to be 32 plus the
total number of positions its output can be shifted by subsequent levels, The output
of the first level can be shifted at most 12 + 3 = 15 positions to the right. Thus, this
level requires 32 + 15 = 47 multiplexers. The output of the second level can be
shifted at most 3 positions, giving 32 + 3 = 35 multiplexers. The final level cannot
be shifted further and so needs just 32 multiplexers.

In the function unit, the ALU is expanded to 32 bits, and the barrel shifter
replaces the single position shifter. The resulting modified function unit uses the
same function codes as in Chapter 10, except that the two codes for shifts are now
labeled as logical shifts, and some codes are not used. The shift amount §H is a new
5-bit input to the modified function unit in Figure 12-8,

The remaining datapath changes are shown in Figure 12-8. Beginning at the
top of the datapath, zero fill has been replaced by the constant unit. The constant
unit performs zero fill for CS = 0 and sign extension for CS = 1. MUX A is added
to provide a path for the updated PC, PC_,. to the register file for implementation
of the Jump and Link (IML) instruction,

One other change in the figure helps implement the Set if Less Than (SLT)
instruction. This logic provides a 1 to be loaded into R[DA] if R[AA] — R[BA] <0
and a 0 to be loaded into R[DA] if R|[AA] — R[BA] = 0. It is implemented by add-
ing an additional input to MUX . The leftmost 31 bits of the input are 0: the right-
most bitis 1if Nis 1 and Vis O (i.e., if the result of the subtraction is negative and
there is no overflow). It is also 1 if Nis O and V is 1 (i.e., i the result of the subtrac-
tion is positive and there is an overflow). These represent all cases in which R[AA]
is greater than R[BA] and can be implemented using an exclusive-OR of N and V.

A final difference in the datapath is that the register file is no longer edge
triggered and is no longer a part of a pipeline platform at the end of the write-back
(WB) stage. Instead, the register file uses latches and is written much earlier than
the positive clock edge. Special timing signals are provided that permit the register
file to be written in the first half and to be read in the last hall of the cycle, In par-
ticular, in the second half of the cycle, it is possible to read data written into the
register file during the first half of the same clock cycle. This is called a read-afier-
write register file, and it both avoids added complexity in the logic used for han-
dling hazards and reduces the cost of the register file.

Control Organization

The control organization in the RISC is modified from that in Figure 12-4. The
modified instruction decoder is essential to deal with the new instruction set. In
Figure 12-8, SH is added as an IR field, a 1-bit CS§ field is added to the instruction
decoder, and MD is expanded to two bits. There is a new pipeline platform for SH,
and expanded 2-bit platforms for MD,

The remaining control signals are included to handle the new control logic
for the PC.This logic permits the loading of addresses into the PC for implement-
ing branches and jumps. MUX C selects from three different sources for the next

12-3 / The Reduced Instruction Set Computer [545

value of PC. The updated PC is used to move sequentially through a program.
The branch target address BrA is formed from the sum of the updated PC value
for the branch instruction and the sign-extended target offset. The value in R[AA]
is used for the register jump. The selection of these values is controlled by the
field BS. The effects of BS are summarized in Table 12-2. If BS, = 0, then the
updated PC is selected by BS; = 0, and R[AA] is selected by BS, = 1. If B§; = 1
and BS; = 1, then BrA is selected unconditionally. If BS; = 1 and BS; = 0, then,
for P§5 = 0, a branch to BrA occurs for Z = 1, and for PS = 1, a branch to BrA
occurs for Z = 0, This implements the two conditional branch instructions BZ
and BNZ.

In order to have the value of the updated PC for the branch and jump
instructions when they reach the execution stage, two pipeline registers, PC_; and
PC_,, are added. PC_; and the value from the constant unit are inputs to the ded-
icated adder that forms BrA in the execution stage. Note that MUX C and the
attached control logic are in the EX stage, although shown above the PC. The
related clock cycle difference causes problems with instructions following branches
that we will deal with in later subsections,

The heart of the control unit is the instruction decoder. This is combinational
circuitry that converts the operation code in the /R into the control signals neces-
sary for the datapath and control unit. In Table 12-3, each instruction is identified
by its mnemonic. A register transfer statement and the opcode are given for the
instruction. The opcodes are selected such that the least significant four of the
seven bits match the bits in the control field FS whenever it is used. This leads 1o
simpler decoding. The register file addresses AA, BA, and DA come directly from
SA, SB, and DR, respectively, in the IR.

Otherwise, to determine the control codes, the CPU 1s viewed much as is the
single-cycle CPU in Figure 10-15. The pipeline platforms can be ignored in this
determination; however, it is important to examine the timing carefully to be sure
that various parts of the register transfer statement for the operation take place in
the right stage of the pipeline. For example, note that the adder for the PC is in stage
EX. This adder is connected to MUX C and its attached control logic, and to the
incrementer +1 for the PC. Thus, all of this logic is in the EX stage, and the loading

O TABLE 12-2

Definition of Control Fields BS and PS

BS PS

Register Transfer Code Code Comments
PCe—PC+1 (i X Increment PC
£ PC— BrA,E: PCe=PC+1 01 0 Branch on Zero
Z:PC—BrA,Z: PC—PC+1 1 Branch on Nonzero
PC—R[AA] 10 X Jump to Contents of R[AA]

PC+—BrA 11 X Unconditional Branch

546 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

O TABLE 12-3
Control Words for Instructions
Control Word Values

Symbolic Op

Motation Action Code RWMDEBSPSMW FS MBE MACS
NOP MNone O0OO000 O X 00 X 0 XX X X X
MOVA R[DR] « R[SA] 1000000 1 00 00 X 0 om0 X 0 X
ADD RIDR] «+ R[5A]+ R[SB] O00010 1 00 00 X O 000 0 0 X
SUB R[DR] « R[SA] + R[FE] +1 ODO101 1 0000 X 0 0wl o0 o0 X
AND R[DR] « R[SA] ~ R[5B] OO01000 1T o000 X O 1000 0 0 X
OR R[DR] « R|SA] R[55] Q001001 1 0D o0 X O 1001 0 0 X
XOR R[DR)] « R[SA| & R[SE] 0001010 1 00 00 X 0 1010 0 0 X
NOT R[DR] « R[5A] 0001011 1 00 00 X 0 1011 X 0 X
ADI R[DOR] «— R[SA] + se M 0100010 1 00 00 X 0o 0010 1 0 1
SBI RIDR] « R[5A] +(sc IM) + 1 000101 1 00 00 X O 011 1 o 1
ANI R[DR] « R[SA] ~ #[IM 0101000 1T 00 00 X 0 1000 1 o 0
ORI R[DR] « R[SA] v «[IM OIO1001 1 00 00 X O 1000 1 O 0
XRI RIDR] R[SA] &zl IM 0101010 1 0000 X O 1011 1 0 0o
AU R[DR)] &= R[SA] + zfIM 1000010 1 0000 X O 0010 1 0 0
SIU R[DR] « R[SA] + (zf M) + 1 1000100 1 0000 X 0 0101 1 0 0O
MOVB R[DR] «— R|SB| 001100 1 00 00 X 0 (o0 0 X X
L5R R[DR] « lsr R[SA] by SH 0001101 1 00 00 X 0 1101 X 0 X
L5L R[DR] « sl R[SA] by SH 0001110 1 00 0 X 0 1110 X 0 X
LD R[DR] « M[R[SA]] 0010000 1 01 00 X 0 X0 X 0 X
ST M|R[SA]] « R[SB] 0100000 0 XX 00 X 1 XX 0 0 X
IMR PC « R[SA] 110000 0 XX 10 X 0 0% X 0 X
SLT ITR[SA] =< R[SB] then RDR]=1 1100100 1 1000 X 0 010L 0 0 X
BY IMER[SA]=0then PC «— PCH 1+sciM 1100000 0 XX 01 0 0O 0000 1 O 1
BMNZ If R[5A] # 0, then PC «— PC+1+sefM 1010000 0 XX 01 1 0 0000 1 0O 1
IMP PC+— PCH+1+selM TO1000 O 211 X 0 X 1 X 1
JML PCe—PC+1+selM RDR« PC+1 0110000 1T OO 11 X O 0000 1 1 1

of the PC that begins the IF stage is controlled from the EX stage. Likewise, the
input R[AA] is in the same combinational block of logic and comes not from the A
Data output of the register file, but from Bus A in the EX stage, as shown.

Table 12-3 can serve as the basis for the design of the instruction decoder. It
contains the values for all control signals, except the register addresses from /R. In
contrast to the instruction decoder in Section 10-8, the logic is complex and is most
easily designed by using a computer-based logic synthesis program.

Data Hazards

In Section 12-1, we examined a pipeline execution diagram and found that filling
and flushing of the pipeline reduced the throughput below the maximum level
achievable. Unfortunately, there are other problems with pipeline operation that

12-3 / The Reduced Instruction Set Computer 0O 547

reduce throughput. In this and the next subsection, we will examine two such prob-
lems: data hazards and control hazards. Hazards are timing problems that arise
because the execution of an operation in a pipeline is delayed by one or more
clock eycles from the time at which the instruction containing the operation was
fetched. If a subsequent instruction tries to use the result of the operation as an
operand before the result is available, it uses the old or stale value, which is very
likely to give a wrong result, To deal with data hazards, we present two solutions,
one that uses software and another that uses hardware.

Two data hazards are illustrated by examining the execution of the following
program:

I MOVA R1,R5
2 ADD RIRLR6
3 ADD R3,RILR2

The execution diagram of this program appears in Figure 12-10(a). The MOVA
instruction places the contents of RS into R1 in the first half of WB in cycle 4. But,

Write R1
2 3 F 5 &

1
MOVA RI, RS rRi<rs[i [poF| Ex | we [Write R2
ADD R2,R1,Ré R2eR1+Re| 1F | Do#] EK | we
ADD R3.RI1,R2 rRieRl+R2| 1f | DIF] EX | wB |
First read R1 — J
Second read R
Read R2

{a) The data hazard problem

r— Writc R1

MOVARI.RS RI<Rs| IF | poF| EX | wg _

< — Write R2
NOP IF DOF EM \WH. |

-
ADD R R1,Ré R2R1+R6| _IF_ | DOF | W | ws
NOP ¥ | pory Ek | wa
ADD R3,R1,R2 R3I<RI1 + R2 IF | DOF | EX | WB
First read R1— J
Second read R1
Read R2 —

(h) A program-hased solution

O FIGURE 12-10
Example of Data Hazard

548 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

as shown by the blue arrow, the first ADD instruction reads R1 in the last half of
DOF in cycle 3, one cycle before it is written. Thus, the ADD instruction uses the
stale value in R1. The result of this operation is placed in R2 in the first half of WB
in cyele 5. The second ADD instruction, however, reads both 81 and R2 in the sec-
ond half of DOF in eycle 4. In the case of R1, the value read was written in the first
half of WB in cycle 4. So the value read in the second half of cycle 4 is the new
value. The write-back of R2, however, occurs in the first half of cycle 5. after it is
read by the next instruction during cycle 4. So R2 has not been updated to the new
value at the time it is read. This gives two data hazards, as indicated by the large
blue arrows in the figure, The registers that are not properly updated to new values
are highlighted in blue in the program and in the register transfer stalements in the
figure. In each of these cases, the read of the involved register occurs one clock
cycle too soon with respect to the write of that register.

One possible remedy for data hazards is to have the compiler or programmer
generate the machine code to delay instructions so that new values are available.
The program is written so that anv pending write to a register occurs in the same or
an earlier clock cycle than a subsequent read from the register. To accomplish this,
the programmer or compiler needs to have detailed information on how the pipe-
line operates. Figure 12-10(b) illustrates a modification of the simple three-line
program that solves the problem. No-operation (NOP) instructions are inserted
between the first and second instructions, and between the second and third
instructions to delay the respective reads relative to the writes by one clock cycle.
The execution diagram shows that, at worst, this approach has writes and subse-
quent reads in the same clock cvele. This is indicated by the pairs consisting of a
register write and a subsequent register read connected by a black arrow in the
diagram. Because of the read-after-write assumption for the register file, the timing
shown permits the program to be executed on correct operands,

This approach solves the problem, but what is the cost? First of all, the pro-
gram is obviously longer, although it may be possible o place other, unrelated
instructions in the NOP positions instead of just wasting them. Also, the program
takes two clock cycles longer and reduces the throughput from .5 instruction per
cycle to 0.375 instruction per cycle with the NOPs in place.

Figure 12-11 illustrates an alternative solution involving added hardware.
Instead of the programmer or compiler putting NOPs in the program, the hard-
ware inserts the NOPs automatically. When an operand is found at the DOF stage
that has not been written back vet, the associated execution and write-back are
delayed by stalling the pipeline flow in IF and DOF for one clock cycle. Then the
flow resumes with completion of the instruction when the operand becomes avail-
able. and a new instruction is fetched as usual. The delay of one cycle is enough to
permit the result to be written before it is read as an operand,

When the actions associated with an instruction flowing through the pipe
are prevented from happening at a given point, the pipeline is said to contain a
bubble in subsequent clock cycles and stages for that instruction. In Figure 12-11,
when the flow for the first ADD instruction is prevented beyond the DOF stage,
in the next two clock cycles a bubble passes through the EX and the WB stages,
respectively. The holding of the pipeline flow in the IF and DOF stages delays the

12-3 / The Reduced Instruction Sec Computer 0O 549

— R1 data hazard detected
pipeline stalled, and bubble launched

Rl write and reads
1 2 3 |;_ 5 6 7 8

MOVA R1, RS RI<RS| IF |DOF | BX | WB

SADDRE RS s ¥ | Db, 'ﬂ)\\ @ — B2 Write and read

ADD R2,R1,R6 R2R1+Ro| IF ['DOF | W | B

{ADD R3,R1,R2) B3Rl + R2 IF dﬂé:\l @

ey R3—R1+R2| |IF_J'DOF | EX | wa |
Y

R2 data hazard detected,
pipeline stalled, and
bubble launched.

O FIGURE 12-11
Example of Data Hazard Stall

microoperations taking place in these stages for one clock cycle. In the figure, this
delay is represented by two diagonal blue arrows from the initial location in which
the completion of the microoperation is prevented to the location one clock cycle
later in which the microoperation is performed. When the pipeline flow is held in
IF and DOF for an extra clock eyele, the pipeline is said to be sialled, and if the
cause of the stall is a data hazard, then the stall is referred to as a data hazard stall.
An implementation of data hazard handling for the pipelined RISC that uses
data hazard stalls is presented in Figure 12-12. The added or modified hardware is
shown in the areas shaded in light blue. For this particular pipeline stage arrange-
ment, a data hazard will occur for a register file read if there is a destination regis-
ter at the execution stage that is to be written back in the next clock cycle and that
is to be read at the current DOF stage as either of the two operands. So we have to
determine whether such a register exists. This is done by evaluating the Boolean
equations
4
HA = MApgp- (PAgy = AAnm-J"RWEx‘Z (DAEx);
i=0
4
HB = MBpop (DA = HA:J:_:E-J‘RWE){‘Z (DAgx);

i=1

and
DHS = HA+ HB

The following events must all occur for HA, which represents a hazard for the A
data, to equal 1

1. MA in the DOF stage must be 0, meaning that the A operand is coming from
the register file.

550 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

Adldress

E_D Instruction
memaory

Instruction

fo B S -

™ = TRy n DOF
Constant unit
[5H = 1Ry 32 %32
Register file
| Instruction decoder with Ry = 01
= A
5H i 1§
] J L L DOF
T A N AN A = s R S S
LB
ﬁ;‘g BS PSMWFSE 5H
XHS 5 == Aulidress
Draa
Y
. 1 | Diata out
S niw
w Muodified Dot inWrite
¥ Z=1 function R
M umil —ephddone o
e Vo Dhata
+ I oy
Bra M. EX
JITLJT] =
BEW DA MD
WH

O FIGURE 12-12
Pipelined RISC: Data Hazard Stall

2. AA in the DOF stage equals DA in the EX stage, meaning that there is
potentially a register being read in the DOF stage that is to be written in the
next clock cycle,

3. RWin the EX stage is 1, meaning that register DA in the EX stage will defi-
nitely be written in WB during the next clock cycle.

12-3 / The Reduced Instruction Set Compurer 0O 551

4, The OR (X} of all bits of DA is 1. meaning that the register to be wrilten is
not R0 and so is a register that must be written before being read. (R0 has the
same value () regardless of any wriles o it.)

If all these conditions hold, there is a write pending for the next clock cycle to a
register that is the same as one being read and used on Bus A. Thus, a data hazard
exists for the A operand from the register file. HE represents the same combina-
tion of events for the B data. If either of the HA or HB terms equals 1, there is a
data hazard and DHS is 1, meaning that a data hazard stall is required.

The logic implementing the preceding equations is shown in the shaded area
in the center of Figure 12-12. The blocks marked “Comp” are equalily comparators
that have output 1 if and only if the two 5-bit inputs are equal. The OR gate with
DA entering it ORs together the five bits of DA and has output 1 as long as DA is
not 00000 (RO).

DHS is inverted and the inverted signal is used to initiate a bubble in the pipe-
line for the instruction currently in the /R, as well as to stop the PC and /R from
changing. The bubble, which prevents actions from occurring as the instruction
passes through the EX and WB stages, is produced by using AND gates to force RW
and MW to 0. These Os prevent the instruction from writing the register file and the
memaory. AND gates also force BS to 0 causing the PC to be incremented instead of
loaded during the EX stage for a jump register or branch instruction affected by a
data hazard. Finally, to prevent the data stall from continuing for the next and subse-
quent clock cycles, AND gates force DA to 0 so that it appears that R0 is being writ-
ten, giving a condition which does not cause a stall. The registers to remain
unchanged in the stall are the PC, the PC_;. PC_;, and the IR. These registers are
replaced with registers with load control signals driven by DHS . When DHS goes
to 0, requesting a stall, the load signals become 0 and these pipeline platform regis-
ters hold their contents unchanged for the next clock cyele.

Returning to Figure 12-12, we see that in cycle 3 the data hazard for Rl is
detected, so that DHS goes to () before the next clock edge. RW, MW, BS, and DA
are set to 0, and at the clock edge, a bubble is launched into the EX stage for the
ADD. At the same clock edge, the IF and DOF stages are stalled, so the informa-
tion in them now is associated with clock cycle 4 instead of 3. In clock cycle 4, since
DAgy 1s 0, there is no stall, so the execution of the stalled ADD instruction pro-
ceeds. The same sequence of events occurs for the next ADD. Note that the execu-
tion diagram is identical to that in Figure 12-10(b), except that the NOPs are
replaced by stalled instructions, shown in parentheses. Thus, although it removes
the need for programming NOPs into the software, the data hazard stall solution
has the same throughput penalty as the program with the NOPs,

A second hardware solution, data forwarding, does not have this penalty.
Data forwarding is based on the answer to the following question: When a data
hazard is detected, is the result available somewhere else in the pipeline, so that it
can be used immediately in the operation having the data hazard? The answer is
“almost.” The result will be on Bus 1, but it is not available until the next clock
cyvcle. The result is to be written into the destination register during that clock
cycle. The mformation needed to form the result, however, is available on the

552 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

inputs to the pipeline platform that provides the inputs to MUX D. All that is
needed to form the result during the current clock cycle is a multiplexer to select
from the three values, just as MUX D does. MUX D7 is accordingly added to pro-
duce the result on Bus). In Figure 12-13, instead of reading the operand from
the register file, we use data forwarding to replace the operand with the value on
Bus D’ . This replacement is implemented with an additional input to MUX A and
to MUX B from Bus D' as shown, Essentially the same logic as before is used to
detect the data hazard, except that the separate detection signals HA and HE are

b Adidress

E]' Instruction
memaory

Iastruction

=32
Rigister file
with RD =0}
A data B data e BA

| Instmuction decoder

HB
SH ME
| BEEIEE ¥ e DOF
m‘___&\xgk \i%\i T\\l: ______ EX
IR ?
BS PSMWFS 5SH
== A ddress
Dhata
memory
Hus " _ | il ol
- MUXIY | ky—ses] &4 B —— | MW
1 e o3
m % | Modificd Paty inWrite
f ¥ kil Z=1 function e
o= umit 1 dddrane o
" -
Addder s _3 2 Dt
l' 1 1 r eIy
Bra A - = EX
> 1 WB
[
RW DA MD [
MB = mux p
Bus 12
BW g = :
134 gx%
Rigister file
___ with R0=0] WE

O FIGURE 12-13
Pipeling RISC: Data Forwarding

12-3 / The Reduced Instruction Set Computer [553

— R data hazard detected
and R1 value forwarded

R1 write and read
| 3 |4— 5 [§]

MOVARI,RS RI<R5 [IF [DOF | Ext| ¥B | [—WiteR2
ADDR2ZRI,R6 R2«R1+R6 | IF | DOM| EXn| wB
ADD R3,RI,R2 R3eRr1+R2 | IF [pORY| Ex | wB |

[2%]

RZ data hazard detected
and B2 value forwarded

0O FIGURE 12-14
Example of Data Forwarding

used directly for A data and B data, respectively. so that the replacement occurs for
the operand that has the data hazard.

The data-forwarding execution diagram for the three-instruction example
appears in Figure 12-14. The data hazard for R1 is detected in cycle 3. This causes
the value to go into R1 in the next cycle, to be forwarded from the EX stage of the
first instruction in cycle 3. The correct value of R1 enters the DOF/EX platform at
the next clock edge so that execution of the first ADD can proceed normally. The
data hazard for K2 is detected in cycle 4, and the correct value is forwarded from
the EX stage of the second instruction in that cycle. This gives the correct value in
the DOF/EX platform needed for the second ADD to proceed normally. In con-
trast to the data hazard stall method, data forwarding does not increase the num-
ber of clock cyeles required to execute the program and hence does not affect the
throughput in terms of the number of clock cycles required. It may, however, add
combinational delay, causing the clock period to be somewhat longer.

Data hazards can also occur with memory access, as well as with register
access. For the ST and LD instructions, it is not likely that a data memory read can
be performed after a write in a single clock cycle. Further, some memory reads
may take more than one clock cycle, in contrast to what we have assumed here.
Thus, the reduction in throughput for a data hazard may be increased due lo a
longer delay before the data is available,

Control Hazards

Control hazards are associated with branches in the control flow of the program.
The following program containing a conditional branch illustrates a control hazard:

1 BZ Rl1, 18
Z MOWVA R2 R3
3 MOVA RI R2
4 MOVA R4 R2

20 MOVA R5 R6

554 O CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

The execution diagram for this program is given in Figure 12-15{a). If R1 is zero,
then a branch to the instruction in location 20 {recall that addressing is PC relative)
is to occur, skipping the instructions in locations 2 and 3, If £1 is nonzero, then the
instructions in locations 2 and 3 are to be executed in sequence. Assume that the
branch is taken to location 20 because R1 is equal to zero. The fact that R1 equals 0
is not detected until EX in cycle 3 of the first instruction in Figure 12-15(a). So the
PC is set to 20 on the clock edge at the end of cycle 3. But the MOVA instructions
in locations 2 and 3 are into the EX and DOF stages, respectively, after the clock
edge. Thus, unless corrective action is taken, these instructions will complete exe-
cution, even though the programmer’s intention was for them to be skipped. This
situation 15 one form of a control hazard.

NOP instructions can be used to deal with control hazards just as they were
used with data hazards, The insertion of NOPs is performed by the programmer or
compiler generating the machine language program. The program must be written
so that only operations intended to be performed, regardless of whether the branch
i5 taken, are introduced into the pipeline before the branch execution actually
occurs. Figure 12-15(b) illustrates a modification of the simple three-line program
that satisfies this condition. Two NOPs are inserted after the branch instruction BZ.
These two NOPs can be performed regardless of whether the branch is taken in the

R1 = evaluated

PC set 1o 20
2 3 |74 5 [7

=]

1 BZRI, 18 iF lopor | Ex' | we I—Chsng:: in R2

2 MOV R2,R3 IF |poF | Ex | we | [ChangeinRl
3 MOV RI1,R2 IF |por | Ex | wB

20 MOV RS, R i |poF | Ex | we |

Instruction MOV RS, R6 J
fetched from target address

{a) Branch Hazard Problem

R1 = evaluated

PC set to 20
1 2 3 IT 3 [i] 7

1 BZRI, 18 IF |[poF | Ex' | wB I_NGChﬁnge
2NOP 1F | porF | Ex WE = Mo change
3 NOP 1IF |porF | Ex | we

20 MOV RS, R6 iF |poF | Ex | wa |

Instruction MOY R3, Ré J
fetched from target address

(b} Program-based Solution

O FIGURE 12-15
Example of Control Hazard

12-3 / The Reduced Instruction Set Computer [555

EX stage of BZ in cycle 3 with no adverse effects on the correctness of the pro-
gram. When control hazards in the CPU are handled in this manner by program-
ming, the branch hazard dealt with by the NOPs is referred to as a delayed branch.
Branch execution is delayed by two clock cycles in this CPLL

The NOP solution in Figure 12-15(b) increases the time required to process
the simple program by two clock cycles, regardless of whether the branch is taken.
Note, however, that these wasted cyvcles can sometimes be avoided by rearranging
the order of instructions. Suppose that those instructions to be executed regardless
of whether the branch is taken can be placed in the two locations following the
branch instruction. In this situation, the lost throughput is completely recovered.

Just as in the case of the data hazard, a stall can be used to deal with the con-
trol hazard. But, also as in the case of the data hazard, the reduction in throughput
will be the same as with the insertion of NOPs. This solution is referred to as a
branch hazard stall and will not be presented here.

A second hardware solution is to use branch prediction. In its simplest form,
this method predicts that branches will never be taken. Thus, instructions will be
fetched and decoded and operands fetched on the basis of the addition of 1 to the
value of the PC. These actions occur until it is known during the execution cycle
whether the branch in question will be taken. If the branch is not taken, the
instructions already in the pipeline due to the prediction will be allowed to pro-
ceed. If the branch is taken, the instructions following the branch instruction need
to be cancelled. Usually, the cancellation is done by inserting bubbles into the exe-
cution and write-back stages for these instructions. This is illustrated for the four-
instruction program in Figure 12-16. On the basis of the prediction that the branch
will not be taken, the two MOVA instructions after BZ are fetched, the first one is
decoded, and its operands are fetched. These actions take place in cycles 2 and 3,
In eyele 3, the condition upon which the branch is based has been evaluated, and it
is found that R1 = 0, Thus, the branch is to be taken. At the end of cycle 3, the PC
is sel to 20, and the instruction fetch in cyele 4 is performed using the new value of
the PC. In cycle 3, the fact that the branch is taken has been detected, and bubbles

R1 = 0 evaluated
—PC set to 20
1 2 3 4 5 f 7

1BZR1,18 IF | DOF| EX | WEB I_T‘iul:hange
2 MOVA RZ R3 IF | DOF, @ I—rw-:h.mgc

IMOVA R R2 IF ¢ (f‘j @

A MOVA RS R DOF | EX WE |

Branch detected
and bubbles launched

Instruction MOV R35, R6
fetched from target address

O FIGURE 12-16
Example of Branch Prediction with Branch Taken

556 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

IF
Adddress
Instruction
| fremory
Instruction
___________________________ IF
IM =R DOF
D01 Constant unit 32 % 32
f—=5H = IR, Register file
¥ with RO =0
| Instruction decoder A data B data (< BA
’ ' MAMB AA BACS P'-"i' | I |
1 0
SH MA ~vux alMux B[MB
B 3RS (D85, o 8] L 'L Bu_ﬂ‘%_l__*i;s B DOF
A OOOlahhs,y----eeee-——- _y------ Lot
EENE, -
BS P5 MW FS5H
| Address
i 1 | Data
iz o MEmMory
M ?4_ A B Data out
Modified 1] Mw
v =5 2= Hnction il)
- Ll Ty i o w E
ADDER C— i‘d;:ﬂ 7
W *1 Data
memory
_______ —EX_
WH
RW DA MD
MUX D
¥ Bus D
FW — D Data
DA 30530
Register file
with RO =10 WE

O FIGURE 12-17

Pipelined RISC: Branch Prediction

12-4 / The Complex Instruction Set Compurer [557

are inserted into the pipeline for instructions 2 and 3, Proceeding through the pipe-
line, these bubbles have the same effect as two NOP instructions. However,
because the NOPs are not present in the program, there is no delay or perfor-
mance penalty when the branch is not taken.

The branch prediction hardware is shown in Figure 12-17. Whether a branch
is taken is determined by looking at the selection values on the inputs to MUX C.
If the pair of inputs is 01, then a conditional branch is being taken. If the pair is 10,
then an unconditional JMR is occurring. If the pair is 11, then an unconditional
JMP or JML is taking place. On the other hand, if the pair of inputs is 00, then no
branch is occurring, Thus, a branch occurs for all combinations other than 00 (i.e.,
for at least one 1) on the pair of lines. Logically, this corresponds to the OR of the
lines, as shown in the figure. The output of the OR is inverted and then ANDed
with the RW and MW fields, so that the register file and the data memory cannot
be written for the instruction following the branch instruction if the branch is
taken. The inverted output is also ANDed with the BS field, so that a branch in the
next instruction is not executed. In order to cancel the second instruction following
the branch, the inverted OR output is ANDed with the /R output. This gives an
instruction of all 0's, for which the OPCODE field is defined as NOF. If the branch
is not taken, however, the inverted OR output is 1, and the IR and the three con-
trol fields remain unchanged, giving normal execution of the two instructions fol-
lowing the branch.

Branch prediction can also be done on the assumption that the branch is
taken. In this case, the instructions and operands must be fetched down the path of
the branch target. Thus, the branch target address must be computed and used for
fetching the instruction in the branch target location. In case the branch does not
take place, however, the updated value of the PC must also be saved. As a conse-
guence, this solution will require additional hardware to compute and store the
branch target address. Nevertheless, if branches are more likely to be taken than
not, the “branch taken™ prediction may yield a more favorable cost-performance
trade-off than the “branch not taken™ prediction.

For simplicity of presentation, we have treated the hardware solutions for
dealing with hazards one at a time. In an actual CPU, these solutions need to be
combined. In addition, other hazards, such as those associated with writing and
reading memory locations, need to be handled.

12-4 THE CoOMPLEX INSTRUCTION SET COMPUTER

CISC instruction set architectures are characterized by complex instructions that
are, at worst, impossible, and, at best, difficult to implement using a single cycle
computer or a single pass through a pipeline. A CISC ISA often employs a siz-
able number of addressing modes. Further, the ISA often employs variable
length instructions. The support for decision making via conditional branching is
also more sophisticated than the simple concepts of branch on zero register con-
tents and setting a register bit to 1 based on a comparison of two registers. In this
section, a basic architecture for a CISC is developed with the high-performance

558 [0 CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

of a RISC for simple instructions and most of the characteristics of a CISC ISA
as just described.

Suppose that we are to implement a CISC architecture, but we are inter-
ested in approaching a throughput of one instruction per short RISC clock cycle
for simple, frequently used instructions. To accomplish this goal, we use a pipe-
lined datapath and a combination of pipelined and microprogrammed control as
shown in Figure 12-18. An instruction is fetched into the IR and enters the Decode
and Operand Fetch stage. If it is a simple instruction that executes completely in a
single pass through the normal RISC pipeline, it is decoded and operand fetch occurs
as usual. On the other hand. if the instruction requires multiple microoperations or
multiple memory accesses in sequence, the decode stage produces a microcode
address for the microcode ROM and replaces the usual decoder outputs with control
values from the mictocode ROM. Execution of microinstructions from the ROM,
selected by the microprogram counter, continues until the execution of the instruc-
tion is completed.

Recall that to execute a sequence of microinstructions, it is often necessary
to have temporary registers in which to store information. An organization of
this type will frequently supply temporary registers with a convenient mechanism
for switching between temporary registers and the usual programmer-accessible
register resources.

The preceding organization supports an architecture that has combined
CISC-RISC properties. It illustrate that pipelines and microprograms can be com-
patible and need not be viewed as mutually exclusive. The most frequent use of
such a combined architecture allows existing software designed for a CISC to
take advantage of a RISC architecture while preserving the existing ISA. The
CISC-RISC architecture is a combination of concepts from the multiple-cycle
computer in Chapter 10, the RISC CPU in the previous section, and the micro-
programming concept introduced briefly in Chapter 10. This combination of con-
cepts makes sense, since the CISC CPU executes instructions using multiple
passes through the RISC datapath pipeline. To sequence these multiple-pass

¥

Microprogram Instruction fetch
Counter
Decade & Operand Fetch
Control ROM
Execute
Write-back

O FIGURE 12-18
Combined CISC-RISC Organization

12-4 / The Complex Instruction Set Computer [559

instruction implementations, a sequential control of considerable complexity is
needed, so microprogrammed control is chosen,

The development of the architecture begins with some minor modifications
to the RISC 15A to oblain some capabilities desirable in the CISC ISA. Next. the
datapath is modified to support the ISA changes. These include modification of the
Constant Unit, addition of a Condition Code register CC, and deletion of the hard-
ware for supporting the SLT instruction., Further, the Register file addressing logic
is modified to provide addressing for 16 temporary registers for multiple-pass use
of the datapath with 16 registers remaining in the storage resources, This is in con-
trast to the 32 registers in the storage resources for the RISC. The next step is to
adapt the RISC control to work with the microprogrammed control in implement-
ing the multiple pass instructions. Finally, the microprogrammed control itself is
developed and its operation is illustrated by the implementation of three CISC
instructions that characterize a CISC ISA,

ISA Modifications

The first modification to the RISC ISA is the addition of a new format for branch
instructions. In terms of the instructions provided in the CISC, it is desirable to
have the capability to compare the contents of two source registers and branch,
indicaling the relationship between the contents of the two registers. To perform
such a comparison, a format with two source register fields 5A and 5B and a target
offset are required. Referring to Figure 12-7, addition of the SB field to the branch
format reduces the length of the target offset from 15 bits to 10 bits. The resulting
Branch 2 format added for the CISC instructions is shown in Figure 12-19,

K] 2524 22019 15 14 9 il
Three-register type | OPCODE | DR 5A b1k
Two-register type | OPCODE DR S5A Immediate
Branch 1| QOPCODE DR SA Long target oflzet
Branch 2| OPCODE DR SA 5B Short target offsct

O FIGURE 12-19
CISC CPU Instruction Formals

560 0O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

The second modification is to partition the Register ﬁle to]:rmvnje addressing
for 16 temporary registers for multiple-pass use of the datapath, With the partition,
there are only 16 registers remaining in the storage resources. Rather than modify
all of the register address fields in the instruction formats, we will simply ignore the
most significant bit of these fields, For example, only the rightmost four bits of the
field DR will be used. DR, will be ignored.

The third medification to the RISC ISA is the addition of condition codes
(also called flags) as discussed in Chapter 11. The condition codes provided are
designed specifically to be used in combination with branch on zero and branch on
nonzero in implementing instructions that will provide a wide spectrum of deci-
sions, such as greater than, less than, less than or equal to, etc. for both signed and
unsigned integers, The codes are zero (£), negative (N), carry (C). overflow (¥,
and L (less than). The first four are stored versions of the status outputs of the
Function Unit. The less than (L) bit is the exclusive OR of Z and V which is usetful
in easily implementing particular decisions. The inclusion of the L bit in the condi-
tion codes eliminates the need for the SLT instruction.

To make the most effective use of these condition codes, it is useful to control
whether or not they are modified for a particular microoperation execution from
the instructions. Examination of the RISC instruction codes in Table 12-1 shows
that bit 4 (third from the left) of the opcode is 0 for the operations down through
instruction LSL. This bit can be used for these instructions to control whether the
condition codes are affected by the instruction. If the bit is 1, then the condition
code values are affected by the execution of the instruction. If it is (), then the con-
dition codes will not be affected. This permits flexible use of the condition codes in
making decisions at both the ISA level and in the microcode.

Datapath Modifications

Several changes to the datapath are required to support the ISA modifications.
These changes will be covered beginning with the datapath components in the
DOF stage in Figure 12-20).

First, modifications are made to the Constant unit to handle the change in the
length of the target offset. Logic added to the Constant unit extracts a constant,
IMg = IRqy, from constant IM. Sign extension is applied to IMs to obtain a 32-bit
word. Also, for use in comparisons with condition code values, an 8-bit constant
CA is provided from the microinstruction register, MIR, in the microprogrammed
control. This constant is zero-filled to form a 32-bit word. The CS control field for
the Constant unit is expanded to two bits to perform selection from among the
four possible constant sources.

Second, the Register address logic from the multiple-cycle computer in
Chapter 10 is added to the address inputs of the Register file. The purpose of this
change is to support the ISA modification that provides 16 temporary registers and
16 registers that are a part of the storage resources. An additional mode supports the
use of DX as a register file source address with BX as the corresponding register file
destination address. This is necessary to capture the contents for R[DR] for use in
destination address mode calculations.

12-4 { The Complex Instruction Set Computer [561

Instruction
memary

Instruction

B L 3 32 %32
| file
¥ R ; : with RD =0
I Instnictson decader) i .
G A] MIR 35
L
MI % > | maux
| T TREE
[y S N Y N N R
BS PS5 MW F3 i 5H
| Address
A Y ¥ Daia
SH 2r N B STy
F =i Drata out
7 2 1 Modified 1MW
R CIEH funcion Tor
Wit it !.p,Wny:.
Adder -p-)’l.ﬂfi.n.wy e
F [»ata
ZI M| memory
LER B Ex
3 e e ot T B I o o Stk
WH
7, ¥
W FDA MD e | Y Y
To Mux A HD""ML‘}LIJI
Bus [¥
FOW == | 13 Dt
FDA == 33750547
Raptster Tl
with R} =k wWE

O FIGURE 12-20
Pipelined CISC CPU

Third, a number of changes are made to support the modification adding con-
dition codes. In the DOF stage, an additional port is added on MUX A in order to
provide access to CC. the stored condition codes, for storage in temporary registers
or comparison to constant values. In the EX stage, the condition code bit L (less
than) is implemented and the condition code register CC is added to the pipeline
platform. The new control signal LC determines whether CC is loaded for the exe-
cution of a specific microoperation using a function unit operation. In the WB
stage, the logic for support of the SLT instruction is replaced by a zero-filled CC
value, which is passed to the new port on MUX A. Since the new condition code
structure provides support for the same decision making as SLT did and more, sup-

port for SLT is no longer needed.

562 [0 CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

Control Unit Modifications

The addition of a microprogrammed control to the control unit to support instrue-
tion implementation using multiple passes through the pipeline causes significant
changes to the existing control as shown in Figure 12-20. The microprogrammed
control 1s a part of the instruction decoding hardware in the DOF stage, but it inter-
acts with other parts of the control as well. For convenience, it will be described
separately.

A quick overview of the execution of a multiple-pass instruction provides a
perspective for the control unit changes. The PC points to the instruction in the
Instruction memory. The instruction is fetched in the IF stage, and on the next
clock edge, it is loaded into the /R and the PC is updated. The instruction is identi-
fied as a multiple-pass instruction from its opcode. Decoding of the opcode
changes signal MI to 1 to indicate that this instruction is to use the micropro-
grammed control. The decoder also produces an 8-bit starting address, SA, that
identifies the beginning of the microprogram in the Microcode ROM. Since multi-
ple passes through the pipeline are needed to implement the instruction, the load-
ing of subsequent instructions into the /R and further updating of the PC must be
prevented. A signal M5 produced by the microprogrammed control logic becomes
1 and stalls the PC and the IR. This prevents the PC from incrementing, but per-
mits PC + 1 to continue down the pipeline into PC; and PC; for use in a branch.
This stall remains until the multiple pass instruction has been executed or until
there is branch or jump action on the PC. Also, when MI = 1, most of the fields of
the decoded instruction are replaced with fields of the current microinstruction,
which is a decoded NOP (no operation). This 31-bit field replacement, performed
by MUX [, prevents the instruction itself from causing any direct actions. Some
changes have been made to the control word to control modified datapath
resources. Fields CS and MA have been expanded to two bits each, and field LC
has been added. At this point, the microprogrammed control is now controlling the
pipeline and supplies a series of microinstructions {control words) to implement
the instruction execution. The control word format follows that for the multiple-
cycle computer and includes fields such as SH, AX, BX, and DX. DX is modified
to match the register address changes described for the datapath. In addition, the
microprogrammed control has to interact with the datapath in order to perform
decisions. This interaction includes application of the constant CA, use of the con-
dition codes CC, and use of the zero detect signal Z.

To support the operations just discussed, the following changes are made to
the control unit:

1. the addition of the stall signal MS to the PC, PC_;, and IR,
. changes in the instruction decoder to produce MI and 54,
. expansion of the fields CS and MA to two bits,

. addition of MUX [, and

. addition of control fields AX, BX, and DX, and LC.

n e L B

The definitions of new and modified control fields are given in Table 12-4,

12-4 / The Complex Instruction Set Computer O 563

0 TABLE 12-4

Added or Modified Control Word {Microinstruction) Fields for CISC

Control Fields Register Fields cs MA LC

MZ CA BS P i Code . Code Code

2h 8h 2b S Action 5h Action 2h Action 2b Action Code
See Mext See AX, BX EIM 00 AData 00 HoldCC 0
Table Address Table se fM 01 PO, 01 Load CC 1
12-3 orCon- 122 R[SA],R[SB] o0x sefMy 10 0ICC 10

stant Rys o =HCA 11
Ry 1F
DX

Source R[DR] 00
and Dest. R[SB]
Dest R[DR] 0

with X0
R 10
Rj 1F

Except for the addition of the microprogrammed control discussed in the
next section, this completes the changes to the control unit.

Microprogrammed Control

A block diagram for the microprogrammed control and the format for microin-
structions appear in Figure 12-21. The control is centered about the Microcode
ROM, which has an 8-bit address and stores up to 256 41-bit microinstructions,
The microprogram counter MC stores the address corresponding to the current
microinstruction stored in the microninstruction register, MIR. The address for
the ROM is provided by MUX £, which selects from the incremented MC, the
jump address obtained from the microinstruction, CA, the prior value of the
jump address, CA_;, and the starting address from the instruction decoeder in the
control unit, SA, Table 12-53 defines the 2-bit select input ME for MUX E and
stall bit, M5, in terms of the new control field MZ plus other variables. This func-
tion is implemented by the Microaddress Control logic. To set the context for the
discussion, in location 0 of the ROM, the IDLE state 0 for the microprogrammed
control contains a microinstruction that is a NOP consisting of all zeros. This
microinstruction has MZ = 0 and CA = (). From Table 12-3, with MI = 0, the
microprogram address is CA = (), causing the control to remain in this state until

564 [0 CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

SA CACA_, - Hie
) {3 i'ﬂ L e MI
1 2z 3| ME

[—— MZ
Microaddress | MZ_,

Mux E - conlrel i Ps

¥

Address
MMicrocode ROM

Data

4039 38 N300 25MBIBNM0I19 161514131211 76 210

M R M FIM| o [L| M [M :
- CA ol 5 8 e b] e [et] o IR BX |

]

O FIGURE 12-21
Pipelined CISC CPU: Microprogrammed Control

MI = 1, With MI = 1, starting address 8A is applied to letch the first microinstruc-
tion of the microprogram for the complex instruction being held in IR, In the
control unit, MI = 1 also switches MUX [from the normal control word coming
from the decoder to the 31-bit MIR portion that is a NOP instruction. In addi-
tion, the output MS from the Microaddress control becomes 1, stalling the PC,
PC_,, and the IR in the main control. At the next clock edge, the microinstruc-
tion fetched from the starting address SA enters the MIR, and the pipeline is
now controlled by the microprogram.

In Figure 12-21, two pipeline registers are required as a part of the micropro-
grammed control. The stored pipeline values, MZ_| and CA_;, are required for the
execution of a conditional microbranch since the value of Z to be tested occurs
during the execution cycle for the microbranch instruction, one clock cycle after it
enters the MIR,

During the execution of the microprogram. the microaddress is controlled
by MZ, MZ_;, M1, PS, and Z. For MZ_, = 11, MZ = 01 since the microinstruction

12-4 / The Complex Instruction Set Computer [563

following a conditional microbranch must be a NOF. Under these conditions, the
ME walues are controlled by P8 and Z with M§ = 1. For PS and Z having opposite
values, a conditional branch to the microaddress value from CA_; occurs, Other-
wise, for MZ_; = 11 and MZ = 01, the next microaddress becomes the incre-
mented value of MC.

For MZ_, # 11, MZ, MI, and PS control the microaddress. For MZ = 00, the
values of ME and MS are controlled by ML For MI = 0, the next microaddress is
CA and MS = (), corresponding to the idle state for the microprogrammed control.
For MI = 1, the next microaddress is SA and MS = 1, selecting the next microin-
struction from the Microcode ROM and stalling the first two pipeline platforms.
For MZ = (11, the next microaddress is the incremented value of MC, advancing
execution to the next microinstruction in sequence. For MZ = 10, an unconditional
jump is performed in the microcode control and the value of MS is controlled by
PS. PS = 1 causes MS = 1, continuing microprogram execution. PS = 0 forces M§ =
0, removing the stall, and returning control to the pipeline. This causes MI to
become 0 (if the new instruction is not also a complex one). If CA = 0, the micro-
programmed control is locked the IDLE state until MI = 1. In order for this to
happen, the final instruction in the microprogram must have MZ = 10, PS = 0, and
CA =0

O TABLE 12-5
Address Control

Inputs Outputs

MZ, MZ M Ps Z ME, ME, M5 Register Transfer Due to ME

11 01 X 0 0 0 0 1 PS-Z:MCe—MC+1
11 m X 0 1 0 1 1 PS-Z: MC+CA_,
1 o X 1 0 0 1 1 PS-Z:MC«CA_,
11 o0 X 1 1 0 0 0 PS-Z:MCeMC+1
0X 01 X X X 0 0 1 MCeMC+1

X 01 X X X 0 0 1 MCeMC+1

XX 0 0 X X 1 0 0 MCe—CA

XX o 1 X X 0 1 1 MCeSA

Woomw X 0 X 1 0 0 PS:MC«CA

XX 10 X 1 X 1 0 1 PS:MCeCA

W 11 X X X 0 0 1 MCeMC+1

566 O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

Microprograms for Complex Instructions

Three examples illustrate complex instructions implemented by using the CISC
capabilities provided by the design just completed. The resulting microprograms
are given in Table 12-6.

EXAMPLE 12-1 LD Instruction with Indirect Indexed Addressing (LII)

The LII instruction adds the target offset to the contents of a register that is being
used as an index register. In the indirection step, the indexed address formed is
then used to fetch the effective address from memory. Finally, the effective address
is used to fetch the operand from memory. The opcode for this instruction is
0110001, and the instruction uses the Immediate format with the SA register field
and a 15-bit target offset, When the LII instruction is fetched and appears in the
IR, the instruction decoder sets MI equal to 1 and provides the microcode address
symbolically represented by LIID in Table 12-6. The first microinstruction to be
executed is the one appearing in the IDLE address. This microoperation executes a
MNOP in the datapath and memory, but in the presence of MI = 1, the address con-
trol selects SA as the next microinstruction address, thereby leaving the IDLE
state. The LII0 microinstruction forms the indexed address and increments the
address in MC to fetch the next microinstruction LII1. This causes the NOP micro-
instruction in address LII1 to be fetched for execution in the pipeline. This NOP
has been inserted, since the result of the microinstruction in LIID is not placed in
Ry until the WB stage. The next microinstruction in LII2 fetches the effective
address from memory. A NOP is required next, due the clock cycle delay in writing
the effective address to K7, The microinstruction in LIT4 applies the effective
address to the memory to obtain the operand and place it in the destination regis-
ter R[DR]. Since this completes the LIT implementation, the microprogrammed
control state in MC returns to [IDLE and the next instruction following LIT is
tetched from the instruction memory by using the address in the PC. |

In Table 12-6, this sequence of microinstructions is described in the Action
column by register transfer statements, and symbolic names are provided for the
addresses of the microinstructions in the Microcode ROM. The remainder of the
columns in the table provide the coding of the microinstruction fields. These codes
are selected from Tables 10-12. 12-2, 12-3, and 12-5, to implement the register
transfers. Of particular note is the appearance of MC = 10, PS =0, and CA = IDLE
(00) in microinstruction LII4 causing the microprogram control to return to IDLE
and program control to return to the pipeline control.

EXAMPLE 12-2 Branch on Less Than or Equal to (BLE)

The BLE instruction compares the contents of registers R[SA] and R[SB]. If
R[SA] is less than or equal to R[SB], then the PC branches to PC + 1 plus the sign-
extended Short Target Offset (IM;). Otherwise, the incremented PC is used. The
opcode for the instruction is 1100101,

12-4 / The Complex Instruction Set Computer [567

O TABLE 12-6
Example Microprograms for CISC Architecture

Microinstructions

R] P M L M

Action Address MZ CA WDXDBSS WFSCMAB AXBXCS
Shared Microinstructions
MI MC—SAMIMC—00| IDLE |00 00 00 |00] O 00 O f O (00000000000
MCe—MC+1({NOP) Arbitrary| 01 XX | 0|00 O (00O O (O] 0|00 0 |00 0000
Load Indirect Indexed (LII)
Ry RISA] +2f IM LIl (01 0 1010] 0 [00{ 0] O |2 {0001 |O0] {00
MC« MC+1 (NOP) LIIl |01 OO0 (0000|0000 |0)0]|00) 0|00 0000
Ry, M[R ;) L2 |01 o0 (1ji1)1|o0jo| 0 |0)0|00]) 0100000
MCe—MC +1 (NOP) LII3 (01| OO 000(0 (00|00 [0f0)00 0|00 0000
RIDR]«—M[R] LIl4 (10| IDLE |1 (01| 1 |00{0O| O |0[0|00 0|11 {0000
Compare Less Than or Equal To (BLE)
R[SA] - R[SE],
MC«—MC+1{NOP) BLE1L | i) O |00 O [O0f 0| O [0 0|00 0 000000
By CC A 11000 BLEZ |0 18 L[IF[O |00 0| O (80|10 1 {00)00(11
MC«— MC+1(NOP) BLE3 (01| o0 |0 (000|000 0 |0]0|00[0 0000
(R ML et L BLE4 |11 | BLE7 | 0|00/ 0 [00|1| 0 [0|0|00| 0 [1F|00|00
else MC « MC + 1
MCe—=MC +1 (NOF) BLE3 |1 00 O 00f 0 (00|00 | 0[O0 0|00 0000
MC+—IDLE BLE6 (00| IDLE | O (00| O [00| 0| O |0|0|00(0 00|00
PO (PO T IMy, BLE7 |10 IDLE |0 |00 0 [11]0| 0 [o]0{o1] 1 [00[oo|10
MC—IDLE
Move Memory Block (MME)

R+ R[SB] MMBO |01] 1|00) o Do 0| O {CLOT00| 0 (000000
MC«—MC+1(NOP) MMB1 |01 i) Q|00 O [O0) 0] O[O0 |00] 0| 00)|00)00
Rye—Ry,—1 MMB2Z |01 M 1 {10{ 00000 [5|0[00f1 000011
Ri;e RIDR] MMB3 |01 00 |1 |oojo|oojo| o |Cloloo|o 00|11 00
Rige—=R[SA] + Ry MMB4 |01 00 P{12) OO0 O O 2] 0 (000 (001000
Ryg+Ry;+ Ry MMB5 |01 o0 | 113/ 0 |o0jo| 0 (2|0(00f0 |11]|10|00
Ry MR] MMB6 (01| 00 |1 [14[1 [o0j0| 0 |0|0|00|0|12{00|00
MCe—MC+ 1 {NOP) MMET |01 00 O {00 O [00[0] 000|000 | 00] 00|00
MR g1 Ry MMES |01 00 | O [00| 0 (00[0 1 [Of0 000 13]1400
if (R #0MC—MMB2 MMBY (11 |MMB2Z| 0 [00) O |00 1| O |0 1 (00 0 100000
MC—MC+1(NOP) MMEBE10 | 01 00 O 00) O (00)0) O |00 |00 0 [00]00)00
MCe—IDLE MMBEI1 [10| IDLE | O [00{ O (00| 0 O |00 {00 0[O0 0000

568 [0 CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

The register transfers for the instruction are given in the Action column of
Table 12-6. In microinstruction BLEO, R[SB] is subtracted from R[SA] and the
condition codes L through ¥ are captured in register CC. Due to the one-cycle
delay in writing to CC, a NOP is required in microinstruction BLEL. R[SA] is less
than or equal to R[SB]if (L + Z) =1 (+ is OR in this expression). Thus, of the five
condition code bits, only L and Z are of interest. So in microinstruction BLEZ2, the
least significant three bits of CC are masked out using the mask 11000 ANDed
with CC. The result is placed in register K3, and, in BLE3, another NOF is
required waiting for A3 to be written. In BLE4, a microbranch on R nonzero
occurs. If Ry, is nonzero, then L + Z = 1 giving R[SA] less than or equal to R[SB].
Otherwise, both L and Z are 0 indicating R[SA] is not less than or equal to R[SB].
Due to the microbranch, a NOP is required in BLES. The connections to MUX E
require only one NOP after a microbranch instead of the two NOPs needed for
the conditional branch in the main control. If the branch is not taken, the next
microinstruction BLE6 executes, returning MC to IDLE and reactivating the pipe-
line control to execute the next instruction. If the branch is taken, microinstruction
BLE7 is executed, placing PC + 1 + BrA into the PC for fetching the next instruc-
tion when the microinstruction reaches the EX stage. Note that such a branch on
the PC can take place only after MS becomes 0 and the pipeline is reactivated. In
this regard, a control hazard exists for this instruction in the main control, so it
must be followed by a NOP. The codes for the microinstruction fields appear in
Table 12-6 N

EXAMPLE 12-3 Move Memory Block (MMB)

The MMB instruction copies a block of information from one set of contiguous loca-
tions in memory to another. It has opcode 0100011 and uses the three-register type
format. Register R[SA| specifies address A, the beginning location of the source
block in memory, and register R[DR] specifies address B, the beginning location of
the destination block, R[SB] gives the number n of words in the block,

The register transfers for the instruction are given in the Action column of
Table 12-6. In microinstruction MMBO, R[SB] is loaded into R 5. MMBI contains a
NOP waiting for R16 to be written. In MMB2, Ry; is decremented, providing an
index with » values, n — 1 down to 0, for use in addressing the copying of n words.
Since R[DR] is a destination register, it is ordinarily not available as a source. But
to do address manipulation for the destination locations, it is necessary for its value
be placed in a register that can act as a source. Thus, in MMB3, the value of R[DR]
is copied to register R; by using the register code DX = 00000, which treats R[DR]
as the source and the register specified in the BX field, R4, as the destination. In
microinstructions MMB4 and MMB3, R, is added to R[SA] and to R[SB] to serve
as pointers to the addresses in the blocks. Due to these operations, the words in the
blocks are transferred from the highest location first, In MMBG, the first word is
transferred from the first source address in memory to temporary register . In
MMB7, a NOP appears to permit the writing of the value in Ry by MMB6 before
the use of the value by MMBR, In MMBE, the first word is transferred from Ry Lo
the first destination address in memory. In MMB9, a branch on zero is done on the

12-5 / More on Design [0 569

contents of R, to determine if all of the words in the block have been transferred.
If not, then MM2 is the next microaddress in which the next word transfer begins.
If R, equals zero, the next microinstruction is the NOP placed in MMB10 due to
the branch. The final microinstruction in MMB11 returns the MC to IDLE and
returns execution back to the pipeline control.

The codes for the microinstructions appear in Table 12-6. The code consists of
simple register and memory transfers with a single branch to provide the looping
capability and NOPs to deal with data and control hazards. H

12-5 MoRre oN DESIGN

The two designs considered in this chapter represent two different ISAs and two
different supporting CPU organizations. The RISC architecture matches well with
the pipelined control organization because of the simplicity of the instructions. Due
to the need for high performance, the modern CISC architecture presented is built
upon the RISC foundation. In this section, we will deal with additional features for
speeding up the fundamental RISC pipeline. Finally, we relate the two organiza-
tions to more general digital systems design.

High-Performance CPU Concepts

Among the various methods used to design high-speed CPUs are multiple units orga-
nized as a pipeline-parallel structure, superpipelines, and superscalar architectures.

Consider the case in which an operation takes multiple clock cycles o exe-
cute, but the instruction fetch and write-back operations can be handled in a single
cycle. Then it is possible to initiate an instruction every clock cycle, but not possi-
ble to complete the execution of an instruction every cycle. In such a situation, the
performance of the CPU can be substantially improved by having multiple execu-
tion units in parallel. A high-level block diagram for this kind of system is shown
in Figure 12-22. The instruction fetch, decoding, and operand fetch are carried out
in the I-unit pipeline. In addition, the I-unit handles branches. When decoding of a
nonbranch instruction has been completed, the instruction and operands are issied
to the appropriate E-unit. When execution of the instruction is completed by the
E-unit, the write-back to the register file occurs. If a memory access is required,
then the D-unit is used to execute the memory write. If the operation is a store, it
goes immediately to the D-unit. Note that the actual execution units may be
microprogrammed and may also have internal pipelines.

Suppose that a sequence of three instructions—say, a multiplication, a 16-bit
shift, and an addition—has no data hazards. Suppose further that there is a single
pipelined E-unit that performs all of these operations, which take 17, 8, and 2 clock
cycles, respectively, and that both the multiplication and the shift require multiple
passes through portions of the E-unit pipeline. This situation allows only one clock
cycle of overlap between pairs of the three instructions. Thus, the fastest that the
sequence of operations executes in the E-unit is 17 + 8 + 2 — 2 = 25 clock cycles.

570 0O CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

But with an E-unit for each operation, these operations can be executed in max(17,
1+ 8,2 + 2) clock cycles, which equals 17 clock cycles. The additional 1 and 2 are
due to the issuing of one instruction per clock cycle to the E-unit set. The resulting
execution throughput is improved by a factor of 25/17 = 1.5,

In all of the methods considered thus far, the peak throughput possible is one
instruction per clock cycle. With this limitation, it is desirable to maximize the clock
rate by minimizing the maximum pipeline stage delay. If, as a consequence, a large
number of pipeline stages is used, the CPU is said to be superpipelined. A superpipe-
lined CPU will generally have a very high clock frequency, in the range of a GHz. In
such an orpanization, however, handling hazards effectively is critical, since any
stalling or reinitialization of the pipeline will degrade the performance of the CPL
significantly. Also, as more pipeline stages are added, further dividing up the combi-
national logic, the setup and propagation delay times of the flip-flops begin to domi-
nate the platform-to-platform delay and the speed of the clock. The improvement

[-LINIT

E-UNIT E-LIKTT E-UNIT

f1|r1r1r

ERER

Register
D-UNIT file

L

O FIGURE 12-22
Multiple Execution Unit Organization

12-5 / More on Design O 571

Instruction fetch
Instruction issue
Decode and Drecode and
operand fetch operand fetch
Execute Exacute 1
Write-back Execute 2
Integer E-unit +
Execute 3
Write-back

Floating-point E-unit

O FIGURE 12-23
Superscalar Organization

achieved is less, and when hazards are taken into account, the performance may
actually become worse rather than betler,

For fast execution, an alternative to superpipelining is the use of a superscalar
organization. The goal of this kind of organization is to have a peak rate of initiat-
ing instructions in excess of one instruction per clock cycle. A superscalar CPU that
fetches a pair of instructions simultaneously by using a double-word wide path
from instruction memory is illustrated in Figure 12-23. The processor checks for
hazards among the instructions, as well as available execution units in the instruc-
tion issue stage of the pipeline. If there are hazards or busy execution units corres-
ponding to the first instruction, then both instructions are held for later issuing. If
the first instruction has no hazard and its E-unit is available, but there is a hazard or
no available E-unit for the second instruction, then only the first instruction is
issued. Otherwise, both instructions are issued in parallel. If a given superscalar
architecture has the ability to issue up to four instructions simultancously, then its

572 [0 CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

peak executlun rate 1s ilour mstructions per cinci(cycle. If the clock cycle is 5 ns,
then such a CPU has a peak execution rate of 800 MIPS. Note that the hazard
checking for instructions in the execution stages and those in the issue stage
become very complex as the maximum number of instructions issued simulta-
neously is increased. The resulting hardware complexity has the potential to
increase the clock cycle length, so the trade-offs in such a design need to be examined
very carefully.

We close this section with two observations. First, as the quest for better per-
formance causes us to design increasingly complex organizations, hazards cause
the order of the instructions to play a more important role in the throughput that
is achievable. Also, improved performance can be achieved by reducing the num-
ber of hazard-producing instructions, such as branches. As a consequence, to fully
exploit the performance capabilities of the hardware, the assembly language pro-
grammer and the compiler writer need to be very knowledgeable about the
behavior of not only the instruction set architecture, but also the underlying orga-
nization of the hardware of the CPUL

When multiple execution units are involved, very often the CPU design we have
been considering here actually becomes the design for the entire processor, as is
shown for the generic computer. This is apparent in the superscalar organization in
Figure 12-23, which contains the floating-point unit (FPU). The FPLU, the MMU, and
the portion of the internal cache that handles data are effectively tvpes of E-units. The
portion of the internal cache that handles the instructions can be viewed as a part of
the I-Unit that fetches instructions. Thus, in the quest for higher and higher through-
put, the realm of the CPU becomes that of the processor, as in the generic compulter,

Recent Architectural Innovations

Beyond the concepls presented in the previous section, two general trends have
become apparent in one of the most recent high-performance architectures. The
first trend is the development of compilers and hardware architectures that permit
the compiler to explicitly identify to the hardware instructions that can be executed
in parallel. In this approach, the identification of parallelism typically done in hard-
ware in the superscalar architecture has now been moved to a fair degree into the
compiler. This releases hardware for other uses, notably more execution units and
larger register files. The second trend is the use of techniques that allow the proces-
sor to avoid waiting for branches to be taken and for data values to become avail-
able. Three techniques that support this trend will be discussed in the remainder of
this section.

Instead of waiting for a branch to be taken, the processor will execute both
sides of the branch and produce results for both sides. When the results of the
branch becomes available, the right result is selected and the computation pro-
ceeds. Thus, there is no delay waiting for a branch, significantly improving perfor-
mance for long pipelines. This simple approach is referred to as predication and
uses special 1-bit registers referred to as predicate registers that determine which
result is used when the branch outcome is known,

12-5 / More on Design 0O 573

Instead of waiting to load data from memory until it is known that the data is
needed, speculative loading of data from memory is performed before it is known
for sure whether or not the data is needed. The reason for use of this technique is
to avoid the relatively long delay required to fetch an operand from memory. If the
data that is speculatively fetched turns out to be the data needed, then the data will
be available and the computation can proceed immediately without having to wait
for 4 memory access to get the data.

Instead of waiting for data to become available, data speculation uses methods
to predict data values and proceeds to compute using these values. When the actual
value becomes known and matches the predicted value, then the result produced
from the predicted value can be used to carry forward the computation. If the
actual value and the predicted value differ, then the result based on the predicted
value is discarded and the actual value is used to continue computation. An
example of data speculation is permitting a value to be loaded from memory before
a store into the same memory location occurring earlier in the program has been
executed. In this case, it is predicted that the store will not change the value of the
data in memory, so that the value loaded before the store will be vahid. If, at the
time the store occurs, the loaded value is not valid, the result of computation using
it is discarded.

All of these techniques perform operations or sequences of operations for
which results are discarded with some frequency. Thus, there is “wasted” computa-
tion. To be able to do large amounts of useful computation, as well as the wasted
computation, more parallel resources, as well as specialized hardware for imple-
menting the techniques, are required. The payoff in return for the cost of these
resources is potentially higher performance,

Digital Systems

The two sizable digital system designs we have examined in this chapter are general-
purpose CPUs. How does their design relate to that of other digital systems? First of
all, each digital system has an architecture. Although that architecture may not in
any way deal with instructions to be executed, it is likely that it still can be described
by using register transfer descriptions and, possibly, one or more algorithmic state
machines. On the other hand, it might have instructions, but they may be quite dif-
ferent from those for a CPU. The system may have no datapath at all or may have
several datapaths. There is likely to be some form of control unit. and there may be
multiple control units that interact. The system may or may not include memories.
Thus, the total spectrum of digital systems has a very wide range of architectural
possibilities.

S0, what is the connection of the general digital system to the content of this
chapter? Simply stated, the connection is design techniques. To illustrate, consider
that we have shown in detail how a system with instructions can be implemented
using a datapath and a control unit. From here, it is relatively easy to implement a
simpler system without instructions. We have shown how high speeds can be
achieved by using pipelines or parallel execution units. Thus, if the poal of a system

574 O CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

is high speed, then pipelining or parallel units are techniques to consider. For
example, one of the authors, in an example design of a system for implementing a
portion of a USB transmitter (see section 13-4), used a pipelined datapath with a
control that involved both pipeline and conventional sequential control. We have
shown how microprogramming has been used to implement controls for complex
functions carried out in a pipeline. If a system has one or more very complex func-
tions, whether pipelined, programmable, or not, then a microprogrammed control
is a possibility.

12-6 CHAPTER SUMMARY

This chapter has covered the design of two processors—one for a reduced
instruction set computer (RISC) and one for a complex instruction set computer
CISC. As a prelude to the design of these processors, the chapter began with an
illustration of a pipelined datapath. The pipeline concept enables operations to
be performed with clock [requencies and throughput not achievable with the
same processing components in a conventional datapath. The pipeline execution
pattern diagram was introduced for visualizing the behavior of a pipeline and
estimating its peak performance. The problem of the low clock frequency of the
single-cyele computer was addressed by adding a pipelined control unit to the
datapath.

Mext, we examined a RISC design with a pipelined datapath and control unit.
Based on the single-cycle computer in Chapter 10, the RISC ISA is characterized
by a single instruction length, a limited number of instructions with only a few
addressing modes, and memory access restricted to load and store operations. Most
RISC operations are simple in the sense that, in a conventional architecture, they
can be executed using a single microoperation.

The RISC ISA is implemented by using a modified version of the pipelined
datapath in Figure 12-2, Modifications include an increase of the word length to 32
bits, doubling of the number of registers in the register file, and replacement of the
shifter in the function unit with a barrel shifter. Likewise, a modified version of the
control unit in Figure 12-4 is used. Confrol changes were performed to accommo-
date the datapath changes and to handle branches and jumps in a pipeline environ-
ment. After completion of the basic design, consideration was given to data hazard
and control hazard problems. We examined each type of hazard, as well as soft-
ware and hardware solutions for each.

The ISA of the CISC has the potential for performing many distinet opera-
tions, with memory access supported by several addressing modes. The CISC
also has operations that are complex in the sense that they require many clock
cycles for their execution. The CISC permits many of the instructions to perform
memory accesses and is characterized by complex conditional branching sup-
ported by condition codes (status bits). Although, in general, a CISC ISA per-
mits multiple instruction lengths, this feature is not provided by the example
architecture.

Problems 0O 575

To provide high throughput, the RISC architecture serves as the core of the
CISC architecture. Simple instructions can be executed at the RISC throughput,
with complex instructions, executed by multiple passes through the RISC pipeline,
reducing overall throughput. RISC datapath modification provided registers for
temporary operand storage and condition code storage. Changes to the control
unit were required to support these datapath changes. The primary control unit
modification, however, was the addition of the microprogram control for execution
of complex instructions. Added changes to the RISC control unit were required to
integrate the microprogram control into the control pipeline. Examples of micro-
programs for three complex instructions were provided.

After completing the CISC and RISC designs, we touched on some advanced
concepts, including parallel execution units, superpipelined CPUs, superscalar
CPUs, and predictive and speculative techniques for high performance. Finally, we
related the design techniques in this chapter to more general digital system design.

REFERENCES

L. Maxo, M. M. Computer System Architeciure, 3rd Ed. Englewood Cliffs, NY:
Prentice Hall, 1993.

2. PATTERSON, D. A., aND J. L. HENNESSY Computer Organization and Design:
The Hardware/Software Interface, 2nd ed. San Francisco, CA: Morgan
Kaufmann, 1998,

3. HewmMEssy, I L., AaND D, A, PATTERSON Computer Architecture: A Quantitative
Approach, 2nd ed. San Francisco, CA: Morgan Kaufmann, 1996,

4. DIETMEYER, D. L., Logic Design of Digital Systems, 3rd ed. Boston, MA:
Allyn-Bacon, 1985,

5. Kawg, G, Axp) HEmnricH MIPS RISC Architecture. Englewood Cliffs, NI:
Prentice Hall, 1992,

6. SPARC INTERNATIONAL, INC. The SPARC Architecture Manual: Version 8.
Englewood Cliffs, NI: Prentice Hall, 1992.

7. WEIss, 8., Anp I, E, SMITH POWER and PowerPC. San Mateo, CA: Morgan
Kaufmann, 1994,

& Wrant, G., aND T. HaMMERSTROM How Microprocessors Work. Emeryville,
CA: Ziff-Davis Press, 1994,

9. Heuring, V., anD H. JorRDAN Computer Systems Design and Architecture.
Upper Saddle River, NI: Prentice-Hall.1997.

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates a
solution is available on the Companion Website for the text.

576 O CHAPTER 12/ RISC AND CISC CENTRAL PROCESSING UNITS

i

12-2,

12-3,

12-4.

12-5.

12-6.

12-7,

12-8.
12-9,

12-10.

| i

|
A pipe !ned Jatapatlh 15 similar to that in Figure 12-1(b), but with the delays
from the top to the bottom replaced by the following values: 1.0 ns, 1,0 ns,
(1.1 ns, 0.2 ns, 1.3 ns, 0.2 ns, and 0.1 ns. Determine (a) the maximum clock
frequency, (b) the latency time, and (¢) the maximum throughput for this
datapath.

*A program consisting of a sequence of 12 instructions without branch or
jump instructions is to be executed in a six-stage pipelined computer with
a clock period of 1.25 ns. Determine (a) the latency time for the pipeline,
(b) the maximum throughput for the pipeline, and (c) the time required
for executing the program.

The sequence of seven LDI instructions in the register number program
with the pipeline execution pattern given below Figure 12-5 is fetched and
executed. Manually simulate the execution by giving, for each clock cycle,
the values in pipeline registers PC, IR, Data 4, Data B, Data F, Data [, and
in the register file having its value changed for each clock cycle. Assume
that all file registers initially contain —1 (all 1's).

For each of the RISC operations in Table 12-1, list the addressing mode or
modes used.

Simulate the operation of the barrel shifter in Figure 12-8 for each of the
following shifts and 4 = TEY3C2A1,4. List the hexadecimal values on the
47 lines, 35 lines, and 32 lines out of the three levels of the shifter,

(a) Left, SH = 11

(b} Right, SH = 13

(c) Left, SH = 30

*For the RISC CPU in Figure 12-9, manually simulate, in hexadecimal, the
processing of the instruction ADI R1 R16 2F01 located in PC = 10F
Assume that R16 contains 0000001F. Show the contents of each of the
pipeline platforms and of the register file (the latter only when a change
occurs) for each of the clock cyeles.

Repeat Problem 12-6 for the instruction SLT R31 R10 R16 with R10
containing 0000100F and R16 containing 00001022,

Repeat Problem 126 for the instruction LSL R1 R16 000F.

+Use a computer-based logic minimization program to design the instruction
decoder for a RISC from Table 12-3. The field FS need not be done, since it
can be wired directly from OPCODE.

*For the RISC design, draw the execution diagram for the following RISC
program, and indicate any data hazards that are present:

1 MOVA R7.R6
25UB RE, RE, R6
JAND RE, R8, R7

12-11.

12-13.

12-14.

12-15.

12-16.

12-17.

12-18.

12-20.

Problems O 577

For the RISC design, draw the execution diagram for the following RISC
program (with the contents of R7 nonzero after the subtraction), and
indicate any data or control hazards that are present:

15UB R7.R7.R6
2 BNZ R7, 00OF

3AND RE, R7, R6
4 OR R5, RB, R5

*Rewrite the RISC programs in Problem 12-10 and Problem 12-11 using
NOPs to avoid all data and control hazards and draw the new execution
diagrams.

Draw the execution diagrams for the program in Problem 12-10, assuming
(a) the RISC CPU with data stall given in Figure 12-12.
(b) the RISC CPU with data forwarding in Figure 12-13.

Simulate the processing of the program in Problem 12-11 using the RISC
CPU with data hazard stall in Figure 12-12. Give the contents of each
pipeline platform and the register file (the latter only whenever a change
occurs) for each clock cycle. Initially, R6 contains 0000105, R7 contains
00000020,,, B8 contains 00000030,;, and the PC contains 00000001 4. Is the
data hazard avoided?

*Repeat Problem 12-14 using the RISC CPU with data forwarding in
Figure 12-13.

Draw the execution diagram for the program in Problem 12-11, assuming
the combination of the RISC CPU with branch prediction in Figure 12-17
and the RISC CPU with data forwarding in Figure 12-13.

Design the Constant Unit in the Pipelined CISC CPU by using the
information given in Table 12-5 and multiple -bit multiplexers, AND gates,
OR gates, and inverters.

*Design the Register Address Logic in the Pipelined CISC CPU by using
information given in the register fields of Table 12-5 plus multiple-bit
multiplexers, AND gates, OR gates, and inverters.

Design the Address Control logic described by Table 12-4 by using AND
gates, OR gates, and inverters.

Write microcode for the execution part of each of the following CISC
instructions. Give both a register transfer description and binary or
hexadecimal representations similar to those shown in Table 12-6 for the
binary code for each microinstruction.

(a) Compare Greater Than

(b) Branch if less than zero (CC bit N =1)

(c) Branch if overflow (CC bit V = 1)

578 O CHAPTER 12 / RISC AND CISC CENTRAL PROCESSING UNITS

12-I1.

1222,

12-23.

12-24,

Repeat problem 12-20 for the following CISC instructions that are specified
by register transfer statements,

{a) Push: R[§A]«— R[54] + 1 followed by M[R[SA]]« R[SE]

(b) Pop: R[DR]— M[R[5A]] followed by R|SA]«— R[SA]—1

*Repeat problem 12-21 for the following CISC instructions.
(a) Add with carry: R[DR]« R[SA] + R[3B] +C
{b) Subtract with borrow: R[DR]«— R[SA]|-R[SB] - B

Borrow B is defined as the complement of the carry out, C.

Repeat problem 12-21 for the following CISC instructions.
(a) Add Memory Indirect: R[DR]« R[SA] + M[M[R[SB]]]
(b) Add to Memory: M[R[DR]]+ M[R[SA]] + R[SB]

*Repeat problem 12-20 for the CISC instruction, Memory Scalar Add. This
instruction uses the contents of R[SB] as the vector length, It adds the
elements of the vector with its least significant element in memory pointed to
by R[SA] and places the result in the memory location pointed to by R[DR].

. Repeat problem 12-20 for the CISC instruction, Memory Vector Add. This

instruction uses the contents of K[SB] as the vector length. It adds the vector
with its least significant element in memory pointed to by R[SA] to the
vector with its least significant element in memory pointed to by R[DR]. The
result of the addition replaces the vector with its least significant element
pointed to by R[DR].

INPUT-OUTPUT
AND COMMUNICATION

(10} and communication between the CPU and 11O devices, /O interfaces, and

/O processors. Because of the wide variety of different /0 devices and the quest
for faster handling of programs and data, O is one of the most complex areas of
computer design. As a consequence, we are able o present only selected pieces of
the /O puzzle. We illustrate just three devices in detail: a keyboard, a hard disk, and a
graphics display. We then introduce the 'O bus and the IO interfaces that connect to
/O devices. Wa consider setial communication and use the /O structure for the
keyboard as an illustration. We then lock at the Universal Serial Bus (USB), an
alternative solution to the problem of accessing /O devices. Finally, we discuss four
modes for performing data transfers: program-controlled transfer, interrupt-initiated
transfer, direct memaory access, and the use of an /O processor,
In terms of the generic computer at the beginning of Chapter 1, it is apparent that /0
invalves a very large part of the computer. Only the processor, external cache, and
AAM are not as highly involved, although they, too, are used extensively in directing
and performing I/O transfers. Even the generic computer, which has fewer I/O devices
than most PC systems, has a diverse set of such devices requiring significant digital
electronic hardware for suppaort.

I n this chapter, we give an overview of selected aspects of computer input-output

13-1 CompuTER 1I/O

The input and output subsystem of a computer provides an efficient mode of com-
munication between the CPU and the outside environment. Programs and data
must be entered into the memory for processing, and results obtained from compu-
tations must be recorded or displayed. Among the input and output devices that

O 579

580 0O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

are commonly found in computer systems are kevboards, monitors, printers, mag-
netic disks, and compact disk read-only memory (CD-ROM) drives. Other input
and output devices frequently encountered are modems or other communication
interfaces, scanners, and sound cards with speakers and microphones. Significant
numbers of computers, such as those used in automobiles, have analog-to-digital
converters, digital-to-analog converters, and other data acquisition and control
components.

The /O facility of a computer is a function of its intended application. This
results in a wide diversity of attached devices and corresponding differences in the
needs for interacting with them. Since each device behaves differently, it would be
time consuming to dwell on the detailed interconnections needed between the
computer and each peripheral. We will, therefore, examine just three peripherals
that appear in most computers: the keyboard, the hard disk, and the graphics dis-
play. These represent typical points in the range of data transfer rates required for
peripherals. In addition, we present some of the common characteristics found in
the I/O subsystem of computers, as well as the various techniques available for
transferring data either in parallel, using many conducting paths, or serially,
through communication lines.

13-2 SAMPLE PERIPHERALS

Devices that the CPU controls directly are said to be connected on-line. These
devices communicate directly with the CPU or transfer binary information into or
out of the memory upon command from the CPUL Input or output devices
attached to the computer on-line are called peripherals. In this section, we examine
three peripheral devices: a kevboard, a hard disk, and a graphics display. We also
use the keyboard as an example to illustrate I/C concepts in a later section. We
introduce the hard disk both to motivate the need for direct memory access and to
provide background for the role of the device in Chapter 14 as a component in a
memory hierarchy. We include the graphics display to illustrate the very high
potential transfer rate requirements of contemporary applications.

Keyboard

The keyboard is among the simplest of the electromechanical devices attached to
the typical computer. Since it is manually controlled, it has one of the slowest data
rates of any peripheral,

The keyboard consists of a collection of keys that can be depressed by the
user. It is necessary o detect which of the keys have been depressed. To do this, a
sean matrix that lies beneath the keys is used, as shown in Figure 13-1. This two-
dimensional matrix is conceptually similar to the matrix used in RAM. The matrix
shown in the figure is 8 x 16, giving 128 intersections, so it can handle up to 125 keys.
A decoder drives the X lines of the matrix, which are analogous to the word lines of
a RAM. A muliiplexer is attached to the ¥ lines of the matrix, which are analogous
to the bit lines of a RAM. The decoder and the multiplexer are controlled by a

13-2 / Sample Peripherals 00 581

! |
_"\S:—‘)\ Multiplexer AN

Micro-
controller

0O FIGURE 13-1
Keyboard Scan Matrix

microcontroller, a tiny computer that contains RAM, ROM, a timer, and simple /'O
interfaces.

The microcontroller is programmed to periodically scan all intersections in
the matrix by manipulating the control inputs of the decoder and multiplexer, If
the key is depressed at an intersection, a signal path is closed from an output of the
X decoder to an input of the ¥ multiplexer. The existence of this path is sensed at
an input to the microcontroller. The 7-bit control code applied 1o the decoder and
multiplexer at the time identifies the key. To allow for “rollover™ in typing, in which
multiple keys are depressed before any of them is released, the microcontroller
actually identifies the depressing and release of the keys. Whether a key is
depressed or released, the control code at the time of the event is sensed and is
translated by the microcontroller into a K-scan code. When a key is depressed, a
make code i1s produced; when a key is released, a break code is produced. Thus,
there are two codes for each key, one for when the key is depressed and one for
when the key is released. Note that the scanning of the entire keyboard occurs
hundreds of times per second, so there is no danger of missing any depression or
release of a key.

After presenting a number of I/0Q interface concepts, we will revisit the key-
board to see what happens to the K-scan codes before they are finally translated to
ASCII characters.

Hard Disk

The hard disk is the primary intermediate-speed, nonvolatile, writable storage
medium for most computers. The typical hard drive stores information serially on a
nonremovable disk with a few to many platters, as shown in the upper right of the
generic computer at the beginning of Chapter 1. Each platter is magnetizable on
one or both surfaces. There are one or more read/write heads per recording surface;
for the remainder of our discussion, we will assume a single head per surface. Each
platter is divided into concentric tracks, as illustrated in Figure 13-2. The set of
tracks that are at the same distance from the center of the disk on all platter sur-
faces is referred to as a cylinder. Each track is divided into sectors containing a fixed

582 0O CHAPTER 13 / INPUT-QUTPUT AND COMMUNICATION

Track

Sector

Head positioning

O FIGURE 13-2
Hard Disk Format

number of bytes. The number of bytes per sector typically ranges from 256 (o 4K.
The typical byte address includes the cylinder number, head number, sector num-
ber, and word offset within the sector. The addressing assumes that the number of
sectors per track is fixed. In modern, high-capacity disks, more sectors are included
in the longer outer tracks than in the shorter inner tracks. In addition, a number of
spare sectors are reserved Lo take the place of defective sectors, As a consequence
of these design choices, the actual physical address of a sector on the disk is likely
to be different [rom the address of the sector sent to the disk controller. The map-
ping from this address to the physical address is typically accomplished in the disk
controller or drive electronics.

To enable information to be accessed, the set of heads is mounted on an actu-
ator that can move the heads radially over the disk, as shown in the generic com-
puter drawing. The time required to move the heads from the current eylinder to
the desired cylinder is called the seek rime. The time required to rotate the disk
from its current position to that having the desired sector under the heads is called
the rotational delay. In addition, a certain amount of time is required by the disk
controller to access and output information. This time is the coniroller time. The
time required to locate a word on the disk is the disk access time, which is the sum
of the controller time, the seek time, and the rotational delay. Average values over
all possibilities are used for these four parameters. Words may be transferred singly,
but as we will see in Chapter 14, they are often accessed in blocks. The transfer rate
for a block of words, once the block has been located, is the disk rransfer rate, typi-
cally specified in megabytes/second (MB/s). The transfer rate required by the CPU-
memory bus to transfer a sector from disk is the number of bytes in the sector
divided by the length of time taken to read a sector from the disk. The length of
time required to read a sector is equal to the proportion of the eylinder occupied by
the sector divided by the rotational speed of the disk. For example, with 63 sectors,

13-2 / Sample Peripherals O 583

512 B per sector, a rotational speed of 5400 rpm, and allowance for the gap between
sectors, this time is about (.15 ms, giving a transfer rate of 5124015 ms = 3.4 MB/s,
The controller will store the information read from the sector in its memory. The
sum of the disk access time and the disk transfer rate times the number of bytes per
sector gives an estimate of the time required to transfer the information in a sector
to or from the hard disk. Typical values in the mid-1990s are a seek time of 10 ms, a
rotational delay of 6 ms, a sector transfer time of (.15 ms, and a negligible controller
time, giving an access time for an isolated sector of 16.15 ms.

Graphics Display

The graphics display is the primary output device for the interactive use of comput-
ers. Displays use a number of different technologies, the most prevalent of which is
currently the cathode-ray tube (CRT), illustrated in Figure 13-3. The most modern
versions of the CRT display are based on analog signals, which are generated on
the display adapter board. The display is defined in terms of picture elements
called pixels. The color display has three locations associated with each pixel on the
screen. These locations correspond to the primary colors red, green, and blue
{(RGB). At each location, there is the corresponding colored phosphor. A phos-
phor emits light of its color when excited by a beam of electrons. In order to excite
the three phosphors simultaneously, three electron guns are used, one for red, one
for green, and one for blue—hence the RGB electron guns shown in the figure.
The color that results for a given pixel is determined by the intensity of the elec-
tron beams striking the phosphors within the pixel.

The electron beams are scanned across the sereen to form a set of horizontal
lines called scan lines, This set of lines is referred to as a raster. The lines are
scanned from top to bottom, beginning at the upper left and ending at the lower
right. The electron guns remain at zero intensity as they scan from right to left in
preparation for drawing the next scan line. The resolution of the information dis-
played is given in terms of the number of pixels per scan line and the number of

RGB electron guns

Pixel

N
;‘::‘a:

R
\

o

Scan line

KA

\

i
U
\

f”

e

W

O FIGURE 13-3
CRT Display

584 O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

scan lines in the raster. A high-resolution super video graphics array (SVGA) dis-
play may have as many as 1250 pixels per scan line and 1024 lines in the raster. The
clectron beams scan the entire raster in 1/60 of a second.

Each of the pixels is controlled by the display adapter. A typical adapter uses
a byte 1o define the color of a pixel. Since the byte contains 8 bits, it can define 256
colors at any given time. The byte does not directly drive the display, but instead
selects 1 out of 256 registers in the graphics adapter to define the color. Each regis-
ter is 20 bits or more, so the 256 colors can be selected from over 1 million colors
by defining the contents of the registers,

Typically, the display adapter has video RAM that stores all of the bytes which
control the display pixels. For a high-resolution display with 1280 pixels per scan
line and 1024 scan lines, the number of pixels is 1280 x 1024 = 1,310,720, So, for 256
colors, a single screen of information requires at least 1.25 MB of video RAM.

IfO Transfer Rates

An indicated earlier, the three peripheral devices discussed in this section give a
sense of the range of peak /O transfer rates. The keyboard data transfer rate is less
than 10 byles/s. For the hard disk, while the disk controller is capturing the data
arriving rapidly from the disk in the sector buffer, the transfer of data from the
bulfer to main memory is impossible, Thus, in the case in which the next sector is to
be read immediately, all of the data from the sector buffer needs to be stored in
main memory during the time the gap on the disk between the sectors passes
under the disk head. For 63 sectors and a rotational speed of 5400 rpm, this time is
about 25 ps Thus, the peak transfer rate required is 512B/25 ms = 20 MB/s. For a
display with 256 colors, if a screen is to be changed entirely every 1/60 of a second,
1.25 MB of data must be delivered to the video RAM from the CPU in that
amount of time. This requires a data rate of 1.25 MB x 60 = 75 MB/s.

Based on the preceding, we can conclude that the peak data rates required by
the particular peripherals we have considered have a wide range. The rates for the
hard disk and the display are high enough compared to the maximum rate of trans-
fer on the computer buses to provide a challenge to designers. Attempts to meet
this challenge use technigques in the disk controller and the praphics adapter to
reduce the peak transfer rates required and use fast bus designs between the
peripheral interfaces and memory.

13-3 I/O INTERFACES

Peripherals connected to a computer need special communication links to interface
them with the CPLL The purpose of these links is to resolve the differences in the
properties of the CPU and memory and the properties of each peripheral. The
major differences are as follows:

L. Peripherals are often electromechanical devices whose manner of operation
is different from that of the CPU and memory, which are electronic devices,
Therelore, a conversion of signal values may be required.

13-3 7/ I/O Interfaces O 585

2. The data transfer rate of peripherals is usually different from the clock rate of
the CPU. Consequently, a synchronization mechanism may be needed,

3. Data codes and formats in peripherals differ from the word format in the
CPU and memory.

4, The operating modes of peripherals differ from each other, and each must be
controlled in a way that does not disturb the operation of other peripherals
connected to the CPLL

To reselve these differences, computer systems include special hardware compo-
nents between the CPU and the peripherals to supervise and synchronize all input
and output transfers. These components are called inferface units, because they
interface between the bus from the CPU and the peripheral device. In addition,
each device has its own controller to supervise the operations ol the particular
mechanism of that peripheral. For example, the controller in a printer attached to a
computer controls the motion of the paper, the timing of the printing, and the
selection of the characters to be printed.

IfO Bus and Interface Unit

A typical communication structure between the CPU and several peripherals is
shown in Figure 13-4. Each peripheral has an interface unit associated with it. The
common bus from the CPU is attached to all peripheral interfaces. To communicate
with a particular device, the CPU places a device address on the address bus. Each
interface attached to the common bus contains an address decoder that monitors the
address lines. When the interface detects its own address, it activates the path between
the bus lines and the device that it controls. All peripherals with addresses that do not
correspond to the address on the bus are disabled by their interface, At the same time
that the address is made available on the address bus, the CPU provides a function

Central + 4 T
processing Address bus
it
" 1
R Control
| L4 Y Y L Y ¥ T Y ¥
Interface Interface Interface Interface
& & .
¥ ¥ T i
Keyboard CRT Printer hagnetic
display disk
Input Cutput Clutput Input and output
device device device deviee

O FIGURE 13-4
Connection of VO Devices 1o CPU

586 0O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

code on the control lines. The selected interface responds to the function code and
proceeds to execute it. If data must be transferred, the interface communicates with
bath the device and the CPU data bus to synchronize the transfer.

In addition to communicating with the /O devices, the CPU of a computer
must communicate with the memory unit through an address and data bus. There
are three ways that external computer buses communicate with memory and 1I/0.
One method uses common data, address, and control buses for both memory and
1/0. We have referred to this configuration as memory-mapped I/0. The common
address space is shared between the interface units and memory words, each hav-
ing distinct addresses. Computers that adopt the memory-mapped scheme read
and write from interface units as if they were assigned memory addresses by using
the same instructions that read from and write to memory.

The second alternative is to share a common address bus and data bus, but
use different control lines for memory and 1/O. Such computers have separate read
and write lines for memory and I/O. To read or write from memory, the CPU acti-
vates the memory read or memory write control, To perform input to or output
from an mterface, the CPU activates the read I/O or write I/O control, using spe-
cial instructions. In this way, the addresses assigned to memory and /O interface
units are independent from each other and are distinguished by separate control
lines. This method is referred to as the isolated I/0 configuration.

The third alternative is to have two independent sets of data, address, and
control buses. This is possible in computers that include an IO processor in the sys-
tem in addition to the CPU. The memory communicates with both the CPU and
/0 processor through a common memory bus. The [/O processor communicates
with the input and output devices through separate address, data, and control lines.
The purpose of the I/0 processor is to provide an independent pathway for the
transfer of information between external devices and internal memory. The /O
processor is sometimes called a data channel,

Example of /O Interface

A typical I/O interface unit is shown in block diagram form in Figure 13-5. It con-
sists of two data registers called poris, a control register, a status register, a bidirec-
tional data bus, and timing and control circuits. The function of the interface is to
translate the signals between the CPU buses and the 1/O device and to provide the
needed hardware to satisfy the two sets of timing constraints.

The I/O data from the device can be transferred into either port A or port B.
The interface may operale with an output device, with an input device, or with a
device that requires both input and output. If the interface is connected to a
printer, it will only output data; if it services a scanner, it will only input data. A
hard disk transfers data in both directions, but not at the same time; so the inter-
face needs only one set of /O bidirectional data lines,

The control register receives control information from the CPU. By loading
appropriate bits into this register, the interface and the device can be placed in a vari-
ety of operating modes. For example, port A may be defined as an input port only. A
magnetic tape unit may be instructed to rewind the tape or to start the tape moving in

13-3 / 1/0 Interfaces O 587

i
Bidirectional Bus + +- Pm:t A -&h
BN L-] register
data bus buffers
Port B 110} data
w = * 5 —
Chip select b= register
= 8 _ﬁ
=|R51 I
= "
Register select rsq Timing g i Control Control lines
i and register
| control
/0 read i
1O write | wr 2 2 Status Status lines
& & 1 register
4 Tz CPL] To 'O device ———
C5 RS51 RS0 Register selected

X Mone: data bus in high-impedance state
Port A register

1 Port B register
Control register

1 Status register

AP ——1
Ll = =

O FIGURE 13-5
Example of 'O Interface Unit

the forward direction. The bits in the status register are used for status conditions and
for recording errors that may occur during data transfer. For example, a status bit may
indicate that port A has received a new data item from the device, while another bit in
the status register may indicate that a parity error has occurred during the transfer.

The interface registers communicate with the CPU through the bidirectional
data bus, The address bus selects the interface unit through the chip select input
and the two register select inputs. A circuit {usually a decoder or a gate) detects
the address assigned to the interface registers. This circnit enables the chip select
{C5) input when the interface is selected by the address bus. The two register select
inputs K81 and RSO are vsually connected 1o the two least significant lines of the
address bus. These two inputs select one of the four registers in the interface, as
specified in the table accompanying the diagram in Figure 13-5. The contents of the
selected register are translerred into the CPU via the data bus when the 'O read
signal is enabled. The CPU transfers binary information into the selected register
via the data bus when the I/O write input is enabled.

The CPU, interface, and I/O device are likely to have different clocks that are
not synchronized with each other. Thus, these units are said to be asynchronous
with respect to each other. Asynchronous data transfer between two independent
units requires that control signals be transmitted between the units to indicate the

588 O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

time at which data is being transmitted. In the case of CPU-to-interface communi-
cation, control signals must also indicate the time at which the address is valid. We
will look at two methods for performing this timing: strobing, as it is called, and
handshaking. Initially, we will consider generic cases in which no addresses are
involved; subsequently, we will add addressing. The communicating units for the
generic case will be referred to as the source unit and destination unit.

Strobing

Data transfers using strobing are shown in Figure 13-6. The data bus between the
two units is assumed to be made bidirectional by the use of three-state buffers.

The transfer in Figure 13-6(a) is initiated by the destination unit. In the
shaded area of the data signal, the data is invalid. Also, a change in Strobe at the
tail of each arrow causes a change on the data bus at the head of the arrow. The
destination unit changes the Strobe from 0 to 1. When the value 1 on Strobe
reaches the source unit, the unit responds by placing the data on the data bus. The
destination unit expects the data to be available, at worst, a fixed amount of time
after Strobe goes to 1. At that time, the destination unit captures the data in a reg-
ister and changes Strobe from 1 to (. In response to the 0 value on Strobe, the
source unit removes the data from the bus,

Data bus

Destination unit Strabe Source unit

Databus?f //'/'“ /'27,"//% r‘*iy e A

Strobe i

{a) Destination-initiated transfer

Drata bus

Source unit Strobe Diestination unit

Datuhusrj’r-'. e A V, . / A
Strobe

(b} Source-imitiated transfer

O FIGURE 13-6
Asynchronous Transfer Using Strobing

13-3 / 1/0 Interfaces O 589

The transfer in Figure 13-6(b) is initiated by the source unit, In this case, the
source unit places the data on the data bus. After the short time required for the data
to settle on the bus, the source unit changes Strobe from 0 to 1, In response to Strobe
equal to 1, the destination unit sets up the transfer to one ol its registers, The source
then changes Strobe from 1 to 0, which triggers the transfer into the register at the
destination. Finally, after a short time required to ensure that the register transfer is
done, the source removes the data from the data bus, completing the transfer.

Although simple, the strobe method of transferring data has several disad-
vantages. First, when the source unit initiates the transfer, there is no indication to
it that the data was ever captured by the destination unit. It is possible, due to a
hardware failure, that the destination unit did not receive the change in Strobe.
Second, when the destination unit performs the transfer, there is no indication to it
that the source has actually placed the data on the bus. Thus, the destination unit
could be reading arbitrary values from the bus rather than actual data. Finally. the
speeds at which the various units respond may vary. Il there are multiple units, the
unit initiating a transfer must wait for the delay of the slowest of the attached com-
municating units before changing Strobe to 0. Thus, the time taken for every trans-
fer is determined by the slowest unit with which a given unit initiates transfers,

Handshaking

The handshaking method uses two control signals to deal with the timing of trans-
fers, In addition to the signal from the unit initiating the transfer, there is a second
control signal from the other unit involved in the transfer.

The basic principle of a two-signal handshaking procedure for data transfer is
as follows, One control line from the initiating unit is used to request a response
from the other unit. The second control line from the other unit is used to reply to
the initiating unit that the response is occurring. In this way, each unit informs the
other of its status, and the result is an orderly transfer through the bus,

Figure 13-7 shows data transfer procedures using handshaking. In Figure
13-7(a), the transfer is initiated by the destination unit. The two handshaking
lines are called Request and Reply. The initial state is when both Request and
Reply are disabled and in the 00 state. The subsequent states are 10, 11, and 01.
The destination unit initiates the transfer by enabling Request. The source unit
responds by placing the data on the bus, After a short time for settling of the data
on the bus, the source unit activates Reply to signal the presence of the data. In
response 1o Reply, the destination unit captures the data in a register and disables
Request. The source unit then disables Reply and the system goes to the initial
state. The destination unit may not make another request until the source unit
has shown its readiness to provide new data by disabling Reply. Figure 13-T{b)
represents handshaking for the source-initiated transler. In this case, the source
controls the interval between when the data is applied and when Request changes
to 1 and between when Request changes to 0 and when the data is removed.

The handshaking scheme provides a high degree of flexibility and reliability,
because the successful completion of a data transfer relies on active participation
by both units. If one unit is faulty, the data transfer will not be completed. Such an

590 0O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

Databus

Reguest .
Source unit

¥

Destination unit
Reply

Data bus r iz ,_.”-"f',f'f/ e ﬂq (—%/ ./j%%:. ;’//.ﬁ

Request
Reply
{a) Destination-initiated transfer
Data bus)
: Request
Source unit = Destination unit
Reply
Data bus I}//. 7 {:// X}N/ /fl]:'/, 0 // /»I
Requesi
Reply
(b) Source-initiated transfer
O FIGURE 13-7

Asynchronous Transfer Using Handshaking

error can be detected by means of a time-out mechanism, which produces an alarm
if the data transfer is not completed within a predetermined time interval. The
time-out is implemented by means of an internal clock that starts counting time
when the umit enables one of its handshaking control signals. If the return hand-
shake does not occur within a given period, the unit assumes that an error
occurred. The time-out signal can be used to interrupt the CPU and execute a ser-
vice routine that takes appropriate error recovery action, Also, the timing is con-
trolled by both units, not just the initiating unit. Within the time-out limits, the
response of each unit to a change in the control signal of the other unit can take an
arbitrary amount of time, and the transfer will still be successful.

The examples of transfers in Figure 13-6 and Figure 13-7 represent transfers
between an interface and an I/O device and between a CPU and an interface. In
the latter case, however, an address will be necessary to select the interface with
which the CPU wishes to communicate and a register within the interface. In order

13-4 / Serial Communication O 591

to ensure that the CPU addresses the correct interface, the address must have set-
tled on the address bus before the Strobe or Request signal changes from 0 to 1.
Further, the address must remain stable until the change in the strobe or request
from 1 to 0 has settled to 0 at the interface logic. If either of these conditions is vio-
lated, another interface may be falsely activated, causing an incorrect data transfer.

13-4 SeEriAL COMMUNICATION

The transfer of data between two units may be parallel or serial. In parallel data
transfer, each bit of the message has its own path, and the entire message is trans-
mitted at one time. This means that an n-bit message is transmitted in parallel
through n separate conductor paths. In serial data transmission, each bit in the
message is sent in sequence, one at a time. This method requires the use of one or
two signal lines. Parallel transmission is faster, but requires many wires. It is used
for short distances and when speed is important. Serial transmission is slower, but
less expensive, since it requires only one conductor.

One way that computers and terminals that are remote from each other are
connected is via telephone lines. Since telephone lines were originally designed for
voice communication, but computers communicate in terms of digital signals, some
form of conversion is needed. The devices that do the conversion are called dara
sets or modems (modulator-demodulators). A modem converts digital signals into
audio tones to be transmitted over telephone lines and also converts audio tones
from the line to digital signals for use by a computer. There are various modulation
schemes, as well as several different grades of communication media and transmis-
sion speeds. Serial data can be transmitted between two points in three different
modes: simplex, half duplex, or full duplex. A simplex line carries information in
one direction only. This mode is seldom used in data communication, because the
receiver cannot communicate with the transmitter to indicate whether errors have
occurred. Examples of simplex transmission are radio and television broadcasting.

A half-duplex transmission system is a system that is capable of transmitting
in both directions, but in only one direction at a time. A pair of wires is needed for
this mode. A common situation is for one modem to act as the transmitter and the
other as the receiver. When transmission in one direction is completed, the roles of
the modems are reversed to enable transmission in the opposite direction. The
time required to switch a half-duplex line from one direction to the other is called
the rrnaround time.

A full-duplex transmission system can send and receive data in both direc-
tions simultaneously. This can be achieved by means of a two-wire plus ground
link, with a different wire dedicated to each direction of transmission. Alterna-
tively, a single-wire circuit can support full-duplex communication if the frequency
spectrum is subdivided into two nonoverlapping frequency bands to create sepa-
rate receiving and fransmitting channels in the same physical pair of wires.

The serial transmission of data can be synchronous or asynchronous. In sym-
chronous transmission, the two units share a common clock Irequency, and bits are
transmitted continuously at that frequency. In long-distance serial transmission, the

592 [O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

transmitter and receiver units are each driven by separate clocks of the same fre-
quency. Synchronization signals are transmitted periodically between the two units
to keep their clock frequencies in step with each other. In asynchronous transmis-
sion, binary information is sent only when it is available, and the line remains idle
when there is no information to be transmitted. This is in contrast to synchronous
transmission, in which bits must be transmitted continuously to keep the clock fre-
quencies in both units synchronized,

Asynchronous Transmission

One of the most common applications of serial transmission is the communication
of one computer with another via modems connected through the telephone sys-
tem. Each character consists of an alphanumeric code of eight bits, with additional
bits inserted at both ends of the code. In asynchronous serial transmission, each
character consists of three parts: the start bit, the character bits, and the stop bits.
The convention is for the transmitter to rest at the 1 state when no characters are
transmitted. The first bit, called the start bit, is always 0 and is used to indicate the
beginning of a character. An example of this format is shown in Figure 13-5.

A transmitted character can be detected by the receiver by applying the
transmission rules. When a character is not being sent, the line is kept in the 1
state. The initiation of transmission is detected from the start bit, which is always
(. The character bits always follow the start bit. After the last bit of the character
is transmitted, a stop bit is detected when the line returns to the 1 state for at least
the time taken to transmit one bit. By means of these rules, the receiver can detect
the start bit when the line goes from 1 to 0. By using a clock, the receiver exam-
ines the line at appropriate times to determine the bit values. The receiver knows
the transfer rate of the bits and the number of character bits to accept.

After the character bits are transmitted, one or two stop bits are sent. The
stop bits are always in the 1 state and frame the end of character to signify the idle
or wait state. These bits allow both the transmitter and the receiver to resynchro-
nize. The length of time that the line stays in the 1 state depends on the amount of
time required for the equipment to resynchronize. Some older electromechanical
terminals use two stop bits, but newer equipment often uses just one. The line
remains in the 1 state until another character is transmitted. The stop time ensures
that a new character will not follow for the time taken to transmit one or two bits.

As an illustration, consider serial transmission with a transfer rate of 10 char-
acters per second. Suppose that each transmitted character consists of a start bit,

L 1|a 0 o 1 [

Start |

|, Stop_
bit I

bits

¥

Character bits

O FIGURE 13-8
Format of Asynchronous Serial Transfer of Data

13-4 / Serial Communication O 593

8 character bits, and 2 stop bits, for a total of 11 bits. If the bits are transmitted at a
rate of 10 bits per second, then each bit takes 0.1 second for transfer. Since there
are 11 hits to be transmitted, it follows that the bit time is 9.09 msec. The baud rate
is defined as the maximum number of changes per second in the signal being trans-
mitted. This is often, but not always, equivalent to the rate of data transfer in bits
per second. Ten characters per second with an 11-bit format has a transfer rate of
110 baud.

Synchronous Transmission

Synchronous transmission does not use start or stop bits to frame characters. The
modems employved in synchronous transmission have internal clocks that are set to
the frequency at which bits are being transmitted. For proper operation, it is
required that the clocks of the transmitter and receiver modems remain synchro-
nized at all times. The communication line, however, carries only the data bits,
from which information on the clock frequency must be extracted. Frequency syn-
chronization is achieved by the receiving modem from the signal transitions that
occur in the data that is received. Any frequency shift that may occur between the
transmitter and receiver clocks 15 continuously adjusted by maintaining the
receiver clock at the frequency of the incoming bit stream. In this way, the same
rate is maintained in both the transmitter and the receiver.

Contrary to asynchronous transmission, in which each character can be sent
separately with its own start and stop bits, synchronous transmission must send a
continuous message in order to maintain synchronism. The message consists of a
group of bits that form a block of data. The entire block is transmitted with special
control bits at the beginning and the end, in order to frame the block into one unit
of information.

The Keyboard Revisited

To this point, we have covered the basic nature of the /O interface and serial
transmission. With these two concepts available, we are now ready to continue with
the example of the keyboard and its interface, as shown in Figure 13-9. The K-scan
code produced by the keyboard microcontroller is to be transferred serially from
the keyboard through the keyboard cable to the kevboard controller in the com-
puter. The serial transfer on the Keyboard serial data line uses a format just like
that shown for asynchronous transfer in Figure 13-8. In this case, however, a signal
Keyboard clock is also sent through the cable. Thus, the transmission is synchro-
nous with a transmitted clock signal, rather than asynchronous. These same signals
are used to transmit control commands to the keyboard, In the keyboard control-
ler, the microcontroller converts the K-scan code to a more standard scan code,
which it then places in the Input register, at the same time sending an interrupt sig-
nal to the CPU indicating that a key has been pressed and a code is available. The
interrupt-handling routine reads the scan code from the input register into a spe-
cial area in memory, This area is manipulated by software stored in the Basic

594 [0 CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

Keyboard controller Keyboard
L0 write and interface
/0 read
Input
Address bus ot Keyboard clock
- Output Keyboard serial data :
CPU .
Diata bus register Ciround Microcontroller
- * ——= | Micracontroller
1 ; Control
:11lerrupl request register
Status
ER register

O FIGURE 13-9
Keyboard Controller and Interface

Input/Output System (BIOS) that can translate the scan code into an ASCII char-
acter code for use by applications.

The Qutput register in the interface receives data from the CPU. The data
can be passed on to control the keyboard—for example, setting the repetition rate
when a key is held down. The Control register is used for commands to the key-
board controller. Finally, the Status register reports specific information on the sta-
tus of the keyboard and the keyboard controller.

Perhaps one of the most interesting aspects of keyboard [/O is its high com-
plexity. It involves two microcontrollers executing different programs, plus the
main processor executing BIOS software (i.e., three different computers executing
three distinct programs).

A Packet-Based Serial I/O Bus

Serial I/O, as described for the keyboard, uses a serial cable specifically dedicated
to communicating between the computer and the keyboard. Whether parallel or
serial, external I/O connections are typically dedicated. The use of these dedicated
paths often requires that the computer case be opened and cards inserted with
electronics and connectors specific to the particular I/O standard used for a given
110 device,

In contrast, packet-based serial /O permits many different external 1/O
devices to use a shared communication structure that is attached to the computer
through just one or two connectors. The types of devices supported include key-
boards, mice, joysticks, printers, scanners, and speakers. The particular packet-
based serial 'O we will describe here is the Universal Serial Bus (USB), which is
becoming commonplace as the connection approach of choice for slow- to
medium-speed /0 devices.

The interconnection of IO devices by using USB is shown in Figure 13-10.
The computer and attached devices can be classified as hubs, devices, or compound
devices. A hub provides attachment points for USB devices and other hubs. A hub

13-4 / Serial Communication 0O 595

Computer

T
L L

Momitor Printer
| Hub || Hub

o

Keyboard ’L

e seanner
! T 1 | Huh
| Mouse | [Joystickl :I: I 1 El
Microphone Speaker Speaker

O FIGURE 13-10
10 Device Connection Using the Universal Serial Bus {USB)

contains a USH interface for control and status handling and a repeater for trans-
ferring information through the hub.

The computer contains a USB controller and the root hub. Additional hubs
may be a part of the USB I/O structure. If a hub is combined with a device such as
the keyboard shown in Figure 13-10, then the keyboard is referred to as a com-
pound device. Aside from such compound devices, a USB device contains only one
USB port to serve its function alone. The scanner is an example of a regular USB
device. Without USB, the monitor, keyboard, mouse, joystick, microphone, speak-
ers, printer, and scanner shown would all have separate I/0 connections directly on
the computer. The monitor, printer, scanner, microphone, and speakers might all
require special cards to be inserted as discussed previously. With USB, only two
connections are required.

The USE cables contains four wires: ground, power, and two data lines (D+
and D-) used for differential signaling. The power wire is used to provide small
amounts of power to devices such as keyboards so that they do not need to have
their own power supplies. To provide immunity to signal variation and noise, (s
and 1's are transmitted by using the difference in voltage between D+ and D-, If
the voltage on D+ exceeds the voltage on D- by 200 millivolts or more, then the
logic value is a 1. If the voltage on D- exceeds the voltage on D+ by 200 millivolts

Data

NRZI

O FIGURE 13-11
Non-Return-to-Zero Inverted Data Representation

or more, the logic value is a (1. Other voltage relationships between D+ and D- are
used as special signal states as well.

The logic values used for signalling are not the actual logic values of the
information being transmitted. Instead, a Non-Return-to-Zero Inverted (NRZI)
signalling convention is used. A zero in the data being transmitted is represented
by a transition from 1 to 0 or 0 to 1 and a 1 is represented by a fixed value of 1 or 0.
The relationship between the data being transmitted and the NRZI representation
is illustrated in Figure 13-11. As is typical for I/O devices, there is no commaon clock
serving both the computer and the device. NRZI encoding of the data provides
edges that can be used to maintain synchronization between the arriving data and
the time at which each bit is sampled at the receiver. If there are a large number of
1's in series in the data, there will be no transitions for some time in the NRZI
encoding. To prevent loss of synchronization, a 0 is “stuffed” in before every sev-
enth bit position in a string of 1's prior to NRZI encoding so that no more than six
I's appear in series, The receiver must be able to remove these extra zeros when
converting NRZI data to normal data.

USB information is transmitted in packets. Each packet contains a specific
set of fields depending on the packet type. Logical strings of packets are used to
compose USB transactions. For example, an output transaction consists of an Out
packet followed by a Data packet and a Handshake packet. The Out packet comes
from the USB controller in the computer and notifies the device that it is to receive
data. The computer then sends the Data packet. If the Data packet is received
without error, then the device responds with the Acknowledge Handshake packet.
Mext, we detail the information contained in each of these packets.

Figure 13-12(a) shows a general format for USB packets and the formats for
each of the three packets involved in an output transaction. Note that each packet
begins with a synchronization pattern SYNC, This pattern is 000001, Because of
the sequence of zeros, the corresponding NRZI1 pattern contains seven edges,
which provides a pattern to which the receiving clock can be synchronized. Since
this pattern is preceded by a specific signal voltage state referred to as Idle. the pat-
tern also signals the beginning of a new packet.

Following the 5YMNC, each of the packet formats contains 8 biis called the
packet identifier (PID). In the PID, the packet type is specified by 4 bits, with an
additional 4 bits that are complements of the first 4 to provide an error check on the
type. A very large class of type errors will be detected by the repetition of the type as
its complement. The type is optionally followed by information specific to the packet,

13-4 / Serial Communicadon O 597

SYNC PID Packet Specific Data CRC | EOF
{n) General packet format
T)
SYNC Type : Check Dievice : Endpoint
8 bits 4bits 4 bits Address 1 Address CRC | EOQP
1061 : 10 T hits : 4 bhits
(b Output packet
| Check
. Type oo o
SYNC 1 I i Data
: 4 hits 4 bits CRC ECP
8 hits 1100 E 0011 {Up to 1024 bytes)

{c) Data packet {Datal type)

T
; - | Type ! Check
5;;';:“2‘; abits | 4bits | EOP
e 01 11011

(d) Handshake packet {Acknowledge type)

O FIGURE 13-12
UUSE Packet Formats

which varies depending upon the packet type. Optionally, a CRC field appears next.
The CRC pattern consisting of 5 or 16 bits is a Cyclic Redundancy Check pattern.
This pattern is calculated at transmission of the packet from the packel-specific data.
The same caleulation is performed when the data is received. If the CRC pattern
does not match the newly calculated pattern, then an error has been detected. In
response to the error, the packet can be ignored and retransmitted. In the last field of
the packet, an End of Packet (EOP) appears. This consists of D+ and D, both low
for two bit times, followed by the Idle state for a bit time. As its name indicates, this
sequence of signal states identifies the end of the current packet. It should be noted
that all fields are presented least significant bit first,

Referring to Figure 13-12(b), for the Output packet, the Type and Check
ficlds are followed by a Device Address, an Endpoint Address, and a CRC pattern.
The Device Address consists of seven bits and defines the device that is to input
data. The Endpoint Address consists of four bits and defines which port of the
device is to receive the information in the Data packet to follow. For example,
there may be a port for data and one for control on a given device.

For the Data packet, the packet-specific data consists of 0 to 1024 data bytes.
Due to the length of the packet, complex errors are more likely, so the CRC pat-
tern is increased in length Lo 16 bits to improve its error detection capability.

In the Handshake packet, the packet-specific data is empty. The response to
the receipt of the data packet is carried by the P1D. PID 01001011 is an Acknowl-
edge {ACK) indicating that the packet was received without any errors detected.

598 0O CHAPTER 13 / INPUT-OUTEUT AND COMMUNICATION

Absence of any HANDSHAKE packet when one would normally appear is an
indication of an error. PID 01011010 is a No Acknowledge, indicating that the tar-
get is temporarily unable to accept or return data. PID 01111000 is a Stall
(STALL), indicating that the target is unable to complete the transfer and that
software intervention is required to recover from the stall condition.

The preceding concepts illustrate the general principles underlying a packet-
based serial /O bus and are specific to USB. USB supports other packet types and
many different kinds of transactions. In addition, the attachment and detachment
of devices is sensed and can trigger various software reactions, In general, there is
substantial software in the computer to support the details of the control and oper-
ation of the Universal Serial Bus.

13-5 MoDES OF TRANSFER

Binary information received from an external device is usually stored in memory
for later processing. Information transferred from the central computer into an
external device originates in the memory. The CPU merely executes the /O
instructions and may accept the data temporarily, but the ulimate source or desti-
nation is the memory. Dala transfer between the central computer and I/O devices
may be handled in a variety of modes, some of which use the CPU as an interme-
diate path, while others transfer the data directly to and from the memory. Data
transfer to and from peripherals may be handled in one of four possible modes:

1. Data transfer under program control.
2. Interrupt-initiated data transfer.

3. Direct memory access transfer.

4. Transfer through an I/O processor.

Program-controlled operations are the result of I/O instructions written in
the computer program. Each transfer of data is initiated by an instruction in the
program, Usually, the transfer is to and from a CPU register and peripheral. Other
instructions are needed to transfer the data to and from the CPU and memory.
Transferring data under program control requires constant monitoring of the
peripheral by the CPUL Once a data transfer is initiated, the CPU is required to
monitor the interface to see when a transfer can again be made. It is up to the pro-
grammed instructions executed in the CPU to keep close tabs on everything that is
taking place in the interface unit and the external device.

In the program-controlled transfer, the CPU stays in a program loop called a
busy-wait loop until the I/O unit indicates that it is ready for data transfer. This is a
time-consuming process, since it keeps the processor busy needlessly. The loop can
be avoided by using the interrupt facility and special commands to inform the
interface to issue an interrupt request signal when the data is available from the
dewvice. This allows the CPU to proceed to execute another program. The interface,
meanwhile, keeps monitoring the device. When the interface determines that the
device is ready for data transfer, it generates an interrupt request to the computer,

13-5 / Modes of Transfer 0O 599

Upon detecting the external interrupt signal, the CPU momentarily stops the task
it is performing, branches to a service program to process the data transfer, and
then returns to the original task. This interrupt-initiated transfer is the type used
for the keyboard controller shown in Figure 13-9,

Transferring of data under program control is performed through the /O
bus and between the CPU and a peripheral interface unit. In direct memory
access (DMA), the interface unit transfers data into and out of the memory unit
through the memory bus. The CPU initiates the transfer by supplying the inter-
face with the starting address and the number of words needing to be transferred
and then proceeds to execute other tasks. When the transfer is made, the inter-
face requests memory cycles through the memory bus. When the request is
granted by the memory controller, the interface transfers the data directly into
memory. The CPU merely delays memory operations to allow the direct memory
I/O transfer. Since the speed of a peripheral is usually slower than that of a pro-
cessor, 1/O memory transfers are infrequent compared with processor access to
memory. DMA transfer is discussed in more detail in Section 13-7.

Many computers combine the interface logic with the requirements for DMA
into one unit called an YO processor (10P). The I0OP can handle many peripherals
through a DMA-and-interrupt facility. In such a system, the computer is divided
into three separate modules: the memory unit, the CPU, and the 1I0P. VO proces-
sors are presented in Section 13-8.

Example of Program-Controlled Transfer

A simple example of data transfer from an I/O device through an interface into the
CPU is shown in Figure 13-13. The device transfers bytes of data one at a time as
they are available. When a byte is available, the device places it on the I/O bus and
enables Ready. The interface accepts the byte into its data register and enables
Acknowledge. The interface sets a bit in the status register, which we will refer to
as a flag. The device can now disable Ready, but it will not transfer another byte
until Acknowledge is disabled by the interface, according to the handshaking pro-
cedure established in Section 13-3.

Drata bus Intert
« nterface IO bus
Address bus *
. i . 1
CPU 1O read N [Mata register Il Ready device
170 write o Sratus Acknowledge
register 4 >
Flag

O FIGURE 13-13
[Zata Transfer from /O Device to CPLU

600 0O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

Under program control, the CPU must check the flag to determine whether
there is a new byte in the interface data register. This is done by reading the contents
of the status register into a CPU register and checking the value of the flag. If the
flag is equal to 1, the CPU reads the data from the data register. The flag is then
cleared to 0 either by the CPU or the interface, depending on how the interface cir-
cuits are designed. Once the flag is cleared, the interface disables Acknowledge, and
the device can transfer the next data byte.

A flowchart of the a program written for the preceding transfer is shown in
Figure 13-14. The flowchart assumes that the device is sending a sequence of bytes
that must be stored in memory. The program continually examines the status of the
interface until the flag is set to 1. Each byte is brought into the CPU and trans-
ferred to memory until all of the data have been transferred.

The program-controlled data transfer is used only in systems that are dedi-
cated to monitor a device continuously. The difference in information transfer
rate between the CPU and the /O device makes this type ol transfer inefficient.

—

| Fead status register |

L i

| Check flag bit]

Flag

1

| Fead data register |

¥

| Transfer data to memory |

Continue
program

O FIGURE 13-14
Flowchart for CPU Program to Input Data

13-6 / Priority Interrupt O 601

To see why, consider a typical computer that can execute the instructions to read
the status register and check the flag in 100 ns. Assume that the input device trans-
fers its data at an average rate of 100 bytes/s. This is equivalent to one byte every
10,000 ps, meaning that the CPU will check the flag 100,000 times between each
transfer, Thus, the CPU is wasting time checking the flag instead of doing a useful
processing task.

Interrupt-Initiated Transfer

An alternative to the CPU constantly monitoring the flag is to let the mterface
inform the computer when it is ready to transfer data. This mode of transfer uses
the interrupt facility. While the CPU is running a program, it does not check the
flag. However, when the flag is set, the computer is momentarily interrupted from
proceeding with the current program and is informed of the fact that the flag has
been set. The CPU drops what it is doing to take care of the input or output trans-
fer. After the transfer is completed, the computer returns to the previous program
to continue what it was doing before the interrupt. The CPU responds to the inter-
rupt signal by storing the return address from the program counter into a memory
stack or register, and then control branches to a service routine that processes the
required 1/O transfer. The way that the processor chooses the branch address of
the service routine varies from one unit to another. In principle, there are two
methods for accomplishing this; vectored interrupt and nonvectored inferrupt. In a
nonvectored interrupt, the branch address is assigned to a fixed location in mem-
ory. In a vectored interrupt, the source that interrupts supplies the branch address
to the computer. This information is called the vector address. In some computers,
the vector address is the first address of the service routine; in other computers, the
vector address is an address that points to a location in memory where the first
address of the service routine is stored. The vectored interrupt procedure was pre-
sented in Section 13-9 in conjunction with Figure 13-9.

13-6 PrRIORITY INTERRUPT

A typical computer has a number of I/O devices attached to it that are able to orig-
inate an interrupt request. The first task of the interrupt system is to identify the
source of the interrupt. There is also the possibility that several sources will request
service simultaneously. In this case, the system must decide which device to service
first.

A priority interrupt system establishes a priority over the various interrupt
sources to determine which interrupt request to service first when two or more
arrive simultaneously. The system may also determine which requests are permit-
ted to interrupt the computer while another interrupt is being serviced. Higher lev-
els of priority are assigned to requests that, if delayed or interrupted, could have
serious consequences. Devices with high-speed transfers such as magnetic disks are
given high priority, and slow devices such as keyboards receive the lowest priority.

602 O CHAPTER 13/ INPUT-OUTPUT AND COMMUMNICATION

When two devices interrupt the computer at the same time, the computer services
the device with the higher priority first,

Establishing the priority of simultaneous interrupts can be done by soltware
or hardware. Software uses a polling procedure to identify the interrupt source of
highest priority. In this method, there is one common branch address for all inter-
rupts. The program at the branch address takes care of interrupts by polling the
interrupt sources in sequence. The priority of each interrupt source determines the
order in which it is polled. The source with the highest priority is tested first, and if
its interrupt signal is on, control branches to a routine which services that source.
Otherwise, the source with the next lower priority is tested, and so on. Thus, the
initial service routine for all interrupts consists of a program that tests the interrupt
sources in sequence and branches to one of many other possible service routines.
The particular service routine that is reached belongs to the highest priority device
among all devices that interrupted the computer. The disadvantage of the software
method is that if there are many interrupts, the time required to poll all the sources
can exceed the time available to service the /O device. In this situation, a hard-
ware priority interrupt unit can be used to speed up the operation of the system.

A hardware priority interrupt unit functions as an overall manager in an
interrupt system environment. The unit accepts interrupt requests from many
sources, determines which of the incoming requests has the highest priority, and
issues an interrupt request to the computer based on this determination. To speed
up the operation, each interrupt source has its own interrupt vector address to
access its own service routine directly. Thus, no polling is required, because all the
decisions are made by the hardware priority interrupt unit. The hardware priority
function can be established either by a serial or parallel connection of interrupi
lines. The serial connection is also known as the daisy chain method,

Daisy Chain Priority

The daisy chain method of establishing priority consists of a serial connection of all
devices that request an interrupt. The device with the highest priority is placed in
the first position, followed by devices of priority in descending order, down to the
device with the lowest priority, which is placed last in the chain. This method of
connection between three devices and the CPU is shown in Figure 13-15. Interrupt
request lines from all devices are ORed to form the interrupt line to the CPU. If
any device has its Interrupt request at 1, the interrupt line goes to 1 and enables
the interrupt input of the CPU. When no interrupts are pending, the interrupt line
stays at 0, and no interrupts are recognized by the CPU. The CPU responds to an
interrupt request by enabling Interrupt acknowledge. The signal that is produced is
received by device 0 at its PI (priority in) input. The signal then passes on to the
next device through the PO (priority out) output only if device 0 is not requesting
an interrupt. If device 0 has a pending interrupt, it blocks the acknowledge signal
from the next device by placing a 0 on the PO output and proceeds to insert its
own interrupt vector address (VAD) onto the data bus for the CPU to use during
the interrupt cycle.

13-6 / Priority Interrupt O 603

CPU data bus
r [f
VADDO VAD1 VAD 2
Device 0 Device 1 Devige 2
PI PO}—={PI PO}—={PI PO}— Tonext
device
r

Interrupt request D_,

Interrupt acknowledge

CPU

O FIGURE 13-15
Duaisy Chain Priority Interrupt

A device with a 00 on its P/ input generates a () on its PO output to inform the
device with next lower priority that the acknowledge signal has been blocked. A
device that is requesting an interrupt and has a 1 on its PI input will intercept the
acknowledge signal by placing a 0 on its PO output. If the device does not have
pending interrupts, it transmits the acknowledge signal to the next device by plac-
ing a 1 on its PO output. Thus, the device with P/ = 1 and PO = 0 is the one with
the highest priority that is requesting an interrupt, and this device places its VAD
on the data bus. The daisy chain arrangement gives the highest priority to the
device that receives the Interrupt acknowledge signal from the CPU. The farther
the device is from the first position, the lower is its priority.

Figure 13-16 shows the internal logic that must be included within each
device connected in the daisy chain scheme. The device sets its RF latch when it is
about to interrupt the CPU. The output of the latch functionally enters the OR that
drives the interrupt line. If Pf = 0, both PO and the enable line to VAD are equal
to 0, irrespective of the value of RE If PI = 1 and RF = 0, then PO = 1, the vector
address is disabled, and the acknowledge signal passes to the next device through
PO, The device is active when P/ = 1 and RF = 1, which places a 0 on PO and
enables the vector address onto the data bus. It is assumed that each device has its
own distinet vector address. The RF latch is reset after a sufficient delay to ensure
that the CPU has received the vector address.

Parallel Priority Hardware

The parallel priority interrupt method uses a register with bits set separately by the
interrupt signal from each device. Priority is established according to the position
of the bits in the register. In addition to the interrupt register, the circuit may
include a mask register to control the status of each interrupt request. The mask
register can be programmed to disable lower priority interrupts while a higher pri-
ority device is being serviced. It can also allow a high-priority device to interrupt
the CPU while a lower priority device is being serviced.

604 O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

WVAD
Priority in 2 4
Pl _Enable Vector address
L
™ Priority out
Interrupt _J¢ RF DG) - PO
request

from device

b

Delay

Pl RF | PO Enahle

¥

Interrupt request
mcpup : 1 0 | 0

O FIGURE 13-16
Oine Stage of the Daisy Chain Priority Arrangement

The priority logic for a system with four interrupt sources is shown in
Figure 13-17, The logic consists of an interrupt register with individual bits set by
external conditions and cleared by program instructions, Interrupt input 3 has the
highest priority, input (0 the lowest. The mask register has the same number of bits
as the interrupt register. By means of program instructions, it is possible to set or
reset any bit in the mask register, Each interrupt bit and its corresponding mask hit
are applied to an AND gate to produce the four inputs to a priority encoder. In
this way, an interrupt is recognized only if its corresponding mask bit is set to 1 by
the program. The priority encoder generates two bits of the vector address, which
is transferred to the CPU via the data bus. Output V of the encoder is set to 1 if an
interrupt request that is not masked has occurred. This provides the interrupt sig-
nal for the CPLL

The priority encoder is a circuit that implements the priority function. The
logic of the priority encoder is such that, if two or more inpuls are 1 at the same
time, the inpul having the highest priority takes precedence. The circuit of a four-
input priority encoder can be found in Section 4-4, and its truth table is listed in
Table 4-5. Input 14 has the highest priority so, regardless of the values of other
inputs, when this input is 1, the output is A, Ay = 11. D, has the next lower priority.
The output is 10 if D; = 1, provided that Dy = 0, regardless of the values of the
other two lower priority inputs. The output is 01 when Dy = I, provided that the
two higher priority inputs are equal to 0, and so on down the priority levels. The
interrupt output labeled V is equal to 1 when one or more inputs are equal to 1. If
all inputs are 0, V' is (), and the other two outputs of the encoder are not used. This
is because the vector address is not transferred Lo the CPU when V = 0,

13-7 / Direct Memory Access O 605

Interrupt Interrupt
i “from CPU-
Hig]‘u:s[_._ .
priority 3 :)_ D l
- 2 h D_ i A o -
.
Priority
=5 I encoder A - -
Lavwest 0 oy
PO] Figure 4-12 0 p
oy ==
5 e T
\n’
—={ 2 o -
— 1 0 b=
—={ 0 0 -
Mask T .
register 8
s
Interrupt
to CPU

O FIGURE 13-17
Parallel Priority Interrupt Hardware

The output of the priority encoder is used to form part of the vector address
of the interrupt source. The other bits of the vector address can be assigned any
values. For example, the vector address can be found by appending six zeros to the
outputs of the encoder. With this choice, the interrupt vectors for the four /O
devices are assigned the 8-bit binary numbers equivalent to decimal 0, 1,2, and 3.

13-7 DIRECT MEMORY ACCESS

The transfer of blocks of information between a fast storage device such as mag-
netic disk and the CPU can preoccupy the CPU and permit little, if any, other pro-
cessing to be accomplished. Removing the CPU from the path and letting the
peripheral device manage the memory buses directly will relieve the CPU from
many [/O operations and allow it to proceed with other processing. In this transfer
technique, called direct memory access (DMA), the DMA controller takes over
the buses to manage the transfer directly between the I/O device and memory. As a
consequence, the CPU is temporarily deprived of access to memory and control of
the memory buses.

DMA may capture the buses in a number of ways. One common method
extensively used in microprocessors is to disable the buses through special control
signals. Figure 13-18 shows two control signals in a CPU that facilitate the DMA
transfer. The bus request (BR) input is used by the DMA controller to request the

606 0O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

AB —— Address bus
Bus request —= BR

DB (= Data bus High impedance
CFU (disakled)
Bus granted —-— BG RD [Read ifBG =1

WER [Write

O FIGURE 13-18
CPU Bus Control Signals

CPU to relinquish control of the buses. When BR input is active, the CPU places
the address bus, the data bus, and the read and write lines into a high-impedance
state. After this is done, the CPU activates the bus granted (B(G) output to inform
the external DMA that it can take control of the buses. As long as the B¢ line is
active, the CPU is unable to proceed with any operations requiring access to the
buses. When the bus request input is disabled by the DMA, the CPU returns to its
normal operation, disables the B output, and takes control of the buses,

When the BG line is enabled, the external DMA controller takes control of
the bus system in order to communicate directly with memory. The transfer can be
made for an entire block of memory words, suspending operation of the CPLI until
the entire block is transferred, a process referred to as buest transfer. Or the trans-
fer can be made one word at a time between executions of CPU instructions, a pro-
cess called single-cyele transfer or cyele stealing, The CPU merely delays its bus
operations for one memory cycle to allow the direct memory-1/O transfer to steal
one memory cycle.

DMA Controller

The DMA controller needs the usual circuits of an interface to communicate with
the CPU and the 1/0 device. In addition, it needs an address register, a word-count
register, and a set of address lines. The address register and address lines are used
for direct communication with memory. The word-count register specifies the num-
ber of words that must be transferred. The data transfer may be done directly
between the device and memory under control of the DMA.

Figure 13-19 shows the block diagram of a typical DMA controller. The unit
communicates with the CPU via the data bus and control lines. The registers in the
DMA are selected by the CPU through the address bus by enabling the DS (DMA
select) and RS (register select) inputs. The D (read) and WR (write) inputs are
bidirectional. When the BG (bus granted) input is 0, the CPU can communicate
with the DMA registers through the data bus to read from or write to those regis-
ters. When BG = 1, the CPU has relinquished the buses, and the DMA can com-
municate directly with memory by specifying an address on the address bus and
activating the RD or WR control. The DMA communicates with the external
peripheral through the DMA request and DMA acknowledge lines by a prescribed
handshaking procedure.

13-7 / Direct Memory Access O 607

Address bus -
Data bips =t Diata bus = » Address bus
buffers buffers
DMA select —=| DS El > Address register
Register sclect — RS _;;"

Read < RD E' - »| Word-count register

Write +— WR Conprol
Bus request —| BR [OFi€ - > Control register

Bus granted — BG
DMA request

Interrupt =s—

DMA acknowledge |u:_|fl] device

O FIGURE 13-19
Block Diagram of a DMA Controller

The DMA controller has three registers: an address register, a word-count
register, and a control register. The address register contains an address to specify
the desired location of a word in memory. The address bits go through bus buffers
onto the address bus. The address register is incremented after each word is trans-
ferred to memory. The word-count register holds the number of words to be trans-
ferred. This register is decremented by one after each word transfer and internally
tested for zero. The control register specifies the mode of transfer. All registers in
the DMA appear to the CPU as I/O interface registers. Thus, the CPU can read
from or write to the DMA registers under program control via the data bus.

After initialization by the CPU, the DMA starts and continues to transfer
data between memory and the peripheral unit until an entire block is transferred.
The initialization process is essentially a program consisting of I/O instructions that
include the address for selecting particular DMA registers. The CPU initializes the
DMA by sending the following information through the data bus:

1. The starting address of the memory block in which data is available (for read-
ing) or data is to be stored (for writing).

2. The word count, which is the number of words in the memory block.

3. A control bit to specify the mode of transfer, such as read or write.

4. A control bit to start the DMA transfer.

The starting address is stored in the address register, the word count in the word-
count register, and the control information in the control register. Once the DMA
is initialized, the CPU stops communicating with it unless the CPU receives an
interrupt signal or needs to check how many words have been transferred.

608 O CHAPTER 13 / INPUT-OUTPUT AND COMMUNICATION

BUA hanshr

The position of the DMA controller among the other components in a computer
system is illustrated in Figure 13-20. The CPU communicates with the DMA
through the address and data buses, as with any interface unit. The DMA has its
own address, which activates the D8 and RS lines. The CPU initializes the DMA
through the data bus. Once the DMA receives the start control bit, it can begin
transferring data between the peripheral device and memory. When the peripheral
device sends a DMA request, the DMA controller activates the BR line, informing
the CPU that it is to relinquish the buses. The CPU responds with its BG line,
informing the DMA that the buses are disabled. The DMA then puts the current
value of its address register onto the address bus, initiates the R or WR signal,
and sends a DMA acknowledge to the peripheral device.

When the peripheral device receives a DMA acknowledge, it puts a word on
the data bus (for writing) or receives a word from the data bus (for reading). Thus,
the DMA controls the read or write operation and supplies the address for mem-
ory. The peripheral unit can then communicate with memory through the data bus
for a direct transfer of data between the two units while the CPU access to the data
bus is momentarily disabled.

= Interrupt
BG CPU Memory
= BR
RD WR Address Data RD WR Address Data
A A & 3 I
¥ Read control
-
¥ Write control
L
1 Address bus
[L
Address L Data bus L
decoder 1 1
L i L L 4 L
L RD WR Address Data
D5
- —={ RS DMA request Ts)
ER R DLM‘T[) B peripheral
GoLrOTer DMA acknowledge | device
e ——— g
= Bl
Interrupt

O FIGURE 13-20
DMaA Transfer in a Computer System

13-8 / I/O Processors O 609

For each word that is transferred, the DMA increments its address register
and decrements its word-count register. If the word count has not reached zero, the
DMA checks the request line coming from the peripheral. In a high-speed device,
the line will be activated as soon as the previous transfer is completed. A second
transfer is then initiated, and the process continues until the entire block is trans-
ferred. If the speed of the peripheral is slower, the DMA request line may be acti-
vated somewhat later. In this case, the DMA disables the bus request line so that
the CPU can continue to execute its program. When the peripheral requests a
transfer, the DMA requests the buses again.

If the word count reaches zero, the DMA stops any further transfer and
removes its bus request. It also informs the CPU of the termination of the transfer
by means of an interrupt. When the CPU responds to the interrupt, it reads the
contents of the word-count register. A value of zero indicates that all the words
were successfully transferred. The CPU can read the word-count register at any
time, as well, to check the number of words already transferred.

A DMA controller may have more than one channel. In this case, each chan-
nel has a request and acknowledge pair of control signals that are connected to
separate peripheral devices. Each channel also has its own address register and
word-count register so that channels with high priority are serviced before chan-
nels with lower priority.

DMA transfer is very useful in many applications, including the fast transfer
of information between magnetic disks and memory and between graphic displays
and memory.

13-8 I/O PROCESSORS

Instead of having each interface communicate with the CPU, a computer may
incorporate one or more external processors and assign them the task of communi-
cating directly with all /O devices. An input-output processor (1OP) may be classi-
fied as a processor with direct memory access capability that communicates with
I/O devices. In this configuration, the computer system can be divided into a mem-
ory unit and a number of processors composed of the CPU and one or more [OPs.
Each TOP takes care of input and output tasks, relieving the CPU of the “house-
keeping” chores involved in /O transfers. A processor that communicates with
remote units over telephone and other communication media in a serial fashion is
called a data communication processor (DCP). The benefit derived from using I/O
processors is improved system performance, achieved through relieving the CPU of
detailed tasks relating to I/0 and assigning them to the appropriate I/0O processors.

An 10P is similar to a CPU, except that it is designed to handle the details of
/O processing. Unlike the DMA controller, which must be set up entirely by the
CPU, the IOP can fetch and execute its own instructions. lJOP instructions are spe-
cifically designed to facilitate 1/O transfers. In addition, the 10P can perform other
processing tasks, such as arithmetic, logic, branching, and translation of code.

The block diagram of a computer with two processors is shown in Figure 13-21.
The memory occupies a central position and can communicate with each processor
by means of DMA. The CPU is responsible for processing data needed in the

610 O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

Memory unit

'y
| Memory bus Peripheral devices

i 3
Central processing Input-output

unit (CPLT} processar [1OF) /0y bus

O FIGURE 13-21
Block Diagram of a Computer with [/Q Processor

solution of computational tasks. The IOP provides a path for the transfer of data
between various peripheral devices and the memory. The CPU is usually assigned
the task of initiating the 1/O program. From then on, the I0P operates indepen-
dently of the CPU and continues to transfer data between external devices and
memaory. The data formats of peripheral devices often differ from those of memory
and the CPU. The IOP must structure data words from many different sources. For
example, it may be necessary to take four bytles from an input device and pack them
into one 32-bit word before the transfer to memory. Data are gathered in the IOP at
the device bit rate and bit capacity while the CPU is executing its own program.
After assembly into a memory word, the data is transferred from the TOP directly
into memory by stealing one memory cycle from the CPUL Similarly, an output word
transferred from memory to the IOP is directed from the IOP to the output device
al the device bit rate and bit capacity.

The communication between the [OP and the devices attached to it is similar
to the program-controlled method of transfer. Communication with memory is
similar to the DMA method. The way the CPU and 1OP communicate with each
other depends on the level of sophistication of the system. In very large-scale com-
puters, each processor is independent of all the others, and any one processor can
initiate an operation. In most computer systems, the CPU is the master, while the
TOF is a slave processor, The CPU is assigned the task of initiating all operations,
but /O instructions are executed in the IOP. CPU instructions provide operations
to start an L/O transfer and also to test /O status conditions needed for making
decisions on various I/O activities, The I0P, in turn, typically asks for attention
from the CPU by means of an interrupt. It also responds to CPU requests by plac-
ing a status word in a prescribed location in memory, to be examined later by a
CPU program. When an I/O operation is desired, the CPU informs the [OP where
to find the /O program and then leaves the details of the transfer to the IOP.

Instructions that are read from memory by an [OP are sometimes called
commands, to distinguish them from instructions that are read by the CPU. An
instruction and a command have similar functions. Commands are prepared by
programmers and are stored in memory. The command words constitute the

13-8 / 1/0 Processors [611

program for the IOP. The CPU informs the IOF where to find commands in
memory when it is time to execute the /O program.

Communication between the CPU and the I0P may take different forms,
depending on the particular computer used. In most cases, the memory acts as a
message center, where each processor leaves information for the other. To appreci-
ate the operation of a typical IOP, we illustrate the method by which the CPU and
[OP communicate with each other. This simplified example omits many operating
details in order to provide an overview of basic concepts,

The sequence of operations may be carried out as shown in the flowchart
of Figure 13-22. The CPU sends an instruction to test the IOP path. The 10P

CPU operations [OF operations

Send instruction
to test IOP path

Transfer status word
1o memory location

If status O.K.,
send start 110
instruction to I1OP

[N/

Access memory for
[P program

r

Y

CPLU continues with

another program Conduct /0 transfers

using DM A:
prepare stalus report

L

1Ay transfer completed:
imterrupt CPU

 d

Request IO status

/\

Transfer status word
o memory location

Check status word
for correct transler

l

Continue

O FIGURE 13-22
CPU-TIOP Communication

612 0O CHAPTER 13 / INPUT-OUTPUT AND COMMUNICATION

responds by inserting a status word in memory for the CPU to check. The bits of
the status word indicate the condition of the IOP and I/O device, such as “IOP
overload condition,” “device busy with another transfer,” or “device ready for
I/0 transfer.” The CPU refers to the status word in memory to decide what to do
next. I all is in order, the CPU sends the instruction to start the 1/0 transfer.
The memory address received with this instruction tells the IOP where to find its
program.,

The CPU can now continue with another program while the IOP is busy with
the /O program. Both programs refer to memory by means of DMA transfer.
When the IOP terminates the execution of its program, it sends an interrupt
request to the CPUL The CPU responds by issuing an instruction to read the status
from the 1OF. The IOF then responds by placing the contents of its status report
into a specified memory location. The status word indicates whether the transfer
has been completed or whether any errors occurred during the transfer. By
inspecting the bits in the status word, the CPU determines whether the I/O opera-
tion was completed satisfactorily, without errors,

The IOP takes care of all data transfers between several I/O units and mem-
ory while the CPU is processing another program, The IOP and CPU compete for
the use of memory, so the number of devices that can be in operation is imited by
the access time of the memory. It is not possible for I/O devices to saturate the
memory in most systems, as the speed of most devices is much slower than that of
the CPUL However, multiple fast units, such as magnetic disks or graphics displays,
can use an appreciable number of the available memory cyeles. In that case, the
speed of the CPU may deteriorate because the CPU often has to wait for the IOP
to conduct memory transfers,

13-9 CHAPTER SUMMARY

In this chapter, we introduced LI/O devices, typically called peripherals, and their
associated digital support structures, including I/O buses, interfaces, and control-
lers. We studied the structure of a keyboard, a hard disk, and a graphics display.
We looked at an example of a generic /O interface and examined the interface
and I/0 controller for the keyboard. We introduced USB as an alternative solu-
tion to the attachment of many /O devices. We considered timing problems
between systems with different clocks and the parallel and serial transmission of
infermation.

We also looked at modes of transferring information and saw how the more
complex modes came about, principally to relieve the CPU from extensive, per-
formance-robbing handling of /O transfers. Interrupt-initiated transfers with
multiple I/O interfaces lead to means of establishing priority between interrupt
sources. Priority can be handled by software, serial daisy chain logic, or parallel
interrupt-priority logic. Direct memory access accomplishes the transfer of data
directly between an I/O interface and memory, with little CPU involvement.
Finally, the I/O processor provides even greater independence of the CPU in
handling /0.

Problems O 613

REFERENCES

1. PaTTERsON, D. A., and J. L. HEnnESSY Computer Organization and Design:
The Hardware/Software Interface. San Francisco, CA: Morgan Kautmann,
1998.

2. Van GiLLuwe, F. The Undocumented PC. Reading, MA: Addison-Wesley,
1994,

3. MESSMER, H. P. The Indispensable PC Hardware Book. 2nd ed. Reading, MA:
Addison-Wesley, 1995,

4. MindShare, Inc. (Don Anderson). Universal Serial Bus System Architecture.
Reading, MA: Addison-Wesley Developers Press, 1997,

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates a
solution is available on the Companion Website for the text.

13-1. *Find the formatted capacity of the hard disks described in the following
table:

Sectors/ Bytes/
Disk Heads Cylinders Track Sector

A 1 1023 63 312
B 4 8191 63 512
C 16 16383 63 512

13-2. Estimate the time required to transfer a block of IMB (2% B) from disk to
memory given the following disk parameters: seek time. 8.5 ms; rotational
delay, 4.17 ms; controller time, negligible: transfer rate, 100 MB/s.

13-3. The addresses assigned to the four registers of the IO interface of Figure
13-5 are equal to the binary equivalent of 240, 241, 242, and 243. Show the
external circuit that must be connected between an 8-bit I/O address from
the CPU and the CS, RSD, and RS51 inputs of the interface.

134. *How many /O interface units of the type shown in Figure 13-5 can be
addressed by using a 16-bit address, assuming

{a) that each of the chip select (CS) lines is attached to a different address
line?
{(b) that address bits are fully decoded to form the chip select inputs?

13-5. Six interface units of the type shown in Figure 13-5 are connected to a CFU
that uses an I/O address of eight bits. Each one of the six chip select (C5)
inputs is connected to a different address line. Specifically. address line 0 i1s
connected to the CS input of the first interface unit, and address line 5 is
connected to the €S input of the sixth interface unit. Address lines 7 and 6

614 O CHAPTER 13 / INPUT-OUTPUT AND COMMUNICATION

13-6.

13-7.

13-8.

13-9.

13-10.

are connected to the RS51 and RSO inputs, respectively, of all six interface
units. Determine the 8-bit address of each register in each interface (a total
of 24 addresses).

*A different type of I/O interface does not have the RS1 and RS0 inputs. Up
to two registers can be addressed by using a separate 1/O read signal and
IO write signal for each address available. Assume that 50% of the registers
at the interface with the CPU are read only, 25% of the registers are write
only, and 25% of the registers are both read and write (bidirectional). How
many registers can be addressed if the address contains four bits?

A commercial interface unit uses names different from those appearing in

this text for the handshake lines associated with the transfer of data from

the /O device to the interface unit. The interface input handshake line is
labeled STE (strobe), and the interface output handshake line is labeled

IBF (input buffer full). A low-level signal on ST loads data from the /O

bus into the interface data register. A high-level signal on IBF indicates

that the data has been accepted by the interface. IBF goes low after an I/0

read signal from the CPU when it reads the contents of the dala register.

(a) Draw a block diagram showing the CPU, the interface, and the IO
device, along with the pertinent interconnections between the three
units.

(b) Draw a timing diagram for the handshaking transfer.

*Assume that the transfers with strobing shown in Figure 13-6 are between

a CPU on the left and an /O interface on the right. There is an address

coming from the CPU for each of the transfers, both of which are initiated

by the CPUL

(a) Draw block diagrams showing the interconnections for the transfers.

(b} Draw the timing diagrams for the two transfers, assuming that the
address must be applied some time before the strobe becomes 1 and
removed some time after the strobe becomes (0.

Assume that the transfers with handshaking shown in Figure 13-7 are

between a CPU on the left and an I/O interface on the right. There is an

address coming from the CPU for each of the transfers, both of which are

initiated by the CPU.

(a) Draw block diagrams, showing that interconnections for the transfers.

(b} Draw the timing diagrams, assuming that the address must be applied
some time before the request becomes 1 and removed some time after
the request becomes (.

*How many characters per second can be transmitted over a 57,600-baud
line in each of the following modes? { Assume a character code of eight bits.)
(a) Asynchronous serial transmission with two stop bits,

(b) Asynchronous serial transmission with one stop bit.

(¢) Repeat a and b for a 115.200-baud line,

13-11.

13-12.

13-13.

13-14.

13-15.

13-16.

13-17.

13-18.

13-19.

13-20.

13-21.
13-22,

13-23.

Problems O 615

Sketch the timing diagram of the 11 bits (similar to Figure 13-8) that are
transmitted over an asynchronous serial communication line when the
ASCII letter E is transmitted with even parity. Assume that the ASCII
character code is transmitted least significant bit first, with the parity bit
following the character code.

What is the difference between the synchronous and the asynchronous
serial transfer of information?

*Sketch the waveforms for the SYNC pattern used for USB and the
corresponding NRZI waveform. Explain why the pattern selected is a good
choice for achieving synchronization,

The following stream of data is to be transmitted by USB:
O1TTT11 1001000001111 11011111110
(a) Assuming bit stuffing is not used, sketch the NRZI waveform.
(h) Modily the stream by applying bit stuffing,
(¢) Sketch the NRZI waveform for the result in b.

*The &-hit ASCII word “Bye” is to be transmitted to a device address 39
and endpoint 2, List the Output and Data 0 packets and the Handshake
packet for a Stall for this transmission prior to NRZI encoding.

Repeat problem 13-15 for the word “Hlo™ and a Handshake packet of type
No Acknowledge.

What is the basic advantage of using interrupt-initiated data transfer over
transfer under program control without an interrupt?

*Whatl happens in the daisy chain priority interrupt shown in Figure 13-15
when device 0 requests an interrupt after device 2 has sent an interrupt
request to the CPU, but before the CPU responds with the interrupt
acknowledge?

Consider a computer without priority interrupt hardware. Any one ol many
sources can interrupt the computer, and any interrupt request results in
storing the return address and branching to a common interrupt routine.
Explain how a priority can be established in the interrupt service program.

*What changes are needed in Figure 13-17 to make the four VAD values
equal to the binary equivalent of 024, 025, 026, and 0277

Repeat problem 13-20 for VAD values 224, 225,226 and 227,

“Design parallel priority interrupt hardware for a system with six interrupt
SOLICES.,

A priority structure is to be designed that provides vector addresses.

{a) Obtain the condensed truth table of a 16 = 4 priority encoder,

{b) The four outputs w, x, v, z from the priority encoder are used to provide
an 8-bit vector address in the form 10wxyz01. List the 16 addresses,
starting from the one with the highest priority.

616 0O CHAPTER 13/ INPUT-OUTPUT AND COMMUNICATION

13-24.

13-25.

*Why are the read and write control lines in a DMA controller
bidirectional? Under what condition and for what purpose are they used as
inputs? Under what condition and for what purpose are they used as
outputs?

It is necessary to transfer 1024 words from a magnetic disk to a section of

memory starting from address 2048, The transfer is by means of DMA as

shown in Figure 13-20.

{a) Give the initial values that the CPU must transfer to the DMA
controller.

(b) Give the step-by-step account of the actions taken during the input of
the first two words.

MEMORY SYSTEMS

systems, including SRAMs and DRAMs. In the current chapter, we probe more

deeply into what really constitutes a computer memory system. We begin with the
premise that a fast, large memaory is desirable and demonstrate that a straightforward
implementation of such a memory for the typical computer is too costly and too slow. As
a consequance, we study a more elegant solution in which most accesses to memory
are fast (but some are slow) and the memory appears to be large. This solution employs
two concepls: cache memory and virtual memory, A cache memaory is a small, fast
meamory with spacial control hardware that permits it to handle a significant proportion
of all accesses required by the CPU with an access time of the order of the CPU clock
period. Virtual memory, implemented in software and hardware, using an intermediate-
sized main memaory (typically, DRAM), gives the appearance of a large main memaory
with access time similar to the main memory for the vast majority of accesses. The
actual storage medium for most of the code and data in the virtual memory is a hard
disk. Because thare is a progression of components in the memaory system having
larger and larger storage capability, but slower and slower access (cache, main
memary, and hard disk), the term memoary hierarchy is applied.

In the generic computer at the beginning of Chapter 1, a number of components are
heavily involved in the memory hierarchy. Within the processor, there is the memory
managermeant unit (MMU), which is hardware provided to support virtual memary. Also
in the processor, the internal cache appears. Since this cache is too small to fully
support the cache function, there is also an external cache attached to the CPU bus.
Of course, the RAM is involved, and due to the presence of virtual memaory, the hard
disk, the bus interface, and the disk controller all have a role as parts of the mamory
system.

I n Chapter 9, we discussed basic RAM technology for implementing memary

o 617

618 O CHAPTER 14 / MEMORY SYSTEMS

14-1 MEMORY HIERARCHY

Figure 14-1 shows a generic block diagram for a memory hierarchy. The lowest level
of the hierarchy is a small, fast memory called a cache. For the hierarchy to function
well, a very large proportion of the CPU instruction and operand fetches are
expected to be from the cache. At the next level upward in the hierarchy is the srain
memory. The main memory serves directly most of the CPL instruction and operand
fetches not satisfied by the cache. In addition, the cache fetches all of its data, some
portion of which is passed on to the CPU, from the main memory. At the top level of
the hierarchy is the hard disk, which is accessed only in the very infrequent cases in
which a CPU instruction or operand fetch is not found in main memory.

With this memaory hierarchy, since the CPU fetches most of the instructions
and operands from the cache, it “sees” a fast memory, most of the time. Occasion-
ally, when a word must come from main memory, a fetch takes somewhat longer.
Very infrequently, when a word must be fetched from the hard disk, the fetch takes
a very long time. In this last case, the CPU is likely to experience an interrupt that
passes execulion to a program which brings in a block of words from the hard disk.
On balance, the situation is usually satisfactory, providing an average fetch time
close to that of the cache. Moreover, the CPU sees a memory address space consid-
erably larger than that of main memory.

With this general notion of a memory hierarchy kept in mind, we will pro-
ceed to consider an example that illustrates the potential power of such a hierar-
chy. However, there is one issue to be clarified first. In most instruction set
architectures, the smallest of the objects that are addressed is a byte rather than a
word. For a given load or store operation, whether a byte or word is affected is typ-
ically determined by the opcode, Addressing to bytes brings with it some assump-
tions and hardware details that are important, but, if used up to this point in the
text, would have unnecessarily complicated much of the material covered. Conse-
quently, for simplicity, we have assumed up to now that an addressed location con-
tains a word. By contrast, in this chapter we will assume that addresses are defined

. P " 3 oy Main = <. Hard
CFPU Cache = memory |+ disk

O FIGURE 14-1
Memory Hierarchy

14-1 / Memory Hierarchy O 619

for bytes, to match current practice. Nevertheless, we will still assume that data is
maoved around outside of the CPU as words or sets of words, to avoid messy expla-
nations relating to the manipulation of bytes. This assumption simply hides some
hardware details that would distract from the main focus of our discussion, but
nevertheless must be handled by the hardware designer. To accomplish the simpli-
fication, if there are 2" bytes per word, we will ignore the last b bits of the address.
Since these bits are not needed to address a word, we show their values as ('s. For
the examples we will present, b is always equal to 2, so two (s are shown.

In Section 12-3, the pipelined CPU had a memory address with 32 bits and
was able to access an instruction and data, if necessary, in each of the 1-ns clock
cyveles. Also, we assumed that the instruction and the data were, in effect, fetched
from two different memories. To support this assumption in this chapter, we will
suppose initially that the memory is divided in half—one-half for instructions and
one-half for data. Each half of the memory must have an access time of 1 ns. In
addition, if we utilize all the bits in the 32-bit address, then the memory can contain
up to 2% bytes, or 4 gigabytes (GB), of information. So the goal is to have two 2-GB
memories, each with an access time of 1 ns.

Is such a memory realistic in terms of current (2(03) computer technology?
The typical memory is constructed of DRAM modules ranging in size from 16 to
64 Mbytes. The typical access time is about 10 ns. Thus, our two 2-GB memories
would have an access time of somewhat more than 10 ns per word. This kind of
memory both is too costly and operates at only one-tenth the desired speed. So our
goal must be achieved another way, leading us to explore a memory hierarchy.

We begin by assuming a hierarchy with two caches, one for instructions and
one for data, as shown in Figure 14-2. The use of these two caches permits one
instruction and one operand to be fetched, or one instruction to be feiched and one
result to be stored, in a single clock cycle if the caches are fast enough. In terms of
the generic computer, we assume that the caches are internal, so that they can
operate at speeds comparable to that of the CPU. Thus, fetches from the instruc-
tion cache and fetches from and stores to the data cache can be accomplished in

w5 INstrUCTiON
i cache | BEUNGEMN Hard
memory | disk
x| Data i
cache

O FIGURE 14-2

Example of Memory Hierarchy

620 0O CHAPTER 14 / MEMORY SYSTEMS

2 ns. Hence, most of the fetches and stores for the CPU are from or to these caches
and will take 2 CPU clock cycles. Suppose, then, that we are satisfied with most—
say, 95%—of the memory accesses taking 2 ns. Suppose further that most of the
remaining 5% of the memory accesses take 10 ns. Then the average access time is

095x2+0.05x10 =24ns

This means that. on 19 out of every 20 memory accesses, the CPU operates at full
speed, while the CPU will have to wait for 10 clock cycles for 1 out of every 20
memory accesses. This wait can be accomplished by stalling the CPU pipeline.
Thus, we have accomplished our goal of “most”™ memory accesses taking 2 ns. But
there is still the problem of the cost of the large memory.

MNow suppose that, in addition to infrequently accepting a wait for a word
from main memory that will take more than 10 ns, we are also willing to accept a
very infrequent wait for a hard disk access taking 13 ms = 1.3 x 107 ns. Suppose
that we have data indicating that about 95% of the fetches will be from a cache and
about 4.999995% of the fetches will be from main memory. With this information,
we can estimate the average access time as

0.95 X 2 +0.04999995 X 10 +5 X 10 ¥ x 1.3 x 10" = 3.05 ns

Thus, the average access time is about 3 times the 1 ns CPU clock period, but is about
one-third of the 10 ns access time for main memory, again with 19 out of 20 of the
accesses taking place in 2 ns. S0 we have achieved an average access time of about
3.05 ns for a memory structure with a capacity of 2% bytes, not far from the original
goal. Further, the cost of this memory hierarchy is tens of times smaller than the
large, fast memory approach.

It therefore appears that the original goal of the appearance of a fast, large
memory has been approached by the memory hierarchy at a reasonable cost. But
along the way, we made some assumptions, namely, that 95% of the time the word
desired would come from what we are now calling the cache and that 99.999995%
of the time the words would come from either cache or main memory, with the
remainder from hard disk. In the rest of this chapter, we will explore why assump-
tions similar to these usually hold, and we will examine the hardware and associ-
ated software components needed to achieve the goals of the memory hierarchy.

14-2 LocALITY OF REFERENCE

In the previous section, we indicated that the success of the memory hierarchy is
based on assumptions that are critical to achieving the appearance of a large, fast
memory. We now deal with the foundation for making these assumptions, which is
called locality of reference. Here “reference” means reference to memory for access-
ing instructions and for reading or writing operands. The term “locality™ refers to the
relative times at which instructions and operands are accessed (temporal locality)
and the relative locations at which they reside in main memory (sparial locality).

Let us consider first the nature of the typical program. A program frequently
contains many loops. In a loop, a sequence of instructions is executed many times
before the program exits the loop and moves on to another loop or straight-line

14-2 / Locality of Reference O 621

code not in a loop. In addition, loops are often nested in a hierarchy in which loops
are contained in loops, and so on. Suppose we have a loop of eight instructions that
is to be executed 100 times. Then for 800 executions, all instruction fetches will
occur from just eight addresses in memory. Thus, each of the eight addresses is vis-
ited 100 times during the time the loop is executed. This is an example of temporal
locality in the sense that an address which is accessed is likely to be accessed many
times in the near future. Also, it is likely that the addresses of the instructions will
be in sequential order. Thus, if an address is accessed for an instruction, nearby
addresses are going to be addressed during the execution of the loop. This is an
example of spatial locality.

In terms of accessing operands, similar temporal and spatial localities also
occur, For example, in a computation on an array of numbers, there are multiple
visits to the locations of many of the operands, giving temporal locality. Also, as the
computation proceeds, when a particular address is accessed for a number, sequen-
tial addresses near to it are likely to be accessed for other numbers in the array,
giving spatial locality.

From the prior discussion, we can conjecture that there is significant locality
of reference in computer programs. To verify this decisively, it is necessary to
study the patterns of execution of real programs. Such studies have demonstrated
the presence of significant temporal and spatial locality of reference and play an
important role in the design of caches and virtual memory systems.

The next question to answer is: What is the relation of locality of reference to
the memory hierarchy? To examine this issue, we consider again the instruction
fetch within a loop and look at the relationship between the cache and main mem-
ory. Initially, we assume that instructions are present only in main memory and
that the cache is empty. When the CPU fetches the first instruction in a loop, it
obtains the instruction from main memory. But the instruction and a portion of its
address called the address tag are also placed in the cache. What then happens for
the next 99 executions of this instruction? The answer is that the instruction can be
fetched from the cache, which provides a much [aster access. This is temporal local-
ity at work: The instruction that was fetched once will tend to be used again and is
now present in the cache for Tast access,

Additionally, when the CPU fetches the instruction from main memory, the
cache fetches nearby instructions into its SRAM. Now suppose that the nearby
instructions include the entire loop of eight instructions presented in our exam-
ple. Then all of the instructions are in the cache. By bringing in such a block of
instructions, the cache is able to exploit spatial locality: It takes advantage of the
fact that the execution of the first instruction implies the execution of instruc-
tions with nearby addresses by making the latter instructions available for fast
access.

In our example, each of the instructions is fetched from main memory
exactly once for the 100 executions of the loop. All other instruction fetches come
from the cache. Thus, in this particular example, at least 99% of the instructions
being executed are fetched from the cache, so that the rate of execution of instrue-
tions is governed almost completely by the cache access time and CPU speed, and

622 0O CHAPTER 14 / MEMORY SYSTEMS

very little by the main memory access time. Without temporal locality, many more
accesses to main memory would occur, slowing down the system.

A relationship similar to that between cache and the main memory can
exist between main memory and the hard disk. Again, both temporal and spatial
locality of reference are of interest, except this time on a much larger scale. Pro-
grams and data are fetched from the hard disk, and data is written to the hard
disk in blocks that range from kilowords to megawords. Ideally, once the code
and initial data for a program reside in main memory, the hard disk need not be
accessed except for storing final results of the program. But this can happen only
if all of the code and data, including intermediate data used by the program,
reside fully in main memory. If not, then it will be necessary to bring in code
from the hard disk and to read and write data from and to the hard disk during
program execution. Words are read from and written to the disk in blocks
referred to as pages. If the movement of pages between main memory and hard
disk is transparent to the programmer, then it will appear as if main memory is
large enough to hold the entire program and all of the data. Hence, this auto-
mated arrangement is referred to as virfual memory. During the execution of the
program, if an instruction to be executed is not in main memory, the CPU pro-
gram flow is diverted to bring the page containing the instruction into main
memory. Then the instruction can be read from main memory and executed. The
details of this operation and the hardware and software actions required for it
will be covered in Section 14-4,

In summary, locality of reference is absolutely key to the success of the con-
cepts of cache memory and virtual memory. In the case of most programs, locality
of reference is present to a fairly high degree. But occasionally, one does encounter
a program that, for example, requires frequent access to a large body of data that
cannot be accommodated in main memory. In such a case, the computer spends
almost all of its time moving information between main memory and the hard disk
and does little other computation. Continuous sounds emanating from the hard
disk as the heads move from track to track is a telltale sign of this phenomenon,
which is referred to as thrashing.

14-3 CACHE MEMORY

To illustrate the concept of cache memory, we assume a very small cache of eight
32-bit words and a small main memory with 1 KB (256 words), as shown in
Figure 14-3. Both of these are too small to be realistic, but their size makes illus-
tration of the concepts easier. The cache address contains 3 bits, the memory
address 10. Out of the 256 words in main memory, only 8 at a time may lie in the
cache. In order for the CPU to address a word in the cache, there must be infor-
mation in the cache to identify the address of the word in main memory. If we
consider the example of the loop in the last section, clearly, we find it desirable
to contain the entire loop within the cache, so that all of the instructions can be
fetched from the cache while the program is executing most of the passes
through the loop. The instructions in the loop lie in consecutive word addresses.

14-3 / Cache Memory O 623

Address Crata
&8 7 6 5 4 3 2 1 O LR

Tag [Index I E}-u:|

(OO0 30k
QOO0 000
CHOOCHNT 10
0T D000
OO O O
QOO0 10
Q001100

{a) Memory address
Index Tag Data
o 7
001 T
(L] %
o1 | oo0oo AR
100 N
1
110
111

N\

1111100
T 1100100
[RRRRIGLELN
1111101100
111111060000
IRRRRRIITN
T11111 1000
111111100

Cache

7

Main memory

(b} Cache mapping

O FIGURE 14-3
Direct Mapped Cache

Thus, it is desirable for the cache to have words from consecutive addresses in
main memory present simultaneously, A simple way to facilitate this feature is to
make bits 2 through 4 of the main memory address be the cache address, We
refer to these bits as the index, as shown in Figure 14-3, Note that the data from
address 0000001100 in main memory must be stored in cache address 011, The
upper 5 bits of the main memory address, called the rag, are stored in the cache
along with the data. Continuing the example, we find that for main memory
address 0000001100, the tag is (000, The tag combined with the index (or cache
address) and (0 byte field identify an address in main memory.

Suppose that the CPU is to fetch an instruction from location 000001100 in
main memory. This instruction may actually come from either the cache or main
memory. The cache separates the tag 00000 from the cache address 011, internally
fetches the tag and the stored word from location 011 in the cache memory, and
compares the tag feiched with the tag portion of the address from the CPLUL If the
tag fetched is 00000, then the tags match, and the stored word fetched from cache

624 0O CHAPTER 14 / MEMORY SYSTEMS

memory 15 the desired instruction. Thus, the cache control places this word on the
bus to the CPU, completing the [etch operation. This case in which the memory
word is fetched from cache is called a cache hie. If the tag fetched from cache mem-
ory is not 00000, then there is a tag mismatch, and the cache control notifies main
memory that it must provide the memory word, which is not available in the cache.
This situation is called a cache miss. For a cache to be effective, the slower fetches
from main memory must be avoided as much as possible, making considerably
more cache hils than cache misses necessary.

When a cache miss occurs on a fetch, the word from main memory is not
placed just on the bus for the CPU. The cache also captures the word and its tag
and stores them for future access. In our example, the tag (00000 and the word from
memaory will be written in cache location 011 in anticipation of future accesses to
the same memory address. The handling of writes to memory will be dealt with
later in the chapter.

Cache Mappings

The example we just considered uses a particular association or mapping between
the main memory address and the cache address; namely, the last three bits of the
main memory word address are the cache address. Additionally, there is only one
location in the cache for the 2% locations in main memory that have their last three
bits in common. This mapping in Figure 14-3 in which only one specific location in
the cache can contain the word from a particular main memory location is called
direct mapping.

Direct mapping for a cache, however, does not always produce the most
desirable situation. In our loop instruction fetch example, suppose that instructions
and data are in the same cache and that data from location 1111101100 is fre-
quently used. Then when the instruction in 0000001100 is fetched, location 011 in
the cache is likely to contain the data from 1111101100 and tag 11111. A cache miss
occurs and causes tag 11111 to be replaced in the cache with tag 00000 and the data
to be replaced with the instruction. But the next time the data is needed, another
cache miss occurs, since the location in the cache is now occupied by the instruc-
tion. Throughout the execution of the loop, both instruction fetch and data fetch
cause many cache misses, significantly slowing CPU processing. To solve this prob-
lem, we explore alternative cache mappings.

In direct mapping, 2° addresses in main memory map to the single address in
the cache that matches their last three bits. These locations are highlighted in gray
in Figure 14-3 for index 001. As is illustrated, only one of the 2° addresses can
have its word in cache address 001 at any time. In contrast, suppose that we let
locations in main memory map into an arbitrary location in the cache. Then any
location in memory can be mapped to any one of the eight addresses in the cache.
This means that the tag will now be the full main memory word address. We
examine the operation of such a cache having a fully associative mapping in
Figure 14-4. Note that in this case there are two main memory addresses,
0000010000 and 1111110000, with bits 2 through 4 equal to 100 among the cache

14-3 / Cache Memory O 625

G B T 6 5 4 33 1 0 Address Data
Tag I Bg."tel P
Q00000100
(a) Memory address 000001000
Tag Data QOODO0T 100
Q00 | D000 CH Q0010000
007 | D001l DODOOTOTO0
010 (00001 1000
011 | 111111k (00011100
1000
101 | OO0 .
110 :
111 | 11111004
Cache 1111100000
111100000
1111101000
1111101100
111111000
1111110100
11111110000
IRRSRARALL]

Main memory

() Cache mapping

O FIGURE 14-4
Fully Associative Cache

tags. These two addresses cannot be present simultaneously in the direct-mapped
cache, as they would both occupy the cache address 100. Thus, a succession of
cache misses due to alternate fetching of an instruction and data with the same
index is avoided here, since both can be in the cache.

Now suppose that the CPU is to fetch an instruction from location 0000010000
in main memory. This instruction may actually be returned from either the cache or
main memory. Since the instruction might lie in the cache, the cache must compare
00000100 to each of its eight tags. One way to do this is to successively read each tag
and the associated word from the cache memory and compare the tag to 00000100,
If a match occurs, as it will for the given address and cache location 000 in
Figure 14-4, a cache hit occurs. The cache control then places the word on the bus to
the CPU, completing the fetch operation. If the tag fetched from the cache is not
00000100, then there is a tag mismatch, and the cache control fetches the next suc-
cessive tag and word. In the worst case, a match on the tag in cache address 111,
eight fetches from the cache are required before the cache hit occurs. At 2 ns a

626 [0 CHAPTER 14 / MEMORY SYSTEMS

fetch, this requires at least 16 ns, about half the time it would take to obtain the
instruction from main memory. So successive reads of tags and words from the
cache memory to find a match is not a very desirable approach. Instead, a structure
called associative memory implements the tag portion of the cache memory.

Figure 14-5 shows an associative memory for a cache with 4-bit tags. The
mechanism for writing tags into the memory uses a conventional write. Likewise,
the taps can be read from the memory using the conventional memory read. Thus,
the associative memory can use the bit slice model for RAM presented in

T: A T A T Ay To Ao
Match
logic
| M
Ay MAs My Ay
Word |]
select - » -
. 1 ! ! |
RAM cell RAM cell RAM cell RAM cell
1 [t 1 - 1
Match logic — Mp
Word
select + +)
: 1 1 1 |
RAM cell BEAM cell RAM cell RAM cell
T I'“ 1 I 1 r‘ 1 I'"
. Match logic M,
L . . . -
Word : : H :
select t T T
e 1 1 i |
RAM cell RAM cell RAM cell RAM cell
T rt T 1 I & I rt
Match logic Man_
Readfwrite Read/write Feadiwrite Readiwrite
logic logic logic logic
— Dhata in — Data in — Data in — Data in
Data out f— Data out Data out p— Data out |—
Read/ Bit Read! Bit Read/ Bit Read! Bil
write select write select write select wrile select
| | | |

5 l ' l

O FIGURE 14-5
Associalive Memory [or 4-bit Tags

14-3 / Cache Memory O 627

Chapter 9. In addition, each tag storage row has match logic. The implementation
of this logic and its connection to the RAM cells are shown in the figure. The match
logic does an equality comparison or match between the tag T and the applied
address A from the CPU. The match logic for each tag is composed of an exclusive-
OR gate for each bit and a NOR gate that combines the outputs of the exclusive-
ORs. If all of the bits of the tag and the address match, then the outputs of all the
exclusive-ORs are () and the NOR output is a 1, indicating a match. If there is a mis-
match between any of the bits in the tag and the address, then at least one exclu-
sive-OR has a 1 output, which causes the output of the NOR gate to be 0, indicating
a mismatch.

Since all tags are unique, only two situations can arise in the associative mem-
ory: there will be a match, with a 1 on the output of the match logic for one malch-
ing tag and a on the remaining match logic outputs; or there will be no match,
and all of the match logic outputs will be 0. With an associative memory holding
the cache tags, the outputs of the match logic drive the word lines for the data
memory words 1o be read. A signal must indicate whether a hit or a miss has
occurred. If this signal is 1 for a hit and 0 for a miss, then it can be generated by
using the OR of the malch outputs. In the case of a hit, a 1 on Hit/miss places the
word on the memory bus to the CPU; in the case of a miss, a 00 on Hit/miss tells the
main memory that it is to provide the word addressed.

As in the case of the direct-mapped cache discussed earlier, the fully associa-
tive cache must capture the data word and its address tag and store them for future
accesses. But now a new problem arises: Where in the cache are the tag and data to
be placed? In addition to selecting a cache mapping, the cache designer must select
a replacement approach that determines the location in the cache to be used for
the incoming tag and data. One possibility is to select a random replacement loca-
tion. The 3-bit address can be read from a simple hardware structure that generates
a number which satisfies certain properties of random numbers, A somewhat more
thoughtful approach is to vuse a first in, first out {F7FO) location, In this case, the
location selected for replacement is the one that has occupied the cache for the
longest time, based on the notion that the use of this oldest entry is likely to be fin-
ished. An approach that appears to attack the replacement problem even more
directly is the least recently used (LRU) location approach. The goal of this
approach is to replace the entry that has been unused for the longest time—hence
the least recently used entry. The reason is that a cache entry that has not been
used for the longest time is least likely to be used in the future. Thus, it can be
replaced by a new cache entry. Although the LRU approach yields better results
for caches, the difference between it and the other approaches is not laree, and full
implementation is costly. As a consequence, il used at all, the LRU approach is
often only approximated.

There are also performance and cost issues surrounding the fully associative
cache. Although such a cache provides maximum flexibility and good perfor-
mance, it is not clear that the cost is justified. In fact, an alternative mapping that
has better performance and eliminates the cost of most of the matching logic is a
compromise between a direct-mapped cache and a fully associative cache. For
such a mapping, lower order address bits act much as they do in direct mapping;

628 [0 CHAPTER 14 / MEMORY SYSTEMS

however, for each combination of lower order address bits, instead of having one
location, there is a set of s locations. As with direct mapping, the tags and words
are read from the cache memory locations addressed by the lower order address
bits. For example, if the ser size s equals two, then two tags and the two accompa-
nying data words are read simultaneously. The tags are then simultaneously com-
pared to the CPU-supplied address using just two matching logic structures. If one
of the tags matches the address, then the associated word is returned to the CPU
on the memory bus. If neither tag matches the address, then the two 0 matching
values are used to send a miss signal to the CPU and main memory. Since there
are sets of locations and associativity is used on sets, this technique is called set-
associative mapping. Such a mapping with a set size s is an s-way set-associative
mapping.

Figure 14-6 shows a two-way set-associative cache. There are eight cache
locations arranged in four rows of two locations each. The rows are addressed by a
2-bit index and contain tags made up of the remaining six bits of the main memory
address. The cache entry for a main memory address must lie in a specific row of
the cache, but can be in either of the two columns. In the figure, the addresses are
the same as they are in the fully associative cache in Figure 14-4. Note that no

Address Data
OO0
Q00O 0
(OC000T 00
Index Tag Data Tag Dhata OO0 100
oo | 111111 | 000001 ~—— 0000010000
o1 % / 0000010100
it (R0 I 000011000
11 000001 ‘\ QO000LL 100

Cache ache

9 B 7 & 5 4 3 2 1 0
| Tag | Index | Byte |
{a) Memory address

r)

[1]

1111100000
1111700000
1111 101{HMD
11111001100
1111110000
1111110100
1111100
1111120 10K

Main memory
() Cache mapping

O FIGURE 14-6
Two-way Set-associative Cache

14-3 / Cache Memory O 629

Address b
CPU = Main memory

Tag | Index

¥ Y Y v

Tag Tag Data Data
e
memory 1 | memory F | memory 1 | memory 0

+ i + ¥ ¥ ¥
[Match logjcl]'v[mct! Ingﬂ ;:‘ ;71___\
I | — .y,

CPU Data bus Main memory

Hit! miss Hit! miss

O FIGURE 14-7

Partial Hardware Block Diagram for Set-associative Cache

mapping is shown for main memory address 1111100000, since the two cache cells
in set 00 are already occupied by addresses 0000010000 and 1111110000, In order
to accommodate 1111100000, the set size would need to be at least three. This
example illustrates a case in which the reduced flexibility of a set-associative
cache, compared to a fully associative cache, has an impact. The impact declines as
the set size increases.

Figure 14-7 is a section of a hardware block diagram for the set-associative
cache of Figure 14-6. The index is used to address each row of the cache memory.
The two tags read from the tag memories are compared to the tag part of the
address on the address bus from the CPU. If a match occurs, then the three-state
buffer on the corresponding data memory output is activated, placing the data
onto the data bus to the CPU, In addition, the match signal causes the output of
the Hit/miss OR gate to become 1, indicating a hit. If a match does not oceur, then
Hit/miss is 0, informing the main memory that it must supply the word to the CPU
and informing the CPU that the word will be delayed.

Line Size

To this point, we have assumed that each cache entry consists of a tag and a single
memaory word. In real caches, spatial locality is to be exploited, so additional words
close to the one addressed are included in the cache entry. Then, rather than a sin-
gle word being fetched from main memory when a cache miss occurs, a block of {
words called a line is fetched. The number of words in a line is a power of two, and
the words are aligned on address boundaries. For example, if four words are
included in a line, then the addresses of the words in the line differ only in bits 2
and 3. The use of a block of words changes the makeup of the fields into which the

630 0O CHAPTER 14 / MEMORY SYSTEMS

cache divides the address. The new field structure is shown in Figure 14-8(a). Bits 2
and 3. the Word field. are used to address the word within the line. In this case, two
bits are used, so there are four words per line. The next field, Index, identifies the
set. Here there are two bits used, so there are four sets of tags and lines. The
remainder of the address word is the Tag field, which contains the remaining four
bits of the 10-bit memory address.

The resulting cache structure is shown in Figure 14-8(b). The tag memory has
eight entries, two in each of the four sets. Corresponding to each of the tag entries
is a line of four data words. To ensure fast operation, Index is applied to the tag
memory to read two tags, one for each of the set entries, simultaneously. At the
same time, Index and the Word address are applied to read out two words from the
cache data memory that correspond to the two tags. Matching logic provided for
each of the two set elements compares each tag to the CPU-supplied address. If a
match occurs, then the associated cache data word already read is placed on the
memory bus to the CPU. Otherwise, a cache miss is signaled. and the word
addressed is returned from main memory to the CPU. The line containing the word

o8 7 6 54 3 2140
1 Tag |]ndcx|W0rd| H:.f[;:l

(o) Memory address

000000 0000 [|

000000 0100 |

Index Tag 1 Datal Word Tag 0 Data 0 rd aonooo oon[|

on | oo [oooo = //% 000000 1100{ |

01 vl (00001 0000{ |

10 7w, 000001 0100[|

’,l,]//' P i 00001 1000] |

ot [oooo 0 [oo ~~| 00001 1100

0l (i

10 10 s

1 1 .
w | 111 el o | 00

CHL 01 £t 1o oon] |

- 10 tr i eonf |

- 11 tt — 111110 1000f |

i 0| ————tt————— 111110 1100|_|

0l i (111 ooo| |

10 10 11111 0100[|

1 1l 1L 1ooo[|

1111t 1100[|

Cache Main memory

() Cache mapping

O FIGURE 14-8
Set-associative Cache with 4-word Lines

14-3 / Cache Memory O 631

and its tag are also loaded into the cache. To facilitate loading the entire line of
words, the width of the memory bus between main memory and the cache, as well
as the cache load path, is made more than one word wide. Ideally, for our example
the path is 4 x 32 = 128 bits wide. This allows the entire line to be placed in the
cache in a single main memory read cycle. If the path is narrower, then a sequence
of several reads from main memory is required.

An additional decision that the cache designer has to make is to determine
the line size. A wide path to memory can affect both cost and performance, and a
narrower path can slow transfer of the line to the cache. These features encourage
a smaller cache line size, while spatial locality of reference encourages a larger line.
In current systems, however, use of synchronous DRAM facilitates reading or writ-
ing large cache lines without the cost and performance issues associated with wide
path. The rapid writing to and reading from memory of consecutive words
achieved by using synchronous DRAM matches well the needs for transferring
cache lines.

Cache Loading

Before any words and tags have been loaded into the cache, all locations contain
invalid information, If a hit occurs on the cache at this time, then the word fetched
and sent to the CPU cannot have come from main memory and is invalid. As lines
are fetched from main memory into the cache. cache entries become valid, but
there is no way to distinguish valid from invalid entries. To deal with this problem,
in addition to the tag, a bit is added to each cache entry. This valid bir indicates that
the associated cache line is valid (1) or invalid (0). It is read out of the cache along
with the tag, If the valid bit is 0, then a cache miss occurs even if the tag matches
the address Irom the CPU, requiring the addressed word to be taken from main
memaory.

Write Methods

We have focused so far on reading instructions and operands from the cache, What
happens when a write occurs? Recall that, up to now, the words in a cache have
been viewed simply as copies of words from main memory that are read from the
cache to provide faster access. Now that we are considering writing results, this
viewpoint changes somewhat. Following are three possible write actions from
which we can select:

1. Write the result into main memory.
2. Write the result into the cache.
3. Write the result into both main memory and the cache,

Various realistic cache write methods employ one or more of these actions. Such
methods fall into two main categories: write-through and wrile-back,

In write-throwgh, the result is always wrilten to main memory. This uses the
main memory write lime and can slow down processing. The slowdown can be

632 0O CHAPTER 14 / MEMORY SYSTEMS

partially avoided by using write buffering, a technique in which the address and
word to be written are stored in special registers called write buffers by the CPU
so that it can continue processing during the write to main memory. In most cache
designs, the result is also written into the cache if the word is present there—that
is, if there is a cache hit.

In the write-back method, also called copy-back, the CPU performs a
write only to the cache in the case of a cache hit. If there is a miss, the CPU
performs a write to main memory. There are two possible design choices for
when a cache miss occurs. One is to read the line containing the word to be
written from main memory into the cache, with the new word written into both
the cache and main memory. This is referred to as write-allocate. It is done with
the hope that there will be additional writes to the same block which will result
in write hits and thus avoid writes to main memory. The other choice on a write
miss is simply to write to main memory. In what follows, we will assume that
write-allocate is used.

The goal of a write-back cache is to be able to write at the writing speed of
the cache whenever there is a cache hit. This avoids having all writes performed at
the slower writing speed of main memory. In addition, it reduces the number of
accesses to main memory, making it more accessible to DMA,, an I/O processor, or
another CPU in the system. A disadvantage of write-back is that main memory
entries corresponding to words in the cache that have been written are invalid.
Unfortunately, this can cause a problem with respect to I/'O processors or another
CPU in the system accessing the same main memory, due to “stale” data in the
memory.

The implementation of the write-back concept requires a write-back opera-
tion from the cache location to be used to store a new line being brought from
main memory on a read miss. If the location in the cache contains a word that has
been written into, then the entire line from the cache must be written back into
main memory in order to release the location for the new line. This write-back
requires additional time whenever a read miss occurs. To avoid a write-back on
every read miss, an additional bit is added to each cache entry, This bit, called the
dirty bit,is a 1 if the line in the cache has been written and a 0 if it has not been
written. Write-back must be performed only if the dirty bit is a 1. With write-allo-
cate used in a write-back cache, a write-back operation may also be required on a
write miss.

Many other issues affect the choice of cache design parameters, particularly
in the case of caches in a system in which the main memory may be read or written
by a device other than the CPU for which the cache is provided.

Integration of Concepts

We now put together the basic concepts we have examined to determine the block
diagram for a 256 KB, two-way set-associative cache with write-through. The mem-
ory address shown in Figure 14-9(a) contains 32 bits using byte addressing with line
size [= 16 bytes. The index contains 13 bits. Since 4 bits are used for addressing

14-3 / Cache Memory O 633

words and bytes, and 13 bits are used for the index, the tag contains the remaining
15 bits of the 32-bit address. The cache contains 16,384 entries consisting of 2'% =
8192 sets. Each cache entry contains 16 bytes of data, a 15-bit tag, and a valid bit.
The replacement strategy is random replacement.

Figure 14-9(b) gives the block diagram for the cache. There are two data
memaories and two tag memories, since the cache is two-way set associative. Each
of these memories contains 2'* = 8192 entries. Each entry in the data memory con-
sists of 16 bytes. Since 32-bit words are assumed, there are four words in each data
memory entry. Thus, each of the data memories consists of four 8192 x 32 memo-
ries in parallel with the index as their common address. In order to read a single
word from these four memories on a cache hit, a 4-to-1 selector using three-state
memory outputs selects the word, based on the two bits in the Word field of the
address. The two tag memories are 8192 x 15; in addition to them, a valid bit is
associated with each cache entry. These bits are stored in an 8192 x 2 memory and
read out during a cache access with the data and tags. Note that the path between
the cache and main memory is 128 bits wide. This allows us to assume thal an
entire cache line can be read from main memory in a single main memaory cycle, an
assumption that does not necessarily hold in practice. To understand the elements

3 17 16 4 3 2 10
Tag Index Word | Byte

{a) Memory address

p— Adddress bus . Main
Hit/miss = 32 g
i —_—

A r T 15 178 Hitfmiss
Read—{Cache ||’ Cache data bus L Main
Write | control Tag, +arrd ‘l b 128).2 memory

* 'f Y ¥ ¥ Y YN ¥ ¥
137
| Mox
e Tag Tag Diuta Drata 3
n xjf, memory 1 memory O |mpmory 1| memory O | = Ward
Valid bits 1 — ¥
Valid bits O -
Match lng'u:l
Match 1
r
Read H 7 .83
2% Write N Read on
miss

CFPU data bus

(b} Cache diagram

O FIGURE 14-9
Dretailed Block Diagram for 256K Cache

634 0O CHAPTER 14/ MEMORY SYSTEMS

ol the cache and how they work together, we will look at three possible cases of
reading and writing. For each of these cases, we assume that the address from the
CPU is 0F3F40245. This gives Tag = 0000L11I0011111, = 079Fs Index =
1010000000010, = 1402, and Word = (115,

First we assume a read hit—a read operation in which the data word lies in
a cache entry, as in Figure 14-10. The cache uses the Index field to read out two
tag entries from location 1402, in Tag memory 1 and Tag memory (. The match
logic compares the tags of the entries, and in this case we assume that Tag 0
matches, causing Match () to be 1. This does not necessarily mean that we have a
hit, since the cache entry may be invalid. Thus, the Valid 0 from location 1402
bit is ANDed with Match 0. Also, the data can be placed on the CPU data bus
only if the operation is a read. Thus, Read is ANDed with the Match 0 bit and
the Valid 0 bit to form the control signal for three-state buffer {1 In this case, the
control signal for the buffer (0 is 1. The data memories have used the Index field
to read out eight words from location 14024 at the same times the tags were
read. The Word field selects the two of the eight words with word = (01, to place
on the data buses going into the three-state buffers 1 and (. Finally, with three-
state buffer 0 turned on, the word addressed is placed on the CPU data bus. Also,
the Hit/miss signal sends a 1 to the CPU and the main memory, notifying them of
the hit.

In the second case, also shown in Figure 14-10, we assume a read miss—a
read operation in which the data word is not in a cache entrv. As before, the Index
field address reads out the tag and valid entries, two tag comparisons are made,
and two valid bits are checked. For both entries, a miss has occurred and is signaled

CPU Address bus Main
Hit! * 32 LTEmGeY
s~ ¥ 1 | |1s o Read mfss Hit/miss
Read{ Cache | |1 Memaory data bus =
‘H’n"j'l[cj control Tag -) J[LA a[1 JL I pelE-1F-*
Y ¥ Y Y F ¥ PERTYTY !
13 "G
i] d-10-1
. Tag Tag Dita vt (320 | IMUX
1] e . e \ . Y | I
Index by|] memory 1 memory [[memory 1| memory () -
Word
Walid bits 1 —1
Walid hits (1 —] | YYVYY I
i
[Match logicl{ Match logic| I
Match 1 |Mateh 0 :
P I
— 1 L
Read i S% Fi Winrite L‘a’rim - Read on
CPLU data bus B il L = - ' e
' Read miss—- 25 1
WIllg: = = = = = = e e e e e mc e s s s s === = !

O FIGURE 14-10
256K Cache: Read and Write Operations

14-3 / Cache Memory O 635

by Hit/miss at 0. This means that the word must be fetched from main memory.
Accordingly, the cache control selects the cache entry to be replaced, and four
words read from main memory are applied simultaneously by the memory data
bus to the cache inputs and are written into the cache entry, At the same time, the
4-to-1 multiplexer selects the word addressed by the Word field and places it on the
CPU data bus using the three-state buffer 3.

In the third case in Figure 14-10, we assume a write operation. The word
from the CPU is fanned out to appear in all four of the word positions of the 128-
bit memory data bus. The address to which the word is to be written is provided by
the address bus to main memory for the write operation into the addressed word
only. If the address causes a hit on the cache, the word addressed is also written
into the cache,

Instruction and Data Caches

In most of the designs in previous chapters, we assumed that it was possible to
fetch an instruction and to read an operand or write a result in the same clock
cycle, To do this, however, we need a cache that can provide access to two distinct
addresses in a single clock cycle. In response to this need, we discussed in a prior
subsection an instruction cache and a data cache. In addition to easily providing
multiple accesses per clock, the use of two caches permits caches that have differ-
ent design parameters. The design parameters for each cache can be selected to fit
the different characteristics of access for fetching instructions or reading and writ-
ing data. Because the demands on each of these caches are typically less than those
on a single cache, a simpler design can be used. For example, a single cache may
require a four-way set-association structure, whereas an instruction cache needs
only direct mapping. and a data cache may need only a two-way set-associative
structure,

In other instances, a single cache for both instructions and data may be used.
Such a wunified cache is typically as large as the instruction and data caches com-
bined. The unified cache allows cache entries to be shared by instructions and data
freely. Thus, at one time more entries can be occupied by instructions, and at
another time more entries can be occupied by data. This flexibility has the poten-
tial for increasing the number of cache hits. This higher hit rate may be misleading,
however, since the unified cache supports only one access at a time, and separate
caches support two simultaneous accesses as long as one is for instructions and one
is for data,

Multiple-Level Caches

It is possible to extend the depth of the memory hierarchy by adding additional
levels of cache, Two levels of cache, often referred to as L1 and L2, with L1 closest
to the CPLJ, are often used. In order to satisfy the demand of the CPU for instrue-
tion and operands, a very fast L1 cache is needed. To achieve the necessary speed,
the delay that occurs when crossing 1C boundaries is intolerable. Thus, the L1
cache is placed in the processor IC together with the CPU and is referred to as the

636 O CHAPTER 14 / MEMORY SYSTEMS

. L]
internal cache, as 1n the genenic computer processor. But the area in the 1C 1s lim-
ited, so the L1 cache is typically small and inadequate if it is the only cache. Thus, a
larger 1.2 cache is added outside of the processor IC.

The design of a two-level cache is more complex than that of a single-level
cache. Two sets of parameters are specified. The L1 cache can be designed to spe-
cific CPU access needs including the possibility of separate instruction and data
caches. Also, the constraint of external pins between the CPU and L1 cache is
removed. In addition to permitting faster reads, the path between the CPU and the
L1 cache can be quite wide, allowing, for example, multiple instructions to be
fetched simultaneously. On the other hand, the L2 cache occupies the typical exter-
nal cache environment. It differs, however, from the typical external cache in that,
rather than providing instructions and operands to a CPU, it primarily provides
instructions and operands to the first-level cache L1. Since the 1.2 cache is accessed
only on L1 misses, the access pattern is considerably different than that for a CPU,
and the design parameters are accordingly different.

14-4 VIRTUAL MEMORY

In our quest for a large, fast memory, we have achieved the appearance of a fast,
medium-sized memory through the use of a cache, In order to have the appearance
of a large memory, we now explore the relationship between main memory and
hard disk. Because of the complexity of managing transfers between these two
media, the control of such transfers involves the use of data structures and pro-
grams. Initially, we will discuss the most basic data structure used and the necessary
hardware and software actions. Then we will deal with special hardware used to
implement time-critical hardware actions.

With respect to large memory, not only do we want the entire virtual address
space to appear to be main memory, but in most cases we woltld also like this com-
plete space to appear to be available to each program that is executing. Thus, each
program will “see” a memory the size of the virtual address space. Equally impor-
tant to the programmer is the fact that real address space in main memory and real
disk addresses are replaced by a single address space that has no restrictions on its
use. With this arrangement, virtual memory can be used not only to provide the
appearance of large main memory, but also to free up the programmer from having
to consider the actual locations of the program and data in main memory and on
the hard disk. The job of the software and hardware that implement virtual mem-
ory is to map each virmual address for each program into a physical address in the
main memory. In addition, with a virtual address space for each program, it is pos-
sible for a virtual address from one program and a virtual address from another
program to map to the same physical address. This allows code and data to be
shared by multiple programs, thereby reducing the size of the main memory space
and disk space required.

To permit the software to map virtual addresses to physical addresses, and to
facilitate the transfer of information between main memory and hard disk, the vir-
tual address space is divided into blocks of addresses, typically of a fixed size. These

14-4 / Virtual Memory O 637

blocks, called pages, are larger than, but analogous to, lines in a cache. The physical
address space in memory is divided into blocks called page frames that are the
same size as the pages. When a page is present in the physical address space, it
occupies a page frame. For purposes of illustration, we assume that a page consists
of 4K bytes (1K words of 32 bits). Further, we assume that there are 32 address bits
in the virtual address space. There are 2* pages, maximum, in the virtual address
space, and assuming a main memory of 16M bytes, there are 2'> page frames in
main memory. Figure 14-11 shows the fields of virtual and physical addresses. The
portion of the virtual address used to address words or bytes within a page is the
page offset, which is the only part of the address that the virtual and physical
addresses share. Note that words are assumed to be aligned in terms of their loca-
tion with respect to their byte addresses such that each word address ends in

il 12 11 0

Virtual page number Page offset

Virtual address

23 12 11 0

Physical page
frame number

Page offset

Physical address

{ Virtual page

[EATLY
l Physical page frame LI
o [(2
(i (003
002 0004
3 CHICHRS
28
.
. .
FFC .
FFD
FFE FFFFA
FFF FFFFB
Main memaory FFFFC |8
FFFFD}
FFFFE
FFFFF

O FIGURE 14-11
Virtual and Physical Address Fields and Mapping

638 0O CHAPTER 14 / MEMORY SYSTEMS

Llnary 00, I_!Lewisa pages are assumed to be aligned with respect to the byte
addresses such that the page offset of the first byte in the page is 0, and the
page offset of the last byte in the page is FFF,z. The 20-bit portion of the virtual
address used to select pages from the virtual address space is the virfual page num-
ber. The 12-bit portion of the physical address used to select pages in main memory
is the page frame number. The fipure shows a hypothetical mapping from the vir-
tual address space into the physical address space. The virtual and physical page
numbers are given in hexadecimal. A virtual page can be mapped to any physical
page frame. Six mappings of pages from virtual memory to physical memory are
shown. These pages constitute a total of 24K bytes. Note that there are no virtual
pages mapped to physical page frames FFC and FFE. Thus, any data present in
these pages is invalid.

Page Tables

In general, there may be a very large number of virtual pages, cach of which must
be mapped to either main memory or hard disk. The mappings are stored in a data
structure called a page fable. There are many ways to structure page tables and
access them; we assume that page tables themselves are also kept in pages. Assum-
ing that the representation of each mapping requires one word, 2!% or 1K, map-
pings can be contained in a 4 KB page. Thus, the mappings for the entire address
space for a program of 222 bytes (4 MB) can be contained in one 4 KB page. A spe-
cial table for each program called a directory page provides the mappings used to
locate the 4 KB program page tables.

A sample formal lor a page table entry is given in Figure 14-12. Twelve bits
are used for the page frame number in which the page is located in main mem-
ory. In addition, there are three single bit fields: Valid, Dirty, and Used. If Valid
is 1, then the page frame in memory is valid; if Valid is (0, the page [rame in
memory is invalid, meaning that it does not correspond to correct code or data.
If Dirty is 1, then there has been a write to at least one byte in the page since it
was placed in main memory. If Dirty is (), there have been no writes to the page
since it entered main memory. Note that the Valid and Dirty bits correspond
exactly to those in a cache which uses write-back. When it is necessary for a page
to be removed from main memory and the Dirty bit is 1, then the page is copied
back to the hard disk. If the Dirty bit is (0, indicating that the page in main mem-
ory has not been written into, then the page coming into the same page frame is

Walidity bit

Drirty bit
" Lsed hit

Physical page [rame number

O FIGURE 14-12
Format for Page Table Entries

14-4 / Virtual Memory O 639

simply written over the present page. This can be done because the disk version
of the present page is still correct. In order to use this feature, the software
keeps a record of the location of the page on the disk elsewhere when it places
the page in main memory. The Used bit is a simple mechanism for implementing
a crude approximation to an LRU replacement scheme. Some additional bit
positions in a page entry may be reserved for flags used by the computer operat-
ing system. For example, a few flags might represent the read and write protec-
tion status of a page and whether the page can be accessed in user mode or
supervisor mode,

The page table structure we have just described is shown in Figure 14-13.
The directory page poinfer is a register that points to the location of the directory
page in main memory. The directory page contains the locations of up to 1K page
lables associated with the program that is executing. These page tables may be in
main memaory or on the hard disk. The page table to be accessed is derived from
the most significant 1) bits of the virtual page number, which we call the directory
affser. Assuming that the page table selected is in main memory, it can be accessed
by the page table page number. The least significant 10 bits of the virtual page
number, which we call the page table offvet, can be used to access the entry for the
page to be accessed. If the page is in main memory, the page offset is used to

3l

[2=]

2

21 12 11 i
Wirtual page number

- - - Page offset
Directory offset | Page table offset
Dircctory Page table Pages
[[Nirectory page pointer I - Page
. tahle
. g
numher
L]
. :
L T
Physical
page
- number
-
-

O FIGURE 14-13
Example of Page Tahle Structure

640 0O CHAPTER 14 / MEMORY S5YSTEMS

: o
lﬂcate tlm pL}rslcal Icn:atlun of tLe Lyte or wurcl to Le accessecl. “ e!ther tLe page
table or the desired page is not in main memory, it must first be fetched by soft-
ware from the hard disk to main memory before the word within it is accessed.
MNote that combining the offsets with register or table entries is done by simply
setting the offset to the right of the page frame number, rather than adding the
two together. This approach requires no delay, whereas addition would cause sig-
nificant delay.

Translation Lookaside Buffer

From the preceding discussion, we note that virtual memory has a considerable
performance penalty even in the best case, when the directory, the page table, and
the page to be accessed are in main memory. For our assumed page table
approach, three successive accesses to main memory occur in order to fetch a sin-
gle operand or instruction:

1. Access for the directory entry.
2. Access for the page table entry.
3. Access for the operand or instruction.

MNote that these accesses are performed automatically by hardware that is part of
the MMU in the generic computer. Thus, to make virtual memory feasible, we
need to drastically reduce accesses to main memory. If we have a cache, and if all
of the entries are in the cache, then the time for each access is reduced. Meverthe-
less, three accesses are needed to the cache. To reduce the number of accesses, we
will employ vet another cache for the purpose of translating the virtual address
directly into a physical address. This new cache is called a translation lookaside
buffer (TLB). It holds the locations of recently addressed pages to speed access to
cache or main memory. Figure 14-14 gives an example of a TLB, which is typically
fully associative or set associative, since it is necessary 1o compare the virtual page
number from the CPU with a number of virtual page number tags. In addition Lo
the latter, a cache entry includes the physical page number for those pages in main
memory and a Valid bit. If the page is in main memory, the Dirty bit also appears.
The Dirty bit serves the same function for a page in main memory as discussed pre-
viously for a line in a cache.

We now briefly look at a memory access using the TLB in Figure 14-14. The
virtual page number is applied to the page number input to the cache. Within the
cache, this page number is compared simultaneously with all of the virtual page
number tags. If a match occurs and the Valid bit is a 1, then a TLB hit has occurred,
and the physical page frame number appears on the page number output of the
cache. This operation can be performed very quickly and produces the physical
address required to access memory or a cache. On the other hand, if there is a TLB
miss, then it is necessary to access main memory for the directory table entry and
the page table entry. If there is a physical page in main memory, then the page
table entry is brought into the TLB cache and replaces one of the entries there.

14-4 / Virtual Memory 0O 641

Virtual Address from CPU

Virtual page number Page offset

Page number input

Valid bit Fully associative or sef-associative cache
Drirty hit
o fﬁg TSH Data

Virtual page number Physical page frame number

Page frame number output

F

Page frame number Pape offset

Physical address to main memory

O FIGURE 14-14
Example of Translation Lookaside Buffer

Owerall, three memory accesses are required, including the one for the operand. If
the physical page does not exist in main memory, then a page fault occurs. In this
case, a software-implemented action fetches the page from its hard disk location to
main memory. During the time required to complete this action, the CPU may exe-
cute a different program rather than waiting until the page has been placed in main
memaory.

Noting the prior hierarchy of actions based on the presentation of a virtual
address, we see that the effectiveness of virtual memory depends on temporal and
spatial locality. The fastest response is possible when the virtual page number is
present in the TLB. If the hardware is fast enough and a hit also occurs on the
cache, the operand can be available in as little as one or two CPU clock cycles.
Such an event is likely to happen frequently if the same virtual pages tend to get
accessed over time. Because of the size of the pages, if one operand is accessed
from a page, then, due to spatial locality, it is likely that another operand will be
accessed on the same page. With the limited capacity of the TLB, the next fastest
action requires three accesses to main memory and slows processing considerably,
In the worst of all situations, the page table and the page to be accessed are not in
main memory. Then, lengthy transfers of two pages—the page table and the page
from hard disk—are required.

642 0O CHAPTER 14 / MEMORY SYSTEMS

Note that the basic hardware for implementing virtual memory, the TLB, anc{
other optional features for memory access are included in the MMLI in the generic
computer. Among the other features is hardware support for an additional layer of
virtual addressing called segmentation and for protection mechanisms to permit
appropriate isolation and sharing of programs and data.

Virtual Memory and Cache

Although we have considered the cache and virtual memory separately, in an
actual system they are both very likely to be present. In that case, the virtual
address is converted to the physical address, and then the physical address is
applied to the cache. Assuming that the TLB takes one clock cycle and the cache
takes one clock cycle, in the best of cases fetching an instruction or operand
requires two CPU clock cycles. As a consequence, in many pipelined CPU designs,
two or more clock eycles are allowed for an operand fetch. Since instruction fetch
addresses are more predictable, it is possible to modify the CPU pipeline and con-
sider the TLB and cache to be a two-stage pipeline segment, so that an instruction
fetch appears to require only one clock cycle.

14-5 CHAPTER SUMMARY

In this chapter, we examined the components of a memory hierarchy. Two concepts
fundamental to the hierarchy are cache memory and virtual memory.

Based on the concept of locality of reference, a cache is a small, fast mem-
ory that, holds the operands and instructions most likely to be used by the CPLL
Typically, a cache gives the appearance of a memory the size of main memory
with a speed close to that of the cache. A cache operates by matching the tag
portion of the CPU address with the tag portions of the addresses of the data in
the cache. If a match occurs and other specific conditions are satisfied. a cache
hit occurs, and the data can be obtained from the cache. If a cache miss occurs,
the data must be obtained from the slower main memory. The cache designer
must determine the values of a number of parameters, including the mapping of
main memory addresses to cache addresses, the selection of the line of the cache
to be replaced when a new line is added. the size of the cache, the size of the
cache line, and the method for performing memory writes. There may be more
than one cache in a memory hierarchy, and instructions and data may have sepa-
rate caches.

Virtual memory is used to give the appearance of a large memory—much
larger than the main memory—at a speed that is, on average, close to that of the
main memory. Most of the virtual address space is actually on hard disk. To facili-
tate the movement of information between the memory and the hard disk, both are
divided up in fixed size address blocks called page frames and pages, respectively.
When a page is placed in main memory, its virtual address must be translated to a
physical address. The translation is done using one or more page tables. In order to

Problems [0 643

perform the translation on each memory access without a severe performance pen-
alty, special hardware is employed. This hardware, called a translation lookaside
butfer (TLEB), is a special cache that is a part of the memory management unit
iMMU} of the computer.

Together with main memory, the cache and the TLB give the illusion of a
large, fast memory that is, in fact, a hierarchy of memories of different capacities,
speeds, and technologies, with hardware and software performing automatic trans-
fers between levels.

REFERENCES

1. Mano, M. M. Computer Engineering: Hardware Design. Englewood Cliffs,
NI: Prentice Hall, 1988,

2. HEennEessy, L L., anp Do A PaTrerRsoN Computer Architecture: A Quantitative
Approach. San Francisco, CA: Morgan Kaufmann, 1996,

3. Barow, R, 1., anp L. HiGeiE Compuater Architecture. Reading, MA: Addison-

Wesley, 1992,

Hawnpy, 1. Cache Memory Book. San Diego: Academic Press, 1993,

Mano, M, M. Computer Svsiem Architecture, 3rd Ed. Englewood Cliffs, NI:

Prentice Hall, 1993,

Patrerson, D AL anp). L. Henwessy Computer Organization and Design:

The Hardware/Sofiware Interface. San Francisco, CA: Morgan Kaulmann,

1995,

7. Wyant, G., anD T. HaMmMmeERSTROM How Microprocessors Work. Emeryville,
CA: Ziff-Davis Press, 1994,

8. Messmer, H. P, The fndispensable PC Hardware Boolk, 2nd ed. Wokingham,
LK Addison-Wesley, 1995,

#
-

TS

&

PROBLEMS
@ The plus (+) indicates a more advanced problem and the asterisk (*) indicates a

solution is available on the Companion Website for the text.

14-1. *A CPU produces the following sequence ol read addresses in hexadecimal:
54,58, 104, 5C, 108, 60, F0, 64, 54, 58, 10C, 5C, 110, 60, F0, 64
Supposing that the cache is empty to begin with, and assuming an LRU
replacement, determine whether each address produces a hit or a miss for
cach of the following caches: (a) direct mapped in Figure 14-3, (b) fully
associative in Figure 14-4, and (c) two-way sel associative in Figure 14-6,

14-2, Repeat Problem 14-1 for the following sequence of read addresses:
0.4,8, 12, 14, 1A, 1C, 26,28, 2E, 30, 36, 38, 3E, 40, 46, 48, 4E, 50, 36, 38, 5E

14-3. Repeat problem 14-1 for the following sequence of read addresses in
hexadecimal: 20, 04, 28, 60, 20, 04, 28, 4C, 10, 6C, 70, 10, 60, 70

644 [0 CHAPTER 14 / MEMORY SYSTEMS

14-4.

14-5.

14-6.

14-7.

14-8.

14-9.
14-10.

14-11.

+A computer has a 32-bit address and a direct-mapped cache. Addressing 1s
to the byte level. The cache has a capacity of 1K bytes and uses lines that
are 32 bytes. It uses write-through and so does not require a dirty bit.

(a) How many bits are in the index for the cache?

{b) How many bits are in the tag for the cache?

{c) What is the total number of bits of storage in the cache, including the
valid bits, the tags, and the cache lines?

A two-way set-associative cache in a systemn with 24-bit addresses has two
4-byte words per line and a capacity of 512K bytes. Addressing is to the
byte level.

(a) How many bits are there in the index and the tag?

{h) Indicate the value of the index in hexadecimal for cache entries from
the following main memory addresses in hexadecimal: 82AF82,
14ACED, 48CFOF and3ACFOL.

{¢) Can all of the cache entries from part (b) be in the cache
simultaneously?

*Discuss the advantages and disadvantages of:

{(a) separate instruction and data caches versus a unified cache for both.
{b) a write-back cache versus a write-through cache.

Give an example of a sequence of program and data memory read
addresses that will have a high hit rate for separate instruction and data
caches and a low hit rate for a unified cache. Assume direct mapped caches
with the parameters in Figure 14-3. Both the instructions and data are 32-bit
words and the address resolution is to bytes.

#Giive an example of a sequence of program and data memory read
addresses that will have a high hit rate for a unified cache and a low hit rate
for separate instruction and data caches. Assume that each of the
instruction and data caches is two-way set associative with parameters as in
Figure 14-6. Assume that the unified cache is four-way set associative with
parameters as in Figure 14-6. Both the instructions and the data are 32-bit
words and the address resolution is to bytes.

Explain why write-allocate is typically not used in a write-through cache.

A high-speed workstation has 64-bit words and 64-bit addresses with
address resolution to the byte level.

{(a) How many words can be in the address space of the workstation?

(b) Assuming a direct-mapped cache with 8192 32-byte lines, how many bits
are in each of the following address fields for the cache: (1) Byte,
(2) Index, and (3) Tag?

*A cache memory has an access time from the CPU of 4 ns, and the main
memaory has an access time from the CPU of 40 ns. What is the effective
access time for the cache-main memory hierarchy if the hit ratio is:
() 0.91, (b) (.82, and (c) 0.967

14-12.

14-13.

14-14.

14-15.

14-16.

14-17,

Problems [0 645

Redesign the cache in Figure 14-7 so that it is the same size, but is four-way
set associative rather than two-way sel associative.

+The cache in Figure 14-9 is to be redesigned to use write-back with write-
allocate rather than write-through. Respond to the following requests,
making sure to deal with all of the address and data issues involved in the
write-back operation.

{a) Draw the new block diagram.

{b) Explain the sequence of actions vou propose for a write miss and for a
read miss,

*A virtual memory system uses 4K byte pages, 64-bit words, and a 48-bit
virtual address. A particular program and its data require 4263 pages.

(a) What is the minimum number of page tables required?
(b) What is the minimum number of entries required in the directory page?

{c) Based on your answers to (a) and (b}, how many entries are there in the
last page table?

A small TLB has the following entries for a virtual page number of length
20 bits, a physical page number of 12 bits, and a page offset of 12 bits,

Valid Drirty Tag Data
bit it (Virtual Page (Physical Page
Mumber) MNumber)
1 1 01AF4 FFF
0 0 OE45F E03
0 0 M2FF 2F0
1 a 01 A3T7 TER
1 a 2EBE4 450
0 1 03CAD 657

The page numbers and offset are given in hexadecimal. For each of the
virtual addresses listed, indicate whether a hit occurs and il it does, give
the physical address: (a) 02BB4AGS. (b) 0E45FB32, (c) 0D34EYDC, and
(d) D3CAOTTT.

A computer can accommaodate a maximum of 384M bytes of main memory.
It has a 32-bit word and a 32-bit virtual address and uses 4K byte pages. The
TLB contains only entries that include the Valid, Dirty, and Used bits, the
virtual page number, and the physical page number. Assuming that the TLB
is fully associative and has 32 entries, determine the following:

{a) How many bits of associative memory are required for the TLB?
(b) How many bits of SRAM are required for the TLB?

Four programs are concurrently executing in a multitasking computer with
virtual memory pages having 4K bytes. Each page table entry is 32 bits.

646 O CHAPTER 14 / MEMORY SYSTEMS

What is the minimum numbers of bytes of main memory occupied by the
directory pages and page tables for the four programs if the numbers of
pages per program, in decimal, are as follows: 6321, 7777, 9602, and 3853.

14-18. *In caches, we use both write-through and write-back as potential writing
approaches. But for virtual memory, only an approach that resembles write-
back is used. Give a sound explanation of why this is so.

14-19. Explain clearly why both the cache memory concept and the virtual
memory concept would be ineffective if locality of reference of memory-
addressing patterns did not hold.

Numerics

I"s complement 212

2's complement 211, 213
2-1 AOL T4

3-2-2 A0L 74

A

Access time 403, 582
Adder:
carry lookahead 206-209
ripple carmy 205
Adder-Subtractor 215221
Addition:
BCD 19-20
hinary 13
hexadecimal 14-15
serial 350352
signed binary 218
Address 400401
effective 492
explicit 486
implied 446
ofTser 433
tag 621
target 539
Addressing, to bytes 618
Addressing modes 492-498
base register 497
direct 494495
immediate 4493
implied 493
indexed 496497
indirect 496
register 493404

register-indirect 493—494

relative 496
RISC 541

Adjacent sguares 51=54
Algebraic factoring 67
Algebraic manipulation 37-41
Algorithmic state machine
I65-369
chart 363368

examples 369-373
implementation 375
timing considerations 368

Alphanumeric codes 23-25
ALLL See Arithmetic/logic unit
American Standard Code for
Information Interchange.
See ASCII
AND operation 30, 112
AND symbol 30-31
ANMD-OR-INVERT (AOI) 74
AQ, See AND-OR
AOL See AND-OR-INVERT
Architecture 484
addressing 4894092
CISC 494
instruction set 430, 484,
4500
load/store 462, 489
MEMary-10-memory
489490
multiple execution wnit
569
recent innovations
572573
register-memory 490
register-to-register
489490
RISC 499, 538
single-accumulator 4901
stack 49
Arithmetic circuit 434437
Arithmetic logic unit 430,
433439

Arithmetic operations 13-18,
26
conversion from decimal
to ather bases
16-18
ASCIT code 24-25, 26
control characters 24-25
ASM block 367
ASM. See Algorithmic state
machine
Assembler 454
Assembly language 483
Associative laws 36
Associative memory 626
Agynchronows sequential
circuit 242

B

Barrel shifter 440441, 543
Base 8
Baud rate 593
BCD 18-20, 26
addition 19-20
counter 337-338
BCD to excess-3 code
converter 1051077
BCD to seven-segment
decoder 107-110
Biased exponent 309-510
Big-encian 315
Binary 4
addition 13, 202-200
multiplication 14
subtraction 14, 210-215
Binary adders 202-209
Binary code 18
Binary coded decimal. See
BCD

O 647

Binary counters 331-338
Binary logic 30-31

U0 W

1's complement 212
2's complement 211, 213
signed 216-218
signed-complement 217
signed-magnitude 216
unsigned 211, 213-215

Binary reflected Gray code 23

Binary ripple carry adder

205-206

Binary variables 30

Bit 5

Bit select 406

Blocks 89

Boole, George 30

Boolean algebra 30, 3341
basic identities of 35-37
duality principle of 39

Boolean expression 33, 40

Boolean function 33
incompletely specified 63
multiple-output 33
single output 33

Bottom-up design 92

Branch hazard stall 535

Branch prediction 555

Break code 581

Bubble 71, 548

Buffer 71
three-state 77-79

Bus 345-348
multiplexer-based

345-348

three-state 347348

Bus interface 7

Bus transfers 345-348

Busy-wait loop 598

Byte 24, 400

Byte addressing 618

C

Cache 622636
copy-back 632
data 635
dirty bit 632
external 617, 636

648 0O

Index

hit 624
index 623
ingfryction 635

internal 636
L1 635-636
L2 635-636
line 629
line size G29-631
Inading 631
mappings 624629
miss 624
multiple level 635-636
sel size 628
tag 623
unitied 635
valid bit 631
write-allocate 632
write buffering 632
write methods 631-632
write-back 632
write-through 631-632
Cache mappings 624-629
direct 624-625
fully associative 624623
sel-associative 628
Cache memory 622, See also
Cache
Cache replacement:
FIFQ 627
least-recently-used (LRU)
627
random 627
CAD. See Computer-aided
design
Carry lookahead adder 206-209
Cell library 111-112
Central processing unit (CPL)
6,7, 527-578
Chip. See Integrated circuits
Circuit diagram 34
Circuits, integrated 29, 92,
9798
CISC architecture 499, 521
Clear 256
Clock:
frequency 263
gating 255, 312
generator 243
period 263
pulse 243

width 257-258
skew 256, 266
fransition 253

Clocked sequential circuit
243-244
CMOS circuits { Supplement) 74
Code converters 105
Coincident selection 40
Collapsing 67
Column select 409
Combinational circuits 88,
141-142
design procedure 104-110
Combinational function
implementation:
using decoders 162-164
using look-up tables
(LUTs) 175-176
using multiplexers
164166
using programmable logic
arrays (FLAs)
169-171
using programmable array
logic (PALs)
devices 171-174
using read-only memories
(ROMs)} 166-169
Combinational logic circuits
20-86
defined 34
Combinational logic design,
87-140
Communication:
full-duplex 591
half-duplex 591
serial 591-5398
simplex 591
turn-around time 591
Communication control
characters 24
Commutative laws 36
Complement, of a function
40-41
Complement operation 30
Complements 212-215
subtraction with 213-215
Complex gates 71, 73
Complex instruction set
computer 499, 557-569

Composite register 372
Computer;
architecture 430, 492
basic cycle 484485
CISC. See Computer,
complex
instruction set
complex instruction set
499, 557-569
design 3, 429482
microprogrammed 363
multiple-cycle 464475
pipelined 533-537
single cvecle 456464
waorst case delay
463464
structure &
Computer organization 484
Computer-aided design 92-93
Concatenation 372
Condition code 485
Conditional output box 366
Conditional statement:
if-then form 316
if-then-else form 324
Consensus theorem 3940
Contraction of logic 223,
224-229
Control:
CISC 5537-569
hardwired 375-384
multiple cycle 464—475
single cycle 456464
microprogramimed
300-392, 563-569
pipelined 533-537
RISC 544-546
Control address register 390
Control data register 390
Control hazards 5353557
Control implementation:
one flip-flop per state
380384
sequence register and
decoder 378-380)
Control memory 390
writable 390
Control signal 314

Control unit &, 309, 314,
64365
Control word 4344449
Controller time 382
Conversion:
base r to decimal 9-10
hinary to decimal 10
binary 1o hexadecimal 11
binary to octal 11-12
decimal fractions 1o
hinary 17
decimal fractions to octal
17-18
decimal to base r 16
decimal to binary 16-17
decimal to octal 16
octal or hexadecimal to
hinary 12
positive logic to negative
logic 101-102
Copy-back 632
Counters 310, 331-33%
arbitrary sequence
338-339
BCD 337-338
binary 331-336
with parallel load
J35-337
up-down 335
divide-hy-N 337
modulo-M 337
parallz] 333
ripple 331-333
serial 333
serial-paralle] 333
synchronous 333-330
with parallel pating 333
with serial gating 333
CPU architecture:
pipelined 5335659
super-pipelined 570
super-scalar 569, 571
CPU. See Central processing
unit {CPL)
CRC. See Cyclic redundancy
check (CRC)
Cyelic redundancy check
{CRC) 507
Cylinder 581

D

D flip-flop 253-254
with enable 312
D latch 248249
Data cache 635
Data channel 586
Data communication processor
609
Data forwarding 551-553
Data hazard stall 549
Dwata hazards 546-553
Drata selector 158
Data set 591
Data speculation 5373
Datapath 6, 308, 314, 430433
pipelined 528-537
RISC 541-544
simulation 448
Decimal:
arithmetic 229
codes 18-21
Decrementing 226227
Decizion box 366
Decoder 147
expansion 148-151
Decoding 147-152
combinational circuit
implementation 1601
Decomposition 67
Dedicated logic 324
Delay:
inertial 94
transport 9%
Delay reduction,
transformation for, 70
Delayed branch 555
DeMorgan's theorem 36-37,
4041, 74
general 37
Demultiplexer 151
Design hierarchy §9-92
Destructive read 416

Devices;
large scale integrated
(LSI) 97
medium scale integrated
(MSI} 92, 97
small scale integrated
(S50 97
Index O 649

very large-scale integrated
(VLSI) 97

Hgllw c]l.rcu;lx lU

Digital computers 3—4, 6
Digital systems 4
relation 1o CPU design
573-574
Diminished radix complement
212
Direct inputs 256
Direct mapping 624-625
Direct memaory access (DMA)
399, 605609, See also DM A
acknowledge 603
burst transfer G06
bus grant 606
bus request 605606
controller G607
cycle stealing 606
request 605609
single cycle transfer 606
transfer G0E-609
Direct reset 256
Direct set 256
Directory offset 639
Directory page 638-639
Directory page pointer 639
Disk controller 7, 582
Disk transfer rate 582
Distance two, use of term, 76
Distribution 151
Distributive laws 36
Division by constants 227
DMA, See Direct memory
access (DMA)
Don't-care conditions 63-65
DRAM. See RAM, dynamic
DEAM controller 426
[Dual:
of algebraic expression 35
of equation 39
Dauality principle 39

E

E2ZPROM (electrically
erasable, programmable
ROM) 129

Edge 99-100

650 O

Index

Edge-triggered fip-flop 250,

253
L“H_‘lwu &JLL‘:!\.}. -l[ﬂ
EEPROM (electrically
erasable, programmable
ROM) 129
Elementary operations 314
Elimination 67
Enabling 146-147
Encoders 132-156
expansion 155-156
priority 153-155
Encoding 152-156
End-around carry 214
EPROM (erasable,
programmable ROM)
128120
Equivalence, See Exclusive
NOR
Error detection:
and correction codes
(Supplement) 427
parity 20-21
Essential prime implicant
50-61
Even function 7677
Exception 519
Excess-3 code 103
Exclusive-NOR 75
Exclusive-OR 74, 75=-77
identities 74
transmission gate-hased
T80
Exponent 507
biased 509-510
Extension 227
sign 229
External cache 7, 636
Extraction 67

F

Factoring 67
algebraic 67
Fan-in 98
Fan-out 98, 100-101
-free circuit 117
points 121
Ficld-programmable gate
arrays (FPGAs) 132, 175

Field-programmable logic
arrays (FPLAs) 130

n 1 i il
LIFO) raplaacmant. S2p Rt in
first-out replacement
Fill, zero 227-229
First-in, first-out {FIFO)
replacement 627
Flags. See Condition codes
Flash technology 126
Flash memories 126
Flattening 67
Flip-flop 243, 244, 249-258,
281-284
characteristic:
equation 282
table 282
clear 256
direct reset 256
direct set 256
dynamic indicator 255
edge-triggered 25(), 253
hold time 257
excitation table 282
input equations 258-259
JK 282284
master-slave 250-253
not transparent 250
postponed output
indicator 255
presel 256
propagation delay time
256
pulse-triggered 252
setup time 257
standard graphic symbols
254-256
T 282-284
trigger 249
Flip-flop input equations 258
Flip-flop timing 257-258
Floating point 507-511
arithmetic operations
S0E-509
biased exponent 509510
numbers 507, 508
standard operand format
510-511
Floating point operations 7, 508
Floating point unit (FPU) 6, 7,
483

Format effectors 24

FPLA 130

FPU. See alse Floating point
unit {FPLT}

Fraction 507

Frequency, clock 263

Full adder 203, 204205

Functional block 92

Fully associative mapping
624625

Fuse map 126

G

GiGiga) 10

Gate 32-33, 7074
complex 71, 73
input cost 4849
primitive 71-72
Iransmission T9-80
types T0-74
umiversal 73

Generate function 207
group 209

Generic computer 6-8

Graphics display 583-584

Graphic svmbols:
flip-flop 254-256
gates 32, T0-74
latch 254

Gray code 21-23, 26, 50
binary reflected 23

H

Half adder 203

Hamming codes 427

Hondshaking 589-591

Hard disk 6-7, 381-5483
disk access time 582
disk transfer rate 582
format 582
rotational delay 552
seek time 582

Hardwired control 375-384

HDL.:
analysis 94
elaboration 94
initialization 94

representation of
multiplier 384387
simulation 94
structural description 93
testhench 94
Head 581
Hexadecimal numbers 11-12,
26
addition 14-15
Hierarchicul design 89
Hierarchy 89
High-impedance outputs,
TT-80
High-impedance state 77
High-performance CPU
concepts 569-572
High-to-low propagation time
GRG0
Hi-Z state. See High-impedance
state
Hold time, edge-triggered
flip-flop 257

L, See also Input-output

bus 7
serial 594-598

commands 610-611
control register 586-587
interface units 384-591
ports 503, 586
processors 599, 600-612
register select inputs 587
transfer rate 584

IC. See Integrated cireuit (IC)

Immediate operand 453

Implicant 59

Incoming bit 323

Incompletely specified

functions 63

Incrementing 225-226

Indirect address 471

Inertial delay 99

Information separators 24

Input voltage 4

Input-output 7
asynchronous S87-54%
independent 503

interfaces 584-59]
isolated 303
memory-mapped 503
port 503, 586
processors 586, 594,
HE-612
Inputfoutput (1/0) bus, 7
Instance 91
Instantiation 91
Instruction 364, 449450
execution 450, 468
fetch 468
fields 444, 448
formats 451-454
operation code 45|
register 465466
Instruction cache 635
Instruction set 450
Instruction set architecture
430, 450, 483, 490500
RISC 538-54]
Instructions:
arithmetic 504, S08-3509
branch and jump 512
conditional branch
513-515
data manipulation
5063307
data transfer 300-303
floating point 507-511
logic and bit manipulation
S05-506
one-address 487488
procedure call and returm
513, 516
program control 512-520
shift 506=507
stack 501502
three-address 486—487
two-address 487
rero-address 485489
Integrated circuits 29, 97-98
Integration, levels of 99
Internal cache 7
Iterative:
combinational circuits
M1=202
logic array 2002, 351
Interrupt 318-520
external 518520

O 651

Inelex

internal 518
nonvectored 601

priority 601-603
daisy chain 602-603
parallel 603605
processing of external
519-520
software 518-519
vectored 601
Inverter 33, See also NOT gate
Inverting 143
Isplated I/O configuration 503,
586
Iterative logic array 202, 351

I
IK flip-flop 282-284
K

K (Kilo} 10

Karnaugh map. See Map

Keyboard 7, 580-581,
593-504

K-map. See Map

K scan codes 351

L

Large-scale integrated (LSI)
devices, 97
Last-in, first-out queue {LIFO)
488
Latches 244249
D 248-249
D with transmission gates
248
reset state 245
set state 245
SR 245-246
with control input 247
standard graphic symbols
254-256
transparent 249
Latency time 529
Leading zeros 13
Least significant digit (1sd) 9

652 0O

Index

Least-recently-used (LR
replacement 627

1orary
LIFQ. See Last-in, first out
quene (LIFO)

Line 629

Line size 629-631

Literal 33-39

Literal cost 48

Little-endian 315

Loading 310

Locality of reference 620-622
spatial 620
temporal 620

Logic circuits 88, 437

Logic gates 29, 32-33, 70-74
symbols 72

Logic simulation:
master-slave flip-flop 251
SR Latch 246

Logic simulator 93

Logic synthesis 95-96

Logic synthesizers 93

Logical operations 30

Look-up table (LUT) 125, 175

Low-to-high propagation time

99
LRU. Se¢ Least-recently-used
(LRL) replacement
L3I. See Devices, large scale
integrated
LUT. See Look-up table (LUT)

M

M (Mega) 10

Machine language 483

Make code 581

Mantissa. See Fraction or

significand

Map 47-65
four-variable 55-58
manipulation 58-65
three-variable 50-55
two-variable 49-50

Map optimization 47-65

Mapping:
direct 624-625
fully associative 624623
S-way set associative 628

Master-slave Mip-flop 250-253

[l

Medium-scale integrated
(MSI) devices 97
Memory 7, 3994238
associative 626
definitions 399400
dynamic 405
non-volatile 405
static 405
virtual 636642
volatile 403
Memory management unit
(MMU) 6, 7. 640
Memaory systems 617-646
Memaory timing 403404, 418
Memory types 405
Memory-mapped /O 586
Microinstruction 390
Microoperations 314-315,
318-324
arithmetic 318, 319-321
logic 318, 321-323
shift 318, 323-324
transfers 318
Microprogram 390, 565-568
Microprogrammed control
390, 563-569
organization 391
Minterm 42-45
MM, See Memory
management unit (MML)
Modem 591
Moore mode] sequential circuit
261
Most significant digit (msd) 9
MS1. See Devices, medium
scale integrated
Multiple-bit functions 143145
Multiple-level circuit
optimization 65-70
Multiple parallel execution
units 569
Multiplexer bus 345-348
Multiplexer 156158
expansion 158-159
three-state 160
transmission gate 160-161

Multiplication:
algorithm 369=370
binary 14, 221-223
by constant 227
octal 15
Multipliers 221-223, 360-384
datapath 370
one flip-flop per state
control 380-384
sequence register and
decoder control
3TH-380
Verilog representation
387-390
YHDL representation
384-387
MUX 158

N

n-bit binary code 18, 147
n-to-m-line decoders 147
Mal. See Mot a number
NAND gate 71, 74, 112
Megation indicator 71
MNegative logic 101-103
polarity indicator 103
Metlist 93
Mext state 260
Moise margin 95
Mon-gssential prime implicant
6l
Monprogrammable system
J6d-365
Mon-return to zero inverted
(MEZL 596
Monvectored intermupt 601
NOR gate 71
Mormalized floaling-point
number 508
Mot a number 511
NOT operation 30
NRZI, See Non-return to zero
inverted
Numbers:
binary 9-11
normalized Noating-point
508
signed binary 216-218

Mumber conversion, See
Conversion

Number ranges 13

Mumber systems 813

0

OA. See OR-AND
OAL See OR-AND-INVERT
Octal numbers 11-12, 26
multiplication 15
Odd function 76-77
One flip-flop per state 380-384
One's complement 212
Op conle, See Operation code
Operand addressing 485-492
Operation:
code 451
mnemonic 454
OR-AND (04) 74
OR-AND-INVERT (OAL) 74
OR operation 30, 71
O/ symbol 31
Outgoing bit 323
Chutput voltage 4
Owverflow 220-221

P

Packet identifier (PID)
S96-597
Page 622, 637
fault 641
frame 637
frame number 638
offset 637
table 638640
offset 630
page number G349
PAL device. See
Programmable array logic
devices
Parity bit 20-21, 26
Performance, pipeline 535-538
Physical address 636
Pipeline control 533-537
data hazards 546-553
empiving 533
execution pattern diagram
532

filling 532-533
platforms 530
stalled 549
control hazards 553-557
PLA 129-130. See alyo
Programmable logic array
PLD programming
anti-fuse 125
electrically-crasable 126
erasable 126
fuse 124
mask 124
Points, fan-out 121
Polarity indicator 103
Positive logic 101-103
Postfix notation. See Reverse
Palish notation
Postponed output indicator 255
Power dissipation 98
Powers of two 10
Predefined blocks 90-91
Predication 572
Present state 260
Preset 256
Prime implicants 59-61
essential 39-61
non-essential 61
selection rule 6l
Primitive blocks 90, 93
Primitive gates 71-72
Processor 6
data communication 609
1A s
status register 4835
Product of maxterms 44
Product of sums 46—47
Product-of-sums oplimization
6263
Product term 41
Program 450
Program counter (PC) 304, 449
Program interrupt 517-520
Programmable array logic
(PALY 126
combinational circuit
implementation
169-171
devices | 30-132
Programmable logic array
(PLA) 127, 129-130

O 653

Index

Programmable read-only
memory (PROM) 126-128
Programmable system 364
PROM. See Programmable
read-only memory (PROM)
Propagate function 207
group 209
Propagation delay 98-101, 103
Propagation delay times:
flip-flops 258
gates 98-101
Protection violation 518

Radix 8
Radix complement 212
Fadix point &
RAM. See Random access
memory (RAM)
RAM ICs, array of 411-415,
426
RAM integrated circuits
405411, 415421
Random access memory
(RAM) 7, 399, 400405
bit slice:
dynamic 417421
static 405
cell:
dynamic 415
static 4035
column address 418
destructive read 416
dynamic 415426
synchronous 421424
double data rate 424475
RAMBUS (RDRAM)
421, 425426
restore 416
row address 418
static 405414
timing 418-420
Ivpes 421426
Random replacement 627
Raster 583
Read operation 400, 402
Read-only memory (ROM)
127-129, 400

654 O

Index

combinational circuit
implementation
167-1649
electrically-erasable,
programmable
(EEPROM) 129
erasable, programmable
(EPROM) 128129
programmable (PROM)
126-128
Rectangles 51-53
Reduced instruction set
computer 4949
Refresh 420421
controller 420
counter 420
initiation 420-421
operation 420
timing 420
types 420
Refreshing DRAM 405, 420
Register 310
cell 339
cell design 339-345
loading 310
parallel load 311
shift 326-331
Register file 442
Register set 485
Register select inputs 587
Register transfer 313-315
destination 316
source 316
Register transfer operations
314, 315-318
Relative amplitude 102
Rejection time 99
Restore 416
Reusable block 91
Reverse Polish notation (RPN
491
Ripple carry adder 205
Ripple counters 331-333
RISC architecture 499, 521
Rotational delay 582
ROM. See Read-only memory
Row select 409
Rudimentary logic functions
142147

s

S R Latch 245-246
SR Latch 246-248
Scalar decision box 366
Scan code 593
Scan lines 583
Scan matrix 580
Schematic 89
Schematic capture 92-93
Sector 38]-582
Seek time 582
Segmentation H42
Selecting 156-161
Selection rule 61
Sequence register and decoder
378-380
Sequencer 390
Sequencing and control
363-398
Sequential circuit 241-308
analysis procedure
253-267
asvnchronogs 242
clocked 243
definitions 242-244
design 267-284
design procedure 268
design with D flip-flops
2735
Mealy model 261
Moore model 261
next state 260
present state 2600
state assignment 275-277
state diagram 262-263,
268-275
state table 260-262
synchronous 242
timing 263-266
unused states 277-279
Serial:
addition 350-352
counters 333
memory 400
packet-based 1/0 594-598
transfer 348-352
Set size 628
Set-associative mapping 628
Setup time, edge-triggered
flip-flop 257

Seven-segment display 108
Shared logic 324
Shift 323
incoming bit of 323
outgoing bit of 323
Shift registers 326-331
bidirectional 329-331
unidirectional 329
with parallel load 327-329
Shifters 439441
barrel 440441, 543
combinational 439
Sign extension 229, 453, 539
Signals 4, 229
Signed binary numbers
216-218
Significand 510
Simplex 591
Simulation 266-267
functional 266
timing 266
Skew, clock 256, 266
Small-scale integrated (351)
devices, 97
Space-time tradeoft 351
Spatial locality 620
Speculative loading 573
Square 49-50)
SREAM. fee Static random
ACCLSE memory
551 See Devices, small scale
integrated
Stack 488
architecture 490
instructions 488, 492
pointer (S 485
Standard:
forms 41-47
load 100
State 242, 260
box 365
diagram 262-263
machine 365
table 260-262
input 2640
next state 260
oartpat 260
present state 260
Storage
asynchronous 243

elements 243
resources 450451
Strobing 588-589
Structural description 93
Substitution 67
Subtraction:
binary 14
signed using
complements 218
unsigned using
complements 214
Sum of minterms 43
Sum of products 45-46
optimization 43, 48, 54,
58, 61-63, 67, 80
Sum term 4142
Super-pipelined CPU 570
Super-scalar organization 569,
3
Support 175
Synchronization pattern
(SYNC) 596
Synchronous sequential circuit
242

T

T flip-flop 282-284
Target address 339
Target offset 339
Technology mapping 935,
110120
Temporal locality 620
Terms of an expression 33
Testbench 94
Thrashing 622
Three-state:
buffers 77-79
bus 347-348
Throughput 530
Timing diagram 32
TLB. See Translation
lookaside buffer (TLE)
Top-down desizn 87, 88, 92
iy See Propagation delay
tPHL See High-to-low
propagation fime
tPLH See Low-to-high
propagation lime
Track 581

Trailing zeros 13
Transfer:
interrupt-initiated 601
maodes 598601
multiple register 345-348
multiplexer-based
345-348
program-controlled
599601
serial 348-352
three-siate-based 347-348
Transferring 143
Transistors 4
Transitions 32
Transition regions 32
Translation lookaside buffer
(TLB) 640-642
Transmission:
asynchronous 592
baud rate 593
synchronous 591, 593
Transmission gates 79-80)
exclusive-QOR &0
Transparent 249
Transport delay 99
Trap 518
Trigger 249
Truth table 31
AND 31
condensed 146-147, 153
function 3334
NOT 31
operation 31
OR 31
Turnaround time 591
Two's complement 211, 213
Two-level circuit 46
optimization 47-38
cost criteria 48—49
four-variabhle map
55-58
three-variable map
50-55
two-variable map
49-50

u

Unified cache 635
Universal gate 73

Index O 6535

Universal Serial Bus (USB) 594
Unicode (Supplement) 24

e s 11

USB. See Universal serial bus

v

Valid bit 631
Value-fixing 143
Vector decision box 366
Vectored address 601
Vectored interrupt 601
Verification 121-124
Verilog 93, 184—190, 233-235,
291-298, 354355,
387300, 427
@ pperator 292
assign 188
behavioral description
233-234
blocking assignment 292
case 205
clocking and reset 292
comments 184
compiler directive, define
295
concatenation 234235
counter representation
3154-355
dataflow description 188
default 298
event control 293
if-else 203
input 185
module 185
non-blocking assignment
292
output 185-186
process:
always 292
initial 292
register 292
register transfer symbols
318
representation of
multiplier 387
representation of
sequential circuits
205

656 0O

Index

representation binary
codes 295
|

sequential cll'CilllS
201-298
shift register representa-
tion 352-353
strictural description 186
vectors 187
wire 186
Very-large-scale integrated
(VLSI} devices, 97, 132
VHDL 93, 176-184, 229233,
285-291, 352-354,
384-387, 427
architecture of an entity
179
altribute 291
begin 179
behavioral description
231-233
case 287, 289-290
pitfall 290
comment 177
component 1749
concatenation 231-232
counter representation 352
dataflow description 181
delta time 179
end 179
entity declaration 178
pates 186
generation of storage 284
if-then-else 285-287
pitfall 290
library 178
others 183, 290
package 178
port:
declaration 178
map 179
process 284-285
sensitivity list 285
register transfers symbaols
318
representation of binary
multiplier 384387

representation of sequen-
tial circuit 287

(R0

tion 351
signals 179
standard logic 178
state nssignment 291
state encoding 291
std_logic 178
std_logic_vectors
180181
structural description 179
type 287
use 178
variable 284
when-else statement 182
with-select 182
Virtual address 636
Virtnal memory 622, 636642
Virtual page number 638
VLSI. See Devices, very large
scale integrated
VLSI design:
full custom 110
gate array 111
standard cell 111

w

Word 400

Word select 406

Write cvele time 403
Write operation 400, 402
Write-back 632
Write-buffering 632
Write-through 63 1-632

X
XOR. See Exclusive-0OR
Z
Zero-address instructions

JBE—480
Zero fill 227-229

